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Biological systems are inherently complex, and the increasing
level of detail with which we are able to experimentally probe
such systems continually reveals new complexity. Fortunately,
mathematical models are uniquely positioned to provide a tool
suitable for rigorous analysis, hypothesis generation, and con-
necting results from isolated in vitro experiments with results
from in vivo and whole-organism studies. However, developing
useful mathematical models is challenging because of the often
different domains of knowledge required in both math and biol-
ogy. In this work, we endeavor to provide a useful guide for
researchers interested in incorporating mathematical modeling
into their scientific process. We advocate for the use of concep-
tual diagrams as a starting place to anchor researchers from both
domains. These diagrams are useful for simplifying the biologi-
cal process in question and distinguishing the essential compo-
nents. Not only do they serve as the basis for developing a variety
of mathematical models, but they ensure that any mathematical
formulation of the biological system is led primarily by scientific
questions. We provide a specific example of this process from
our own work in studying prion aggregation to show the power
of mathematical models to synergistically interact with experi-
ments and push forward biological understanding. Choosing
the most suitable model also depends on many different factors,
and we consider how to make these choices based on different
scales of biological organization and available data. We close by
discussing the many opportunities that abound for both exper-
imentalists and modelers to take advantage of collaborative
work in this field.

How living organisms function and biological systems work
remain some of the most profound mysteries in our world.
Many areas of biological inquiry aim to explain how complex
behaviors emerge from simple rules of interaction between fun-
damental components. Two examples of this type of question
are “How do collections of different cell types communicate to
develop into complex structures such as an entire organ or

embryo?” and “How do microscopic protein aggregation
dynamics and macroscopic cell behaviors within a growing tis-
sue interact to propagate or clear neurodegenerative diseases
such as Alzheimer’s?” Answering these questions is challeng-
ing, and requires combining approaches from different
domains. In particular, one of the most successful combina-
tions of expertise is that of experimental and biological sciences
with the mathematical and computational sciences. The use of
mathematical models was proven to be fundamental toward
advancing physics in the 20th century, and many are projecting
mathematics to play a similar role in advancing biological dis-
covery in the 21st century (1, 3).

Mathematical and computational models have already begun
to play an increasingly large role in the advancement of biolog-
ical and biochemical research because they make it possible to
quantitatively bridge the gap between data gathering and mech-
anism testing by providing a set of analytical and numerical
tools. The level at which we are able to collect data ranges across
many different scales, including single-cell analysis, molecular
interactions, tumor growth, and epidemiological statistics. In
most cases, we aim to understand how the processes and mech-
anisms we track at microscopic scales lead to emergent patterns
of disease and other behaviors observed at the macroscopic
scale of entire colonies, tissues, or populations. The aim of com-
bined experimental investigation and mathematical and com-
putational modeling in the biological sciences is to develop a
tool set that can combine information at multiple scales and
elucidate the underlying mechanisms that drive an observed
phenomenon (Fig. 1).

Experimental studies are rooted in observation to draw con-
clusions about how a biological system functions, and they rely
on experimental manipulations to clarify which components
are the most important. However, it can be challenging to make
the required observations and manipulations without affecting
the system in unintentional ways. Mathematical and computa-
tional models use observation and manipulations in the same
way as experiments, but they can avoid many of the most chal-
lenging experimental difficulties. In addition, such models
often permit experiments that are currently not feasible in the
physical system. In the best cases, mathematical models com-
plement experimental studies by providing new insight on the
most crucial interactions within the system. Although mathe-
matical descriptions of biological phenomena cannot replace
biological experiments or provide biological evidence that a
particular mechanisms is at work, they can demonstrate
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whether or not a proposed mechanism is sufficient to produce
an observed phenomenon.

Before access to powerful computers was so common, it was
possible to create and analyze a mathematical model by hand.
However, using a handwritten equation to study realistic bio-
logical applications, such as interactions between meaningful
numbers of cells or many different biochemical species,
becomes impractical due to the large number of equations and
variables. Once computers became available, code could be
written to automatically construct and solve equations repeat-
edly over multiple time steps. Thus, computational implemen-
tation of models is an important feature that brings together
different kinds of data across a range of length scales. Moreover,
reasonable knowledge of computational methods provides a
new way for researchers to investigate interactions between
different system elements on a very large scale. Even in the case
of biological mechanisms that are well-understood, mathemat-
ical and computational modeling makes it possible to explore
the consequences of manipulating various parameters, which in
the case of brain tumors and other cancers has become a good
resource for simulating different treatment protocols before
applying them in practice (4 –11).

The purpose of this article is to empower researchers in the
biological and experimental sciences to develop their own
models as well as to lower the barrier between these fields with
the mathematical sciences. Indeed, there are significant chal-
lenges in interdisciplinary collaborations. Both parties—the
mathematical/computational and experimental/biological—
may feel that they do not have sufficient expertise in the oppo-
site domain to begin a fruitful conversation. To paraphrase
James A. Yorke—an applied mathematician credited with coin-
ing the term “chaos theory,” who has a long track record of
productive interdisciplinary work—“interdisciplinary research
requires being comfortable asking ‘naive’ questions.” The pur-
pose of this review is to help communicate some of the language
surrounding mathematical modeling in a way that will facilitate
productive interactions between scientists and to demonstrate
that for both sides, trekking into the great unknown is not only
intellectually rewarding, but offers the potential to introduce
significant advances in both fields.

We structure this Review around illustrating a pipeline for
mathematical model building in an interdisciplinary setting
that has been productive for us in the past. First, we give an
overview of mathematical modeling in general and provide a
three-step process we have found useful in model development.
We then illustrate this process using a canonical enzyme sub-
strate reaction as a guide. In Section 3 we discuss a more com-

plex biochemical system, the aggregation and fragmentation
dynamics of prion aggregates. Although this system consists of
a (theoretically) infinite number of interacting biochemical spe-
cies, the same three-step process can be used to develop a math-
ematical model. We then demonstrate how this model provides
a toolbox for answering scientific questions about prion dis-
ease. Finally, we close with a discussion of considerations for
developing more complex models at different scales and pro-
vide resources for readers interested in building their own mod-
els. In particular, all of the code for the models we develop in
this Review is available in the supporting information as an
iPython Notebook. We encourage readers to explore these
models on their own. (We also note that there are many books
and resources delving into this material in greater detail than
possible in this Review. We encourage those interested in learn-
ing more about mathematical modeling to explore other
reviews with examples from different applications written to
guide researchers in building models in biology (12–15) or text-
books in mathematical biology (16 –22).)

