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1. INTRODUCTION

The approximation of the motion of solid continua by a finite
number of degrees of freedom 1is classical [1]. The essence of Lagrangian
mechanics is representation of the kinetic and potential energy of a body
in terms of a finite number of generalized coordinates. Extremization of
Hamilton's principle yields Lagrange's equations of motion. If the
motions of a body are restricted to small excursions from a state of
equilibrium or rigid body motion, the linear theory of small oscillations
is generated.

For some problems, the configuration of a mechanical system
leads naturally to the idealizations of concentrated masses, springs,
and linkages. In these cases, the selection of the generalized
coordinates is simplified, and no further refinement is sought. For the
more general problem of deformable solids, the intractability of the
governing field equations often leads one to accept a finite degree of
freedom approximation. In this case there is no obvious set of
generalized coordinates. Not only does one need to be able to define
a convergent sequence of approximations, but to appreciate the
qualitative nature of the errors in the finite model,

There are two approaches to reducing the field problem to a
finite number of degrees of freedom. Once the inertia is "Tumped" at
a finite number of nodal points, the elastic restoring forces may be
expressed in terms of the nodal displacements by exact or approximate
static relations. Alternatively, the Rayleigh-Ritz procedure [10] may
be used to spatially discretize variational principles, Unless the basis

functions are orthogonal with respect to the mass or stiffness operators,



the mass and stiffness matrices of the discretized set of equations
will be non-diagonal or coupled.

The finite element method may be regarded as a particular case
of the Ritz method, ideally suited to the spatial discretization of a
linear differential operator defined on an arbitrary inhomogeneous
domain [6 - 11]. In that the basis functions are selected with minimum
support (i.e., the stiffness of a node is directly coupled only with
adjacent nodes),‘the method leads to an algebraic problem with narrowly
banded coefficient matrices. The equations resulting from the principle
may be regarded as a difference equation, though not necessarily the
same one that would result from conventional discretization of the
differential equation. The superiority of the variational technique for
the generation of difference equations 1ies in the ease with which
irregular meshes, arbitrary body forces, material interfaces, and natural
boundary conditions can be accommodated. Further, the algebraic system
is symmetric for all self-adjoint operators (an advantage not shared by
conventional finite difference techniques). The variational method
allows an elegant proof of convergence of the approximation in the
energy norm [12], but appears less amenable to a pointwise estimation
of the error in the function than finite difference methods generated
by Taylor series expansion, The extensive application of the finite
element method to linear elasto-static field problems is well documented
[13 - 15].

For linear elastic bodies, the solution of forced vibration
problems is classically obtained by the method of normal modes [16].
The separation of space from time variables leads to an eigen-problem
for the exact or approximate determination of the eigenvalues and eigen-

functions {(or vectors). Since the higher modes of the discrete model



are progressively more in error, the number of degrees of freedom must

be selected large enocugh so that the dominant Tower modesare sufficiently
accurate. The particular integrals of the normal equations are
determined exactly or numerically, depending on the input function. In
the last few years, the finite element concept has been applied in this
manner [14, 17, 18, 19] to vibration problems of elastic media.

In impact problems the peak stress response occurs during the
time span of theyfirst few reflections. Reflection from the interface
with an acoustically denser medium increases the stress. Reflection of
a compressive pulse from a free boundary will produce tension, and for
materials weak in tension, the phonomenon of “scabbing" may result. As
time progresses, geometric and material dispersion of the pulse occurs,
diminishing the peak response., Thus, early time response is critical.
In this time range, the lower modes of the overall domain do not dominate
the response as at later times after multipie reflection.

Comparison of the solutions of discrete and continuous eigen-
probiems when they can be found does help evaluate the "consistent" vs
“"Tumped" mass approximations. This evaluation has usually been made in
numerical rather than analytic form [19, 20]. In the case of the string
(or simple bar) the analytic solution of the lumped mass approximation
was obtained by Lord Rayleigh [21], and that for "consistent" mass was
presented quite recently by Washizu [22]. Leckie [23] did the same for
a finite difference equation for the beam. Although these efforts have
been directed toward the lower modes, the analytic solutions of the
difference equations permit the display of the errors in the entire

discrete spectrum.



Time integration of initial value problems has an extensive
literature, and Richtmyer and Morton [54] provides an excellent text. A
general family of one step methods which includes several well known
special cases was discussed by Newmark [47]. A unique integration scheme
was presented by Wilson [50], and applied to the dynamic response of two-
dimensional solids. Although the Tinear problems are capable of a modal
analysis, the development of step-by-step methods provides a starting
point for integrating the response of non-linear problems,

For viscoelastic solids, space and time variables can be
separated only in exceptional cases. If the viscoelastic properties are
temperature dependent, and the temperature is a function of space and
time, they are definitely not separable and the time solution of the
discrete equations must be integrated directly. Such was done for the
quasi=-static case by Taylor, Pister and Goudreau [29], and for the
dynamic case by Nickell [42].

An important feature of the hyperbolic partial differential
equations governing motion of elastic and viscoelastic solids, not shared
by finite degree of freedom systems, is the existence of solutions
possessing surfaces of discontinuity (i.e. the propagation of wave fronts
with finite velocity). Although a theoretical treatment is presented by
Courant [2], the theory of characteristics has been applied only to
problems with one space variable. Important contributions in applying
the method of characteristics to elastic wave propagation problems
have been made by Chou and Mortimer [56], and by Mengi and McNiven [61]
Insight into the two dimensional character of wave propagation solutions

was revealed by Berthoif's finite difference study of a bar [57].



Chapter Z presents the governing field equations of the linear
mechanical theory of solids, including the extension of Hamilton's
principle to viscoelastic solids by Taylor [3], whose Euler equations
are the integro-differential equations of motion. The defect of this
principle in generating initial conditions is remedied by the variational
principle introduced for elastodynamics by Gurtin [4], and extended to
viscoelastic media by Leitman [5]. Through the use of convolutions, a
principle is constructed whose Euler equations are the integral equations
of motion, containing the initial conditions. Finally, the viscoelastic
characterization most suitable for stress analysis is discussed, along
with the problems in obtaining it.

Chapter 3 presents the closed form solutions for the Tumped
and consistent mass finite element models of the simple bar, membrane
and beam operators. Further, the spectral approximation to the two
radial mode Mindlin-Herrmann bar theory [24, 25] is studied.

To exhibit the errors in the transient solutions introduced
by the spatial discretization, simpie bar theory is employed to study
the early time response of an elastic bar to impact on an elastic spring.
The foundation spring constant serves as a parameter defining the transi-
tion from an acceleration wave into a shock wave. Exact time solutions
for Tumped mass, consistent mass, and a higher order finite difference
approximation are compared with the exact eigen-expansion truncated to
and equal number of terms,

A second impact example of a step stress on a half space is
studied. The converged time solutions for finite degree of freedom models

for the above three discretizations are compared with the exact solution.
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Chapter 4 discusses step-by-step schemes for the time integra-
tion of discrete systems. The implications of the Newmark family of
methods on early time transient response is emphasized. The methods of

Wilson [50] and Nickell [42] are also considered. The concern is not on

accurate integration of the discrete system as much as the combined effect

of space and time integration errors on the approximation to the
hyperbolic problem. The dispersive approximation afforded by discrete
systems is compounded by time integration errors. This is revealed by
several one-dimensional examples. Finally, the scheme presented in [29]
for discretizing the viscoelastic history integral is found to carry
over to the dynamic case.

Chapter 5 discuses a property of the explicit time integration
scheme which gives it the power to capture discontinuities in the
propagation of stress waves. The method embodies the "direct" or
"discontinuous step" method of Mehta and Davids [55] and Koenig and
Davids [59] in conjunction with a finite element spatial discretization.
Excellent results are presented for several one-dimensional elastic and
viscoelastic examples. However, stability problem can arise, limiting
the generality of the method. Finally, the two dimensional problem of a
step stress on the end of a short bar is examined and the detail near the
discontinuity front is revealed without the mesh induced oscillations of

Bertholf's finite difference results [57].



2. LINEAR MECHANICAL THEORY OF SOLIDS

In fullest . generality, the theory of solid continua treats
the coupling of mechanical with thermodynamic, electrical, chemical, and
other state variables. Such coupled field theories can be consistently
linearized with respect to all state variables. However, by the linear
mechanical theory of solids shall be meant the general theory of elastic
and viscoelastic solids linearized with respect to mechanical variables.
The resulting theory may depend on non-mechanical variables (or their
histories), which are assumed prescribed. Such variables will be
typified by the thermal variable temperature. In uncoupled thermo-
mechanics the work done by deformation is neglected in the energy bal-
ance equation, which reduces to Fourier's law of heat conduction for the
determination of temperatures.

The formulation of a linear mechanical theory of solids has
been treated extensively, as a general three dimensional field problem
[ 26, 27, 28], and in the many kinematic and constitutive subclasses
of bars, beams, plates, and shells. The basic equations and assumptions
of the three dimensional theory will be restated here both as local
field equations and as global variational principles.

A. Constitutive Equation for Linear Mechanical Theory

For a simple material, the stress at a particle of the body is
determined by the history of deformation and other non-mechanical vari-
ables at the particle. The motion of the body will be restricted to
small deformations from an unstressed reference state of rigid body
motion. If the body is simultaneously subjected to a non-mechanical

variable change, (say temperatures), relative to the same reference state,



the stress is given by the equation

a(x,t) = E [el(x,s), T(x,s)5 x, t] (2.1)

where o, € are the stress and small strain tensors at the particle X at
time t; T is the temperature at X and F is the thermomechanical response
functional of the body. The linear mechanical theory restricts the
functional to be linear in strain while still non-linear in temperature.
For a non-aging material (2.1) can be replaced by the hereditary integral

*
representation

s

a(x,t) = ¢ IT(s), x5 t-t] 5= [e(r)-0(1) Jdr (2.2)
S

In (2.2) the pseudo-temperature introduced by Morland and Lee [28]

Q(T) =-f o (T') dT! (2.3)
To
has been used, where o is the temperature dependent coefficient of
thermal expansion tensor and the kernel

=t
Clx,t,t) = C [T(s); x5 t-t] (2.4)
s=0

w

is a fourth rank relaxation modulus tensor, whose value depends on the

temperature history of the material at the particle x.

The number of contractions between two adjoined tensors will be implied
by the context. For example, since in (2.2) C is a rank four tensor,
and g, g, and § are of rank two, a double contraction is implied

. dg 99
between g and AT 0 AT -



For lack of a better thermal characterization, and to simplify
the numerical problem, consideration is restricted to thermorheologically

simple (TS) materials [28, 29, 30], where

s=t
€ [T(s)y x3 te1] = € [x, T3 £(t) - &(1)] (2.5)
5=0
and where
T
g(1) = j 6 [T(s)]ds (2.6)
O

is the reduced time and ¢(T) is the temperature shift function assumed to
be an intrinsic property of the material, normalized by the condition
o(T,) = 1. Thus, (2.2) becomes

t
alx,t) = | € [xs Tz &(t) -£(0)] 5% [e()-8(x)ldr  (2.7)

e 00

Since for any mechanical problem, it is necessary to start the analysis

at some fixed time, say to = 0, let
t
o(x.t) = g (x.t) +j' CLx.T,5E(8)-£(0)] 2 [e(t)-0(1) Jdr (2.8)
[#]

where
)

g,(x:t) = g Clx,T:8(t)-2(1)] g%—[g(r)-ﬁ(f)}dr (2.9)
is a function of the history of deformation and temperature up to time
zero and must be known to ensure a well posed problem.

If the body is assumed to be free of stress up to time zero,
0y = 0. For the consideration of the propagation of surfaces of dis-
continuity, it is then convenient to integrate (2.8) by parts.



