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Recovery of spatially varying acoustical properties
via automated partial differential equation identification

Ruixian Liu,1,a) Peter Gerstoft,2 Michael J Bianco,2 and Bhaskar D. Rao1

1Department of Electrical and Computer Engineering, University of California, San Diego, California 92161, USA
2Scripps Institution of Oceanography, University of California, San Diego, California 92037, USA

ABSTRACT:
Observable dynamics, such as waves propagating on a surface, are generally governed by partial differential

equations (PDEs), which are determined by the physical properties of the propagation media. The spatial variations

of these properties lead to spatially dependent PDEs. It is useful in many fields to recover the variations from the

observations of dynamical behaviors on the material. A method is proposed to form a map of the physical

properties’ spatial variations for a material via data-driven spatially dependent PDE identification and applied to

recover acoustical properties (viscosity, attenuation, and phase speeds) for propagating waves. The proposed data-

driven PDE identification scheme is based on ‘1-norm minimization. It does not require any PDE term that is

assumed active from the prior knowledge and is the first approach that is capable of identifying spatially dependent

PDEs from measurements of phenomena. In addition, the method is efficient as a result of its non-iterative nature

and can be robust against noise if used with an integration transformation technique. It is demonstrated in multiple

experimental settings, including real laser measurements of a vibrating aluminum plate. Codes and data are available

online at https://tinyurl.com/4wza8vxs. VC 2023 Acoustical Society of America. https://doi.org/10.1121/10.0019592

(Received 21 November 2022; revised 16 April 2023; accepted 11 May 2023; published online 2 June 2023)

[Editor: Efren Fernandez-Grande] Pages: 3169–13

I. INTRODUCTION

Natural phenomena are, in general, caused by partial dif-

ferential equations (PDEs), where the PDE coefficients are

derived from medium properties. For example, the observed

waves propagating on a plate are governed by wave equations

with the PDE coefficients determined by phase speeds and

attenuation factors, which are further decided by the elastic

properties and density of the plate’s material.

The focus of this paper is to solve the inverse problem,

i.e., we invert for the active PDE terms from the observa-

tions, determine the coefficients of each active PDE term,

and then use the coefficients to recover physical properties.

We highlight the use case of the proposed method in recover-

ing various properties for the medium of propagating waves

in acoustical scenarios and, thus, the relative PDEs, like the

wave equation and Burgers’s equation, are used as examples.

This area has been an active focus of applied mathemat-

ics research1–10 with a few applications.11–13 Considering

the abundance of sensor-collected measurements and wide

range of use cases of material properties recovery (e.g.,

materials diagnostics and fatigue detection), this inversion

technique would be broadly applicable.

Superior to previous data-driven PDE identification

approaches,1–13 our method can recognize spatially depen-

dent PDEs and, hence, recover one-dimensional (1D) or

two-dimensional (2D) maps for the spatial variations of

material properties from measurements of the phenomena.

Unlike classic spatially dependent parameter estimation or

tomography methods which require the PDE form known a
priori and employ the domain knowledge only pertinent to

such a particular PDE,14–20 the proposed method can iden-

tify multiple kinds of unknown PDEs using a same formula-

tion with no PDE-dependent knowledge and, thus, is widely

applicable and can recover various properties in more sce-

narios with fewer assumptions.

We start with the spatially 1D case in the theory and

include 2D examples for experiments. Consider a physical

system, U(x,t), that describes the spatiotemporal dynamics.

Within the system U(x,t), suppose we have Nx evenly spa-

tially distributed sensors collecting measurements (e.g., dis-

placement, pressure, etc.) at Mt evenly separated time steps

and, therefore, we obtain measurements, U 2 RNx�Mt , at dis-

crete spatial-temporal coordinates of U(x,t). The system

properties are recovered by identifying its governing PDE,

N U½ � ¼ 0; (1)

from the measurements. Here, N½U� is a linear combination

of PDE terms involving partial derivatives of U, e.g., N½U�
describing the 1D wave propagation at speed c with the

attenuation factor a is

N U½ � ¼ Utt þ aUt � c2Uxx; (2)

where Ut; Utt are the first- and second-order temporal deriv-

ative, respectively, and Uxx is the second-order spatial deriv-

ative of U. Recently, there are many developments focusinga)Electronic mail: rul188@ucsd.edu
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on identifying PDEs directly from observed data.1–13

However, they have two limitations: (i) the need for prior

knowledge of the active PDE terms and (ii) the inability to

recover spatially dependent parameters.

Regarding (i), most previous developments require one or

more active PDE terms to be known a priori (e.g., the first-order

time derivative Ut,
1–3,5–7 the second-order time derivative Utt,

13

one term with predefined order,8 or multiple PDE terms4). Then,

they derive other contributing PDE terms and their coefficients

and, thus, only parts of the PDE are inferred from data. This is

problematic when the knowledge of which term should be

assumed active is uncertain or unknown, e.g., to identify the gov-

erning PDE for a wave which may either be an inviscid

Burgers’s equation (Ut þ UUx ¼ 0) or a non-attenuating wave

equation (Utt � c2r2U ¼ 0) with no PDE terms in common,

one must specify the correct active term from more prior infor-

mation. The few methods that do not require active term assump-

tion use a sparse Bayesian learning (SBL) based approach9 or a

cross-validation (CV) based method.10 They both iteratively

assume one active term from a library of terms, identify the PDE

for each assumption using SBL9 or sparsity penalized CV,10 and,

finally, select the best assumption by comparing the posterior

confidence9 or minimal fitting error.10 They are time-consuming

as the identification process is repeated for every assumption.

Regarding (ii), in reality, the PDEs governing the observed

system can have spatially dependent coefficients, e.g., the coeffi-

cient for Uxx in Eq. (2) can vary across space, which indicates

the phase speed, c, is spatially dependent. The spatially depen-

dent coefficients are due to the spatial variation of the materials

and, thus, the recovery of spatially dependent PDEs can unveil

the spatial properties of the underlying materials. The above

methods, however, can only identify PDEs that are constant

across space. The current spatially dependent coefficients recov-

ery schemes are limited to a few specific PDEs,15,16 and they

cannot be used for PDE identification as they require the type of

PDE to be known. No methods can identify unknown PDEs

which are potentially spatially dependent.

Suppose there is no information about the spatial varia-

tion of the PDEs available and, therefore, we must identify

the PDE for every location. The challenges in tackling this

task include: (a) fewer measurements available for one loca-

tion comparing to the whole field and (b) longer central

processing unit (CPU) time because the process is repeated

for all of the locations. Thus, a viable method should be

robust in selecting the correct PDE from limited measure-

ments and also computationally efficient.

