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Taking Fitts’s law as a premise—that is, movement time is a linear function

of an appropriate index of difficulty—we explore three issues related to the

collection and reporting of these data from the perspective of application

within human–computer interaction. The central question involved two

design choices. Whether results obtained using blocked target conditions

are representative of performance in situations in which, as is often the

case, target conditions vary from movement to movement and how this

difference depends on whether discrete or serial (continuous) movements

are studied. Although varied target conditions led to longer movement

times, the effect was additive, was surprisingly small, and did not depend

on whether the movements were discrete or serial. This suggests that

evaluating devices or designs using blocked data may be acceptable. With

Zhai (2004) we argue against the practice of reporting throughput as a one-

dimensional summary for published comparisons of devices or designs.

Also questioned is whether analyses using an accuracy-adjusted index of

difficulty are appropriate in all design applications.

1. INTRODUCTION

Fitts’s law is a highly successful formulation that describes how the time to

complete a movement depends on the distance to be covered and the spatial accuracy

required. Although Fitts’s law does not apply to all aimed movements (Wright &

Meyer, 1983) and there has been interest in ways to escape the limitations it imposes

in virtual environments (e.g., Balakrishan, 2004), the class of movements to which it
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does apply is large and of immense practical significance. This broad applicability has

stimulated interest in this formulation beyond its basic research origins. This interest

has led both to a large increase in the number of papers appearing in traditionally

applied outlets that use Fitts’s law and to an international standard that specifies how

Fitts’s law results should be used to characterize and compare input devices (ISO,

2000).

The purpose of this article is neither to extend nor question Fitts’s Law, which

we take as a given. Instead we wish to explore three issues that have arisen as Fitts’s

law has been applied in human–computer interaction (HCI). The theme that unites

these three issues is a concern that ideas and practices, which emerged from the

basic research that provided the underpinnings of Fitts’s law, have been adopted by

applied researchers without sufficient scrutiny. Recent standardization efforts have

made these issues more salient. Although standardization will almost certainly produce

research results that are more consistent, standardization could also have negative

effects if the research produced either is reported incompletely or is misleading when

generalized to the situations that are of practical interest.
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550 Wright and Lee

The central issue we explore is whether experimental design choices, which

may make sense in a basic-research setting and are often used in applied studies,

appropriately reflect the real-world situations to which the results are to be generalized.

The two remaining issues emerged as we reflected on recommendations in the

literature for how to analyze and report our data related to this central issue.

1.1. Background

Fitts’s law holds that the time, T, to complete a speeded movement to a target

is a linear function of an index of difficulty, ID, characterizing the movement:

T D a C b ID. (1)

The index of difficulty depends on the target distance, D, from the starting point to

the center of the target, and the target width, W. The definition of ID has evolved

since the initial, admittedly ad hoc formulation proposed by Fitts (1954):

ID D log2

�
2D

W

�
:

The version of the index of difficulty now typically used in HCI applications is

(MacKenzie, 1992; Soukoreff & MacKenzie, 2004):

ID D log2

�
D

W
C 1

�
: (2)

However, all of the proposed modifications of Equation 2 have the more general

form T D f (D/W ); where f ( ) is a simple (i.e., linear, logarithmic, or power) function

of the dimensionless ratio D/W (Guiard & Beaudouin-Lafon, 2004).1

A second, important development related to Fitts’s law has grown out of

the observation that participants in these experiments often do not adjust their

performance as much as might be expected when target width is changed. Specifically,

changes in endpoint variability are typically much smaller than would be expected

when target width is manipulated. To compensate for this, Welford (1968, pp. 147–

148), based on earlier work of Crossman (1956), suggested that ID be replaced with an

effective index of difficulty, IDe, in which an estimate of the effective target width, We ,

replaces W, the nominal target width. We can be computed either from the observed

1In our opinion, the ‘‘best’’ formulation for the index of difficulty is a power function: (D/W)p, where p is a

fractional exponent (0 < p � 1). Kvålseth (1980) first made the case that this form generally fits movement time

data better than one based on the logarithm, the shape of which approaches that of the power function as p gets

close to zero. We prefer this form because it has been shown to generate fine-grained predictions about the resulting

movement trajectories that have generally been confirmed (Meyer, Smith, Kornblum, Abrams, & Wright, 1990).

However, for descriptive purposes, Equation 2 is fine, and, as it is widely used in this literature, we use it here.
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HCI Application of Fitts’s Law 551

incidence of errors (i.e., those movements ending outside of the target) or, preferably,

from the variability of movement endpoints,

IDe D log2

�
D

We

C 1

�
: (3)

Although Fitts used an accuracy adjustment in his later work (Fitts & Radford, 1966),

it has not always been adopted (MacKenzie, 1992).

Over the last half century, Fitts’s law has been well studied and has proven to

be highly successful. Data obtained using a large variety of input devices across a

broad array of conditions are well fit by Equation 1 with R2 values of .80 or higher

(Plamondon & Alimi, 1997). The success of this formulation has not been universal,

however. For example, it is well documented that this formulation breaks down as ID

becomes small (Gan & Hoffmann, 1988) and when W is smaller than about 8 pixels

(Chapuis & Dragicevic, 2011).

Fitts’s papers contained elements of both basic and applied research. His for-

mulation grew out an effort to understand human performance from the theoretical

perspective of information theory. However, from a more practical perspective, he

also proposed an index of performance (Fitts, 1954, Equation 2),

IP D
ID

MT
, (4)

as a measure of throughput combining both speed and accuracy. This measure, which

has the units bits of information per unit of time, was adapted from information

theory, where it is used as a measure of the channel capacity. Fitts’s expectation was

that throughput would be a constant that could be used to characterize and compare

operator performance with different devices and in different movement contexts.

1.2. Fitts’s Law in Basic Research and Applied Settings

Although the specific form for the index of performance has been a subject

of debate, Fitts’s idea of using these or similar results to characterize movement

situations and input devices has become increasingly influential in HCI (MacKenzie,

1992), especially after Card and his colleagues used the results from an application of

Equation 1 (Card, English, & Burr, 1978) to justify commercialization of the mouse

by Xerox. Of specific interest to HCI researchers, Fitts’s law has been found to

apply to pointing and dragging using a mouse, trackball, stylus, joystick, and touch

screen. The results have been used both to assess and compare throughput and as part

of larger models to predict performance in new user interfaces (e.g., Card, Moran,

& Newell, 1983). This has led to the promulgation of an international standard,

ISO9241-9, that provides guidelines for such evaluations (ISO, 2000). Other, more

detailed recommendations for how these evaluations should be conducted have been

proposed by Soukoreff and MacKenzie (2004). These attempts at standardization

are important if they help reduce the confusion in the literature due to conflicting
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552 Wright and Lee

results arising from methodological differences (MacKenzie, 1992). To evaluate this

possibility for pointing movements made with the mouse, Soukoreff and MacKenzie

compared nine studies that followed ISO9241-9 and 24 studies that did not. They

found a dramatic increase in consistency of the results for the studies that followed

ISO9241-9.

1.3. Issue 1: Influence of Design Choices on the External Validity of
Fitts’s Law Studies

Inferences about cause–effect relationships based on specific scientific studies

are said to possess external validity if they may be generalized from the unique and

idiosyncratic settings, procedures, and participants of those studies to other popula-

tions and conditions. This issue is often critical in design applications when published

results are used to justify design decisions. Of course, the best way to settle external

validity concerns is a replication using the settings, procedures, and participants of the

intended application. However, for obvious practical reasons designers often prefer

to generalize results from available, prior research when making design choices. Our

central concern here is that the methodology of much of the research using Fitts’s law,

including studies adhering to the suggestions of ISO 9241-9 (ISO, 2002) and Soukoreff

and MacKenzie (2004), may generalize poorly to the situations typically encountered

in the HCI applications of that research: that is, the coefficients of Equation (1)

derived from such research may deviate systematically from those obtained using

procedures more like the situations encountered in the application environments.

