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Abstract: Personal comfort models predict an individual’s thermal comfort instead of the average response for 
a large population. We attempted to develop personal comfort models for car drivers using data collected from 
10 cars while driving for approximately 2,000 hr. We measured conditions collected by the CAN-bus (Controller 
Area Network), a data acquisition system that is present in most of the modern cars. Data includes information 
about the in-vehicle thermal conditions, the surrounding environment, the status of the Heating, Ventilation, 
and Air Conditioning (HVAC) system, and the behavior of the occupant. The objective of the study is to assess 
the feasibility of inferring occupant’s thermal preference from the data available already available in most cars. 
By selecting and filtering all the available signals that are relevant for comfort, in this study we map the user 
actions of turning on/off their seat heating and correlate them to the vehicle indoor and outdoor conditions. 
The presented study provides the basis for using a machine learning automated process for thermal self-
regulating HVAC system with the aim to improve comfort conditions and safety. 
 
Keywords: Thermal comfort, Personal comfort model, Machine learning, User behavior, Personal comfort 
systems. 

1. Introduction	

Reaching satisfactory thermal comfort conditions in cars is a complex subjective process that 
may requires many adjustments. The continuously changing environment that a moving 
vehicle is encountering and the fluctuating outdoor conditions cause inhomogeneous and 
highly dynamic indoor conditions. The thermal regulation systems implemented in cars is 
often controlled only on air temperature and it may require several control actions from the 
driver and passengers. Automatic climate control systems are often ineffective in providing 
satisfying comfort levels. Those systems are usually force air systems making them highly 
instable in a continuously changing environment (Hausladen et al. 2004). Moreover, thermal 
comfort cannot be evaluated and achieved only in terms of temperature control, as it is 
influenced by other parameters such as radiant heat, metabolic rate, airspeed, and clothing 
insulation (Kim et al., 2018a and b). 

While comfort conditions in buildings have been a widely explored topic, thermal 
comfort in cars has encountered growing interest, particularly in relation to problems of 
asymmetric conditions and in the context of electric mobility due to the high impact of 
conditioning system on the battery autonomy (Mebarki et al., 2014͖ Zhang et al., 2014͖ Fiori 
et al. 201ϲ). In addition, modelling radiation and energy fluxes in a vehicle that moves through 
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varying weather conditions requires the computation of a high number of variables, making 
the simulation models very complex. 

To avoid the complex modelling, the present study focuses on the relationship between 
the user behavior and thermal conditions. Pervasive collection and analysis of car sensory 
data is made possible through the CAN-bus (Controller Area Network) (Kiencke et al., 198ϲ) 
technology that provides almost real-time information about the car, the driver and the 
surrounding environment. Each modern car, in fact, contains more than 2,000 sensors 
constantly producing data that open up the possibility to capture some of it to map user 
behavior and the thermal environment with a high resolution.  

Personal comfort models are built from analyses derived from such data and designed 
to predict an individual’s thermal comfort response, instead of extrapolating related 
assumptions derived from the average response of a large population (Kim et al. 2018b). They 
have a much higher predicting power than PMV and adaptive personal comfort models can 
be based on environmental parameters (e.g., air temperature) (Cheung et al., 2017), occupant 
feedback and behaviour (Kim et al. 2018a), occupant behaviour and measured physiological 
parameters (e.g., skin temperature, heart rate) (Liu et al. 2018). 

Currently, comfort is typically achieved in cars as a result of occupants adjusting internal 
thermostats as conditions change. The present study aims at assessing the feasibility of 
developing personal comfort models based on CAN-bus signals, particularly concentrating on 
the seat heat. If successful, this approach would allow for a personalized automated thermal 
control in vehicles designed to improve comfort conditions and safety, automating HVAC 
adjustments basing on a high number of environmental control variables.  

2. Methodology	

CAN-bus technology is a standard bus that allows fast and reliable communications among all 
electronic components in cars. The possibility of leveraging the CAN-bus technology to couple 
human and environmental sensed data for predicting and studying human behavior has been 
proposed and analyzed for several applications (Massaro et al., 2017). With the aim of 
developing a personal comfort model based on CAN-bus signals, this study was based on the 
use of selected signals generated by actions that the user undertakes in order to influence 
thermal comfort conditions. 

