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Abstract

Network-Based Investigations of Human Functional Brain Dynamics

by

Kimberly J. Schlesinger

The human brain is a complex system in which interactions of billions of neurons

give rise to behavior. fMRI allows researchers to measure the functional activity of the

working brain, allowing both the localization of specific functions within the brain and

the investigation of multivariate patterns of functional activation. These patterns have

been found to correspond both to short-term brain states such as focused attention or

daydreaming, and to characteristics such as age or disease. Functional patterns also show

substantial variation across individuals. Understanding the correspondence of distributed

functional activity to these various factors is an ongoing research area.

Network science is a valuable tool for representing complex brain function, providing

a framework for quantifying multivariate activity as a network of interactions. Here, we

build upon recent advances in dynamic network science, using time-evolving networks to

investigate how the organization of brain dynamics is related to demographics and brain

states.

We use hypergraphs to analyze brain network dynamics during different cognitive

tasks and the transitions between them. We identify the presence of hyperedges, groups

of functional interactions that fluctuate coherently in strength over time both within and

across brain states. We develop metrics to quantify the variation of hyperedge structure

between tasks and across individuals. We find that the spatial location of hyperedges is

relatively consistent across individuals, serving as a signature of a cognitive task, while

hyperedge size exhibits variation across individuals but remains consistent between tasks.
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We also investigate the variation of brain dynamics across the human lifespan, using

both hypergraphs and dynamic clusters, or communities, of brain regions with similar ac-

tivity. We find significant relationships between age and dynamic organization: younger

subjects tend to have larger hyperedges, as well as less fragmented and more coherent

communities, and their brain regions tend to switch between communities less often.

Further, the dynamics of different cognitive brain systems respond differently to aging.

Finally, we propose and evaluate a method of targeted node removal during the data-

driven detection of communities, using synthetic and fMRI-derived networks to show

that the method can improve identification of multi-scale community structure, and help

to resolve key features of community dynamics.
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Chapter 1

Introduction

1.1 Mapping Human Brain Function: A Brief His-

tory

For hundreds of years, humans have been working to understand exactly how the

brain’s structure and function give rise to the fascinating range of behaviors of which we

are capable. The earliest investigators focused mainly on anatomical studies, developing

a detailed understanding of the physical structure of the human brain through post-

mortem studies. However, when it came to uncovering relationships between structure

and function, scientists and doctors were hampered by among the greatest challenges in

neuroscience: they lacked the ability to observe and measure electrical activity in the

living, working brain, without causing damage or destruction to either the body or the

mind of the patient.

In 1848, Phineas Gage, a railroad construction foreman, suffered a gruesome accident

in which an explosion drove a sharp metal tamping rod entirely through his head. Despite

severe brain damage to his left frontal lobe, Gage fully recovered from the accident,
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Introduction Chapter 1

but was reported to have notably altered personality traits. This famous case was used

afterwards to support the theory that some functions were localized within the brain, and

that damage to one brain area could selectively impact certain abilities and behaviors

while leaving others unchanged [1]. It also typified what became an important trend

in the study of brain function in the 19th and early 20th centuries: because researchers

could not ethically measure or interfere with function in a healthy human subject’s brain,

many key breakthroughs came from studying cases of accidental brain injury, disease, or

medically necessary intervention.

There are many classic examples of this approach, which led to an understanding of

brain function pieced together from a patchwork of tragic but informative case studies.

Not long after Gage’s case, Paul Broca and Karl Wernicke localized aspects of language

by studying patients with aphasia who had experienced brain lesions in specific cortical

regions in the left cerebral hemisphere [2]. Lobectomies led to many influential case stud-

ies, including that of the famous patient H.M., whose extreme episodic memory loss was

studied extensively after most of his hippocampus was removed as a treatment for se-

vere epilepsy [3]. Roger Sperry and Michael Gazzaniga made groundbreaking discoveries

about the lateralization of brain function by studying split-brain patients whose corpus

collosum had been severed for medical reasons [4, 5].

In the 20th century, advances in medical imaging made less invasive measurements

of human brain function possible. Electroencephalography uses electrodes placed on the

scalp to record electrical activity from the brain, and electrocorticography does the same

with electrodes placed inside the skull during brain surgery. PET scans detect gamma

rays emitted by an injected radionuclide, which correlate with oxygen flow in the brain.

None of these cause extensive damage or injury, but they are not without risks (ECoG,

PET), or have extremely limited spatial resolution (EEG) [2]. Thus, the focus largely

remained on medically necessary imaging, for which these risks could be justified.

2



Introduction Chapter 1

1.2 fMRI: A Window into the Healthy Brain

After functional MRI was discovered in 1990, it quickly because an invaluable tool,

as it finally provided a way to move beyond a disease-centric study of brain function.

For the first time, researchers could non-invasively image the activity in healthy, living

brains at a high spatial resolution.

fMRI works by measuring changes in blood flow coupled to neural activity. When

neural activity occurs in an area of the brain, a hemodynamic response is triggered:

blood flow to that area increases temporarily, and the blood oxygen levels are depleted

and then replenished over several seconds, producing a relative change in the ration of

oxygenated to deoxygenated blood in the region. Because these two types of blood have

differing magnetic properties, this also creates a local change in the MR signal, called the

blood-oxygen-level-dependent (BOLD) contrast. By tracking the BOLD signal during an

MRI scan, researchers can non-invasively map blood flow corresponding to neural activity

across the entire brain. The BOLD time series is typically sampled on the order of once

per second, from each of over 100,000 voxels; voxels are on the order of a millimeter in

size and contain around 100,000 to 1,000,000 neurons on average [6].

Over the past 25 years, fMRI has allowed researchers to non-invasively form maps of

brain activity in healthy populations. Due in part to the unprecedented spatial resolution

of the technique, a major focus of the research done with fMRI over its first few decades

has been localizing specific functions in the brain. Typically, controlled experiments

and statistical hypothesis testing are used to determine whether any voxels in the brain

show significantly altered BOLD signal between the baseline activity and the function of

interest, across a population of participants. Despite challenges in the pre-processing of

the noisy BOLD signal, and the statistical intricacies of controlling for multiple sources

of noise and thousands of comparisons, such studies have revolutionized our ability to

3



Introduction Chapter 1

understand the spatial patterns of activity in the brain, and highlighted anatomical areas

that are generally associated with specific functions and behaviors [6].

1.3 Dynamic Networks and Human Brain Function

While much of the success of fMRI has come in localizing specific brain functions,

it is widely accepted that many complex abilities and behaviors require the dynamic

integration of several processes and areas across multiple regions of the brain, and that

higher-level cognition likely utilizes distributed representations of concepts and memories.

In order to probe the distributed organization of human brain activity, there has been

growing interest in analyzing fMRI images with methods that can take their multivariate

properties into account, and associate behaviors with distributed patterns rather than

simply voxel-by-voxel activation [7].

In recent years, network science has emerged as a method well suited to answering

these problems. Networks, or graphs, provide a well-studied mathematical framework

for describing complex systems, including brain function. A network model allows us to

distill the information contained in thousands of interactions between brain areas into

graph-based metrics that capture important local and global properties of the brains

organization. These metrics can then be used to quantify, classify, and compare these

properties across conditions and individual brains, often providing insights into funda-

mental organizational principles underlying the complex activity we observe [7–9].

Functional brain networks derived from fMRI data are represented as a collection

of brain regions, or nodes, and connections between pairs of brain regions, or edges.

Typically, brain regions are groups of spatially adjacent voxels defined by anatomical

boundaries within the brain. Each pair of brain regions has an edge between them, which

is given a weight that represents the similarity of the BOLD signals in the two regions
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over time. If two regions show highly correlated activity during a scanning session, their

connecting edge will have a higher weight than that between two regions with unrelated

activity.

Based upon the nodes and their weighted edges, several widely used graph metrics

can be used to capture properties of the functional brain network and characterize its

organization. Previous work on human functional brain networks has established con-

sistent patterns in the organization of brain activity. For example, these networks are

typically modular – i.e., they can be partitioned into distinct clusters of strongly similar

brain regions [8, 10] – and show an organization of a few highly connected core regions

surrounded by more a sparsely connected periphery [11]. There are also similarities be-

tween functional brain networks and the anatomical white matter tracts that physically

support communications between brain regions [12,13].

Recent advances in network science have enabled the extension of these methods to

dynamic networks, which can capture the important changes in brain activity and its

organization over the course of a single fMRI experiment. A dynamic network is com-

posed of a sequence of static networks, each representing the edge weights or similarities

between brain regions in a single time window within the whole experiment. To include

enough samples for a reliable estimate of the edge weights, each time window might span

anywhere from a minute of time to entire scanning sessions of an hour or more. Many

metrics can be applied to quantify the organization and time evolution of these dynamic

networks – some simple extensions of existing methods for static networks, and others

designed specifically for temporal dynamics. Properties of dynamic functional networks

in the human brain have been shown to predict learning in a simple motor task [14]. How-

ever, many questions remain unanswered about the factors that inflence brain dynamics

and the methods used to measure and describe them.

5
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1.4 Our Approach: Dynamic Networks, Cognitive

Tasks, and Age

In this dissertation, we use dynamic functional networks, derived from fMRI measure-

ments of human brain activity, to investigate how brain dynamics relate to behavior and

demographic factors. We apply two complementary methods of describing network dy-

namics: dynamic communities, or clusters of brain regions with strongly similar dynamics

that can change their makeup over time [15]; and hypergraphs, which group regions whose

edges all evolve together with correlated dynamic profiles [16]. For each method, we de-

velop metrics that capture different aspects of brain dynamics, and quantify how they

vary based on both short-term cognitive states and more lasting characteristics such as

age and other demographics.

We use two complementary data sets for these investigations. First, we use a data set

in which participants in early to middle adulthood complete a set of multiple cognitive

tasks, calling for attention, memory, and unfocused thought. This data set is used in

Chapter 2 and is referred to as the multi-task data set in Chapters 3 and 5. It is used

to probe how brain dynamics depend on brain state, and how they change as the brain

transitions between brain states. Second, we use a data set in which participants over a

wide range of ages (18-75 years) perform the same memory-based task. This data set is

used in Chapter 4 and is referred to as the age-memory data set in Chapter 3 and the

single-task data set in Chapter 5. It is used to understand how brain dynamics depend

on demographic traits, with a special focus on age.

6
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1.4.1 Analyzing Task-Switching Dynamics with Hypergraphs

In Chapters 2 and 3, we use the graph-theoretic hypergraph to understand and de-

scribe brain task-switching dynamics. Hypergraphs group dynamic edges between brain

region pairs with other edges that change together with similar dynamic profiles, over

the course of a specific cognitive task or across several tasks. These groups are known

as hyperedges. First, we ask how these groups of dynamically related edges and their

corresponding brain regions are distributed, both within and across cognitive tasks. We

find that several significant groups, or hyperedges, exist, and we find clear differences in

the spatial distribution of these groups between tasks that reflect task-related areas.

Next, we statistically quantify how these hypergraph dynamics vary between individ-

uals based on demographics and other measured traits. We find that in the multi-task

data, age is a mild predictor of a metric describing the size of hyperedges, although hy-

peredge size is very consistent across cognitive tasks within a single individual. In the

single-task age-memory data, this correspondence between age and hyperedge size is also

seen, demonstrating significant changes in brain dynamics with age.

1.4.2 Finding and Interpreting Evolving Clusters of Brain Ac-

tivity

Next, inspired by the previous idea of age being an important mediator of brain

dynamics, we consider the effect of age on more straightforward brain activity clusters,

or dynamic communities. We use a common algorithm to detect clusters based on fMRI

data, by maximizing a quality metric known as modularity. We then apply and develop

metrics for quantifying the changes in these communities over time. We find that age

does affect the number of communities found, and the propensity of brain regions to

flexibly switch between communities over the course of the task.

7
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Finally, we find that dynamic networks often make the process of resolving functional

brain communities very difficult, but we propose a strategy of removing strongly associ-

ated brain systems from the functional network, in order to resolve other systems more

clearly. We devise a series of synthetic networks to systematically test this strategy, and

show that these especially coherent brain systems (e.g. visual cortex) can mask dynamic

organization in both these synthetic networks and in the real brain.

8



Chapter 2

Hypergraph Analysis of Human

Functional Brain Dynamics

2.1 Introduction

An essential characteristic of the human brain is the ability to transition between

functional states in synchrony with changing demand. A central focus in neuroscience in-

volves quantifying this adaptability and understanding the underlying brain organization

that supports it. Several studies have accomplished this with functional MRI techniques

by delineating changes in regional blood-oxygen-level-dependent (BOLD) signal associ-

ated with different cognitive tasks, or between task states and task-free (resting [17,18])

states [19, 20]. However, this approach, which examines the magnitude of brain activity

alone, is unable to completely describe the complex correlation structure linking spatially

segregated neural circuits. In particular, while providing crucial insight into the spatial

structure and anatomical distribution of functional activity and how it differs between

task and resting states, these methods are not well suited to probe the intrinsic organi-

zation of the dynamics of task-driven transitions between cognitive states, or co-evolving

9
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associations among brain regions throughout a particular task.

Recent advances in network science provide tools to represent and characterize the

functional interactions between brain regions forming cognitive systems. In this for-

malism, brain regions are represented as network nodes and functional connections (es-

timated by statistical similarities between BOLD signals [21]) are represented as net-

work edges [7, 22]. These approaches enable the statistically principled examination of

large-scale neural circuits underlying cognitive processes, and have enabled quantitative

comparisons between circuits [23, 24]. Indeed, a growing literature provides evidence

that individual tasks may elicit specific functional connectome configurations [25], while

maintaining a relatively stable functional backbone reminscent of the connectome con-

figuration evident in the resting state [26].

Nevertheless, these studies have focused on examining task or cognitive states as sep-

arate and independent entities, and tools to quantify how brain networks reconfigure

between these task states remain significantly underdeveloped. Initial efforts to exam-

ine reconfiguration properties of brain networks have focused on quantifying properties

of dynamic functional connectivity at rest [27]. A relatively few studies have begun

to examine reconfiguration properties during task states [28–32] or across a series of

brain states accompanying behavioral change [11,14,33,34]. These studies have robustly

demonstrated that functional connectome patterns change during task execution, and

that individual differences in these reconfiguration properties have implications for task

performance [11,14,28,33].

In this chapter, we ask a complementary set of questions that focus on sets of func-

tional connections rather than on the entire functional connectome pattern. We ask

whether sets of functional connections evolve independently within or across brain states,

or whether they evolve cohesively, each set controlled by a common regulatory driver. To

answer this question, we employ recently developed dynamic network science methods

10
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to estimate brain functional networks in one-minute time intervals as 86 participants

engage in four task states: a task-free resting state, an attention-demanding state, and

two memory-demanding states. We treat the evolving patterns of functional connectiv-

ity as temporal, or dynamic, networks [11, 14, 29, 30, 34, 35] and estimate the pairwise

correlation between the strengths of functional interactions over time in order to iden-

tify groups of functional interactions which display similar changes in strength within

and across task states. These groups of network edges with similar dynamic patterns,

known as hyperedges, have been used to quantify the co-evolution in functional brain

networks over the course of a learning task [16]. Our goal is to adapt this dynamic net-

work science method to investigate the organization of evolving functional correlations

both within and between task-specific cognitive states, using hyperedges as a measure

of co-evolution. We hypothesize that overall, functional interactions between brain re-

gions especially important for particular tasks are likely to be grouped in hyperedges

with interactions between regions used strongly in other tasks, capturing co-evolution

between task-specific functional networks as they turn off or on together when switching

tasks. Furthermore, we expect that those functional correlations that link sets of brain

regions whose coordination is crucial to a particular task will be more likely to co-evolve

significantly during that task alone.

In this chapter, we demonstrate the existence of hyperedges driven by significant co-

evolution within groups of functional interactions, both within and across task states. We

develop novel network diagnostics to characterize hyperedges according to their struc-

ture, anatomy, and task-specificity. These analyses provide a unique window into the

adaptability of the brain as it transitions between states and offer quantitative statistics

for the comparison of such adaptability across subject cohorts.
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2.2 Methods

2.2.1 Ethics Statement

Informed written consent was obtained from each subject prior to experimental ses-

sions. All procedures were approved by the University of California, Santa Barbara

Human Subjects Committee.

2.2.2 Tasks

Subjects engaged in a resting-state (task-free) period, as well as three separate tasks

designed to engage different cognitive skills and task-specific brain networks: two separate

functional runs of the same attention-demanding task, a memory task with lexical stimuli,

and a memory task with face stimuli.

During the resting-state period, participants were asked to lie still with their eyes

open and look at a blank screen. The attention task (Figure 2.1) required subjects to

view sequences of visual stimuli on a screen, with the goal of detecting the presence or

absence of a target stimulus in each of several test displays. Before each test display,

subjects were presented with a cue arrow whose color and direction provided probabilistic

information on whether and where the target stimulus might appear. The test display

was then flashed for approximately 50ms, after which the subjects were required to choose

whether or not the target stimulus had appeared. In both memory tasks (Figure 2.1), 180

previously studied stimuli and 180 novel stimuli were presented to the subjects, who were

asked to determine whether each stimulus was “old” or “new” – i.e., whether it had been

previously studied. As in the attention task, the memory tasks included probabilistic

cues: each stimulus was shown either in a particular color (lexical stimuli) or bordered

by a color (face stimuli) which provided subjects with the probability that the stimulus
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was novel. Face stimuli were drawn from a variety of online faces databases [36–41]. For

additional experimental details, see [12], [42], and supplemental information therein.

Figure 2.1: Task Setup: Top panel: Setup of a single trial sequence in the
attention-demanding task. Here, the target stimulus is a horizontal rectangle on
either side of the center cross. In each trial sequence, the cross is presented, followed
by a cue (arrow) giving probabilistic information about whether and where the target
stimulus wil appear, and finally by the stimuli, displayed for approximately 50ms. The
target will either appear as cued, appear in the uncued location, or not appear at all;
subjects are required to choose which of these possibilities occurred. Bottom panel:
Setup of the memory-demanding tasks (same format for word and face memory). In
the study session, subjects are presented with a sequence of stimuli. During the test
session, another sequence of stimuli is presented; subjects are required to distinguish
whether each test stimulus is novel or identical to a stimulus from the study session.
Colors of lexical stimuli and colored borders of face stimuli (not pictured) indicate the
probability that the test stimulus has been seen before.
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2.2.3 Imaging

MRI data was acquired at the UCSB Brain Imaging Center from 116 healthy adult

participants using a phased array 3T Siemens TIM Trio with a 12 channel head coil.

Functional MRI data was taken while each participant engaged in the four tasks described

above. This analysis combines two separate functional runs of the same attention task

[12]. The sampling period (TR) was 2s for the rest and attention tasks and 2.5s for

both memory tasks. In addition to functional data, a three dimensional high-resolution

T1-weighted structural image of the whole brain was obtained for each participant.

2.2.4 Image Analysis

Structural MRI acquisition and pre-processing

Structural scans were intensity-corrected, skull-stripped, normalized, segmented and

parcellated (as described below) using Freesurfer v.5.0.0 cortical reconstruction all with

default settings, accessed via the Connectome Mapping Toolkit v.1.2.0 [43]. The starting

atlas was the updated Lausanne2008 multi-scale atlas [44]. For each subject, parcella-

tions containing 83, 129, 234, 463 and 1015 regions were generated, covering cortical

grey-matter regions, the thalamus, caudate, putamen, pallidum, accumbens area, hip-

pocampus, amygdala and brainstem. The highest-resolution parcellation of 1015 regions

was not investigated further, since a large number of regions contained very few or no

voxels when the atlas was downsampled into fMRI space.

Functional MRI pre-processing and time series analysis

Preprocessing was performed using FSL v5.0 [45–47], AFNI v. 2011 12 21 1014

http://afni. nimh.nih.gov [48] and Matlab (2013, The Mathworks, Natick, MA). Func-

tional MRI scans were preprocessed as follows. FSL programs MCFLIRT [49] and fsl
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motion outliers were used to correct for head motion and derive a volume-by-volume

measure of head motion: framewise displacement. Framewise displacement (FD) is cal-

culated as the sum (in mm) of rotational and translational displacements from volume N

to N+1 [50]. Next, we performed slice timing correction (AFNI 3dTshift), auto-masked

to obtain a brain-only fMRI image (AFNI 3dAutomask), and smoothed the time series at

each voxel (AFNI 3dDespike with default parameter settings). Despiking has been shown

to reduce the motion-related distance dependent bias in correlation estimates [51]. Each

voxel’s time series was then detrended with respect to framewise displacement using

AFNI 3dDetrend. This uses linear regression to remove variability related to the nui-

sance regressor, framewise displacement, at each voxel. Runs were only included in the

analysis if mean framewise displacement for the run was less than 0.25mm per frame;

this led to 73 fMRI runs (of 763 total runs) being excluded from this analysis. Regis-

tration proceeded as follows: a participant’s time-averaged fMRI image was aligned to

their structural T1 scan using FSL FLIRT boundary-based registration [49,52], and the

inverse of this transformation was applied to all subjects parcellation scales (generated in

structural space). Parcellations were downsampled into EPI (AFNI 3dfractionize, voxel

centroid voting, requiring 60% overlap), and the mean signal across all the voxels within

a given brain region was calculated to produce a single representative time series. The

data was not spatially smoothed at any stage.

Creation of a hybrid atlas

We sought to create an atlas with low inter-individual and cross-brain variability in

the amount of fMRI data acquired per region. Many existing atlases use parcellations

that have roughly equal region sizes as measured on structural MRI scans [53]. How-

ever, downsampling the atlas from structural MRI voxels to fMRI voxels, along with

inhomogeneous fMRI signal-loss, mean that this does not produce equally sized regions
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in functional MRI space. To mitigate this, we generated a ‘hybrid’ atlas by choosing

those regions from various scales of the Lausanne2008 atlas that minimized cross-brain

and intra-subject variability in region size. The intra-subject size variability was quan-

tified by the coefficient of variation, defined for each region i as 100σi/µi, where µi is

the mean size of region i over all subjects and σi is the standard deviation. Starting

with the scale 234 atlas, an iterative process was used to decrease intra- and intersub-

ject variability in region size. Where a region had very few voxels (mean size < 25th

percentile), or high variability in size across subjects (coefficient of variation > 30%), it

was tentatively exchanged for a region from the next highest resolution atlas, effectively

combining the initial region with other higher-resolution regions subsumed under the

same anatomical heading. If this combination of regions decreased the inter-subject or

within-subject variability in region size, the combined region was retained. If not, the

initial poor quality region was rejected from the “hybrid atlas”. This was repeated un-

til no further combinations of regions could decrease intra- and inter-subject variability

while retaining neuroanatomically sensible groupings. Regions were excluded from the

analysis altogether if there were fMRI runs in which no data was acquired in that region

(frontal pole, entorhinal cortex and temporal pole), or if the inter-subject coefficient of

variation was greater than 30% (this applied to 7 of the 8 inferior temporal regions; 1 of

the 8 middle temporal regions; 2 of 8 fusiform regions; 1 of the 6 caudal middle frontal

regions, and 1 of the 14 precentral regions). Table 2.1 lists the 194 regions identified by

this hybrid atlas. This approach considerably reduced intra-subject variability in region

size as well as reducing the inter-subject variability at problematic outlier regions, while

minimizing the amount of data that had to be excluded from analysis.
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2.2.5 Functional Connectivity

Specific frequencies of oscillations in the BOLD signal have been associated with

different cognitive functions. We focus our investigation on low frequency (0.06-0.125

Hz) oscillations in the BOLD signal that have proven useful for examining resting [54,55]

and task-based functional connectivity [14]. The task-related oscillations are posited to

be specific to this frequency range, possibly due to a bandpass-filter-like effect from the

hemodynamic response function [56]. We apply a Butterworth bandpass filter to isolate

frequencies in the (0.06-0.125 Hz) range [57].

To construct a functional brain network, we use the 194 region hybrid atlas, where

each region contains a roughly equal number of voxels. These 194 regions represent

the network nodes. The x, y, and z positions of each node are given by the centroid

of the voxels which comprise the node. Edge weights in the functional brain network

are computed by taking Pearson’s correlations between the filtered time series within a

defined time period for each pair of nodes [58].

2.2.6 Time Windows for Temporal Network Construction

Dynamic networks are constructed by taking the filtered time series in temporal

windows of 60 seconds and computing a N × N adjacency matrix of nodal correlations

for each time window, where N = 194 is the number of nodes. Each of these N × N

adjacency matrices represents the functional network over the 60 seconds in question.

From this set of networks, we extract the edge weight time series by considering the

correlation strength in each sequential network. We let E = N(N − 1)/2 = 18721 be the

total number of edges between the 194 nodes and construct an E ×E adjacency matrix

X, where Xab gives the Pearson correlation coefficient between the time series of edge

weight for edges a and b. The entries of the E × E adjacency matrix represent pairs of
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Figure 2.2: Hyperedge Construction: A schematic illustration of the method used
to identify hyperedges. We begin with a set of node-node edges (A) and their time
series (B), of which three [green, pink and orange traces, (B)] exhibit strong pairwise
temporal correlations. These edges are cross-linked (C) by temporal covariance in
edge weight time series, and thereby form a hyperedge (D) of size three on six nodes.
The final [blue] edge forms a singleton, an edge which is not significantly correlated
with any other edges.

edges with correlated weight time series [16].

We consider a range of temporal window lengths from 40 to 120 seconds and find that

our results for hyperedge size and spatial distributions are robust to changes in window

length in this range. Because the TR varies between the memory tasks and the rest and

attention tasks, windows of equal time length include different numbers of data points

in different segments of the experiment. To ensure this does not affect our analysis, we

conduct an analysis with the number of data points per window held constant, and obtain

very similar results (see Figure 1 in Appendix A).

2.2.7 Hyperedge Construction

The cross-linked network structure, which contains information about groups of edges

with similar time series (hyperedges), is extracted from the edge-edge correlation matrix

X [16]. Figure 2.2 provides a schematic illustration of the process of determining the

cross-linked structure of a network. To exclude entries of X that are not statistically

significant, we threshold X by evaluating the p-values for the Pearson coefficient R for

each edge-edge correlation using a false discovery rate correction for false positives due
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to multiple comparisons [59]. If the p-value for an entry Xij satisfies the false discovery

rate correction threshold, we set ξij = R(i, j) for our thresholded matrix ξ. We set the

thresholded entry of all other elements Xij to zero. We binarize this thresholded matrix

and obtain ξ′ij, where

ξ′ij =


1, if ξij > 0;

0, if ξij = 0.

(2.1)

Each connected component in ξ represents a hyperedge, a set of edges that have

significantly correlated temporal profiles. The groups of nodes in Figure 2.2(D) are

examples of such connected components. A single hyperedge may include any number

of edges between one (a singleton) and E = N(N − 1)/2 (the system size); these edges

may be spatially clustered or at disparate locations throughout the brain. The set of all

hyperedges defined in ξ produces an individual hypergraph.

This hypergraph technique builds on recent trends in the wider field of network sci-

ence. First, identifying groups of network edges that share similar properties, rather than

the groups of nodes that have traditionally been the focus of community detection meth-

ods, has been recently shown to provide more intuitive representations of overlapping

nodal communities and hierarchical structure [60–62]. Second, the idea of identifying

functional groups based on the temporal patterns of their interactions has proven use-

ful [62,63]. Hypergraphs provide a straightforward method, both edge-based and intrin-

sically dynamic, of identifying and analyzing temporal patterns in network organization.

In this work we focus on functional networks in the human brain, but the hypergraph-

related diagnostics introduced below are easily generalizable to a broad variety of dynamic

networked systems.
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2.2.8 Hypergraph Diagnostics

We use several methods to extract statistical features from individual hypergraphs

and across the set of subjects.

Hyperedge size: We define the size, s(h), of a hyperedge h, as the number of edges

contained in it,

s(h) =
∑
i,j∈h

ξ′i,j, (2.2)

where the sum is performed over the upper triangular elements of ξ′, and ξ′ is the bi-

narized edge-edge adjacency matrix defined above. Hyperedges with s(h) = 1 are sin-

gletons, which display no significant correlation between that edge and any other in the

network. These singletons are excluded from further analyses. Additionally, we compute

the cumulative hyperedge size distribution across all subjects in the study.

Hyperedge node degree: We define the hyperedge degree of a node to be the number

of hyperedges that contain that node. We examine the hyperedge node degree distribu-

tion as a spatial distribution over the subjects as a group to understand characteristic

hyperedge properties.

Co-evolution network: We construct a “co-evolution network” to consolidate hyper-

graph results into a single graph that illustrates where hyperedges are most likely to be

physically located over an ensemble of individuals. Figure 2.3 illustrates a schematic of

our construction. We begin by defining the matrix, C, of probabilities that edges are

included in a hyperedge over a set of hypergraphs. Again, nodes correspond to brain

regions and connections correspond to inter-region associations, but here the weight of a

connection joining nodes i and j is the matrix entry Ci,j. The resulting static network

encompasses the dynamics of hyperedge activity, with connection weight corresponding

to the probability that the two nodes are co-evolving over all of the hypergraphs consid-
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ered. In later sections, we refer to co-evolution connection “strength,” which we define

as the magnitude of the probability matrix entry corresponding to that connection.

2.2.9 Task-Specific Classification

Previous work identified regions with task-specific activity in rest, attention, and

memory tasks [12]. Further understanding of the regions that have a correlation structure

unique to one task provides insight into network structure differences between tasks. To

investigate the task-specific hyperedge structure, we first group hyperedges that exhibit

a significantly higher correlation within one task into task-specific sets. If a hyperedge

is significantly correlated in two or more tasks, it is excluded from the task-specific hy-

pergraphs. The task-specificity of hyperedges is calculated by comparing the correlation

within a single task to the correlation over the same time length with time points chosen

randomly from other tasks. This permutation test uses a Bonferroni correction for false

positives due to multiple comparisons [64]. Task-specific hypergraphs are then used to

construct task-specific hyperedge size distributions, hyperedge node degree distributions,

and co-evolution networks.

To quantitatively probe the differences in spatial organization of dynamic functional

co-evolution networks for the four tasks, we investigate two summary metrics that show

significant variation across tasks. Choice of these measures is primarily motivated by

observed coarse differences in co-evolution network structure.

The first “length-strength” metric is the Pearson correlation coefficient, R, between

the strength of a connection in the co-evolution network and Cartesian distance between

the two nodes linked by the connection (physical length). The Cartesian distance is

computed by taking the x, y, and z coordinates of each node and calculating the square

root of the differences squared. The length-strength metric identifies a geometric property

21



Hypergraph Analysis of Human Functional Brain Dynamics Chapter 2

of the network, as well as a coarse estimate of the length of the strongest connections.

Furthermore, connection length is related to network efficiency [65, 66], so differences in

this measure could indicate varying levels of functional network efficiency corresponding

to task states.

The second “position-strength” metric is the Pearson correlation coefficient, R, be-

tween the strength of the co-evolution network connection with the average anterior-

posterior position of the two nodes. A measure of anterior-posterior position for each

connection was found by taking the average y position of the two nodes in the con-

nection. Identifying the location of strong co-evolution network connections along the

anterior-posterior y axis provides a measure of where hyperedges are physically present

in task states. Both the structural core [44] and a dynamic functional core area, com-

prised of sensorimotor and visual processing areas [11], are located in the posterior, so

nodes in these regions have negative y values. A larger negative position-strength value

corresponds to a higher probability that hyperedges are active in these core areas.

The length-strength and position-strength metrics are evaluated for significance by

comparing the correlation between length or position and connection strength to the

same correlation performed on randomly chosen co-evolution connections. Again, the

Bonferroni correction is performed to eliminate false positives due to multiple compar-

isons.