One procedural aspect of concern here is the blocking of target conditions,

where ‘‘target conditions’’ refers to combinations of D and W. Recommendation II

of Soukoreff and MacKenzie (2004, p. 755) is in line with the practice followed

in many studies based on Fitts’s law. They suggest studying a variety of target

conditions that include multiple levels of D and W chosen so that nominal ID values

associated with the target conditions span a range between 2 and 8 bits. Each target

condition should be presented enough times—they suggest between 15 and 25—that

an accurate estimate of the central tendency can be ascertained for each participant

using each target condition. Although there is no specific recommendation to this

effect, either by Soukoreff and MacKenzie or in ISO 9241-9, a natural way to structure

the repeated presentations for a particular target condition is to block them, that is,

present a sequence of trials all having the same target condition. Blocking of the

target conditions certainly is not necessary. Pastel (2011) is an example of a study that

randomizes the target conditions. However, of the nine studies cited in Soukoreff

and MacKenzie (2004) as examples that have followed ISO 9241-9, the six that we

could obtain and that included enough detail to determine how the conditions were

ordered, all blocked target conditions. It is also suggestive that some studies report

not only blocking target conditions but discarding the first several trials within each

block so that the data analyzed would better reflect optimum performance possible

in that target condition.
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HCI Application of Fitts’s Law 553

Blocking target conditions and discarding initial trials within blocks may make

perfect sense in the context of basic research where the goal typically is to estimate the

best possible result that a participant can produce in a specific condition. However, it

is far from clear that the results obtained using these procedures accurately describe

performance in typical HCI applications. Making matters worse, we know of no

studies that include or allow direct comparison of results obtained using blocked

and fully varying target conditions.2 The study reported here includes a factor—

blocked/varied targets—to address that question.

In addition to manipulating the order of target conditions, this study also looks at

the importance of movement preparation by including a second factor: discrete/serial.

In the discrete movement task, the participant first freely moves the mouse to a

specified starting point and then, after a signal, initiates a speeded movement to the

target. After a pause, and possibly some feedback, this procedure is then repeated. In

the serial movement task, after completing a movement, the participant immediately

initiates a subsequent movement in the opposite direction; the process is repeated

until the full sequence is done. In terms of opportunities for movement preparation,

these procedures span a continuum that includes many typical HCI situations.

Unlike the blocked/varied factor, data have been reported that compare the

discrete and serial movement conditions. In his first article, Fitts (1954) used a serial,

stylus-tapping task (he described this condition as ‘‘continuous’’). A decade later, Fitts

and Peterson (1964) used the same apparatus in a discrete version of the task. Figure 2

of this second article compares the data from these two experiments. In this figure,

T for the serial task is longer than that for the discrete task across the full range of

ID values studied and gets larger as ID increases: For an ID of 2, the difference was

roughly 100 ms and it increased to roughly 210 ms for an ID of 7. Fitts and Peterson

expected these results both because T in their serial task included between-movement

latencies that were excluded in their discrete task and, more fundamentally, because,

in the discrete task, the participant starts each movement after having had time to

program its parameters. However, the interpretation of their data is clouded by the

presence of a substantial speed–accuracy trade-off: For the faster discrete task there

were 10.5% target misses on average, almost 10 times as many as the 1.2% for the

slower serial task.

Guiard (1997) provided a direct comparison of discrete versus serial movements

using a linear positioning task. To make the conditions more similar, participants

pushed a button on the manipulandum to signal the end of a movement and before

2This statement is qualified because there have been several studies (e.g., Megaw, 1975) that looked at limited

variation of the target conditions in a serial, reciprocal, stylus-tapping task (like that studied by Fitts, 1954; see

next). One experiment included conditions in which D was constant but the widths of the left and right targets

were different. The analysis looked at T as a function of the width of that target and the target of the previous

movement—as this was a serial, reciprocal task, the endpoint of the previous movement served as the starting point

for the current movement. These were inversely related: T decreased substantially as the width of the previous target

increased. Particularly striking was the observation that, when the previous target was larger than the current target,

T was faster than it was in a condition in which the width of the two targets was identical. Megaw also studied

successive movements that had different Ds, but constantW. In this condition, T was about 35 ms slower and did

not depend systematically on the target conditions of the previous movement.
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554 Wright and Lee

initiating a discrete movement. Replicating the conclusion derived from Fitts’s exper-

iments, the slope of the function relating T to IDe was larger in the serial condition

(277 ms/bit) than in the discrete condition (205 ms/bit), and the direction of this

difference was the same for all six participants. However, unlike the data from Fitts,

Guiard found that, for all six participants, these functions crossed somewhere in the

IDe range between 2 and 6 and that this point of intersection was strongly correlated

with a participant’s overall movement time: the faster the participant, the higher the

IDe at the point of intersection.

The discrete/serial factor was included in our experiment for two reasons. First,

there might be a main effect of this factor, which is important because, as just dis-

cussed, real-world tasks tend to fall between the extremes exemplified by the discrete

and serial tasks in terms of the time available for movement preparation. Second,

we suspected that the discrete/serial factor might interact with the blocked/varied

factor: specifically, that any differences due to the blocked/varied factor might be

larger with the serial task than with the discrete task. From an information-processing

perspective and consistent with the expectation of Fitts and Peterson (1964), the

implicit pressure to spend less time on movement planning in the serial task might

impose a larger penalty when the target conditions are varied than when they remain

constant. From the perspective of dynamical systems applied to the Fitts task (Guiard,

1993), the ability to recycle kinetic energy in the serial task appears to depend on the

harmonicity of the repetitive movements. Guiard (1993, 1997) has shown that, with

target conditions blocked, this advantage is reduced for more difficult movements. It

seems plausible that this advantage might also be reduced when the target conditions

are varied.

Much of the reported data for Fitts’s law comes from the discrete task with

blocked target conditions. However, many of the actual HCI situations for which

designers might wish to draw inferences by generalizing these data provide less

opportunity for movement preparation, as in the serial task, and/or involve target

conditions that vary from movement to movement. Given this mismatch, it strikes

us as important to have a clear sense for whether and, if so, how these two factors

influence the coefficients of Equation 1.

1.4. Issue 2: Use of ID
e

and the Accuracy Adjustment

Having collected the data to evaluate Issue 1, we encountered several issues about

how to analyze and report it. As outlined in the Background section, the effective index

of difficulty, IDe (Equation 3), often is used when fitting Equation 1, replacing ID, the

value computed from the nominal conditions. This substitution is recommended both

by ISO 9241-9 (ISO, 2002, p. 30) and Soukoreff and MacKenzie (2004, pp. 755–757,

Recommendation IV). Zhai, Kong, and Ren (2004) provided a thorough examination

of the implications of this change. As they noted, the basis for this recommendation

is largely pragmatic. For example, Fitts and Radford (1966, p. 479) say that they ‘‘feel’’

that using IDe provides ‘‘a more precise estimate’’ even though the correlations with

T were somewhat lower. The basis for this intuition appears to be the observation
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HCI Application of Fitts’s Law 555

that the spread of the endpoint distribution for movements to a target, defined by

some combination of D and W, is not a fixed proportion of the nominal width of

the target, W, as would ideally be the case. So, for example, when ID is smaller than

about 3, movement endpoints are typically tightly clustered in the side of the target

region closer to the starting point (Gan & Hoffmann, 1988). Because of this, T is

larger than would be expected based on Equation 1. Zhai et al. (2004) formalized

observations like these using an index of target utilization,

Iu D log2

�
We

W

�
: (5)

Across a series of experiments, they found that Iu depends in a complex way on three

factors: W, D, and operator intentions, which can be manipulated by instructions.

Echoing Fitts and Radford (1966), Zhai et al. (2004) also found that replacing ID

with IDe, rather than improving fits obtained in several experiments, consistently

produced a small decrement in R2. Where they found an advantage of using IDe was

when they fit data obtained from several instructional conditions intended to induce

participants to change their speed-accuracy trade-off. When the data from several

conditions were fit simultaneously with a single line, the overall fit was substantially

better using IDe. In addition, separate fits for each instructional condition produced

coefficients that were more similar when the predictor was IDe instead of ID. These

improvements occurred because using the effective rather than the nominal target

width partially compensated for the changes induced by the instructional conditions.

These results suggest that using effective-target-width adjustment is a step that

can be beneficial but should be used with caution, rather than automatically. In

particular, we believe that basing design decisions on accuracy-adjusted data often

may be a mistake. The problem is simple: In design situations, what is typically known

are the nominal conditions not the effective conditions. Zhai et al. (2004, p. 826) and

Chapuis and Dragicevic (2011, p. 13:23) also make this point. Predictions produced

by inserting nominal ID values into Equation 1 with coefficients derived using IDe

will be biased, possibly badly; however, this procedure is precisely Recommendation

VI of Soukoreff and MacKenzie (2004, p. 759). In addition, as Zhai et al. (2004, see

Figure 17) concluded, an extension to Equation 1 that incorporates Iu in a principled

way is not straightforward.