Personal models, traditionally, are based on the PMV model (Predicted Mean Vote) 
(Fanger et al., 1970) that requires six layers of information: air temperature, mean radiant 
temperature, relative humidity, air speed, clothing factor and metabolic rate. Figure 1 gives a 
chart that synthetizes the functioning of the model. The PMV model is a steady state model, 
therefore it does not consider the dynamics of the phenomenon. Furthermore, the 
implementation of the PMV model requires high accuracy in the input variables that are 
strongly related to the users, such as clothing insulation and metabolic rate, which are 
therefore assumed or simplified and cannot be updated to reflect the actual comfort 
conditions of individuals in a complex setting (Kim et al., 2018a).  

The proposed model considers as input variables a subset of the CAN-bus data, which 
can be divided in three categories: user’s actions on the HVAC system͖ user actions on car 
components that influence the personal comfort (such as windows and shades)͖ other 
environmental variables (such as temperature).  
The drivers did not answer to thermal comfort surveys, therefore, thermal comfort was 
inferred from their actions. We recognize that this is a limitation. The basic principle that we 
assumed is considering user actions as moments in which thermal comfort is not achieved, 
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and thus actions are triggered in order to change the car’s climate condition. Therefore, 
analyzing those actions and the corresponding environmental variables ( 

Figure 1) ʹ  including the evolution of the variables up to the action’s moment ʹ  personal 
patterns in terms of comfort achievement could be inferred. Basing upon those patterns, the 
model can be used with a predictive approach, predicting the next user action given historical 
actions and environmental variables (Figure ). 
 

 
Figure 1 ʹ Example of user actions and environmental variables change. 

 

 
Figure 2 ʹ Structure of a Personal Comfort Model (PCM) 

In particular, the proposed personal comfort model ʹ which boils down to a machine 
learning predictive algorithm ʹ is composed of two phases (Figure ). The first is an initial 
training phase, where user actions are monitored and rules and non-linear relations are 
inferred. The second is an autonomous	real-time	phase, where rules learnt in the first phase 
are applied to external variables in order to predict the user actions and, ultimately, change 
HVAC settings accordingly. 
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Figure 3 ʹ Conceptual phases of the PCM machine learning model. 

3. Dataset	

3.1. Experimental	settings	

The data acquisition took place in 2014 by Audi AG and Audi Electronics Venture in Ingolstadt, 
Germany. 10 different cars have been retrofitted with a data-logger and more than 2,000 
CAN-signals have been recorded. A total number of 53 drivers have been involved in the data 
collection, providing a rich dataset of more than 2,135 hours of driving over 55 d of 
experiments. No personal information about the drivers has been recorded. 

Cars were picked up by the drivers in a central deposit and had to be returned within 
the same day. Each time a user switched on the car engine, the computer registered a new 
session. A total of 1,987 sessions were recorded͖ each user drove an average of 31 sessions, 
with an average duration of ϲ4 minutes per session. Figure 1 plots the durations of sessions 
for each driver. Data has been recorded for 55 days in the months of March, April and May 
2014 during weekdays. Figure 2 shows the temporal distribution of data acquisitions for each 
car. Meteorological conditions were various during the experiment, with several days of rain 
and external temperatures ranging between -3 and 24 ΣC1.  

 

 
Figure 1 ʹ Sessions duration for each user, sorted by their mean value (red line). 

 

                                                        
1 Data retrieved from Weather Underground, https://www.wunderground.com, station IBAYERNIK12. 
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Figure 2 ʹ Sessions distribution over time for each car. 