To address these limitations, we propose an ‘1-norm

minimization based data-driven method that identifies

unknown PDEs for every spatial location without any

assumption of the assumed active PDE term. No information

about the spatial variation of the PDEs is assumed. An auxil-

iary vector is introduced to robustify the identification from

limited measurements and enable the recovery of all of the

active PDE terms without iterative assumptions. The method

is applied pixel-wise and recovers the spatial variation of

the PDEs to the highest resolution. For noisy measurements,

we extend the integration transformation approach7 to our

spatially dependent PDE identification scheme to make it

more robust against noise.

This paper is extended from the work21 to integrate the

noise resistance technique and perform extensive experimental

validations, including the validations using data collected from

real physical settings. It is organized as follows: Sec. II A

presents the spatially dependent PDE identification method,

and Sec. II B briefly introduces the integration transformation

approach to alleviate the impact of noise. Section III shows

synthetic experimental results, including an experiment for

noise-robustness in Sec. III C. The experiments for a real

vibrating aluminum plate using clean and noisy measurements

are described in Sec. IV. In Sec. V, we emphasize the effi-

ciency of the proposed approach by comparing the required

CPU times to identify the PDEs for three datasets using the

proposed method, the methods in Refs. 9 and 10, and exhaus-

tive search. Finally, we conclude our work in Sec. VI.

The notation is as follows:

(a) For the measurements U 2 RNx�Mt ; Uðix; itÞ is U sam-

pled at the coordinate ðixDx; itDtÞ, where 0 � ix � Nx

�1; 0 � it � Mt � 1, and Dx;Dt are sampling intervals;

(b) sets Ix and It contain N spatial and M temporal coordi-

nates within the region of interest (ROI), respectively.

Use n 2 ½1;N� as the index of the elements in Ix. The

temporal coordinates in It are indexed by m 2 ½1;M�;
(c) for any matrix A other than U, the entry at its ith row and

jth column, where i � 1; j � 1, is denoted by Aði; jÞ.
Aði; :Þ denotes the ith row, and Að:; jÞ denotes the jth
column;

(d) the subscript/superscript of a matrix denotes the properties

of the whole matrix and not its entries. For example, An

can indicate that all of the entries of A are computed from

the measurements at location n, and Anði; jÞ is for the

entry at the ith row and jth column of An;

(e) for vector a, its ith entry (i � 1) is denoted by either

aðiÞ or ai; and

(f) the variable superscripted by “̂ ” denotes its estimation.

II. THEORY

In this section, we propose the method to efficiently iden-

tify spatially dependent PDEs in Sec. II A and then introduce an

integration transformation technique that increases the

approach’s robustness against measurement noise in Sec. II B.

A. PDE identification

First, we formulate the PDE identification problem

mathematically in Sec. II A 1 and then solve it in Sec. II A 2.

1. Problem formulation

We select N spatial locations with M time steps for each

location from the measurements U 2 RNx�Mt as the ROI. In

this work, suppose we know the range of PDEs governing

the dynamics in the ROI and to be specific, they may be the

(attenuating) wave equation, the (viscous) Burgers’s equa-

tion with a nonlinear term UUx (product of U and Ux), and

3170 J. Acoust. Soc. Am. 153 (6), June 2023 Liu et al.

https://doi.org/10.1121/10.0019592

 05 July 2023 17:10:45

https://doi.org/10.1121/10.0019592


the sine-Gordon equation with a nonderivative term

sin ðUÞ.22,23 They can model various fluid dynamics.

For the nth spatial location within the ROI, we use u 2 RM

to denote its measurements at all of the M time steps, i.e.,

from UðIxðnÞ; Itð1ÞÞ to UðIxðnÞ; ItðMÞÞ. We build a dictio-

nary, Un, containing all of the D¼ 6 PDE terms potentially

appearing in the PDEs mentioned above such that

Un ¼ ut; utt; u � ux; uxx; utx; sinðuÞ½ � 2 RM�D; (3)

where each term is an M-length vector evaluated at all of the

M time steps, and the derivatives are computed numerically

by finite difference,38 e.g., the mth entry of ut is ½UðIxðnÞ;
ItðmÞ þ 1Þ � UðIxðnÞ; ItðmÞ � 1Þ�=ð2DtÞ. The “�” denotes

element-wise production, e.g., the mth entry of u � ux is

UðIxðnÞ;ItðmÞÞ�f½UðIxðnÞþ1;ItðmÞÞ�UðIxðnÞ�1;ItðmÞÞ�=
ð2DxÞg. Measurements outside of the ROI boundaries

should exist such that the spatial derivatives for n¼1 or N
and the temporal derivatives for m¼1 or M can be com-

puted by finite difference, which requires N<Nx�1 and

M<Mt�1.

Initially, we can treat the problem as recovering the

coefficient an ¼ ½anð1Þ � � � anðDÞ�T 2 RD such that

Unan 	 0; jjanjj1 > 0; (4)

where jjanjj1 > 0 is to avoid the trivial solution an ¼ 0, and

the approximation is due to the assumption M>D and noise in

the measurements or generated by numerical differentiation.

An exhaustive search can find the set of active PDE

terms by iterating through all of the combinations of atoms

in the dictionary and minimizing the fitting error with the

constraint that not too many columns of Un are chosen

(sparsity constraint). The cardinality of all of the possible

sets ranges from two to D. For each hypothetical set, assume

that the coefficient for one term in an is one and fit the other

terms by least squares regression.

Given an assumed active term with coefficient one, the

difference between Unan and 0, i.e., jjUnanjj2, is monotoni-

cally nonincreasing as more columns of Un are chosen and

decreasing for most cases. Using all columns of Un will

minimize the difference, but it indicates that the PDE has all

of the D active terms, which is typically not true. Thus, a

sparsity constraint should be introduced to avoid selecting

all of the terms in Un as active terms. One way to impose

this constraint is to minimize an augmented loss function,

which is the sum of jjUnanjj2 and a penalty proportional to

jjanjj0.10

This process requires combinatorial complexity because

we cannot directly select all of the columns as discussed

above and need to explore all of the possible sets of selected

columns with cardinality ranging from two to D. For a dictio-

nary with only a few columns, such as in Eq. (3), this is feasi-

ble, but for larger dictionaries, the CPU time increases quickly.

For example, for Eq. (3), there are 57 kinds of sets in total,

whereas for Eq. (24) with 9 terms, there are 502 cases. A dem-

onstration of such a transition is included in Sec. V.

2. Solving PDE coefficients by ‘1-norm minimization

Instead of an exhaustive search, we introduce a normal-

ization matrix, Wn 2 RD�D, which is diagonal with

Wnði; iÞ ¼ jjUnð:; iÞjj2, and by finding the coefficients,

�an ¼ ½�anð1Þ…�anðDÞ�T, that make the columns in the nor-

malized dictionary, �Un ¼ UnW�1
n , fit well under a fitting

error, toln,

jj �Un�anjj22 � toln such that jj�anjj1 ¼ 1; (5)

we acquire an ¼W�1
n �an.