1.5. Issue 3: Summaries Based on IP, the Index of Performance

As noted in the Background section, Fitts (1954) initially proposed the meas-

ure of throughput, IP, in Equation 4 as a single-valued ‘‘index of performance.’’

However, if Equation 1 is correct that T is a linear function of ID, then for IP to

be even approximately constant across different values of ID, the constant term, a,

in Equation 1 would have to be zero or at least relatively small. The parameter a is

the solution to Equation 1 when ID D 0. Because that fact will play a critical role

in the discussion that follows, we will refer to it henceforth as bTID D 0.
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556 Wright and Lee

Because zero is outside the observable range of ID values,3 the value bTID D 0

must be an extrapolation from the data. As with any extrapolation, estimates of
bTID D 0 should be interpreted cautiously. Although it might seem intuitively plausible

for T to approach zero as ID does, bTID D 0 values indistinguishable from zero have

been observed only occasionally. Typically, bTID D 0 is found to be positive; however,

in a few cases, including Fitts and Peterson (1964, p. 107) negativebTID D 0 values have

been reported. According to one widely cited interpretation of bTID D 0, it should be

positive reflecting the time required by fixed perceptual and/or motor processes (e.g.,

target selection) that, although required, are not influenced by movement difficulty

(Welford, 1968). Whatever their source, as Zhai (2004) elegantly pointed out, the

presence of a non-zero bTID D 0 implies that IP must vary, sometimes substantially,

across target conditions with different ID.

Against this background, Soukoreff and MacKenzie (2004, Equation 10) rec-

ommended using what they call throughput (TP ) obtained by a process of averaging

accuracy adjusted IP values across a chosen set of target conditions as the preferred

way of comparing different experimental conditions. Although there is much to

recommend their carefully constructed approach for specific comparisons, we are

concerned about its use when reporting results that are intended to be generic. The

limitation of results reported using this approach arises when, for example, a designer

wishes to apply the conclusions from a reported comparison to a current design

choice. So long as the ID values used to make the reported comparison are close

to those of the proposed application, then generalizing the reported results to the

specific application may be justified. However, when the ID values differ across the

two situations, basing a design choice on them will be problematic and a more nu-

anced description of the results underlying the original comparison, although more

complicated, will probably be more useful. Also, as is demonstrated in the Discussion

section, problems with IP constancy can arise for comparisons of conditions even

within an experiment.

Perhaps because of similar concerns, Fitts subsequently proposed using the

inverse of the slope coefficient,

IP D
1

b
, (6)

as a measure of ‘‘relatively constant information capacity over a range of movement

conditions’’ (Fitts & Radford, 1966, p. 476). Given the information theoretic approach

that motivated Fitts’s work, this definition makes perfect sense. Equation 6 also

has the advantage over Equation 4 that, for any range of ID values over which

3Using Equation 2, the smallest plausible value of ID is either 0.585 or 1, depending on whether the task is

discrete, in which case D/W D 1/2 and the target region extends back to the starting point, or the task is serial, in

which case D/W D 1 and the edges of the target regions just touch.
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HCI Application of Fitts’s Law 557

Equation 1 holds, the expected value of this estimate will be constant.4 As many

have pointed out, the disadvantage of this approach is that focusing solely on the

inverse slope coefficient and ignoring a non-zero bTID D 0 discards information that

may be important. From an applied perspective, what typically matters is not a

theoretical construct such as information capacity but rather the expected time

required to complete pointing operations with different levels of difficulty and, as

Equation 1 states, that time depends on both bTID D 0 and the slope. Thus, we agree

with Zhai (2004) that both coefficients should always be reported when characterizing

perceptual-motor systems.

Many reports using Fitts’s law have included both the bTID D 0 and slope pa-

rameters. In fact, later in the article just cited (Fitts & Radford, 1966, p. 480), Fitts

talks about using both to characterize the human motor system. Also, the first article

to apply the Fitts’s law approach to HCI, Card et al. (1978) also reported the full

equation for each device. However, a disturbing number of subsequent articles in

applied areas (see Zhai, 2004, p. 795, for one listing) have based their assessments on

either only Equation 4 or Equation 6.

Even more troubling is that Annex B to ISO 9241-9, which describe procedures

for testing the efficiency and effectiveness of input devices, states that the goal of

testing should be to ‘‘provide a measure of throughput’’ (ISO, 2000, p. 28) and goes on

to define throughput as IDe/MT (p. 30). Soukoreff and MacKenzie (2004) provided

useful elaborations and extensions of the procedural recommendations in ISO 9241-

9. Their seven recommendations include detailed instructions for obtaining data and

fitting it using the version of Equation 1 based on IDe. These instructions implicitly

acknowledge a role for both coefficients. However, their seventh recommendation is

more in line with the position taken by ISO 9241-9. This recommendation is to be

applied when the purpose of an analysis is to compare two or more conditions. Such

comparisons are to be based on TP, their variant of the IP measure based on IDe.

They asserted that the advantage of this approach is that, ‘‘calculated this way, TP

is a complete measure encompassing both the speed and accuracy of the movement

performance’’ (p. 760).

Although we can understand the appeal of being able to characterize and

compare different operators, conditions, or devices using a one-dimensional metric,

the inconvenient truth of Equation 1 is that, for comparisons intended for generic

use, this is not generally applicable. The one special case in which this approach

works generally is when the difference between the conditions being compared is

4In support of their argument against this characterization, Soukoreff and MacKenzie (2004, p. 775) displayed

an equation for 1/b that is related to an intermediate step in the standard derivation of the slope estimator for linear

regression. They asserted, incorrectly, that the form of this equation supports their claim that estimates of the inverse

slope are sensitive to the values of the independent variable, in this case of ID, associated with the observations that

are included in the estimate. However, if the function relating T and ID is linear, as Equation 1 holds, then, unlike IP,

the expected value of the inverse slope coefficient does not depend on the particular ID values observed. ID appears

in the equation displayed by Soukoreff and MacKenzie to normalize the slope estimate. In effect this sets the scale,

or units (e.g., bits per s), of the inverse slope coefficient. If the scale of the ID values were to change, for example if

the logarithm were taken with a base of 10 rather than 2, this would simply change the units.
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558 Wright and Lee

effectively confined to a difference in bTID D 0 values. When the slopes differ, even if

the bTID D 0 values are zero, the size of the T difference between the conditions will

depend on ID; when the functions cross, the sign of the difference will change. Any

single-measure approach to comparing conditions ignores these differences.

2. METHODS

2.1. Participants

There were 13 participants (7 male); all had vision correctible to 20/20 or better

and were right-handed. One female participant dropped out after the second session

due to scheduling conflicts. Each of the remaining participants took part in three

1-hr sessions. Subjects were paid $10 per hour. The protocol for this experiment was

approved by the UCI Institutional Review Board.

2.2. Apparatus

A PC running a program written in MATLAB was used to present stimuli

and record responses. Stimuli were presented on a 17-in. CRT computer monitor

running at a 60 Hz refresh rate with a resolution of 1280 � 1024 pixels. The

screen was calibrated so that 1 pixel extended 0.25 mm in both the horizontal and

vertical dimensions. Participants used a Logitech optical mouse (Model #M-98C) to

make responses. All movement acceleration software was disabled so that a mouse

movement of 1 mm produced a constant cursor movement of 5 mm (20 pixels). As is

typical for mouse movements, the screen surface was oriented vertically in front of the

participants at eye level and the mouse movements were made in a different plane, on

the horizontal surface of the table at which the participants were sitting. The possible

impact of this orientation difference was minimized because, as described next, only

the left–right movements played an important role in this experiment. Participants

adjusted the height of their chair to a comfortable height.

2.3. Design

There were three factors, all manipulated within subjects: the target condition fac-

tor (10 levels), specified D, W, and thus ID of a movement, the blocked/varied factor

(two levels) specified how the target conditions were ordered, and the discrete/serial

factor (two levels) specified whether successive movements were produced in a

continuous series or discretely. As shown in Figure 1, the 10 levels of target condition

included nine unique levels of ID constructed from six levels each of D and W.