What does it mean to model something?

Those new to mathematical modeling may be curious what it
actually means to construct a model. We emphasize that to
most effectively drive scientific discovery, a model cannot exist
in a vacuum but must be intimately involved in the experi-
mental process. In Fig. 1, we demonstrate some interactions
between an experimental investigation and a mathematical and
computational model. We encourage experimental researchers
to think of a mathematical model itself as an experimental tool.
The mathematical model can be used to make a prediction
about what will happen under certain conditions (i.e. different
initial conditions and/or parameters) and observe whether or
not the predicted outcome occurs. The mathematical model
can be used to study how sensitive one output of interest is to
increasing or decreasing the amount of other factors. The
mathematical model can also be used to aid in the design of new
experiments. However, this process is not one-sided. Develop-
ing a useful mathematical model relies on having a solid under-
standing of the system under study. Unknown parameters may
be “fit” by comparing model output with data, and the model
itself can be “validated” by predicting an unexpected experi-
mental outcome.

We emphasize three steps in the design of a mathematical
model. The first step in building a mathematical and computa-
tional model is to formulate a diagram that specifies the key
players (state variables) and describes all possible ways these
variables might interact with each other. For example, one of
the most basic enzymatic reactions, first proposed by Michaelis
and Menten (23), involves a substrate S reacting with an
enzyme E to form an enzyme substrate complex E:S, which is
converted into a product P and the enzyme. The diagram for
this system is given in Fig. 2 (left). Note that this diagram is by
nature conceptual; we are typically specifying only the interac-
tions and not the exact quantitative nature of those interac-
tions. We emphasize that the creation of this type of diagram is
particularly important in interdisciplinary work because its vis-
ual nature makes it accessible to all researchers and provides a
common ground for moving forward.

Figure 1. Interplay between experiments and mathematical models.
Mathematical models can be used to test hypotheses, probe changes in
parameters, generate predictions, and design new experiments.
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The second step in building a mathematical and computa-
tional model is to explicitly write out the quantitative form of all
interactions. This is shown for our example system in Fig. 2
(middle). In our experience studying biological systems at the
molecular scale, biochemical equations provide a natural way to
list these interactions. (For a discussion of how this step is han-
dled at different biological scales, see Section 4.) It is also at this
step that decisions about stoichiometry and the form of inter-
actions are clarified (it is possible that complex interactions are
simplified and multistep reactions determined) and rates (more
so as symbols than numerical values) are assigned to specific
reactions. Most importantly, this step requires gathering
knowledge from experiments and experts in the field to incor-
porate what is currently understood about the system of
interest.

In our example, we see that the enzyme (E) and substrate (S)
form a complex (E:S) at rate k1 but that this complex itself is
reversible at rate k�1. This complex may also, at rate k2, result in
the creation of a product (P) and a return of enzyme in the
complex to the free pool. (In this example, the system as defined
does not include synthesis or degradation, so mass is preserved.
This simplification is reflected in our biochemical equations
because there is no synthesis or degradation and we only show
three reaction rates.)

The third step in constructing a mathematical model is to
convert the explicit quantitative interactions into a mathemat-
ical framework. In general, there are many questions to ask
before completing this step. Are the biochemical species con-
sidered to be concentrations or numbers? Is the time scale dis-
crete or continuous? Is the system deterministic or stochastic?
The resulting mathematical formulation must include a clear
explanation of which system components are being modeled,
how each component is represented (i.e. integer, real number,
Boolean, etc.), and why the choice of representation is appro-
priate for each component. (For simplicity and because of their
popularity, in this paper, we will consider a deterministic model
of concentrations. We discuss other possibilities in Section 4.)

How can we convert our conceptual model into a mathemat-
ical framework? For differential equation models that aim to

capture molecular dynamics, the standard approach is to use
The law of mass action (see Fig. 3). This law states that the rate
of a reaction is proportional to the product of the concentra-
tions of the reactants. It is this rate, the product of the reaction
rate and the product of the reactants, which determines the
instantaneous change in concentration of all biochemical spe-
cies. In general, the mass action assumption provides a tool for
setting up a general mathematical framework by defining the
relationship between state variables (i.e. proportional) in terms
of measurable quantities (i.e. concentration of the reactants). In
our example, the biochemical reactions lead to the well-studied
system of differential equations depicted in Fig. 2 (right). (We
note that although the law of mass action was developed for
molecular processes, it has been used as a model for interac-
tions at larger scales and indeed is the foundation for many
mathematical models in ecology and epidemiology (19 –22).)

After the model is built, the real work begins! The model may
be analyzed theoretically (by considering the form of the differ-
ential equations directly) or numerically (by considering the
time-varying changes in the quantities of interest). The first
task is typically to investigate whether the model behaves in a
manner consistent with the knowledge of the system. For
example, the enzyme-substrate system we considered has been
studied extensively. Over time, all of the substrate will be con-
verted to product, and the shape of the product curve can be
used to determine relationships between the parameters. Once
the model is considered to be consistent with what is known
about a system, the model is then probed to reveal aspects that
would be difficult or impossible to uncover experimentally. For
example, to test the sensitivity of the system to changing initial
conditions, a researcher could set up thousands of experiments,
each with different conditions. Alternatively, the mathematical
model could be more easily probed for parameter sensitivity. In
addition, it is often only possible to experimentally observe a
subset of the state variables of interest (i.e. usually only the
product concentration P(t) can be visualized). However, the
mathematical model can reveal the “hidden” concentrations of
all other variables too. Because we suspect most readers are
familiar with this simple system, in the next section we explore

Figure 2. Building a model of enzyme substrate kinetics. Left, a conceptual diagram illustrating the key biochemical species important in the system along
with their interactions. Middle, explicit description of the biochemical reactions represented from the diagram. Right, a mathematical model, a system of
ordinary differential equations, describing the rate of change of each biochemical species.
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developing a mathematical model in a more complicated set-
ting and demonstrate how analytical and numerical methods
are used to study the model.