In Section 2.3, we discuss how these metrics reveal quantitative differences between

task-specific networks. A more detailed analysis of the overlap between hyperedge co-

evolution networks and relevant cognitive processing regions is also presented. In this

analysis, we describe how delineated areas of higher hyperedge activity consistently cor-

respond to recognized centers of task-specific activity.
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Figure 2.3: Schematic Construction of the Hyperedge Co-evolution Net-
work: In (A), we analyze edge time series and group edges exhibiting similar temporal
profiles into a hyperedge (as in Figure 2.2). Here, node colors are used to indicate
individual nodes and the edge color indicates distinct edges. We construct hyper-
graphs for each subject and find the matrix C of probabilities that two nodes are in
the same hyperedge over all subjects and hyperedges. In (B), this matrix is used to
create a co-evolution network, where the weight for an edge connecting nodes i and j
corresponds to the entry Ci,j .

2.2.10 Null Models

In this analysis, we compare our results with two statistical null models based on

measures for dynamic networks [35]. Hyperedges are formed from correlated edge time

series; consequentially the null overall model randomly shuffles each edge time series over

all experiments. This null model is designed to ensure that the hyperedges identified in

our analysis can be attributed to the dynamics of the system, rather than some overall

statistical property of the data set.

The other null test we perform, which we will refer to as the null within-task model,

reorders each edge time series within each task, keeping tasks distinct. This is constructed

in order to determine whether there are specific differences in the data between tasks.
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2.3 Results

We compile the results from the hypergraph analysis for each of the subjects and

combine these results to obtain a size distribution, anatomical node degree distribution,

and co-evolution network for the group. We then divide the data into task-specific hyper-

graphs and perform the previously mentioned analyses on the task-specific hypergraphs.

2.3.1 Hypergraph Analysis and Statistics

We construct a hypergraph for each individual and examine the cumulative distri-

bution of hyperedge sizes (s(h) from Equation 2.2), shown in Figure 2.4. There is a

distinct break in the slope between two branches of the distribution occurring at a size of

approximately 100 edges, which we use to distinguish between “large” and “small” hy-

peredges. The total number of small hyperedges appears to roughly follow a power law

with an exponent of approximately −2.5. The number of large hyperedges peaks around

the maximum size, with relatively few in the middle range from 100 to 1000 edges. In

Figure 2.4, the sharp drop off in the distribution at large hyperedge sizes reflects the

system size limitation on hyperedge cardinality.

There is a distinct partition in all individual frequency versus sizes distributions; one

or two “large” hyperedges (s(h) > 100), and many “small” hyperedges (s(h) < 100) that

peak at the smallest size. A subject with relatively small maximum hyperedge size has

hundreds of edges in this largest hyperedge, as well as multiple “small” hyperedges. The

corresponding hypergraph of a subject with a maximum hyperedge near the system size

is strongly dominated by the largest hyperedge, which contains almost all edges in the

brain.

The null overall model shuffles the data over all tasks. There are no hyperedges

greater than size one, so the results from this null model are not depicted in Figure
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2.4. These singletons signify no significant correlation with other edges. As a result, we

performed no further analysis on this null model. The fact that no significant hyperedges

were found in the null overall model validates the statistical significance of our results.

The null within-task model shuffles the data but ensures that task data stays within

the same task. The size distribution of hyperedges from the null within-task model

is shown in Figure 2.4. The shape of the two distributions is similar, although the

null within-task model has fewer hyperedges in the large regime and there are more

singletons than in the original data. This indicates there is co-evolution structure across

tasks because this structure corresponds to changes in edge states between two or more

tasks. For example, if groups of edges have an overall high correlation in one task and

a significantly lower correlation in another, it would induce a hyperedge across the tasks

regardless of how the within-task time series are shuffled.

Examining the cumulative hyperedge size distribution provides information about the

network topology but does not supply descriptive spatial information. Next, we quantify

which anatomical locations in the brain participate in hyperedges, identifying differential

roles in task-induced co-evolution. Figure 2.5A depicts the hyperedge node degree on

a natural log scale. The densest regions are located in posterior portions of the cortex,

primarily in visual areas, while a second set of dense regions is located in the prefrontal

cortex.

We construct a co-evolution network, as illustrated schematically in Figure 2.3, where

connection weight corresponds to the probability that two nodes participate in the same

hyperedge. In Figure 2.5B we present this co-evolution network over all individuals and

all tasks. The graph includes sparse long-range connections between regions that are

densely connected. Within the strongest 1% of connections, the high degree of bilateral

symmetry indicates that corresponding nodes in the left and right hemispheres have a

high likelihood of being placed together in a hyperedge. Dense areas of the graph include
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Figure 2.4: Hyperedge Size Distribution: In the cumulative frequency distribu-
tion of hyperedge sizes, the small hyperedges appear to roughly follow a power law
with an exponent of approximately −2.5, while the large group is concentrated near
the maximum size. In the null overall model, there are no non-singleton hyperedges.
Results for the null within-task model, where the data is shuffled within each task,
are in green.

primary visual areas, portions of prefrontal cortex, and primary motor cortex.

2.3.2 Task-Specific Hyperedges

The hypergraph algorithm groups together edges with significantly similar temporal

behavior. However, this basic classification does not distinguish whether the correlation

is present throughout the edge time series, or whether highly correlated sections of the

time series drive the selection. We compute the average within-task edge correlation

for each hyperedge and find that in some cases, strong edge correlation spans the tasks,

while in other hyperedges, a strong correlation between edges within one task drives

the hyperedge. An example of this task-specific correlation structure can be seen in
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Figure 2.5: Hyperedge Node Degree and Co-evolution Network: In (A),
we show hyperedge node degree on a natural log scale. The cumulative number of
hyperedges at each node over all individuals is plotted on the brain, where higher
values at a node correspond to more hyperedges that include the node. (B) depicts a
sagittal view of the co-evolution network. The edge strength represents the probabil-
ity that the edge will be in a hyperedge over all individuals. Edge color corresponds
to threshold percentage value, where only the top 1% of co-evolution probabilities are
shown. Within this 1%, brown connections correspond to the highest 0.2% of proba-
bilities, red connections correspond to 0.2% to 0.4%, orange connections correspond
to 0.4% to 0.6%, gold connections correspond to 0.6% to 0.8%, and yellow connections
correspond to 0.8% to 1%.
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Figure 2.6. In the average within-task correlation on the left, there is a stronger average

correlation in the word memory task than in any other task. Furthermore, the edge time

series in the first hyperedge indicates it is driven mainly by a correlation within the word

memory task.

To investigate this further, we construct task-specific co-evolution networks, com-

posed of hyperedges with significantly stronger average correlation in one task than the

others (see Methods). To identify these task-specific hyperedges for each task, we perform

a permutation test on the edge weight time series, as described in Methods, and compare

the total correlation within the task to the expected values. If a hyperedge displays sig-

nificant edge correlation (determined by the Bonferroni correction on the p-values from

the permutation test) in only one task, we label it as a task-specific hyperedge. Hyper-

edges with two or more tasks exhibiting significant correlation are not included in the

task-specific hypergraphs.

Figure 2.7 illustrates the size distributions of all the task-specific results alongside

the overall hyperedge size distribution. The sizes and spatial distributions of single

task-driven hyperedges vary across tasks and incorporate significant information about

functional network organization with respect to changing cognitive states. Attention has

the greatest number of task-specific hyperedges, followed by face memory, word memory,

and rest. In the small regime, the tasks follow a similar distribution. There are fewer

large attention and rest hyperedges, while the face memory task closely mimics the

overall distribution. The distinction in the distributions indicates that the tasks can be

characterized by differing complexities of edge co-variations.

The spatial distributions of hyperedge node degree in each task, along with task-

specific co-evolution networks, are shown in Figure 2.8. The rest hypergraph has the

least activity in posterior regions of the cortex, both in the hyperedge node degree plot

and co-evolution network. In the attention network, long connections connecting the
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front and back of the brain distinguish it from the rest network. Furthermore, the

concentration in the occipital lobe is larger in the memory co-evolution networks than

in the rest or attention networks. We characterize these observed differences with two

statistics, which are described in more detail in Methods. The length-strength metric is

a correlation between connection length and strength in the co-evolution network. The

position-strength metric is a correlation between connection position (anterior-posterior)

and strength. The results of this analysis over the full unthresholded co-evolution network

are in Figure 2.9. All correlation values are negative, indicating that, in all tasks, stronger

connections in the co-evolution network are located in posterior portions of cortex and

are physically shorter.

We compare these values across tasks by performing pairwise permutation tests to

determine which networks have statistically different properties. Figure 2.9 depicts the

p-values from these tests, where the horizontal axis represents the statistic being tested

and the vertical axis corresponds to the task being tested against. The black squares in

this figure represent significant values, which are summarized in the following list:

1. The rest task has a significantly less strong position-strength correlation than the

word and face memory tasks. This confirms the observation that the rest co-

evolution network is less likely than the memory networks to have strong connec-

tions in posterior regions of the cortex.

2. The attention task is less strongly correlated than the word memory task, as mea-

sured by the position-strength metric and the rest task in terms of the length-

strength metric. Thus, the attention co-evolution network is less likely than word

memory to have strong connections in the posterior, and less likely than the rest

network to have strong connections that are short.

3. The word memory task has a weaker length-strength correlation than the rest and
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attention tasks. Thus, strong connections in the word memory co-evolution network

are less likely be short than they are in attention and rest networks.

These results delineate significant differences in co-evolution network structure be-

tween the tasks, confirming that the hypergraph analysis is a useful method for dis-

tinguishing between task states. Additional features of the task-specific co-evolution

networks are described in more detail below.

Rest

Rest-specific hyperedges are primarily represented in the “small” range of the size

distribution in Figure 2.7. Although it is difficult to distinguish in Figure 2.7 due to the

logarithmic scale, the rest task also has the lowest number of task-specific hyperedges.

Consequently, its spatial hyperedge node degree distribution in Figure 2.8A has the lowest

overall magnitude across task states. The areas with the highest degree of hyperedge

activity are in the posterior portions of the brain, a configuration that is consistent across

tasks. This suggests there is an underlying pattern of hyperedge generation centered in

the occipital lobe.

The rest-specific co-evolution network is highly clustered in the most probable 0.2% of

co-evolution pairs, as visualized in Figure 2.8B. High probability clusters occur in areas

including the inferior parietal lobule, superior frontal gyrus, precuneus, and posterior

cingulate cortex. Although the rest network displays clustering at this highest threshold

of probability, lower thresholds show very little structure; the top 1% of connections

shown in Figure 2.8B is far more randomized in rest than in the other task-specific co-

evolution networks. There is relatively little lateral symmetry and few visible “core”

areas with high hyperedge node degree.

The negative length-strength correlation for connections in the co-evolution network
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is significantly stronger for the rest task than the word memory task. This indicates that

the strongest connections in the rest-specific co-evolution network are short, reflecting the

initial observations in Figure 2.8B. The rest co-evolution network also has the smallest

negative correlation between connection position and strength, which the permutation

test (Figure 2.9B) confirmed to be significantly smaller than the word or face memory

tasks. This means that the strongest rest-specific hyperedges are less likely to be located

in the posterior of the brain than the strongest hyperedges specific to either memory

task, a result again consistent with Figure 2.8B.

Attention

Overall, there are more hyperedges associated with attention than any other task,

although this is difficult to visualize in Figure 2.5. The attention-specific hypergraph

consists almost exclusively of small hyperedges. This lack of large hyperedges may ac-

count for the increased disorganization in the co-evolution structure at lower probability

thresholds observed in both rest and attention co-evolution networks in Figure 2.8B.

The spatial hyperedge node degree distribution for the attention task (Figure 2.8A)

appears qualitatively similar to the rest task, with a few areas of increased degree in the

occipital lobe, and with overall larger hyperedge node degree values corresponding to the

greater overall number of attention-specific hyperedges compared to rest.

The co-evolution structure specific to the attention task (Figure 2.8B) has a higher

degree of bilateral symmetry than the rest network, and has fewer strong connections in

the occipital lobe than either memory task. There are multiple prefrontal cortical regions

that are likely to cohesively evolve with several other nodes. Regions of high clustering in

the most probable threshold include the lateral parietal and occipital lobes, the superior

frontal cortex, and dorsal parietal cortex.

Numerous strong connections between rostral and caudal brain regions are another
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feature of the attention-specific co-evolution network. The negative length-strength cor-

relation in the attention co-evolution network is significantly less strong than in the rest

task, consistent with the observation that the attention network has strong connections

that reach across the brain (Figure 2.8B). Additionally, the attention task has a signifi-

cantly weaker position-strength correlation than the word memory task, likely driven by

the strong attention co-evolution connections in the prefrontal cortex.

Memory for Words

The word memory-specific hyperedge size distribution includes more large hyperedges

than rest or attention, although it is not as close to the overall distribution as the face

memory distribution.

The spatial hyperedge node degree distribution for the word memory task has high

node degrees in similar brain areas to the other task-specific distributions. There is a

marked increase in node degree of regions in the parietal lobe from rest and a decrease

in degree of regions in the occipital lobe from attention (seen in Figure 2.8A).

In the word memory co-evolution network in Figure 2.8B, the strongest connections

are highly clustered in the occipital or frontal lobes, with few connections to nodes in

between, while the strength and number of bilateral links is diminished compared to the

attention task. The negative length-strength correlation of connections in this network is

the weakest for the word memory co-evolution network, and significantly weaker than in

the rest or face memory tasks. As in the attention task, this is consistent with the many

connections between the occipital and frontal lobes visible among the strongest links in

the word memory co-evolution network (Figure 2.8B).
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Memory for Faces

There are more large hyperedges significantly correlated in the face memory task than

any other task-specific group. The task-specific size distribution closely resembles the

overall distribution in the large regime, indicating that a significant portion of all large

hyperedges are driven by correlations in the face memory task.

The face memory-specific hyperedge node degree values are consistently the largest

across the brain. This is primarily due to the many large hyperedges specific to the

face memory recognition task. In the word memory and attention degree distributions,

there are areas of higher hyperedge node degree in the parietal lobe and occipital lobe,

respectively, but the face memory degree distribution is more evenly dispersed over the

brain.

The structure of the face memory-specific co-evolution network, shown in Figure 2.8B,

is most dense in the occipital lobe, consistent with the visual nature of the task. There

are several strong connections from the occipital lobe to other brain regions, specifically

in the prefrontal cortex and frontal lobe. While the structure looks similar to that of

the word memory co-evolution network, the strong cluster of face memory co-evolution

connections in the occipital lobe has fewer strong connections and less nodes involved

overall than the corresponding word memory co-evolution network cluster, but more

strong connections to a few particular nodes. Compared to word memory, the face

memory-specific network also displays fewer strong connections in the frontal lobe but

more strong connections among regions in the dorsal attention network. In addition to

the properties discussed in previous sections, the face memory co-evolution network has

a strong negative position-strength correlation, indicating that the strongest connections

tend to be in the posterior of the brain.
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Figure 2.6: Task-specific Hyperedges: Left: Average hyperedge correlation in
each task for three hyperedges (where hyperedges with small sizes are chosen for illus-
trative purposes). Right: Correlation (absolute value) time series for the same three
hyperedges. The colored lines represent each edge, while the black line is the average
edge time series. Each time point represents the static network over 60 seconds, and
the attention task is broken into two sections because two separate iterations of the
same task were combined in this analysis. These results display the task-specificity of
hyperedges, where significant correlations in the hyperedge are restricted to one task.
For example, the first hyperedge is word-specific because there is a much stronger
average correlation in the word task than in any other task.

2.4 Discussion

Progress in understanding functional brain network topology provides significant in-

sight into broad neuroscience questions regarding the brain’s organization and ability to

effectively transition between cognitive states. Quantifying complex network dynamics

in the brain will further understanding in these areas and has promising applications to

behavioral adaptation and learning [11, 14, 34]. We apply hypergraph analysis, a tool

from dynamic network science, to functional brain imaging data in order to determine

co-evolution properties of the brain as subjects perform a series of tasks. A previous

application of this method to neuroscience uses hypergraphs to analyze how functional

network structure changes over a long term learning task [11]. The learning experiment

considers hypergraphs constructed over 6 weeks of training while subjects acquire a new
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Figure 2.7: Task-specific Hyperedge Size Distributions: Cumulative frequency
distribution as a function of hyperedge size for all task-specific groups. The results are
compared to the overall distribution of hyperedges (dark blue), previously illustrated
in Figure 2.4. There are fewer large hyperedges attributed to attention and rest tasks,
while the memory tasks have a greater number of large task-specific hyperedges.

motor skill, while our analysis compares hypergraphs over three different tasks performed

within an interval of hours. Our analysis shows that hypergraphs are a useful tool for

investigating shorter time scales and differentiating between task-specific networks.

Instead of analyzing the time-dependent behavior of groups of nodes, the hypergraph

investigation considers the edge weight time series, where edges with statistically signif-

icant similarities in their temporal profiles are grouped into hyperedges. This approach

is advantageous because it considers all edges, regardless of correlation strength, unlike

previous methods which focus exclusively on strong correlations [12, 13]. The use of a

data-driven analysis also allows us to investigate the dynamic changes in brain function

over a series of tasks without prior assumptions of the structure of the connectivity net-

work. This is a significant advantage over methods that characterize task states based

on their differences with respect to the rest network [19, 20]. A comparison between the
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Figure 2.8: Task-specific Co-evolution Networks and Hyperedge Node De-
grees: (A): Distribution of task-specific hyperedge node degree on the brain. Here,
the log of the total number of hyperedges containing each node is represented on the
brain. The color scale represents the log of hyperedge node degree as in 2.5A, although
here the range of values is from 0 to 4.8. (B): Co-evolution networks for each task.
Edge strength corresponds to the probability that a hyperedge will contain the edge
over all individual hypergraphs. Color represents a threshold in percentage value,
with the scale given in Figure 2.5B, and the top 1% of co-evolution probabilities are
shown. Once again, the top 2 % of probabilities are brown, red indicates the top 0.2%
to 0.4% of connections, orange indicates the top 0.4% to 0.6% of probabilities, gold
indicates the top 0.6% to 0.8% of probabilities, and yellow indicates the top 0.8% to
1% of probabilities.

hypergraph analysis and these methods in a future analysis could reveal how the concen-

tration of hyperedges varies in known task-positive or task-negative areas and determine

whether this variation has an effect on task performance.

2.4.1 Hypergraph Statistics and Structural Metrics

We demonstrate the existence of hypergraph structure in functional brain dynamics

and statistically characterize the hyperedge distributions in comparison to appropriate

null models. Shuffling the time series over all time produces no significant hyperedges,

while shuffling within each task results in a size distribution that resembles the overall size

statistics in shape, but with far fewer hyperedges. The distinct differences between the
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Figure 2.9: Task-specific network statistics: Values for the position-strength
metric (blue) and the length-strength metric (red) for the four tasks are depicted in
(A). (B) shows p-values for the pairwise statistical permutation test between tasks,
where black denotes a significant value after a Bonferroni correction for multiple com-
parisons. Values are obtained for length-strength and position-strength metric. For
example, on the y position plot in (B), attention-word is significant. Referring back
to (A), we see that this implies the difference in the y position-strength correlation
between the attention and word tasks is statistically significant.

two null models and our results based on the original time series establish the significance

of our findings. Furthermore, the existence of hyperedges after the within-task shuffling

indicates the presence of activity in some edges that is differentiated between tasks. Since

there are fewer large hyperedges after the within-task shuffling, we can also confirm that

there are hyperedges caused by edge dynamics within tasks. This chapter primarily

concentrates on hyperedges correlated within a particular task, but future analyses to

understand the properties of hyperedges that are grouped due to other general properties

would supplement our results.
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Table 2.1: Brain Regions
Region Name L R Region Name L R
lateralorbitofrontal 2 2 pericalcarine 1 1
parsorbitalis 1 1 lateraloccipital 5 5
medialorbitofrontal 1 1 lingual 2 3
parstriangularis 1 1 fusiform 3 3
parsopercularis 2 2 parahippocampal 1 1
rostralmiddlefrontal 5 6 inferiortemporal 1 0
superiorfrontal 9 8 middletemporal 3 4
caudalmiddlefrontal 3 2 bankssts 1 1
precentral 7 6 superiortemporal 5 5
paracentral 1 1 transversetemporal 1 1
rostralanteriorcingulate 1 1 insula 2 2
caudalanteriorcingulate 0 1 thalamusproper 1 1
posteriorcingulate 2 2 caudate 1 1
isthmuscingulate 1 1 putamen 1 1
postcentral 7 5 pallidum 1 1
supramarginal 5 4 accumbensarea 1 1
superiorparietal 7 7 hippocampus 1 1
inferiorparietal 5 6 amygdala 1 1
precuneus 5 5

Anatomical locations of the 194 brain regions used as network nodes in the hyperedge
analysis, including the number of regions in left and right hemispheres in each brain
area.

The hyperedge size distribution is comprised of “small” and “large” hyperedges, where

the size distribution of the small hyperedges follows a power law and the large hyper-

edges peak at the system size. We explore the overall spatial hyperedge distribution

by constructing a hyperedge node degree plot, and find that the majority of the most

densely connected nodes lie in the posterior portions of the brain. To better observe spa-

tial hyperedge properties, we develop a co-evolution network, where connection weights

correspond to the probability that a hyperedge will include the connection. The top 1%

of connections in the network with the highest probability of inclusion in a hyperedge are

most concentrated in the occipital lobe and prefrontal cortex. These are expected areas
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of hyperedge concentration, consistent with the visual nature of the tasks, as well as the

coordination of quick decision making and the selection of specific motor responses.

2.4.2 Task-specificity and Anatomical Placement

We find there are hyperedges that are more correlated in one task and hyperedges

that have a distinct profile across the tasks. Our results suggest that edges with a

high probability of inclusion in task-specific hyperedges are often found in previously

identified brain areas associated with the corresponding tasks, as discussed in detail

below, confirming that the approach captures relevant information about task networks.

In some cases, brain regions expected to show strong co-variation in a certain task are

not included among the strongest connections of that task-specific co-evolution network;

we also discuss examples of this in detail below. Repeating the analysis and grouping

hyperedges that are significantly correlated in two tasks might lend insight into whether

brain systems relevant to a certain task contain hyperedges that are correlated in another

task and thus are rejected from our task-specific analysis.

In all tasks, stronger connections in the co-evolution network tend to be located

in posterior portions of cortex and to be physically shorter. The higher probability of

posterior edges to be included in hyperedges is consistent with the identification of a core

set of highly structurally connected regions centered in the posterior of the brain, thought

to play an important role in integrating large-scale functional connectivity [11, 44]. The

tendency of strong connections to be physically shorter suggests high efficiency in task-

specific co-evolution networks. This may reflect efficient wiring properties associated with

minimal wiring for rapid processing and low energy expenditures found in structural brain

networks and shared by some other biological and technological networked systems [67].
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Rest

Resting-state brain activity contains correlated patterns that comprise a default mode

network, a system that is engaged during internal cognition [68,69]. Certain brain regions

active at rest are consistently deactivated during goal-oriented tasks, indicating that they

comprise a functional mode that is rest-specific [17].

Our result that rest has fewer specific hyperedges than the attention or memory tasks

could be a result of the specificity of correlated resting state regions, or a simplicity in-

trinsic to resting state function that does not necessitate more concerted efforts involving

numerous brain regions [26]. In addition, we see a relative randomization and asymmetry

in the spatial co-evolution distribution of rest-specific hyperedges, as well as a relative

lack of long, strong connections; these results may correspond to a diminished need for

efficient processing in a task-free environment.

Dense areas of the co-evolution network with high probabilities of being in rest-specific

hyperedges include brain regions traditionally associated with the resting state. The

inferior parietal lobule, superior frontal gyrus, precuneus, and posterior cingulate cortex

have been identified as integral components of the default mode network; in addition,

the posteromedial cortex, which includes the precuneus and posterior cingulate cortex,

plays an important role in awareness [70–72].

Attention

Two attention systems exist in the human brain: a “top-down” network controls

goal-directed attention, while a “bottom-up” group of brain regions detects and orients

attention to relevant sensory stimuli that are generally novel or unexpected [73,74]. Our

task probes the former, as subjects are asked to focus on repetitive stimuli in a controlled

environment. This requires an “executive control network,” a bilateral dorsal system that
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governs guided attention and working memory [75]. The relatively high degree of bilateral

symmetry and the dorsal concentration of connections observed in the attention-specific

co-evolution network suggests a higher probability for connections within this executive

control network to co-evolve with other edges during the attention task.

Specifically, we observe regions of high clustering among the strongest connections

in the attention-specific co-evolution network in the lateral parietal and occipital lobes,

superior frontal cortex, and dorsal parietal cortex, areas known to be involved in attention

networks. Parietal and frontal areas are involved in attention control and localization,

specifically in visual attention tasks [73, 76]. Activation of the superior frontal cortex

occurs in attention tasks, especially those that involve a shift to peripheral locations in

the visual field [77, 78]. The dorsal parietal cortex also performs a central role in the

executive control network: patients with lesions in the dorsal parietal cortex have shown

significant impairment in goal-directed attention tasks [79].

Strong connections in the attention co-evolution network are more likely to be long

than those in rest, corresponding to the high probability that long rostral-caudal edges

will be included in hyperedges (visible in Figure 2.8B). This may reflect a greater need for

coordination between prefrontal executive control regions and regions in the occipital lobe

during the attention task. In addition, strong attention-specific co-evolution connections

are less likely to be located in the posterior of the brain than those specific to word

memory; this could indicate that the attention task state has less reliance on core visual

regions than the word memory task state.

Memory for Words

Our results for the word memory-specific and the face memory-specific hypergraphs

were similar in several ways. Both displayed many more “large” hyperedges than the rest

or attention tasks, suggesting that some aspect of the memory tasks requires dynami-
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cally coherent evolution over much of the brain. We speculate that this variation in the

task-specific size distributions may correspond to the cognitive complexity demanded by

the tasks, with the more involved memory tasks requiring more coordination between

different cognitive networks and functions, and therefore producing more large hyper-

edges. This possibility could be further tested by examining hyperedge size variation

across tasks specifically designed to vary in complexity.

Visual orthographic and face processing have a common reliance on central vision [80]

and share neural circuitry [81]. The resemblance of the co-evolution networks for the two

tasks, especially when compared with the very different graph structure of the attention

and rest networks, indicates a similarity in the hypergraph representation of the memory

tasks. This in turn signifies a correspondence in brain dynamics specific to memory. The

task-specific analysis identifies hyperedges that show a significant correlation in only one

task, so there is no overlap in these co-evolution networks.

Existence of a dedicated visual word processing network has been a topic of frequent

discussion in neuroscience. The visual word form area (vWFA), located in the occipito-

temporal cortex, is consistently activated by orthographic stimuli [82] and is invariant

to changes in case, size, font, or type of visual stimulation [83, 84]. The vWFA has also

been shown as functionally linked to the dorsal attention network in resting state fMRI

data, indicating that it fulfills a complex cognitive role [85].

In the word memory-specific co-evolution network, the vWFA is highly connected,

but there is minimal strong structure in dorsal attention areas, which we would expect to

see in a functional connectivity analysis [85]. This can be explained by our methodology

of selecting task-specific hyperedges. If edges in the dorsal attention network have similar

co-evolution properties within the word memory and attention tasks, they will not be

identified as task-specific edges.
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Memory for Faces

Face recognition in humans requires a complex network distributed throughout the

visual cortex that includes extended connections branching to other cortical regions [86].

The majority of visual processing occurs in the occipital lobe, located in the posterior of

the brain. Functional MRI studies have identified multiple regions in the occipital cortex

that respond more strongly to faces than other visual stimuli, indicating that the cognitive

processes involving facial recognition are highly specialized [87,88]. The especially dense

concentration of connections in the occipital lobe at the highest probability levels of the

face memory-specific co-evolution network is consistent with this.

The face perception system is composed of multiple bilateral regions; the lateral

symmetry observed in the face memory-specific co-evolution network is consistent with

this structure [86]. An aspect of the co-evolution network that breaks this symmetry is

the right fusiform gyrus, which is strongly connected to other areas in the occipital lobe

by high probability co-evolution pairs. A region in the fusiform gyrus, the fusiform face

area (FFA), has been found to be selectively active in whole human facial perception,

and the right FFA in particular has been found to have the most salient response to

faces, with damage to the region severely impairing face recognition [89, 90]. The high

probability of co-evolution between the right fusiform gyrus and other regions in this

task-specific hypergraph is consistent with our expectation that regions involved in the

memory of faces in particular (as opposed to words) are most likely to be included in

face memory-specific hyperedges.

The co-evolution networks for both memory tasks show a significantly higher hyper-

edge probability in visual areas than the attention and rest tasks, and the differences in

structure indicate that the hypergraph representation of memory tasks is significantly

different from rest or attention. The marked differences in hyperedge statistics between
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task states in our task-specific analysis suggest hypergraphs as a measure of functional

network changes due to task states. With measures derived from the hyperedge analysis,

we can begin to quantitatively probe the mechanisms of functional switching between

tasks and gain insight into how distinct features of the network evolve in synchronized

patterns.

2.4.3 Methodological Considerations

Because they consider both strong and weak edges with no thresholding, hypergraphs

are well-suited for identifying groups of brain regions that, for example, initially have

uncorrelated activity but become more correlated in synchrony (or vice-versa), as we

expect task-associated cognitive networks to do as a result of switching between tasks.

In order to extract these dynamic patterns, the hypergraph technique considers strong

and weak edges equally, ignoring any offset between the average correlation strengths of

different edge time series. This is intended to provide a complementary method to the

common thresholding approach of separating or ignoring network edges with correlation

strengths weaker than some critical value [12,13]. Since weak edge connectivity has been

shown to contain functionally relevant and predictive information in various contexts,

retaining these edge weights is desirable [55, 91, 92]. There is also evidence that mean

edge correlation values can be driven by non-biological artifacts such as head motion,

even after applying standard motion-correction techniques [33]; by remaining indifferent

to edge weight offsets, a hypergraph analysis avoids this concern.

In applications where the overall correlation strength of network edges is neverthe-

less important, it may be useful to supplement the dynamic information given by a

hypergraph analysis with a measure that retains this edge weight information. Efforts

to make quantitative comparisons between the hypergraph analysis and other dynamic
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graph theoretical methods in the context of the human brain are ongoing. We are cur-

rently investigating whether dynamic community detection on weighted brain networks,

a node-based analysis which relies on edge correlation strength, provides complementary

information to the hypergraph analysis.

Because we choose a linear measure to compute correlations between edge weight time

series, our analysis as presented here does not account for time lag in these correlations.

However, our framework could be extended to nonlinear measures that include time-lag

information.

It is important to note that our method of computing a dense matrix of edge-edge

correlations and thresholding according to significance does not necessarily identify direct

conditionally-dependent correlations between time series, or correlations that represent

the underlying structural connectivity of the brain. As with any method that infers

a network structure from correlation data simply by thresholding, we expect many of

these correlations to be indirect. For example, a significant correlation between two edge

weight time series may occur because both edges are being controlled by a third, more

central edge – and not because the two edges are directly connected either causally or

structurally. In this sense, the edge-edge correlation structure does not capture relations

that necessarily reflect the underlying control structure or the physical architecture of

the brain. Our hyperedge analysis moves the focus away from such indeterminate dyadic

relationships, considering only groups of all edges that share similar dynamic patterns

without any intra-group organization or structure.