10

t
o(x,t) = C :(e(t)-8(%)) - % Clx,Tyse(t)-e(r)Ile(r)-0(t)Idr

(2.10)
where 90 = §[5,0] is the instantaneous modulus governing the propagation
of wave fronts, and {s assumed to be independent of temperature and thus
not a function of time. It is now possible to introduce the notation

Cyt (e-8) + C @ (e-s) (2.11)

where

C = + o[T(D)] 2 Clx,T s5] , (2.12)
s = g(t)-g(1)

the symbol * denotes the convolution of two functions in the sense

e o

t
f *gxffmw>gu)m (2.13)
J |

and the symbol @ denotes the ordinary convolution extended to include
reduced time in the left hand function. Note that * 1is a commutative
operation, while @ is not. For an elastic material =0

B. Formulation of the Initial/Boundary Value Problem

For a solid undergoing small deformations, the balance of
linear and angular momentum yields respectively, the local field
equations

Veoth=ou

and

g=g (2.14)
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where b(x) is a prescribed bedy force vector, u the displacement vector,
0(5) the mass density, and V the gradient operator.

The strain displacement relations are
_ T
2e = [u + ()] (2.15)

To these equations, and the constitutive equation (2.11) are adjoined

the boundary conditions,

I(ébt) on S

i
=3

°

1 Q
%

¢4

u(x,t) =

'
tem |
o
3
w

(2.16)

where T, u are respectively the prescribed surface tractions and dis-
placements on complementary part SO and Su of the surface of the region

of space R occupied by the body, and n is the unit outward normal to the

boundary surface.

An arbitrary specification of initial conditions

u(x,0) =

i
[ =

olx) (2.17)

u(x,0)

L

11

sEutt)| = ug ()

t=0
would imply some non-zero initial history, and the knowledge of 90(5’t)'
In the following, consideration will be restricted to an initial stress
free state of rigid body motion, for which gy = 0.

Substitution of the constitutive relation (2.11) and kinematic
relation (2.15) into the momentum balance equation (2.14) yields the dis-

placement equation of motion
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VeC :Ww+VveC ® vu+ps=ol (2.18)
where

=b-7-0C e+ C @ ]

o~

[ e

This integro-differential equation can be transformed into an integral
equation, incorporating the initial conditions, which will be needed for
the Gurtin type variational theorem discussed later. In the manner of
Gurtin [4], let g(t) = t and é = 1 for t>0 and zero for t<0. Taking the
convolution of (2.14) with g,
g‘* (Y » 9’) +f=pg (2.]9)

where

fo g*b+oluy*ut) (2.20)
is a known function of the body force and the initial conditions. Sub-
stitution of (2.11) into (2.19) yields the displacement integral equation

governing motion.

where

g+C ® o] (2.21a)

C. Variational Formulation

The power of direct variational methods to discretize an
operator motivates the consideration of two principles: Hamilton's prin-
ciple for non-conservative systems, and a Gurtin type stationary prin-

ciple developed by Leitman [4,5].
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1. Hamilton's Principle

Presented by Taylor [2], Hamilton's principle extended for the

linear mechanical theory of viscoelastic solids is

2
6& (T+W)dt =0 (2.22)
t
where
sz 1ooie iy (2.23)
v
and
SW = - X [g: de - b - 6g]dv + J T duds (2.24)
V' S

T

If the constitutive equations (2.11) and strain displacement relations
(2.15) are assumed embedded, the Euler equation is the displacement
equation of motion (2.18). To establish this, the divergence theorem is

needed,

J Ve Fdvs= X n-Fds (2.25)
v
Letting F = ¢ - du, and recognizing that because of the symmetry of o
and the commutivity of ¢ with v,
g :8e =9 :8Vy=o0 : Véu (2.26)'~
~ o~ o~ L ~ P

and further that

v [g . 69] = (Y . g) * 6u+ g : Véu (2.27)
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then
X o : 6e dv = - j (Y . §) ° Su dv + ¢J nego- duds (2.28)
v

v v

If variations in the displacement field are required to satisfy the

rigid (displacement) boundary conditions,

5W=JEY'9*93'6MV~jfn’e-ﬂ'ﬁeds
v S,
6T = X pu - dudy (2.29)
v
Inserting (2.29) into (2.28) and integrating ST by parts,
t £
S Jf‘z‘g’*bwﬁl'ésdvdt-f J [n-o-Ti
t] v t] S:
t
du ds dt + [ Jﬁ pl - Su dv] =0 (2.30)
v t1

Since du is arbitrary, the three terms must vanish independently. The
first yields the equations of motion (2.14), the second the natural
boundary conditions (2.16a), and the third the usual requirement of
Hamilton's principle that the variations du vanish at the endpoints t1
and t2.

The principle says nothing about the initial conditions, which

must be stated separately. When used as a direct variational principle
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in space, it is unable to generate the initial conditions for the dis-
cretized coordinates. If the initial conditions are restricted to a
rigid body motion, the discretized initial conditions can be sampled by
inspection, However, this certainly is a defect in the general utility
of the principle. A procedure to embed the initial conditions 1in
Hamilton's principle in conjunction with é direct variational method in
time was presented by Stuiver [31, 32] for a system of ordinary differen-
tial equations. However, it does not appear to resolve the spatial dis-
cretization of arbitrary initial conditions.

2. Leitman's Principle

An alternative to the integro-differential equation of motion
(2.18) is the integral equation (2.21) which contains the initial con-
ditions. It can be shown to be the Euler equation of the Gurtin type

principle presented by Leitman [5], which in terms of displacement is

s [ o c@c v i c®o

v

* yu] dv

8
[Sa
3
(3~
-+
N3] et
©
[~

(2.31)

T g

%
e
[>%
@

-S g*
ST

An admissible thermomechanical state {g, €, U, g} is one for which

(1) the symmetric stress tensor is determined by the constitutive

equation (2.10);
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(2) the strains are obtained from the displacements by (2.15);

(3) the displacement vector satisfies the rigid boundary conditions
(2.16b) and the initial conditions (2.17);:

(4) the pseudo temperature 6 is a prescribed function of position
and time, associated with the solution of the heat conduction
boundary value problem for the body. See, for example, Wilson
& Nickell [43].

The principle states that among all admissible thermomechanical
states, that which satisfies the displacement equations of motion (2.21)
and stress boundary conditions (2.16a) is given by

&V = 0 (2.32)

This can be seen by performing the variation

SViy} = Jié FE® (e-8) rose-f * o
Y
tpou * 6g]dv - X g * T * duds (2.33)
ST
Noting that ¢ = g * é * é, then
g * o=g * g * [Cle-0)+C® (c-0)]
=g % g * [Cle-0)+C® (c- 0)]
gé * g@ (ﬁwg) (2.34)

Now using the divergence theorem as before (2.25-2.28)
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e R R ST I
Y
* j g * E;?}*g*"f] * 6uds =0 (2.35)
ST

Then invoking Gurtin's generalization of Lagranges lemma, [4], i.e., that

if for all w

S g' * wdv =0 (2.36)
v

then
v =0, (2.37)

the first term yields the equations of motion (2.19) and the second the
natural boundary conditions (2.16a).

It will be seen that Leitman's principle offers a means for the
spatial discretization of the initial conditions, whereas Hamilton's
principle does not.

D. Representation of the Relaxation Modulus

The integral formulation (2.8) of linear viscoelastic consti-
tutive theory requires the experimental determination of the kernel g,
which is a fourth rank tensor of relaxation moduli. Only isotropic
characterization is considered here, where only two scalar relaxation
functions determine the tensor. Often, the material is assﬁmed to be
either elastic in dilatatiop, or to have a constant Poisson ratio,

necessitating only one relaxation test.



18

Analyses may be performed using tabulated experimental data,
as for example formulated by Sackman & Kaya [33]. However, for compu-
tational accuracy it is desirable to smooth the data by fitting an
analytical expression to it. To minimize computation and storage in
step~-by-step time integration methods, a degenerate form is assumed for
a typical non-aging kernel function, say the shear modulus.

Gy exp (- %m ) (2.38)

I
G(t) = GO+ z
{=1 i

where Ai are characteristic relaxation times. This form is equivalent to

a generalized Maxwell model. Thus,

, 1o e ]

G * u=-1 — exp (- +) exp () u (t) dz  (2.39)

i ST ) ! %

=1 79 i 0 i

and the current value of t 15 extracted from the I history integral vec-
tors which can be accumulated step by step as u is determined. An alter-
native form which also possesses this same property is being investigated

by Sackman [34], using trigonometric functions, say

Qﬁ cos ay t (2.40)

I
G{t) = GQ + f;:&

i

t

® i

G * u=-1I Qiaﬁ Es?n%t S%C()ﬁa,“’td't
0

{=1
, £
- cos a; t Sﬁ u sin ;T dt] (2.41)
0

which requires accumulation of 21 history integral vectors.
Since both of the above sets of functions are relatively com-
plete, any degenerate kernel may be approximated arbitrarily well by a

sufficiently Targe number of terms (see p. 115 of [9]). Computational
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effort is proportional to I, which should be no larger than needed. Up
to ten terms are being used in quasistatic analyses [29, 351, but since
in impact problems early time response is most important, fewer terms
should suffice. In any case, the finite representation selected should
best approximate the kernel in the time range under study, and not be
extrapolated much beyond. A poor oscillatory fit has been reported by
Nickell [35] if the characteristic times are chasen more than a decade
apart. Lanezos [36] discusses the difficulty obtaining a unique
exponential fit. To this writer, though, it appears that his poor
results are due to the near equal real time spacing of the characteristic
times which could be remedied by logarithmic spacing.

An alternative differential characterization of the kernel
has been developed by Distefano & Pister [37], which appears to be less
sensitive to characterization. How this model would be used in stress
analysis has not yet been indicated.

For wave propagation problems, the instantanecus modulus is
critical, and can be determined from ultrasonic tests [38]. However, the
early time character cannot be predicted from standard creep or relaxa-
tion tests, and must be determined from dynamic tests. Impact tests and
data reduction procedures such as being developed by Sackman [33] which
generate a creep or relaxation function directly, show more promise than

sinusoidal tests generating a dynamic modulus.
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3. SPATIAL DISCRETIZATION

A. Variational Principles as Direct Methods in Space

Finite element expansions provide efficient means to discretize
Leitman's displacement variational principle for Tinear solids. Through
the use of prescribed piecewise polynomial interpolation functions with
minimal support, the displacement field is expressed in terms of N

nodal point displacement time functions.

™=

(o t) = I g () () = e(x) r(t) (3.1)

n=1

Applying the strain-displacement relation (2.15), the engineering strain

vector

;
< S0 €330 Y120 Yize Vo3> 7 V(¥ (3.2)

Thus the functional (2.31) becomes

Viwd = Vird = 2 gxrl x K@r - g*r %P
~N N*~ Z ~ ~ L z
(3.3)
1 1 T g
togroaMr - e M (g t)
where

Kt -1 = [T (0 CDx - Tl v () dy (3.9)

v

is the conventional stiffness matrix with the substitution of the (6 x 6)
time dependent relaxation modulus matrix representation of the rank four

tenser C,
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x) ¢ (x) p (x) dv (3.5)

is the consistent mass matrix, and

P = [ 1o )+ 4 0 C D b - T1@ B0 dy

is the vector of nodal point forces, including the effective thermal

loads. Extremization of the principle requires

§Y = SET * [g* K® r-gxpP+M (r =T, - iot)] =0 (3.7)
Since r is arbitrary,

Mr+g*K@g=g*f+M(50+fot) (3.8)

which is the discrete integral equation of motion. The instantaneous
stiffness can be separated by integrating by parts, and assuming the

initial stress is zero,

M+ gx (Kr + K@®r) = gxP + M(r +rt) (3.9)

where the instantaneous stiffness matrix KO is independent of time, and
k is defined in the same way as é (see 2.12). For an elastic solid,

®

K=0.
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If Hamilton's principle had been used instead of Leitman's

principle, the discretized Euler integro-differential equation would be

Mro + Kof + k@f = P (3.10)

which is also obtained directly from (3.9) by differentiating twice with
respect to time. The only difference is that the initial conditions for
(3.10) are not obtainable from Hamilton's principle.

The question of approximation posed in this chapter is to what
extent does the solution gN(x, t) obtained from (3.1) and (3.9) or

(3.10) approximate the solution to (2.18).

