
Lawrence Berkeley National Laboratory
LBL Publications

Title
Deformable registration of multi-modal data including rigid structures

Permalink
https://escholarship.org/uc/item/7vh9s4kt

Journal
IEEE Transactions on Nuclear Science, 50(3)

Authors
Huesman, Ronald H.
Klein, Gregory J.
Kimdon, Joey A.
et al.

Publication Date
2003-05-02

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7vh9s4kt
https://escholarship.org/uc/item/7vh9s4kt#author
https://escholarship.org
http://www.cdlib.org/


1

Deformable Registration of Multi-Modal Data
Including Rigid Structures

Ronald H. Huesman, Senior Member, IEEE, Gregory J. Klein, Member, IEEE,
Joey A. Kimdon, Student Member, IEEE, Chaincy Kuo, Sharmila Majumdar

Abstract— Multi-modality imaging studies are becom-
ing more widely utilized in the analysis of medical data.
Anatomical data from CT and MRI are useful for analyzing
or further processing functional data from techniques such
as PET and SPECT. When data are not acquired simultane-
ously, even when these data are acquired on a dual-imaging
device using the same bed, motion can occur that requires
registration between the reconstructed image volumes. As
the human torso can allow non-rigid motion, this type of
motion should be estimated and corrected.

We report a deformation registration technique that uti-
lizes rigid registration for bony structures, while allowing
elastic transformation of soft tissue to more accurately regis-
ter the entire image volume. The technique is applied to the
registration of CT and MR images of the lumbar spine. First
a global rigid registration is performed to approximately
align features. Bony structures are then segmented from
the CT data using a semi-automated process, and bounding
boxes for each vertebra are established. Each CT subvol-
ume is then individually registered to the MRI data using
a piece-wise rigid registration algorithm and a mutual in-
formation image similarity measure. The resulting set of
rigid transformations allows for accurate registration of the
parts of the CT and MRI data representing the vertebrae,
but not the adjacent soft tissue. To align the soft tissue,
a smoothly-varying deformation is computed using a thin
plate spline (TPS) algorithm. The TPS technique requires
a sparse set of landmarks that are to be brought into cor-
respondence. These landmarks are automatically obtained
from the segmented data using simple edge-detection tech-
niques and random sampling from the edge candidates. A
smoothness parameter is also included in the TPS formu-
lation for characterization of the stiffness of the soft tissue.
Estimation of an appropriate stiffness factor is obtained it-
eratively by using the mutual information cost function on
the result of the global deformable transformation.

Keywords— multi-modality, registration, lumbar spine,
rigid, elastic, X-ray CT, MRI

I. Introduction

MULTI-MODALITY imaging studies are becoming
more widely utilized in the analysis of medical data.
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X-ray computed tomography (CT) data depict high con-
trast structure of bony tissue, magnetic resonance imag-
ing (MRI) provides excellent contrast of soft tissue, and
nuclear imaging techniques such as positron emission to-
mography (PET) and single photon emission computed to-
mography (SPECT) provide functional data. Analysis of
the data is enhanced by the complementary information
present in a multi-modality study, and techniques exist that
use anatomical datasets to further process functional im-
ages. In order to analyze or utilize data from two different
modalities, accurate registration is necessary.

Most registration algorithms used in medical imaging as-
sume that objects captured in the images move as a single
rigid body. This may be appropriate for imaging of the
head, but for studies of the human torso, a more sophisti-
cated motion description is desired. Soft tissue within the
torso can deform elastically, yet there are also structures,
usually bone, that are constrained to move locally in a rigid
fashion.

This work is part of a study investigating the progression
of degenerative diseases in the spine and knee, in particular
spinal stenosis and osteoarthritis. Such diseases can affect
both bone and soft tissue, so the accurate registration of
both rigid and non-rigid structures is important. We report
here a registration technique that permits rigid alignment
of bony structures while allowing elastic transformation of
soft tissue to more accurately register the entire image vol-
ume.

In this paper, the registration technique is applied to
CT and MR spine datasets. Past authors have attempted
to register multi-modal datasets of the torso or spine us-
ing landmarks and globally rigid techniques [1]. A globally
elastic technique has been proposed for registration of PET
and CT torso data [2], and a deformation technique incor-
porating rigid structures has also been reported which uses
manually specified landmarks and segmented rigid struc-
tures [3]. The current work makes use of automatically
defined landmarks in a hybrid rigid/non-rigid registration
of volumetric data. Separate rigid transformations are used
to describe the motion of each segmented bony structure,
and the motion of soft tissue is described by a thin plate
spline (TPS). The TPS has been implemented to model
elastic stiffness matching the actual image data.