It is also possible, as in any fMRI analysis, that edge-edge correlations arise from

task-induced indirect drivers, such as visual stimuli. Two regions that are both activated

by a visual stimulus may show strong functional connectivity with one another in a single

time window. Moreover, such regions may show similar changes in functional connec-

tivity over time if their activation profiles to the stimulus evolve similarly during the
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experiment. As with any measurement of functional connectivity based on the Pearson

correlation coefficient [93], a common and robust measurement of functional connectiv-

ity, such indirect drivers of functional connectivity are not distinguished from other more

direct drivers of communication or interaction.

We observe a significant amount of individual variability in the hypergraph proper-

ties of interest. In this chapter, we have completed a group-level analysis and focused

on investigating task-related differences in hypergraph structure. However, individual

variability may be related to differences in cognitive ability and provide additional in-

sight into the role of hyperedges in task performance, a possibility which we address in

Chapter 3.

2.4.4 Conclusion

In this chapter, we use hypergraph analysis to identify significant co-evolution between

brain regions in task-based functional activity and develop new tools to summarize the

spatial patterns of these co-evolution dynamics over the group of subjects. By isolating

task-specific hyperedges, we quantify significant differences between the spatial organi-

zation of co-evolution dynamics within different tasks. This hypergraph analysis adds a

crucial perspective to previous treatments of task-based brain function, describing tem-

poral similarities between spatially segregated neural circuits by specifically examining

the organization of connections that co-evolve in time. It provides a promising approach

for understanding fundamental properties of task-based functional brain dynamics, and

how individual variation in these properties may correspond to differences in behavior

and task performance.
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Chapter 3

Individual Differences in Human

Brain Hypergraph Properties

3.1 Introduction

Functional connectivity (FC) analyses based on fMRI data are effective tools for

quantifying and characterizing interactions between brain regions. Many approaches

borrow methods from the field of graph theory, in which FC is used to build graphs

that model the brain as a complex network, treating brain regions as nodes and using

functional connections (pairs of nodes with significantly related BOLD signal dynamics)

to determine the edge structure of the network [7, 21]. Individual differences in both

underlying FC and the complex network structure resulting from graph theory approaches

have been investigated for a variety of task states, developmental stages, and clinical

diagnoses [94–96].

Certain characteristics of FC have been found to vary consistently over the course of

normal human aging. The loss of clear segmentation between neural systems is widely

reported: many intrinsic functional connectivity networks in the brain tend to become
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less internally coherent with age, and the functional differences between these intrinsic

networks generally become less pronounced [97–99]. These changes are most commonly

reported in the default mode network (DMN) [100–106], although they have also been

observed in other networks, including those associated with higher cognitive functions

[100,102,105–107]. In addition, inter-network connectivity between the DMN and other

regions of the brain has been found to increase, diminishing the ability to discriminate

between networks based on FC [104,106]. There are some intrinsic functional networks,

however, that show no changes or even increased intra-network connectivity with age,

such as sensory networks [101,103,105].

The bulk of studies on age-related changes and other individual differences in FC,

including those that use methods from complex networks and graph theory to represent

FC patterns, are performed using static FC analysis, which represents the similarities of

brain region activity (or some other measure of concordance) aggregated across an entire

data set. In the present investigation, we build upon recent advances in network science

to study individual differences in human brain activity and behavior from a dynamic

network science perspective [108]. Dynamic functional connectivity (DFC) extends FC

to examine how functional organization evolves over time [27,109], allowing investigation

of the changes in FC during the course of a cognitive task or scanning session. Efforts to

probe the dynamics of functional brain networks have revealed that functional structure

reconfigures over time in response to task demands [29,31,32,110,111] and spontaneously

at rest [27, 112]. DFC methods have also been used to inform understanding of individ-

ual differences related to aging. In particular, dynamic community structure was found

to vary significantly with age [113] and amplitude of low-frequency fluctuations of FC

(ALFF-FC) was used to show age-dependent changes in the dynamics of interactions be-

tween networks [114]. Both studies imply that functional dynamics should be considered

when investigating how aging affects brain network organization.
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To address this, we use hypergraph analysis, a method from dynamic graph theory,

to examine individual differences in DFC network structure in fMRI data acquired as

subjects perform cognitively demanding tasks. The method is based on a generalization

of standard graph theoretical techniques. In particular, by defining the standard node-

node FC graph in successive temporal epochs, we construct a set of edge timeseries—that

is, a vector of how the edge changes over time. The edge-edge DFC graph is constructed

by treating these edge timeseries analogously to the node timeseries in the first step, and

computing the relationship between every edge pair. Finally, we focus on “hyperedges,”

which are connected components of the absolute valued edge-edge DFC graph (described

in more detail in Section 3.2) [16]. To contextualize hypergraph analysis, we define the

graph theoretic elements used to construct hypergraphs as follows:

Node: As in the FC literature, nodes denote brain regions, or groups of voxels.

Edge: Also corresponding to the FC literature, edges denote correlations in activity

between pairs of nodes over time. A node-node graph G = {V,E} on N nodes will have(
N
2

)
edges, because each pair is considered. Unlike the majority of FC analyses, the edges

are not thresholded for significance in the hypergraph analysis.

Links: Links denote significant correlations in activity between pairs of edges over

time. An edge-edge graph G′ = {V ′, E ′} on
(
N
2

)
edges will have

((N
2 )
2

)
possible links, but

tends to be sparse in practice.

Hyperedge: A hyperedge denotes a group of links connecting two or more edges

with significantly correlated temporal profiles. Hyperedges are the simplest form of link

community, since they are simply the connected components of the edge-edge graph

G′ = {V ′, E ′}, where V is the set of edges and E is the set of links.

Hypergraph: A hypergraph is a set of hyperedges.

The hypergraph analysis is a simple first step toward understanding the structure

of functional dynamics. Hyperedges are the connected components of the edge-edge
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graph, and so avoid the introduction of additional unconstrained parameters, unlike

many common FC and DFC methods such as community detection.

The groups of brain regions that comprise hyperedges are not necessarily strongly

active or strongly interconnected brain regions. Rather, correlations in the dynamic con-

nectivity of these regions are the defining characteristics that determine hyperedge struc-

ture. As a result, hyperedge analysis is able to identify groups of dynamic connections

that change from strong to weak (or vice versa) cohesively together over time, provid-

ing complementary information to other DFC methods that focus on only the strongest

node-node correlations, such as dynamic community detection [11, 35, 113]. Note that

our choice of hyperedge metrics, as opposed to any other graph theoretic measure, is

due to the simplicity of the hyperedge. Although it is beyond the scope of the present

investigation, other graph properties of the edge-edge graph are likely to provide insight

into dynamic brain network structure along other relevant dimensions. Nonetheless, hy-

peredges have some appealing intuitive validity in terms of the neural properties they

might uncover—that is, in defining collections of nodes (or more technically, edges) on

the basis of their similar dynamics.

In Chapter 2, we demonstrated that hyperedges discriminate between diverse task

states in a group-level analysis of an fMRI data set spanning four tasks, which we refer

to as the “multi-task” data set [111]. We also observed notable variation in descrip-

tive hypergraph measures across individuals. However, given the level of abstraction

involved in the construction of the hypergraph, an important first question is whether

the method is able to capture well-known phenomena. In this chapter, we investigate

the relationship between the variability in hypergraph cardinality and other individual

difference measures. We develop and employ hypergraph measures that capture indi-

vidual differences in functional brain dynamics to determine correspondences between

dynamics and specific demographic and behavioral measures. In the multi-task data set,
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we find that hypergraph cardinality—the number of distinct hyperedges within a sub-

ject’s hypergraph—exhibits marked variation across individuals. At the same time, we

find this measure is consistent within individuals, across overall hypergraphs and those

associated with specific tasks.

To elucidate the drivers of this striking variation in hypergraph metrics observed

across subjects, we explore systematic relationships between hypergraph cardinality and

individual difference measures spanning distinct domains such as demographics, cognitive

strategy, and personality. In the multi-task data set, we find a suggestive relationship

between hypergraph cardinality and participant age. This relationship is confirmed with

an independent analysis of a data set with participants who range in age from 18 to 75,

which we refer to as the “age-memory” data set. We report a strong positive relationship

between age and hypergraph cardinality: older participants are significantly more likely

to have a larger number of distinct hyperedges in their hypergraph. This agrees with

the widely reported phenomenon of the loss of cohesion within intrinsic functional brain

systems, because an increase in the number of distinct hyperedges linking various brain

regions points to interconnections between functional groups evolving in time [104,106].

Thus, the hypergraph method agrees with previous descriptions of age-related brain

changes, while capturing information about dynamics that adds a novel dimension to

previous studies. The results of this chapter further recommend the hypergraph as a

useful tool in studying structure in dynamic functional connectivity.
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3.2 Methods

3.2.1 Ethics Statement

Informed written consent was obtained from each participant prior to experimental

sessions for the multi-task and age-memory experiments. All procedures were approved

by the University of California, Santa Barbara Human Participants Committee.

3.2.2 Background and Multi-Task Methods

Multi-Task Experimental Design

Participants were scanned at rest (task-free) and while engaging in three distinct tasks

designed to elicit distinct cognitive functions: an attention-demanding task, a memory

task with lexical stimuli, and a memory task with face stimuli. Participants were in-

structed to lie still and look at a blank screen for the duration of the rest period. During

the attention task, participants were instructed to attend to sequences of images on a

screen and detect the presence or absence of a target stimulus in designated test displays.

Prior to the test display, a cue arrow provided probabilistic information on whether and

where the target stimulus might appear. The test display was flashed for approximately

50 ms, after which participants chose whether or not the target stimulus had been present.

Attention trials were separated by inter-stimulus intervals between 1200ms and 3200ms.

In both memory tasks, participants were presented with 180 previously examined stimuli

and 180 novel stimuli and were asked to discriminate between the two. The stimuli in

the word and face memory tasks were 1.5 s or 1 s in duration, respectively, with a 1

s inter-stimulus interval. The memory tasks also included probabilistic cues indicating

the probability that the stimulus was novel. For additional experimental details, see [12]

and [42].
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After completing the scans described above, the following individual difference mea-

sures were obtained for study participants: self-reported demographic information, self-

reported state of mind (including physical and mental comfort) information, results from

the Beck Depression Inventory II [115], tests for cognitive style (Santa Barbara Learn-

ing Style Questionnaire [116], Object Spatial Imagery Questionnaire [117], The Need for

Cognition Questionnaire [118], Verbalizer-Visualizer Questionnaire [119], Card Rotation

and Paper Folding Tests [120]), personality tests (Big Five Inventory [121] BIS/BAS

scales [122], and PANAS mood assessment [123]). More individual difference measures

were also collected, but do not match the individual difference measures collected from

subjects in the age-memory study.

Image Acquisition and Processing

The MRI data were acquired from 116 participants at the UCSB Brain Imaging

Center using a phased array 3T Siemens TIM Trio with a 12 channel head coil. In

addition to functional data, a three dimensional high-resolution T1-weighted structural

image of the whole brain was obtained for each participant. Functional MRI data were

collected from 116 healthy adult participants over the four states described above in a

block design format. Due to various sources of attrition, only 77 participants completed

the functional scan and accompanying survey of detailed in [42]. The sampling period

(TR) was 2 s for the rest and attention tasks and 2.5 s for both memory tasks (TE =

30ms, FA = 90). The rest task consisted of 146 acquired brain volumes (for a total of

292 s), each attention task consisted of 240 scanned volumes (480 s), and each memory

task consisted of 540 volumes (1350 s).

The functional data is parcellated into regions using a “hybrid” adaptation of the

multi-resolution Lausanne2008 atlas registered to MNI space [44] in order to apply the

hypergraph analysis. This 194 region “hybrid” anatomical atlas minimizes variability in

53



Individual Differences in Human Brain Hypergraph Properties Chapter 3

region size between subjects and brain regions [111].

The functional data are preprocessed using FSL [47], AFNI [48] and Matlab [124].

Head motion was corrected for with MCFLIRT and voxelwise despiking was performed

with AFNI 3dDespike [49]. Other preprocessing steps include non-brain removal with

AFNI 3dAutomask, slice-timing correction with AFNI 3dTshift, and additional motion

artifact correction with AFNI 3dDetrend. Additionally, each participant’s time-averaged

fMRI image is aligned to their structural T1 scan using FSL’s FLIRT with boundary-

based registration [49,52]. The inverse of this transformation is applied to all participants’

parcellation scales (generated in structural space) and parcellations are down-sampled

into functional space with AFNI 3dfractionize. The mean signal across all voxels within

a given brain region is calculated to produce a single representative time series. An

integer number of minute-long intervals is taken from the beginning of the time series for

each task, and these are concatenated to produce a single time series, 3840 s in length,

for each brain region.

Construction of Temporal Graphs

For each subject, we construct a dynamic graph model of brain function that accounts

for changes in connectivity over time. Each of the N = 194 brain regions in the hybrid

atlas is a node in the graph. The BOLD signal time series from each brain region

is bandpass filtered to obtain data in the 0.06-0.125 Hz frequency range that contains

task-related brain activity [14, 54–56]. Node-node adjacency matrices of size N ×N are

constructed by taking Pearson’s correlations between each pair of the N = 194 nodes for

each consecutive 60 s window of the bandpassed time series. Each node-node adjacency

matrix represents the state of the functional network over that period of 60 s. Previous

work found robust hyperedge size and spatial distributions for temporal window lengths

between 40 to 120 s, and we choose a 60 s length consistent with previous analyses [111].
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Furthermore, the variation in TR between tasks and corresponding variation in number

of data points in the 60 s windows was shown to have minimal effects on the size and

spatial hyperedge distributions [111].

Given the duration of each scan, this windowing yields four rest, 18 attention, 18

word memory, and 18 face memory node-node adjacency matrices. The set of node-node

adjacency matrices, one for each one-minute segment, represents the dynamic functional

connectivity graph; each edge, or pairwise connection between nodes, has an edge weight

time series describing its temporal evolution across time windows, as depicted in Figure

2.2 (B).

Hypergraph Construction

Hyperedges are groups of edges that have related temporal profiles, so hypergraph

structure is determined from the correlations between the time-evolving weights of edges

[16] (See Figure 2.2 for a schematic illustration of hypergraph construction). These are

represented in an edge-edge adjacency matrix X, of size E ×E, where E = N(N − 1)/2

is the total number of possible edges in one time window of the DFC graph. Each entry

in X is given by the Pearson correlation between the corresponding pair of edge weight

time series in the DFC graph. The p-values from these correlations are thresholded by a

false discovery rate correction, which is more sensitive than other corrections for multiple

comparisons and is thus effective for such neuroimaging network analyses [59]. When the

correlation between edges i and j is significant (p < 0.05), we set ξij = Xij, to form the

thresholded matrix ξ. All other elements of ξ are set to zero. We binarize this thresholded
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matrix and obtain ξ′ij, where

ξ′ij =


1, if ξij 6= 0;

0, if ξij = 0.

(3.1)

Each connected component in the thresholded edge-edge correlation matrix ξ′ – that

is, each set of edges with correlations between any two edges in the set but no significant

correlation with edges in any other set – forms a hyperedge. Taken together, all hyper-

edges in ξ form a hypergraph. Since the edge weight time series are never thresholded and

both high and low edge weights are preserved, hypergraphs provide information about

edge dynamics without restricting the analysis to strong correlations in regional time se-

ries. Hypergraphs are constructed from significant positive and negative correlations to

incorporate a broad definition of whether two edges are “related.” By definition, this ap-

proach precludes pairs of hyperedges that are anti-correlated. An alternative mechanism

for constructing hypergraphs would treat positive and negative correlations separately,

but here we only consider absolute valued relationships.

In this analysis, we consider a system with 194 nodes, and
(
194
2

)
possible edges. Hyper-

edges are collections of edges, which results in a high dimension for this system. As such,

we illustrate an schematic hypergraph on a smaller number of nodes for visualization

purposes, seen in Figure 3.1.

Our results are compared with a null model designed to ensure that hyperedges iden-

tified in our analysis can be attributed to system dynamics, rather than overall statistical

properties of the data [35]. To destroy temporal correspondences between edges but re-

tain the mean and variance of each edge weight time series, the null model randomly

reorders each edge time series individually and calculates correlations between the re-

ordered edges.
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Once hypergraphs are identified for each individual in the multi-task data set, hyper-

edges are classified according to whether the correlation in a cognitive state (i.e., rest or

one of three cognitive tasks) is significant compared to a permutation null model over all

states [111]. The hyperedges that satisfy these requirements are denoted as task-specific

hyperedges, which we combine to form task-specific hypergraphs.

Figure 3.1: Example ξ′: Two depictions of a representative hypergraph on 20 nodes.
The hypergraph with singletons removed is shown in (A), where edge color represents
hyperedge assignment. The size of a particular hyperedge is the number of edges
in it, as in Equation 3.2. This illustrative hypergraph is comprised of six distinct
hyperedges of various sizes. An alternative hypergraph representation is depicted in
(B), where colors directly correspond to (A). Each hyperedge in the hypergraph is
represented by a single vertex. Vertex labels correspond to hyperedge size, and edges
are drawn when hyperedges connect to at least one common node.

Hypergraph Metrics

In this analysis, we examine several complementary measures on individual hyper-

graphs and focus on one of the most straighforward and transparent of these measures

to extract meaningful information from the overall hyperedge distribution.
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Hyperedge size: The size, s(h), of a hyperedge h, is defined by

s(h) =
∑
i,j∈h

ξ′i,j, (3.2)

where the sum is over the upper triangular elements of ξ′, the binarized edge-edge adja-

cency matrix defined above. This is equivalent to the number of edges that are designated

as part of this hyperedge. An illustration of a hypergraph with hyperedges of varying

sizes can be seen in Figure 3.1.

Singletons: Singletons are hyperedges with s(h) = 1, edges with no significant cor-

relation with any other edge in the graph. We exclude singletons from the following

analyses.

Hypergraph cardinality: The cardinality of an individual hypergraph is the number of

non-singleton hyperedges present in the hypergraph. The cardinality of the representative

hypergraph in Figure 3.1 is six.

Hyperedge node degree: The hyperedge degree of a node is the total number of hyper-

edges that contain that node.

Task-specific hyperedges: Hyperedges that exhibit a significantly higher correlation

within one particular task are grouped into task-specific sets. The sets are calculated

by using a permutation test to compare the correlation between edge time series for

groups of edges in hypereges in a single task to the same correlation with edge time

series data chosen randomly from all tasks. A Bonferroni correction for false positives

due to multiple comparisons is employed to select task-specific hyperedges using the most

stringent requirements [64].
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Regression Procedure

To investigate possible correlates of variability in individual hypergraph metrics, we

perform a series of regression analyses. In each analysis, we use the hypergraph metric

as the dependent variable and factors representing individual difference measures from

the psychometric tests as the independent variables.

Behavioral data categorization: Behavioral and performance data for the multi-task

study consist of 231 measures, while there are 115 measures for the age-memory study

participants. There are 42 individual difference measures common to both studies, which

we group into five categories, given in Table 3.1. These categories are comprised of

differing numbers of individual difference measures, which are summarized in Table B.1.

Category Factors Information Retained
Performance 2 91.41%
Demographics 2 92.62%
State of Mind 3 80.45%
Cognitive Factors 4 77.64%
Personality 6 77.79%

Table 3.1: Information retained for multi-task study: Categories, number of
factors for each, and how much overall variance from the multi-task individual differ-
ence data was retained for each category. Each category represents a subset of the 42
individual difference measures and the factors represent a percentage of the variance
contained in the category for the multi-task data.

Singular value decomposition: Once the individual difference measures have been

categorized, we demean all measures and perform a singular value decomposition (SVD)

separately for each category. We choose the minimum number of factors from the SVD

for each category that retain at least 75% of the variance across the category of measures

from the multi-task study. Results from this process are presented in Table 3.1.

R2 change: The number of factors retained is not constant across categories, so

we implement an adapted multivariate hierarchical regression [125, 126] to establish the

comparative informativeness of each category. To assess the explanatory power of a given

59



Individual Differences in Human Brain Hypergraph Properties Chapter 3

category, all factors in that category are held out for a “control” regression, and the

difference in model R2 between this reduced model and the full model is denoted as the

contribution for that category. This corresponds to repeatedly performing a hierarchical

regression with each category computed last, which gives a conservative estimate for the

amount of variance attributable to the category [126].

Significance test: To determine the significance of the regression coefficients, we use

the p-values from t-tests on each multiple regression performed. The Bonferroni proce-

dure for correcting for false positives due to multiple comparisons is used to adjust the

t-test p-values over all regressions performed in this study [64]. We employ the Bonfer-

roni correction for multiple comparisons in all regression analyses because it is the most

stringent test for significance.

3.2.3 Age-Memory Methods

The majority of the methods are identical to those discussed for the multi-task data

set. Below, we point out aspects that differ between the two analyses.

Age-Memory Experimental Design

The word memory task in the age-memory study is constructed similarly to the word

memory task in the multi-task data set. In addition to the memory task, participants

completed a resting state scan and diffusion-tensor imaging, which we do not analyze

further. Participants did not complete the face memory or attention tasks described in

the first data set. The BOLD data were acquired while adult participants performed

a recognition memory task with probabilistic cues. Prior to the scanning session, the

participants studied 153 common English words, which were mixed with 153 novel lex-

ical stimuli during the task. Participants were asked to determine whether the stimuli

60



Individual Differences in Human Brain Hypergraph Properties Chapter 3

were studied or unstudied, with font color cues indicating whether the word had a 70%

probability or a 30% probability of having been previously studied [127].

Image Acquisition and Processing

Functional and structural data were collected from 126 healthy participants engaged

in the word memory task. All functional data was acquired with a 3T Siemens TIM

Trio MRI system with a 12-channel head coil. Scans consisted of T2*-weighted single

shot gradient echo, echo-planar sequences sensitive to BOLD contrast (TR = 1.6 s;

TE = 30 ms; FA = 90) with generalized autocalibrating partially parallel acquisitions

(GRAPPA). Subjects were scanned performing the task, with a total of 948 brain volumes

acquired (1516.8 s). In additon to the functional scans, high-resolution anatomical scans

were performed for each participant using an MPRAGE sequence (TR = 2.3 s; TE =

2.98 ms; FA = 9; 160 slices; 1.1 mm thickness). Study participants also underwent

behavioral assessments and psychological testing. Functional data from 31 participants

were excluded due to technical issues, metal screening issues, claustrophobia, attrition,

or lack of a complete individual differences survey. The results presented here are from

95 participants with usable functional and individual difference data.

The functional data are preprocessed using FSL [47], AFNI [48], and Matlab [124].

Preprocessing includes head motion correction (MCFLIRT) [49], non-brain removal (BET)

[128], high-pass temporal filtering (σ = 50s), spatial smoothing, and grand mean inten-

sity normalization (FEAT) [129]. Each voxel’s time series is further denoised using a

nuisance regression. The nuisance regression includes regressors for the six motion cor-

rection terms returned by MCFLIRT, their temporal derivatives, and the mean signal

time series from the cerebrospinal fluid. The denoised data is registered to MNI space

using FLIRT [130, 131]. The T1 scan is first registered to the MNI template (12 df

affine transformation), the functional data are registered with the T1 image (6 df affine
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transformation, trilinear interpolation), and the transformations are combined. As in the

multi-task study, the mean BOLD signal across all voxels within a given brain region is

calculated to produce a single representative time series.

Construction of Temporal Graphs

Time series are demeaned and concatenated across the three functional runs of the

word memory task to produce a single time series for each brain region. DFC graphs

are constructed here analogously to the multi-task study, with one key difference. In the

age-memory analysis, we remove a single node-node adjacency matrix (i.e., a single time

window) from the beginning and end of each functional run. This is to counteract edge

effects from processing and ensure continuity across runs. We address this choice further

in Section 3.4.3 and Appendix B.

Regression Procedure

The regression procedure is similar to the analysis performed on the multi-task data.

The individual difference data is kept in the common format, where only the 42 measures

common to both studies are used and the categories are the same. Furthermore, the R2

change and significance tests are calculated as above.

Singular value decomposition: We demean all measures and perform a singular value

decomposition (SVD) on the combined multi-task and age-memory data separately for

each category. This differs from the multi-task analysis, where we only consider the

variance retained over the multi-task data. We choose the minimum number of factors

from each SVD that retain at least 75% of the variance across both studies. Results from

this process are presented in Table 3.2.
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Category Factors Information Retained
Performance 1 87.18%
Demographics 1 86.14 %
State of Mind 3 77.09%
Cognitive Factors 3 81.25%
Personality 4 78.56%

Table 3.2: Factors common to the multi-task and age-memory trials: Cat-
egories, number of factors assigned to each, and how much of the overall variance
was retained in each category. Each category represents a subset of the 42 individual
difference measures and the factors represent a percentage of the variance contained
in the category.

3.3 Results

As mentioned above, the hyperedge method has been applied to the multi-task data

set in a previous study [111]. Here, we first recapitulate the key findings from that inves-

tigation and provide results of exploratory analyses that motivate the followup analyses

on the age-memory data set. We then present results from the age-memory analysis.

3.3.1 Summary of Prior Results

A previous study of the multi-task data, detailed in Chapter 2, identified mea-

sures that capture significant differences in population-level hypergraph structure across

tasks [111]. Furthermore, extensive variation was observed in several hypergraph mea-

sures, including hypergraph cardinality, across individuals. These results emphasize that

hypergraph structure can be used to differentiate between task states and motivates our

investigation of the correspondence between hypergraph structure and individual differ-

ence measures.

Figure 2.7 depicts the empirical cumulative hyperedge size distributions for all hy-

peredges found across all subjects in the multi-task data set. As a null test, we shuffle

the data over time and find no hyperedges of size greater than one. There is a rough
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power law for the smaller sizes (s < 100), followed by a gap in the distribution from

about 100 to 1000 and a sharp drop at the system size (s =
(
194
2

)
= 18721). The shape

of the distribution is due to the consistent hypergraph structure across individuals; the

majority of subjects in this study have a hypergraph composed of one large hyperedge

and many small hyperedges. While this characteristic structure is common to most sub-

jects in the study, the size of the largest hyperedge varies across individuals. This size is

closely related to the hypergraph cardinality, defined as the number of hyperedges in a

hypergraph, a measure which also exhibits large variation.

Figure 2.7 also depicts task-dependent differences in the cumulative size distributions

of task-specific hyperedges. Memory-specific hyperedges tend to be more numerous than

those specific to the rest and attention tasks. However, the total number of task-specific

hyperedges for any task is at least ten times fewer than the total number of hyperedges.

Our strict definition of task specificity includes only hyperedges specific to a single task

and discards those associated with more than one task. This approach is conservative,

and likely leaves some meaningfully task-related hyperedges unclassified. However, it re-

duces the dimension of the task-specific results, and provides greater confidence that any

hyperedges classified as task-specific are indeed providing truly task-driven information

due to coherence within that task alone, rather than coherence due to an unrelated driver

that is common to several tasks.

There are significant differences in the spatial organization of task-specific hyperedges

over all individuals, visualized in Figure 2.8A, in Chapter 2. The plots depict task-specific

hyperedge degree across the brain for each of the four tasks. In addition to the differences

in magnitude between word memory and the other tasks, the locations of high hyperedge

concentration vary with task.

These significant differences in hypergraph structure between the tasks confirm that

hypergraph structure varies between task states. However, persistent variability in hyper-
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graph measures across individuals indicates that the hypergraph method reflects innate

differences beyond the current task state. The work presented here follows this line of

inquiry, beginning with an analysis of individual differences in the multi-task data set.

3.3.2 Multi-Task Results: Individual Differences

Here, we illustrate and quantify the wide variation in hypergraph measures across

individuals in the multi-task data. In brief, we identify a particular measure, hypergraph

cardinality, that demonstrates large variance across all individuals but is consistent within

individuals. Following this, we investigate relationships between the variation in indi-

vidual difference measures and the variation in hypergraph cardinality. The results from

this study are not statistically significant due to the limited variation in individual dif-

ference measures and strict corrections for multiple comparisons. However, we report a

marginally significant result relating demographics and word-memory hyperedge cardi-

nality that motivates further analyses on the age-memory data set.

Individual Variability and Consistency in Hypergraph Metrics

Although our previous study focused on group-level properties of hypergraphs across

tasks, notable individual differences in functional dynamics were also seen [111]. Here,

we confirm those preliminary observations by investigating the hypergraph cardinality

measure and finding that it displays extreme variations across subjects in the multi-task

data set, as shown in panel (A) of Figure 3.2. These individual variations in hypergraph

cardinality span several orders of magnitude.

Despite this large variation between participants, hypergraph cardinality follows a

consistent pattern within each participant across tasks. Panel (B) of Figure 3.2 depicts

individual measures of hypergraph cardinality for hyperedges specific to each task, with
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subjects sorted by rest hypergraph cardinality. Within participants, the task-specific

hypergraph cardinality is consistent across task states and follows the distribution for

rest-specific hyperedges, which further emphasizes the consistency of hypergraph cardi-

nality within individuals.

Consistent hypergraph cardinality within participants over all tasks indicates that

there are characteristics specific to individuals that drive hypergraph properties, even

in designated task-specific hypergraphs. These patterns imply the existence of driving

influences on hypergraph structure that are independent of performance on a specific

task. To investigate this further, we examine how individual difference measures from

demographic and behavioral data relate to hypergraph cardinality.

Figure 3.2: Individual variability: Hypergraph cardinality for individual overall
multi-task hypergraphs is shown in panel (A), sorted by increasing overall cardinality.
Individual task-specific hypergraph cardinality is shown atop the overall cardinality
for comparison, and is also sorted by increasing overall cardinality. Panel (B) depicts
the cardinality for task-specific hyperedges, sorted by rest cardinality. The number of
hyperedges across tasks is fairly consistent within individuals, in contrast to the range
of hyperedge number across individuals.
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Drivers of Individual Variability

To investigate possible sources of the large variation in hypergraph cardinality seen

above, as well as to quantify the extent of the consistency of hyperedge cardinality across

tasks, we perform a series of multiple regression analyses on the multi-task data, as

described in Section 3.2.2.

First, using the cardinality of task-specific hypergraphs as the dependent variable,

we perform a regression analysis for each non-resting task (attention, word memory,

and face memory) that includes the cardinality of the rest-specific hypergraph and the

factors shown in Table 3.1 as independent variables. Table 3.3 gives the R2 change values

and p-values associated with the rest predictor for each task-specific regression. In all

three tasks, the rest predictor alone significantly explains the variance in task-specific

hypergraph cardinality. This confirms and quantifies our observation in Figure 3.2 that

hypergraph cardinality is consistent across each individual’s task-specific hypergraphs—

i.e., it is trait-like. The individual difference measures used as independent variables are

not significant after the Bonferroni correction for multiple comparisons over all tests.

However, including the rest-specific hypergraph cardinality, which is closely linked to

overall hypergraph cardinality, as an independent variable in the regression accounts for

the variation across individuals that is consistent across tasks.

Attention Word Memory Face Memory
R2 change 0.72 0.58 0.68
p-value p < 0.0001 p < 0.0001 p < 0.0001

Table 3.3: Rest regression R2 values: R2 values for the regression between rest-spe-
cific hyperedge cardinality and hyperedge cardinality for each of the other three tasks.

To identify possible drivers of this individual variation, we perform another regression

analysis, using the individual difference measures from Table 3.1 as independent variables

and overall hypergraph cardinality as the dependent variable. Figure 3.3 depicts the R2
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changes from this analysis for each category of factors. The t-test identifies no factors

with significant correspondence to hypergraph cardinality, but we observe that the de-

mographics category has the largest R2 change. The t-test p-value for one of the factors

in the demographics category is p < 0.05 and is by far the lowest p-value in this stage

of the analysis. However, due to our stringent requirements for correcting for multiple

comparisons and the number of tests we performed, this correlation is not statistically

significant. The marginally significant demographics factor has a loading of −0.95 for

the age measure and −0.31 for the years of education measure; the loading for sex and

handedness demographic measures are comparatively negligible, with magnitudes less

than 0.02.