The experiment was organized into blocks of 22 movements. The first two

movements in each block were considered warm up and were not included in the

analyses. Each hour-long session consisted of 40 blocks, organized into four sets
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HCI Application of Fitts’s Law 559

FIGURE 1. Nominal target conditions.

Target Distance, D (pixels) Target Width, W (pixels) Index of Difficulty, ID (bits)

50 18 1.92
100 20 2.58
200 28 3.03
200 20 3.46
100 8 3.75
400 32 3.75
800 30 4.79
600 18 5.10
400 8 5.67
600 8 6.25

of 10 blocks. One of the four combinations of blocked/varied and discrete/serial

factors was used in each of these four 10-block sets. The order of these four

task combinations was balanced across groups of four participants using a different

digram-balanced, 4 � 4 Latin square for each of three groups of four participants.

In the varied level of the blocked/varied factor, the target conditions occurred

in a pseudo-random order generated with two constraints. First, each of the 10 target

conditions had to occur twice in Movements 3 through 22 of each block; the

target conditions for the first two movements were randomly selected without this

constraint. Second, a target condition could not be selected for a particular movement

if that would result in a target closer than 100 pixels to the left or right edge of the

screen. Thus, across a set of 10 blocks, each target condition determined the target

for 20 trials, ignoring the first two trials in each block. In the blocked level of the

blocked/varied factor, a single target condition defined all of the movements in

one block. Thus again, across a set of 10 blocks, each of the 10 target conditions

determined the target for 20 test trials. The order of the 10 target conditions within

a set was approximately balanced across participants using a digram-balanced, 10 �

10 Latin square.

2.4. Procedures

Before each block a displayed message stated whether the target conditions

would be blocked or varied and whether the trials would be discrete or serial. At

the end of each block, the display showed the mean movement time and number

of targets missed. The mean movement time in this display excluded either the

movement latency, for movements made in the discrete condition, or the dwell time,

for movements made in the serial condition. (Latency and dwell time are described

more fully next.) The experimenter compared these with previous values in similar

conditions and verbally encouraged the participant to move quickly while minimizing

errors.

Figure 2 shows a scale reproduction of an example stimulus display at the start of

a block with varied target conditions. The small cross (5 pixels across) was the cursor
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560 Wright and Lee

FIGURE 2. Reproduction of a possible stimulus display at the start of a varied target condition

block.

that moved as the mouse moved. The dot (6 pixels in diameter) was the starting point;

it was displayed as a filled red circle when the cursor was too far from the starting

point to initiate a movement and a filled green circle when the cursor was within

3 pixels of the starting point. Once the cursor had remained in the start region for

0.5 s, a tone was presented. The tone indicated that the participant was free to start

the movement at any time. The onset of the tone also began the timing of the latency

period, that ended as soon as the mouse had been moved 5 pixels from its initial

position. Having moved the mouse to bring the cursor within the target rectangle,

the participant pushed a mouse button indicating that the movement was complete.

If the cursor position when the button was pushed was outside of the target rectangle,

an error was noted but no immediate feedback was given beyond that of the visible

presence of the cursor outside the target.

The 22 rectangles in Figure 2 were the targets for the movements in one block.

The vertical position of the targets reflects the order of each target in the upcoming

sequence of movements. In this condition, the distance between targets, D, and their

width, W, varied pseudo-randomly from target to target, as previously described. The

vertical size and spacing of the targets were constant (35 pixels).

Although the display in Figure 2 looks cluttered, raising the concern that partic-

ipants would have found it difficult to locate successive targets, after a little practice

participants found these displays natural and easy to use. There were three reasons

for this. First, after the initial movement, which was always to the right, movement

direction alternated; so, for example, having completed a movement to the right, the

participant would know to look back to the left to find the next target. Second, the next

movement target was always visually quite salient because it was highlighted by being
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HCI Application of Fitts’s Law 561

displayed with a white outline on the gray background of the screen; the targets for

all of the later movements were displayed with black outlines. (Note that in Figure 2

the highlighted box is indicated by a heavier line weight rather than luminance.) The

third reason that successive targets were easy to locate was that the vertical center

of the next target was always displayed at the same vertical position—as a corollary,

the movements required were only horizontal. This was possible because, as soon

as the movement to a target was completed, the box for that target disappeared from

the screen, the remaining targets were moved up the screen an amount equal to the

vertical spacing of the targets, and the next target, which was now at the same vertical

position as the previous target was highlighted.

When the target conditions were blocked, all of the rectangles had the same

W and, ignoring the alternating directions, were the same D apart. Thus the target

rectangles appeared in two vertical columns. In all other respects, the displays and

procedures were identical across these two levels of the blocked/varied factor.

In the serial level of the discrete/serial factor, the participant was free to start

each successive movement as soon as the mouse button had been clicked to end

the previous movement. Thus, a mouse button click both marked the end of one

movement and began the timing for the latency period of the subsequent movement.

The running program did, however, identify the time between the mouse click and

the beginning of movement in the opposite direction as dwell time. In the discrete

condition, as soon as the mouse button had been clicked to end a movement, the

target display was modified as previously described, and a starting point circle was

displayed at the center of what had just been the movement target. At this point the

participant had to move the cursor to the starting point and wait for the go signal

just as with the first movement in the block.

3. RESULTS

The movement time data are of primary interest in this experiment. Before

presenting these data we summarize briefly several other aspects of the movements

produced that could, depending on the results, suggest complications for the

interpretation of the movement time data.

3.1. Latency

For discrete movements, the latency was the time from the GO signal until

the start of the movement was detected. For all but the first movement in a serial

movement block, there was no GO signal. For these blocks, what was recorded

in lieu of the latency was the dwell time between the mouse button press, which

ended the preceding movement, and the detection of the start of the subsequent

movement in the opposite direction, in essence the dwell time. Given these procedural

differences, the mean latency for the discrete movements, 525 ˙ 42 ms, is not directly
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562 Wright and Lee

comparable to that for the serial movements, 72 ˙ 12 ms. (The notation, X ˙ Y, gives

a mean value, the X, followed by the half width of the 95% confidence interval for

that value, the Y.) The blocked/varied factor had no effect on this measure, t(11) D

0.589. Also, consistent with the results reported by Munro, Plumb, Wilson, Williams,

and Mon-Williams (2007) there was no effect of the ID of the upcoming movement,

t(11) D 1.202, p D .316. This is important because had such an effect been observed

it would call into question the procedure we used to segment movements into the

latency and movement components.

3.2. Practice Effects

Each participant produced data in each condition on each of 3 days. Not

surprisingly, performance improved with practice when it was assessed either as

the mean T or as the slope relating T to ID. This improvement was larger and only

statistically significant between Day 1 and Day 2. Based on this pattern, the data from

Day 1 were excluded from the analyses that follow. Including the Day 1 data does not

qualitatively change any of the results reported next, but it does reduce the precision

of some of the comparisons.

3.3. Missed-Target Errors

A simple interpretation of the T versus ID relation is only possible if there are not

large, systematic variations in the proportion of missed target errors across conditions.

Overall, the error rate was quite low: 1.7% ˙ 1.2% of trials. However, this percentage

did exhibit small, but significant, effects of both the discrete/serial factor and W.

Errors were more frequent, t(11) D 2.719, p D .020, in the serial movement condition

(3.0% ˙ 2.3%) than in the discrete movement condition (0.4% ˙ 0.3%).5 There

was not a difference between the varied and blocked conditions, t(11) D 0.859, nor was

there an interaction of these factors, t(11) D 0.081. Consistent with the findings of

Zhai et al. (2004) on target utilization, the percentage of errors also decreased with

increasing W (slope D �0.13 ˙ 0.11), t(11) D �2.604, p D .025. This decrease

was larger, t(11) D 2.322, p D .027, for serial movements (�0.20 ˙ 0.18) than for

discrete movements (�0.05 ˙ 0.04). These results will play an important role in the

interpretation of the effects of the discrete/serial factor on movement time.

3.4. Dispersion of the Vertical Movement Endpoints

The vertical size of the target boxes was intended to be large enough to con-

strain the movements minimally given that only horizontal movement was evaluated.