Case study: Protein aggregation kinetics

In the previous section, we went over the basics of building a
mathematical model through 1) creating a diagram of the crit-
ical players (state variables) and their interactions; 2) enumer-
ating the complete set of interactions, typically as a set of bio-
chemical equations; and 3) translating these interactions into a
mathematical model, typically through the law of mass action.
Because we suspect many readers are familiar with Michaelis–
Menten kinetics, we now consider the same modeling guide-
lines to construct a mathematical model used in the study of
prion aggregate dynamics.

Prions are associated with a number of progressive, incura-
ble, and fatal neurological diseases in mammals (24, 25).
Remarkably, these diseases may be either spontaneous, genetic,
or acquired (26 –28). These different modes of transmission
and extremely long incubation times made it challenging for
researchers to determine the infectious agent (29 –31). How-
ever, today the scientific consensus is that they are caused by a
proteinaceous infectious agent, which is where the term prion
comes from (32–35) (see Ref. 36 for a detailed history on the
study of prion disease). Whereas the true biochemical and bio-
physical processes of prion aggregate dynamics are highly com-
plicated and may differ depending on strain and infected tissue,
mathematical modeling of idealized biochemical processes has
been extremely effective at uncovering critical steps in the path-
way (37–41). Before describing a mathematical framework for
modeling the dynamics of prion proteins, we consider what is
known about the biological system. We will then go through the
underlying development of a diagram identifying the key play-
ers and their interactions. Then we will discuss a mathematical
model based on the biochemistry and discuss what it enables us
to learn about the biology.

All mammalian prion diseases are a consequence of the same
protein, PrP (prion-domain protein). In these diseases, a mis-
folded form of the PrP (PrP-C) is introduced to the host and,
rather than being eliminated or cleared by cellular quality con-
trol mechanisms, this misfolded (prion) form persists and
induces other normally folded proteins in the host to fold into
their same conformation (42). This conversion process is
thought to happen through associations between normally
folded protein and aggregates of the prion form. The size of
these prion aggregates thus increases by incorporating the

newly misfolded protein (polymerization). The size of these
aggregates may also decrease either through depolymerization
(which removes a single monomer) or fragmentation (which
then can amplify the total number of aggregates). These aggre-
gates then spread through the mammalian host. Remarkably,
prion diseases are not only confined to mammals. The single-
cell fungus Saccharomyces cerevisiae has several harmless phe-
notypes that we now know to be caused by prion proteins (34).
Moreover, certain human neurodegenerative diseases (Parkin-
sons’s, Huntington’s, etc.) propagate by a similar aggregation
process, as was demonstrated by a recent study of Alzheimer’s
disease (43). Finally, although prion aggregates are extremely
thermodynamically stable, the appearance of prion disease is
thought to be nucleation-dependent (44). In other words, the
aggregates can be thought of as a protein phase transition that
necessitates the formation of a stable nucleus consisting of
some number, n0, of misfolded protein monomers (45). (For the
[PSI�] prion in S. cerevisiae, the nucleus is thought to consist of
five misfolded monomers (37, 40).) Aggregates below n0 in size
arehighlyunstableandarethoughttorapidlyresolve intomono-
mers (35, 40, 44, 46).

Setting the stage for a mathematical model

After having reviewed the biological background on prion
aggregation, the next step is to determine the key biochemical
players and how they will interact. This step is particularly
important, as it sets the stage for how complex our model will
ultimately become. In the case of prion dynamics, we know that
there are a host of biochemical factors that are important for
disease propagation. But it is usually best to begin with the
simplest set of assumptions and add complexity only when
needed. (For a discussion of how to further develop our math-
ematical model to include more complex interactions, see Sec-
tion 4.) In what follows, we lead the reader through the devel-
opment of the nucleated polymerization model (NPM).2 This
model has become the standard choice for modeling prion
aggregation dynamics (44, 46). First, based on the biology we
know, we need to consider two classes of biochemical species:
soluble protein monomers and aggregates of the prion (mis-
folded) form of the protein. Because we know that aggregates
consist of groups of misfolded proteins, we will consider aggre-
gates of every discrete size larger than the critical nucleus
size n0.

The next question we ask is: How will these species interact?
We know that there is some process by which normal protein (a
soluble protein monomer) is converted to the prion form and
incorporated into an existing aggregate and some other process
by which aggregates are fragmented. So we will need to specify
these interactions. In addition, following the common critical
nucleus size assumption, any aggregate below the nucleus size
n0 in our model will be considered not stable and quickly
resolved into healthy monomer. As we said before, once the
species and interactions are identified, it is advisable to codify
these properties in a picture or diagram. In addition to being a
useful tool for a mathematical modeler on its own, the visual
medium of pictures facilitates communication between

2 The abbreviation used is: NPM, nucleated polymerization model.

Figure 3. The law of mass action. The relationship of the rate of a reaction to
the concentrations of the chemical species that are involved in the reaction is
given by the law of mass action. This law states that the rate of a reaction is
proportional to the product of the concentrations of the reactants.
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researchers in different domains. Agreeing on a diagram of
interactions is an important first step in mathematical
modeling.

We show a diagram depicting our prion interactions in Fig. 4
(left). We consider two types of biochemical species: soluble
(monomer) and aggregates. We have also introduced the idea
that the number of blocks in an aggregate indicates its size (i.e.
conversion shows an aggregate of size 3 becoming an aggregate
of size 4). We have also diagramed the basic nature of the con-
version and fragmentation reactions. Notice that in drawing
our fragmentation equation, we had to make a decision about
what happens when fragmentation creates an aggregate with a
size below that of the nucleus (n0 � 2). Whereas one choice
could be that those proteins completely degrade, we have
instead decided to have these proteins return to the soluble
monomer state. (This is consistent with the NPM (44, 46).) Our
diagram also depicts two additional reactions: monomer is cre-
ated (rate �), and both monomer and aggregates are degraded
(rate �). The inclusion of such processes depends on the system
under consideration. (Because the original NPM was developed
to depict in vivo prion kinetics, we assume the protein synthesis
and degradation machinery to be functioning. Of course, aggre-
gation models of in vitro aggregation may elect to consider dif-
ferent processes, as in Ref. 47.)