Figure 3.3: Multi-task R2 changes: Normalized R2 changes with respect to hyper-
graph cardinality are shown for individuals in the multi-task study. R2 changes are
calculated from the regression procedure outlined in Section 3.2.2, with five distinct
categories common to the multi-task and age-memory studies. The largest normal-
ized R2 change is from the demographics factor, but no factors exhibit a signficant
correspondence with hypergraph cardinality.
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Summary of Multi-task Results

On the basis of our previous results applying hyperedge analysis to this data set in

Chapter 2, which hints at substantial variability across individuals in hypergraph struc-

ture (Figure 2.7), we carry out several regression analyses designed to identify individual

drivers of this variability. There were two key results. The first result is that overall

and task-specific hypergraph cardinality show notable variation between subjects, but

remarkable consistency within subjects for all tasks (Figure 3.2).

The second key result from this exploratory analysis is the finding of a marginally

significant relationship between the demographics category and hyperedge cardinality.

Limits to the explanatory power of the multi-task data set may be determined by limited

variation in some demographic measures – particularly the small range (27–45) and stan-

dard deviation (4.24) in subject age, which poorly represents the ages observed in the

entire population. We thus extend our analysis to a complementary data set collected on

a longer study of the word memory task with participants aged 18–75, with a standard

deviation of 22.11. In the next section, we report the results of our independent analysis

of this age-memory data set, which confirm the relationship between age and hypergraph

cardinality suggested by the multi-task results.

3.3.3 Age-Memory Results

To supplement the findings from the multi-task data set, we perform a parallel set

of analyses on the age-memory data set. The data set includes participants with ages

ranging from 18 to 75, a range three times larger than the range of ages in the multi-

task study. Furthermore, the age-memory study uses an almost identical task to the

multi-task word-memory task. In this section, we combine hypergraph results for all

participants in the age-memory data set and obtain a distribution of hyperedge size
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over all participants with similar features to the hyperedge size distribution from the

word-memory task of the multi-task data. We then identify and test specific drivers of

individual variation in hypergraph cardinality for the age-memory study participants.

We find a strong correspondence between age and hypergraph cardinality that confirms

the preliminary result from the multi-task study.

Hypergraph Statistics

The cumulative size distribution of hyperedges for all individuals in the age-memory

study is depicted in blue in Panel (A) of Figure 3.4. To compare these age-memory

hyperedges with the word memory portion of the multi-task study, we identify a new set of

hyperedges using only the portion of the multi-task functional time series recorded during

the word-memory task for each subject; the distribution of sizes for these hyperedges are

plotted in pink. Note that these new word-memory hyperedges from the multi-task

data are fundamentally different from the “word memory-specific” hyperedges depicted

in Figure 2.7. The “word memory-specific” hyperedges are those hyperedges computed

over all tasks, but classified to be driven by correlations in the word memory task alone.

In contrast, the new word-memory hyperedges in Figure 3.4 are found by using just the

word-memory subset of the multi-task data, with no further classification applied.

The distributions of sizes are similar at smaller size scales, but differ somewhat at

larger size scales. There are many more hyperedges close to the system size in the

age-memory task, while the word-memory hyperedges from the multi-task data set tend

to be smaller. The length of the multi-task word-memory time series is shorter than

the age-memory time series, which may contribute to this effect [132]. To investigate

the size distributions without the effect of full-brain hyperedges, we remove the largest

hyperedge from each subject’s hypergraph and plot the resulting distribution in Panel B

of Figure 3.4. With this adjustment, the distribution of age-memory hyperedge sizes has
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a striking agreement with the size distribution of hyperedges constructed from the multi-

task word memory data. In both distributions, there is power law behavior for small

sizes, similar to that observed in Figure 2.7. Furthermore, the distributions without the

largest hyperedges are almost identical; the power of the fit to multi-task word memory

data is −2.21 and the intercept is 7.91×104, while the power of the fit to the age-memory

data is −2.37 and the intercept is 1.46× 105.

We construct a null model, as detailed in Sections 2.2.10 and 3.2.2, by temporally

shuffling the data and find no hyperedges with size greater than one, indicating that the

hyperedges identified in the unshuffled data are capturing statistically significant aspects

of brain dynamics. In addition, the close correspondence between these two distributions

of word-memory hyperedges suggests that the analysis captures aspects of brain dynamics

that are robust across imaging sessions and populations.

The inter-subject variability in multi-task hypergraph cardinality spanned several or-

ders of magnitude and followed consistent patterns within subjects for differing cognitive

states. We compare the individual hypergraph cardinality for the age-memory and multi-

task word-only studies in Figure 3.5. In the age-memory data, hypergraph cardinality

ranges from 0 to 1817, which is a similar range of variability as that observed for the

complete overall multi-task data set in Figure 3.2. There are 79 subjects with nonzero

hyperedge cardinality, indicating that significant non-singleton hyperedges are present

in less than two thirds of the subjects. For the remaining analyses, we only consider

the 79 subjects with nonzero hypergraph cardinality. For the overall hypergraphs, hy-

pergraph cardinality ranges from 0 to 1832. The maximum hypergraph cardinality for

the multi-task word-only data is 1408, which is markedly less than that observed for the

age-memory data and may be a result of the shorter time series for the multi-task word

task. The presence of near-system size hyperedges, which may also be due to the shorter

multi-task word time series, affects hypergraph cardinality by resulting in hypergraphs
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Figure 3.4: Comparison of cumulative size distribution: Panel (A) depicts the
cumulative distribution of hyperedge sizes over all individuals in the age-memory
study compared with the sizes of the set of hyperedges constructed from only the
word-memory task of the multi-task data set. Differences in the number of large
hyperedges can be observed between the two tasks, but both contain a similar number
of hyperedges over all individuals. Panel (B) illustrates the cumulative distribution of
sizes for all individuals in both studies with the largest hyperedge for each individual
subject removed. When this is done, the distributions overlap and are well described
by a power law with close alignment in slope and magnitude across studies.

with cardinality near one.

Age-Memory Hypergraph Correspondence With Age

Having confirmed that hypergraph composition is similar for the multi-task word

study and the age-memory study, we investigate whether the individual variability in

hypergraph cardinality seen in Figure 3.5 corresponds to individual difference factors for

the age-memory study.
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Figure 3.5: Sorted hypergraph cardinality: Increasing hyperedge cardinality for
individual multi-task word-only and age-memory hypergraphs. The variability for
both studies is similar to the variability in multi-task overall hypergraph cardinality,
depicted in Panel (A) of Figure 3.2. The range of hypergraph cardinalities for subjects
in the word-only data is smaller than either the overall multi-task study or age-memory
study.

We perform a multiple regression on the 12 factors distributed across five categories

in Table 3.2. Head motion has been found to induce correlations in FC analyses [50], and

a previous study using this data found a significant correlation between age and amount

of head motion during the experiment [127]. To ensure that excessive head motion is not

contributing to our result in any way, we include head motion (operationalized as the

average relative movement as computed by MCFLIRT) as a predictor in this regression.

The overall R2 value for the multiple regression analysis was 0.3452, indicating that

the predictors explain about a third of the variance in the overall data. After a Bonferroni

correction for multiple comparisons across all regression studies included in this chapter
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[64], the demographics factor is the only significant predictor of hyperedge cardinality.

The normalized R2 changes for hypergraph cardinality can be seen in Figure 3.6; the

demographics factor has the largest normalized R2 change and the only significant p-

value (p < 0.005) in the regression. These results correspond with the marginal result

from the multi-task data set, where the demographics factor is a marginally significant

predictor.

Figure 3.6: Age-memory R2 changes: Normalized R2 changes with respect to
hypergraph cardinality across individuals in the age-memory study. The largest nor-
malized R2 changes are from the demographics factor and head motion measure, but
the demographics factor is the only significant predictor of hypergraph cardinality. In
this figure, prediction significance is denoted with a bold outline. The composition of
R2 changes for the age-memory task is consistent with that seen for the multi-task
data in Figure 3.3, in that the normalized R2 change is largely due to the demographics
factor.

Much of the variation in the demographics factor (73.5%) is directly attributable

to age. We attempt to isolate the specific relationship between age and hypergraph

cardinality by performing a separate regression. In this regression, hypergraph cardinality

is the dependent variable and the independent variables are age and head motion. The
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relationship between age and hypergraph cardinality is significant, with the t-test p-value

well below the Bonferroni correction over all regression analyses presented in this work,

at p < 0.001.

This is a positive relationship, indicating that older individuals tend to have higher

hypergraph cardinality, while younger participants tend towards lower hypergraph car-

dinality. An illustration of this correspondence between hypergraph cardinality and age

is presented in Figure 3.7. As age increases, the number of hyperedges in a partici-

pant’s hypergraph increases as well. We verify that this relationship holds beyond this

particular study by reintroducing the word-memory data from the multi-task study and

performing a correlation between hypergraph cardinality and age over both studies. Age

and hypergraph cardinality have a Spearman correlation coefficient of ρ = 0.32, and the

p-value for this correlation, p < 10−5, is significant when we use the Bonferroni correction

over all analyses presented in this chapter.

Spatial Distribution of Hyperedges

Given the positive relationship between age and hypergraph cardinality, we next

identify how the spatial organization of hyperedges reflect the increase in cardinality. We

group subjects from the age-memory study into three age ranges based on the age-memory

task data distribution: 18 years old (39 subjects), 25-33 years old (34 subjects), and 60-

75 years old (35 subjects). For each set of subjects, we calculate the average hyperedge

node degree for each region and depict them on the brain in Figure 3.8. The plots for

the two younger populations exhibit few differences, although there is a slight increase in

degree for the middle population. Hypergraphs in the oldest population exhibit higher

hyperedge node degree across the brain, although regions of relatively high hyperedge

node degree are consistent with those in the other populations.

Thus, the increased cardinality is due to global changes, with regions of relative high
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Figure 3.7: Hypergraph cardinality and age: Hypergraph cardinality is shown as
a function of age for the age-memory data set (blue) and word memory task of the
multi-task data set (pink). Three distinct age groups are present for the age-memory
data, while the multi-task ages overlap with the middle age-memory group. The corre-
spondence between increasing age and larger hypergraph cardinality can be observed,
where few older subjects have low hypergraph cardinalities, but the majority of the
youngest subjects have cardinalities lower than 500.

and low degree that are stable across ages. The number of hyperedges that include each

region increases by about a factor of five over the age range studied. We conduct a paired

t-test for each brain region in the youngest and oldest populations and found that each

region has a significantly higher hyperedge node degree in the oldest population.

3.4 Discussion

Improving our understanding of the drivers of individual differences in functional

brain imaging data can give insight into the dynamic mechanisms that lead to individual
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Figure 3.8: Spatial distribution of hyperedges for three age groups: Average
hyperedge node degree for three discrete age groups in the age-memory study. Regions
of relative high node degree are consistent across the three groups, but the overall node
degree is about five times larger in the group with ages from 60–75. This corresponds
to previous observations of increasing cardinality with age and illustrates how the
increase in cardinality is spread across the brain.

behavior. Dynamic FC has been used over groups to explain changes in the brain at-

tributed to individual differences in learning [11,14,34]. Hypergraphs in particular have

been used to analyze how long-term learning impacts the functional network structure [11]

and how the brain switches between cognitive states [111]. A previous DFC study found

task-dependent hypergraph properties at the level of the group, indicating that hyper-

graphs can be used to describe how functional dynamics differ between tasks [111]. Here,

we develop new hypergraph metrics to investigate individual differences in hypergraph

structure and possible drivers of these variations. Our primary goal in the present inves-

tigation is to continue validating the hypergraph approach by demonstrating its ability

to reproduce a well-known phenomenon in the FC literature.

Hypergraphs are constructed from correlations between edges, providing a method

of analysis complementary to static and dynamic graph theoretic methods including

dynamic community detection and ALFF-FC [113, 114]. In this method, hyperedges

are defined as connected components of the edge-edge graph. A natural extension of

the hyperedge formalism would be to perform edge-based community detection on the

edge-edge adjacency matrix, which would further partition the connected components
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of the edge-edge graph [60, 61]. Similarly, any graph theoretic measure that can be

computed on the standard node-node graph—clustering coefficient, assortativity, global

efficiency, et cetera—can be computed with respect to the edge-edge graph, although the

interpretation would of course be quite different.

The hypergraph method provides a rigourous graph theoretical formalism to study

network dynamics. Throughout this study, we investigate hypergraph cardinality as a

dependent variable. However, future investigations should be performed to determine

whether hypergraph cardinality is a useful independent variable with predictive power.

3.4.1 Disparate Sources of Variability in Hypergraph Structure

As we showed in the Multi-Task Analysis, the hypergraph cardinality varies widely

across individuals, but is consistent between task states. Previous work on the multi-task

data set found that the probability for hypergraphs to appear in a particular network

configuration over individuals was significantly different depending on task state [111].

Consistent spatial organization rules for each task existed at the level of the group. There

were similarities in the spatial arrangement of hyperedges in the brain for differing tasks,

but certain properties were found to vary significantly between tasks. Brain areas in

the occipital lobe in particular were highly likely to participate in the hypergraph across

individuals and across tasks, likely due to the visual nature of most of the cognitive tasks

studied.

Here, we study hypergraph cardinality, which displays high variability across indi-

viduals and consistency across tasks within individuals (Figure 3.2). This indicates that

hypergraph cardinality serves as an individual signature of a subject’s brain dynam-

ics. The similarities across subjects in the spatial distributions of hypergraphs described

in [111] capture information orthogonal to the information summarized by hypergraph
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cardinality. For example, there are some individuals for whom the visual brain regions

are linked by many hyperedges, and some for whom those same regions are linked by

relatively few hyperedges, but these regions are more likely than others to be included

in hypergraphs in the majority of subjects. This suggests that, for some subjects, brain

regions tend to be more dynamically integrated in general, with co-varying functional

relationships across many brain circuits; in other subjects, connectivity dynamics are

more fragmented across the brain.

The high degree of variability in hypergraph cardinality across subjects and con-

sistency within subjects, combined with the significant differences in spatial hyperedge

arrangement across tasks, indicate that hypergraphs are a useful analysis tool for investi-

gating both individual and task-based differences in brain function in a variety of settings.

At the same time, hypergraphs can provide a view of dynamic patterns that complements

other commonly used DFC methods. For example, many FC methods exclusively inves-

tigate the structure of strong correlations in functional data [13,35,133,134]; hypergraph

analysis captures information about both strongly and weakly correlated dynamics and

how sets of brain regions transition between them [16].

Although they are highly informative, many of the hypergraph metrics we study

here are representative measures that greatly reduce the dimension of the hypergraph

and only reveal a small part of the information contained in its structure. Further

development of methods to utilize more of the information that hypergraphs provide will

allow characterization of the consistency of particular hyperedges and dynamic modes,

an understanding of which are important for behavior, or influenced by demographics

or disease. Future work is also needed to further quantify the spatial differences in

hypergraph arrangement across both individuals and tasks, to clarify the extent of overlap

between the two types of information, and to determine whether the individual variability

in cardinality can be mapped to individual spatial differences in hypergraph structure.
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3.4.2 Relationship Between Age and Changes in DFC Networks

FC studies have established clear trends associated with aging, including a decrease in

connectivity within functional networks and an increase in connectivity across different

functional networks in resting and task states [106, 135–138]. Many of these studies

have considered resting-state FC, because the absence of task stimulus provides a simple

and reliable setting for comparison between subjects [139], although recent studies have

successfully used FC networks to study various cognitive proceses [140]. The default

mode network (DMN) and similar resting-state analyses may miss functional changes

evoked by task states; while the DMN FC decreases with age, task-related sensorimotor

network FC has been shown to increase with age [103,105]. Similarly, FC in memory tasks

shows increased segmentation with age [141]. Extending these analyses to incorporate

the dynamics of functional interactions is a necessary step towards quantifying individual

changes in functional brain dynamics associated with age.

Several efforts have been made to capture individual age-related differences with

methods from dynamic FC. Dynamic community structure and amplitude of low-frequency

fluctuation of FC were both found to be strongly correlated with age, illustrating that

functional dynamics are closely linked with aging [113, 114]. In the dynamic commu-

nity detection analysis, functional communities were found to be more fragmented with

age, which agrees with the hypergraph cardinality result presented here [113]. A multi-

scale community detection analysis uncovered similar fragmentation with age for small

scales [142]. Our finding that hypergraph cardinality also increases with age aligns with

this result and provides further information based upon its ability to capture higher-order

dynamic patterns across larger ensembles of brain regions. Not only do the functional

similarities of communities of brain regions themselves become less distinct as humans

age, but the temporal profiles of these functional similarities also become less integrated
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across brain regions. The agreement of this result with known age-related changes in

FC [97–99, 104, 106] demonstrates the ability of hypergraph methods to capture and

quantify major brain changes. Moreover, since the hypergraph analysis is not limited

to strong correlations, our analysis further suggests that age is related not only to the

organization of functional activity in groups of brain regions with strongly coherent ac-

tivity, but also to the coordination between groups of regions that transition from being

strongly to weakly correlated over time (or vice versa).

The reported correspondence between age and hypergraph cardinality is significant

in the age-memory data set, but our analysis did not include data that could verify this

relationship for cognitive tasks other than the word memory task. Although memory

is a cognitive ability known to decline with age in many individuals, it is unlikely that

the specific task studied in the age-memory data set drives this result. Rather, the

consistency of hypergraph cardinality across tasks seen in the multi-task data set in

Figure 3.2(B) suggests that similar hypergraph cardinalities may be found during other

tasks in data sets with higher age variability, and that the relationship between age and

cardinality is unlikely to depend primarily on the behavioral task. Further investigation

is needed to determine whether individual differences in hyperedge structure have any

significant relationship to behavioral or cognitive performance on any particular task.

3.4.3 Methodological Considerations

Atlas-Based Variations: In this chapter, we use the hybrid atlas described in

Section 2.2.4 for all analyses. However, several studies have reported variation in graph

topology with differing choices of atlas in both structural [53, 143, 144] and functional

imaging studies [145, 146]. It is possible that use of a variety of atlases may produce

variation in the results presented here, which could be verified in future work.
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Edge Effects in Task Concatenation: In this chapter, we investigate dynamic

functional connectivity changes across multiple cognitive tasks and two separate imag-

ing data sets. In order to capture changes across tasks in the multi-task data set, we

concatenate the time series for all tasks, as in [111]. In our analysis of the age-memory

data, we concatenate time series from three functional runs of the word memory task,

and remove time windows from the ends of the time series of each task to reduce edge

effects. Edge effects appear to be confined to the data points adjacent to the beginning

and end of each run, but we remove the full N × N adjacency matrix to ensure we are

not including any edge effects in the analysis. The resulting change in the cumulative

size distribution is depicted in Figure B.1. With the edge blocks removed, there are fewer

system-size hyperedges and more small hyperedges.

Figure B.1 includes a comparison with another method for treating edge effects. In

this case, the time series data for each of the three tasks is filtered separately before

concatenation. This approach dramatically reduces the number of hyperedges. If filtering

is responsible for introducing edge effects that drive hyperedges, the number of hyperedges

are likely to increase when we employ this method. Instead, only 13 subjects had non-

singleton hyperedges. We choose to not analyze these results further because there are

too few subjects with hyperedge data.

Two further efforts to understand the effects of concatenating across functional runs

on the cumulative size distribution are depicted in Figure B.2. In the trial-by-trial anal-

ysis, we performed the hypergraph method separately on each edge time series (10 data

points each) for the three trials. Only 30 subjects have significant non-singleton hyper-

edges in at least one of the three trials and the number of large hyperedges is much lower

than the original result. This decrease may be a result of our removal edge effects, but

it is likely the shorter task length is driving the difference, as we discuss in the next

section. To explicitly investigate the effect on the size distribution caused by each tran-
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sition, we also split the time series data into three sets of 18 edge time series data points.

The first includes the transition between the first and second trials, the last includes the

transition between the second and third trials, and the middle includes both transitions.

These distributions are also plotted in Figure B.2. We see that the overall number of

hyperedges is greater than both the original age-memory hypergraph over all individuals,

which is driven by a decrease in the number of system-size hypergraphs in the 18-split

analysis. The distributions for all three follow similar patterns, indicating there is not a

large discontinuity in the pattern of the distribution when we include both transitions.

Edge Time Series Length in Hypergraph Construction: When we construct

hypergraphs from the much shorter single task measurements within the multi-task data

set, the number of large hyperedges is greatly reduced, with fewer hyperedges in the

population near the system size (see Panel A of Figure 3.4). We see a similar effect when

we compare the distributions seen in Figure B.2 for the split data sets. The trial-by-trial

hypergraphs contain fewer hyperedges overall and far fewer system-size hyperedges than

the 18-split hypergraphs. However, this increase is not driven by inclusion of the transi-

tions alone, since the middle 18-split hypergraph contains approximately half the number

of system-size hyperedges when compared to the full analysis. Since both hypergraphs

are constructed across both transitions, this indicates that the edge time series length is

more influential to population-level hypergraph properties than concatenation.

Further work is needed to elucidate the relationships between hyperedge size and the

overall length and composition of the data set. Additionally, it remains to be determined

whether there is an analogue to the scan length proposed for reliable FC estimates [132];

an edge time series length that ensures minimal fluctuations in the size distributions

for longer scans. However, the very close correspondence between small-size hyperedges

found during the word memory task in both data sets suggests that these hyperedges

are capturing important characteristics of the dynamics within this task that are robust
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across imaging sessions and populations.

3.5 Conclusion

Here, we have shown that the considerable differences in functional connectivity dy-

namics across individuals are closely linked with age. The hypergraph method is pre-

sented as an analysis tool that captures information about group-level similarities that

differ between task states as well as individual differences that are consistent within indi-

viduals, across tasks. Further investigation into a single hypergraph metric (hypergraph

cardinality) that varies across individuals uncovers a significant relationship between hy-

pergraph cardinality and age. Specifically, there are a greater number of hyperedges in

older individuals’ hypergraphs, suggesting that there are more small groups of regions

with cohesively evolving dynamics and indicating a loss of coherence across larger, spa-

tially distributed intrinsic functional connectivity networks. This complements widely

reported relationships between FC and human aging by providing new insight into how

FC activity and the co-evolution of FC activity are altered with increasing age, including

the loss of large groups of co-evolving brain regions in older individuals. The correspon-

dence with and extension of classic FC results to new dynamic regimes, along with the

unique capacity of hypergraphs to probe multiple dimensions of both strong and weak

dynamic variability, show that hypergraph analysis is a valuable tool for understanding

age-related changes and other individual differences in dynamic brain function.
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Chapter 4

Age-dependent Community

Structure and Dynamics in Human

Brain Function

4.1 Introduction

Humans experience notable changes in cognitive ability and behavior as they age,

often in situations involving memory encoding, memory retrieval, and executive control

functions [147–151]. Over the past few decades, advances in brain imaging have made it

possible to observe and quantify neural changes associated with advanced age. One of

the most widely-reported phenomena associated with aging is the loss of segregation be-

tween neural systems: many networks become less internally coherent, while at the same

time they become more similar to other networks. This result has been reported using

a number of methodological approaches, including whole-brain ICA [100], whole-brain

parcel-based functional connectivity methods [103–105,107,138] as well as similar analy-

ses confined to a subset of systems [106,152], whole brain voxel-wise analyses [101], and
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seed-based methods [153] (for reviews, see [97–99]). Moreover, these changes have been

tracked longitudinally within participants [106], have been shown to affect various prop-

erties theoretically associated with the efficiency and efficacy of information processing

in the brain [154,155], and have been associated with behavioral effects [106,154].

Although the dominant change associated with aging is one of decreased intra-network

connectivity and increased inter-network connectivity, this pattern varies across networks.

The loss of intra-network connectivity is found most consistently in the default mode

network (DMN), even among those studies that consider brainwide connectivity [100–

106]. Some studies also report similar decreases in networks associated with higher

cognitive functions [100, 102, 105–107]. However, other networks consistently show no

change, or even an increase in intra-network connectivity, especially those associated

with sensory functions [101,103,105]. Similarly, connectivity between the DMN and other

networks tends to increase (or, equivalently, the uniqueness of the networks decreases)

[104,106].

In parallel with this line of research on how the brain’s functional architecture changes

with age, a largely separate effort has sought to extend connectivity methods by account-

ing for the fact that the brain is not static (for a review, see [109]). To the contrary, this

work has demonstrated that patterns of connectivity are quite variable [156], which can

be characterized as constituting a series of transitions between fairly well-defined brain

states [157]. It has been proposed that the greatest variability occurs in regions that serve

to connect fairly well-segregated systems [112], and that a small set of networks may mod-

ulate the organization across a large number of others [158]. The time-resolved approach

adds yet another dimension for investigating age-related effects; for example, [114] reports

increased variability in connectivity across networks including DMN and cerebellum, and

decreased variability between those two and within the cingulo-opercular network, as a

function of age.
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Having established these aging-related changes in functional connectivity—along with

some general principles of dynamic connectivity—in the resting state, an obvious next

question is how the results differ during task performance. “Task-free” paradigms dom-

inate studies of functional connectivity. Incorporating a task could affect connectivity,

including its relationship with age and its dynamics, in a number of ways. For instance,

compensatory strategies employed by older—but not younger—adults could drive the

connectivity profiles of the two groups even further apart; alternatively, the presence

of an extrinsic input could impose structure on the systems that have become homoge-

nized in older adults. Indeed, [159] demonstrates widespread changes in the relationship

between age and connectivity across resting and task scans, with the largest effects be-

ing a weakening in the age–connectivity relationship during tasks compared with rest.

Likewise, connectivity between and within networks could change as participants learn,

change strategies, or even simply become fatigued.

For the present study, we used a memory task that incorporated a strong element of

cognitive control. In particular, after studying a list of items, participants were presented

with the studied items, along with novel (unstudied) items, and instructed to indicate

whether each item was studied or not. Items occurred in one of two contexts: a “liberal”

context indicating that each item in that context was likely to have been studied (70%

of items were studied items) or a “conservative” context indicating that each item was

unlikely to have been studied (30% of items studied). In the face of imperfect memory

evidence, participants must exert cognitive control—adjusting the criterion they use to

endorse an item as studied—in order to perform well on this task. Given that the domains

of memory and cognitive control are fundamental in human cognition, and are associated

with changes over the lifespan [160], this task is an appealing choice for studying how

the brain’s architecture changes with age when not at rest. Previous results with this

task revealed wide individual differences in adaptability [42], and implicated a network
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of regions including lateral prefrontal and lateral posterior parietal cortex in performing

this task [161].

Although the brain regions associated with the performance of this task are well

documented, these results are derived from the standard mass-univariate GLM analysis

of BOLD data, and therefore give little basis for predictions in terms of network-level

dynamics. In fact, by definition, these existing results assume stationarity and consider

each voxel as independent. Even results derived from methods that explicitly model the

spatiotemporal nature of brain activity (e.g., ICA) would require a theoretical framework

in order to define regions of interest in the context of how network dynamics relate to other

factors, such as age. Thus, there remains a gap in understanding of the neural processes

related to performance of this task on the level of dynamic interactions between large-

scale brain regions and networks. Our current understanding of these processes, based

on existing theories and results, is specified on a very different level from the target of

our current investigation. Our goal in this chapter is to apply a data-driven analysis

method to investigate the dynamics of these regions and networks, which allows us to

uncover age-related changes at scales at which it is difficult to make specific hypotheses

based upon existing literature.

We apply a dynamic community detection method to quantify several higher-order

aspects of task-based functional connectivity and their dependence on age. This method

and other network science approaches have proved successful in distilling the information

in fMRI data into intuitive, descriptive, and predictive network characteristics [14, 33,

55, 111, 162–164]. While previous results suggest that static community structure will

meaningfully differ on a group level between older and younger adults at rest [137], we

ask whether the dynamic changes in these communities are affected by age during task-

based cognition, and how such effects vary across individual participants. We quantify

the size and number of functional brain communities, the degree to which brain regions
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flexibly switch between communities, and the association of the community structure

with known intrinsic functional connectivity networks or systems, in order to determine

whether these systems are differentially involved in age-related changes.

4.2 Materials and Methods

4.2.1 Participants

126 participants were recruited from the UCSB and Santa Barbara communities and

scanned at the UCSB Brain Imaging Center. 22 subjects were not included in this analysis

due to technical issues, metal screening issues, claustrophobia, and attrition. The 104

participants assessed here came from three separate age groups: 35 adolescents (age 18,

18 female), 34 young adults (ages 25-33, mean age 28.5, 16 female), and 35 older adults

(ages 60-75, mean age 67.2, 18 female). All subjects had a history of normal memory

ability for their age, and a Mini-Mental State Examination score of 27 or above [127] [165].

All subjects gave informed written consent prior to experimental procedures and were

paid for their participation. All procedures were approved by the University of California,

Santa Barbara Human Subjects Committee.

4.2.2 Stimuli and Procedure

Subjects performed a recognition memory task designed to test memory for words and

to measure how participants strategically use probabilistic information as a supplemental

guide to memory [42]. During a study session (which occurred inside the scanner, imme-

diately before beginning scanning), subjects were asked to memorize a list of 153 common

English words. Subjects were then scanned during three consecutive test sessions, each

consisting of 102 trials (each spanning a single TR) in which subjects were shown a word
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and asked to indicate whether they had seen that word in the study session, interspersed

with 214 blank jitter TRs.

The test session word stimulus in each trial was presented with probabilistic infor-

mation about the correct response; words of one color (blue or orange, counterbalanced

across subjects) had a 70% probability of having been presented in the study session, and

words of the other color a 30% probability. These probability contexts were presented in

a blocked fashion, such that the probability context changed every 5–7 trials. Half of the

trials in each functional run (51 words) were studied, while the other half were unstudied.

A schematic of the task design is shown in Figure 4.1 [42]. For more information on the

details of the procedure, see ref. [127].

4.2.3 Imaging Acquisition and Preprocessing

Subjects were scanned with a 3T Siemens TIM Trio MRI system with a standard

12-channel head coil. Functional data were collected with a T2*-weighted echo-planar

sequence (30 interleaved slices, 3 mm thickness, 3× 3 mm in-plane resolution; TR = 1.6

s; TE = 30 ms; FA = 90) with generalized autocalibrating partially parallel acquisitions

(GRAPPA). A high-resolution anatomical image was collected at the beginning of the

scanning session for each participant using an MPRAGE sequence (TR = 2.3s; TE = 2.98

ms; FA = 9◦; 160 slices; 1.1 mm thickness). Additionally, diffusion-tensor imaging and

resting state fMRI scans were acquired but are not considered further here.

The data were preprocessed using FEAT v6.0, part of FSL [47]. Preprocessing in-

cluded motion correction with MCFLIRT, non-brain removal with BET, spatial smooth-

ing (FWHM = 5mm), high-pass temporal filtering (σ = 50s), and grand mean intensity

normalization. The mean relative motion across all TRs, averaged across functional

runs, was also recorded for each subject. It has previously been established that motion
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varies reliably with age [127], so all subsequent analyses are conducted with mean motion

partialed out.

