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ABSTRACT
Background. Medicare is one of the world’s largest health insurance programs. It
provides health insurance to nearly 44 million beneficiaries whose entitlements are
based on age, disability, or end-stage renal disease (ESRD). Data of these ESRD
beneficiaries are collected in the US Renal Data System (USRDS), which includes
comorbidity information entered at the time of dialysis initiation (medical evidence
data), and are used to shape health care policy. One limitation of USRDS data is the
lack of validation of these medical evidence comorbidities against other comorbidity
data sources, such as medical claims data.
Methods. We examined the potential for discordance between USRDS Medical
Evidence and medical claims data for 11 comorbid conditions amongst Medicare
beneficiaries in 2011–2013 via sensitivity, specificity, kappa and hierarchical logistic
regression.
Results. Among 61,280 patients, most comorbid conditions recorded on the Medical
Evidence forms showed high specificity (>0.9), compared to prior medical claims as
reference standard. However, both sensitivity and kappa statistics varied greatly and
tended to be low (most <0.5). Only diabetes appeared accurate, whereas tobacco use
and drug dependence showed the poorest quality (sensitivity and kappa <0.1). Insti-
tutionalization and patient region of residency were associated with data discordance
for six and five comorbidities out of 11, respectively, after conservative adjustment
of multiple testing. Discordance appeared to be non-informative for congestive heart
failure but was most varied for drug dependence.
Conclusions. We conclude that there is no improvement in comorbidity data quality in
incident ESRD patients over the last two decades. Since these data are used in case-mix
adjustment for outcome and quality of care metrics, the findings in this study should
press regulators to implement measures to improve the accuracy of comorbidity data
collection.
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INTRODUCTION
The United States Renal Data System (USRDS) is a national data system that includes
extensive information about chronic kidney disease and end-stage renal disease (ESRD) in
the US (USRDS, 2016). In addition to patient-level data, USRDS also includes specifics of
the dialysis clinics in which patients initiate dialysis. In the US, dialysis clinic oversight is
divided amongst 18 networks that represent geographic regions of the country. Although
the main strengths of the USRDS are its size and representativeness, its limitations include
lack of validated comorbidity information and lack of complete laboratory data at initiation
of renal replacement therapy (Foley & Collins, 2013).

The USRDS provides two major data sources for ascertaining comorbid conditions in
patients on dialysis that are being used in current health care policy research and practice.
One source is medical claims data and the other is medical evidence data (Medical Evidence
Record Form, designated as CMS-2728 by Medicare), a single form completed by health
care providers or staff exclusively at the time of dialysis initiation, a critical transition
period in a patient’s life, and providing baseline data upon patient entry into the ESRD
program. Although the concise comorbidity data from CMS-2728 are easy to access, there
has been ongoing concern about the reliability of CMS-2728 (Byrne & Vernon, 1991; Kim
et al., 2012; Krishnan et al., 2015; Longenecker et al., 2000; Solid et al., 2014).

An important use of comorbidity data in health policy is in case-mix adjustment in
the development of quality metrics of individual dialysis clinics, which are used to profile
health care providers and facilities (Ash et al., 2012). Medicare administers the ESRD
Quality Incentive Program (QIP) to promote high quality services in dialysis facilities
treating outpatients with ESRD. ESRD-QIP in 2017 included standardized readmission
ratio (SRR) as a clinicalmeasure (CMS, 2016;CMS, 2017c). CMS also developed theDialysis
Facility Compare, a 5-Star Rating system of dialysis facilities for public reporting, which
initially included a Standardized Mortality Ratio (SMR) and Standardized Hospitalization
Ratio (SHR). SMR and SHR use CMS-2728, while the SRR is calculated using past year
claims for each index hospital discharge to adjust comorbidities (CMS, 2014a; CMS, 2017a;
Kshirsagar et al., 2017; UM-KECC, 2017).

Differences in health care delivery based on local and regional factors, items beyond
patient or provider control, are also topics that have been highlighted over the last several
years (Bernheim et al., 2016; Kshirsagar et al., 2017; Manickam et al., 2017; Martsolf et al.,
2016a; Martsolf et al., 2016b). For example, regional differences have been associated with
outcomes in the ESRD setting, particularly when the West coast is compared against other
regions of the US (Almachraki et al., 2016; Kshirsagar et al., 2017; Mu et al., 2018), despite
near universal care and coverage offered in the US for ESRD.

Building upon the prior studies, we estimated and compared the prevalence and
concordance of 11 common comorbid conditions recorded on CMS-2728 versus those
determined by medical claims (Aim 1). We implemented different methods of claims data
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processing in recognition that different algorithms are currently being used in different
medical conditions—for example, ESRD vs. cancer—and that substantial discordance has
been reported in claims even within a one-year period in a given dialysis patient cohort
(Krishnan et al., 2015). We also examined if associations with regions and other external
factors (we call ‘environment-related factors’) were found in comorbidity ascertainment
between CMS-2728 and medical claims data (Aim 2); if no association is found, we can
perhaps be more comfortable in the accuracy of these data (Solid et al., 2014). Through
these analyses, we intended to study if there has been any improvement in comorbidity
ascertainment data quality since 2010.