We use the normalized dictionary such that the varia-

tion of magnitudes for columns in Un does not affect the

column selection and, thus, the selection is only based on

the dynamical characters (i.e., the variation of the entries

within each column). In addition, we use jj�anjj1 ¼ 1 in Eq.

(5) instead of jj�anjj1 > 0 as in Eq. (4), otherwise, the magni-

tudes of the nonzero elements in �an can be arbitrarily small

to encourage UnW�1
n �an 	 0.

The limitation of Eq. (5) is that jj�anjj1 ¼ 1 is not a convex

set and, therefore, Eq. (5) is not solvable via efficient convex

optimization tools. To make Eq. (5) amenable to convex optimi-

zation, we specify the positive/negative signs in jj�anjj1 and, thus,

reduce jj�anjj1 ¼ 1 to an affine constraint as detailed below.

We use physical information to reduce jj�anjj1 ¼ 1 toPD
i¼1 si�anðiÞ ¼ 1, where si 2 f�1; 1g is decided by the

information from potential PDE forms, e.g., s1 and s2 are the

same because coefficients for Ut and Utt are of the same sign

for all of the considered PDEs involving them. Although

there are various PDEs being taken into consideration, the

relations of the coefficient signs for the shared terms among

different PDEs do not conflict, e.g., the signs for Ut and Uxx

are always different for the viscous Burgers’s equation and

the attenuating wave equation (which indicates s1 and s4 are

opposite). Setting s1 ¼ 1, we obtain the auxiliary vector,

s ¼ ½s1 � � � sD�T 2 RD, for the dictionary [Eq. (3)] that is con-

sistent with all of the potential PDEs considered in this work as

s ¼ 1; 1; 1;�1;�1; 1½ �T 2 RD; (6)

and jj�anjj1 ¼ 1 is reduced to sT�an ¼ 1, which is affine.

The dictionary [Eq. (3)] includes the terms for all of the

potential PDEs, and the true governing PDE only involves a

few of them by experience. Therefore, it is preferable for the

identified PDE to have fewer active terms under the data fit-

ting constraint. Thus, we use ‘1-norm minimization due to

its ability to promote sparsity:24–30

�Un ¼ UnW�1
n ; �Us

n ¼
�Un

sT

� �
2 RðMþ1Þ�D; (7a)

�̂an ¼ arg minjj�anjj1 such that jj �Us
n�an � ejj1 � sn; (7b)

ân ¼W�1
n �̂an; (7c)

where e 2 RMþ1 has all zero entries except eðM þ 1Þ ¼ 1

and sn is a predefined toleration. The constraint jj �Us
n�an
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�ejj1 � sn in Eq. (7b) enforces �Un�an 	 0 and sT�an 	 1.

The optimization problem in Eq. (7) enables identifying all

of the active PDE terms simultaneously and, thus, is more

efficient than the previous methods in Refs. 9 and 10, rely-

ing on iterations, which at first iteratively assume that

anðiÞ ¼ 1 for all 1 � i � D to solve Eq. (4), and then select

the best assumption among these D cases.

The s in Eq. (6) is an example used for the considered

PDEs in this paper for the spatially 1D case. Fixing the six

entries in Eq. (6), it can be extended by adding more 61

entries to accommodate more PDE terms in the dictionary,

e.g., Eq. (24) for the 2D extension. Un and s can also be

extended to include more terms and, therefore, encompass

most PDEs for the dynamics of acoustical waves like the

Korteweg-deVries (KdV) equation, Stokes’s wave equa-

tion,31 van Wijngaarden’s equation,31 etc. Because the sign

relation in Eq. (6) is suitable for most acoustical PDEs, the s

conveys less information in the potential kinds of PDEs

compared to knowing at least one active term and, thus, rep-

resents a weaker prior knowledge.

We only put the various dynamical patterns of U, which

are denoted by the PDE terms, into the dictionary, Un, and

leave the information of the magnitudes and signs for these

terms appearing in the PDE into the coefficient ân for better

physical interpretability. For example, for the wave equa-

tion, we prefer the recovered PDE to have the form of Eq.

(2) instead of N½U� ¼ Utt þ aUt þ c2ð�UxxÞ. This is

achieved by adding the negative signs onto entries of s

instead of onto the corresponding columns in Un while

keeping s an all-one vector.

The information in s enables identifying PDEs from

limited data because it encourages Eq. (7b) to select �an,

whose nonzero entries have the same signs as their corre-

sponding entries in s and, hence, filter out the potential com-

binations of columns in �Un, which are better fitted but have

no physical meaning. To see this, suppose there are two vec-

tors, p; q 2 RD, which satisfy the requirement for �an in Eq.

(7b) for a small sn, i.e.,

k �Unpk1 � sn; jj �Unqjj1 � sn;����XD

i¼1

sipi � 1

���� � sn;

����XD

i¼1

siqi � 1

���� � sn; (8)

and, thus, using the triangle inequality,

XD

i¼1

sipi �
XD

i¼1

siqi

�����
����� � 2sn: (9)

If the signs of nonzero entries in p are the same as corre-

sponding entries in s, while for q, one entry, qi0 , has the

opposite sign of si0 , resulting in si0 qi0 < 0, then when

�si0 qi0 > sn, which is likely for a small sn, the method will

choose p over q because of a smaller ‘1 norm:

jjpjj1 ¼
XD

i¼1

sipi <
XD

i¼1

siqi � 2si0 qi0 ¼ jjqjj1: (10)

An example of the failed identification due to the replace-

ment of the informative s by 1 is given in Sec. IV A.

In addition to encouraging selecting the �an whose

entries have the correct signs, the incorporation of the non-

zero s also aims to avoid the trivial solution �an ¼ 0 and,

thus, the sign information s (even the incorrect s, which

leads to a wrong solution as discussed above) must be pro-

vided to make the method work. Meanwhile, to ensure that

every column of �U
s
n in Eq. (7a) has the same ‘2-norm such

that the optimization is not influenced by magnitudes of

dictionary atoms, the entries in s should have the same

magnitude. Here, the magnitude of one is used for

simplicity.

We repeat Eq. (7) for all of the N locations in the ROI

and, hence, recover the physical properties described by spa-

tially dependent PDEs. Note that for different locations, the

set of recovered active PDE terms can be different. For

example, in a wavefield, the attenuation of the waves can be

negligible in some regions and, thus, the wave equation (2)

does not have Ut term, but for other regions where the atten-

uation is obvious, the wave equation contains the term Ut.