B. Spectrum of Original and Projection Operator

For an elastic solid, the equation of motion (3.10) permits a
separation of the time variable, and thus a solution by eigenfunction
expansion. Even though in most viscoelastic situations (multi-material
or thermal induced time dependent inhomogeneities), separation is not
possible, a study of the eigenvalue problem indicates the degree of
approximation possible from the basis provided at a fixed time by a
given spatial discretization. The separation can be accomplished by the

substitution
ulx, t) = ¢ (x) et (3.11)

into either the equation of motion (2.18) or the variational principles
(2.22) or (2.31), generating the governing eigenvalue problem. The
errors in the approximate spectrum will be exhibited for a few examples,

and then their significance in the forced response will be studied.
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1. Simple Bar Theory

For a homogeneous isotropic elastic bar, under the kinematic
assumption of plane sections remaining plane, and ignoring radial stress
and inertia, the eigenproblem is governed by the ordinary differential

. *
equation,

- E a9 . w2p¢ (3.12)

or the variational principle

L
~ 2
%. J [ E 2 p¢2 1 dx = min (3.13)
0

supplemented by appropriate homogeneous boundary conditions, For the

general solution,

s(x) = A sin 35‘» + B cos &L?‘- (3.14)

the governing equation requires w = ACO/L, where Cg = E/p, For a

free-free or fixed-fixed bar, the existence of a non-trivial solution
requires that A = nm, while for a free-fixed or fixed-free bar,

A= (2n - 1) %—, n a positive integer.

Consider a spatial discretization of (3.13) into N equal
elements. Then, the algebraic eigenvalue problem resulting from the

minimization of the principle is

Ko = @ Mo (3.15)

E will be used throughout for Young's modulus to distinguish it from
the shifter operative.
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where for the piecewise linear finite element expansion,

N 1
K= nE1 az “n 4 Kn - Zg? ' -; “;
(3.16)
N Ax 2 1
M=nkyan M2, Mn = EE— l 1 2 ’

and a, is a Boolean element assembly matrix. Both K and M are
symmetric banded matrices of size N + 1. This generalized eigenvalue
problem may be regarded as a difference equation, for if a typical

equation is extracted,

. 2 2
*57¢k*9—c—§x—(1+g&)¢k (3.17)
[0}

is obtained, where {ES? = AV, A=E-1,V=1- E'], and Ek fj -

f re the second central difference, forward difference, backward

itk ®
difference and shifter operators, respectively [39] applied to node k.

The general solution of the difference equation is

~

o = K sin X'ﬁ- + B cos X’%» ' (3.18)

The satisfaction of (3.17) requires that

.
2 C sin
R N (3.19)
#H _ 2 Sinz A
3 2N
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where use has been made of the important property of even difference
operators
sin A

N -

cos A

= 2R
0
o
N
>t

2= Zjx

Since the piecewise Tinear expansion satisfies the continuity requirement
of the variational theorem, ® 1is an upper bound to w.

The difference equation (3.17) must be assigned boundary
conditions. These must not only simulate the boundary conditions of the
differential equation (3.12), but when combined with the governing
difference equation (3.17) evaluated at O (or N) must be the same as
the first (or last) equation of the matrix eigenproblem (3.15).

For unmixed conditions of prescribed ¢ or its derivative, this
simulation is the one of the ordinary finite difference method. The
case of a mixed condition will be discussed later.

Using a central difference approximation for gradient boundary
conditions, one obtains for the unmixed conditions considered above that
A = A, and thus the eigenvectors by exactly sample the exact eigen-
functions ¢(x) at the mesh points, However, the piecewise linear
approximate eigenfunctions ¢N(x) defined from the ¢, by (3.1) are
not equal in the functional norm (3.13). This raises the question of
the significance of the value of the functional as a norm in judging

approximations.

(3.19a)
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If the mass is lumped at the nodes, the mass matrix in (3.15)
is diagonal, simplifying the algebraic eigenvalue probiem. The difference
equation (3.17) becomes

~ -2 2 A
- X7 9, ﬁgg&‘, b, (3.20)
0

1]

and the same solution form (3.18) yields

2 C0 X (3.21)
AX

£l
i
v
sy
=
=

Note that the stiffness operator on the left of (3.17) and (3.20) is the
same as that obtained from an elementary finite difference approximation
of the differential operator on the left of (3.12). This is a rare case,
and usually not true for two space variables,

Within the band width restriction of the finite element
matrices, a higher order approximation is possible with no increase in
computational effort. Utilizing a finite difference identity presented

on page 152 of Hildebrand [39], that is

2
_ 2 1 d
NS ¢ = & (1 + 5 N/ +ho.t.) (-a—x—%) (3.22)
k
inserting (3.12), and ignoring higher order terms,
A R R, (3.23)
Dy 2 AR :

0
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which can be interpreted through (3.15) as representing the same stiffness

matrix with a modified mass matrix. For this case,

Y
2 C sin
o = AXO N (3.24)
/’1 - l-sm2 A
3 N

This leads to the speculation that in two dimensional problems one
might be able to find higher order difference methods with no greater

coupling than the finite element method,

-

For all three cases, noting that X = XA, the ratio of

approximate to the exact frequency is

i T
- sin n
n _ 2 2 A
w oar / LU 'y (3.25)

1-2asinzn-g-

where for lumped mass (a = o), consistent mass (a = 1/3), and for the
higher mass (a = 1/6). The parameter o also is the ratio of the off
diagonal coefficient in the mass matrix to the row or column sum. For

all four unmixed boundary conditions, 0 <n <1 1s a rational number;
either n/N or (2n - 1)/2N, n a positive integer. Both forms can be
extended to the spectrum of rational numbers, permitting the approximation
to the nth frequency by an N element model to be exhibited in a

single curve, for all n and N. These curves are shown for the three

models in Figure 1.

2. Mindlin-Herrmann Bar Theory

To offer a better understanding of the effect of spatial

discretization on wave propagation phenomena and to give some expression
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to the effect of a second space variable, consider the two radial mode
unmodified Mindlin-Herrmann theory for longitudinal motion of bars [24].
This theory is ‘a truncation of a more general radial expansion presented
by Mindlin-McNiven [25].
Applying Hamilton's principle to axisymmetric motions of a

circular isotropic elastic elastic rod, with radius a,

t
2m f [ 6T+ 6W Jdt =20 (3.26)

Y

where

o [ (6)2 + (Q)2 ] rdrdz

—
[
P —
O Y
O

(3.27)
L a
_ 1
W = - 5 J I [ 0. €.+ 05 €yt 0, €t Tyy Yrz ] rdrdz
0 0
The kinematic assumptions of the two mode theory are
ulr,z,t) = = u(z, t)
(3.28)
wir,z, t) = wiz,t)
which lead to the strains
- I
€. = &g = T U
- Al
€, = W (3.29)
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and stresses

_ _ 1~ .. 5

o, = 0Oy = 2 {(n + ) T U + AW

o, = (vt w +2 .;- u (3.30)
. r 7

Tpz & B 3 U

where A, u are Lame's constants for an isotropic elastic solid.

Then

W2 + W2 1d

L
2 A A A (3.31)
-y Frensn Ho@ieantan
a
0
s e ) w0+ %]
The Euler equations of the principle are
(v+2w) W'+ 2z u= pw
(3.32)
%uW'— 4Q+w0~% u - 2Xx %&'='%pa
a
which are equation (20) of [24] with « = ky = 1. It is not of concern

here how well this theory approximates three dimensional elasticity
theory. The system (3.32) will be considered as given, and the effect

of discretization of the remaining space variable will be studied.
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To study the spectrum of the system, consider a sinusoidal
pulse, for which

)

u U exp[ iy (z=-ct)]

(3.33)
w = W exp[ 1y (z-ct)]
where ¢ 1is the wave velocity, and the wave length A = Zﬂ_'
Then
o -Nr‘ ——
(A, - €% A u
11 12
=0 (3.34)
2
A (A - C) W
L 21 22 JLv
where
- U 8 (A +
o I 2
Yy ap
.
Mo = yap (3.35)
- 2X_
Ay = ¥ yap
A = At2u
22 0
The frequency equation is
¢t oA +A, ] 2+ (A A, -AA.)=0 (3.36)
11 22 11 722 12 721 )
Now consider an N element discretization of the axial
direction. Let
- T
u(z, t) = ¢ (z2) u, (t)
h - : (3.37)

I
-
—
—
N
b
1E
(o]
—
“'.
[

(z, t)

z >
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where Uy » W, are the vectors of radial and axial displacements at
N+ 1 equally spaced sections along the Tength of the bar, and ¢k(z)
is the piecewise linear interpolation function defined to be one at
node k and zero at all others. Then

_ T T
T = 2 [ Yo M]] U ¥ ¥ M22 Wo ]

(3.38)
_ 1 T T T
W = - 2 [ Yo K]] Yy 2 Yo K12 W t Y K22 Yo ]
where
_ 1 12
Mip = 53 My = 7 2" A
: (3.39)
Kip = %- pa~ B + 2 (A +mqp) A
K12 = 2xa C
a2
Ky = vz b
L
N 2 1
_ T _ . Az
A = I ¢ ¢ dz = nfl B hndy A= ‘ 1 2 ,
0
| B = J (? )(¢') dz = nEI Bhag By o= om0 (3.40)
| 0

(]
i
O
-
-
g
——
facd
g
g
[oR
3l
&}
[
o}
(]
=
2
=]
-
@)
=
H
N —
1
coand
i
maad
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and a, is the Boolean assembly matrix for element n. The discretized

equations of motion are then

(3.41)

M oKy Uyt Ky oWy =0

22 Yo
Extracting the k th pair of equations,

ocm—

2
Az 2 1 -k 1 a
I Pa (1 + z !/ N/ ) Uo + [- A,

+2 O+ W0+ 5 /N7 )0zl o + 200§ (E-E7) W= o
(3.42)
B 0a® 0+ /N ) - 22 (67 K
a2 k
+ [- ?Zi‘(* + o) [N ] Wy =0
Again considering a sinusoidal pulse, let
ug = U exp[ 1y (kaz - ct) ]
(3.43)
wﬁ = Wiexp [ iy (kaz - ct) ]
Then
-
— - A0 - )
&y - By T A2 u Y
(3.44)
— - ) —
Aot (Rpp - By T || W
L Ju
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where
T - M3 y2 .:.2yAz A+ ) 2 ;. 2 yhz
Ap = 5 gz )" sin” 5=+ ZL“E‘E‘*“ 3 sin® 55)
= _ 2\ a . - T
Ao - (KE) sin yAz = A,
(3.45)
-+ _ ay2 (At 2y 2 YAz
Rpp = 2 (55)° (F=5) sin® 5%
= 1] 2 L2 yAzy _ 1 =
By = 7 (a)” (1 -3sin" 57 = 5 B,

The frequency equation is then

=4 S - <2 = -
B. Eéz cC' - (A By + A Ei]) c- + (A1] Aoy - A A,.) =0

11 11 22 12 721
(3.46)
The exact phase velocity from (3.36) and the approximate values for
different discretization ratios m = f%* are evaluated as a function of

(%9 and shown in Figure 2, for v = 1/4. For a Tumped mass model,

By = 7 (va)”.

3. Membrane
The spectral approximation of the clamped rectangular membrane
of Tength a and width b can be studied in the same manner as the

simple bar. Here the eigenvalue problem is governed by

¢ (3.47)
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| or by the equivalent variational problem

b

%, j [ ( ¢ )2 + ( @9.)2 - 95- ¢2 ] dx dy = min (3.48)
0

ax

oY o

This eigenvalue problem also governs the transient analysis of a wide

range of problems (e.g. heat conduction and flow through porous media).

E Assuming a solution of the form

¢ (x, y) = sin Egl_ sin D%X‘ (3.49)

which satisfies the boundary conditions, (3.47) requires
_ mm 2 AX 2, nm (2
w o= = [( ?ﬁ‘) + Zy') ( ?N-) 1 (3.50)

where a = MAx and b = NAy.

If the differential equation (3.47) is approximated by the

ordinary five point Laplacian finite difference operator, applied to an

M x N rectangular mesh,

-l ’
[Ny + (R N+ ol leyy =o (3.51)
C

with

‘I’oj = @Mj = @io = @in = 0 (3.52)
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where Qij is the approximate value of ¢ at the mesh points and /S;/i

is the second central difference operator with respect to 1 defined

previously. Assuming

- . mri . onmj ,
®1j sin. = sin (3.53)
requires
2
. 2 .
mal iﬁz- [sin® (BF)+ (2% sin® (5F) ] (3.54)
X

The associated stencil to (3.51) is

Ay
(3.55)

stiffness —lﬁ- <:>~—-—<:)~———(:) + _17. E%;
AX

Q)

Consider now the bilinear quadrilateral expansion over the same

M x N rectangular mesh.