5These values are representative of all but one participant whose error rate for the continuous movements was

12.9% but only 1.2% for the discrete movements. However, excluding this subject did not change the qualitative

description of these data. The overall error rate dropped to 1.2% ˙ 0.7% of trials. Errors still occurred more often,

t(10) D 3.368, p D .007, for continuous movements (2.1% ˙ 1.3%) than for discrete movements (0.4% ˙ 0.3%).
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HCI Application of Fitts’s Law 563

Consistent with this expectation, the standard deviation of the vertical component of

the endpoint positions was 3.6 ˙ 0.4 pixels, only slightly more than one tenth of the

vertical size of the targets. Not surprisingly, there were small, but statistically reliable,

increases in the vertical endpoint dispersion when the target conditions were varied

and in the serial-movement condition.

3.5. Movement Time versus Index of Difficulty

Figure 3 displays data averaged across participants showing the relationship

between T and ID for the four combinations of the blocked/varied and discrete/serial

factors. Straight lines provide good fits to both the mean data (R2 varied between .963

and .987 across the four conditions) and to the data for each participant (the median

R2 across participants for the four conditions varied between .827 and .899). Linear

functions were fit separately to the data from each participant in each of the four

running conditions. The resulting coefficients are summarized in Figure 4. Fitts’s law

is typically parameterized using the slope and a constant, bTID D 0. However, because

this and the slope parameter must necessarily be highly correlated given the range of

ID values, we prefer to report and focus on the slope andbTID D 4, which is essentially

the average of T given that the mean of the ID values in this experiment was 4.03.

As shown in Figure 4, the average movement time, bTID D 4, was larger for

discrete than for serial movements, t(11) D 3.036, p D .011. The effect of the

blocked/varied factor was statistically unreliable, t(11) D 1.692, p D .119. However,

these main effects were modified by their interaction, t(11) D 2.832, p D .016. One

way to understand this interaction is that, as predicted in the Introduction, bTID D 4

FIGURE 3. T averaged over participants as a function of ID for each of the four combinations

of discrete/serial and blocked/varied.
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564 Wright and Lee

FIGURE 4. Movement time and the mean coefficients from the linear fit of MT versus ID

averaged over participants for each of the four combinations of the blocked/varied and
discrete/serial factors.

Serial Discrete M Varied � Blocked

bTID D 4, Mean Movement Time (ms)

Varied 629 ˙ 42 681 ˙ 66 655 ˙ 50 22 ˙ 29
Blocked 596 ˙ 57 670 ˙ 84 633 ˙ 69
M 612 ˙ 49 675 ˙ 74 644 ˙ 58
Serial � Discrete �63 ˙ 45 Interaction

11 ˙ 8

Slope of the Linear Fit: T versus ID (ms/bit)

Varied 114 ˙ 12 96 ˙ 11 105 ˙ 10 �0.2 ˙ 6
Blocked 113 ˙ 12 99 ˙ 18 106 ˙ 14
M 114 ˙ 12 97 ˙ 14 106 ˙ 12
Serial � Discrete 17 ˙ 8 Interaction

2 ˙ 7

bTID D 0, Y-Intercept of the Linear Fit: T versus ID (ms)

Varied 169 ˙ 44 297 ˙ 56 233 ˙ 38 23 ˙ 19
Blocked 144 ˙ 41 276 ˙ 61 210 ˙ 46
M 157 ˙ 40 286 ˙ 56 221 ˙ 41
Serial � Discrete �130 ˙ 53 Interaction

2 ˙ 25

was larger than would have been expected given the main effects in the condition

that provided the least opportunity for movement planning: that is, varied target

conditions combined with the serial task.

Although the movements in the serial task took less time on average, the

slope of the linear function relating T to ID was larger for the serial than for

the discrete movements, t(11) D 4.607, p D .001. For the slopes there was neither

a reliable difference between the varied and blocked conditions, t(11) D 0.097, nor

an interaction, t(11) D 0.676. The upshot of this combination of effects due to the

blocked/varied factor was that, although the T for serial movements was generally

less than that of discrete movements, this difference was reduced as ID increased.

Specifically, the movement time difference due to the discrete/serial factor completely

disappeared at the highest IDs when the target conditions were varied (the lighter

weight lines in Figure 3).

3.6. Target Utilization

The previous section examined how T depended on ID. However, as noted in the

Introduction, if participants used different proportions of the target across levels of
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HCI Application of Fitts’s Law 565

either the blocked/varied or discrete/serial factors, this would suggest that a summary

based on IDe, the effective index of difficulty might provide a better summary of the

results for at least some purposes. Figure 5 displays a summary of the relationship

between the index of utilization, Iu, defined in Equation 5 as proposed by Zhai et al.

(2004), and target width, W. Iu is equal to 0 when the effective target width, We, is the

same as the actual target width. Because the collected data included the movement

endpoints, We was calculated based on the standard deviation of the dispersion of

those endpoints in the horizontal direction of movement, sdx. Specifically, We D 4.133

sdx. The constant in this equation is specified by ISO 9241-9 (ISO, 2000, Annex B,

p. 29) based on the expectation that participants have the goal to adjust the speed of

their movements so that 4% end outside of the target. Iu values of �1 and C1 reflect

We values that are, respectively, one half or twice W.

The straight lines relating Iu to log2W, shown in Figure 5, capture a large pro-

portion of the variance (R2 across the four conditions varied between 0.86 and 0.93).

The figure clearly suggests that there were two strong effects: Iu decreased linearly

with the logarithm of target width and was larger for discrete movements than for

serial movements. Consistent with this impression, there was a significant effect of

the discrete/serial factor, t(11) D 5.705, p < .001: The mean of Iu, averaged across

log2W, was 0.01 ˙ 0.20 bits for the discrete condition and 0.45 ˙ 0.14 bits for the

continuous condition. The magnitude of the slope relating Iu to log2W also depended

on the discrete/serial factor, t(11) D 2.621, p D .024: For the discrete condition the

slope was �0.39 ˙ 0.10 bits per pixel; for the continuous condition it was �0.26 ˙

0.05 bits per pixel.

FIGURE 5. Index of target utilization, Iu, as a function of target width, W, for each of the four

combinations of discrete/serial and blocked/varied.
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566 Wright and Lee

FIGURE 6. T averaged over participants as a function of IDe for each of the four combinations

of discrete/serial and blocked/varied.

3.7. Effective Movement Distance

Just as it could be dangerous to assume that participants would have responded

to changes in W in a simple, consistent way, it is also possible that the movement

distances produced might not have been simply related to the target distance, D. To

assess this possibility, the actual average movement distance within each block was

regressed against D and W simultaneously. This was done separately for the data

from each participant for each of the four combinations of the discrete/serial and

blocked/varied factors. An analysis of the resulting coefficients showed that the actual

movement distances depended only on D—there was no discernible influence of W—

that this relationship was proportional with a slope quite close to unity (0.9992 ˙

0.00036), and that the slope did not differ across conditions.

3.8. Movement Time versus Effective Index of Difficulty

Figure 6 displays data, averaged across participants, showing the relationship

between T and the effective index of difficulty, IDe, for each of the four combina-

tions of the blocked/varied and discrete/serial factors. IDe here was computed as

log2(D/We), where We D 4.133 sdx. Figure 7 summarizes the coefficients, computed

separately for each participant, of the linear relationship between T and IDe.
6 Straight

6Because each participant produces different values of IDe for the different ID levels and the four running

conditions, the coefficients of the fitted lines in this figure differ slightly from the average of those obtained when

this regression is done separately on the data from each participant. However, for these data, these differences are

negligible.
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HCI Application of Fitts’s Law 567

FIGURE 7. Movement time and the mean coefficients from the linear fit of MT versus IDe

averaged over participants for each of the four combinations of the blocked/varied and
discrete/serial factors.