Once the diagram is defined, the next step is to write out the
steps in the diagram explicitly as a series of biochemical equa-
tions (see Fig. 4 (middle)). The left-hand side of the biochemical
equations gives the reactants, what is needed or consumed for
the reaction to be carried out, and the right-hand side shows the
resulting products. The reaction rate designates the speed at
which the reaction takes place. The units of the reaction rate
typically depend on the order (number of reactants) of the reac-
tion itself. (For example, in a first-order reaction (only a single
reactant), the reaction rate has units of (time)�1.)

It is during this step that the details of our interactions are
refined and formalized. In the case of our conversion equation,
we might consider the size of an aggregate to impact the rate of
conversion. For example, an aggregate of size 10 could more

easily convert than an aggregate of size 5 if every part of its
surface was capable of templating. In the case of the NPM, prion
aggregates are considered to be amyloid—an ordered linear
structure of misfolded protein. As such, conversion of mono-
mer is only considered possible at the ends of the amyloid. As
such, no matter the size of the aggregate, it has only two sites
(either end) where conversion can occur. This is reflected in the
top biochemical equation in Fig. 4 (middle).

A similar decision is necessary for the fragmentation reac-
tion. It is possible that not all sites in a linear aggregate are
equally frangible. (Indeed, in some in vitro experiments, the
best fitting mathematical model was one in which the middle of
amyloid fibers was more likely to fragment than the ends (48).)
The assumption taken by the NPM is that each junction
between monomers is equally likely. In this case, if each junc-
tion in an aggregate fragments at the same rate �, then given an
aggregate of size (i � j), there are two fragmentation sites that
would result in two aggregates with distinct sizes (i and j). (Note
that if i � j, then although there is only one site that could create
these aggregates, the stoichiometry remains the same, because
we produce two aggregates of the same size.) Similar biochem-
ical reactions govern the processes of synthesis (�) and degra-
dation (�). (Note that in the original NPM, distinct degradation
rates were considered for monomers and aggregates. However,
for simplicity, we consider both processes to occur at the same
rate �.)

Development and analysis of the nucleated polymerization
model: A mathematical model of prion aggregation

With the first two steps complete, the next phase is to design
and analyze an appropriate mathematical model. Before decid-
ing on a mathematical framework for our model, we need to
decide the types of scientific questions we want to answer. In
this exercise, we will consider two questions of interest:

• Can we determine what causes prion aggregates to be
cleared by manipulating biochemical rates?

Figure 4. Diagram to differential equations. Left, a diagram depicting the key players (circle, monomer; blocks, aggregate) and their interactions. Middle, the
set of biochemical equations that govern the interactions between the key biochemical players monomer X and aggregates of size i � yi. (Note that because
of the assumption of a minimum stable nucleus size of n0, our form of the fragmentation equation depicted is correct only if i � n0, j � n0). Right, differential
equation model schematic depicting the temporal evolution of the concentration of monomer (x(t)) and aggregates of each size i (yi(t)). See Section 3 for more
information.

JBC REVIEWS: How and why to build a mathematical model

5026 J. Biol. Chem. (2020) 295(15) 5022–5035



• Why is there a long incubation time for many prion
diseases?

Because these questions are based on the temporal evolu-
tion of prion aggregates, we will chose a differential equation
model that tracks the changes in concentration of each bio-
chemical species (see Fig. 4 (right)). In other words, we
define x(t) to be the concentration of healthy monomer and
yi(t) to be the concentration of an aggregate of size i and
track their evolving concentrations in time. We use the law
of mass action to convert our biochemical equations into
differential equations. As mentioned above, this law states
that the instantaneous rate of a reaction is a product of a
reaction rate and the product of the concentration of all
reactants at that time. Let’s look at an example. Suppose the
current concentrations of the monomer x and aggregates yi
are known. What is the instantaneous rate of aggregate con-
version of monomer by an aggregate of size i?

According to the law of mass action and the top biochemical
equation in Fig. 4 (middle), this rate is given by 2� times the
concentration of monomer x times the concentration aggre-
gates of size i, yi,

Rate of conversion of monomer by aggregate of size

i :� 2�xyi. (Eq. 1)

We could repeat the steps for each possible reaction in our
system. (Note that because our system considers all aggre-
gate lengths larger than n0, our system formally has infinitely
many reactions to consider! We will soon see how this is no
obstacle for mathematical modeling.) We then combine
these reaction rates into a differential equation for each bio-
chemical species. The differential equations are themselves
simply the sum of reactions that create the given species
(rate in) minus the reactions that consume the species (rate
out). Let’s consider the differential equation for the mono-
mer concentration x(t),

dx�t�

dt
� Rate ln � Rate Out. (Eq. 2)

Let’s first consider the “Rate Out” part of the equation. There
are two types of reactions that consume monomer. First, mono-
mer is being degraded at rate � times the current concentration
of x(t). Second, monomer is consumed during conversion by
every possible aggregate size. We have already calculated the
rate of conversion by an aggregate of size i in Equation 1. In
calculating this bulk rate, we need to sum the rate of conversion
over all possible aggregate sizes,

Rate Out � �x�t� � 2�x�t�yn0�t� � 2�x�t�yn0�1�t� � . . .

� � x�t� � 2�x�t� �
i � n0

yi�t�. (Eq. 3)

Now we move on to the “rate in” portion of the differential
equation for x(t). As for the “rate out” process, there are two
types of reactions that create monomer. First, monomer is syn-
thesized at rate �. Second, monomer is created when aggregates

are fragmented in such a way that one piece of the recently
fragmented aggregate is below the minimum stable size.