6 (o y) = ¥ (%, y) g (3.56)

where ¢, s the vector of nodal point values, and Yy (x, y) is the

bilinear interpolation function defined to be one at node k (or i, j),

zero at all others, and bilinear in the elements adjacent to node k.
The details of the formation will be omitted. Substitution of

(3.56) into (3.48) gives

2
( K- 9?- M) ¢, = min (3.57)
c
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where
M N T
K = )3 N ..
= =1 i3 %
(3.58)
M N
M = X z aT. M.. a,.

i=1 j=1 W W U

aij is the Boolean element assembly matrix, and Kij and Mij are the

element stiffness and consistent mass matrices.

2 -2 1 -1 2 1 -2 -1
’ Wy 2 -1 1 . X 2 -1 -2
i] BAxX Bhy
‘ 2 -2 2 1
sym 2 sym 2
(3.59)
4 2 2 1 o d
4 2 1
- AxAy
Mi 36 by
4 2 l
Sym 4 e iy —f D

The minimization of the principle yields

.
[K - S MI ¢ = o (3.60)
o
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Extracting the equation at node (i, j) and dividing by AxAy.

1 — — 1 1 —
[ K;Z’ g‘lls/ [:5/1 * Zf?'(] + "’Z:;/i) Lfilj
(3.61)
A AR LA
=z gL/l M rg iyl d 8y = o
which corresponds to the stencil
O—@2—0
a1 + m.;_.J_ @
Ax26 0 @ "76 C23 (362)
O 9

which is seen to be a generalization of the ordinary finite difference

stencil (3.55). Note that if Qij = 0, gfg/j o =0, reducing
(3.61) to
& 1
[ /SS/i + ;ﬁ- (1+ T {::/i ) ] 2. = o0 (3.61a)

| which is the same as (3.17) for the simple bar (or string).

Again using solution for (3.53), the frequency condition

becomes
2
EZ = 55?- [ s1n2 gﬁ- (1 - 3 sm2 g%—)
bx (3.63)
2
AX 2 nrw 2 2
+ =% sin” 3¢ (1 3 sin® =y ) 1/¢cm
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where

_ 2 .2 mm _ 2 .2 nm
cM = (1- 3 sin” 4 ) (1 7 sin
If the mass is lumped in conjunction with the finite element stiffness
matrix, CM = 1.

As in the case of the bar, the errors in the eigenvalues can
be displayed for all ﬁ-— and % The full range of ﬁ- is shown for "ME
of 1/8, 1/2, and 7/8 in Figure 3. Simple finite difference, finite
element with consistent mass, and finite element with lumped mass models
are compared.

Bounds for the eigenvalues of membranes with irregular boundaries
are investigated by Weinberger [ 40 471 ] for various finite difference

methods.

4. Beam

The use of the polynomial solution of the homogeneous static
beam as interpolation functions for a finite element vibration study
appears to have been developed independently by Archer [20] and Leckie
and Lindberg [23]. Their results were presented numerically for several
discretizations. Here the approximation is displayed in analytic form,
and static condensation of rotational degrees of freedom when that
inertia is ignored, is investigated.

The eigenproblem for a beam according to Euler-Bernoulli

theory 1is

EI cN 4 wlue = o (3.64)

4
dX
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subject to appropriate homogeneous boundary conditions, or the

variational statement

L
. 2
%- f [ED (29292 - w2427 dx = min (3.65)
)

The exact solution of (3.64) is

¢(x) = A sin A §~+ B cos A %-+ C sinh 2 f~+ D cosh A %— (3.66)
where
2 2 a4 2 _ EL
w—c:(-L—),c—u

and A is determined from the boundary conditions.

Replacing (3.64) by the simplest finite difference operator,
WANAEE o’ T e = o (3.67)
A '

The solution to this difference equation is the same as (3.66). In this

case, x 1is restricted to %’ and

6. = A sin %

o — i
’ Nt B cos A Tt C sinh A v D cosh X T (3.68)

N
zl>"3

2
= 5L7r 16 sin
Ax
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Since, for fixed %, N - implies sin gﬁﬁ- + o, lim
2.4 ) N

&2 = E‘%—I‘ = w and the approximation is convergent,
Ax N

For the finite element model, nodal rotations 60 as well as

~

transverse displacements ?o are global variables. Letting

+ A (x) 8 (3.69)

~0

6 () = 3 (x) g,
where wk (x) 1is the piecewise cubic interpolation function defined to be
one at node k, zero at all others, and zero slope at all nodes; Ak (x)
is zero at all nodes with unit slope at node k and zero slope at all

others, The eigenproblem then becomes

K11 K12 % =2 M M2 %%
- (3.70)
T ¢ T
Kig  Kop 1 ] 84x Mg My 850%
L N
T T .n n 2 6 -
Ky, = J W) dx = 2 o K a, K = 2 I I
3 Y ot fome My 3 |6 6
L N
- 1 || T " T n n . ____2___ 2 1
Koo = J(i\ YA dx = 2 ey Ky ans Kpp =3 l 1 2'
0 n= AX
(3.71)
L N
- T " T » T n n 2 3 3
K12‘J(‘i’)({,\)dx' Ioay K aps K = =5 l-a -I
o n=1 AX

M, = L @ d = 3 o T
(AT RS 2 L R I I A N +10) 54 156
0



L
N
) T _ T .n no_ AX 4 -3
Moy J (A)(a)" dx = Lo M2 a Mt oTm l 34 '
0
L N
N T B T .n no_ Ax_ 22 =13
My, = J (w)(a)" dx = nfl & Mo o2 M = T 13 -22
0
’ZAX4
Extracting the k th equation, and letting vy = EL-35 s
840c
A=y Byl (A =y B ) | ) o
= 0 (3.72)
(A =¥ B ) CAy = v By ) || 8x
where
A]] =- 6 /N\/ 811 = 6 (70 +9 /\\/)
_ -1 , -1
A]2 = 3 (E-E"" ) B]2 = - 13 ( E-E " ) (3.73)
A22 = b + & 822 =~ 2 -3 _______/::/

are difference operators.

The general solution of (3.72) can be found to be of the same

form as (3.68) for O and with

1 -1
8, = 7 (E-E71) ¢ (3.74)

Bga Bk 7 Baa B Miz2 B8 T A de

and 812 ekAx = 812 ¢k’ where AuB’ BuB are constants, then the

frequency condition becomes

Noting that Aaa ¢k = A@a ¢k’ = B

A v - By +C =0 (3.75)
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where
A = By By - BT
B = By Ay + By A - 2 A, By, (3.76)
C o= By Ay - AL
and
Ap = 2 sind L By = 12 ( 35 - 18 sin? )
K]Z = - 6 sin %: §12 = 26 sin %% (3.77)
Ay = 4(1- &sin?2 1) 622-2(1+6s1‘n2:2-7\:ﬂ-)
Now
Q:- - a0 (1) (3.78)
w
where
Y = v (%t)

Consider all the unmixed zero boundary conditions for a beam;
e.g. a) simply supported at both ends, b) fixed-fixed, c) free-free,
d) clamped-free, The various frequencies will not be determined, the
only concern being whether X differs from A. Since the discrete form
(3.68) simulates the exact form (3.66), ¢ = 0 conditions are identical.

Consider

0 orN (3.79)

~—
-
=~
o
o
‘—'-n
~
]
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Noting that

o o= k) "~ = k"
sin A N cos A N
- k . = k
1 -1 cos A N T -sin A N
7 ( E-E )< ? = sin g < ?(3.80)
. o= k = k
sinh A N cosh A N
- k .= k
cosh A & sinh A &
. N - N

except for the factor, which drops out in a zero condition, (3.79)
exactly simulates the zero slope condition at either end. A zero moment,

implying ¢" = 0, is simulated by [/ ¢, = 0. Noting that

(sin X ﬁ— A f.sin T ok A
N
cos A %‘ _ -cos A Nk'

¢ y = sin? )(3.81)

o= k .oo— k
sinh A N sinh A N
— k - k
cosh cosh A &

\. N _J " N -

again, except for the factor, the simulation does not alter the eigen-
condition. Finally, zero shear, implying ¢" = 0, dis simulated by

%—( E-E"! ) N ¢, = 0, and the combination of the above identities
indicates the correct simulation of the eigencondition. Thus for all the
unmixed boundary conditions, the eigenvectorsexactly sample the true

eigenfunctions and X = A. This permits a parametric display of

=Z|>

approximate frequency as a function of = nn. For the hinged-hinged
beam n = ﬁ-, n an integer denoting the mode. For other boundary

condition see page 203 of [16], where A is given.
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Since the cubic displacement functions satisfy the continuity

requirement of the variational problem (3.65), the above method yields

an upper bound to the eigenvalues. If only the Tower modes are deemed
important, a reduction of the eigenvalue problem to translational degrees
of freedom only can be accomplished by neglecting the rotational inertias
and statically condensing out the rotations. Usually then, the
translational inertia is lumped, as done for the beam by Archer [20], and
for the plate by Clough and Felippa [19]. In the above analytic form,

~ ~ ~

812 = 822 = 0, 811 = 420, and

v = am (A - App/hyp ) (3.82)

The first branch of the spectrum for the full finite element model is
compared with the translational coordinate model and the finite difference

model in Figure 4.

C. Impact of Elastic Bar on Elastic Spring

Consider the longitudinal impact of an elastic bar on an

elastic spring. The governing equation is

1 EA, 0, L 2u _ 1 9% 2. E (3.83)
x wl o :
v
0 subjected to the boundary conditions
A (o, t)=o0
K ox (3.84)
&~ U _
EA — (L, t) + ku(L,t)=o0
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and initial conditions

u (x,0) = o, U(x,0) = %H- (x, 0) = V (3.85)

The exact solution is

u (x, t) Vot + f{x+ct) + g (x-ct) (3.86)
where the particular solution Vot has been separated out so that the
unknown functions f and g satisfy zero initial conditions and will
be determined from the boundary conditions. For t < 2L/c, (3.86) has

the form

_ x L x L

ulx, t) = Vit + f(t+ =-2) H (t+ -2
(3.87)

X L x L

tgt- -2 H (t”E‘-c_)

where H (6) 1s the Heaviside step function, zero for 6 < o and one
for 6 > 0. The first arbitrary function represents the initial wave
front emanating from the bottom at impact. The second function represents
the reflected wave from the free boundary at the top.

Applying the boundary condition at x = o

Bu I R A Ly .