Serial Discrete M Varied � Blocked

bTIDe D 4, Mean Movement Time (ms)

Varied 686 ˙ 34 698 ˙ 61 692 ˙ 47 24 ˙ 20
Blocked 655 ˙ 49 681 ˙ 74 668 ˙ 60
M 671 ˙ 43 689 ˙ 66 680 ˙ 53
Serial � Discrete �19 ˙ 37 Interaction

7 ˙ 13

Slope of the Linear Fit: T versus IDe (ms/bit)

Varied 120 ˙ 11 108 ˙ 13 114 ˙ 10 �4 ˙ 5
Blocked 124 ˙ 11 111 ˙ 15 118 ˙ 12
M 122 ˙ 10 110 ˙ 13 116 ˙ 11
Serial � Discrete 13 ˙ 9 Interaction

0 ˙ 9

bTID D 0, Y-Intercept of the Linear Fit: T versus IDe (ms)

Varied 205 ˙ 33 265 ˙ 42 235 ˙ 27 38 ˙ 19
Blocked 158 ˙ 26 236 ˙ 54 197 ˙ 33
M 181 ˙ 26 250 ˙ 44 216 ˙ 29
Serial � Discrete �69 ˙ 43 Interaction

9 ˙ 30

lines fit these data reasonably well, although not quite as well as the fits based

on ID (the median R2 across participants for the four conditions varied between

.756 and .895). Still, compared with the fits based on ID in Figure 4, these fits

generally had smaller confidence intervals suggesting that using We , rather than the

nominal values, W, produced coefficient estimates that were more consistent across

participants.

The most striking change in the analysis based on IDe is that the difference of
bTIDe D 4 between discrete and serial movements was much smaller and no longer

statistically reliable, t(11) D 1.112, p D .290. The difference of bTIDe D 4 between

the varied and blocked conditions was also slightly smaller in this analysis; however,

because of the reduced variability across participants, this difference just reached

the level of being statistically reliable, t(11) D 2.581, p D .026. The results in this

analysis were also more straightforward because the interaction of these two effects

was smaller and no longer statistically reliable, t(11) D 1.227, p D .245. As in the

analysis based on ID, the slope of the linear function relating T to ID2 was larger for

the serial than for the discrete movements, t(11) D 3.198, p D .008. And again there

was neither a reliable slope difference between the varied and blocked conditions,

t(11) D 1.585, p D .141, nor an interaction, t(11) D 0.102.
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568 Wright and Lee

4. DISCUSSION

4.1. Issue 1: Influence of Design Choices on the External Validity of
Fitts’s Law Studies

The primary purpose of this study was to determine whether and, if so, how

the coefficients characterizing the Fitts’s law relationship for the mouse depend on

two experimental design choices that dictate task organization. The blocked/varied

factor specified whether variations in the target conditions were blocked, as has

often been true in published studies, or whether they varied from movement to

movement, as is more typical in applications. Large differences due to this factor

would undermine the use for applied design decisions of the large body of re-

sults obtained with blocked target conditions. The discrete/serial factor specified

whether movements in a block were produced as separate, discrete movements or one

movement series. In terms of opportunities for movement preparation, many target

acquisition tasks of interest to HCI fall somewhere on this discrete–serial continuum.

This factor has been shown previously to have effects on the Fitts’s law slope. It

might also be expected to interact with the blocked/varied factor. Theoretically, one

might expect there to be differences across the four combinations of these two

factors based on two intuitively plausible ideas: that immediate experience with a

specific movement will improve performance when that movement is repeated and

that performance will be better on a movement when there is plenty of time to

plan it.

Although the pattern of results for both the blocked/varied and discrete/serial

factors depended somewhat on whether the analysis was based on ID or IDe, what is

most striking is that the effects they produced were relatively small. The statistically

significant effects are potentially important theoretically; however, the small size and

nature of these effects diminishes their importance from an applied perspective.

The most consistent results involved the slope of Fitts’s law, which estimates

how movement time increases with difficulty. This slope did not change across the

levels of the blocked/varied factor; however, it was larger in the serial version of

the task than in the discrete version. In the analysis based on ID, this difference

amounted to a 16% effect (the slope was 114 ms/bit in the serial task and 97 ms/bit

in the discrete task); when the analysis was based on IDe, the effect was only 11%,

although the slope estimates were somewhat larger (122 ms/bit and 110 ms/bit,

respectively). This difference is in the same direction as those reported by Fitts and

Peterson (1964) and by Guiard (1997). However, the result here enlarges on those

previously reported in that we found no evidence for a slope difference due to the

blocked/varied factor or an interaction of these two factors. The direction of this

effect makes sense if the discrete/serial factor is viewed from a planning perspective

because it suggests that the movement time ‘‘cost’’ associated with reducing the

opportunity to plan an upcoming movement is larger for more difficult movements.

Because this is a difference of slopes, the practical impact of this effect is difficult

to assess: For easy movements (e.g., ID D 2), the slowing in the serial task is only
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HCI Application of Fitts’s Law 569

about 30 ms; however, it increases to as much as 65 ms for more difficult movements

(e.g., ID D 6). Keep in mind, however, that these estimates can be viewed as upper

bounds, because, from the perspective of movement preparation, practical tasks fall

somewhere in the middle of the continuum defined by extremes of this factor. Thus,

the differences between these tasks will be larger than those between any practical

task and either of these extremes.

The slope difference between levels of the discrete/serial factor can be un-

derstood as an interaction of that factor with ID. In addition to this interaction,

main effects of both factors were reflected in the values of bTID D 4. However, the

interpretation of these effects is difficult because they are different when the analysis

is based on ID versus IDe. This can be seen by comparing Figures 4 and 7.

Along with a larger slope, bTID D 4 for the serial task was 63 ms less (10%)

in the analysis based on ID. In the analysis based on IDe, this advantage shrank to

just 19 ms, an estimate that was not reliably different from zero. This estimate of

the overall advantage of the serial task shrank by two thirds because the spread of the

movement endpoints for this task was substantially larger than that for the discrete

task. This is shown by the larger Iu values in Figure 5. This increase is reflected in

smaller values of IDe for the serial task that, in turn move those data points to the

left in Figure 6, producing a larger value bTIDe D 4 relative to the discrete task.

The interpretation of the blocked/varied factor is more straightforward, because

in both analyses, the average movement time was larger when the target conditions

varied from movement to movement compared to when they were blocked. Although

the estimate of this effect was almost identical in the analyses based on ID or IDe

(22 ms vs. 24 ms), it was statistically reliable only in the analysis based on IDe. This

slowing with varied target conditions is not surprising. From a planning and control

perspective, it seems quite plausible that there would be an advantage of repeating a

movement. What may be surprising is that the cost associated with making a varied

as opposed to a consistent series of movements is only about 3.5% of the average

movement time and that there is no indication that this cost varies with movement

difficulty.

That there is only a small, additive effect of the blocked/varied factor is an excel-

lent outcome from an applied perspective because it suggests that this experimental

design choice is of only secondary importance when generalizing results to a new

situation. Also, because the effect is additive, compensating for it is straightforward if

this is deemed necessary. To gain perspective on the size of this effect, consider that

its impact is smaller than that of increasing ID by one fourth of a unit. Another way

to view this difference is that across the 12 participants in this study, bTID D 4 ranged

from 583 ms to 806 ms. Given the restricted population (college students) included

in this study, the upper end of this range is undoubtedly very small compared with

that of a less restricted population. Yet the effect of the blocked/varied factor is only

10% of the variation across participants observed here. Still, given that the small size

of this effect was unexpected, it would be prudent to replicate it, both with the mouse

and with other devices before taking it too seriously.
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570 Wright and Lee

4.2. Issue 2: Use of ID
e

and the Accuracy Adjustment

The results summarized in the previous section demonstrate that incorporat-

ing an accuracy adjustment, by substituting IDe for ID when fitting results with

Equation 1, led not only to quantitative differences in the estimated coefficients

but also to qualitative changes in the overall pattern of results. Our results are

consistent with those of Zhai et al. (2004) and those of others that they summarize

in showing both that Fitts’s law fits slightly less well when IDe is substituted for

ID and that the resulting coefficients are more similar across both conditions and

participants.

The first of these results, the reduced R2 fitting Equation 1, presumably reflects

the fact that IDe values were more variable than ID values. IDe values should be more

variable because they are estimated from the data rather than being manipulated by the

experimenter. This increased variability reduces their predictive power. Countering

this disadvantage is the suggestion that IDe values improve on ID values by being less

biased predictors of movement difficulty. The basis of this suggestion is the hypothesis

that the planning and production of these movements is guided by a subjective

transformation of the target width. Although this internal quantity, which we estimate

using We, depends on W, it does so in a complex way that varies between participants,

across movement conditions, and with speed-accuracy instructions (Zhai et al., 2004).

Supporting this hypothesis are published demonstrations in which analyses based on

IDe appear to compensate, at least partially, for these differences (Zhai et al., 2004).