To construct the “rate in” portion of the differential equation,
we consider an aggregate of exactly the minimum stable size n0.
This aggregate has n0 � 1 fragmentation sites, and every possi-
ble fragmentation event will result in the creation of two aggre-
gates with size less than n0. Due to our assumption that any
aggregate below the nucleus size n0 is not stable, each of the
fragmented pieces will be resolved into n0 monomers. Thus, the
rate of monomer creation by fragmentation of aggregates of
size n0 is given by the following,

Rate of monomer creation by fragmenting an aggregate of
size

n0 :� �n0�n0 	 1�yn0�t�. (Eq. 4)

For an aggregate of size (n0 � 1) there are n0 fragmentation
junctions. Two of them will create an aggregate of size n0 and
recover a single monomer, and the remaining (n0 � 2) junc-
tions would result in all (n0 � 1) proteins in the aggregate
returning to the monomer state. (For example, suppose n0 �
3 and an aggregate of size 4 is going to be fragmented. There
are three fragmentation sites, each of which is equally likely
to be chosen. If the first or third fragmentation site is chosen,
the resulting pieces will be size 1 and size 3. Because n0 � 2,
the size 1 piece will return to the monomer state, and the size
3 piece will remain an aggregate. If the second fragmentation
site is chosen, the resulting pieces will both be 2, which is
smaller than n0, and the result will be 4 monomers.) Thus,
the rate of monomer creation by fragmentation is given by
the following,

Rate of monomer creation by fragmenting an aggregate of
size

n0 � 1 :� ��2 � �n0 	 2��n0 � 1��yn0 � 1�t�

� ��2 � n0
2 	 2n0 � n0 	 2� yn0 � 1�t�

� ��n0
2 	 n0� yn0 � 1�t�

� �n0�n0 	 1� yn0 � 1�t�. (Eq. 5)

Note that this has the same coefficient �n0(n0 � 1) as before.
In fact, this pattern holds for all aggregate sizes but requires
slightly different reasoning when the aggregate size exceeds
2n0. In this case, at most, one of the pieces resulting from a
fragmentation event will be smaller than n0. (For example, sup-
pose n0 � 3 and an aggregate of size 6 is going to be fragmented.
There are five sites, each of which is equally likely to be chosen.
If the middle fragmentation site is chosen, the resulting pieces
will each be 3, the same as n0. Every other fragmentation site
will result in one piece that is smaller than n0, which will return
to the monomer state, and one piece larger than n0, which
will remain an aggregate. The two outermost fragmentation
sites will result in recovering one monomer, and the last two
will recover two monomers. The sum of monomers recov-
ered, regardless of the original aggregate size, will always be
n0 (n0 � 1).
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As such, the total “rate in” portion of the differential equation
for x(t) is as follows,

Rate ln � ���n0�n0 	 1�yn0�t� � �n0�n0 	 1�yn0 � 1�t� � . . .

:�� � �n0�n0 	 1� �
i � n0

yi�t�. (Eq. 6)

Combining these together, we have the differential equation
for x(t) as follows,

dx�t�

dt
� �� � �n0�n0 	 1� �

i � n0

yi�t��
Ç

Rate In

���x�t� � 2�x�t� �
i � n0

yi�t��
Ç

Rate Out

.

(Eq. 7)

Similar reasoning results in the following differential equa-
tions for yn0(t) and yi(t) when i � n0,

dyn0�t�

dt
� �2� �

j 
 n0

yj�t��
Ç

Rate In: Bigger Aggregates Fragment

�� 2�x(t)yn0(t)
Ç

Conversion
�

��n0 	 1�yn0�t�
Ç
Fragmentation

�

�yn0�t�
Ç
Degradation

�
Ç

Rate Out

, (Eq. 8)

dyi�t�

dt
� � 2�x�t�yi 	 1�t�
Ç

Conversion
�

2� �
j 
 i

yj�t�

Ç
Fragmentation

�
Ç

Rate In

�� 2�x�t�yi�t�
Ç

Conversion
�

��i 	 1�yi�t�
Ç
Fragmentation

�
�yi�t�
Ç
Degradation �

Ç
Rate Out

. (Eq. 9)

Now that we have our mathematical model, we can begin the
process of analyzing it. Generally, there are two approaches:
analytical and numerical. With analytical approaches, we gen-
erally use the structures of the equations themselves to deter-
mine key characteristics, such as steady states (cases where the
system configuration will remain unchanged) and their stability
(where the system will tend over time). With numerical
approaches, we use software (Matlab, R, Mathematica, Python,
etc.) to study the temporal dynamics of the biochemical species
in the system. To use numerical methods, we typically need to
specify the initial condition of the system and all biochemical
reaction rates (�, �, �, �, n0). We will consider each approach
below to answer the two questions we posed originally.

Stability of the prion aggregate system: Analytical approach

Our model (Equations 7–9) may appear quite daunting, but
in fact is highly amenable to analytical methods. We will use
these methods to consider our first question about what causes
prion aggregates to be cleared and the disease phenotype to be
reversed. We first rearrange the equations into a form that
makes them easier to work with. Rather than considering each
aggregate size yi, we will consider two new quantities about the
aggregates as follows:

Y�t� � �
i � n0

yi�t�, (Eq. 10)

and

Z�t� � �
i � n0

iyi�t�. (Eq. 11)

Note that Y(t) represents the total concentration of prion
aggregates, whereas Z(t) represents the concentration of total
protein in prion aggregates. Remarkably, our system of differ-
ential equations in yi can be arranged into a set of differential
equations for Y(t), Z(t), and x(t) (our original monomer
population),

dx�t�

dt
� � � �n0�n0 	 1�Y�t� 	 �x�t� 	 2�x�t�Y�t� (Eq. 12)

dY�t�

dt
� �Z�t� 	 �� � ��2n0 	 1��Y�t� (Eq. 13)

dZ�t�

dt
� 2�x�t�Y�t� 	 �Z�t� 	 �n0�n0 	 1�Y�t�. (Eq. 14)

With only three equations, it is much easier to solve for the
steady states of the system. Steady states represent cases where
the system is unchanging, so we identify them by finding values
of x, Y, and Z that satisfy the following,

dx

dt
�

dY

dt
�

dZ

dt
� 0. (Eq. 15)

Some algebra will demonstrate that the system has exactly
two steady-state solutions. The first is the aggregate-free steady
state: x � �/�, Y � Z � 0. In this case, all protein is in the
healthy monomer state. The second nontrivial steady state (x*,
Y*, Z*) is more clearly shown in the following relationships,

x* �
�/�

R0
(Eq. 16)

Z* � x* � �/� (Eq. 17)

Z*/Y* � 2n0 	 1 �
�

�
(Eq. 18)

where

R0 �
2���

��� � ��n0 	 1���� � �n0�
. (Eq. 19)
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Those familiar with epidemiology will recognize the use of
the R0 value to represent the basic reproductive number (21). In
epidemiology, R0 represents the number of secondary infec-
tions produced by one primary infection in a susceptible popu-
lation. When R0 � 1, no matter how many aggregates are ini-
tially present, they will all eventually be cleared, and the system
will converge to the aggregate-free steady state. When R0 � 1,
the introduction of any initial amount of aggregate will lead the
system to converge to the nontrivial steady state.