To accelerate searching the PDE terms, we use the

equivalence of the ‘2-norm and ‘1-norm for a vector (for

any v 2 Rk; kvk1 � kvk2 �
ffiffiffi
k
p
kvk1), replace the ‘1-

norm constraint in Eq. (7b) with ‘2-norm, which is

jj �Us
n�an � ejj22 � sn, and solve it using its Lagrangian (i.e.,

Lasso32,33),

�̂an ¼ arg min
�an

jj�anjj1 þ kðjj �Us
n�an � ejj22 � snÞ

¼ arg min
�an

jj �Us
n�an � ejj22 þ knjj�anjj1; (11)

where kn ¼ 1=k ¼ 0:2k0 is chosen empirically with

k0 ¼ 2jj �UsT

n ejj1 ¼ 2, the boundary parameter above which

the output of Eq. (11) is 0, according to the Lasso path.34–36

Equation (11) can be efficiently solved by coordinate

descent, where a complete iteration of updating all of the D
entries in �an costs OððM þ 1ÞDÞ operations,37 and the num-

ber of iterations to reach convergence is often small.

Due to the noise from numerical computation, the �an

minimizing Eq. (11) may not be sparse enough. To further

promote sparsity, we threshold entries of �an using an adap-

tive threshold proportional to jj�anjj1. Then, use least

squares regression to solve the coefficients only in the T
kept entries [denoted by ~anðKÞ, where K with cardinality T
is the set of indices for the T kept nonzero entries] and

assign zero to the other entries. Thus, Eq. (7c) is replaced by

K ¼ f8i; j�anðiÞj � �jj�anjj1g; (12a)

~U
s

n ¼ Unð:;KÞT sðKÞ
h iT

2 RðMþ1Þ�T ; (12b)

~̂anðKÞ ¼ ~U
s†

n e; (12c)

where � is the threshold to be tuned. It can be tuned accord-

ing to prior knowledge or from grid search and cross-

validation if training data are available.

3172 J. Acoust. Soc. Am. 153 (6), June 2023 Liu et al.

https://doi.org/10.1121/10.0019592

 05 July 2023 17:10:45

https://doi.org/10.1121/10.0019592


B. Denoising by integration

In this section, we extend the technique of integration

transformation7 to the spatially dependent PDE identifica-

tion to make it more robust to noise, see Sec. II B 1, and dis-

cuss implementation details in Sec. II B 2. Overall, the idea

is to replace Un in Eq. (3) with a new dictionary, Uint
n , which

is built from integration transformation, as detailed below.

All of the other steps for the PDE identification are the same

as those in Sec. II A.

1. Transformed dictionary by integration

The terms in Un defined in Eq. (3) are sensitive to noise

because the noise is typically broadband and its influence is

emphasized by differentiation. We extend the denoising tech-

nique by integration7 to spatially dependent PDE identification

to recover the spatial variation of properties from noisy mea-

surements. To be specific, replacing Un in Eq. (3) with another

dictionary, Uint
n , as described below, and finishing all of the fol-

lowing steps for PDE identification in Sec. II A using it.

The integration method uses integration by parts to transfer

the derivatives of noisy measurements, U, to the derivatives of

a predefined weighting function W, which is noise-free.

For an arbitrary region X in the ROI and a finite smooth

function W(x,t) defined on X,

N U½ � ¼ 0 !
ð

X
N U½ �W dX ¼ 0; (13)

where
Ð
XN½U�W dX is for

Ð
ðx;tÞ2XN½Uðx; tÞ�Wðx; tÞdx dt.

From Eq. (13), in an arbitrary region X within the ROI, the

integral of the product between W and the summation of all

of the active PDE terms is zero. For example, if NðUÞ is the

wave equation (2), then Eq. (13) becomesð
X
ðUtt þ aUt � c2UxxÞW dX ¼ 0: (14)

Let X be a square region fxl � x � xu; tl � t � tug with

ðxu � xlÞ=Dx ¼ ðtu � tlÞ=Dt ¼ 2a intervals so that it covers

ð2aþ 1Þ � ð2aþ 1Þ spatial-temporal coordinates within the

ROI, we can move the derivatives of U in Eq. (13) onto W,

e.g., for component Ut,ð
X

WUtdX ¼
ð

X
ðWUÞtdX�

ð
X

UWtdX

¼
ðxu

xl

ðWUÞjtutl
h i

dx�
ð

X
UWtdX

¼ �
ð

X
UWtdX; (15)

where W is defined as zero at tl and tu. Similarly, using a W
where its (p – 1)st-order derivatives (p � 2) vanished at its

spatial-temporal boundaries, we can transfer the derivatives

on U for all of the terms in Eq. (3) onto W. An eligible W is

Wðx; tÞ ¼ ð�x2 � 1Þpð�t2 � 1Þp;

where

�x ¼ 2
x� xl

xu � xl
� 1 2 �1; 1½ �;

�t ¼ 2
t� tl
tu � tl

� 1 2 �1; 1½ �: (16)

Because the PDEs are assumed to be spatially depen-

dent, for spatial location nx in U, we select Mint integration

domains X1;…;XMint
centered at ðnx; ðm0 þ dÞtÞ;…;

ðnx; ðm0 þMintdÞtÞ, where d is the interval between temporal

centers of two neighboring domains, and the spatial center

of the domains is always the location nx. All of the Xm with

m ¼ 1;…;Mint are of the same size as the X mentioned pre-

viously. Ideally d¼ 1, but a larger d is chosen to reduce

computations. Thus, we can construct a new library of

atoms, Uint
n 2 C

Mint�D
, consisting of integration for D¼ 6

integrands on all Xm; 1 � m � Mint, whose mth row is

Uint
n ðm; :Þ ¼

ð
Xm

�UWm
t ;UWm

tt ;�
1

2
U2Wm

x ;

�

UWm
xx;UWm

xt ; sin ðUÞWm

#
dXm; (17)

where Wm is the shifted W such that its domain exactly over-

laps Xm.

2. Computation of integrals

To compute entries in Eq. (17) numerically, we evaluate

the values of Wm at discrete coordinates and save it in

Wm 2 RN�M, in which

Wmðix; itÞ ¼
WðixDx; itDtÞ if ðix; itÞ 2 Xm;

0 otherwise;

(
(18)

where W is predefined with an eligible choice given in Eq.

(16), whose xu; xl; tu, and tl are the spatiotemporal bound-

aries of Xm. Similarly, the derivatives are also computed

and saved in matrices in RN�M, e.g.,

Wm
tt ðix; itÞ ¼

WttðixDx; itDxÞ if ðix; itÞ 2 Xm;

0 otherwise;

(
(19)

where WttðixDx; itDtÞ ¼ ð@2Wðx; tÞ=@t2Þjx¼ixDx;t¼itDt is com-

puted analytically and, thus, noise-free.