Moo, t) = ¢ [F(t-D-g (t-DTH(t-2) =0 (3.88)
where f' = %g- (8). Thus, g' (8) = f' (8) and g differs from f
by no more than a constant. Then for t <Ll/c, and T = t + X ; L s




0
auo ]
T (x, t) = — f* (t) H ()
L 2L = XL
and for E-< t < <~ t = t - c
up (6 8) = ug (x,t) 4 F () HO(D)
ou ou
1 - _0 S
'8";("' (Xa t) - 3% (X, t) C

Applying the boundary condition at x
EA
c

with f(0) = 0. Thus, letting B8

ft(e) + Bf(e) =-8V, 6

for which

F0) = v, [(1-eP)

%g- (6) =- v (1-¢eF9)

Now (3.83) may also be solved by separation of variables.

elementary exercise leads to

u  (x, t) = Vot + f (t) H (%)

and t as above,

fr(t) + k f(t) = - kvot
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(3.89)

(3.90)

(3.91)

(3.92)

(3.93)

That

o AX
u(x,t) = E [An cos wnt + Bn sin wnt][Cn cos —E—-+ Dn sin —E—J (3.94)

n=gQ
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A C
where w, = —E—-. The gradient boundary condition at x = o implies

that Dn = 0, permitting Cn = 1, while the mixed boundary condition

at x =L Teads to the eigencondition

- X sinA + rcos A =0, r= %%— (3.95)

By trigonometric identity, (3.94) may be cast in the form

o A A
ux,t) = z [ An cos 7?~(x + ct) + B, sin 1?—( X + ct)]
n=o
(3.96)
o An An
+ nzo [ C,, cos 7?—(x - ct) + D, sin 77-(x - ct)]

The first series clearly represents an arbitrary function f (x + ct)
and the second series an arbitrary function g (x - ct). In the Timit,
then, (3.96) is equivalent to (3.86),

A X
Letting ¢_ (x) = cos ' denote the eigenfunction, then
n T

u {x, t)

H

nzo [ A, coswt + B sinwt] ¢ (x) (3.97)

Applying the initial conditions, An =0 and

U (x, 0) = ¢ B, w, ¢ (x) = v, (3.98)
n=o0
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Thus Bn w, are the coefficients in the eigenfunction expansion of the
constant initial velocity Vo' Using the orthogonality of the eigen-
functions over the interval (o, L),

2 VO sin An

B, = . (3.99)

n WA 1T .
n'n (1 + + sin Xn)

The difference equations for the finite element, ordinary
finite difference, and higher order difference models of the simple bar
eigenproblem have already been given in equations (3.17), 3.20), and

(3.23). They are all represented by

AV IR G - VAR (3.100)

2 ,.2
where vy = 9~—%5—-, and o = 1/3, 0, 1/6 respectively. The general
c

solution is given by (3.18) where & and X are related by

(3.101)

. A
1 - 2a sin N

The gradient boundary condition at x = o vrequires A = o, and thus
_ k
¢ = B cos X (3.102)

Applying the mixed condition at x = L, with a central difference

approximation of the derivatives, the following simulation results,

LI NS 6, + K¢ = 0 (3.103)
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Inserting (3.102) and identity (3.80) leads to the eigencondition

sinx + r cos A = 0 (3.104)

=1>|

- N sin

which simulates (3.95) and converges to it as N > =, Note that X
and thus the eigenvectors (3.102) are independent of a, though different
frequencies w vresult from (3.101).

Although the above is the natural finite difference simulation
of the boundary condition, it is not consistent with the matrix eigen-
problem derived by the finite element method. Consider the last
equation of the finite element matrix system (3.15) with the spring at
node N, expressed in its difference operator form,

(V+-E—)?m=%~(]»ocv)$N (3.105)
The left side comes from the stiffness matrix and the right from the
mass matrix. That difference simulation to the boundary condition
(3.84b) 1is now sought which, when combined with the general difference
equation (3.100) so as to eliminate the phantom node N + 1 and
symmetrize the set, yields (3.105). Multiplying (3.105)by two and

subtracting (3.100) yields

(v + S/ + 200 g =-Jz—yu(2v+/_§/)q§N (3.106)

Noting the identity that

v o+ N/ = A+ Vo= E-E, (3.107)
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then

‘l -~

(1+;—ya)-g-(E_E‘)¢N+r$N=o (3.108)

must be the boundary condition satisfied, which is different from (3.104)

and makes A depend on o. For lumped mass ( o = o ), and (3.108) is

the same as (3.103). Further, since
4 sin2
limy = lim 5 = 0 (3.109)
N-se0 N-oo (1-2asin

A
2N

=

then (3.108) converges to (3.84) for all «. The insertion of (3.102)
into (3.108) yields the eigencondition properly associated with the

variational formulations,

-(1+ %~y a ) N sin

=Z|>]

sin X +rcosh = 0 (3.110)

which, although different from (3.104), still converges to the exact
eigencondition (3.95).

Although (3.104) or (3.110) will generate an infinite sequence
of roots of (3.95), the formula (3.701) will yield only a finite number
of w because it is a periodic function of X. This is expected for a
finite degree of freedom system. The algebraic eigenvalue problem
represented by (3.100) has N + 1 eigenvalues, unless r -, 1in which
case there are N. Further, as r - o, Eb + 0, a rigid body mode.
However, the difference condition (3.110) with (3.701) yields only
N eigenvalues if only real X are admitted. The eigenvector of the
highest mode is not of the cosine form (3.102), has no obvious inter-
pretation, and is a poor approximation to the N + 1 true eigenfunction,

which is a cosine function.
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Let ¢n denote the n th eigenvector, with components

(3.111)

=2~

/\n _
¢k = CO0S An
These vectors satisfy the matrix eigenvalue equation

K o" = T M " (3.112)

and the orthogonality condition

Co")T k" = (") M " = 0, (mgn) (3.113)
Now, the discrete field solution

"(t)—g[ﬁ o..+B sinw., 1o 3.114

Uy = z p €OS ® 4 n STnw I ép (3.114)

in view of the initial conditions, yields An =0 and

E{)k =y (3.115)

Thus Eh Gh are the coefficients in the eigenvector expansion of the

constant initial velocity Vo‘ Thus

B = o e m Yo (3.116)
n @, ( gn )T M @n :

Numerical results from the difference eigenproblem (3.110) and (3.101)
agreed exactly with those from the algebraic problem (3.112) obtained

from the eigenvalue routine HQRW for the N cosine modes. The difference
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scheme failed to capture the N + 1 mode, since only the cosine
eigenvector form (3.102) was admitted. The complex roots were not
investigated, where the last mode would be found.

The mode superposition results for the three finite degree
of freedom models are compared with the exact solution of the continuum
problem and the exact eigenexpansion truncated to an equal number of
terms, in Figures 3.5-3.9. Twenty element models are compared for
foundation stiffness ratios of twenty and farty, showing the trend
from acceleration to shock waves. Spatial distributions of bar stress
are shown at the time the initial wave has traveled half way down the
bar, and at the time the reflection from the free end has traveled
half way back. The exact eigenexpansion results are excellent. The
finite element model produces a dip of opposite sign ahead of the wave,
affecting the reflected wave also. The Tumped mass model exhibits a
decaying precursor ahead of the wave front, with oscillations behind it.
The higher order model responds as the average of the other two, and
gives the best results of the three. It is judged that the consistent
mass results are qualitatively the most unsatisfactory of the three.
They indicate for wave propagation problems a phenomenon similar to
that discussed by Washizu [22] for the heat conduction problem. The
results are not worth the extra effort of the banded rather than
diagonal mass matrix. Only the higher order mass model justifies the
effort of the banded mass matrix, but it should be pointed out that
there is no quarantee that a higher order mass operator may be found

for arbitrary two and three dimensional problems.
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D. Step Stress on Viscoelastic Half Space

Consider the one dimensional problem of an initially quiessant,
isothermal, viscoelastic half space subjected to a uniform step pressure.

The equation of motion is

BZU

x
ax ot

and the Tinear constitutive equation is

t
- au - y du
o, (1) = ¢y (o) () + J Cp (¢ - 1) 2 qt (3.118)
0
where CD = Kk + %-G is the dilational relaxation modulus. These
lead to the integro-differential equation of motion
2 . 2 p
e LT S Sl (3.119)
X X C ot

where ¢ = / CD (0]/p is the dilatational velocity, and Eb =
CD/CD (o).

The problem is also described by the variational statement

8V = 0. Leitman's principle takes the form
L
v 1 ' au ou !
V{u}~E1mj~2-[g*CD*-—5(~*~é—>(—+pu*u]dx
— 00

(3.120)
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An N element finite element approximation to the semi-infinite domain

leads to the discrete principle 3 Vy {u} = 0, where (3.3) becomes

VN {g} =%§*ET*K*H_9*ET*R
(3.121)
'!AT ~
ML

and L = NAx 1s chosen large enough so that the near field solution is

insensitive to the boundary condition at L. The Euler equation is

g * K*u+Mu-=g*?Pp (3.122)
or in view of (2.34)

g * K u+ g * K*u+Mus=gqg*p (3.123)
where the matrix K = Cb KO is proportional to the instantaneous
elastic stiffness,

For this probiem with zero initial conditions, Hamilton's
extended principle could equally be used, where

t L
= - ' au x U 1 3 -
W == [ v [ rcplo) Be ey BT R (o) - pusula
t] 0
(3.124)
t
- J g 68U (o) dt = 0
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The same finite element discretization yields Lagrange's

equations,

-~
232 >
+
bt
*
j
+
=
[y
H
2T

(3.125)

which is equivalent to (3.123) which can be obtained from (3.125) by
convolving it with time and invoking the initial conditions.
The proportionality of K to K0 permits solution by

separation of variables. Letting
u(t) = ¢ ¥ (t) (3.126)

and substituting into (3.125) leads to

~ ~

(p + Ty*o)K ¢ + M 6 ¢ =0 (3.127)
or
K, 6 + ——bee Mp = 0 (3.128)
A

The first vector is independent of time., For the second to also be, the

ratio of time functions must be constant , or

K & - ' Mg = 0 (3.129)

and
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The first is the same as for the elastic bar, indicating the spectral
analysis to be governed by the instantaneous modulus. The time equation
is no longer simply harmonic, but rather an ordinary integro-differential
equation for each mode, incorporating the viscoelastic dissipation.

The concern of this Chapter is with the approximation afforded
by a finite degree of freedom system. Thus, it is the exact solution of
(3.122), (3.123), (3.125) or (3.129) which is desired (all equivalent).
Since all formulations would require some approximate time integration
scheme, consider the Tlimit, then, of those solutions as At - o.

As an example consider the problem presented by Nickell [42],
where the material is assumed to have an elastic bulk modulus, and a
standard solid shear relaxation modulus of the form

G (t) = Gg + Gg - Gr ) (1 -exp (- t/2)) (3.130)

where Gg is called the glassy (or instantaneous) modulus, Gr is called
the rubbery (or equilibrium) modulus, and A the characteristic

relaxation time. The example has the folowing properties;

1.80 dyne - secZ/cm2

p -
K = 2.35x 1010 dyne/cm2
(3.131)
Gg = 1.275 x 1010 dyne/cm2
6, = 0.125 10'9 dyne/en?
-6
A= 10 7 sec =1y sec

which result is a dilatational velocity ¢ = 1.5 x 105 cm/u sec.

Nickell presents an accurate numerical inversion of the Laplace transform



65

of the solution which may be regarded as the "exact" solution, His
finite element results will be discussed later, in the context of time
integration schemes.

The response of the half space to a step pressure at several
different times is shown in Figures 3.9, 4.0, Results are compared for
the lumped mass, consistent mass, and higher order mass discretizations.
Oscillations for‘the Tumped and consistent mass models are similar to
the elastic case. The higher order mass results show no significant

improvement.
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4. TIME INTEGRATION OF DISCRETE SYSTEM

A. Mode Superposition vs Direct Integration

In previous Chapters the spatial discretization of the dynamic
problem of a viscoelastic solid has led to a system of ordinary integro-

differential equations,

ME + Kor +# KR ® o= p (4.1)

or a fully equivalent system of integral equations
Mr + g*KOr + g*Kk®yr = g*P+M(rO+POt) (4.2)

The previous Chapter dealt primarily with the special elastic case where
K = 0, or where separation of variables is possible for the viscoelastic
problem. In these special cases, step-by-step integration of the coupled
equations (4.1) or (4.2) is not necessary, in that a modal analysis is
possible.

This writer has not seriously studied the relative efficiency
of the modal method, because of greater interest in the more general
problem with time dependent coefficients where modal analysis is not
possible. For elastic systems on the order of one hundred degrees of
freedom, modal analysis is probably more efficient. The computer program
HQRW developed by Felippa [44] offers an efficient tool for implementing
such an analysis. He employs a Householder transformation to perform a
direct tridiagonalization of the matrix, followed by a modified Q-R
algorithm for the iterative determination of the eigenvalues. Only as

many eigenvectors as desired are computed by inverse iteration using the
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Wilkenson shift ., For large systems having a diagonal mass matrix,
transformation of the eigenvalue problem to canonical form retains both
the symmetry and banded structure of the problem., Here, another Felippa
code, BANEIGf employs a method of Rutishauser for successive deflation of
the eigenproblem, retaining the banded structure lost be the HQRW routine.

In a vibration problem, where the time of interest is after
multiple refiections, only a small number of modes need by computed, and
the modal method is more efficient.