How does this analytical work help us to better understand
how biochemical rates can be manipulated to clear prion aggre-
gates? Deriving an algebraic expression such as the one given in
Equation 19 above is key. We know that when R0 changes from
a value greater than 1 to a value smaller than 1, prion aggregates
will be completely cleared. But what parameter values should
we change in order to arrive at such an R0 value? And by how
much? Whereas it might seem obvious that increasing the deg-
radation rate � above a certain threshold will cause prion aggre-
gates to be cleared, lack of an algebraic expression for R0 would
make it almost impossible to determine the precise degree of
change in parameters to produce the desired output.

For example, the parameters used to plot the system in Fig.
5A produce an R0 value of 	5.7. As expected, because this R0
value is greater than 1, prion aggregates do persist and reach a
positive stable steady state as shown. However, if we fix all other
parameters and only change the fragmentation rate �, we can
use Equation 19 above to show how big or small � must be to
produce an R0 value of �1 where prion aggregates are cleared.

Keeping all parameters the same as in Fig. 5A, we have the
following,

R0 � 1f
2���

��� � ��n0 	 1���� � �n0�
� 1 (Eq. 20)

f� 
 0.00330561.

Dynamics of the prion aggregate system: Numerical approach

To answer our second question, why there is such a long lag
time in the manifestation of prion disease, we consider numer-
ical simulations of our prion model. Whereas at one point, the
lack of easy-to-use computational tools made it difficult for all
but a relatively small group of experts to numerically solve dif-
ferential equations, this is no longer the case. There are a mul-
titude of free-to-use computational tools that enable anyone to
numerically analyze even sophisticated mathematical models.
Of course, as the complexity of the model grows, typically more
effort is required to numerically code the solution. In this work,
we use an iPython Notebook to analyze the dynamics of aggre-
gates with an eye toward understanding why it takes so long for
prion diseases to manifest.

In Fig. 5, we illustrate the concentration of x(t) and Z(t) (A
and B, left) as well as the aggregate concentration Y(t) (A and B,
right) for a particular choice of biochemical parameters upon
the introduction of a very small amount of prion aggregate
Z(0) � Y (0) � 1 nM. (The biochemical parameters were chosen
to roughly mirror the properties of the [PSI�] weak strain in

Figure 5. Temporal kinetics of prion aggregation. We plot the temporal evolution of the concentration of monomer x(t) and protein in aggregates Z(t) (left)
and the number of aggregates Y(t) (right) for “theoretical” choice of parameters. We note that although prion aggregates are present at the initial condition,
there is a long delay before we see a significant decrease in the healthy protein. In B, the conversion rate is doubled, causing the time it takes for the system to
reach steady state to be cut in half.
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yeast but plotted on a time scale relative to mammalian prion
disease (40, 49).) In A, we see that the amount of healthy mono-
mer x(t) decreases relatively slowly; after 400 weeks, only 9% of
the protein has changed to the prion (misfolded) state. This is
because, initially, the aggregates are at a very low concentration,
and thus conversion of monomer is favored over fragmenta-
tion. Because conversion only adds to existing aggregates (but
does not create them), this has only a modest impact on the
pool of healthy protein. However, just because we cannot see
much of a decrease in x(t) does not mean we are safe!

Eventually, the aggregates increase enough in size such that
fragmentation becomes significant enough to create new aggre-
gates at a discernible rate. This autocatalytic process then
increases the rate of aggregate conversion and eventually produces
a noticeable decrease in the healthy protein. It is precisely this
effect, the initial balance that favors conversion over fragmenta-
tion, that causes the long-term delay in the manifestation of prion
disease phenotypes. In B, we doubled the conversion rate, and as a
result, the system reached its steady state almost twice as fast! We
next describe how this model was used by us and previous
researchers to learn about prion aggregation processes.

Interaction between mathematical models and experiments

With a mathematical model in place, it is now time to begin
the process of using it in concert with experiments to study and
probe the system. One common first step is to fit parameters by
relating model output to experimentally observable quantities.
For example, when the NPM was introduced, the authors
related the biochemical parameters (�, �, �, �, n0) to the expo-
nential growth rate in aggregated protein they observed during
early phases of prion disease through the relationship of the
parameters to the R0 (44). Similarly, the mathematicians Greer,
Pujo-Menjouet, and Webb used prior experimental studies to
fit the kinetic parameters of their model to a strain of scrapie
(46, 50). With fit kinetic parameters, models can then make
predictions about what should happen under particular initial
conditions, X(0), Y (0), Z(0). Indeed, as protein aggregation
modeling has advanced, easy-to-use computational pipelines
have been developed for researchers interested in fitting their in
vitro aggregation curves (51).

When a model does not match experiments, this typically
means the mathematical representation is not considering all of
the relevant behavior of the biological system. Deciding what is
missing and how to modify the model is challenging and
requires the close interaction of experimental and mathemati-
cal scientists. However, this is when models can be their most
useful, because they can suggest novel hypotheses and experi-
ments. Researchers found that the NPM did not consistently
match experimental data for the [PSI�] prion (49). The only
way the authors found to simultaneously fit all experimental
observations (steady-state levels of soluble protein, average
aggregate size, and loss of the prion phenotype) was to add two
features to the model: 1) aggregate transmission during cell
division is biased by aggregate size, and 2) fragmentation
depends on a rate-limiting molecular chaperone. This sug-
gested new experiments that would only be true if the new
model was true. First, if aggregate transmission is size-depen-
dent, the mathematical model predicted that the level of soluble

protein a cell has should be linked to its age. This prediction was
then experimentally validated, by sorting cells by soluble pro-
tein and counting their bud scars (generational age). Second, if
fragmentation is rate-limiting, then increasing the synthesis
rate � was predicted by the mathematical model to increase the
size of aggregates. (Under the original NPM, increasing the syn-
thesis rate � does not change the shape of the aggregate distri-
bution.) This prediction was also experimentally validated by
using a different promoter.

Discussion

We have now seen two examples about building mathemat-
ical models with our three-step process and highlighted how
they can be used to learn about the molecular processes direct-
ing prion aggregation in yeast. In this section, we aim to provide
more insight about how to introduce added complexity into a
modeling framework. Specifically, we will discuss several exam-
ples of models of protein aggregation dynamics that have been
extended to incorporate processes at distinct biological scales.
In addition, the end of this section will discuss some of the
challenges in modeling and give additional comments on con-
siderations in using mathematical models.