II. Methods

Image datasets of the lumbar spine were acquired using a
GE 1.5T Signa MRI scanner and a GE multi-detector CT
scanner. Axial T1 MRI images were acquired using spin
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echo imaging with TR=633 msec, TE=9 msec. 256 x 256
x 42 voxel MRI volumes were acquired from a volunteer
using a voxel size of 0.7 mm x 0.7 mm x 3.0 mm. CT data
were acquired to produce a 512 x 512 x 75 voxel volume
with 0.35 mm x 0.35 mm x 3.0 mm voxels. To produce
smaller datasets with finer axial sampling, the CT data
were resampled into 128 x 128 x 107 voxel volumes with
voxel size 1.4 mm x 1.4 mm x 2.1 mm using trilinear inter-
polation. In addition, to test our algorithm on data sets
with a larger range of motion, we obtained images of the
isolated lumbar spine of a cadaver, which was fitted from
a previous study into a frame to allow intentional flexion
and extension. We used 256 x 256 x 9 voxel MRI volumes
(1.0 mm x 1.0 mm x 5.0 mm) from this previous study and
acquired corresponding 512 x 512 x 109 voxel CT datasets
at 0.35 mm x 0.35 mm x 1.25 mm, in neutral, extended,
and flexed positions.

The goal of the registration process is to correctly and
automatically deform the MRI volume so that it matches
the reference CT volume. The first step in this task is
the segmentation of the vertebrae from the background in
the CT data. This was carried out using a semi-automatic
process using a sequence of thresholding, 3D region growing
and filtering operations combined with manual editing.

Registration of the CT to the MRI dataset requires an
appropriate metric to compare how well the two image vol-
umes are aligned. The mutual information cost function
rewards alignments that group together similar structures,
even if the intensity levels in the two images are not directly
correlated, as is the case with different imaging modalities.
This quality has made the measure useful in registering
multi-modal datasets [4]–[6]. Mutual information (MI) is
defined in terms of the entropies of two images, A and B,
as follows:

MI(A,B) = H(A) + H(B) − H(A,B),

where H(A) and H(B) represent the entropies of A and B,
and H(A,B) is the joint entropy of the two images. Entropy
is defined as:

H(A) = −
∑

a

pA(a) log pA(a)

where pA(a) is the probability distribution of intensity val-
ues of the image A. In this paper, as has been done in the
past, the probability distributions are approximated using
a histogram of the image voxel values.

We use this metric first in a globally rigid registration
scheme to approximately align features in the MRI dataset
with those in the CT. Global rotation and translation
parameters are optimized using Powell’s method. Once
the global registration has been obtained, the hybrid de-
formable registration proceeds as follows. To isolate the
motion of each rigid bony structure, a subvolume is de-
fined in the CT data using the bounding boxes of each
segmented vertebra. These (possibly overlapping) subvol-
umes are then independently aligned to the MR data again
using rigid transformations determined by the mutual in-
formation cost function and Powell’s optimization method.

In this case, the CT voxels are masked so that only voxels
within the boundaries of the bony tissue contribute to the
cost function. For N separate vertebrae, the local registra-
tions result in N separate rigid transformations.

At this point, a description is available that properly
aligns those parts of the MRI and CT data representing
bony tissue, but not for the adjacent soft tissue. To align
the soft tissue, a smoothly varying deformation is computed
using an approximating TPS algorithm [7], [8]. The TPS
technique requires a sparse set of landmarks that are to be
brought into correspondence. These landmarks are auto-
matically obtained from the segmented data using simple
edge-detection techniques and random sampling from the
edge candidates. In R3 using derivatives of degree two, the
desired basis functions are of the form |r|, where r is the
distance between the point being calculated and a land-
mark point. The TPS formulation also includes a smooth-
ness parameter, which changes the spline from interpola-
tion (i.e. the precise matching of landmark points between
images, which occurs when the parameter is equal to zero)
to approximating, which still attempts to bring the land-
mark points into correspondence but now also takes into
consideration a smoothness constraint. This approxima-
tion parameter provides a characterization of the stiffness
of the soft tissue. Automatic estimation of an appropriate
stiffness factor is obtained iteratively by using the mutual
information cost function on the result of the overall hybrid
deformable transformation. Due to the complex response
of the cost function to parameter changes, including many
local optima, we have simplified the optimization problem
by seeking the local maximum closest to the parameter
value zero. This simplification is based on the assumption
that the soft tissue must be flexible enough to allow bone
movement, so the tendency should be toward landmark cor-
respondence rather than smoothness. The resulting param-
eter vs. cost function curves computed during this project
support this assumption, but more work is needed to see if
it holds true in general. The iterative procedure first seeks
an interval containing this local maximum then employs
Brent’s method to find the optimum.