A demonstration of the integration is shown in Fig. 1(a),

where Mint ¼ 4. The integration of the dth integrand indicated

in Eq. (17) within Xm is Uint
n ðm; dÞ. Figure 1(b) shows a Wm

with its nonzero region in Xm ¼ fðx; tÞj20Dx � x � 30Dx;
17Dt � t � 27Dtg enclosed by a dashed box.

By choosing W as in Eq. (16) with p � 2 and analytically

computing its derivatives, all of the derivatives of W necessary

for Eq. (17) are obtained, enabling the transfer of derivatives

on U to derivatives on W. The integral for each term in Eq.

(17) within each Xm is integrated along t and then along x
numerically by summation approximation. Note that W and its

derivatives are calculated analytically with �t in ½�1; 1�, but the
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true domain of W covers ½�aDt; aDt�. Thus, for the p0th-order

temporal derivative of W, its real values are the analytical

result divided by ðaDtÞp0 , and for spatial derivatives, the scal-

ing is similar. For example, the mth row of the second column

in Uint
n is computed as

Uint
n ðm; 2Þ ¼

1

aDt

� �2 X
fix;itg2Xm

Uðix; itÞWm
tt ðix; itÞDxDt; (20)

which is a scaled summation of ð2aþ 1Þ2 values of the

element-wise product between U and Wm
tt within Xm.

To reduce the error caused by approximating the inte-

gration with a finite sum, which can dominate when the

derivative of W has a high order, we use interpolation.

Before integration, each time slice of the raw signal U

within Xm [e.g., red line in X2 in Fig. 1(a)] is interpolated

using polynomial fitting. Let the raw signal be the blue line

in Fig. 1(c) with 2aþ 1 points (here, a¼ 5), we fit it using a

fifth-order polynomial and interpolate q values evenly

between each neighboring point. Therefore, the interpolated

signal has 2aðqþ 1Þ þ 1 points. To match the interpolated

signal, Wm and its derivatives are also evaluated at these

evenly spaced 2aðqþ 1Þ þ 1 points along the temporal

direction. We then sum up values of the integrand at all of

these points to be the temporal integral for this location, and

Uint
n ðm; dÞ is acquired by summing up such temporal inte-

grals for all 2aþ 1 spatial locations within Xm. Thus, in the

example for Eq. (20), Uint
n ðm; 2Þ becomes a scaled summa-

tion of ð2aþ 1Þ � ð2aðqþ 1Þ þ 1Þ values.

Replacing Un in Eq. (3) with Uint
n efficiently increases

its robustness to noise, as shown in Secs. III C and IV B. In

all of the experiments, a¼ 5, p¼ 3, and q¼ 9.

III. NUMERICAL EXPERIMENTS

This section includes a spatially independent (not

known a priori) and two spatially dependent PDE

identification experiments. Sections III A–III B are based

on clean signal, and Sec. III C experiments with noisy mea-

surements. The datasets are generated by finite difference

modeling.38

For the 1D case in Sec. III A, the dictionary used is Eq.

(3). To simplify the demonstration, we index its columns as

Un ¼ u1
t ; u2

tt; u � 3ux; u4
xx; u5

tx; sinðuÞ
6

h i
2RM�6: (21)

and use the indices for the columns (1–6) to show the

results.

A. Spatially independent Burgers’s equation

Here, we recover the fluid viscosity from fluid speeds.

The Burgers’s equation,39,40

Ut þ UUx � �Uxx ¼ 0; (22)

is nonlinear and can model the formation of shock waves in

free turbulence, where � � 0 is the viscosity of the fluid,

which is spatially independent in this example. The aim of

this experiment is to show that the method can extract the

medium property from a nonlinear dynamic system, and it

works when the PDE to be identified is, in fact, spatially

independent (indicating a homogeneous medium) but not

known a priori.
A dataset U 2 R101�151, with Dt ¼ 0:05 s and

Dx ¼ 1 m, modeling the speed of the fluid at each location

along a thin pipe as time progresses governed by Eq. (22)

with � ¼ 0:1, is generated as Fig. 2(a). The initial state is a

scaled probability density function (PDF) of the normal dis-

tribution, and as time goes by, the wave is moving in the

positive x direction.

We choose the spatial region where the dynamics can

be easily observed as the ROI and, to be specific, choose

Ix ¼ fixj20 � ix � 90g, which is bounded by the red lines in

Fig. 2(a), such that N¼ 71 and n¼ 1 corresponds to ix¼ 20.

We do not consider the temporal boundaries where the

derivatives are not well defined and, thus, use It ¼ fitj1
� ix � 149g for the ROI, i.e., M¼ 149.

To find the governing PDE, we build �Us
n according to

Eqs. (3), (6), and (7a) for every 1 � n � N. From Eq. (11),

the coefficients are distributed as Fig. 2(b). After threshold-

ing using Eq. (12a) with � ¼ 10�3; fut; u � ux; uxxg appear-

ing in the Burgers’s equation are selected for all of the

locations in the ROI.

For every location, we build ~U
s

n and compute ~an as in Eq.

(12). The coefficients for Ut and UUx are always nearly identical

as
PN

n¼1 j~anð3Þ � ~anð1Þj ¼ 1:7� 10�14. The estimated viscos-

ity is �̂n ¼ �~anð4Þ=~anð1Þ, which is equal to 0.1 for every n.

B. 2D spatially dependent wave equation

In this section, we recover the 2D maps of phase speeds

and attenuation from observed propagating waves. A 2D

wavefield U 2 R32�32�200 in which Dx ¼ Dy ¼ 0:1 m and

FIG. 1. (Color online) A demonstration for integration, showing (a) four integra-

tion domains in ROI with each having 2aþ 1 points (2a intervals) in x and t axes.

It is possible to choose d < 2a, i.e., the domains can be overlapped. (b) A Wm

whose nonzero part (in green dashed box) is centered at ðx ¼ 25Dx; t ¼ 22DtÞ.
(c) When integrating along a slice of signal in time [e.g., red line in (a)], use poly-

nomial interpolation and integrate on the interpolated slice (red dashed line).
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Dt ¼ 0:01 s describing waves excited by an initial perturba-

tion and propagating through various media is used for the

experiment. The PDE governing it is the wave equation

Utt þ aUt � c2r2U ¼ 0; (23)

where a � 0 is the attenuating factor, c> 0 is the phase

speed, and r2 is the Laplacian, i.e., Uxx þ Uyy. We adopt

the Dirichlet boundary condition, where the measurements

on spatial boundaries are zero. The initial perturbation is

shaped as a scaled 2D normal distribution PDF, and the

phase speeds 2 � c � 4 m=s and attenuation 0 � a � 0:2
are varying across the domain as shown in Fig. 3. Some

frames are shown in Fig. 4. We choose the ROI to be all of

the spatial regions without the boundaries and its immediate

neighboring points (i.e., 2 � ix � 29; 2 � iy � 29) and the

time steps 1 � it � 198. Therefore, N ¼ 282 ¼ 784,

M¼ 198, and n¼ 1 corresponds to ix ¼ iy ¼ 2. The 2D loca-

tions within ROI are indexed from 1 to N in the row-major

manner.