One challenge in mathematical modeling is to determine the
right type of model to answer the scientific questions being
posed. Often researchers understand that a mathematical or
computational model can be a valuable tool, but they may seek
to develop a model before establishing exactly what questions
they want to answer. The choice of model depends on many
factors. Starting with several well-defined questions or hypoth-
eses can help determine both the scales and level of complexity
that need to be considered and lead to an appropriate choice of
model. For example, some questions that might be asked
include the following.

• What is the catalytic rate of a particular enzyme reaction?
To address this question, a model must minimally include
processes at the molecular scale. However, depending on
desired complexity, the choice could be made to model the
reaction of interest as a one-step process or include several
successive steps in the reaction. In addition, important
steps impacting an enzyme reaction could occur at the same
scale, or some step might occur on a larger scale, such as cell
behaviors or nutrient gradients that impact the environment
where the reaction is taking place.

• Why does my experimental system have such high vari-
ance? Sensitivity analysis tools offer great methods to
identify the cause of variance in complex biological sys-
tems. To answer this question, a model could consider one
scale only and investigate the impact of variability of one
or two factors at the same scale. Or the model could incor-
porate processes at the molecular scale and processes at
the cell or tissue scale and use global sensitivity analysis
methods to identify which factor(s) has the most impact
on the overall variance of the system.

• What are the best time points to sample my experimental
system to observe dynamics of the behavior I wish to
study? Biological processes in the same system happen at
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different time scales. For example, chemical reactions
happen much faster than the time it takes for a cell to
divide or move across an agar plate. Depending on the
scientific question being asked, samples at different time
points can provide necessary experimental data to cali-
brate model components at different scales.

When scientific questions lead model development, it
becomes more clear what processes and scales must be
included in the mathematical modeling framework, and this
determines the kind of mathematical model and analysis
possible.

Incorporating processes at multiple biological scales

Biological systems are inherently multiscale, because all liv-
ing organisms are composed of many different functional net-
works that operate across diverse temporal and spatial scales
(Fig. 6). Technological advances have made it possible to attain
highly detailed descriptions of key biological components at
almost any scale imaginable (i.e. genetic mutations, formation
of a blood clot, and even the growing and shortening phases of
microtubules in individual cells) (52–57). Because cutting edge
technology makes it possible to observe biological phenomena
at each unique layer of organization, our understanding of how
life works is no longer limited by the instruments in our labo-
ratories. However, with every new experiment comes addi-
tional complexity. The abundance of information available has
ultimately resulted in the compartmentalization of scientific
inquiry and led to separate study of each different biological
scale (i.e. molecular biologists versus cellular, organismic, or
population, etc.). Mathematical and computational models
provide a tool to integrate knowledge from different scales and
identify how collective interactions on a fundamental scale can
give rise to large-scale phenomena (Fig. 6). Thus, one challenge
in building a mathematical model is determining on what scale
(or scales) the key players and interactions occur. One impor-
tant question to ask is which scale(s) of resolution will provide

the most information for understanding the underlying mech-
anisms of the system? An equally important and converse ques-
tion is whether there is a scale of resolution that offers no
insight and should be simplified or ignored.

To further illustrate how to incorporate biological processes
at different scales into a modeling framework, we consider the
multiscale nature prion disease dynamics (Fig. 6). At the most
basic scale, biochemical interactions depicting conversion,
fragmentation, synthesis, and degradation form the basic
mechanisms that lead to the presence of prion disease (Fig. 6A).
For this reason, the majority of mathematical models developed
to answer the question of what causes prion aggregates to be
cleared have only considered interactions between components
on the molecular scale (see Section 3). However, in some
instances, these models were not able to reproduce experimen-
tal data. In this case, the given modeling framework can be
extended to include processes at the next level of organization
in order to attempt to produce model results that agree with
experimental data (Fig. 6B).

For yeast prions, the next level of organization is subcellular.
Because molecular chaperones have been shown to be essential
for prion propagation (49, 58), Davis et al. (59) extended the
NPM by modifying the existing biochemical interactions given
in Section 3 to account for the impact of molecular chaperones.
The addition of these new biochemical interactions resulted in
better agreement with experimental results that could not be
supported by the original equations alone. In addition, this
work further supported the hypothesis that there exist many
different prion strains. In many cases, the distinction between
models that look only at the molecular and/or biochemical
scale and models that incorporate processes on the subcellular
scale involves adding differential equations to an already exist-
ing modeling framework to describe processes such as diffusion
or spatially varying density functions in addition to keeping
track of individual particles and/or groups of particles.

Figure 6. Multiscale nature of biological systems. A diagram depicts the multiscale nature of prion disease dynamics. A, biochemical scale. Shown are the key
biochemical players and their interactions. Protein is synthesized at a rate �, monomers are converted into aggregates at a rate �, and fragmentation of
aggregates occurs at a rate �. B, subcellular scale. The process of conversion, fragmentation, synthesis, and degradation of protein aggregates occurs inside
individual cells. The presence of molecular chaperones, protein degradation factors, and other substances varies inside each individual cell and can impact the
rate of biochemical interactions. C, multicellular scale. Division in yeast occurs through budding, a process during which protein and aggregates are segregated
between the mother and daughter cell. Modeling individual cell behaviors makes it possible to study the interplay of molecular, subcellular, and multicellular
phenomena. D, colony/tissue scale. At the largest scale, prion disease in yeast manifests as different phenotypes at the colony level (white, disease; red,
disease-free), the most interesting of which is sectored colonies where sections of cells within a majority diseased colony lose all of their aggregates and
become disease-free (84). Moreover, multiscale models hope to connect important components at the biochemical scale with observed spatiotemporal
patterns in colony phenotypes. In mammalian neurodegenerative diseases, disease phenotypes are observed at the level of an organ (85–86) (2).
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The next tier of resolution is the whole cell (Fig. 6C). One of
the most unique complications introduced by studying prion
disease in yeast comes with the consideration that prions in
yeast propagate within a colony of growing and dividing cells.
The time it takes for protein to change configurations is much
faster than the time it takes for a cell to grow or divide. Thus, an
interesting question to consider is how cellular behaviors such
as cell cycle length, protein segregation at the time of division,
and/or age of cells impact protein aggregation dynamics
throughout the entire colony (Fig. 6, B and C). To address this
question, a new model must include interactions between
intracellular components within each individual cell, individual
cell behaviors impacting intracellular dynamics, and cell-cell
interaction between many different cells in the same colony.
One type of well-established modeling framework that is capa-
ble of integrating molecular, subcellular, and cellular level pro-
cesses is agent-based models. Agent-based models represent
cells as discrete units that interact with each other and can also
carry out individual cell processes such as protein aggregation,
division, and growth (for reviews, see Refs. 60 –69) Fortu-
nately, incorporating processes at different scales using
agent-based models does not require starting from scratch!
In the case of yeast prion biology, one of the many well-
studied models of protein aggregation that focus on the
molecular scale only can be coupled with an agent-based
framework. Thus, developing a model that incorporated pro-
cesses at the cellular scale would only require building an
agent-based framework or relying on one of the many great
code bases that exist in the literature.