The data were then processed further using a nuisance regression with the following

regressors: the six relative motion correction terms returned by MCFLIRT, their tem-

poral derivatives, and the mean signal timecourse from cerebrospinal fluid (generated

by segmenting the high resolution T1 image, thresholding the CSF probability image at

0.9, and taking an average over all in-mask voxels). The model also included regressors

for each probability context block, which were modeled as a boxcar of duration equal

to the context, convolved with an HRF (gamma model, phase = 0s, standard deviation

= 3s, mean lag = 6s), plus temporal derivatives. To generate the final denoised data,

we took the residuals of this model with respect only to the motion and CSF regres-

sors. Finally, the denoised data were registered to MNI space using FLIRT. First, the

high resolution T1 image was registered to the MNI template (12 df affine transforma-

tion), then the functional data were registered with the high resolution image (6 df affine

transformation, trilinear interpolation), and the transformations were combined.

4.2.4 Creating Dynamic Brain Networks

In order to investigate the large-scale network structure of brain activity, a dynamic

network was constructed separately from each subject’s measured functional activity.

Each network is defined as containing n nodes, treated as constant over time. Here these

nodes consist of the n = 194 regions of a “hybrid” anatomical atlas, an adaptation of the

multi-resolution Lausanne2008 atlas minimizing cross-brain and inter-subject variability

in region size [44,111]. This atlas was registered to MNI space. Node-specific time series

from each functional run were generated for each node by averaging the time series of all

voxels within the node [111].
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Each network has e = n(n−1)/2 edges, each with a real-valued, non-negative connec-

tion weight that may change dynamically over time, taking on a new value in each of T

sequential time windows spanning the experiment. The weight of an edge between nodes

i and j in a given time window l, denoted Aijl, is defined as the mean low-frequency

(0.06-0.125 Hz) wavelet coherence between the BOLD time series of i and j within time

window t [166]. Edge weights are always valued in [0, 1]. In this study, we investigate

two separate time window sizes. We focus primarily on windows containing 52 time sam-

ples (18 windows in total), with each window representing approximately 80 seconds or

1.3 minutes. We also analyze for comparison the results from more temporally coarse-

grained windows containing 316 time samples (3 windows in total), with each window

representing approximately 500 seconds or 8.4 minutes, the length of a single functional

run of the experiment. Note that these window sizes are both significantly longer than

individual trials (each of which contains one word stimulus and one decision, and lasts for

approximately 2 seconds), as well as blocks of trials belonging to each of the two proba-

bility conditions (which contain about six trials each and are approximately 12 seconds

long); we make this choice in order to ensure that each window contains sufficient time

sampling statistics to provide a reliable estimate of the coherence or edge weight within

that window [14,33,111].

4.2.5 Detecting Dynamic Community Structure

To study the time-evolving modular structure of these networks, we identify distinct

communities, or sets of brain regions with strong intra-set functional coherence, and

quantify how these communities change over time. For each subject’s dynamic network,

a community partition is determined by maximizing the multislice modularity Q, a func-

tion indicating the quality of the modular structure of a given partition of the network,
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in comparison to that expected of a randomized “null” network [15]. The multislice

modularity of a network partition is given by

Q =
1

2µ

∑
ijlr

{(Aijl − γlPijl) δlr + ωjlrδij} δ (gil, gjr) . (4.1)

Here, the Kronecker delta δ (gil, gjr) is equal to 1 when the community assignment of

node i in window l (gil) is the same as the community assignment of node j in window

r (gjr); otherwise, it takes a value of 0. Aijl is the edge weight between nodes i and

j in time window l, as defined above; Pijl is the corresponding edge weight in the null

network, with a spatial resolution factor γl determining the relative weight of the null

model within in each time window (see Appendix C for details). Thus, the first term

in brackets provides a positive contribution to Q, for each pair of nodes assigned the

same community in the same time window, proportional to the difference between the

actual edge weight between the pair and that in the weighted null model. The second

term in the brackets includes a time resolution factor ωjlr for each node j and each pair

of time windows l and r (see Appendix C for details). This term provides a positive

contribution of ω to Q, for each node j and each pair of time windows l and r, when j is

assigned to the same community in both time windows. µ is a normalizing factor given

by µ = 1
2

∑
jl κjl, where κjl = cjl + kjl, cjl =

∑
r ωjlr = ωT , and kjl =

∑
iAijl, or the

weighted degree of node j in time window l [15].

This multislice modularity is larger for community partitions that group together

nodes with comparatively strong pairwise edge weights (as compared to the null network)

within each window, and that group more nodes in the same community as themselves

across multiple time windows. In this study we use the Newman-Girvan null model,

in which Pijl =
kilkjl
2ml

and 2ml =
∑

ij Aijl; this commonly used choice of null model

treats the measured edge weights as randomly distributed within each window while
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preserving the node degree distribution. We maximize Q over partitions with a Louvain-

like locally greedy algorithm [15,167]. Due to the stochasticity of the algorithm and the

expected high degeneracy of solutions near the maximum value of Q, we use a community

consensus procedure to distill a statistically representative partition from an ensemble of

100 solutions [35].

4.2.6 Brain Network Community Structure Diagnostics

Basic community structure

We use several measures to quantitatively describe the dynamic community structure

of each network, and to compare subjects’ networks to each other.

The first set of metrics involves the number of distinct communities in a subject’s

brain network. The number of dynamic communities is evaluated over the entire dy-

namic network, and counts each community that appears in at least one time window.

Communities which stretch over several time windows, but are associated together under

the same community label, are counted as only one dynamic community. (Note that

the community detection algorithm automatically identifies communities in each window

with those that have similar membership in other time windows, and assigns them the

same label; this self-identification is enforced to an extent controlled by the strength of

the inter-window coupling parameter ω). In contrast, the number of static communities

is evaluated within each time window separately, counting each distinct, dynamically

detected community appearing within that time window once, regardless of whether that

community spans multiple time windows. Because communities may appear or disappear

between windows, the dynamic community number and the static community numbers

need not be equivalent.

The flexibility f of a node i within a network is defined as the number of times that
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node switches communities between all distinct pairs of time windows, normalized by the

total possible number of switches:

f(i) =
1

T (T − 1)

∑
t6=t′

[1− δ(git, git′)] . (4.2)

Here, t and t′ both run from 1 to T , the total number of time windows; δ(git, git′) equals 1

if node i is assigned to the same community in time window t and time window t′, and 0

otherwise. A node with high flexibility changes communities in every or nearly every time

window and has a flexibility at or near 1, while a node with low flexibility may remain

in the same community in all windows and have a flexibility of 0. We further define the

community flexibility as the mean flexibility of all nodes in a particular community.

This method of computing “categorical” flexibility compares nodes between every

possible pair of time windows, in contrast to “time-ordered” flexibility, which compares

only time-adjacent windows. While many applications of categorical flexibility are used

to compare communities across categories or tasks, we use categorical flexibility here

to emphasize the consistency of nodes across long time windows which are statistically

identical in terms of task design (for 500-second windows) or nearly so (for 80-second

windows), without an assumed change in brain dynamics over time in the experiment.

All results reported in this chapter are essentially unchanged when using time-ordered

flexibility (see Appendix C).

Comparing communities to functional systems

To understand how the community structure of this data corresponds to known func-

tional brain systems, we compare the community partitions to a basic functional system

partition of the nodes. Based on the primary functional roles of different anatomical

brain areas as reported in the literature, and as detailed in [168] and [33], each node
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is assigned to one of ten functional systems: auditory, cingulo-opercular, default mode,

dorsal attention, fronto-parietal, somatosensory, subcortical, ventral attention, visual,

and other. These systems have been distilled using a network-based clustering ap-

proach [169] and used to describe and quantify system-specific functional interactions

in the brain [24,26,170]. The relationship of these functional systems to the community

structure is described by the following quantitative metrics.

The recruitment coefficient of a given node is a measure of the consistency with which

that node is grouped in the same community as other nodes within its own functional

brain system. It is given by

R(i) =
1

n(si)− 1

∑
j 6=i

P (i, j)δ(si, sj), (4.3)

where δ(si, sj) equals 1 if the system of node i (denoted si) and the system of node j

(denoted sj) are the same, and 0 otherwise; n(si) =
∑

j δ(si, sj), or the number of nodes

in system si; and P (i, j) is the frequency with which node i and node j are grouped in the

same community [33, 168]. Specifically, P (i, j) is computed as the observed proportion

of instances (i.e. time windows or modularity-optimizing partitions) in which i and j are

placed in the same community.

We further define the self-recruitment Ψ of a given system S as the average recruit-

ment coefficient of all nodes in the system, given by

Ψ(S) =
1

n(S)(n(S)− 1)

∑
ij,i6=j

P (i, j)δ(si, S)δ(sj, S). (4.4)

This measures the extent to which nodes in system S are cohesively grouped together in

the same community [33,168].
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Correcting for Mean Relative Motion

As mentioned above, subject age is correlated with mean relative motion in these

data (Spearman’s ρ = 0.48, p = 1.80 × 10−6), as found previously in ref. [127]. Thus,

all subject-wise correlations presented here are performed with mean relative subject

motion partialed out – i.e., each correlation variable was first regressed separately on

mean relative motion, and we assessed the correlation between the residuals of these

regressions, to ascertain the extent of their relationship that could not be explained by

motion. Since subject age is significantly correlated with mean relative motion, it is

possible that motion also affects the correspondence measures of community dynamics

and age, and potentially other performance and demographic measures as well, due to

the broad and non-uniform distribution of ages in our sample. Appendix C provides

further details on the results of this correction.

Study Session

Test Session

High Probability
Targets (70%)

Low Probability
Targets (30%)

Word
Stimuli

Word
Stimuli

. . . . . .

. . . . . .Apricot Beehive Shower Violin

BeehiveViolin Button Shower Apricot Football+ +

Figure 4.1: Memory task structure. A schematic depiction of the word memory
task design. During a study session, subjects study a list of common words. They are
then scanned during the study session, in which they are shown a new set of words
and asked to decide whether each word has been seen before in the study session.
Words in the test session are colored to provide probabilistic information about their
likelihood of having been seen in the study session.
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Figure 4.2: Memory task performance measures. Distributions of d-prime and
criterion shift scores for N = 104 subjects. These measures characterize overall accu-
racy and the extent to which subjects switched strategies between probability contexts,
respectively. Subjects are colored by age: blue indicates adolescents (age 18), green
young adults (ages 25-33), and red older adults (ages 60-75). There is no apparent
correlation between these measures (Pearson’s r = −0.060, p > 0.1).

4.3 Results

In this section, we present the characteristics of dynamic community structure within

individuals, and evaluate their correspondence with age and recognition memory perfor-

mance.

For assessing correlations with age throughout this section, we use the Spearman

rank correlation, due to the non-continuity and non-uniformity of the ages in our sub-

ject sample. However, we use the Pearson correlation for assessing correlations with all

performance measures, which are continuously and approximately normally distributed.

We partial out mean relative motion from all subject-wise correlations, as discussed in
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Section 4.2.6, and apply a Bonferroni correction for multiple comparisons on the set of

overall and system-specific correlations for each pair of measures (e.g. age and flexibility,

age and community number, criterion shift score and flexibility, etc.).

4.3.1 Word memory performance

We examine two behavioral measures of performance on the word memory task: d-

prime, an indicator of overall accuracy on all memory trials; and criterion shift score,

which describes the extent to which subjects change their response strategies in the face

of probabilistic information about the correct responses [42]. A more positive criterion

shift score indicates that the subject made a comparatively large shift from a liberal to

a conservative strategy when responding to high- and low-probability targets, respec-

tively. A more negative criterion shift score indicates the opposite strategy shift (from

conservative responses on high-probability targets to liberal responses on low-probability

targets). Very few subjects displayed this objectively worse strategy. A criterion shift

score of 0 indicates no strategy difference between high- and low-probability targets. We

find that among all subjects in this study, the d-prime and criterion shift scores are

approximately normally distributed, and they are not significantly correlated with each

other (Figure 4.2). In addition, neither measure shows any significant correlation with

subject age [127]. Upon exclusion of two apparent outliers in Figure 2, these results and

the significance of other task performance correlations reported in this chapter are not

affected (see Appendix C for details).

4.3.2 Functional communities in the brain

We focus primarily on the dynamic community structure of individual functional

brain networks composed of time windows containing 52 time samples each. The ex-
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periment contains a total of 18 such time windows; each window represents functional

connectivity within an approximately 80-second period. Community dynamics on time

scales between 60 and 200 seconds provide relatively fine time resolution while retaining

sufficient time sampling statistics within each window, and have been shown to contain

relevant information about brain function in previous studies [14,33,111]. The 80-second

windows used here are significantly longer than individual trials (approximately 2 sec-

onds each) or blocks of trials sharing the same probability condition (approximately 12

seconds each). While they cannot resolve functional dynamics related to a specific word

or probability condition, these windows are expected to capture the cognitive control and

memory processes that are active over the course of several strategy blocks in the task.

For comparison, we also investigate the community dynamics of networks composed

of much longer time windows, each containing 316 time samples and corresponding to one

functional run of the experiment. The time windows in these networks capture dynamics

over a longer time scale, with each window representing approximately 500 seconds or 8.4

minutes of brain activity, and a total of only three windows across the experiment. The

results in these 500-second networks are in general qualitatively similar to results from

80-second networks, although the correspondences between demographics or performance

measures and community dynamics are often much weaker. This suggests that shorter

(80-second) time windows resolve the relevant dynamics better than longer windows. The

shorter time windows are also somewhat closer in length to the timescales of cognitive

function demanded by the task setup (although still not identical or aligned with blocks

of probability context or other specific task features). Therefore, in this chapter we focus

on networks with 80-second time windows, except where explicitly noted. Results from

500-second time windows are presented in Appendix C.

100



Age-dependent Community Structure and Dynamics in Human Brain Function Chapter 4

Number and size of communities

Figure 4.3 shows the number of static communities identified in each 80-second time

window of the functional brain networks during the memory task in each subject. (Here

“static communities” refers to the number of distinct, dynamically detected communities

present in a single given time window, while “dynamic communities” counts the total

number of communities identified by dynamic community detection in all time windows.)

For almost all subjects, the number of static communities remains fairly stable across

time windows, and the number of dynamic communities is only slightly larger than the

number in any one window. This indicates that few communities appear or disappear,

and that community number is a measure with more meaningful individual, inter-subject

differences than time-dependent intra-subject differences.

Each subject has between 7 and 24 total dynamic communities (mean = 12.7). The

correlations with community number in the remainder of this chapter use each subject’s

dynamics community number as the primary measure, since it corresponds closely with

static community number throughout the experiment.

Note that in Figure 4.3, two subjects in particular appear to have much higher static

community numbers than the others, and are potential outliers in this regard. Nearly

all results pertaining to the correspondence between age, performance, and community

structure reported herein remain unchanged when these subjects are removed from the

analysis. One discrepancy is noted below and further details are provided in Appendix

C.

Figures 4.4A and 4.4C show the distribution of community sizes for each individual,

both within individual time windows and across the entire experiment. Community sizes

are relatively uniformly distributed, save for an excess of communities of very small size.

Results with single-node communities, or “singletons,” excluded from the analysis do
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not differ substantially from those reported here; see Appendix C for further details on

singletons.

Flexibility

Figure 4.5A shows the flexibility of each of the n = 194 brain regions, averaged over

N = 104 subjects, for networks with 80-second time windows. Regions in the occipital

lobe, most of which are in visual cortex, tend to show relatively low flexibilities, as do

some motor-associated regions in the dorsal anterior frontal and posterior parietal lobes.

Most other brain regions have a somewhat higher flexibility. Consistent with previous

work [14], we find notably greater variation in flexibility across subjects than across brain

regions.

We find that the regions with lower mean flexibility across subjects tend to have

a higher cross-subject variance, as shown in Figure 4.5B; in other words, highly flexible

nodes are very consistently flexible across subjects, while nodes with lower mean flexibility

(such as those in visual and motor cortex) show greater individual differences in dynamics.

This effect differs strikingly from the flexibility patterns seen on longer timescales,

in networks composed of 500-second time windows. The identities of the brain regions

with the lowest mean flexibility and the variance of those regions are very similar with

both 80-second and 500-second time windows. However, with 500-second time windows,

the cross-subject variance of the high-flexibility (non-visual, non-motor) regions is much

higher than that of the same regions in networks with 80-second time windows, and

consistently higher than the variance of low-flexibility regions as well (see Appendix C

for further discussion).
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Dependence of community structure on overall brain connectivity

In our sample, we find considerable variation in the density of subjects’ functional

networks, computed as the sum of all functional connectivity weights between brain region

pairs. That is, some subjects have higher overall brain connectivity or coherence than

others. In addition, we find that this overall connectivity (OC) is significantly correlated

with subject age (Spearman’s ρ = −0.50, p < 0.001).

To ensure that the community structures we identify are not primarily driven by OC

alone, but instead capture underlying dynamics in functional connectivity, we construct

a null model in which we destroy the underlying connectivity structure in each subject by

redistributing network edge weights among region pairs uniformly at random, preserving

only the symmetry of the edge matrix, the lack of self-edges, and the total sum of edge

weights (i.e., overall connectivity) in each time window of each subject’s network. Note

that this null model also destroys the inherently constrained structure of the coherence

matrix, such that the randomly permuted matrices are not necessarily examples of co-

herence matrices, as the original networks are. This null model thus cannot speak to the

inherent effect of coherence structure on community structure, but can only elucidate

density effects.

We create 100 randomly permuted null networks for each subject, and analyze the

communities identified therein. As shown in Figure 4.6, the null distributions of total

community number are relatively uniform across subjects, save the two subjects with the

highest OC, who display consistently lower community number across null networks. A

nonlinear relationship between OC and the number of communities identified is evident

here–in contrast to this behavior at high OC, the number of communities increases with

increased OC at the low-OC end of the distribution.

For most subjects, the number of communities identified in Figure 4.6 is smaller
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and differs fundamentally from the number identified in randomized networks. There

is no significant correlation between a subject’s number of communities and the mean

number of communities identified in the corresponding networks. However, if the two

outlier subjects with high OC are excluded, the number of communities in null models

preserving only by OC does significantly correspond to the mean number of communities

in subjects’ brain networks (Pearson’s r = 0.32, p < 0.001).

The distributions of community sizes for each subject, shown in Figures 4.4A and

4.4C, are in general relatively uniform, save for elevated numbers of communities of small

sizes. Null networks (Figures 4.4B and 4.4D) show very different community size distri-

butions, which include a clear peak at intermediate sizes and much smaller maximum

community sizes. These stark differences show that while some aspects of the commu-

nity structure are related to OC, others are driven by characteristics of the underlying

connectivity structure that cannot be explained by OC alone.

4.3.3 Relationship of functional community structure to age

and performance

Analysis of community number and flexibility distributions reveals that both measures

vary across subjects notably more than across time windows or brain regions within

individual subjects. We investigate these individual differences in community number

and flexibility, and whether they are related to age or performance, by examining the

total community number in each subject’s entire time-dependent functional network, as

well as the whole-brain flexibility of each subject, or the mean flexibility over all that

subject’s nodes. Here we summarize the results of these comparisons, which are also

presented in Table 4.1.

We find that total community number is significantly positively correlated with sub-
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ject age (Spearman’s ρ = 0.29, p < 0.05). This indicates that cohesive functional commu-

nities in the brains of older subjects tend to be more fragmented than those in younger

subjects. A significant correlation between community number and age (Spearman’s

ρ = 0.31, p < 0.05) is also seen on average in null networks that preserve OC but

randomize other topological/spatial network structure. Six out of 100 instances of ran-

domized networks have a stronger Spearman correlation between age and total number of

randomized communities than the correlation between age and number of communities

reported above (Figure 4.7).

We find that whole-brain flexibility is also significantly positively correlated with age,

as shown in Figure 4.8 (Spearman’s ρ = 0.53, p < 0.001). This indicates that younger

subjects have brain regions that switch between communities significantly less frequently,

and thus more stable community partitions over the course of the experiment.

We find no significant correlations between task performance metrics – either d-prime

or criterion shift score – and any of the three metrics of community dynamics, including

flexibility, number of communities, and recruitment. This holds true for global brain

metrics and for those localized to specific functional systems. In addition, we conduct a

multivariate regression analysis to test whether task performance is predictive of brain

metrics in individual brain regions. This analysis uses the flexibility scores of the 194

nodes in all subjects as outcomes, and the two performance metrics – d-prime and crite-

rion shift score – as predictors. We also include mean relative motion as a predictor, to

ensure it is accounted for as in previous analyses. To test the significance of the fit, we

use a permutation null model in which we shuffle the d-prime and criterion shift scores

uniformly at random (separately for each measure), perform the fit again 1000 times,

and compare the original beta value for each node to the null distribution of beta values

produced by these fits to permuted data. When uncorrected for multiple comparisons,

20 non-zero d-prime beta values and 20 non-zero criterion shift score beta values are
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significantly different from random (p < 0.05). After a false discovery rate correction

for multiple comparisons, only a single beta, with an original fit value of zero, is sig-

nificantly different from its null distribution. This suggests that there is no significant

correspondence between the performance measures from this task and the brain metrics

we investigate here, even on a node-by-node basis.

To test the possibility that interactions between age and task performance are predic-

tive of neural dynamics measures, we performed a multiple regression analysis including

the effects of age, d-prime and criterion shift scores, as well as the interaction between

age and each of the two performance scores. We also included mean relative motion

as a predictor to ensure it was accounted for. However, we found that none of the in-

teraction terms between age and performance – nor, indeed, any other terms save age

itself and mean relative motion – had any significant influence on flexibility, number of

communities, or recruitment.

Interdependence of community measures

We observe a very strong correlation between the number of communities in a sub-

ject’s brain network and that subject’s whole-brain flexibility (Pearson’s r = 0.65,

p < 0.001). The correspondences with age for number of communities and flexibility

are likely also related and may in fact be different measures of what is fundamentally the

same phenomenon. For example, consider two separate communities in an older subject,

which still have mutually coherent activity and recruit from the same set of brain re-

gions. These brain regions may flexibly switch allegiances between the two communities

during the experiment if they could be nearly equally well associated with either commu-

nity. However, in a younger subject with stronger overall functional associations, these

regions would be more likely to all be grouped into a single community throughout the

experiment, and thus display far lower flexibility, stemming from the smaller community
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number.

To understand the dependence of flexibility on community number, we construct a

null model in which we shuffle the community assignments of nodes in each subject’s

brain network uniformly at random. This preserves the number and size of communities

in each brain network while destroying other structure that may be contributing to the

flexibility. We re-compute flexibility in each of 100 null-model community structures for

each subject.

We consider a null model in which community assignments were randomized individu-

ally within each time window of each subject’s network. This destroys spatial/topological

community structure as well as the continuity of communities over time. Figure 4.9 shows

the whole-brain flexibility of each subject (ordered) as well as the corresponding null dis-

tribution of flexibilities for 100 community-number-preserving randomized community

structures for the same subject. Clearly, preserving the mere number of communities

separately in each network time window produces much higher flexibilities for all sub-

jects, and does so very consistently, with a low variance among the 100 random instance of

the network. Indeed, there are much greater differences in null flexibility across subjects

than across random instances within a single subject.

When community structure information other than the number and size of communi-

ties is destroyed, we still see significant correlations between subject age and the flexibility

computed from the shuffled community structure. However, these null-model correspon-

dences are notably less strong than the correlation between age and flexibility, which

contains information on flexibility beyond that explained by mere community number

and size distributions (Figure 4.10).

Although the measure of flexibility is not completely explained by community number

in this case, there is still a clear and strong correlation between a subject’s whole-brain

flexibility and the mean flexibility of regions in the corresponding null model (Pearson’s
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r = 0.76, p < 0.001). This indicates that the information contained in community size

and number distributions alone does predict relative subject flexibility quite well.

4.3.4 Community Organization and Functional Circuits

Having examined the dynamic community structure of individual functional networks

largely on its own, in a data-driven manner, we aim to further understand and quan-

tify how this structure corresponds to known functional systems in the brain. Figure

4.11 shows the locations (A) and flexibilities (B) of the ten functional systems con-

sidered: auditory (AU), cingulo-opercular (CO), default mode (DM), dorsal attention

(DA), fronto-parietal (FP), other (OT), somatosensory (SM), subcortical (SC), ventral

attention (VA), and visual (VS). Consistent with Figure 4.5A, the visual system is the

least flexible, followed by the somatosensory. The high inter-subject variance in ventral

attention regions likely reflects the relatively small size of that system (4 brain regions).

In addition to total community number and whole-brain flexibility, we examine whether

the relationships between community structure and age differ across these specific func-

tional systems, as visualized in Figure 4.11A and described in Section 4.2.6. We find

that the number of distinct communities into which regions of each individual functional

system are grouped is significantly positively correlated with age, for all ten functional

systems. Mean flexibility and age are positively correlated in all ten functional systems,

with all correlations significant (p < 0.05) except in the visual system. The visual re-

gions have the lowest mean flexibility overall (Figure 4.11B) and the highest variance in

flexibility across subjects. However, when mean relative motion is partialed out of the

correlation, they also have the weakest relationship between system-wide flexibility and

age.

We further examine the correspondence between functional communities and known
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functional systems using the recruitment coefficient, a measure of how cohesively regions

from the same functional system are grouped together. Figure 4.11C shows the recruit-

ment coefficient of each region (Eq. 4.3), and 4.11D shows the self-recruitment of each

entire system (Eq. 4.4). Again consistent with our flexibility findings, as well as previ-

ous reports of recruitment in the literature [33], the visual and somatosensory systems

have the highest self-recruitment, indicating that they are the systems most consistently

grouped together in communities across time windows.

Whole-brain recruitment, or the average of region recruitment over all brain regions, is

significantly anticorrelated with subject age (Spearman’s ρ = −0.32, p < 0.05). However,

we find that system-specific self-recruitment is affected differently by age in different

circuits. System recruitment is significantly anticorrelated with age only in cingulo-

opercular, somatosensory, subcortical, and ventral attention regions, but no correlation

is apparent in other regions, such as the visual system (see Figures 4.13 and 4.14).

Dependence of recruitment on community size distributions.

To ensure that the recruitment values reported here are not driven primarily by the

size and number of communities detected, we again use a null model that permutes the

community assignments of nodes within each subject’s network uniformly at random,

but preserves community size and number distributions as well as time continuity. We

compute the mean recruitment over all nodes in each subject’s brain in each of these

random null networks, as well as the recruitment of each functional node system. Fig-

ure 4.15 summarizes the results. All subjects have mean whole-brain recruitment values

significantly higher than those expected from networks with identical community size

distributions but no other structure, indicating that the association of algorithmically

identified communities with known functional systems is significantly greater than ran-

dom. Within individual functional systems, results vary. Some systems, including sensory
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and motor cortices (auditory, somatosensory, and visual) and subcortical structures, are

consistently associated with identified communities at a rate significantly greater than

random. Others, including systems identified with executive control, both focused and

bottom-up attention, and the resting state, have recruitment values that could reasonably

be explained by chance in several subjects (i.e., similar values were found in randomized

community structures that share only community size and number distributions with the

corresponding human brain community structures).
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Figure 4.3: Number of communities. Color indicates the number of communities
detected within each 80-second time window in each subject. Subjects (on the vertical
axis) are ordered by age. Notable individual differences exist between subjects, but
community number changes comparatively little over the course of the experiment
within individual subjects.
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Figure 4.4: Community size distributions. A and B show histograms of commu-
nity sizes within individual time windows, for the observed data and averaged over
100 null networks, respectively. Values are plotted individually for each subject, each
represented by one color. The inset shows the data in A restricted to the same axes
as B for comparison. C and D show histograms of the sizes of dynamic communities
across the whole experiment, also comparing observed data (C) to an average over
100 null networks (D). Community sizes tend to be larger at maximum and to be
distributed much more evenly in functional brain networks than in randomized null
models.

4.4 Discussion

These findings relating functional community dynamics to age provide important

insight into factors affecting the significant individual differences in community dynamics.

The community structure appears to act as a signature of individual functional dynamics

that is strongly influenced by age, indicating that cognitive organization during such a

memory task differs across the lifespan of participants.

Interestingly, despite marked differences in community dynamics, we find no signif-

icant correspondence between community structure measures and performance on the

memory task, and no age-related differences in memory performance or strategy were

detected in this experiment. This is likely related to the choice to study only healthy

adults with no measured deficits in cognitive function. It may also be partly explained
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region flexibility against variance in region flexibility across subjects. Brain regions
that are more flexible on average have a strong tendency to also display lower cross–
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by the timescales which we are able to probe; if criterion shift score and task accuracy

are related to changes in brain dynamics primarily at the level of single trials or strategy

blocks, these changes may be somewhat obscured in our dynamic networks. However, it

is clear that the dynamic community structure delineated by the slower fluctuations –
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Figure 4.6: Total community number and null distributions. Total number of
communities identified in the brain network of each subject (solid black line) compared
with total number of communities identified in each of 100 overall-connectivity-pre-
serving null model networks for the same subjects (dashed colored lines). Subjects
are sorted by overall connectivity (OC). The numbers of communities identified in the
data are very different for most subjects from those found in null distributions with
identical OC, suggesting that the communities detected are driven largely by char-
acteristics of the underlying connectivity structure that cannot be explained by OC.
The relationship between OC and number of communities appears to be nonlinear,
with large and small OC tending to lead to numbers of communities that are more
strongly driven by the OC value (i.e., more similar to the null model that preserves
OC alone).

e.g., in phasic arousal, attention, or strategy – do show significant changes related to de-

mographics, to which our analyses are sensitive. Future studies designed to elicit greater

performance differences, either by increasing task difficulty or by including a population

of individuals with age-related cognitive impairment, could probe whether individual pat-

terns of community dynamics are associated with these age-related changes in memory
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Community No. Flexibility Recruitment
ρ p-value ρ p-value ρ p-value

Whole brain 0.28852 0.0031207 0.52984 8.66E-09 -0.32053 9.64E-04
Auditory 0.38723 5.33E-05 0.49118 1.38E-07 -0.21268 3.10E-02
Cingulo-opercular 0.35580 2.26E-04 0.55497 1.18E-09 -0.31670 1.12E-03
Default Mode 0.40296 2.44E-05 0.44264 2.84E-06 -0.22947 1.97E-02
Dorsal Attention 0.30945 1.47E-03 0.36514 1.49E-04 -0.06906 4.88E-01
Fronto-parietal 0.31721 1.10E-03 0.53856 4.41E-09 -0.22348 2.33E-02
Other 0.35313 2.53E-04 0.44943 1.92E-06 -0.14008 1.58E-01
Somatosensory 0.39382 3.86E-05 0.46037 9.94E-07 -0.31483 1.20E-03
Subcortical 0.38995 4.67E-05 0.46622 6.93E-07 -0.29679 2.33E-03
Ventral Attention 0.39083 4.47E-05 0.32840 7.07E-04 -0.33822 4.75E-04
Visual 0.37777 8.36E-05 0.27263 5.34E-05 -0.15554 1.17E-01

Table 4.1: Correlations between subject age and community measures.
Spearman rank correlation ρ values and associated p-values for correlations between
age and each of three community metrics: community number, flexibility, and age.
Mean relative motion has been partialed out of all correlations. Italics indicate cor-
relations that are not significant (p > 0.05) after family-wise error rate correction for
multiple comparisons within each column; all non-italicized values represent significant
correlations (p < 0.05).

ability, and determine which dynamics at which timescales correspond to retention or

deterioration of performance.

We found that age correlates positively with community number and flexibility. That

is, older adults tend to have more fragmented communities with less coherent activity

than those in younger adults. Furthermore, brain regions are more likely to switch their

community membership in older adults, a result only partially explained by the existence

of more communities to switch between. Taken together, these results agree with previous

findings from task-free paradigms, insofar as the brains of older adults tend to show a

loss of the within-network integrity that might have led to them being grouped in fewer

and larger coherent communities, while at the same time losing segregation between

communities and seeing more fluidity of community membership over the course of the

memory task.