For this 2D case, we extend the dictionary [Eq. (3)] and

s [Eq. (6)] to

Un ¼ u1
t ; u2

tt; u � 3ux; u � 4uy; u5
xx;

h
u6

yy; u7
tx; u8

ty; sinðuÞ
9
�
;

s ¼ 1; 1; 1; 1;�1;�1;�1;�1; 1½ �T: (24)

Build dictionaries using Eq. (24) according to Eq. (7a), and

from Eq. (11), the �a1 to �aN are acquired as Fig. 5(a). After

thresholding as in Eq. (12a) with � ¼ 10�3, the kept nonzero

entries are indicated in Fig. 5(b).

Comparing Fig. 5(b) to Eq. (23), the method success-

fully identifies the PDEs for all 784 locations. Figure 6

shows the number of identified active PDE terms for each

location in the ROI, where the three terms contain

futt; uxx; uyyg, and for four terms, ut is also included. Build

~U
s

n and compute ~an as in Eq. (12), the coefficients for Uxx

and Uyy are nearly identical as
PN

n¼1 j~anð5Þ � ~anð6Þj ¼ 3:3

�10�12. The recovered ĉn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð~anð5Þ þ ~anð6ÞÞ=2~anð2Þ

p
and ân ¼ ~anð1Þ=~anð2Þ, which are satisfactory as the root-

mean-square error RMSE ¼ 1:1� 10�14 m=s for phase

speeds and 1:5� 10�14 for attenuating factors with respect

to the ground truth in Fig. 3 across the whole ROI.

C. 2D spatially dependent wave equation with noise

The field is of size U 2 R100�100�1000; Dx ¼ Dy
¼ 1 m; Dt ¼ 0:2 s. The ROI is selected to be 5 � ix

< 95; 5 � iy < 95 (8100 locations in total), and for time

period use, 5 � it < 995. The field has free boundaries and

is excited by two chirp sources located outside of the region

at ð�6 m; 18 mÞ and ð109 m; 80 mÞ, and governed by atten-

uating or non-attenuating wave equations with various coef-

ficients, as indicated in Fig. 7(a). One frame is depicted in

Fig. 8(a).

Without noise, building dictionaries for all of the locations

using Eq. (24) according to Eq. (7a) and implementing Eq. (11)),

we obtain the coefficients distributed as in Fig. 9. Thresholding

them with � ¼ 10�2, the PDEs are correctly identified for all

8100 locations in the ROI. The ĉ and â are well recovered with

the RMSE ¼ 1:7� 10�15 m=s for phase speeds and 3:2�
10�16 for attenuating factors compared to the ground truth.

FIG. 2. (Color online) For Burgers’s equation (22), (a) U with spatially

independent � ¼ 0:1; Dx ¼ 1 m; Dt ¼ 0:05 s. Therefore, 0 � ix � 100;
0 � it � 150. The ROI is fixj20 � ix � 90g between the red lines where

obvious dynamics are observed. (b) log10j�anðiÞj, where i corresponds to the

indices in Eq. (21) for all n ¼ 1;…; 71.

FIG. 3. (Color online) The true phase speeds c and attenuating factors a for

ix,iy in ½1; 30� (Dx ¼ Dy ¼ 0:1 m). Waves cannot arrive at the places where

either ix or iy is 0 or 31 because of the boundary condition.

FIG. 4. (Color online) The wavefield governed by Eq. (23) with spatially

dependent c and a at three selected time points. Dx ¼ Dy ¼ 0:1 m;
Dt ¼ 0:01 s. Therefore, ix,iy ranged from 0 to 31.

FIG. 5. (Color online) For 2D wave equation, showing (a) log10j�anðiÞj,
where i corresponds to the indices of columns for Un in Eq. (24) for all

n ¼ 1;…; 282 and (b) the locations of their active entries after thresholding.

The 2D 28� 28 locations are indexed from 1 to 784 in a row-major manner.
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We add additive white Gaussian noise (AWGN) with r2 ¼
2 (arbitrarily chosen to be 
1% of the signal variance in a

frame) to the measurements; see Fig. 8(b). Using the same pro-

cedure as before without denoising, the �an is as in Fig. 10(a).

No proper � can be found to extract the active terms and, thus,

the PDE identification fails. We, therefore, use the integration

transformation to build Uint
n 2 RMint�9 for each location as

described in Sec. II B with its mth row such that

Uint
n ðm; :Þ ¼

ð
Xm

�UWm
t

1

; UWm
tt

2

; � 1

2
U2Wm

x

3

;

�

� 1

2
U2Wm

y

4

; UWm
xx

5

; UWm
yy

6

;

UWm
xt

7

; UWm
yt

8

; sinðUÞ
9

Wm

�
dXm: (25)

The center of the integration domains starts from it¼ 19 and

ends at it¼ 979 with d¼ 10, hence, Mint ¼ 97. The

recovered �an is in Fig. 10(b), which is a clear improvement

of Fig. 10(a). Now it is possible to employ thresholding to

extract active terms. Using � ¼ 0:13, the recovered result is

shown in Fig. 7(b), where the terms corresponding to

fUtt;Uxx;Uyyg or fUt;Utt;Uxx;Uyyg are identified at 97.6%

of the 8100 locations. Specifically, for the ROI with attenua-

tion [upper right in Fig. 7(a)], the four PDE terms

fUt;Utt;Uxx;Uyyg are selected at 86.1% of the 452 locations.

For each location of the 2.4% region, where the wave equa-

tion is not identified, the recovered ĉ and â are interpolated

using the median value within a window covering 21 loca-

tions along the y axis centered at it.

For the phase speed recovery, the sharp edges between

distinct true speeds are smoothed. The reason is that the

integration domains centered near the edges cover the

regions with different speeds, thus, the results are affected

by both speeds. The recovered speed smoothly changes

because the integration domain smoothly slides over the

boundary. The integration domain size is important: a larger

integration domain leads to more noise-robust estimation

and more extensively smoothed edges. Unlike phase speed

recovery, when the integration domain centers near the

boundary of attenuating and non-attenuating areas, if �anð1Þ
is kept after thresholding in Eq. (12a), then â is recovered

FIG. 6. (Color online) Number of identified active PDE terms within the

ROI.