At the highest scale, prion disease manifests as tissue atrophy
in mammals and population level phenotypes in yeast (Fig. 6D).
In many studies, population level data are the only quantitative
output available from experiments. However, the concentra-
tion of a protein or other cellular constituent is known to vary
considerably among cells in the same colony. This heterogene-
ity is thought to arise from several sources, including differ-
ences in kinetic rates between individual cells and distribution
of cellular constituents at the time of cell division. Connecting
interactions between components at the fundamental scale
with population level phenotypes is experimentally challeng-
ing. However, in multiscale models, perturbations of parame-
ters at the fundamental scale (i.e. protein modifications) can
generate observable and measurable changes to coarse-grained
outputs at the population level (i.e. colony phenotype). Inte-
grating processes across different spatial and temporal scales
can be achieved using agent-based models described earlier.
Furthermore, agent-based models have been used in many
applications, including tumor growth, blood clot formation,
stem cell regulation in plants and understanding the interplay
of biochemical and molecular parameters on individual cell
behaviors. Another class of model that can be used to study
dynamics of entire cell colonies, tissues, and organs are contin-
uous models that use ordinary differential equations or partial
differential equations to represent the growth of a tissue as one
continuous sheet or the change in the shape or position over
time of the edge of a colony or group of cells as one continuous
boundary. In many cases, discrete, agent-based modeling
frameworks have been used to derive differential equation

models that can approximate large-scale behavior more effi-
ciently or infer parameters for large-scale behavior models.

Inherent to the presence of different spatial and time scales
within biological systems, another significant distinction
occurs between data from in vitro and in vivo experiments. A
large amount of biological data, particularly at the molecular
level, is obtained from in vitro experiments. Due to experimen-
tal complexity, observations are often restricted to single spatial
and/or temporal scales. As a result, observations from in vitro
and in vivo experiments can have very different outcomes. In
the case of prion disease, aggregates within an organism are
fragmented by chaperones, protein degradation factors are
present, and protein is continually being synthesized. However,
in in vitro assays, fragmentation necessarily operates without
the complete cellular machinery and is typically operating
under very different concentrations. Thus, building a model
that can resolve the discrepancy between in vitro and in vivo
experiments by encompassing in vivo processes that may be
missing at the in vitro scale can prove very helpful. Mathemat-
ical and computational models are uniquely positioned to cap-
ture the connectivity between these divergent scales of biolog-
ical function and have the potential to bridge the gap between
isolated in vitro experiments at the most basic scale and whole
organism in vivo models with organism or population level
output.

Choosing a mathematical framework

There are many different mathematical tools that can be
used to convert the interactions at each scale given by the con-
ceptual model into a mathematical framework (20, 70). One
main distinction in mathematical frameworks is deterministic
versus stochastic. In Section 3, we considered a deterministic
model of prion aggregation. In other words, given an identical
set of initial conditions, the model will always produce the same
output. This is in contrast to a stochastic model, in which we
consider the evolution of the probability that the system occu-
pies any particular state. Intriguingly, the same set of biochem-
ical equations (see Fig. 4 (middle)) can be translated into either
a stochastic or deterministic framework with the law of mass
action (e.g. see Refs. 17 and 18). Ultimately, the scientific ques-
tion will determine the precise mathematical framework to
be used. For example, if we are interested in the probability
of the appearance of a prion phenotype, we need to consider
a stochastic model, as has been done by many (e.g. see Refs.
71 and 72).

In addition to deterministic versus stochastic frameworks,
there are many different options for the types of equations that
can be used inside each type of model. For example, as detailed
in Section 3, systems of differential equations using the law of
mass action kinetics can be leveraged to represent chemical
reactions. In addition, systems of differential equations (ordi-
nary or partial) are also ideal for describing the concentrations
of signaling molecules in both intracellular (inside one cell) and
extracellular (moving throughout many cells) domains.

Another choice to be made is whether to build a continuous
or discrete mathematical framework. In many applications, one
multiscale phenomenon we wish to model is how the interac-
tion between intracellular processes, such as protein aggrega-
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tion, happening inside each individual cell within a tissue or
colony, and the individual cell behaviors lead to emergent pat-
terns or phenotypes at the organismal or population level. In
such cases, it is helpful to treat the intracellular process happen-
ing inside each cell as a continuous variable using differential
equations and model individual cells as discrete entities that
interact. Models that represent cells as discrete entities are gen-
erally referred to as agent-based or cell-based models, and this
class of model has been used in many different applications (for
reviews, see Refs. 60 –67 and 73–78).

Conclusions

There has never been a better time for interdisciplinary
research collaborations between experimental and mathemat-
ical scientists. Although communicating across domains is still
challenging, the potential benefit from using mathematical
models in new settings is significant. Moreover, with the
increasing availability of user-friendly software, it is easier for
scientists of all backgrounds to develop and analyze their own
mathematical models (79 –83). It is our hope that the three-step
pipeline we have identified will enable readers to pursue devel-
oping their own mathematical models and spur productive dis-
cussions with mathematical scientists. Finally, we recognize
that developing a new mathematical model is always challeng-
ing, and for brevity, our review contains only one modeling
scenario. We encourage interested readers to refer to the many
textbooks that we have found valuable in our own learning and
teaching (16 –22) or to one of the other reviews in building
mathematical models (12–15).
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