It is this compensation that leads to the second result mentioned previously: that is,

we found the coefficient estimates of the fitted functions were more similar across

participants and conditions.

To see why using an accuracy-adjusted analysis based on IDe can make Fitts’s law

results more similar across experimental conditions, consider the data for the index of

utilization, Iu, displayed in Figure 5. These data illustrate two ways that the variation

in We did not simply follow that of W. Keep in mind when looking at this figure that

if We had been some fixed proportion of W, then the fitted lines in this figure would

be flat. Instead, the fitted lines have negative slope because, as the W increased, We

failed to increase proportionally. A second obvious difference in Figure 5 is that the

two lines fit to the data for the serial task are clearly above those for the discrete

task because, in the serial task, the dispersion of the endpoints was much broader

than that in the discrete task. It is this difference that accounts for the qualitative

discrepancy in the results summary based on the analysis based on ID (Figures 3

and 4) and that based on IDe (Figures 6 and 7). Larger effective targets in the serial

task would be expected to produce shorter movement times and more errors, and

both of these differences were observed. The movement time analysis based on IDe

compensated for the differences in target utilization by displacing to the left all of

the data points from the serial task. In the analysis based on ID, these serial-task

data were aligned vertically with the data points from the discrete task that had the

same nominal target conditions. Figure 6 shows that, after this displacement, the data

points from the two tasks are almost collinear.
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HCI Application of Fitts’s Law 571

As we noted earlier, another advantage of analyses using IDe is that may have

more statistical power because they can compensate for between-subject variations

in target utilization. These variations can be nontrivial: In this experiment, the mean

Iu values for each participant ranged from –0.14 to 0.65. The results for the blocked/

varied factor illustrate why this can be important. Because the values of Iu were

essentially unchanged across the levels of blocked/varied (see Figure 5), a comparison

of Figures 4 and 7 shows that the size of the effect associated with this factor was

almost unchanged in the analyses based on ID and IDe. However, because the analysis

based on IDe accounts for the between-subject differences in target utilization, the

blocked/varied effect is statistically significant in the analysis based on IDe, but this

same difference fails to reach significance in the analysis based on ID.

These results illustrate both advantages and a disadvantage of including an

adjustment for accuracy in applications of Fitts’s law. Weighing these considerations,

there appears to be a clear benefit of this approach for most applications. Not

surprisingly then, this substitution is recommended both by ISO 9241-9 (ISO, 2002,

p. 30) and Soukoreff and MacKenzie (2004, pp. 755–757, Recommendation IV).

Despite the persuasive argument for using IDe, there is a serious issue with this

approach that needs careful consideration. Because of the number of factors that

influence Iu and the complexity of their influence (Zhai et al., 2004), values of IDe

can, at least for now, only be estimated from data. The crux of the problem, then, is

that the power of IDe as a predictor is only as good as the precision of its estimates. An

extreme example where this consideration plays an important role is that of designers

who have only available values of ID, based on a proposed design, and a set of Fitt’s

law coefficients from a plausibly similar movement situation. In such situations, the

version of the coefficients used to make design choices should be based on ID, not

IDe; however, if, as is often now the case, a published study includes only coefficients

computed with IDe, then the data from such a study will not be useful in this way.

Zhai et al. (2004, p. 826) and Chapuis and Dragicevic (2011, p. 13:23) also made this

point.

Going beyond this obvious case, however, we believe that even when data are

available to estimate IDe, the decision to base an analysis or a comparison on these

values probably should be considered carefully and not adopted automatically based

on a blanket recommendation. Because We values are usually derived from standard

deviations, more observations are required to obtain good estimates than are necessary

for a summary based on means. Given that We and T data are typically derived from

the same data set, this statistical reality can lead to data sets for which the large

variability of the IDe values more than offsets any advantage they might have through

compensating for differences in target utilization.

4.3. Source of the Speed-Accuracy Tradeoff for Serial versus
Discrete Movements

When T is regressed against ID, serial-task movements were found to be faster

than discrete-task movements (see Figure 3) with the size of this advantage decreasing

D
ow

nl
oa

de
d 

by
 [

T
he

 U
C

 I
rv

in
e 

L
ib

ra
ri

es
] 

at
 1

1:
50

 3
0 

Ju
ne

 2
01

4 



572 Wright and Lee

for movements with large ID. As in the comparison of these tasks reported by Fitts and

Peterson (1964), this counterintuitive advantage appears to reflect a speed–accuracy

trade off. Evidence for the accuracy component of a trade off takes two forms:

larger Iu scores (Figure 5) for serial movements, which reflect a larger spread in the

distribution of endpoints, and a somewhat larger proportion of movements classified

as errors because the mouse button was pressed with the cursor outside of the target.

The suggestion that the serial task advantage may be due only to this speed–accuracy

trade off gains credence based on the analysis using IDe; when the differences in Iu

are taken into account, the movement time advantage of serial movements largely

disappears (Figure 6). Despite this explanation for the serial-task advantage, from a

theoretical perspective, there are at least two reasons why this result is worth exploring

further.

The idea that planning improves the performance of movements underlies most

thinking about human motor control. From this perspective, the speed advantage of

serial movements is surprising. The discrete task would appear to provide the best

opportunity to create and carry out a movement plan, and yet, if anything, these

movements were slower. The movement planning perspective can be reconciled with

these results by assuming either that the necessary planning can be done quickly—it

must be quite fast because, in the serial task, the mean time between the click to end

one movement and the start of the next movement was 72 ms—or that the planning

for the upcoming movement can be overlapped with the production of the previous

movement. For either explanation, the observation that the speed advantage for serial-

task movements can be understood as a speed–accuracy trade off is critical; it would

be difficult to reconcile a true serial-task advantage with this perspective.

A second, theoretically interesting question about the serial task advantage

concerns its locus within a movement: specifically, is there an identifiable part of a

movement in the serial task that, because it takes less time, leads to movements that are

less accurate? The trajectories of Fitts task movements are usually thought to consist

of an initial, fast submovement, which ends close to or within the target, followed,

if necessary, by one or more feedback-guided, corrective submovements (Meyer,

Abrams, Kornblum, Wright, & Smith, 1988; Meyer, Smith, Kornblum, Abrams, &

Wright, 1990). To look for a possible locus of the speed–accuracy trade off between

discrete and serial movements we briefly summarize here two measures characterizing

the movement trajectories: one that characterizes the initial submovement and a

second that characterizes the corrective submovements.

A full decomposition of these movement trajectories into each of their com-

ponent submovements would be complex and well beyond the scope of this article.

However, because these submovements exhibit an invariance in velocity profile shape

(Freund & Büdingen, 1978; Gordon & Ghez, 1987), the overall peak velocity of a

movement, which is a quantity that can be determined reliably from movement trajec-

tory data, provides one useful, rough characterization of the initial submovement in

a movement trajectory. The mean peak velocity was 3243 ˙ 519 pixels/s. This value

did not differ reliably across the levels of the discrete/serial factor, the blocked/varied

factor, or their interaction. As would be expected, peak velocity did increase with D
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HCI Application of Fitts’s Law 573

(the slope of the linear fit was 9.1 ˙ 1.6 pixels/s per pixel); however, this slope did

not depend on either of the experimental factors. These results suggest that the initial

submovement was not the locus of the speed–accuracy trade off between the serial

and discrete movements.

Looking at several summaries of the corrective submovement process, the one

that best captures the serial task advantage is what might be called click delay: the time

between when the cursor last enters the target region and when the mouse button is

pushed to end the movement. Of interest, click delay was a large proportion of the

overall movement time, T, and did not vary with D or W. However, click delay was

substantially longer, t(11) D 4.300, p D .001, for discrete movements (372 ˙ 55 ms)

than for serial movements (293 ˙ 33 ms).

Taken together, these post hoc summaries are consistent with the interpretation

that serial and discrete movements differed primarily in the way that they were

terminated. The movements in both tasks began similarly; however, in the discrete

task, participants were more careful to assess the position of the cursor before

pressing the button to end the movement. By contrast, in the serial task, not only

did participants end movements more aggressively, increasing both the dispersion of

the movement endpoints and the incidence of actual errors, but, as the very short

latencies suggest, they combined the button press ending one movement with the

initiation of the subsequent movement.