Using null models, we show that the overall connectivity, or density, of a subject’s
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brain network has some influence on the number of communities detected, and hence

also on the flexibility. This may be related to the resolution limit inherent in modularity

maximization algorithms for community detection, in which the network density deter-

mines an intrinsic scale to the modularity that prevents the detection of communities

below a certain size [171]. In multi-slice modularity maximization in general, the addi-

tion of links (here of weight ω) to connect communities across network slices affects the

resolution limit of the problem, potentially biasing the number of communities as well as

the flexibility. This complicated interaction between the time resolution parameter and

overall network connectivity makes the mechanism underlying the changes in flexibility

and community number more difficult to isolate. Here we have employed null models to

probe the extent of the influence of OC on our results; however, future work is needed

to fully elucidate this relationship.

We also investigate the correspondence of communities to known functional systems

in the brain, and find that this correspondence is modulated by age in several circuits

involved in cognitive control, including ventral attention, cingulo-opercular, and subcor-

tical systems. The ventral attention system is involved in bottom-up attention, or re-

sponse to infrequent or unexpected cues [172]. The cingulo-opercular circuit, composed

of anterior cingulate cortex as well as the supramarginal gyrus, rostral middle frontal

gyrus, and sections of inferior frontal gyrus, is thought to underlie tonic alertness and

the maintenance of available function during a task, and to be important for cognitive

control during working memory [31, 173]. The cingulo-opercular functions also include

contribution from thalamus, which is categorized as a subcortical region in this scheme.

The subcortical regions are less finely divided than the cortical regions in this atlas, so

the subcortical nodes have larger volume and are more functionally heterogeneous [44].

Thus, the results involving subcortical regions likely contain less information on mean-

ingful functional correlations than results involving cortex, since the signal from these
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regions is averaged over a larger area containing distinct functional responses.

Overall, these results show that age-related differences are evident during the memory

task in specific circuits related to attention and cognitive control (as well as the task-

related somatosensory network), which is consistent with past findings that cognitive

control is modulated by age [149–151]. The relationship between regions identified as

theoretically meaningful on the basis of prior GLM-based analyses of BOLD activity, and

the sort of dynamic, system-level connectivity of interest here, is not yet well understood.

However, this study demonstrates that we can use a data-driven method to discover

regions of interest for aging and task function about which it is still very difficult to

make a priori hypotheses at this scale, based on our previous understanding of the

neural processes involved in this task. The results of this and other similar investigations

can be used to guide further study with different methodologies, and provide a valuable

complementary body of knowledge to that gleaned from traditional, more static methods

of analyzing BOLD activity.

The finding that age selectively modulates the cohesive functional grouping of these

cognitive control circuits, as well as the task-involved somatosensory cortex, shows that

specific cognitive systems differ notably across the lifespan, while others remain relatively

unaffected by age. Importantly, although we can identify the extent of each circuit’s func-

tional changes across the lifespan, the behavioral effects of differences in these circuits

remain unclear. All participants in the experiment were cognitively healthy and none

showed memory impairment; furthermore, no age-related differences in performance were

evident despite the clear changes we observed in functional organization. The presence

of such widespread neural changes, with no manifest change in behavior, strongly sug-

gests that compensatory mechanisms may be playing a role in this cognitive task for

older adults, as proposed in previous work [174, 175]. While this study cannot identify

which age-related changes are beneficial to memory performance rather than detrimental,
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the methods used here provide a framework for quantifying such changes in community

structure and dynamics, in future studies where age-related performance differences are

evident.

4.5 Conclusion

Overall, this work confirms that the dynamics of functional community structure

in the human brain during a memory task vary considerably with age. In particular,

both whole-brain flexibility, which measures the tendency of brain regions to switch be-

tween communities over time, and the overall number of functional communities show

notable individual differences and are strongly correlated with age, with older subjects

demonstrating significantly higher flexibility and more fragmented functional commu-

nities. Using quantitative methods of comparing the community structure to known

functional brain systems, we also examine the tendency of brain systems to be grouped

cohesively together in communities during the memory task. We find that this tendency

is significantly modulated by age in brain regions associated with cingulo-opercular, so-

matosensory, ventral attention, and subcortical circuits, but not in other brain areas.

These results identify age as an important driver of individual variation in functional

community dynamics, and provide insight into how aging differentially impacts the func-

tional organization of different brain systems, even in healthy adults who do not expe-

rience declines in performance. Additionally, they demonstrate methods which promise

to be useful in quantifying which circuits drive changes in network organization across a

broad range of situations, including in task-active networks.

117



Age-dependent Community Structure and Dynamics in Human Brain Function Chapter 4

Spearman's ρ

nu
m

be
r o

f n
ul

l i
ns

ta
nc

es

0

1

2

3

4

5

6

7

8

9

-0.05 0.05 0.1 0.15 0.2 0.25 0.3 0.350

Spearman correlation p-value

nu
m

be
r o

f n
ul

l i
ns

ta
nc

es

0

5

10

15

20

25

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

p = 0.003

 Spearman’s ρ= 0.29

A

B

0.01 0.02 0.03 0.04 0.050

2

4

6

8

Figure 4.7: Relationship between age and number of communities in func-
tional brain data and corresponding null models. A: The solid red line shows
the Spearman correlation value between subject age and number of communities; the
bars show a histogram of the same correlation values, each computed from one set of
100 OC-preserving null networks. B: The solid red line shows the p-value of the Spear-
man correlation observed in the data; the bars show the null distribution of p-values
corresponding to the null Spearman correlation values in A. For six out of 100 ran-
domized community structures, the correlation between age and number of random
communities is stronger than the observed correlation between age and number of
functional brain communities. However, for most randomized community structures,
no significant correlation is found between age and number of random communities is
found.
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Figure 4.8: Whole-brain flexibility and age. A: Scatter plot of the correspondence
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119



Age-dependent Community Structure and Dynamics in Human Brain Function Chapter 4

subject (sorted by �exibility)

w
ho

le
-b

ra
in

 �
ex

ib
ili

ty

0.4

0.5

0.6

0.7

0.8

0.9

1

whole-brain �exibility
null distributions

80 10020 40 60

Figure 4.9: Whole-brain flexibility and null distributions. The solid black line
shows the whole-brain flexibility of each subject (sorted); the colored lines show the
distribution of whole-brain flexibilities computed from 100 instances of the correspond-
ing community-number-preserving null model. There are clear differences between the
whole-brain flexibility and the null distributions, but the flexibility values computed
from null models, based only upon the number and size of communities, remain strong
predictors of a subject’s whole-brain flexibility.

120



Age-dependent Community Structure and Dynamics in Human Brain Function Chapter 4

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55

1

2

3

4

5
 Spearman’s ρ= 0.53

Spearman's ρ

nu
m

be
r o

f n
ul

l i
ns

ta
nc

es

0.002 0.004 0.006 0.008 0.01 0.012 0.014
0

1

2

3

4

5

6

7

8

p = 8 x 10

nu
m

be
r o

f n
ul

l i
ns

ta
nc

es

Spearman correlation p-value

-9

A

B

Figure 4.10: Age-flexibility relationship in functional brain networks and
null models. A: The solid red line shows the Spearman correlation value between
whole-brain flexibility and age; the bars show a histogram of the same Spearman
correlation values, each computed from one set of 100 community-number-preserving
null models. B: The solid red line shows the p-value of the Spearman correlation
observed in the data; the bars show the null distribution of p-values corresponding
to the null Spearman correlation values in A. While all null correlations between
age and flexibility in shuffled community structures are fairly strong and statistically
significant, all are quite distant from and weaker than the correlation between age
and whole-brain flexibility, indicating that the number of communities alone cannot
explain the entire correspondence between flexibility and age.
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Figure 4.11: Community organization of functional systems. A: The functional
system partition of brain regions, with systems indicated by color. Systems identified
(in color order from purple to red) are auditory (AU), cingulo-opercular (CO), default
mode (DM), dorsal attention (DA), fronto-parietal (FP), other (OT), somatosensory
(SM), subcortical (SC), ventral attention (VA), and visual (VS). B: Box plot showing
the mean flexibility of brain regions in each functional system, and the distribution
of this mean flexibility over subjects. C: Recruitment coefficients of each brain region
(network node); visual cortex and somatosensory regions in particular have excep-
tionally high recruitment. D: Box plot showing the self-recruitment of each functional
system, and its distribution over subjects.
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Figure 4.12: Brain region recruitment and age. A: Scatter plot of the corre-
spondence between subject age and average recruitment across all brain regions in
networks with 80-second time windows. B: Scatter plot showing the significant nega-
tive correlation between these measures with mean relative motion partialed out.
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Figure 4.13: System self-recruitment and age. A: Scatter plot of the correspon-
dence between cingulo-opercular system self-recruitment and subject age in networks
with 80-second time windows. B: Scatter plot showing a significant anticorrelation
between these measures with mean relative motion partialed out (plot shows residuals
of separately regressing each measure on mean relative motion). C: Scatter plot of the
correspondence between visual system self-recruitment and subject age in networks
with 80-second time windows. D: Scatter plot of the correspondence between visual
self-recruitment and age with mean relative motion partialed out; there is no apparent
correlation.
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Figure 4.14: System self-recruitment and age. A: Scatter plot of the corre-
spondence between visual system self-recruitment and subject age in networks with
80-second time windows. B: Scatter plot of the correspondence between visual self-
-recruitment and age with mean relative motion partialed out; there is no apparent
correlation.
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Figure 4.15: Dependence of recruitment on community size distributions.
Bottom right: Recruitment values for each subject (blue line), averaged over all brain
regions, alongside 95% confidence line (red line) from null distribution of 100 re-
cruitment values computed in community-size-preserving null networks. All subjects
have mean whole-brain recruitment values significantly higher than those expected in
null networks, indicating that the association of algorithmically identified communities
with known functional systems is statistically significant. Smaller panels: Recruitment
values for each subject (blue lines), averaged over brain regions in known functional
systems, alongside 95% confidence lines (red lines). Some individual systems, includ-
ing sensory and motor cortices (auditory, somatosensory, and visual) and subcortical
structures, are consistently associated with identified communities at a statistically
significant rate. Others–including systems identified with executive control, both fo-
cused and bottom-up attention, and the resting state–have recruitment values that
could reasonably be explained by chance in several subjects.

126



Chapter 5

Targeted Node Removal for

Improved Resolution of Dynamic

Brain Communities

5.1 Introduction

In the study of complex networks, dynamic community detection is a method for

identifying highly intraconnected clusters of nodes within a network and quantifying how

these clusters change over time. In many cases, the identified clusters, or communi-

ties, correspond to modules that perform an identifiable functional or structural role,

thus giving insight into the composition and organization of a network [176]. Detect-

ing temporally changing clusters enables an analysis of how the roles of these modules

evolve, and how the network reorganizes itself on various timescales [15]. In network

neuroscience, communities highlight the organization of interacting neurons or brain re-

gions [8]. The application of these methods to large-scale MRI-based structural and

functional brain networks has identified broad organizational similarities shared between
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distinct brains [10, 26, 169], and quantified changes in brain dynamics across cognitive

states, demographic measures, and time [14,113,137].

Although dynamic community detection has contributed to a more complete under-

standing of the brain, challenges remain in applying it to large-scale functional brain

networks for predictive and diagnostic purposes [8]. Functional modules exist at a vari-

ety of sizes and temporal ranges, and community methods rely on parameter choices to

resolve clusters at scales relevant to a specific question or investigation [8,14,177]. In the

absence of clear “ground truth” knowledge against which to evaluate methods, strategies

for choosing these parameters have varied widely and are often based upon the statistical

robustness of results [8, 35]. Thus, groups of brain regions that are especially strongly

correlated may dominate the identified community structure, obscuring the resolution of

other functional modules or dynamic properties. For example, during tasks with a visual

component, brain regions in the visual cortex form a highly coherent community that

strongly affects the selection of resolution parameters. This may prevent a community

detection algorithm from resolving modules that perform other cognitive functions dur-

ing the task. An incomplete understanding of the effects of these parameter choices also

complicates comparison across analyses with different parameters.

Here, we introduce an approach for targeted removal of network nodes to improve

resolution in dynamic community detection. We demonstrate the approach in a syn-

thetic network of oscillators, in which we precisely quantify detection performance by

comparing to well-defined “ground truth” communities. We show that the presence of

multi-scale organization inhibits community detection in these oscillator networks. We

further demonstrate that removal of targeted subsets of nodes during community detec-

tion improves the resolution of communities among the remaining nodes.

We demonstrate the utility of targeted node removal in neuroscience applications by

applying this method to dynamic functional brain networks from two distinct fMRI exper-
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iments. One features repetition of a single cognitive task and the other encompasses the

performance of multiple different tasks. Commonly used community detection methods

fail to resolve the substantial dynamic differences between these single- and multi-task

data sets. However, with targeted removal of the regions in visual cortex, which contains

the most functionally coherent brain regions, community detection reveals clear differ-

ences in the dynamic network properties of the two data sets on a population level. In

addition, removal of visual regions improves the ability of these methods to spatially re-

solve groups of brain regions known to be functionally similar, especially in the multi-task

data set. These results show that targeted node removal can both improve resolution

of community dynamics in a single data set, and also enable comparison of community

structures across data sets.

Background and Motivation

Community detection algorithms aim to use the connectivity information of a network

to identify a network partition, or a division of the network nodes into clusters, such that

each cluster is composed of nodes strongly connected within the cluster and weakly

connected to other clusters. Unsupervised community detection methods often uncover

useful or intuitive groupings: they can extract official affiliations based on interactions

in human social networks [178]; identify similar regions in a field of view to aid image

processing and compression [176,179,180]; and classify biochemical species based on their

dynamics within metabolic networks [181].

Developing practical applications of community detection for specific networked sys-

tems requires choosing various context-dependent model parameters. In network neu-

roscience, this choice is especially challenging. Very little is known about fundamental

principles that underlie the dynamic organization of large-scale brain regions, and a

“ground truth” benchmark for functional communities is not well-understood in a net-
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Figure 5.1: Schematic: Community detection on dynamic networks. A: Rep-
resentation of the nodes and edges of a modular network, with dashed circles indicating
the underlying communities. B: Binary influence matrix corresponding to this net-
work, in which blue entries indicate a direct influence between node pairs and white
entries indicate no direct influence. C: An example of node dynamics produced by
this network, where each node is modeled as an oscillator with an intrinsic frequency,
and nodes are influenced by their neighbors according to Equation 5.5. The evolving
phases of successive nodes are stacked along the y-axis. D: Synchronization matrices
representing the dynamic functional network derived from the time series in C. Each
sequential matrix shows the synchronization between node pairs, averaged across the
corresponding time window. E: Dynamic communities detected in the dynamic func-
tional network in D. Each node is assigned to a single community (denoted by color)
in each time window, and may switch community assignments between time windows.
F: Comparison of dynamic community assignments from the third time window in E
(denoted by color) to the underlying communities of influence from A (denoted by
dashed circles).

work context. In current research, evaluation of community “correctness” is largely based

on correspondence with anatomy, pre-existing knowledge of functional roles, or statisti-

cal analysis of community robustness [8, 169]. There is therefore little consensus about

the best methods for imposing constraints on community detection algorithms and for

evaluating results.
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Additionally, the human brain has inherently multi-scale organization. This includes

hierarchical modularity (communities within communities), interlocking communities of

varying sizes, and communities that dynamically reconfigure over time [10, 14, 15, 182,

183]. Furthermore, brain dynamics related to a given experimental condition cannot

be easily isolated. During an MRI scanning session, many brain circuits of multiple

sizes and strengths, both related and unrelated to the phenomenon under study, are

simultaneously active. Brain regions with particularly strong or consistently coherent

activity, such as those in sensory or motor cortices during recruitment of those functions,

may dominate the community structure detected in a data-driven analysis, masking the

dynamic properties of other brain areas more relevant to the study.

The noisy, multi-scale, and dynamic nature of brain dynamics is not necessarily suited

to common community detection algorithms. The “modularity maximization” method for

community detection is widely used, computationally efficient, easily implemented, and

natural to extend to weighted, signed, and dynamic networks [8,167]. However, it has also

been shown to have an inherent resolution limit [171] and requires the choice of parameters

defining spatial and temporal scales [8, 15, 35]. Several heuristics have been developed

to ensure that the detected communities represent organization at an informative scale.

These typically involve either exploring many possible scales, or choosing communities at

a scale that gives the most consistent partitions [8, 35, 177]. Such methods have enabled

reasonable statistical confidence in results from a single individual or data set. However,

approaches for comparing results of different resolutions between different individuals or

data sets remain elusive.

Strategy

This chapter demonstrates that targeted removal of network nodes during commu-

nity detection can be leveraged to improve the resolution of communities on multiple
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scales, and to aid in the principled comparison of community structure across data sets.

Specifically, we study the effect of removing subsets of nodes with particularly strongly

connected or coherent dynamics, as determined by observation or through knowledge of

their functional role. For example, sensory or motor regions in large-scale functional brain

networks are often highly coherent during tasks that recruit these functions, which may

hinder the resolution of the dynamics of other network nodes in community detection.

We first illustrate the node removal approach in synthetic oscillator networks, in

which results are evaluated based on a clear underlying “ground truth” network. A

schematic of the approach to community detection in these networks is shown in Figs 5.1

and 5.2. We designate an underlying adjacency matrix (Fig 5.1B) for each synthetic

network (Fig 5.1A), organized into modules that we define. This matrix, which we

refer to as the “influence matrix,” represents the causal influences between oscillators

that drive the synchronization dynamics of the network. This influence matrix serves

as a rough analogy to the set of underlying anatomical connections and/or functional

influences that produce the dynamics of brain activity measured with fMRI. It is not

meant to represent the physical structure or architecture of the brain, but rather the

basic functional organization that underlies the observed neural activity, and which we

elucidate with community detection.

Once an influence matrix is defined for a synthetic oscillator network, we simulate

the resulting network dynamics (Fig 5.1C), which we then “measure” by computing

the synchronization between node pairs across a set of time windows (Fig 5.1D). Node

pairs within the same underlying community tend to synchronize more closely than pairs

in different communities. We produce a community partition (Fig 5.1E) from the dy-

namic network formed by the synchronization measurements, by applying a modularity-

maximization community detection algorithm to this synchronization network [15, 167].

We use true and false positive rates to quantify the extent to which this partition matches
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the original underlying communities (Fig 5.1F). Finally, we apply community detection

again, this time using information from only a subset of nodes in the synchronization

matrices, and compare the results to community detection on the full network (Fig 5.2).

Note that when removing nodes, the dynamics are still simulated for the full underlying

network. Nodes are removed only from the dynamic synchronization networks (shown in

Fig 5.1D and Fig 5.2A) before the community detection algorithm is applied.

We find that in the precisely controlled oscillator networks, removal of certain subsets

of nodes during community detection can improve the resolution of communities among

the remaining nodes. We then apply our methods to functional human brain networks

using two data sets, corresponding to two separate functional MRI experiments with

different temporal task structures. In these brain networks, removal of the strongly

correlated visual cortex from the dynamic adjacency matrix allows for better resolution

of the differences between community structure during different cognitive tasks.

Figure 5.2: Schematic: Targeted removal of nodes for community detection.
A: From the measured dynamics of the modular network in Figure 5.1, new dynamic
functional network matrices are computed, with the functionally cohesive community
removed (nodes 22-26). B: This truncated functional network is then used to detect
dynamic communities, producing assignments for all remaining nodes. C: The re-
sulting community structure from the third time window, denoted by color, provides
a clearer identification of the underlying communities than the community structure
detected with all nodes taken into account (Figure 5.1F).
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5.2 Methods

We first describe the method of modularity maximization used to detect dynamic

communities throughout this chapter, including the algorithms used to perform the max-

imization and find a stable community structure. We focus on this technique due to its

widespread use for community detection in network neuroscience [8], which stems from

its clear conceptual definition, the ease of adapting it to weighted and dynamic networks

[184], and the existence of multiple computationally efficient implementations [15, 167].

We also define the metrics used to quantify community properties and assess detection

performance. Finally, we introduce the two types of networks to which we apply these

community detection methods: synthetic networks of nonlinear Kuramoto oscillators,

with dynamics simulated in silico; and dynamic networks of human brain function, de-

rived from fMRI measurements of brain activity while participants performed different

sets of cognitive tasks.

5.2.1 Community Detection Methods

We consider a network of N nodes connected by weighted, unsigned edges. Each

edge may take on a different positive, real-valued weight in each of T time windows; Aijt

denotes the weight of the edge between node i and node j in time window t. In order to

identify the optimal partition of nodes into modular communities, we seek the partition

that maximizes the multislice modularity,

Q =
1

2µ

∑
ijtr

{(Aijt − γPijr) δtr + ωδij} δ (git, gjr) , (5.1)

which indicates the quality of the modular structure of a partition in comparison to a

randomized “null” network, Pijt [15].
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This quantity considers all node pairs i, j and all time window pairs t, r in which the

community assignment of node i in window t (git) is the same as the community assign-

ment of node j in window r (gjr). For each node pair assigned to the same community in

the same time window, the first term in the brackets provides a positive contribution to Q

if the actual edge weight between the pair compares favorably to that in the null model.

A spatial resolution factor γ determines the relative weight given to the null model. For

each node j and each pair of time windows, the second term provides a positive contri-

bution of ω to Q when j is assigned to the same community in both time windows [15].

Thus, maximizing Q favors network partitions in which the weights between nodes in the

same community are greater than those expected in the null model, as well as those that

group more nodes in the same community as themselves across multiple time windows.

In this chapter we use the Newman-Girvan null model, which treats edge weights as

randomly distributed within each time window while preserving the node degree distri-

bution [178]. We maximize Q over network partitions with a Louvain-like locally greedy

algorithm implemented in MATLAB [15,167]. Due to the stochasticity of the algorithm

and the expected high degeneracy of solutions near the maximum value of Q, we use a

community consensus procedure to distill a statistically representative partition from an

ensemble of 100 solutions for each network (for more details, see [35] and [113]).

Resolution parameters

The value of the multislice modularity Q depends upon the values of γ, a spatial

resolution parameter, and ω, a temporal resolution parameter. These parameters control

the relative weight given to the null model in calculating Q, and thus alter the spatial

and temporal scales at which communities will be found. A higher value of γ gives more

weight to the null model, requiring much stronger connections to be present within a

subset of nodes before they are counted as sufficiently different from the null model to
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constitute a community. A lower value of γ requires less connectivity within a potential

community before it is deemed to be significant. Thus, lower values encourage few and

large communities (γ = 0 will always return a single community containing every con-

nected network node), while higher γ values tend to produce more, smaller communities.

In terms of temporal resolution, higher ω values place a greater value on maintaining

the community assignment of a node across time windows of the network, and tend to

produce partitions in which the node assignments are more similar to each other across

time windows. Lower ω values give temporally consistent node assignments less weight,

and in the case where ω = 0, the dynamic community detection task becomes equivalent

to performing static community detection on each time window separately.

Metrics for Community Structure and Detection Performance

Community number. For a given community partition, the community number is

defined as the total number of distinct community assignments given to the network

nodes. The community number is always between 1 (all nodes in the same community)

and N (each node in a different community) for modularity maximization methods.

Flexibility. The flexibility of a node in a dynamic network is defined as the number

of times that node switches communities between adjacent time windows, normalized by

the total possible number of switches:

f(i) =
1

T − 1

T−1∑
t=1

[
1− δ(git, gi(t+1))

]
. (5.2)

Here, T is the total number of time windows; δ(git, git′) equals 1 if node i is assigned to

the same community in slice t and slice t′, and 0 otherwise. A node with high flexibility

changes communities in every or nearly every time window and has a flexibility at or near

1, while a node with low flexibility may remain in the same community in all windows
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and have a flexibility of 0. For example, in the schematic representation of community

assignments for a dynamic network in Fig 5.1E, nodes 1 through 6 remain in the same

community across all three time windows and have a flexibility of 0. However, node 7

switches from community 1 to community 4 between the last two time windows, and thus

has a higher flexibility.

The whole-network flexibility is defined as the mean flexibility over all network nodes,

and can be used to compare network dynamics under different conditions.

Community detection performance. In cases with available “ground truth” communi-

ties, we use true and false positive rates to quantify community detection performance.

We define these in terms of node pair co-assignments, comparing whether each node pair

is truly in the same community (a “true” co-assignment) or not, and whether the node

pair is “identified” as belonging to the same community by the algorithm or not. These

quantities are defined as follows:

true positive rate (TPR) =
tp

tp+ fn
, (5.3)

false positive rate (FPR) =
fp

fp+ tn
. (5.4)

Here, tp indicates the number of true positives – i.e., node pair co-assignments both exis-

tent in the underlying influence matrix (“true”) and identified by the algorithm (“identi-

fied”). Similarly, fp indicates the number of false positives (“identified” co-assignments

which are not “true”); fn the number of false negatives (“non-identified” co-assignments

that are “true” in the influence matrix); and tn the number of true negatives (“non-

identified” co-assignments which are also not “true”). Here, we compute the TPR and

FPR separately for each network instance in an ensemble.
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For each network, we summarize the performance of the community detection algo-

rithm over an entire ensemble of networks with a detection probability matrix D. Each

entry Dij gives the fraction of network instances in which nodes i and j are identified

as belonging to the same community. Perfect detection performance over all instances

would result in Dij = 1 for all i, j pairs in the same underlying community, and Dij = 0

for all other pairs. Dij < 1 (for i and j in the same underlying community) or Dij > 0 (for

i and j in different underlying communities) indicate that there are network instances

in which the node pair co-assignment was incorrectly identified. When compared to the

underlying influence matrix, D specifies which particular node pairs were correctly or

incorrectly identified, contributing to the overall true and false positive rates.

We choose TPR, FPR, and the detection probability matrix to evaluate the com-

munity detection performance in order to shed light on the differences between different

types of detection failures. Separating true positive rate and false positive rate – as

opposed to using a measure such as Rand index which counts all correctly identified

pair associations (both true positives and true negatives) together – allows easy visual-

ization of the difference between community partitions that tend to combine underlying

communities together (high false positive rate) and those that tend to split them apart

(low true positive rate). Plotting TPR against FPR, as in Figs. 5.3,5.5,and5.4, provides

a visual interpretation of the performance of the detection algorithm compared to its

expected random-chance performance (where TPR = FPR), and perfect delineation of

communities (the upper left-hand corner, where TPR = 1 and FPR = 0).

5.2.2 Synthetic Networks of Kuramoto Oscillators

We apply these community detection methods and techniques for improving resolution

of community detection to synthetic networks of Kuramoto oscillators, in which the
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underlying influence matrix can be precisely controlled.

Following [16], we define each of the N nodes of a Kuramoto network as an oscillator

indexed by i (i = 1, 2, ..., N), whose time-dependent internal state is given by the angle

θi(t) ∈ [0, 2π). The state of each oscillator i evolves according to

dθi
dt

= ωi +
∑
j

κCij sin(θj − θi), (5.5)

where ωi is the intrinsic frequency and the second term describes the influence of other

oscillators in the network. Interactions between oscillators are governed by a scaling

factor κ and a time-independent, N x N binary matrix C, where Cij = 1 denotes a direct

influence between oscillators i and j, such that their dynamics will tend to synchronize

over time. Cij = 0 denotes no direct influence between i and j, although there may still

be synchronization between them as a result of indirect influence or by chance. We refer

to C as the influence matrix of the network.

We design C to have a modular structure, consisting of a number of communities of

influence. Any pair of nodes in the same community have a directly influential relation-

ship with probability Pin, while a pair of nodes in two different communities is directly

related with probability Pout.

We examine two distinct network types determined by their underlying influence

structure: single-scale and multi-scale. Single-scale networks are composed of communi-

ties that are all the same size. We consider single-scale communities of either 20 nodes

or 8 nodes each. Multi-scale networks contain a collection of communities of different

sizes. We focus on a multi-scale network of N = 100 nodes, consisting of eight total

communities, with three 20-node communities and five 8-node communities. For all net-

works, we use Pin = 0.9 for 20-node communities, Pin = 0.7 for 8-node communities, and

Pout = 0.01 for all out-of-community connections.
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After determining an influence matrix C, we initiate each network with normally

distributed intrinsic oscillator frequencies (σ = 1) and solve the network dynamics nu-

merically with κ = 0.2. The dynamics of such a network begin in a random state, and

the oscillators approach a steady state of partial synchronization after a short transient

period. We quantify the observed functional dynamics of the network by computing the

time-dependent synchronization [16]

φij(t) = | cos(θi(t)− θj(t))|. (5.6)

We then apply the community detection method to these synchronization dynamics,

represented in the adjacency matrix Φ. The entries Φijr are determined by averaging

the synchronization φij(t) over each of a chosen set of time windows (indexed by r), as

depicted schematically in Fig 5.1D. Here, we use eight time windows of 50 time steps

each. These time-dependent synchronization matrices are used by the community detec-

tion algorithm to identify dynamic communities, as in Fig 5.1E. We compare the detected

community structure to the underlying “ground truth” of the influence matrix (Fig 5.1F)

to quantify the performance of the community detection algorithm under various condi-

tions.

For each arrangement of underlying communities, we generate an ensemble of 20 in-

fluence matrices, all using the same intra- and inter-community connection probabilities

(Pin and Pout). We perform the dynamic simulation and community detection procedure

separately on each network instance in the ensemble, resulting in a distribution of per-

formance metrics. This distribution provides an estimate of the variance in community

detection performance across networks with the same underlying structure, but noise or

other variation affecting the existence or the measurement of some connections.
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5.2.3 Functional Brain Networks from fMRI Data

To demonstrate their utility in large-scale human brain networks, we apply these com-

munity detection and node removal techniques to two distinct functional brain network

data sets, derived from two separate fMRI experiments on different groups of participants.

We refer to these two functional data sets as the “single-task” and the “multi-task” data

sets. Both experiments require participants to perform cognitive tasks during successive

fMRI runs, but they provide a contrast between a set of behaviorally similar functional

runs (“single-task” experiment) and a set of runs designed to elicit distinct cognitive

functions (“multi-task” experiment).

Informed written consent was obtained from each participant prior to experimental

sessions, and all procedures were approved by the University of California, Santa Barbara

Human Participants Committee.

Experimental Procedure

Single-task experiment. 126 healthy adult participants were scanned while perform-

ing a recognition memory task with lexical stimuli. During each of three identically

designed functional runs, both previously examined and novel words were shown, and

participants were required to distinguish between them with the aid of probabilistic cues.

Each run was approximately 8.5 minutes long. Due to various sources of attrition and

technical issues, data from 22 participants was excluded, leading to a final analysis of

104 participants. For additional experimental details, see [113] and [42].

Multi-task experiment. Functional MRI data were collected from 116 healthy adult

participants during a set of distinct cognitive states. Participants were scanned at rest

(task-free) and while engaging in three functional tasks: an attention-demanding task,

a memory task with lexical stimuli similar to that used in the single-task experiment,
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and another similar memory task with face stimuli. Due to various sources of attrition,

only 77 participants are included in the final analysis. For more experimental details,

see [111,185], and [12].

Functional Brain Networks

A dynamic network is constructed separately from each participant’s measured func-

tional activity. Each network contains N nodes, corresponding to the N = 194 brain re-

gions of a “hybrid” anatomical atlas, an adaptation of the multi-resolution Lausanne2008

atlas minimizing variability in region size [44,111]. This atlas was registered to MNI space

for each participant. The same set of brain regions is used for all participants, and the

brain regions do not change over time. Region-specific time series from each functional

run were generated for each node by averaging the BOLD signal time series across all

voxels within the brain region [111].