In impact problems, (essentially a short time response before
multiple reflections) the solution is rich in all modes of the discrete
spectrum. Here spurious oscillations near discontinuity surfaces arise,
as discussed in the previous Chapter. Since the higher modes of the
discrete spectrum are in error, one may ignore them, or weight them
proportionately less by some smoothing pfocess such as sigma smoothing [B6 J.
These options of modal superposition are depicted in Figure 4.1 and 4.2
for the case previously studied, impact of an elastic bar on an elastic
spring, to indicate a possible criterion for evaluating step-by-step
methods. The details of modal smoothing techniques will not be treated

here.

B. Step-by-Step Methods

For both the elastic initial boundary value problem and its
spatially discrete initial value representation the time solution can be

considered determined by the initial data at some time; similarly the

* See reference [4546],
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approximate time solution at the end of a time interval At can be
considered determined from the displacements and velocities at the

%*
beginning of the interval.

1. Newmark's Family of Methods

Newmark discussed a family of one step methods for non-linear
structural dynamics problems in 1959 [47]. The solution at the end of a
time step is expressed by a Taylor series, with the remainder approximated

by a quadrature formula,

At
a1 = Ntotn s J (At - ) ¥ dr
0
(4.3)
. 1 2 . 2 .
=~ rotatr o+ (F-8) AT R+ BALTE
At
T B J £ odr
0
(4.4)

o rk—}» (]ny)Atrk + YAtrk+]

where B and +y are free parameters of the quadrature, and the
accelerations are determined from the differential equation. Specialization
of these constants leads to a variety of well known methods, which will be

indicated later. If B = 0 and the mass matrix is diagonal, the method

*
That the solution for a viscoelastic problem also depends upon an

initial history in a special way is recognized, but ignored here to address

an important aspect of the elastic response.
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is explicit, whereas for any B8 > 0, the method is implicit, requiring
the solution of a system of Tinear algebraic equations to advance the
solution. Here, the technique will be applied to the linear viscoelastic

system defined by (4.1). For automation of this process, let

. 1 2 .

A= retatr s (5-8) A7 F (4.5)
1 1 .

[K + ———M]r = p +——MA - (R®r) (4.6)

o Tad k1T dern T Tl A R

r r =

Tewq = Dot CT-y ) ot f v yoati (4.8)

where the convolution of K goes back to the zero (stress free) time.
Its discretization will be deferred until Tater. The initial acceleration

is given by

by
Boo= ML - K v (4.9)

~0

If K=0, or the discretization of the hereditary integral
is not made to depend on "+ 1 the left hand coefficient matrix of
(4.6) need be factored only when At changes, greatly reducing the

computational effort.
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2. Integral Formulation

If one applies the integral equation of motion (4.2) step-by-
step, its use as a recursive algorithm requires appropriate quadrature
formulas for the three integrals. MNoting the similarity in the structure
of the three convolutions with (4.3), let

At
2 2

1
7 - B ) AT K r +BATK

§
—
~
=
=
=
i
—

( At

O

2 2
- B ) At P+ B At gk_” (4.10)

Sy
—~
g

H

—
—
I
=)

2
—~
N —

[ (at-c) k@rarz (3-2)0t? K@)+ g ot? (K@)

0

k + 1

If the function P (t) 1is known analytically, then the second integral

~

could be computed exactly, a property not shared by the Newmark approach

of the previous section. Again deferring discretization of the interior

hereditary integral, insert (4.10) into (4.2), and divide by B Atz,

1 1 1 2
(K + M] r =P + {(-B) At [P, - K r
0 8 Atz ~k + 1 k4T 8 Atz 2 ~k o ~k

(4.11)
- K@) ]+ wln v st - (RO

If one defines

Po = P - Ko - (k@®r) (4.12)
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and uses the previous definition of A, one gets (4.6), the same formula
as the Taylor series method. To apply this to the next step, one needs

a rule for advancing the velocities. Differentiating (4.2)

Me + h*kor + h*R®r = h*p + M1, (4.13)

where h (t) 1is the Heaviside step function. Applying it step-by-step,
and noting the similarity in the structure of the integral with the

second of the previous section, let

At
J KordT=(1—Y)AtKO£k + YAtKork+1

At

[ rar=t-yate + yarp, (4.14)

~

0

n

(1 -y) ot (R®r), + yat k®r), |,

~

At

J K@ r dr

0
Substituting into (4.13)

Mooy = (-vdat [P - Ko - (KOp),]
(4.15)

YAt IRy Ky - (RO Ty

and using the definition of , one gets (4.8). Thus, the step-by-step
application of the integral method is essentially equivalent to Newmark's

method, with the one advantage of defining a generalized load rather than
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discretely sampling it. If one substitutes the differential equation (4.1)
into the Taylor series remainder in (4.3) before using the quadrature
formula, one gets the integral formulation, including the generalized

loads,

C. Error and Stability Analysis of Discrete Elastic Systems

An error analysis of (4.1) with K =0 accomplished by studying

a single degree of freedom. If the transformation

r o= ¢ z (4.16)

Z + Aoz o= PF (4.17)
where

Ko = Mo

oMo = 1 (4.18)

.

and A is the diagonal matrix of eigenvalues w? s, with the columns ¢1

of & the corresponding eigenvectors, then the same transformation
o= %oz (4.19)

uncouples the numerical integration of the system (4.6). In effect, the

same time step is applied to each mode, even though A and ¢ are not

computed.
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Considering the single equation

(4.20)

the application of the algorithm defined by (4.5) to (4.8) to successive
time steps and the elimination of the velocity and acceleration leads to
the following second order difference equation in terms of displacement

only:

i

L,y

2 24 — 1, .2 _ —
[(1+ee)5/+e]zk+(y--2-)e vzk

(4.21)

D+6 /7 + (-9 v at? -

where 6% = @ at? » and /N/ , V are the second central and backward

difference operators introduced in the previous Chapter.

Introducing the notation az = 62/(1 + B ez) and 6§ =y - %.,
one gets
(N + W)z, + 662VI, = 0 (4.22)
k k :
for the homogeneous case. Seeking a solution of the form
- _ .k
Zp = A (4.23)

leads to the characteristic equation

VMoo (2-af 668 a ¢ (1-64d%) = 0 (4.24)
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for which

>
it

R exp (x1ia) (4.25)

where

i

A (4.26)

and

o U//] _ uz (1 + 6)2
a = tan"] > 4 (4.27)

1 - %T-(l + 8)

If y< 1/2, a negative damping is introduced by the algorithm,
leading ultimately to an unbounded response, even if oscillatory. For
y > 1/2, a positive damping is introduced, ultimately annihilating the
transient response. For this reason, Newmark, Nickell [48] restricted
further discussion to the case <y = 1/2. For naturally discrete systems
this seems reasonable. However, the generality of this damping parameter
will be retained here, as a potential throttle on the spurious osscilations
of the discrete system (4.1) itself, in its approximation to discontinuities
in the exact continuum solution.

To ensure an oscillatory response, a must be real. For a

to be real

1 - 7 of (1+8)%> 0 (4.28)
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Thus, a stability 1imit is imposed on At such that

o< [7 +e)f -1 172 | (4.29)

For the algorithm to be unconditidna]]y stable,

B > %— (1+6)° | (4.30)

which includes the special value of 8 = 1/4, & =0 given by Newmark.
Positive & decreases the stability 1imit, or increases the B needed
for unconditional stability.

0) has been discussed by Newmark [47] and

The undamped case (&

by Nickell [48]. For this case

-1 o 1 -_}4_&2 -1 a
a = tan T3 = 2 sin ( §~) (4.31)
] ""2"0(.

For the particular loading

* _ 2

P = Pyt P, kot (4.32)
the difference equation (4.22) has the solution

_ P, P, At

z, = Acos ka + B sin ka + — * 5 k (4.33)

w w

Imposing the initial conditions, then

P
z = A + 0 (4.34)
o
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2 v AT (4.35)
and thus,
Z, = z_cos ka + z_ At sin ka fkl (1 - cos ka)
k 0 0 sin a w2
P At .
0 sin ka
* Y (k- sin a ) (4.36)
W
which simulates the exact solution of (4.20), for that particular
loading, of
}_0 At o
z, = z, cos ke + 5 sin ko + ;ﬁ- (1 - cos k8)
(4.37)
b at .
0 sin ko
* W2 (k- '*?T'"‘)

Although the forms of the solution are similar, the approximate period is

in error in the ratio

(4.38)

|
i
|

This ratio, as a function of At/T, is plotted in Figure 4.3. Although
B = 1/4 1is the threshold of unconditional stability, one sees that as
At >> T, (i.e., 8 - =), the approximate period tends toward twice the
time step, a meaningless oscillating result of finite amplitude. Thus,

unconditional stability should not be pushed too far.
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The peak responses to an initial displacement, and to the step
load, are correct, but those due to initial velocity, and a linear load
are in error. Newmark claimed [47] that the average acceleration method
(B = 1/4) produced the correct peak response to an initial velocity and
accordingly advocated that method as most suitable for step-by-step
integration of dynamic problem. However, he incorrectly imposed the
initial velocity condition (4.35) and his equation (23) as well as his
table (2.6) are incorrect. Comparing (4.36) with (4.37) the error in

peak response to an initial velocity is actually given by

‘ 2
6 _ 1+898
STh 3 ; .1 . (4.39)
1+ (8 - E‘) 5]

which for 8 = 1/4 increases quadratically with At, Thus for- Targe
time steps, large amplitudes compound the erroneous periods of the higher
modes of the system. Although these errors do not grow in time, they can
seriously perturb the total solution even though the Fourier component of
the mode is small.

Newmark's family of B methods with y = 1/2 (6 = 0), includes

the following well known methods:

1. (B = 0) This explicit method is equivalent to that obtained by
the usual second central difference
approximation to the second time derivative of (4.1) or (4.20). It is

unstable for At > 0,318 T.

2, (B =1/12) This implicit method of Fox and Goodwin [ 1, has the
optimum B8 for convergence as At -~ 0, It is unstable for

At > 0.389 T.
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3. (B =1/6) "Linear acceleration" method. Unstable for
At > 0.551 T.

4. (B = 1/4) "“Average acceleration" method. Unconditionally
stable.

Can an optimum B be recommended? For an individual equation, figure
(4.3) shows that for any At there is a 8 (or conversely, for any 8
there is a At) that yields the exact period, but this offers no help
for the system of equations (4.1),

For an accurate integration of the system of equations (4.1)
with the largest possible time step, the higher order method of Fox and
Goodwin (8 = 1/12) offers a tempting possibility. If the highest
frequency of the system can be estimated then the time step required to
ensure stability can be calculated. This presumes that the higher
frequencies are important in the solution. For most vibration problems
this is not so, and the small time step required to ensure stability of
the higher modes results in unnecessary computation, In shock problems,
even though higher modes are important, the higher modes of the discrete
system are significantly in error, and it is hardly worth integrating
them accurately. Finally, in continuum problems with large variations in
mesh size, or with large relative stiffnesses between two materials, the
highest frequency may be orders of magnitude greater than the effective
frequencies of the solution in the range of interest. Thus, an
unconditionally stable algorithm seems imperative for the more complicated
dynamic problems.

For simplicity, once one has selected the degree of damping

desired, B8 can be computed from (4,30) to guarantee unconditional
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stability. However, if one can obtain an upper bound for the highest

frequency of the system, then applying (4.29) one need only have

B > -}1- (1+68)°% - 2] (4.40)
emax

In other words, B8 need not be as great as indicated by (4.30), and thus
the method could be made more accurate if one is willing to computationally
estimate the highest frequency. Figure 4.3 shows the considerable

improvement that can be made in reducing B8 from 1/4 down toward 1/12.

D. Suppression of Higher Modes

1. Wilson's Method

The first effort of which this writer is aware to compensate in
Tinear structural dynamics analysis for the spurious oscillations
inherent in discrete approximations to continuum problems was Wilson [50].
He started with the ‘linear acceleration method commonly in use at the time
for step-by-step dynamics analyses of structures. This method which is
a member of the Newmark family ( 8 = 1/6 and vy = 1/2) was popular
because of its derivation from the intuitively pleasing notion of
continuity in time of displacement, velocity, and acceleration, the 1atter’
two fields being derivable from the first. Wilson's modification of the
method, motivated by the desire to minimize unwanted oscillations,
clouded the notion of continuity of the fields in time, but succeeded in
generating an unconditionally stable algorithm with sufficient inherent
damping to suppress the oscillations of the higher modes. The full
derivation of his method will not be given here [5g]. The basic

motivation is that the acceleration field of the linear acceleration
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method ought to be most accurate at the midpoint of the time interval.
Thus, if one wants to advance At, one applies the linear acceleration
method to an interval of 2 At and then evaluates the result at At, and
then proceeds step-by-step.