3.2. Data	structure,	filtering	and	preprocessing	
The database contains the complete set of signals form the CAN-bus, a wide spectrum of 
information that tracks different communications among components in the vehicle and for 
different purposes. A summary of the high-level information available in the CAN-bus useful 
for a climate comfort model can be found in Table 1. For windows statuses, we had 
information about both driverΖs and passenger’s window being opened or closed. Moreover, 
we had records whether it is raining and also what is the wiper speed. The position of the 
sunroof blind is telling us whether it is sunny or not. Finally, in this study we only focused on 
user action of turning on/off driver’s seat heat. 

Table 1 ʹ List of used signals in the study. 

Signal	information	 Taxonomy	area	 Data	type	
Raw	table	

cardinality	

DriverΖs window opened Windows and shades Boolean 10,4ϲ2 
PassengerΖs window opened Windows and shades Boolean ϲ,700 
Sunroof blind stage Windows and shades Boolean 5,200 
Windshield wiper active Rain Boolean 18,488 
HVAC system on/off HVAC Boolean 25,700 
AC compressor on/off HVAC Boolean 7,355 
Driver’s seats heat levels HVAC integer ϲ,707 
Internal temperature Environment float 250,ϲ41 
External temperature Environment float 11ϲ,935 
    

 
The datatype of the signals recorded is Boolean (i.e. on/off), integer or float, and their 

sizes vary from a few MB to a few GB for each sensor. The signals are not uniformly sampled, 
i.e. the time difference between each sample of the physical quantity is not constant. This is 
due to the nature of the sensor system that was designed to sample the quantity only if there 
were a minimal variation with respect to the previous sampled value. In this way, the size of 
the database does not increase linearly with time and disk space is optimized. 

We preprocessed the data after we retrieved the raw data from the database. Although 
it was said that the record of sampling was saved only if there was a minimal variation with 
respect to the previous sampled value, the dataset contained consecutive records with the 
same values, which had to be filtered first. Outlier filtering was also performed on the internal 
temperature signal, as very often the initial value when a new session would start was -40 ΣC 
degrees. 
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The focus in this paper is on user action of turning on/off their seat heat͖ therefore, we 
produced a histogram of the values (Figure ). The dataset contained 50 records (about 1.5й) 
with values larger than 120 min, 30й of values that change under 1 min and 42й of values 
that changes under 3 min. We decided to omit all records that changed under 3 min, which 
left us in total with 2,320 records of user’s actions. 

 
Figure ϲ ʹ Histogram showing how often user action of turning on/off seat heat is occurring. 

After cleaning the dataset, we performed the last step of preprocessing in which we 
overlaid user action of turning on/off seat heat with the aforementioned vehicle indoor and 
outdoor conditions. As previously mentioned, as signals were not collected synchronously, 
for each user action we had to find the closest match in other tables, i.e. the record that 
occurred in approximately the same time window. However, we did not include values that 
were too much apart from each other, so we used a threshold of three minutes. This means 
that we would add to the specific user action of turning on/off their seat heating the 
corresponding value from other tables only if the record in the second table was made either 
three minutes before the user action or after, otherwise we would dismiss both records from 
our further analysis. Finally, if we would find more than one value in the second table within 
three minutes before/after the user action, we would take the one that was made at time 
that was closer to the time of the original user action. 

4. Analysis	

In order to determine possible recurrent co-occurrence relationships among different signals, 
a first analysis was carried out to determine the correlation between pairs of samples. The 
analysis concentrated on all couples formed by the internal temperature, the external 
temperature and the driver’s seat in association with other signals, namely HVAC system 
status, AC compressor status, driver’s and passenger’s windows, windshield wiper. The 
correlation is expressed using the Pearson’s correlation coefficient, ranging from -1 to 1. The 
complete list of the analyses results is reported in Table 2. 
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Table 2 ʹ Correlation coefficients between driver’s seat heating and other signals. 