FIG. 7. (Color online) The (a) true phase speeds c and attenuating factors a
for ix,iy in ½0; 99� (Dx ¼ Dy ¼ 1 m) and (b) recovered ĉ and â in the ROI

for the noisy measurements using � ¼ 0:13 are shown.

FIG. 8. (Color online) A frame of the wavefield governed by Eq. (23) with

spatially dependent c and a in Fig. 7(a). The two sources are outside of the

region at ð�6 m; 18 mÞ and ð109 m; 80 mÞ, showing (a) clean measure-

ments and (b) noisy measurements with AWGN for r2 ¼ 2.

FIG. 9. (Color online) For 2D wave equation with spatially dependent c and

a in Fig. 7(a), log10j�anðiÞj from clean measurements, where i corresponds

to the indices of columns for Un in Eq. (24).

3176 J. Acoust. Soc. Am. 153 (6), June 2023 Liu et al.

https://doi.org/10.1121/10.0019592

 05 July 2023 17:10:45

https://doi.org/10.1121/10.0019592


from least squares regression in Eq. (12a) and, therefore,

near the true a, otherwise ~anð1Þ is set to zero, thus, â ¼ 0,

causing the sharp transition for â.

IV. EXTRACTING PDES FOR A VIBRATING PLATE

A. Identification from clean measurements

The approach is demonstrated on laser scanned mea-

surements of vibrations of a real aluminum plate sampled at

300 kHz, which was provided by University of Utah;41 see

Fig. 11. The part taken into consideration is U 2 R100�100�1000,

i.e., the measurements are collected from 10 000 sampling loca-

tions uniformly distributed on the square plate (100 rows and

100 columns) with 1000 time steps. The spatial sampling inter-

val Dx ¼ Dy ¼ 1 mm.

The PDE governing the vibrations of the plate is the wave

equation. Because the aluminum plate waves are dispersive,42

i.e., phase speeds c varies across frequencies, we extract the

narrow band signals from U and identify the PDE for every

band. Five sixth-order Butterworth bandpass filters centered at

30–70 kHz stepped by 10 kHz are employed to extract narrow-

band signals with 2 kHz bandwidth, with one frame of the nar-

rowband signal centered at 30 kHz as shown in Fig. 12(a). We

drop five neighboring locations on each axis end, hence, for

the ROI 5 � ix < 95; 5 � iy < 95; 5 � it < 995 and, thus,

N ¼ 902 ¼ 8100; M ¼ 990.

The PDE identification results are summarized in Table I,

which is explained in detail in the following. We build the dic-

tionary Un 2 R990�9 for each location as in Eq. (24), and build
�U

s
n using the terms and s in Eq. (24) according to Eq. (7a) for

every 1 � n � N. From Eq. (11), the coefficients for

futt; uxx; uyyg are found to have significant greater magnitudes,

as shown in Fig. 13(a) for the 70 kHz case as an example. We

threshold �anðiÞ as in Eq. (12a), using � ¼ 0:2 at each location

that gives the active PDE terms. Counting the number of loca-

tions with the PDE terms correctly identified (either

futt; uxx; uyyg or these including ut) and normalizing it with N
gives the “success rate.” The mean phase speed and mean

absolute deviation (MAD, computed by ð1=NÞ
PN

n¼1 jĉn

�ðð1=NÞ
PN

n¼1 ĉnÞj, where ĉn is the recovered phase speed at

location n) over these “success” locations, are calculated. The

recovered speeds ĉn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð~anð5Þ þ ~anð6ÞÞ=2~anð2Þ

p
are

shown in Fig. 14. For each location in the region where the

wave equation is not identified (3.2% of the ROI at most, at

70 kHz), the recovered ĉ is interpolated using the median value

within a window covering 21 locations along the y axis cen-

tered at it.

The mean phase speeds in Table I are close to the

recovered phase speeds when the PDE coefficients are

assumed constant across the space and recovered from one

dictionary built from the measurements at all of the loca-

tions (a big dictionary U ¼ ½UT
1 UT

2 � � � UT
N �

T 2 RNM�D) in

Ref. 10, as given in ĉall. The relative MAD is 
1%, indicat-

ing the recovered speed is nearly a constant across the plate

for a narrow frequency band, which coincides with our

physical setting.

FIG. 10. (Color online) For noisy measurements of waves governed by Eq.

(23) with c and a in Fig. 7(a), showing (a) log10j�anðiÞj with �an recovered

from Un, where i corresponds to the indices of columns for Un in Eq. (24),

and (b) log10j�anðiÞj with �an recovered from Uint
n in Eq. (25).

FIG. 11. (Color online) The vibrating plate, showing (a) 2 of the selected

1000 frames with magnitudes normalized and (b) the traces for locations at

y ¼ 50 mm in the first 0:5 ms.

FIG. 12. (Color online) For the 300th frame of the signal with frequency

band centered at 30 kHz, showing (a) clean signal and (b) signal corrupted

by AWGN with r2 ¼ 103.

TABLE I. Success rate [using s as in Eq. (24) or s¼ 1 in Us
n] of the PDE

identification and the recovered speeds for various frequency bands.

Center frequency (kHz) 30 40 50 60 70

Success rate using correct s

in Eq. (24) (%)

99.5 98.1 99.1 99.4 96.8

Success rate using s¼ 1 (%) 0 0 0 0 0

Mean speed (m/s) 467 532 586 628 663

MAD (m/s) 4.9 8.7 6.9 7.7 6.1

MAD/mean (%) 1.1 1.6 1.2 1.2 0.9

ĉall (m/s) 463 531 587 632 668
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The correct s selected from physical knowledge is a key

for the successful identification. If we use 1 as s in Eq. (24),

no wave equations are identified at any location for any fre-

quency band. Using 1, the �an for the band centered at

70 kHz is shown in Fig. 13(b). The 1 used as s indicates the

coefficients for Utt, Uxx, and Uyy have the same sign. As this

is not true, these terms are suppressed [comparing Fig. 13(b)

with Fig. 13(a)], and the energy that should appear in
�anð2Þ; �anð5Þ, and �anð6Þ is redistributed to other entries to

make the combination of selected columns in �Us
n still fit e.

This cannot be remedied by tuning � because the incorrect

terms have larger coefficients than the correct terms.

B. Identification from noisy measurements

To test the robustness against AWGN, we add the

AWGN with variance r2 ¼ 104; 103; 102; 10, and one to

the signal with frequency band centered at 30 kHz (one

frame depicted in Fig. 12), and identify PDEs from the dic-

tionary [Eq. (25)] where the center of the integration

domains starts from it¼ 19 and ends at it¼ 979 with d¼ 20

(hence, Mint ¼ 49). The successful identification rate is in

Table II, in which the “signal variance” in the second col-

umn is the average variance across all 1000 frames of the

clean signal centered at 30 kHz in the ROI. Table II shows

that the integration method significantly increases the

robustness against AWGN. In reality, the method should

provide a high success rate for the sensors satisfying basic

quality requirements. From Table II, when the noise vari-

ance is 102, i.e., the noise variance is 66% of the signal vari-

ance and thus the signal-to-noise ratio SNR ¼ 1:83 dB, the

success rate is larger than 98%.