Considering (4.21) for the linear acceleration method, one may

define the following difference operation

_ 1 .2 -
Lo,z = W+ o701 7
(4.41)
1 * 2
- Lv+ ¢ [N Pt
Then, the Wilson method leads tb the governing equation*
- 2 - =
(V+] )ﬂz(]/6) Zk + 6 M Zk = 0 (4.42)
Letting
- k
z, = A (4.43)
'E leads to the characteristic equation
|
‘
(2+0°) 23-52% + 4a-1 =0 (4.44)

for which all three roots remain within the unit circle for all 6 = wAt,

2 . 62/( 1+ 1 92 ).

where a 6

This unconditional stability has already

*
It should be noted form (4.42), that Wilson's method results in a third

order difference equation approximating the second order differential
equation (4.20), and should be investigated for the possibility of an

unstable root.
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been shown by Nickell [48]. The method, however, has considerable
damping, more than is needed to control the spurious oscillations of the
discrete approximation. The mid point idea has been generalized to an

optima1 point method by Farhoomand [51].

2. Nickell's Method

Another effort in a similar direction was presented by
Nickell [ 52, 42, 48 1. His spatial discretization was obtained from
Gurtin type variational principles, resulting in the discrete set of
% integral equations (4.2). His basic time integration schemes result
from introducing a one step quadrature formula into the convolution and
solving to advance the displacements. The quadrature formula is obtained
by introducing the interpolation field

r(t) =0 () _q F 0y (E) vy +g () (4.45)

~

where ¢1 R ¢2 , and ¢3 are quadratic interpolation functions. It

turns out that this is the highest order one step quadrature possible, and

corresponds to the Fox-Goodwin method (8 = 1/12). However, the notion of
continuity Ted Nickell to advance his velocity by differentiating his

displacement field (4.45) to obtain a velocity field

r (t) = ¢'| (t) Ek -1 + ¢2 (t) rk -1 + ¢3 (t) rk (4~46)
from which %k is evaluated, rather than the consistent order
approximation implied by (4.13) and (4.14) in the previous discussion

of the integral method. Nickell's velocity formula becomes

.2 . 2
" ST A Tk-1"Tk-1 7t A Tk (4.47)
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But, from (4.2) and (4.45), together with the previous definition of

e o
) . 5 .2, 1 2.
L L S IR AL S B LI (4.48)
and
Posr o+ 2 At T + oAt | (4.49)
Tk -1t F At 5 At :

Thus, Nickell's basic method is seen to fall within the framework of the
Newmark family with 8 = 1/12 and vy = 1/6. Since y < 1/2 the method
produces a negative damping (i.é., unconditionally unstable), a result
indicated in his latest paper [48], and explains his earlier difficulty
encountered in trying to do elastic wave propagation with his basic
method. Guided by Wilson's experience, Nickell used a simi]ar‘technique
of evaluating his solution at the middle of a time step, then restarting
the procedure from there, The details of his method are contained in
[48], the pertinent result being that it is also unconditionally stable,

and possesses inherent damping, though not as great as Wilson's method.

3. Newmark & Control

Wilson's and Nickell's methods convert conditionally stable or
unstable algorithms into unconditionally stable algorithms which smooth
out high frequency oscillations through their inherent damping, The
disadvantage of the damping is that it may destroy more of the solution
than is desirable. Since both methods are convergent as At > o, a
smaller time step can revive desired oscillations at the cost of extra

computational effort. In other words, all stable time integration
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schemes will converge to the exact solution of’the spatially discrete
system, with attendant spurious high frequency oscillations in continuum
impact problems.

The use of ¢ damping with the Newmark family of B8 methods
permits a controlled degree of damping for any desired time step. The
amount desired might be gauged from the amplitude decay equation (4.26),
but more likely must be judged from experience. The use of this damping
ought to be considered as a data smoothing technique. At present, it is
a black art, similar to the artificial viscosity used for years to

accomplish a similar purpose in hydrodynamic shock analyses [54].

E. Examples

1. Triangular Pulse in Elastic Slab

The effect of approximate time integration schemes in.con-
junction with a lumped mass spatial discretization is best illustrated
by the one dimensional wave operator which governs the transmission of
a plane wave through an elastic free-free slab. This operator({the same
as the simple bar operator treated in the previour Chapters)is non-
dispersive 1in character, so that a triangular stress pulse impacting
one face of the slab travels undistorted through the slab, and back again,
alternating from a compression to a tensile pulse due to the stress free
boundary conditions. The lumped mass spatial discretization imposes its
own inherent dispersion on the solution, as illustrated in the impact
problem of the previous Chapter and further indicated in this example
by the upper left portions of Figures 4.4 - 4.6. The notation At > o

implies the converged (or exact) time solution to the spatially
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discretized problem. As before high frequency oscillations emanate from
the discontinuity points of the solution. To achieve this converged time
result a time step of one fifth to one tenth of the characteristic time
of the material ( Ax/c ) was required.

For comparison the unconditionally stable "average acceleration"
method ( 8 = 1/4 ), and the optimal B8 method of Fox and Goodwin
(8=1/2) are shown in the other left hand portions of the series of
figures. Both are shown for the characteristic time step of Ax/c,
with no artificial damping ( § = 0 ). The average acceleration method
exhibits a noticable dispersion as time advances in addition to the high
frequency osci]]atioﬁs. The Fox—Goodwin method is remarkable similar to
the converged result. Applying the frequency analysis of the previous

Chapter, namely Eq. (3.21) with X = nm,

T . = =— > T (4.50)

Now entering Figure 4.3, At/T < ., 318 for all modes, and for g = 1/12,
the frequencies of the discrete spectrum are accurate to five percent.

It is the high frequency oscillations which required five times more
computation to achieve pointwise convergences,

A small amount of & damping was used in each case to
successfully smooth the high frequency oscillations. The B of . 276
was computed from (4.30) to guarantee unconditional stability, though
all B values are stable at the time step considered. For comparison,
the Wilson algorithm is shown for the same time step. It involves about
ten percent more computation and leads to considerable damping as time

progresses.
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The considerable success of the small artificial damping in
conjunction with the low B leads to the recommendation to use the
smallest B consistent with the stability requirement imposed by the
time step desired. For any B8 (even the explicit B8 = 0), a small
enough time step can be found to ensure stability. If that time step is
considerably smaller than the characteristic time of the wave it would
appear preferable to accept a larger B to ensure stability at the
desired time step. This stresses the need to obtain an upper bound
(or accurate estimate) of the highest frequency to enable one to compute
the minimum acceptablie B8 from equation (4.40).

For vibration problem the desired time step may even be orders
of magnitude greater than the characteristic one., In such a problem the
important Tow modes of the continuum are accurately approximated and
the higher inaccurate but unimportant ones can be damped out with a
suitable §. Thus, the unconditionally stable average acceleration

method (with suitable &) is the simplest choice and should suffice.

2. Rigid Impact of Higher Order Bar

Although the evaluation of algorithms for general two and

three dimensional wave propagation problems was an objective of this
study, only simple problems amenable to exact solution (or economical
empirical convergence) have been investigated. The simplest treatment
of a second space variable is the thickness of a plate or the radius of

a rod. The latter suited a pending related appliication and so a higher
order bar theory was constructed. The problem considered is spatially
discretized by the bilinear quadralateral finite element with one element

through the radius. For the solid bar this allows three degrees of
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freedom at each station along the bar and can be considered to define a
three mode bar theory. The rigid impact of an isotropic elastic bar
with v = .4 and a Tength of five times the radius was investigated.
For the elastic bar the initial shock wave discontinuity is equal to
that of the one dimensional strain wave, travels at the dilational
velocity, and does not decay. The three mode theory (defined by the
Timit as Az » 0 and At + 0 for one radial element) trails oscillations
behind the mentioned discontinuity, ultimately followed by the group
velocity phenomenon idealized at long times as the simple bar wave.

For the short length of bar and time considered, the dilatational and
simple bar phenomeniremain highly coupled. The progress and reflection
of the wave at the free end of the bar are depicted by the solid line in
Figures 4.7 - 4.9. The dashed Tine represents the simple bar theory.

The simple bar velocity o and dilatational velocity ¢, are related

by

]

C
'é:‘ /( 1 +(\)1)_(V])-‘ 2V ) (4.5])

and the simple bar theory stress amplitude is that same percentage of the
dilatational jump. As time progresses, the dilatational spike narrows,
and although in Figure 4.9 it is quite narrow, its train of oscillations
still significantly affectsthe solution. This so-called "exact" solution
of the one radial element theory was obtained as a converged result of
the characteristic type algorithm discussed in the next Chapter. It
provides a suitable basis for evaluating the general algorithms discussed

in this Chapter.
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The basic algorithm considered here is the unconditioné?]y stable
average acceleration method. Its two striking properties are 1) the
smearing of the dilatational spike and 2) the high frequency oscillations
emanating from the discontinuity and perturbing the solution for a
considerable distance. The mesh used uas fifty elements (a total of 153
degrees of freedom). The lower figures show the successful smoothing of
the high frequency oscillations with a small §&§. There stili remains a
significant dispersion of the solution in the vicinity of the front. Many
hundreds of elements would be required to even approach the height of the
spike. This Toss may have to be tolerated, but some understanding of the

nature of the error seems necessary,

F. Approximation of Viscoelastic Integral

The extension of the Newmark family to viscoelastic problems
requires only the time discretization of the hereditary integral at the
end of equation (4.6). Its discussion has been deferred to this point
because no error analysis has been attempted, nor does more than
computational experiment seem feasible. However, the same idea is
advocated that was presented by Taylior, Pister, and Goudreau [29] in the
quasi-static case; that is, that rather than approximate the integral by
a general quadratyre formula, one ought to discretize the unknown
displacement field by some appropriate interpolation function and then
exactly integrate the kernel’ Taking advantage of known structure in

this way has proved superior to global quadrature.

*
For temperature dependent kernels, an additional approximation must be

introduced into the integration.
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Let the displacement field be approximated piecewise, Then

. @ i ' |
R®p) ,y = [ emmenkeE-err e @52
"l:

ti~1

Integrating by parts, and noting that K does not contain the

instantaneous modulus matrix, (i.e., K= KO + K1 (t)),

k+1 1 .