Each network has E = N(N − 1)/2 edges, each with a real-valued, non-negative

connection weight that may change over time, taking a new value in each of T sequential

time windows spanning the experiment. The weight of an edge between nodes i and

j in a given time window t, denoted Aijt, is defined as the mean low-frequency (0.06-

0.125 Hz) wavelet coherence between the BOLD time series of i and j within that time

window [11,33,56,113,166].

Community Detection

For each participant’s dynamic functional network, the community detection method

described above is applied to find the partition that maximizes the multislice modularity

Q. In these brain networks, the spatial resolution parameter γ is chosen with the analysis

described in [113]. The most informative spatial scale is expected to be the one giving

the most consistent community partitions across randomly seeded stochastic runs of the
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locally greedy modularity maximization algorithm. Following this reasoning, community

detection is performed independently across a range of γ values, and the mean z-score

of the Rand index between each pair of partitions generated by 100 algorithm runs at

each γ value is computed, providing a quantitative measure of similarity across the par-

titions [186]. The Rand z-score is chosen because it inherently provides a comparison to

a null distribution that takes the number and size of communities in each partition into

account; it can be calculated analytically; and its behavior in the context of modularity

maximization on functional brain networks has been previously characterized [35, 186].

The optimal γ value is that giving the highest average Rand z-score across pairs of algo-

rithm runs and across participants, indicating the most consistent community partitions.

When there is no clear choice (i.e., when the γ landscape is relatively flat), a near-optimal

value is chosen based upon the expected number of functional communities [113]. After

choosing a spatial scale, a temporal scale (ω value) is determined by choosing the value

that maximizes the variance in flexibility across network nodes, where a node’s flexibility

measures the number of times it switches community assignments between adjacent time

windows (see Eq 5.2). This ensures that the algorithm will resolve high-flexibility nodes

from those that remain within the same community throughout the experiment. See

Section 5.4 for further treatment of resolution parameters.

Comparison to Known Functional Systems

In the absence of a clear “ground truth” benchmark for human functional brain net-

works, precise evaluation of community detection performance is a challenge. We use a

basic partition of functional systems within the brain to assess whether these methods

resolve brain systems with different functional roles from each other [169]. In this parti-

tion, each of the 194 brain regions is assigned to one of ten systems: auditory, cingulo-

opercular, default mode, dorsal attention, fronto-parietal, somatosensory, subcortical,
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ventral attention, visual, and other. These systems were identified with a network-based

clustering approach [169], and have been used to describe and quantify system-specific

functional brain interactions [24, 26, 33, 113, 170, 187]. The assignment of regions to sys-

tems used here is based upon the primary functional roles of different anatomical brain

areas, as detailed in [187] and [33].

We use the recruitment to quantify the relationship between known functional systems

and the communities detected in the data. The node-specific recruitment of a brain region

is a measure of the consistency with which that region is assigned to the same community

as other nodes in its own functional system. It is given by

R(i) =
1

n(si)− 1

∑
j 6=i

δ(ci, cj)δ(si, sj). (5.7)

Here, si denotes the functional system of brain region i, n(si) gives the total number

of regions in system si, and ci denotes the community assignment given to i by the

community detection algorithm. The Kronecker deltas δ(si, sj) and δ(ci, cj) count the

region pairs (i, j) that belong to both the same known functional system and the same

data-driven community. Thus, a brain region will have a high recruitment coefficient

if the data-driven community to which it is assigned also contains a high fraction of

functionally similar nodes.

We define the system-specific or system recruitment Ψ of a given system S as the

average node-based recruitment of all nodes in the system, given by

Ψ(S) =
1

n(S)(n(S)− 1)

∑
ij,i6=j

δ(ci, cj)δ(si, S)δ(sj, S). (5.8)

This measures the extent to which nodes in system S are cohesively grouped together in

the same community.
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These recruitment metrics are inspired by similar quantities used in Refs. [33] and [188],

but have been adapted to allow comparison of the metrics across scanning runs and sub-

jects, and to avoid self-comparisons between nodes.

This basic partition into functional systems enables a quantitative assessment of the

overlap between detected communities and the broad functional organization of the hu-

man brain. However, it does not fulfill the function of the “ground truth” benchmarks

used in the synthetic oscillator networks. In particular, any “true” underlying func-

tional modules driving the measured brain dynamics in these fMRI experiments would

be expected to change dynamically as different brain systems are recruited for different

cognitive tasks. This partition also does not capture the likely individual, temporal, and

situational variation in the organization of brain function within a single task.

5.3 Results

5.3.1 Community Detection in Synthetic Networks

Here, we demonstrate the performance of the modularity maximization community

detection technique on a set of synthetic Kuramoto oscillator networks, detecting com-

munities both before and after the targeted removal of nodes, and assessing the effect on

performance.

As described in Section 5.2.2, the basic system studied is a network of N oscillators,

each with its own intrinsic frequency ωi, as well as influences from the other oscillators

which are described by a time-independent binary influence matrix C. We simulate

the network dynamics resulting from this underlying pattern of influence, and track the

observed synchronization dynamics that result. These synchronization networks serve

as a simplified analogy to functional brain networks, reflecting both direct and indirect
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influence among network nodes through a measurement of observed coherence [16]. By

performing community detection on the observed synchronization dynamics of Kuramoto

networks, we determine the accuracy with which these techniques can uncover the true

underlying network communities in the presence of inherently multi-scale dynamics.

Comparing Single-scale and Multi-scale Networks

Single-scale networks. We begin by investigating networks with communities of a

single size. The first of these is a network of N = 60 nodes, containing three underlying

communities of 20 nodes each. This modular pattern of underlying influence between

oscillators is captured in the influence matrix C, which is generated randomly for each

of an ensemble of 20 instances of the network, according to the relevant Pin and Pout

probabilities. The mean of C over this ensemble is depicted for this network in Fig 5.3A,

in which the three underlying communities of influence are clearly visible in a block-

diagonal arrangement.

The dynamics of the Kuramoto network obeying these influences is then numerically

simulated by solving Eq 5.5, and the average synchronization is calculated across each of

eight separate time windows of 50 time steps each. Fig 5.3B shows an example synchro-

nization matrix from a single time window in a single network instance. Here, although

node pairs from the same underlying community are more synchronized than those from

different communities on average, the delineation between communities appears more

ambiguous than in the underlying influence matrix from panel A.

The community detection algorithm is then applied to the observed synchronization,

for each of the 20 network instances in the ensemble. The performance is summarized in

Fig 5.3C, the detection probability matrix D, in which each entry Dij gives the percentage

of instances in the ensemble in which nodes i and j are identified as belonging to the

same community. (This matrix is averaged over the eight 50-step time windows for
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Figure 5.3: Community detection in single-scale networks outperforms mul-
ti-scale networks. Binary underlying influence matrices, examples of synchroniza-
tion dynamics, and detection probability matrices for single-scale networks of 20-node
communities (A-C), single-scale networks of 8-node communities (D-F), and multi-
-scale networks with both community sizes (G-I). Each influence matrix is averaged
over an ensemble of 20 matrices generated with the same connection probabilities,
and each detection probability matrix is averaged over the results from the same en-
semble. Panel J summarizes the results, with each dot indicating the true and false
positive rates for one network instance from an ensemble. Shaded ellipses highlight
the ensemble shapes, with the ellipse centers at the ensemble means and the ellipse
axes corresponding to the standard deviations. Unfilled dots represent results for sin-
gle-scale networks with one community size only, with 20-node communities in blue
and 8-node communities in orange. Filled dots represent results for 20-node commu-
nities (blue) and 8-node communities (orange) embedded in the multi-scale network
of panels G-I. The community detection algorithm shows low false positive rates on
single-scale networks, but substantially higher false positive rates on the same com-
munities within multi-scale networks. This indicates that communities of the same
size are more difficult to resolve when embedded in multi-scale networks.

each simulation, since the results are very similar across time windows.) The shapes

of the underlying communities from the influence matrix are evident here, indicating

that the algorithm can detect the underlying communities on average over the whole

ensemble. However, the detection probability for individual node pairs is usually less
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than 1, meaning that in individual network instances, the algorithm often misses the

correct underlying influences.

We compare this performance to that of the same algorithm on a network of (N = 40

nodes), consisting of five underlying communities of 8 nodes each. Fig 5.3D, E, and F

describe this network in an manner analogous to the previous panels. The average of

the binary influence matrix across all networks in the ensemble (Fig 5.3D) again shows

a clear delineation of the underlying communities. An example of the synchronization

dynamics of the network (Fig 5.3E) shows that the dynamics between node pairs within

these smaller communities tend to be more strongly synchronized than within the larger

communities from Fig 5.3B. The detection probability matrix in Fig 5.3F indicates that

the algorithm detects almost all of the node pairs that share the same underlying com-

munity, but also falsely classifies some node pairs as having an underlying influence on

each other.

Multi-scale networks. We compare the single-scale networks to the multi-scale network

described above, consisting of three 20-node communities and five 8-node communities on

underlying influence. Fig 5.3G, H, and I show the binary influence matrix, the synchro-

nization dynamics, and the detection probability matrix for this network, respectively.

While the influence matrix and synchronization dynamics look relatively similar in the

multi-scale network to the corresponding single-scale networks, the detection probability

matrix is notably different. Many false underlying influences are detected, with the algo-

rithm displaying particularly poor performance in distinguishing different communities

of the same size from each other.

Fig 5.3J summarizes the changes in community detection performance between single-

and multi-scale networks, by plotting the true positive rate for detection of node co-

assignments against the false positive rate. For each ensemble of networks, the results

from the 20 instances are shown as individual dots, highlighted by an ellipse with its
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center at the mean and its semimajor and semiminor axes illustrating the standard

deviation of the ensemble results. An instance with perfect detection would fall in the

upper left corner (TPR = 1 and FPR = 0), finding 100% of existing connections and no

false positives.

The unfilled dots show performance on single-scale networks, with each representing

one instance of a single-scale network with 20-node communities (blue) or 8-node com-

munities (orange). While the community detection algorithm shows low false positive

rates on both of these networks, on the 20-node network it displays significantly lower

true positive rate, meaning it tends to split up the “true” communities and identify them

as smaller subsets.

The filled dots show performance on multi-scale networks. This figure only shows

the classification performance on node pairs where both nodes belong to communities of

20 nodes (blue) or where both belong to communities of 8 nodes (orange). The results

measure how well the algorithm distinguishes communities of the same size from each

other, without considering its ability to distinguish between communities of different

sizes. This allows direct comparison of results between single-and multi-scale networks

for each community size. The algorithm shows a slightly better true positive rate on the

20-node communities within the full multi-scale network, compared to in a single-scale

network. However, this comes at a cost of a substantially higher false positive rate. In

addition, the detection of 8-node communities deteriorates in a multi-scale network. The

algorithm tends to combine multiple 8-node communities into one, producing more false

positives than in the single-scale network.

Node Removal

We now demonstrate community detection performance under removal of a priori -

identified groups of nodes, as schematically represented in Fig 5.2. From the observed
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network dynamics, the synchronization matrix is computed while ignoring the removed

nodes, creating a new network that includes no direct information about the removed

nodes or their connections to the remaining nodes. The community detection method is

then applied to these smaller functional networks to produce community assignments for

all the remaining nodes.

Removing larger communities. First, we remove the larger communities and test the

effect on the ability of the algorithm to identify the smaller communities. Note that in

terms of dynamics, the larger communities are also consistently less synchronized com-

pared to the smaller ones. Fig 5.4 shows average influence matrices (A-D) and detection

probability matrices (E-H) for the full multi-scale network, compared to the network with

one, two, and three of the 20-node communities removed. Fig 5.4I summarizes the chang-

ing community detection performance (computed for node pairs in 8-node communities

only) as progressively more large communities are removed. Dots indicate performance

on individual network instances, with colors distinguishing network ensembles with differ-

ent numbers of nodes removed, and shaded ellipses highlighting the means and standard

deviations of the different ensembles. With one (yellow) or two (red) large communities

removed, there is no significant difference in true or false positive rates from the full

multi-scale network, shown in orange (one-sample t-test, p > 0.1). However, with all

three large communities removed (purple), the false-positive rate distribution is signifi-

cantly different from all three other ensembles, and the true-positive rate distribution is

significantly different from the full network ensemble and the ensemble with two large

communities removed (t-test, p < 0.05, Bonferroni corrected for multiple comparisons).

Removing smaller communities. Next, we remove the smaller, more synchronized

communities, and measure the effect on the ability of the algorithm ability to identify

150



Resolution of Dynamic Communities Chapter 5

Figure 5.4: Removing larger communities slightly affects detection of smaller
communities. Removal of larger, less coherent communities during community de-
tection slightly affects detection of smaller, more coherent communities. The figure
shows average influence matrices (A-D) and detection probability matrices (E-H) for
the full multi-scale networks, as well as the same networks with one, two, and three
20-node communities removed. Panel I summarizes the results, plotting the true
versus false positive rates for the detection of co-assignments of pairs of nodes in
8-node communities. Each dot represents results for one instance of an ensemble
of 20 networks. A shaded ellipse highlights each ensemble, with the center at the
ensemble mean and the axes corresponding to the standard deviations. Successive
removal of larger communities (yellow and red distributions) does not make a sig-
nificant difference in the detection of smaller communities, compared to in the full
multi-scale network (orange). Only with all 20-node communities removed (purple)
does the distribution of results change. Single stars by the figure legend indicate pairs
of distributions that differ significantly in false positives only; double stars indicate a
significant difference both true and false positives.
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the larger, less synchronized communities. Here, the successive removal of the smaller

but more coherently connected 8-node communities substantially improves the ability of

the community detection algorithm to distinguish the 20-node communities from each

other, as shown in Fig 5.5. Each successive removal decreases false positive rates and

increases true positive rates on average. All three distributions differ significantly in false

positive rate, and the distribution with all smaller communities removed differs in true

positive rate from the full multi-scale network (t-test, p < 0.05, Bonferroni corrected for

multiple comparisons).

Note that although smaller, the 8-node communities are more cohesively connected

overall, tend to be more synchronized, and are substantially easier for the algorithm to

identify than the larger communities, both in single-scale networks and in the full multi-

scale network. This may reflect that the resolution parameters used, γ = 1 and ω = 1,

are more well-suited to detecting communities at the 8-node scale than the 20-node scale,

given the dynamics in these networks.

Summary. For the smaller, more synchronized 8-node communities, the choice of res-

olution parameter in the context of the other network parameters and dynamics allows

relatively clean detection in both the original single-scale network and the full multi-scale

network, although the multi-scale network causes an increase in false positive identifi-

cations. When the 20-node communities are removed from the multi-scale network, the

false positive rates for the 8-node communities drop again, but the performance does not

match that in the single-scale network (Fig 5.3J).

The larger and less synchronized 20-node communities are detected with relatively

low true positive and false positive rates when in single-scale networks, as the algorithm

tends to “split” the larger communities and identify them as smaller subsets. When
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Figure 5.5: Removing smaller, more coherent communities improves detec-
tion of larger, less coherent communities. Average influence matrices (A-C) and
detection probability matrices (D-F) for the full multi-scale network, as well as the
same network with two and five 8-node communities removed. Panel G summarizes
the results, plotting the true versus false positive rates for the detection of co-assign-
ments of pairs of nodes in 20-node communities. Each dot represents results for one
instance of an ensemble of 20 networks. A shaded ellipse highlights each ensemble,
with the center at the ensemble mean and the axes corresponding to the standard
deviations. Full multi-scale networks are shown in blue; networks with two small
communities removed in green; and networks with all five small communities removed
in purple. Each successive removal of more 8-node communities substantially improves
detection performance, enabling the algorithm to distinguish the 20-node communities
from each other. Single stars by the figure legend indicate pairs of distributions that
differ significantly in false positives only; double stars indicate a significant difference
both true and false positives.
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embedded in multi-scale networks with smaller and more synchronized communities, the

larger communities are detected with a much higher false positive rate (and only a mild

improvement in true positive rate), as the algorithm often groups the larger communi-

ties together into an even larger super-community. However, when the smaller 8-node

communities are removed from the multi-scale network, the detection of the 20-node com-

munities improves markedly in true positives, while false positives are eliminated almost

entirely, and the three underlying communities are cleanly detected in most instances.

Taken as a whole, these results demonstrate that in a relatively simple dynamic

system, with highly interconnected communities of influence and low noise, embedding

communities within multi-scale networks makes them more difficult to identify than they

are in single-scale networks. However, the removal of subsets of network nodes during the

community detection process can also dramatically improve detection of the remaining

network communities, particularly when removing nodes that belong to highly synchro-

nized communities.

5.3.2 Community Detection and Node Removal in Brain Net-

works

We now apply these methods to human functional brain networks extracted from

two distinct fMRI data sets. As described in Section 5.2.3, the “single-task” data set

involves the performance of a single cognitive memory task for three sequential scanning

runs, while the “multi-task” data set records the activity during a set of four sequential

cognitive tasks, including rest and three different memory- and attention-recruiting tasks.

Thus, we expect these data sets to display fundamentally different dynamics.
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Spatial and Temporal Community Structure

In this section, we summarize basic characteristics of identified dynamic community

structure in the two experiments, with all brain regions included in the analysis. Sub-

sequently, we will consider how these spatial and temporal characteristics are altered by

the targeted removal of nodes before community detection.

In the single-task experiment, each participant has a community number between 7

and 24, with an average of 12.4. The community structure of one example participant in

this experiment is visualized in the top panel of Fig 5.6A. In the multi-task experiment,

each participant has between 5 and 12 dynamic communities, with an average of 6.9. The

top panel of Fig 5.6B shows the community structure of a single example participant in

this experiment.

We observe that for both experiments, brain regions in visual cortex tend to form

the most consistently cohesive communities across across time windows, which represent

separate functional runs within the experiments. For example, visual cortex regions

form the clearly consistent orange community in the top panel of Fig 5.6A, and the

corresponding teal community in time windows 2-4 of the top panel of Fig 5.6B. (Time

window 1 in the multi-task experiment corresponds to the resting state scan, in which

visual functions are not explicitly required.)

We use the flexibility (Eq 5.2), which can range from 0 to 1, to quantitatively assess

these observations on the consistency of community assignments. The average flexibility

over all brain regions and participants is 0.31 for the single-task data, and 0.27 for

the multi-task data. These are remarkably similar values given the distinctly different

dynamic structure of the experiments, and the presence of task switching in the multi-

task experiment only. Fig 5.7 shows the flexibility of each separate brain region, averaged

across participants. As reported in [113], and consistent with observations in the example
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Figure 5.6: Node removal reveals dynamic changes in community structure
in task-based functional brain networks. A: Visualization of community struc-
ture of a single participant during the single-task experiment. Each time window
represents a single functional run during which the same lexical memory task is per-
formed. The top panel shows community structure with all brain regions considered;
visual cortex, which typically contains the least flexible nodes across functional runs,
is visibly grouped into the temporally stable orange community (9). The bottom
panel shows community structure with regions in the visual cortex removed from the
functional network; these regions are now shown in white and have no community
assignment. With the removal of vision nodes, the single-task experiment still shows
largely temporally consistent communities. B: Community structure of a single par-
ticipant in the multi-task experiment, in which each time window represents a single
functional run containing a different cognitive task or a resting-state scan. Visual re-
gions, which are explicitly required to perform tasks in time windows 2-4, again form
the most stable community with the lowest flexibility (community 4) in the top panel.
In the bottom panel, with visual regions removed, distinct differences are seen be-
tween the community structure in different tasks, including new communities arising
as brain dynamics reconfigure for each new task.

in Fig 5.6, the least flexible regions are largely found in visual and motor cortices. These

areas are consistently recruited throughout all three functional runs of the single-task
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experiment, and runs 2-4 of the multi-task experiment, which require viewing a lexical

stimulus and pressing a button to respond.

Figure 5.7: Region-specific flexibility. Average flexibilities of the 194 network
nodes corresponding to brain regions. Each dot represents a single region/node, plot-
ted according to its flexibility in switching between communities across runs of the
single-task experiment (x-axis) and the multi-task experiment (y-axis). Flexibility is
averaged over all participants in each study. There is a correlation between the flexi-
bility of a brain region in the two different experiments. In particular, visual regions
(blue circles) tend to be the least flexible.

This similarity in flexibility distributions, despite the dynamic differences in the ex-

periments, may result from the choice of a temporal resolution parameter that maximizes

variation in flexibility across nodes. This effectively broadens the distribution in this di-

rection and increases its likelihood of being centered. A Pearson correlation of r = 0.5

(p < 0.01) exists between the average flexibility of brain regions in the single-task exper-

iment and the average flexibility of the same regions in the multi-task experiment.
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Node Removal from Visual Cortex

Both the single- and multi-task experiments strongly recruit visual brain regions,

which consequently form strongly cohesive dynamic communities. However, the dynamic

differences between the two experiments are not resolved by the community detection

approach, and it is possible that the strength of the visual cortex masks the existence

of other functional communities at different spatial scales, as in the synthetic oscillator

networks. To determine whether better community resolution is possible in the non-visual

brain regions, we repeat the community detection procedure after removing selected

subsets of nodes, as shown schematically in Fig 5.2.

We remove the brain regions associated with vision, as classified according to [169].

The bottom panels of Figs 5.6A and B show the community detection results when

the visual cortex regions are left out of the network, for a single example participant.

The dynamic community structure in single-task data does not appear largely different.

However, the multi-task dynamic community structure drastically shifts in this example;

without the vision regions to provide a coherent community that persists across func-

tional runs at this scale, rearrangements of brain regions in different task conditions are

identified as entirely new communities. Since the resolution parameters in the algorithm

are not re-scaled with the removal of vision nodes, these results provide a glimpse into the

change in the relevant scales of brain network resolution across functional task conditions.

Resolution of Known Functional Systems

To move beyond qualitative observation of a single example participant, we use the

recruitment coefficient to quantify the extent to which targeted removal of visual nodes

improves the resolution of other functional brain systems.

For each participant, we quantify the extent to which the community detection re-
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solves known functional systems by computing the recruitment coefficient for each brain

region (Eq 5.7), and the mean system-specific recruitment (Eq 5.8) for each of the ten

functional systems. Fig 5.8A depicts the locations of the ten functional systems in the

brain. Fig 5.8B plots the system-specific recruitment for each of the ten systems, during

the first functional run of the single-task experiment. Each bar denotes the mean of the

system-specific recruitment over all participants, and the error bars indicate the standard

deviation over participants. Blue bars show the recruitment for each functional system

when community detection is performed on the entire brain network, while yellow bars

show the recruitment when visual regions are removed from the community detection

analysis. In the single-task data, node removal does not make a significant difference in

the recruitment of most systems, but it does significantly raise recruitment in the dorsal

attention system (see statistics in Fig 5.8E). This indicates that brain regions associated

primarily with top-down attention are more consistently grouped together into the same

community when vision is removed.

Fig 5.8C and D show system-specific recruitment results for two functional runs of the

multi-task experiment: the resting state scan and the attention task scan, respectively.

(Results from all time windows and tasks in both experiments are included in Appendix

D.) Here, the removal of visual cortex regions significantly increases recruitment in almost

every remaining functional system. The only exceptions are the ventral attention system

in both cognitive states, and the sensory-motor system in the resting state (see details

in Fig 5.8F). This indicates that in the multi-task experiment, targeted removal of the

highly coherent visual brain regions enables the community detection algorithm to better

resolve the involvement of the remaining brain in several other broad functional roles.
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Figure 5.8: Effect of targeted node removal on resolution of known func-
tional systems. A: Location in the brain of the ten functional systems: auditory
(AU), cingulo-opercular (CO), default mode (DM), dorsal attention (DA), fronto-pari-
etal (FP), somatosensory (SM), subcortical (SC), ventral attention (VA), visual (VS),
and other (OT). B: System-specific recruitment coefficients with (blue) and without
(yellow) the targeted removal of visual cortex regions, for the first functional run of
the single-task experiment. Colored bars show the mean and black error bars the
standard deviation over participants in each experiment. C: System-specific recruit-
ment coefficients, analogous to panel B, for the resting state portion of the multi-task
experiment. D: System-specific recruitment coefficients for the attention-demanding
portion of the multi-task experiment. (Results from all functional runs are displayed
in Appendix D.) E: Depiction of systems and time windows in which targeted removal
of visual cortex regions leads to significant increase in system-specific recruitment in
the single-task experiment (one-sided paired t-test, p < 0.05, Bonferroni corrected
for multiple comparisons). F: Depiction of systems and tasks/time windows in the
multi-task experiment with significant increase of system-specific recruitment after
node removal. Tasks include resting state (R), attention (AT), word memory (WM),
and face memory (FM). In E and F, colored entries indicate a significant increase,
with the color corresponding to the level of significance (negative logarithm of cor-
rected p-value). In the multi-task experiment, targeted node removal significantly
increases recruitment in most functional systems. In the single-task experiment, this
only occurs in the dorsal attention system.

Resolution of Dynamic Task Structure

Having demonstrated that targeted removal of brain regions in the visual cortex

during community detection improves spatial resolution of other functional systems, we

use measures of flexibility to assess the effect of this targeted removal on the detection
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of task-switching dynamics.

For each participant, the whole-brain flexibility is computed by averaging the flexibil-

ity of all N = 194 brain regions to give a single measure. The distribution of whole-brain

flexibility over participants is plotted in Fig 5.9, for community detection performed with

all nodes (blue bars) and with the visual cortex nodes removed from the network (yellow

bars). Single-task results are shown in the top panel, and multi-task data in the bottom

panel. The flexibility distributions derived from all brain regions are similar between

the two data sets, which is unsurprising given that the temporal resolution parameters

were chosen independently to maximize variation in flexibility for each dataset. However,

when visual regions are removed from the network, the differing properties of the two

data sets become strongly evident. While the mean of the flexibility distribution across

participants in the single-task experiment remains statistically indistinguishable before

and after the removal of visual nodes (paired t-test, p > 0.1), the mean of the multi-task

distribution shifts significantly (paired t-test, p < 0.001).

In this case, the removal of visual nodes distinguishes the community structure of

these data sets beyond what can be observed through looking at the entire network.

The upward shift in flexibility seen when visual nodes are removed from the multi-task

dataset suggests that the strong connectivity and coherence within the visual cortex was

the key source of temporal consistency in the originally detected communities. Without

the consistently low-flexibility community of visual regions, the multi-task nature of this

experiment becomes evident, as the community structure becomes better described by

large differences between communities across tasks (as in the example in Fig 5.6B).
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Figure 5.9: Effect of targeted node removal on resolution of task-switching
dynamics. Whole-brain flexibility distributions as a result of dynamic community
detection both with (dotted lines) and without (solid lines) brain regions from visual
cortex, with single-task results in blue and multi-task results in red. Single-task
distributions do not significantly change with removal of visual regions (paired t-test,
p > 0.1), but multi-task distributions show a significant shift (paired t-test, p < 0.001).

5.4 Discussion

We introduce a technique of targeted node removal during dynamic community de-

tection in complex networks, which can improve the resolution of community structure

and dynamics. Using synthetic networks of Kuramoto oscillators, in which the underly-

ing influences between nodes are well-defined, we quantify the performance of a common

modularity-maximization community detection algorithm. We show that this algorithm

can fail to resolve communities that occur at multiple spatial scales within the same

network, compared to its detection of similar communities in single-scale networks. We
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also demonstrate that targeted removal of subsets of nodes, especially those that form

the most functionally cohesive communities, can improve the resolution of communities

among the remaining nodes.

It is important to note that the clusters of underlying influence in this synthetic

network serve as a rough proxy for the basic functional organization that underlies the

observed brain activity, but should not be interpreted as directly analogous to structural

connectivity networks measured in the brain with diffusion MRI. The brains structural

connectivity networks are sparse and heavily constrained by their spatial embedding [67],

and are not necessarily expected to coincide with the results of community detection on

dense functional connectivity networks measured with fMRI.

Instead, we hypothesize that community detection on functional connectivity matrices

will provide information on a set of underlying functionally related areas which at least

partially drive the observed activity patterns. In the synthetic oscillator networks, we

interpret the influence matrix as a representation of this set of underlying functional

groupings. In the brain, we use the known functional systems from Ref. [169], representing

brain areas with shared functional roles, as a rough proxy for these underlying groupings.

In multi-scale networks like the human brain, it is unlikely that a single resolution

parameter choice will elucidate the full community structure of interest, especially if

the communities involved span widely disparate scales [177]. In many networks, there

are conditions under which no parameter choice can fully distinguish the underlying

communities, even when the communities of interest are of similar sizes [189]. In such

situations, the choice of a single parameter may cause communities to be obscured.

However, the targeted removal of node subsets that are strongly coherent can allow for

clearer resolution of the communities formed by the remaining nodes.

To illustrate targeted node removal in a network neuroscience context, we apply it to

functional networks derived from fMRI measurements of large-scale human brain activity.
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We use data from two distinct fMRI experiments: one involving repeated performance of

a single task, and the other consisting of a succession of tasks designed to elicit differing

cognitive functions. We expect the identified community structure in the single-task

experiment to display consistency across functional runs as the same task is repeated,

and that in the multi-task experiment to show rearrangement of communities over time

in conjunction with task switching. However, when comparing the two experiments,

the established algorithm alone finds no significant difference in the flexibility of brain

regions between communities. It does, however, identify a strongly cohesive and inflexible

community of nodes in the visual cortex. Upon removing the regions in the visual cortex

during dynamic community detection, the ability of the algorithm to resolve certain other

known functional systems within the brain significantly improves.

In the single-task experiment, removal of visual nodes significantly improves the re-

cruitment coefficient of the dorsal attention system, composed of brain regions associated

with the top-down directing of attention [172]. None of the other examined brain sys-

tems show significant improvement in the single-task experiment, possibly indicating that

the presence of a strong visual community at this particular scale does not mask other

functional dynamics in this experiment.

In the multi-task experiment, removal of visual nodes significantly improves the

system-specific recruitment coefficient of almost every other functional system. This

suggests that the coherence of the visual regions, especially as one of the few communi-

ties that is not expected to experience major shifts across different tasks, had significantly

masked the functional coherence of several other functional modules in this experiment.

The dorsal attention system again shows the most significant shift in recruitment coeffi-

cient, especially in the attention-related task, and to a lesser degree in the memory-related

tasks, which also require directed attention. The ventral attention system, which is asso-

ciated with responses to infrequent or unexpected cues [172], does not show a significant
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increase in recruitment; this may be related to the relatively small size of this brain

system (4 regions).

Furthermore, upon removal of visual cortex regions, the dynamic differences between

these experiments become evident. The average flexibility of brain regions in the multi-

task experiment shifts sharply up, reflecting task switching, while the flexibility in the

repeated single-task experiment stays the same. These results show that targeted node

removal can not only improve the ability of the algorithm to resolve important dynamic

changes in community structure, but also allow for meaningful comparisons between data

sets through observation of the changes in identified community structure when specific

nodes are removed.

The inability of the algorithm to identify the dynamic differences between experiments

likely stems in part from the method of selecting the resolution parameters, especially

the temporal resolution parameter ω in Eq 5.1. Having chosen a value for the spatial

resolution γ, ω is chosen to maximize the variance in flexibility among nodes, as averaged

across all participants in the experiment [8, 35]. This favors a broad distribution of

flexibilities between 0 and 1, with an average likely to be nearer the center (0.5) than

the extremes. Thus, a separate choice of γ and ω for each data set serves to effectively

push all whole-network flexibilities toward a similar mean. This minimized differences

in whole-network flexibility distributions between data sets, even if their nodes have

relatively different flexibility patterns.