Signal	1	 Signal	2	
Correlation	

coefficient
*

	

Internal temperature 

HVAC system on/off 0.10		

AC compressor on/off 0.12		

DriverΖs window position (open/closed) 0.01  

PassengerΖs window position (open/closed) -0.05  

Windshield wiper -0.08  

External temperature 

HVAC system on/off 0.04  

AC compressor on/off 0.09  

DriverΖs window position (open/closed) -0.03  

PassengerΖs window position (open/closed) -0.10		

Windshield wiper -0.02  

DriverΖs seat heating 

HVAC system on/off 0.42	

AC compressor on/off 0.46	

Internal temperature -0.04 

External temperature -0.0ϲ 

DriverΖs window position (open/closed) -0.21	

PassengerΖs window position (open/closed) -0.21	

Windshield wiper 0.36	

*	Correlation coefficients above 0.1 are bolded	

Results show higher correlations of the driver’s seat heating with the HVAC system 
status, the AC compressor status and the windshield wiper. This means that high values of 
seat heat usually correspond to HVAC, AC in heating mode and wipers status on. A slightly 
weaker correlation occurs between the driver’s seat heating and the window positions (not 
surprisingly, negative correlations, i.e. if the seat heat level is high the window is closed, and 
vice versa), while there are no significant correlations among other signals.  

A further investigation has been carried out to visually inspect the variability of non-
categorical variables (internal and external temperature) with the driver’s seat heating level. 
In Figure 73, boxplots confirm the non-correlation between the seat heating level and internal 
or external temperature͖ for this reason, these variables cannot be used to control the car 
heating system  

				 	

Figure 73 ʹ Internal and external temperatures distributions for different levels of driver’s seat heating. 
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Basing on the promising correlation results, more sophisticated models are needed in 
order to investigate possible non-linear relations between signals and user actions. Suitable 
machine learning methods could be Artificial Neural Networks (ANN), Support Vector 
Machines (SVM), regression trees or random forest models (Hastie et al., 2009). In this work, 
considering the preliminary exploration phase of the database, experimental data were 
analyzed using a regression tree model. 

Following the scheme explained in Figure , the model has been trained with vectors 
containing values of the variables in Table 1, except for the seat heating that was considered 
as the label object of inference. For simplicity, the seat heat level was considered as a Boolean 
variable, mapping the value 0 to false and 2, 4, ϲ to true. 

The model implemented did not show satisfactory results (R2 close to zero). This is due 
to a combination of different factors, such as: the high number of missing values among the 
matched signals, as mentioned in the preprocessing paragraph͖ the low amount of datapoints 
in the database͖ the low variability in overall weather conditions and user’s perception due 
to the middle-season months in which the experiment has been carried out (March-May), the 
fact that people on the cars for the first time might have unintentionally pressed on some 
controls. Overall the data set, although apparently valuable, proved to be not sufficiently 
comprehensive to establish statistically significant prediction relationships between the 
considered variables. Given this limitation, the authors are not confident in the model’s 
results at the present stage and general conclusions cannot be drawn from this paper’s 
specific implementation. We think that with a properly designed thermal comfort experiment 
and the presence of driver thermal comfort preference survey as ground true, it is possible to 
create personal and group comfort model with high predicting power.  

5. Conclusions	

This paper attempted to develop a personal comfort model to be applied for the control of 
HVAC in vehicle using real data collected from the CAN-bus. The personal comfort paradigm 
has been applied to in-vehicle comfort and an analysis of the signals that could be used for 
achieving this goal has been carried out. Moreover, a preliminary data analysis has been 
performed on experimental data, showing a good correlation between the seat heating and 
other signals͖ on the other hand, no significant correlation has been found between seat 
heating level and internal or external temperature. However, after the proposed model was 
implemented, we did not get satisfying results. Therefore, in future work, the presented 
model should be further tested with bigger dataset acquired in more various and extreme 
climatic conditions, occupant thermal preference should be collected and a fine-tuning of the 
model’s parameters will be required in order to train it on more complex datasets. 

6. Acknowledgements	

The authors would like to thank Cisco, SNCF Gares Θ Connexions, Brose, Allianz, UBER, 
Fondation OCP, Liberty Mutual, Ericsson, Saudi Telecom, Volkswagen Group America, Philips, 
Austrian Institute of Technology, Fraunhofer Institute, Kuwait-MIT Center for Natural 
Resources, SMARTͶSingapore MIT Alliance for Research and Technology, SinBerBEST - 
Singapore-Berkeley Building Efficiency and Sustainability in the Tropics, AMS Institute 
Amsterdam, Victoria State Government, and all the members of the MIT Senseable City Lab 
Consortium for supporting this research. Special thanks go to the Institute of Advanced 
Studies of Technical University of Munich for supporting the research exchange. 