R®r) 4y = K Gy ) rg 3 f K (& -eh) rdt

Assuming r to be piecewise linear, then

-kt

- k + 1

RO 4y = Ky gy q)rg + Eoan (4.54)

where

| t

K+1 _ 1 SN

A T LR Rk (4.55)
bt

For the special structure of a kernel represented by an exponential series,
the recurrence relation of [29] may be used.
Inserting (4.54) and (4.55) into (4.6) and moving the implicit

part to the left hand side,

K+ 1 1 _ 1
toe MIirg ey = Pyt — M-Sy

[KO + 1
BAt BAL
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where
5 R N T RN LI L I S B
Ao+ T e Lot E AT k+1 Tk
and A is given by (4.5) and I% t by (4.55). For the isothermal

case, IE : } depends only on At and the coefficient matrix meed be

factored only when At changes., For the general non-isothermal case it
must be factored every time step.. Although this is the procedure
currently used in quasi-static thermo—viscoe]astic analysis, the
representation of the history integral by a less accurate explicit
representation might be better in that many more time steps could be
integrated with a single factored matrix. If radical changes in
inhomogeneity result in time, periodic use of the implicit form might
suffice. The numerical solution of thermo-viscoelastic problems in more
than one space variable still needs much study, especially explicit
methods or the alternating direction methods which minimize implicit

computation.
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5. EXPLICIT ALGORITHM AND CHARACTERISTICS

A. Special Property of the One Dimensional Wave Operator

The one dimensional wave operator

2 u _ 1 3%y (5.1)
3 X c2 3t _

possesses an important property which will prdve useful in the approxi-
mation of a class of wave propagation solutions. The equation (5.1)

may be transformed by the change of variables

E = x + ¢t
(5.2)
n = X - ¢t
into the equation
82 u
sean - 0 (5.3)
whose solution
u(gm) = f(g) + g (n) (5.4)
for arbitrary f and g was already introduced in Chapter 3, If
equation (5.3) is integrated over the diamond defined by lines of
constant & and n in Figure 5.1, one obtains the exact relation
Up = U t Uz - U (5.5)

Thus, if u is known along the characteristic Tine ODB and the vertical
axis, equation (5.5) exactly propagates the solution over the space-time

grid.
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Alternatively, if the displacements and velocities are known

along some line of constant t, say the initial axis, where

u (x,0) = u (x)
@ ® (5‘6)
u (x,0) = u_ (x)
0
one may use the exact relation given by Courant [ 2]
1 ,
u (x,t) = E-[ uy (x + ct) + u, (x - ct) ]
X + ct (5.7)
+ Zlb ﬁo (o) da
X = ct
Applying this form to the line CD'B,
u=][u+uJ+J—fﬁdx (5.8)
A 2*- B C 2 c ‘

CD'B
The simplest discrete representation of (5.1) is obtained by
approximating the second derivatives by the second central differences
of the displacement. Applied at point D' of Figure 5.1,
ug - 2 Upr + U Uy - 2 upe + Up

= (5.9)
sz c2 At2

which results in the following explicit algorithm for Up:

2
U, = c At
A f75;- [ up t ue - 2 Up ] + 2 ugr - up
(5.10)

If the time step is chosen equal to the characteristic value (c At = Ax)

the discrete propagation formula reduces to the exact one (5.5). This
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was pointed out but not developed by Salvadori and Baron, p. 267 of [53].

If one introduces a central difference representation of the
velocity,
Up | (5.11)
2 At

and combines it with (5.5) to eliminate Ups

1 o
Ug 5-( ug * ue )+ Upe At (5.12)

The exact form (5.8) reduces to (5.12) if the velocity is constant over
the interval CD'B, and Ax = cAt. Thus one may propagate exactly a piece-

wise constant initial velocity field by the algorithm.

B. Explicit Algorithm as Characteristic Type

Consider now the more general hyperbolic equation

2

2
_z_.fu - L m_z_z t“ v ol (u) (5.13)
X C

where the linear operatordzi implies either the lower order differential
operators contained in the wave equations governing cylindrical, spheri-
cal, or radial shear waves, or the linear integral operator of the simple
viscoelastic bar discussed in Chapter 3. Integrating this equation over

the diamond of Figure 5.1 and using (5.5)

Up = ug * uc - up < fat(u)da (5.14)
ABDC
The integral may now be approximated by an appropriate quadrature formula
in terms of the four nodal displacements, The power of such an algorithm

which exactly captures the discontinuity property of the solution will be
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demonstrated in the examples to follow,

If the quadrature is made to depend on u,, the method is

A
Tocally implicit in that a division is required to determine Up-

It is not imp]icit in the sense of Chapter 4 in that Up is not coupled
to the other values of u along that 1ine of constant t. Only the
fully explicit form has been considered by this writer, but the other
Tocally implicit forms probably have better stability properties and
should be investigated.

The wave character of an operator such as (5.13) is disquised

by the spatially discretized equation
MP o+ Kor +# KOF = p (4.1)

However, if the matrix K0 does contain in part the discretization of a
second space derivative, then the explicit 8 = 0 method using the
characteristic time step contains the property of (5.14) with respect
to that space variab]e.* If the operator éi,also contains second space
derivatives with respect to additional space variables, important
stability restrictions arise which Timit the usefullness of the method.
Inusing B =0 and vy = 1/2 with the characteristic time
step in the algorithm of (4.B.1), an explicit time discretization of an
applied boundary stress is implied. For the one dimensional wave
operator this leads to the exact solution for displacements and stresses
only if the applied stress is piecewise constant in time. The algorithm

can be modified to yield exact results for piecewise Tinear applied

In Chapter 3 it was shown that a piecewise linear expansion in the
variational method was equivalent to the central difference approximation

to the second spatial derivative.
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stress 1f one uses the integral form contained in (4.B.2). In (4.10)
a higher order quadrature may be used for the load vector integral
than the B8 = 0 required in the stiffness integrals to generate the
explicit method. A choice of 8 = 1/4 1in the load integral then
happens to ensure exact results for displacements and stresses for the
one dimensional wave operator subjected to piecewise linear applied
stress.

The method presented here is essentially the "discontinuous
step" or "direct" method of Mehta and Davids [55] and Koenig and
Davids [59]. They apply global balance laws to a discrete space-time
element and write the discrete equations without ever considering the
differential operator of the problem. The time step in their space-
time element is chosen as the characteristic one, and so the same
algorithm ensues as basically considered here. However, because
the partial differential equations are never considered, they have no
basis to assess the nature of the approximation and in particular the
stability of the algorithm. They make claims for stability which are
not supported by the examples to follow.

Another important method of solution for this family of
generalized one dimensional problems is the classical method of character-
istics. First the system is reduced to a system of first order partial
differential equations. They are transformed into canonical form along
the characteristic Tines and then finite differences are used. An
advantage of this method is that in the transformation to canonical form
an ordinary differential equation results governing the intensities of
discontinuities propagating through the medium. This equation yields
values for the variables and their derivatives along the characteristic

line ODB in Figure 5.1. Such jumps in the derivatives are only approxi-
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mated by the explicit method presented here, The disadvantages of the
method of characteristics is the retention of the space and time
derivatives as additional primary variables, and the lack of an auto-
mated procedure for the spatial discretization of the subspace normal

to the direction of propagation. That remains an open challenge for

the full utilization of this otherwise powerful method.

C. One Dimensional Examples

1. Step Stress on a Viscoelastic Half Space

The problem of a step stress on a viscoelastic half space was
formulated in Chapter 3, where the results of the converged numerical
Laplace transform inversion obtained by Nickell [42] were presented.
Figure 5.2 shows the approximation afforded by the explicit algorithm
when the characteristic time step is used. Even a coarse mesh shows
superior results to those of the finite degree of freedom model of
Chapter 3 where a finer mesh was used. Since the elastic part of the
operator is captured exactly by the algorithm, the oscillations about
the exact solution are due to the approximation of the hereditary
integral. The algorithm captures the exact location of the discontinuity,
but only approximates the magnitude of it.

2. Triangular Pulse Through a Viscoelastic Slab

A second example, also taken from the work of Nickell [42], is
that of a triangular stress pulse through a viscoelastic slab. The
operator is the same as for the previous example, except that the stress
free second surface of the slab defines a finite one dimensional domain.
The triangular stress pulse is dispersed and decayed by the viscosity of
the medium as it is reflected back and forth. The results of the explicit

characteristic algorithm are presented in Figures 5.3 to 5.6 and compared
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with Nickellts exact and finite element results. While the former results

show no detectible error for-a coarse mesh, the results of Nickell with a
finer mesh show the geometric dispersion of the finite degree of freedom
model and the damping of the time integration algorithm.

This and the previous example show the significance of the
discontinuity property of thé operator. It is elastic wave propagation
which presents the principal challenge to approximation theory. Once
that is achieved, viscoelasticity is easily accommodated.

3. Qthers

Efficient approximations are also obtained for the one dimen-
sional elastic and viscoelastic cylindrical, spherical and shear waves.
In particular, the propagation of plane waves through é layered half

space (or simple bar) can be captured exactly, if the acoustic imped-

ances, v (A + 2u)p,(/ Ep), of the layers are in the ratio of rational
numbers. In that case an integral number of elements can be found for
each layer such that for all 1ayefs the propagation velocity of the
algorithm matches the corresponding continuum velocity. If the impedance
ratios are not rational, the true solution can be bracketed by the solu-
tions for adjacent rational impedance ratios. Since subdivision of a
mesh with rational ratios preserves the ratios, this bracketing can be
made as tight as desired.

For all these one dimensional problems no stability problems arise,

as long as the characteristic ratio is ensured.

D. Two Dimensional Examples

1. Higher Order Bar

A particular higher order bar theory, defined by one radial

finite element, was introduced in the previous chapter, The solid cuprves



115

Cit/a

.0 —> —

’Q —
3.0 wv 8
T L _
=
:ZI.O-- —
™~ \\/
SN 2]
e
0 van
i - i
1.0} K
= (VAR
o o]
0 16
—
0 2 4 6 8 T

Z/a

FIG.5.7 RIGID IMPACT OF HIGHER ORDER BAR
(V=0.4, C,/C,=0.68)



116
I ! I ! C,t/G
Cat
LO____ -Ld_--:O.lO — e

TN

0 B \—TL?/\V/'\V[\V 8

10— UNSTABLE ~
’ ZONE

R N
< _ Y

< [ | < | |

~< i i i i

B0l S -00999 ‘sHAVED' .
~

b [ _—— )

— > ~__ A/ 7992
0 \\\\~<i,k VY U

.O— -

FIG.5.8 RIGID IMPACT OF HIGHER ORDER BAR
(/ =0.48, Cy/C,=0.34)



117

expect that the use of a time step within the stable region  should
result in the bounded mesh induced oscillations of the finite degree of
freedom model discussed in the previous two chapters, Yet they do not
arise. The explanation for this is seen in Figure 4.3, As long as the
shaving is small the algorithm 1ies on the vertical portion of the g8 = 0
curve and retains the character of the hyperbolic solutdon. If the time
step is decreased too much, the solution will take on the character of
the lumped mass model. |

An explanation of the instabilities of this algorithm exhibited
in Figures 5.7 and 5.8 would require the determination of the spectrum of
the discrete model by the methods of Chapter 3, and will not be attempted
here. The essential fact is that the characteristic time step used ex-
ceeds the stability Timit of the highest frequency of the system which is
one other than the highest longitudinal mode.

2. Two Dimensional Bar

An attempt to account for the full radial effect of an elastic
bar during longitudinal wave propagation was presented by Bertholf [57].
He used a conventional finite difference discretization of both space and
time. With his time step less than the characteristic one, that algorithm
corresponds to the stable regime of the 8 = 0 method. Bertholf studied
several examples of a uniform step stress applied to the end of a bar
and exhibited the axial strain at the Tateral surface. Since at the
surface that strain does not suffer any finite discontinuity, he achieved
accurate values with a mesh of ten radial elements and about thirteen per
bar radius of length. The discussion of his paper by Tang and Yen and
Bertholf's closure [58] acknowledgedthe mesh induced oscillations in the

values of axial strain near the wave front in the interior of the bar.
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Figure 5.9 shows that region, defined by the plane dilatational
front and the circular unloading wave emanating from the outer surfaée
boundary point at the impact end of the bar. This second front combines
with the first at the intersection of the plane wave front with the
surface to satisfy continuity of the axial strain at that point. The
solution in this region 1is that of the one dimensional strain theory.

It does not attenuate but the region itself shrinks in size as the radius
of the arc from the initial outer edge more nearly equals the axial
distance down the bar. Behind this second front the influence of the free
Tateral surface significantly complicates the otherwise simply defined
problem. For long times the solution away from the end of the bar be-
comes more uniform in the radial coordinate and is adequately represented
by higher order bar theories. It is evident that the dilatational spike
shown in Figures 4.7 and 4.8 is a proper limit of the true solution and
not an aberation of the approximate theory as frequently speculated [60,
61].

The explicit characteristic algorithm was applied to Bertholf's
finite bar of one diameter Tength, using a mesh of eight radial and fifty
axial elements. It captures the exaét Tocation of the dilatational dis-
continuity. Because the curvature of the second unloading front varies
with time, it is not possible to capture the unloading discontinuity with
a fixed mesh, However, since the unloading discontinuity is of second
order (i.e., the strain is continuous), the constant value of the plateau
region is only slightly perturbed.

For Tong bars, or even short bars at long time, the region near
the dilatational front contains ever less energy and need not be well

approximated. In early time behavior (where peak response is most likely
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to occur) it is difficult to infer the true solution from the mesh induced
oscillations when using a general method not accounting for the character-
istics of the problem. 1In this case some account of the characteristic
surfaces seems imperative if meaningful results are to be obtained at

reasonable expense.
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