III. Results

As a demonstration of the algorithm, it is first applied
to a simplified dataset showing exaggerated motion, seen
in Fig. 1. The L2 and L4 segmented vertebrae from the
volunteer dataset were isolated to form a simplified refer-
ence phantom, as seen in the top row of Fig. 1. Each
vertebra was separately rotated and translated to produce
a deformed dataset simulating patient movement, shown
in the middle row. The registration algorithm was then
applied to the deformed volume to arrive at a registered
volume, seen on the bottom row. Grid lines have been
added to the registered data to show the transformation.
It is seen that the grid lines remain orthogonal within the
vertebrae of the registered volume, indicating a rigid local
transformation in those regions. The surrounding soft tis-
sue, however, was allowed to deform smoothly according to
the TPS.
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Results on the cadaver spine images are seen in Fig. 2.
An edge map of the approximate vertebral surface bound-
aries from the reference CT image is superimposed on the
target MR images to better compare their alignment. This
dataset has a large range of motion so we can see the im-
provement given by the subvolume local registration in an
actual image as opposed to just in the simple phantom.
However, much of the soft tissue that is present in living
beings has been stripped from the cadaver spine so the
improvement from the non-rigid portion of the hybrid reg-
istration is not as clear as it might be in clinical images.

Next we consider the results from the volunteer dataset
to test the algorithm on a more clinically relevant and re-
alistic set of data. Results on the volunteer dataset are
shown in Fig. 3. Again, edge maps from the reference CT
are shown for each step of the algorithm. The first two rows
show the original CT and MR datasets. A globally rigid
registration obtained using the mutual information-based
technique brings the datasets into fairly close alignment.
Finally, the hybrid technique using the individually com-
puted rigid transformations along with the TPS is seen on
the bottom. Because in this case, the non-rigid compo-
nent of the motion between the CT and MRI data was
fairly small, it is hard to appreciate the difference in reg-
istration quality between the rigid and hybrid approaches.
However, the mutual information between the CT and the
TPS version is greater than for the rigidly aligned version,
indicating that the TPS registration is more accurate. In
this case, the improvement in mutual information between
the hybrid and global registrations is about 6% of the im-
provement between the original and the globally registered
version.

Future work will investigate the effect segmentation qual-
ity has on the resulting registration. Since the rigid/non-
rigid boundary and the location of the control points are
determined based on the edges of the segmentation, the
accuracy of the registration could depend greatly on the
accuracy of the segmentation. In addition, we will test the
effects of increasing or decreasing the number of control
points, especially since this number has a large effect on
computation time. Changing the criteria for selecting con-
trol points from the segmented edge candidates may also

affect the registration accuracy. Finally, we will include the
registration of [18F]fluoride ion PET bone images and eval-
uate the algorithm performance on this different modality.
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Fig. 1. Simplified dataset with large motion. Axial and sagittal views
of the reference data (top) are shown above a deformed version,
or target volume (middle) that is to be re-registered with the
reference. The registered version is seen on the bottom. Grid lines
placed on the target volume and deformed during the registration
show that the segmented vertebrae are rigidly displaced, yet the
background varies smoothly.

(a) Reference CT

(b) MRI after global registration

(c) MRI after hybrid registration

Fig. 2. Results on image volumes of a cadaver lumbar spine, axial
and sagittal views. The reference CT data were acquired with
the cadaver spine in a neutral position, and the MRI was taken
with the spine in flexion. Edge maps of approximate vertebral
boundaries from the reference CT image are shown on the target
MR images to assist in viewing the alignment.
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(a) Reference CT image

(b) Original MR image

(c) Globally registered MR image

(d) Hybrid registration of MR image

Fig. 3. Results on CT and MR images of a volunteer. Axial, coronal,
and sagittal views. Edge maps from the reference data help show
alignment.