10th Windsor Conference 2018 – Rethinking Comfort - Proceedings 449



7. References	

Brusey, J., Hintea, D., Gaura, E., Beloe, N., 2017. Reinforcement learning-based thermal comfort control for 
vehicle cabins. Mechatronics, September 2017, pp. 1-21. 

Cheung, T., Schiavon, S., Gall, E. T., Jin, M., and Nazaroff, W., 2017. Longitudinal Assessment of Thermal and 
Perceived Air Quality Acceptability in Relation to Temperature, Humidity, and CO2 Exposure in Singapore. 
Building	and	Environment 115, pp. 80-90. 

Fiori, C., Ahn, K., Rakha, H.A., 201ϲ. Power-based electric vehicle energy consumption model: Model 
development and validation. Applied	Energy, 1ϲ8, pp. 257-2ϲ8. 

Hastie, T., Tibshirani, R., and Friedman, J., 2009. The	Elements	of	Statistical	Learning. 2nd ed. Springer. 
Hausladen, G., De Saldanha, M., Liedl, P., 2004. ClimaDesign:	Lösungen	für	Gebäude	die	mit	weniger	Technik	

mehr	können. München: George D.W. Callwey, 2004. 
Hintea, D., Kemp, J., Brusey, J., Gaura, E., and Beloe, N., 2014. Applicability of Thermal Comfort Models to Car 

Cabin Environments. Proceedings	 of	 the	 11th	 International	 Conference	 on	 Informatics	 in	 Control,	
Automation	and	Robotics, pp. 7ϲ9-77ϲ. 

Kiencke, U., Dais S., and Litschel M., 198ϲ. Automotive Serial Controller Area Network. SAE	Technical	Paper. 
Kim, J., Zhou, Y., Schiavon, S., Raftery, P., Brager, G., 2018. Personal comfort models: Predicting individualsΖ 

thermal preference using occupant heating and cooling behavior and machine learning. Building	and	
Environment, 129, pp. 9ϲ-10ϲ. 

Kim, J., Schiavon S., Brager, G., 2018. Personal comfort models ʹ A new paradigm in thermal comfort for 
occupant-centric environmental control. Building	and	Environment. 10.101ϲ/j.buildenv.2018.01.023 

Liu, S., Jin, M., Das, H.P., Spanos, C.J., Schiavon S., 2018. Personal thermal comfort models based on physiological 
parameters measured by wearable sensors. Proceedings	of	the	10th	Windsor	Conference, Windsor, UK. 
April 12-15th. 

Massaro, E., Ahn, C., Ratti, C., Santi, P., Stahlmann, R., Lamprecht, A., Roehder, M., and Huber, M., 2017. The Car 
as an Ambient Sensing Platform. Proceedings	of	the	IEEE, 105(1), pp. 3-7. 

Mebarki, B., Draoui, B., Allaoua, B., 2014. Investigation on Electric Air- Conditioning System Energy Consumption 
of an Electric Vehicle Powered by Li-ion Battery. Advances	in	Automobile	Engineering,	108(3).  

Rosenfeld, A., Azaria, A., Kraus, S., Goldman, C.V., and Tsimhoni, O., 2015. Adaptive advice in automobile climate 
control systems. Proceedings	 of	 the	 14th	 International	 Conference	 on	 Autonomous	 Agents	 and	
Multiagent	Systems, 1, pp. 543-551. 

Zhang, Z., Liu, C., Chen, X., Zhang, C., Chen, J., 2017. Annual energy consumption of electric vehicle air 
conditioning in China. Applied	Thermal	Engineering, 125, pp. 5ϲ7-574. 

10th Windsor Conference 2018 – Rethinking Comfort - Proceedings 450