Add AWGN with r2 ¼ 100 to all five narrowband sig-

nals and use the integration transformation to assist PDE

identification, and the PDE coefficients are recovered with

the example for 70 kHz as shown in Fig. 15. The coefficients

for fUtt;Uxx;Uyyg have larger coefficients at most locations

and, thus, can be extracted by thresholding. Use � ¼ 0:2
to extract active terms and the recovered speeds

ĉn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð~anð5Þ þ ~anð6ÞÞ=2~anð2Þ

p
are shown in Fig. 16 and

recorded in Table III. For each location in the region where

the wave equation is not identified (6.6% of the ROI, at

most, at 60 kHz), the recovered ĉ is interpolated using the

median value within a window covering 21 locations along

the y axis centered at it.

FIG. 13. (Color online) Magnitudes of �anðiÞ, where i corresponds to the

indices of columns for Un in Eq. (24) for all n ¼ 1;…; 902 from clean mea-

surements, showing (a) using s in Eq. (24) and (b) using 1 as the s.

FIG. 14. (Color online) The recovered phase speeds for various frequency

bands on the plate from clean measurements.

TABLE II. PDE identification success rate with or without integration

transformation for the noisy narrowband signal at 30 kHz. Values in the sec-

ond column are the direct quotient, not the percentage.

Noise

variance

Noise/signal

variance

Without

integration (%)

With

integration (%)

104 65.56 2.2 9.2

103 6.56 0.3 62.1

102 0.66 1.2 98.1

101 6:56� 10�2 25.3 99.5

100 6:56� 10�3 90.9 99.5

FIG. 15. (Color online) From noisy measurements of the vibrating plate

centered at 70 kHz; j�anðiÞj, where i corresponds to the indices of columns

for Uint
n in Eq. (25) for all n ¼ 1;…; 902.
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The mean speeds in Table I for high frequencies are

underestimated because of insufficient sampling along

time.10 For 70 kHz, if we assume the speed is 700 m/s, the

wavelength becomes 10�2 m ¼ 10Dx while the period is

1:43� 10�5 s 	 4Dt. Because finite difference evaluates

@ttUðix; iy; itÞ based on slopes of the line segments connect-

ing Uðix; iy; itÞ with Uðix; iy; it � 1Þ and Uðix; iy; it þ 1Þ,
when Dt is not sufficiently small, these slopes can be far

from the slope of the tangent line passing Uðix; iy; itÞ, caus-

ing significant bias. In comparison, the mean speeds in

Table III are not underestimated because of the nine points

interpolation between each neighboring time step. The result

is similar to a classic phase speed estimation based on

Fourier transform by first finding the primary spatial fre-

quency n̂ for each frequency f and then ĉcl ¼ f=n̂,43,44

assuming the PDE is a spatially independent wave equation

and the waves are isotropic. The ĉcl computed from clean

measurements is also shown in Table III, indicating that the

surface wave is strongly dispersive.

V. EFFICIENCY

We emphasize the efficiency of the proposed method

by comparing its CPU time to the PDE identification using

SBL,9 CV based method,10 and exhaustive search (exhaust).

Because the methods in Refs. 9 and 10 only work for spa-

tially independent PDEs, we use three datasets, describing

such PDEs, for the experiments: (a) dataset in Sec. III A; (b)

non-attenuating 2D wave equation (23) with

a ¼ 0; c ¼ 2:5 m=s; (c) attenuating 2D wave equation (23)

with a ¼ 0:025; c ¼ 2:5 m=s. All other settings for (b) and

(c) are the same as those in Sec. III B.

As in Refs. 9 and 10, as the PDE is identical for all of

the locations, we concatenate Un [defined by Eq. (3) or

(24)] for each column to build the dictionary,

U ¼ UT
1 ;U

T
2 ;…;UT

N

� 	T 2 RNM�D; (26)

for Refs. 9 and 10 and exhaustive search, and the proposed

method uses normalized Eq. (26) appended by s as its last

row.

All of the methods successfully identify the PDEs, and

the CPU time shows the superior efficiency of our proposed

method as demonstrated in Table IV, where the proposed

method outperforms others significantly. The exhaustive

search is efficient for the dictionary with six terms but time-

consuming for nine terms.

In addition to efficiency, the proposed method and the

baselines in Table IV have similar performance for correctly

identifying the PDEs. With the same success rate, the higher

efficiency makes our approach suitable for recovering spa-

tially dependent PDEs in a large ROI, in which the PDE

identification is repeated for every spatial location.

VI. CONCLUSION

We proposed a technique to efficiently recover the spa-

tial variations of physical properties via spatially dependent

PDEs identification given observations and validated it by

recovering various acoustical properties for the medium of

propagating waves.

FIG. 16. (Color online) The recovered phase speeds for various frequency

bands on the plate from noisy measurements.

TABLE III. Success rate of the PDE identification from noisy measure-

ments aided by integration transformation and the recovered speeds for var-

ious frequency bands. The correct s is from Eq. (24) and other rows in the

dictionary are the normalized terms of Eq. (25).

Center frequency (kHz) 30 40 50 60 70

Success rate using correct s (%) 98.1 99.3 99.2 93.4 96.6

Mean speed (m/s) 473 548 613 675 731

MAD (m/s) 5.8 4.2 5.5 9.6 5.4

MAD/mean (%) 1.2 0.8 0.9 1.4 0.7

ĉcl (m/s) 476 556 610 667 722

TABLE IV. The average CPU time (s) for ten trials on a MacBook Pro to

correctly identify spatially independent PDEs on three datasets using SBL

(Ref. 9), the CV based method (Ref. 10), exhaustive search (exhaust), and

the proposed method.

SBL

(Ref. 9)

CV

(Ref. 10) Exhaust Proposed

Burgers’s equation 0.69 0.16 0.06 0.002

Non-attenuation wave equation 1.7 15 35 0.028

Attenuation wave equation 1.0 4.3 9.4 0.010
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The identification employs a constrained ‘1-norm mini-

mization, which encourages sparsity and is solved via

Lasso, to select active PDE terms from a dictionary of all of

the potential terms. It is computationally efficient as it does

not require iterative assumptions of active PDE terms and

the implementation of a fast computing scheme for Lasso.

Using an integration transformation to transfer the deriva-

tives on the noisy measurement to a smooth predefined func-

tion, the method can also identify spatially dependent PDEs

from highly noisy measurements.
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