However, when the same nodes are removed from multiple networks, the algorithm

responds differently if those nodes played different roles in the organization of the net-

works. As we see in the single-task and multi-task data sets, when highly coherent visual

cortex regions are removed from the brain network during community detection, the algo-

rithm is able to successfully resolve differences in community dynamics between the two

experiments, recognizing the increased flexibility of brain regions in participants when
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switching between cognitive tasks.

Comparing community structures between networks from different participant demo-

graphics and experimental conditions is critical for understanding how these conditions

shape brain organization, and how the brains organization affects them in turn. Our

results demonstrate that even with commonly used heuristics for selecting resolution

parameters, there is no guarantee that the resulting community structure will capture

information that is comparable between data sets, especially when those data sets are

based upon different experimental designs, participants, or imaging protocols. Without

“ground truth” knowledge or an understanding of precisely how parameter choices affect

the results, there is no clear way to establish an equivalence between parameters – and,

by extension, community structures – for different data sets. In the neuroscience data

studied here, it is only by performing a relative comparison of these two data sets, with

and without a subset of regions removed, that the clear dynamic difference between the

experiments comes into focus. This method provides a promising approach for perform-

ing such relative comparisons among other data sets, in order to resolve the dynamic

roles of brain regions within functional networks.

5.4.1 Methodological Considerations

The Kuramoto oscillator simulations in this chapter include a “ground truth” com-

munity structure, specified by the influence matrix, which allows us to precisely evaluate

the ability of the community detection algorithm to uncover the underlying clusters that

fundamentally drive activity patterns. However, these synthetic networks serve as a rel-

atively abstract and simplified model of brain network dynamics, and are limited in their

ability to account for more complex features of brain function that are likely to affect

community structure. For example, the synthetic influence matrix contains purely topo-
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logical communities, in contrast to functional brain networks derived from fMRI data,

whose connection weights are substantially influenced by the spatial proximity of brain

regions. Although the effects of targeted node removal in the synthetic networks can-

not be näıvely assumed to hold true in functional brain networks, our complementary

analysis of networks derived from brain data provides evidence that the technique can

be practically employed to improve resolution of known functional systems in the brain.

It will be an important avenue for future research to develop and investigate synthetic

networks that more realistically approximate the properties of functional brain networks,

but remain straightforward to simulate and evaluate.

There are various possible strategies for targeted node removal, several of which have

been previously proposed. We have focused on removing subsets of nodes defined by

previous knowledge of their role in the system under study. For example, the fact that

our experiments have visual stimuli provides good reason to expect the brain regions

in visual cortex to be especially coherent, although they are not of particular interest

to questions about memory and attention. Many fMRI experiments may have similar

functional regions worth targeting for removal, or even multiple sets of regions that can

be removed hierarchically.

Other strategies for choosing nodes to remove include data-driven removal, in which

nodes are removed based on statistics of their network role and connectivity [190]; and

model-guided removal, in which nodes are removed in order to optimize a model of

underlying communities in the presence of noise [191]. Future work will quantify the per-

formance of these methods, and assess their potential for identifying useful communities

in human brain networks.

We have also focused our synthetic network experiments on multi-scale networks in

which each node belongs to a single underlying community. This framework can be used

in future studies to test community detection performance in more complex network
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configurations that are also likely to be relevant in network neuroscience applications.

Examples include network nodes that belong to multiple communities, nodes that do not

belong to any communities, and underlying communities of influence that change their

organization over time.

This chapter is in part an attempt to better understand the behavior of community

detection methods that have an inherent scale (often controllable by a resolution param-

eter), and to address resolution issues that may arise when such methods are applied to

networks with varying community sizes, as is common in network neuroscience. It should

be noted that since the modularity maximization method used here is subject to an in-

herent scale and a resolution limit that depends on the overall network size [171,192], our

proposed technique of removing highly coherent underlying modules from the network

has the potential to reveal new communities among the remaining nodes that are not

viable or meaningful communities in the context of the entire network.

We have demonstrated here that our technique works in practice to improve resolution

of true underlying modules in synthetic networks, as well as known functional systems

in brain networks, on which this modularity maximization method is widely used. We

have also shown that our technique can provide important information about dynamics

in temporal brain networks. However, recent literature suggests an alternative approach:

the use of resolution-limit-free clustering methods, in which the optimal partitioning

results for subgraphs are guaranteed to remain the same as in the full graph [192–194].

In will be important in future work to further investigate the behavior of these methods on

temporal brain networks, including their ability to reveal underlying information about

network dynamics on different time scales.

Finally, we note that we have not applied a threshold to our functional networks in ad-

vance of community detection. Weaker associations in functional human brain networks

have been shown to contain functionally relevant and predictive information, and can
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feasibly occur even in strongly interconnected communities [55, 91, 92]. Our choice not

to threshold retains this information, and avoids the issue of choosing a suitable thresh-

old value with no ground truth information. However, retaining low-strength functional

associations also increases the influence of noise in the network, which can impact the

ability of clustering algorithms to identify communities cleanly. In future work, it will

be important to evaluate the effect on community detection performance of combining

thresholding with the techniques proposed here.
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Appendix A

In this Appendix, we include the following material to support the work described in

Chapter 2.

1. An examination of hyperedge properties across analyses that vary either the length

or number of samples in time windows used for dynamic network construction.

2. Figure A.1: Comparison of hyperedge size distributions in analyses with differing

time window selection procedures.

3. A discussion of hyperedge node degree and its relation to brain region size.

4. Figure A.1: Relation of hyperedge node degree to brain region size.

Examination of time window selection across different

TRs

fMRI data was sampled during rest and attention tasks with a TR of 2 seconds,

and during memory tasks with a TR of 2.5 seconds. As a result, when choosing time

windows for our dynamic network, we could not hold both the time window length and

the number of samples per window constant over the entire experiment. To ensure that
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a discontinuity in either window length or window samples does not drive our results, we

performed two separate analyses: one with a constant time window length of 60 seconds

but a change in the number of samples per window, and the other with a constant

number of samples in all windows but a change in the window length. The hyperedge

size distributions from both analyses are shown in Fig. 1.

The distribution with the number of samples per time window held constant (Fig. 1B)

has slightly smaller hyperedges in both the small and large regimes than the distribution

with constant window lengths (Fig. 1A), likely driven by the longer time windows (75

rather than 60 seconds) in the memory tasks. Despite these small differences between

the distributions, our results are quite robust to variation of the window length selection

strategy, showing a very similar distribution shape and overall number of hyperedges in

both. We choose to use results from the analysis with constant time window lengths in

Chapter 2, so that each time layer in our dynamic network covers the same duration of

time.

Correlation of hyperedge node degree with brain re-

gion size

The hyperedge node degree is a measure of the number of hyperedges in which a

node participates. We expect it to contain information about a given nodes likelihood

of co-evolving with other nodes in the network. To check whether a nodes hyperedge

degree is influenced by the size of that node, we investigated the correlation between

physical node size and hyperedge node degree (presented in Fig. 2). We find that the

correlation between size and hyperedge node degree is not extremely strong (Spearman’s

ρ = 0.401, Pearson’s r = 0.324). However, the p-values for these relationships are highly

171



Chapter 2 Appendix Chapter A

Figure A.1: Cumulative Hyperedge Size Distributions: Left: Cumulative hyperedge
size distribution as presented in Chapter 2, from an analysis in which time windows
were held at a constant length of 60 seconds across tasks with different TRs. Right:
Cumulative hyperedge size distribution from an analysis in which the number of data
points used to compute the correlation in each time window was held constant at 30
samples across tasks. In this case, time windows in memory tasks covered 75 seconds.
These two analyses produce very similar results, with slightly fewer large hyperedges
and more small hyperedges in the right-hand distribution.

statistically significant (Spearman p-value = 7.01×10−9, Pearson p-value = 4.12×10−6).

While the hyperedge node degree is somewhat influenced by node size, the relatively

weak correspondence shown in Fig. 2 indicates that the hyperedge degree is not simply

a reflection of node size alone; we also expect it to include information on the extent of

the nodes co-evolution with other brain regions. We have explicitly constructed a hybrid

atlas, as described in detail in Chapter 2, in order to minimize the variation in brain

region size across both subjects and regions, and control the effect of variations in node

size on our results as much as possible.
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Figure A.2: Relation of hyperedge node degree to brain region size: A scatter plot
of the size of each node (brain region) in voxels plotted against its hyperedge node
degree. Each voxel is a cubic volume with sides of 2mm. The two are not especially
strongly correlated (Spearman’s ρ = 0.401, Pearson’s r = 0.324), but the p-values for
these relationships are highly significant (Spearman p-value = 7.01 × 10−9, Pearson
p-value = 4.12× 10−6).
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The following information is included in this Appendix to support the results presented

Chapter 3.

1. Figure B.1 and Figure B.2: Cumulative size distributions for several methods for

minimizing the effect of concatenation.

2. Tables B.1, B.2, and B.3: Tables of individual difference measures grouped by

category for the full analysis, multi-task data, and age-memory data.

3. Figure B.3: R2 changes for the task-specific hypergraph cardinality regression anal-

ysis.
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Figure B.1: Edge compensation comparison: Cumulative size distributions for
the original age-memory data set (with no changes to remove effects of the edges)
and two methods for removing potential effects from the edges. The “edge blocks
removed” method is used in all analyses in Chapter 3.

Figure B.2: Trial separation comparison: Cumulative size distributions for two
different methods for separating edge effects. In the trial-by-trial method, hypergraphs
are constructed separately for each trial, while in the 18-split analysis, hypergraphs
are constructed from the first, middle, or last 18 edge time series data points.
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Figure B.3: Task-specific multi-task R2 changes: Normalized R2 changes with
respect to task-specific hypergraph cardinality for each of the four task-specific hyper-
graphs. Rest-specific hypergraph cardinality is included as an independent variable
for the other three tasks and is the only significant predictor, which is denoted with
a bold outline.
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Table B.1: Common behavioral measures in both data sets: Categories con-
taining measures of interest (42). For the state of mind measures, (Y/N) indicates
measures where participants were asked whether they had performed the activity in
the past 24 hours.
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Table B.2: Additional behavioral measures in multi-task data: Categories
containing measures of interest. For the state of mind measures, (Y/N) indicates
measures where participants were asked whether they had performed the activity in
the past 24 hours.
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Performance Demographics Personality State of Mind
Hit rates Height Distracted Stressed (Y/N)
Failure rates Weight Motivated Days since period
Reaction time Contraceptive use Usual hours of sleep

Children (Y/N) Drugs past 48h (Y/N)
Number of children MMSE (dementia)

Table B.3: Additional behavioral and brain measures in age-memory data:
Categories containing measures of interest. For the state of mind activity measures,
(Y/N) indicates measures where participants were asked whether they had performed
the activity in the past 24 hours. Questions about daily, weekly, and monthly amounts
of activity, including whether activity in the past 24 hours were more or less than usual
were also recorded for all (Y/N) state of mind activities in the age-memory study.
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Appendix C

In this Appendix, we present the following information to support the results presented

in Chapter 4.

1. dynamic community structure results in dynamic functional networks with 500-

second time windows;

2.1. details on the choices of spatial and temporal resolution parameters for the com-

munity detection algorithm;

2.2. details on categorical versus time-ordered definitions of flexibility;

2.3. an analysis of single-node communities, or “singletons,” and results when they are

excluded from the analysis;

2.4. discussion of behavioral and brain-measures outliers and their effect on the results;

2.5. details and discussion of the statistical correction for mean relative motion.

Results from networks with 500-second time windows

Here we present further results from networks with 500-second time windows, which

capture dynamics associated with a much longer time scale than the 80-second time
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windows that are the focus of Chapter 4. Overall, these results are mostly qualitatively

similar to those found for 80-second time windows, but the correlations between demo-

graphics or performance measures and brain community structure measures are weaker.

Brain region flexibility

As discussed in Chapter 4, we find that in networks with 80-second time windows,

highly flexible brain regions are very consistently flexible across subjects, while those

with lower mean flexibility show greater inter-subject variance in flexibility. On longer

timescales, in networks with 500-second time windows, the identities of the brain regions

with the lowest mean flexibility – i.e., regions in visual and motor cortex – are largely

the same as those found with 80-second time windows (Figure C.1A), and their cross-

subject variance is quantitatively similar as well. However, the regions with higher mean

flexibility – i.e., non-visual and non-motor regions – are much more variable in flexibility

across subjects in networks composed of 500-second time windows. This leads to a

strong correlation between mean flexibility and cross-subject variance with 500-second

time windows, shown in Figure C.1B, whereas 80-second time windows lead to a similarly

strong anticorrelation (as shown in Figure 4.5 in Chapter 4).

The cohesive dynamics of visual and motor systems thus show similar flexibility pat-

terns across subjects even on very different timescales, while individual differences in the

dynamics of other brain regions are more strongly impacted by the choice of time resolu-

tion. This may be because visual and motor components of the memory task do not differ

across trials, leading to strong functional similarity throughout the entire experiment.
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Whole-brain flexibility, number of communities, and recruitment

The strong correspondence between age and whole-brain flexibility seen with 80-

second time windows, and presented in Chapter 4, is not statistically significant in net-

works with 500-second time windows (Figure C.2). This indicates that the community

dynamics modulated by age here are relevant on shorter timescales of only a few minutes,

which correspond more closely to the timescales of cognitive function demanded by the

task setup.

With 500-second time windows, there is also no significant correspondence between

dynamic community number and age, and the number of distinct communities in in-

dividual functional systems is significantly positively correlated with age only in four

systems: auditory, somatosensory, subcortical, and ventral attention. The weakening of

both the age-flexibility correspondence and the age-community number correspondence

on this longer timescale is consistent with the possibility that flexibility and community

number are related.

The correspondence between subject age and the mean recruitment coefficient over

all brain regions is shown in Figure C.3. There is a highly significant anticorrelation

between these measures (Spearman’s ρ = −0.42, p < 0.001) with both 500-second and

80-second time windows.

System-specific recruitment

In networks with 500-second time windows, system-specific recruitment is significantly

anticorrelated with age only in cingulo-opercular (Figure C.4), subcortical, ventral atten-

tion, and auditory systems, but not in other systems (such as the visual system, shown in

Figure C.5). This effect is consistent across timescales for cingulo-opercular, subcortical,

and ventral attention regions.
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Methodological details and considerations

Resolution parameters

The spatial resolution parameter γ determines the relative weight given to the ran-

domized null model as compared to the data in each time window when finding a par-

tition. Varying γ changes the number and size of communities found in the partition –

higher values of γ favor many small communities, while lower values favor fewer, larger

communities. In order to choose a spatial resolution that will give meaningful results

about brain organization on the scale of our chosen atlas, we prefer γ values at which

the stochastic algorithm tends to produce less variation in partitions across algorithm

runs. We measure variation among partitions with the z-score of the Rand coefficient,

which measures the extent to which two partitions are similar compared to the expected

similarity of randomized partitions [186], averaged over all pairs of partitions produced

by the algorithm. It has been shown in simulated networks of oscillators that the lowest

cross-subject variance in Rand z-score occurs at the value of γ that produces commu-

nities corresponding to the size and number of “ground-truth” communities in the net-

work [35]. However, since human brain functional networks have meaningful activity at

various scales, we see no clear maximum in Rand z-score corresponding to a minimum in

Rand z-score variance at any single value of γ. In networks with 80-second time windows,

we choose γ = 1.2 – a value between γ = 1, which often gives just two or three large

communities, and γ = 1.4, which in many subjects gives as many at 100 communities

(more than half the total number of nodes) – in order to obtain communities that are on

average similar to the size of the functional systems we are interested in. For 500-second

time windows, we choose γ = 1.15 for the same reason. Both of these choices lie in a

range of values over which Rand z-score and its variance are relatively uniform, indicat-

ing that the consistency of the communities detected does not depend sensitively upon
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this parameter. In addition, the Rand z-score is high for all choices, indicating that the

community partitions detected are significantly more consistent across these parameter

values than would be expected of community partitions with the same community size

distributions selected at random.

The time resolution parameter ω determines the relative weight given to intra-window

(non-temporal) and inter-window (temporal) considerations when finding a partition.

Here, in order to most clearly resolve the differences in the flexibilities of different brain

regions, we choose the value of ω that maximizes the variance in flexibility across nodes.

This value is ω = 0.05 for 80-second time windows, and ω = 0.001 for 500-second time

windows.

Categorical versus time-ordered flexibility

Equation 2 in Chapter 4, reproduced here, defines the metric of flexibility for each

brain region:

f(i) =
1

T (T − 1)

∑
t6=t′

[1− δ(git, git′)] .

This method of calculating flexibility, known as “categorical” flexibility, compares the

community assignments of nodes between all possible pairs of time windows, not just

time-adjacent windows. Typical uses of categorical flexibility compare community as-

signments between categories or tasks without considering temporal changes. In this

work, we use categorical flexibility to emphasize the consistency of nodes across long

time windows. We choose to compare between all time windows equally (without im-

posing time order) since each window is long compared to the differing elements of the

task on a trial or probability block level, and all windows are statistically identical with

respect to task design (for 500-second windows) or nearly so (for 80-second windows). In

this way we avoid assuming that changes in brain dynamics happen progressively over
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the course of the task, but instead focus on assessing stability of community structure

over the entire task at once.

All results reported in Chapter 4 use categorical flexibility. For comparison, we repeat

our analysis using time-ordered flexibility:

fto(i) =
1

T − 1

T−1∑
t=1

[
1− δ(git, gi(t+1))

]
.

We find that the values of node flexibility and subject-wise whole brain flexibility are

extremely closely correlated, as shown in Figure C.6. In addition, all correlations with

categorical flexibility reported in Chapter 4 are essentially unchanged when computed

with time-ordered flexibility. This suggests that progressive changes in brain dynamics

over the course of the task are less important at this time scale than overall consistency

or variability of community assignments throughout the experiment, as we might expect

with time windows representing multiple statistically similar portions of the same task.

Analysis of single-node communities

As seen in Figure 4.4, the community detection algorithm identifies communities of

size 1 in the brain networks of many subjects. As described in Chapter 4, we identify

both “dynamic singletons,” or single-node communities that contain only one brain region

across all time windows, and “static singletons,” or communities with a single brain region

in one time window, regardless of whether that community also extends across multiple

time windows.

We find that across all subjects, there is only a single dynamic singleton identified

in our data. Static singletons are more numerous, but still remain sparse. Figure C.7

shows the number of communities identified in each time window for each subject with

single-node communities excluded from each time window (cf. Figure 4.3 in Chapter 4).
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These statistics appear qualitatively similar for almost all subjects.

A closer look at the cross-subject and cross-region distributions of static singletons is

given in Figure C.8. Panel A shows the total number of static singletons (summed over

80-second time windows) in each subject and each brain region. Most static singletons

to not tend to persist across time windows, either in particular subjects or in particular

regions. However, one subject (subject 35) does have a handful of regions which are

consistently singletons in 16 out of 18 time windows; this is very unusual and only occurs

once in one other subject (subject 28). In panel B of Figure C.8 – which depicts the

number of singletons by subject, with each color representing one brain region – the

large contributions from these consistently single regions visibly boost the total singleton

count for these two subjects, making them appear as outliers. (More details on outliers

are given below.) Panels C and D both show the number of singletons for each brain

region. In C, the colors represent the contributions from individual subjects, while in D,

the colors represent contributions from the three age groups.

To ensure that singletons do not drive results, we repeat our analyses with these com-

munities excluded from consideration. The correlation between age and number of com-

munities, both overall and in specific functional systems, is nearly unchanged, as shown

in Table C.1. Although found in most subjects, static singletons are not significantly

correlated with age and do not substantially affect age-related changes in community

dynamics.

Analysis of outliers in task performance and brain measures

As noted in Chapter 4, two subjects appear to be bivariate behavioral outliers (see

Figure 4.2). In order to ensure that these anomalous performance values do not affect the

behavioral correlations, we repeated our analysis with these two subjects removed. We
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had originally found no significant correlations, either between the d-prime and criterion

shift performance measures, or between either of these measures and the brain measures

of interest. With the outliers removed, we similarly find that all Pearson correlations

between behavior measures and brain measures, as well as the correlation between d-

prime and criterion shift, remain insignificant.

Similarly, two subjects in Figure 4.3 in Chapter 4 appear to have notably higher

numbers of static communities than the rest. One of these subjects, subject 35, also

has a notably higher number of static singletons, as seen in Figure C.8B, along with

another subject who is not an outlier in number of non-singleton static communities.

To ensure that these outliers are not driving results, we also repeat our analysis while

excluding these three brain-measures outlier subjects. We find that the significance or

non-significance of all correlations between brain measures (flexibility, number of com-

munities, recruitment) and age or performance remain the same, both overall and in

individual functional systems, with a single exception. That exception is the system-

specific recruitment of the subcortical nodes, which is significantly correlated with age

with the outliers included (Spearman’s ρ = −0.30, p = 2.33× 10−3, as reported in Table

4.1), but not once the outliers were removed (Spearman’s ρ = −0.26, p = 9.69 × 10−3,

which is not significant after correction for multiple comparisons).

Statistical correction for mean relative motion

As discussed in Chapter 4, since subject age is correlated with mean relative motion

in these data, we expect motion to substantially affect the correspondence measures

of community dynamics and age, and potentially other performance and demographic

measures as well, due to the broad and non-uniform distribution of ages in our sample.

Thus, all subject-wise correlations in this study are performed with mean relative subject
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motion partialed out – i.e., each correlation variable was first regressed separately on

mean relative motion, and we assessed the correlation between the residuals of these

regressions, to ascertain the extent of their relationship that could not be explained by

motion. Some of the observed results are indeed affected by motion, showing a different

level of correlation and significance with and without the motion correction. Here we

report the differences we observe.

• The correlation between age and whole-brain flexibility is consistently highly sig-

nificant both with (r = 0.53, p < 0.001) and without (r = 0.40, p < 0.001) motion

correction in networks with 80-second time windows. Indeed, the correlation is

stronger when motion is accounted for. However, in networks with 500-second time

windows, a significant correlation (r = 0.30, p < 0.05) is observed only when not

correcting for motion. When motion is accounted for, the correlation is weaker and

does not pass the significance test.

• The correlation between age and number of communities evident in networks with

80-second time windows (r = 0.29, p < 0.05) is not significant without accounting

for motion (p > 0.1). With 500-second time windows, there is no evident correlation

between age and number of communities, and motion does not impact this result.

• The anticorrelation between age and average recruitment observed in networks

with 80-second time windows (r = −0.32, p < 0.05) is not significant without

accounting for motion (p > 0.1). Similarly, the anticorrelation between age and

average recruitment with 500-second time windows is only significant when motion

is accounted for.

• Mean relative motion affects the correspondence between system-specific flexibility

and age in several systems. Flexibility over 80-second time windows in the dorsal
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attention, subcortical, and ventral attention systems shows no significant correla-

tion with age when motion is not partialed out, but does correlate with age when

motion is accounted for. On the other hand, flexibility over 80-second time win-

dows in the visual system does not correlate with age when motion is accounted

for, but correlates only when motion is not partialed out. The correlation between

age and system-specific flexibility over 500-second time windows is not affected by

this motion correction in any specific systems.

• Motion also affects system-specific recruitment and its correlation with age. When

motion is not accounted for in 80-second time window networks, none of the func-

tional systems have self-recruitments that significantly correlate with age. When

motion is not accounted for in 500-second time window networks, three systems

show a significant anticorrelation between self-recruitment and age: cingulo-opercular

and subcortical, which show the same results with motion partialed out, and fronto-

parietal, which does not.

• Overall, we find that mean relative motion is most likely to affect recruitment

in small systems (i.e., those composed of fewer brain regions). This is depicted

in Figure C.9, which shows a significant correlation between system size and the

strength of the correlation between motion and system self-recruitment. However,

we do not see a similar relationship between system size and the effect of mean

relative motion on system flexibility or number of communities in the system.
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Figure C.1: A: Flexibility of the 194 brain regions used as network nodes in networks
with 500-second time windows. Color indicates mean flexibility over N = 104 sub-
jects. Visual cortex and somatosensory regions in particular have exceptionally low
mean flexibility, as also observed with 80-second time windows. B: Scatter plot of
mean region flexibility against variance in region flexibility across subjects. Brain re-
gions that are more flexible on average have a strong tendency to also display higher
cross-subject variance in flexibility. This is the opposite effect from that seen in net-
works with 80-second time windows (Figure 4.5 in Chapter 4), due largely to the much
higher cross-subject variability seen in high-flexibility (non-motor, non-visual) regions
with 500-second time windows.
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Figure C.2: A: Scatter plot of the uncorrected correspondence between subject age
and whole-brain flexibility in networks with 500-second time windows. B: Scatter
plot showing residuals of separately regressing each measure on mean relative motion.
The correlation between these residuals is not significant, indicating that there is no
significant relationship between age and flexibility in these networks that cannot be
explained by mean relative motion.
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Figure C.3: A: Scatter plot of the uncorrected correspondence between subject age
and average recruitment across all brain regions in networks with 500-second time win-
dows. B: Scatter plot showing the significant negative correlation between these mea-
sures with mean relative motion partialed out. Older subjects have significantly lower
recruitment on average over brain regions than younger subjects on both timescales
investigated.
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Figure C.4: A: Scatter plot of the uncorrected correspondence between cingulo-op-
ercular system self-recruitment and subject age in networks with 500-second time
windows. B: Scatter plot showing a significant anticorrelation between these mea-
sures with mean relative motion partialed out. Older subjects have significantly lower
cingulo-opercular recruitment coefficients on both timescales investigated; this corre-
spondence is also consistent across timescales in the subcortical and ventral attention
systems. However, there are changes in the significance of this correspondence across
timescales in some systems. In 500-second time window networks (unlike in 80-second
time window networks), the recruitment-age correspondence is not significant in the
somatosensory system, and it is significant in the auditory and default mode systems.
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Figure C.5: A: Scatter plot of the correspondence between visual system self-recruit-
ment and subject age in networks with 500-second time windows. B: Scatter plot of
the correspondence between visual self-recruitment and age with mean relative mo-
tion partialed out; there is no apparent correlation on this coarser timescale, consistent
with the result in 80-second time window networks.
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Figure C.6: Correspondence between categorical and time-ordered flexibility. A: Flex-
ibility of each brain region (averaged over subjects). B: Whole-brain flexibility of
each subject. Both measures show near-perfect correlation between categorical and
time-ordered flexibility (Spearman’s ρ = 0.99, p ≈ 0)

Age v. Community Number
(single-node communities excluded)
Spearman’s ρ p-value

Whole brain 0.28852 0.0031207
Auditory 0.38723 5.33E-05
Cingulo-opercular 0.36970 1.21E-04
Default Mode 0.40874 1.82E-05
Dorsal Attention 0.34042 4.34E-04
Fronto-parietal 0.33858 4.68E-04
Other 0.35313 2.53E-04
Somatosensory 0.40325 2.41E-05
Subcortical 0.38999 4.66E-05
Ventral Attention 0.39083 4.47E-05
Visual 0.37777 8.36E-05

Table C.1: Correlations between subject age and number of non-singleton
communities. Spearman rank correlation ρ values and associated p-values for corre-
lations between age and community number, with single-node communities excluded.
Mean relative motion has been partialed out of all correlations. All correlations are
statistically significant (p < 0.05) after family-wise error rate correction for multiple
comparisons, and values are essentially unchanged from corresponding values with
single-node communities included.
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Figure C.7: Number of non-single-node communities. Color indicates the num-
ber of communities detected within each 80-second time window in each subject, ex-
cluding communities composed of only a single brain region within that time window.
Subjects (on the vertical axis) are ordered by age. These results are qualitatively simi-
lar to the numbers of communities found in each subject with single-node communities
included (see Figure 4.3).
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Figure C.8: A: Number of time windows in which each brain region is a static sin-
gleton in each subject. Static singletons are relatively sparse, and most regions are
not consistently singletons across subjects or time windows. However, two subjects
(subjects 28 and 35) have regions which are singletons in most of the 18 80-second
time windows. B: Distribution of static singletons over subjects. Colors represent
contributions from individual brain regions. Due largely to contributions from just
one or two brain regions, subjects 28 and 35 have many more singletons than the
others. C: Distribution of static singletons over brain regions. Colors here represent
individual subjects. D: Distribution of static singletons over brain regions, as in C.
Here, colors represent contributions from one of the three age groups.

197



Chapter 4 Appendix Chapter C

Figure C.9: Scatter plot of the correspondence between functional system size and
the effect of motion on system-specific community structure diagnostics. System size
reliably predicts the strength with which motion will correlate with system self-recruit-
ment, but this effect is not observed for other diagnostics, such as system flexibility
or number of communities in a system.
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Effect of visual cortex brain region removal on system-

specific recruitment.

As described in Section 5.2.3, we perform community detection on individual func-

tional brain networks, both with and without the targeted removal of brain regions in

visual cortex. We use system-specific recruitment (Section 5.2.3) to quantify the overlap

of detected communities with known functional regions of the brain [113,169]. Figure 5.8

includes examples of recruitment during different cognitive tasks and experiments, for

each functional system in the brain.

For completeness, we present in Figure D.1 the same data for all three time windows

of the single-task experiment (with the same word memory task performed in each), as

well as for all four cognitive states tested in the multi-task experiment. Colored bars

represent the mean recruitment over experiment participants in the corresponding func-

tional system, both for community detection that includes visual cortex (blue bars) and

for community detection with targeted removal of visual cortex regions (yellow). Black

error bars show the standard deviation over participants. The functional systems in-

clude auditory (AU), cingulo-opercular (CO), default mode (DM), dorsal attention (DA),
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fronto-parietal (FP), somatosensory (SM), subcortical (SC), ventral attention (VA), vi-

sual (VS), and other (OT). Note that panels A, D, and E are exact reproductions of

subfigures in Chapter 5.

Panels H and I summarize that statistics of these recruitment comparisons, and are

also reproductions of subfigures in Chapter 5. White entries denote functional systems

in which a one-sided paired t-test found no significant increase in recruitment in the

corresponding time window or cognitive task. Here, significance is defined as p < 0.05,

after a Bonferroni correction for multiple comparisons. Colored entries denote significant

increases in recruitment after targeted removal of visual cortex regions, and the color

represents the negative logarithm of the p-value. In the multi-task experiment, targeted

node removal significantly increases recruitment in most functional systems. In the single-

task experiment, this only occurs in the dorsal attention system.
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Figure D.1: Effect of targeted node removal on resolution of known func-
tional systems. System-specific recruitment coefficients with (blue) and without
(yellow) the targeted removal of visual cortex regions, for the ten functional systems.
Colored bars show the mean and black error bars the standard deviation over partic-
ipants in each experiment. Panels A, B, and C show the three functional runs of the
single-task experiment. All three runs consist of the same recognition memory task
with lexical stimuli, and the runs are treated as three time windows in the dynamic
functional brain networks. Panels D-G show the four time windows of the multi–
task experiment, with each window encompassing a different task or cognitive state.
These include resting state (D), an attention-demanding task (E), a recognition mem-
ory task with lexical stimuli (F), and a recognition memory task with face stimuli (G).
H: Depiction of systems and time windows in which targeted removal of visual cortex
regions leads to significant increase in system-specific recruitment in the single-task
experiment. I: Depiction of systems and tasks (resting state (R), attention (AT), word
memory (WM), and face memory (FM)) in the multi-task experiment with significant
increase of system-specific recruitment after node removal. In H and I, colored entries
indicate a significant increase, with the color corresponding to the level of significance
(negative logarithm of corrected p-value).
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