4.4. Issue 3: Summaries Based on IP, the Index of Performance

As part of the recommendation VII, Soukoreff and MacKenzie (2004) exhorted,

‘‘If the purpose of this analysis is the comparison of two or more experiment

conditions, then throughput (TP ) is calculated’’ (p. 759). As defined in their Equation 10,

TP is estimated for a participant as the ratio IDe/T averaged across the target

conditions in the experiment. Computing this quantity, we find an effect of the

blocked/varied factor, t(11) D 3.362, p D .006, with higher TP when the target

conditions are blocked (6.1 ˙ 0.5 bits/s) than when they are varied (5.8 ˙ 0.4 bits/s),

but no effect of the discrete/serial factor or interaction between these factors. Because

TP is based on the accuracy-adjusted IDe values, it is perhaps not surprising, that this

summary mirrors those based on IDe summarized forbTIDe D 4 in Figure 7. However,

as stated in the Introduction, we have concerns about a general recommendation to

use TP. Here we use our data to illustrate our concerns.

TP is an accuracy adjusted version of the throughput measure, IP, originally

proposed by Fitts (1954). Fitts proposed this measure for two reasons: The concept

of throughput made sense from his original information theoretic perspective, and

he expected IP to be relatively constant across target conditions as defined by ID.

That expectation proved to be incorrect in our data. Although accuracy-adjusted

throughput was somewhat better in this respect, as shown in Figure 8, it was far from

being constant across target conditions, at least for our data. Although there was only

a little variation across levels of W, and thus accuracy-adjusted throughput was also
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574 Wright and Lee

FIGURE 8. Throughput (IDe/T) averaged over participants as a function of D for of each the

four combinations of discrete/serial and blocked/varied.

only poorly correlated with ID, there was a strong relation between accuracy-adjusted

throughput and D (across the four experimental conditions, R2 ranged from .80 to

.97). Thus, a comparison of two experimental conditions made using TP may depend

on the particular target conditions included in the comparison.

The results in Figure 8 illustrate how the lack of invariance across target con-

ditions of the accuracy adjusted measure of throughput both might or might not

be a problem. Looking at Figure 8, it appears that this issue would be of little

concern summarizing the effect of the blocked/varied factor: Although the effect may

be getting smaller for longer target distances, throughput in the blocked condition

was higher than that in the varied condition across the entire range of movement

conditions studied.7 Now consider the subset of the data in Figure 8 that might have

resulted from an experiment that studied the effect of the discrete/serial factor using

only blocked target conditions. If such an experiment had used only shorter target

distances, TP would have been found to be higher for serial movements, but the

opposite conclusion would have been reached if the focus had been only on longer

target distances.

The point of this example is that there is an added danger when generalizing

from results summarized using TP. The advantage of this measure, that it is a

single-valued index of performance, also means that conclusions derived with it

can only be safely generalized to situations with a similar set of target conditions.

Of course, this issue is of little concern when Fitts’s law data are collected for

7An interesting observation concerns the hypothesis by Fitts (1954) that throughput would be constant. In these

data it appears that throughput does approach an asymptote between 6 and 7 bits/s for values of D above 400 pixels.

Perhaps this reflects the maximum channel capacity of the motor system, and for shorter movements there is an

additional bottleneck limiting throughput.
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HCI Application of Fitts’s Law 575

specific applications in user interface design or product development, because in

these situations the target conditions studied can be chosen to match those of the

intended application. However, such data are rarely published except, perhaps, in

internal company documents. Although one could plausibly argue that ISO 9241-

9 (ISO, 2002) is intended to provide guidance in only these applied situations, the

recommendation from Soukoreff and MacKenzie (2004) to use TP does not seem

to be similarly limited in its scope and certainly has been adopted by authors of a

number of published studies. Our alternative suggestion is that published comparisons

of experimental conditions always present at least the complete set of coefficients for

Fitts’s law. From this summary, designers can construct single-valued comparisons for

an appropriately selected set of target conditions, using TP or some other measure.

If accuracy adjustment makes sense for data being reported, then both adjusted

and unadjusted coefficients should be reported, because, as we have previously

noted, in many design situations good information on target utilization will not be

available.

Separate from the question of whether TP should be used to report compar-

isons of conditions based on Fitts’s law is whether TP is the best choice for such

comparisons. The allure of TP for this role (and IP before it) is that it provides a

single-valued index of performance. However, TP is not the only measure available

for such comparisons, and, even in applications for which the experimental target

conditions can be chosen appropriately, we are not convinced that it is necessarily

the best such measure. As we have illustrated reporting our results, bTIDe D 4 (and,

without an accuracy adjustment,bTID D 4) is also a single-valued index of performance

that, because it is an estimate at a difficulty level chosen to be close to the average of

those used in this experiment, also provides an overall summary of performance that

averages across the specific set of target conditions used. Given these similarities and

considering that, as in this experiment, TP and bTIDe D 4 often lead to qualitatively

similar conclusions, we believe that the choice between bTIDe D 4 and TP (or some

other measure!) should depend on which measure is most natural in a particular

application. TP estimates throughput, measured in bits per second. Throughput was

of interest to Fitts because it was central to the theoretical perspective he proposed to

interpret these results. Although throughput is a useful concept in many engineering

situations, for many applications in interface design or product development, a

comparison using units of time, such as bTIDe D 4, is probably at least, if not more

convenient.

5. SUMMARY

The data from mouse movements reported here show how the coefficients of

Fitts’s law are changed by two design choices. There were three effects. (a) Averaging

across levels of difficulty movements took 3.5% longer to complete if the target condi-

tions varied from movement to movement rather than being blocked. (b) Surprisingly,
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576 Wright and Lee

discrete movements took almost 10% longer than serial movements; however, this

additional time appears to have been spent verifying that the movements were

ending in the target, and so the effect largely disappears using an analysis adjusting

for endpoint accuracy. (c) The Fitts’s law slope is higher for serial movements.

These results have implications for theories about how movements are planned.

However, for the more practical questions that motivated this article, the nature

and size of these effects lead us to conclude that neither of these design decisions

should present a serious impediment to the generalization of results summarized

using Fitts’s law. Thus, for example, one might well be justified to generalize results

based on an experiment that used discrete movements with blocked targets when

designing an application in which the movement ‘‘targets’’ vary and the movements

are made serially.

As part of the analysis of these data, we have discussed two widely accepted

recommendations concerning how our data should be analyzed and reported. One

of these recommendations is to include an accuracy adjustment: that is, using IDe

instead of ID in Equation 1. There is much to be said for this approach because it

has been shown to compensate for the differences in effective target width that are

present across conditions and participants. Doing so allows more data to be described

succinctly within the framework of Fitts’s law. This approach also can increase

the statistical power of comparisons. Both of these advantages were evident here.

Despite these advantages, we would add two caveats to this recommendation. First,

accuracy-adjusted analyses are only superior when the advantage of IDe—its potential

to reduce systematic error—is large enough to offset its inherent disadvantage—

the increased variability of IDe estimates. This is a trade off the researchers should

assess before deciding to use an accuracy-adjusted analysis. Second, we disagree with

Recommendation VI of Soukoreff and MacKenzie (2004) concerning how to proceed

in design situations where IDe values are not available. In this situation, we recommend

that predictions be produced by inserting nominal ID values only into Equation 1 with

coefficients estimated using ID. To make this possible, however, published reports

of Fitts’s law data should include, as we have here, the coefficients obtained both

with and without the accuracy adjustment.

We also question the generality of Soukoreff and MacKenzie’s (2004) Recom-

mendation VII to use TP, an accuracy adjusted throughput measure, for comparing

experimental conditions. We have two concerns. First, conclusions reached using

TP may depend on the range of ID values sampled in an experiment. When those

values closely match those of the to-be-generalized–to situation, there is no problem;

however, if they do not, then the results cannot safely be assumed to apply. Thus, it

would be a mistake to report only TP values in published results, as some authors,

apparently following the recommendation of Soukoreff and MacKenzie have done; at

a minimum both coefficients for Equation 1 need to be reported so that others can use

a published summary to generate a comparison, perhaps using TP, for the specific

ID values of interest. More broadly, however, TP is not the only possible single-

valued index of performance that can be used to compare experimental conditions.

Although, for many applications, throughput may provide a natural way to summarize
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HCI Application of Fitts’s Law 577

performance, for at least some other applications an alternative, such as average

movement time, will be more useful. This is an issue that designers should consider

rather than blindly following a blanket recommendation.
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