MATERIALS AND METHODS
Study design and data sources
Our study required comorbidity data prior to and at the time of ESRD. Therefore, we
chose to examine subjects who had Medicare parts A and B coverage and medical claims
information prior to ESRD. Since Medicare eligibility begins at age 65, we looked at those
who started dialysis at age ≥67 years of age, allowing for at least one year of claims data
prior to ESRD, though this age restriction cannot guarantee the completeness of the past
two years of Medicare claims data.

Specifically, we included Medicare-eligible patients in the USRDS ≥67 years of age at
the time of dialysis initiation, who were also enrolled in Medicare prior to ESRD, and
who started hemodialysis between January 1, 2011 and June 30, 2013. Additional inclusion
criteria included subjects who had a completed CMS-2728 form and had Medicare parts
A and B as primary payer 1 year prior to and at time of dialysis initiation. The final study
cohort included 61,280 patients; see Fig. 1. To ensure Medicare enrollment, we linked the
USRDS to pre-ESRD Medicare claims data. We next linked the USRDS to the Dartmouth
Atlas of Health Care and the American Community Survey to provide environment-related
variables.

Comorbidity and ascertainment algorithms
We included 11 comorbid conditions found on the CMS-2728 form: atherosclerotic
heart disease (AHD), congestive heart failure (CHF), cerebrovascular disease (CBVD),
peripheral vascular disease (PVD), other cardiac diseases, chronic obstructive pulmonary
disease (COPD), cancer, diabetes mellitus (DM), alcohol dependence, drug dependence,
and tobacco use. To ascertain comorbid conditions using past-year Medicare claims, we
considered the following three methods for data processing:

• Method A: We required at least one claim from an inpatient/home health agency/skilled
nursing facility/hospice or at least two claims from an outpatient/physician-supplier.
• Method B: We required at least two claims from outpatient/physician-supplier more
than 30 days apart, in addition to the criteria in Method A.
• Method C: We excluded co-existing radiology, diagnostic laboratory, and durable
medical equipment physician-supplier. We then applied Method A.
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Figure 1 Cohort selection.
Full-size DOI: 10.7717/peerj.5284/fig-1
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Method A may be considered the current norm found in nephrology health care
research (Krishnan et al., 2015), while Methods B and C were informed by cancer research,
such as the Surveillance, Epidemiology, and End Results (SEER) program—using the
SEER-Medicare dataset (Baldwin et al., 2006). We considered different processing methods
because substantial discordance was found between claims ascertained before and shortly
after dialysis initiation in a prior study on this subject matter (Krishnan et al., 2015).

Environment-related factors
We considered the external, regional and geographic factors as potentially influencing the
outcome, data discordance (Almachraki et al., 2016;Kshirsagar et al., 2017;Mu et al., 2018).
Specifically, we considered the following seven factors: (1) patient’s institutionalization
status; (2) health care utilization intensity in patient’s residence; (3) dialysis clinic size
(patient volume); (4) geographic location/region of the country of the dialysis facility;
(5) dialysis facility’s rural–urban commuting area (RUCA); (6) regional poverty level;
and (7) regional education level. As the study by Krishnan et al. (2015) had centered
upon patient-level factors (e.g., demographics), we decided to include these facility/area-
level factors. The institutionalization status of patients was defined as nursing home,
assisted living, or other. Dialysis facility geographic location was assigned to 1 of 4
regions (Northeast, South, Midwest and West), which was determined by the network
in which the clinic resided (Dalrymple et al., 2014; Kshirsagar et al., 2017). Dialysis facility
volume reflected the number of patients receiving hemodialysis in a year. To assign
dialysis facilities to a rural or urban area, we used ZIP code level RUCA (RUCA, 2007)
and ZIP code tabulation area (ZCTA) through the Uniform Data System Mapper
(http://udsmapper.org/zcta-crosswalk.cfm), then linked it to the 2010–2014 American
Community Survey (https://www.census.gov/programs-surveys/acs/). We selected two
regional socio-economic indicators, both at the ZCTA level: percent of population below the
federally defined poverty line, and percent of population amongst persons aged ≥25 years
who have at least a high school education (Manickam et al., 2017). We linked the USRDS
to the 2011–2013 Dartmouth Atlas of Health Care (http://www.dartmouthatlas.org), and
selected a measure of intensity of health care utilization—reimbursements per decedent
for inpatient hospitalizations during the last six months of life—and matched it to the
patient’s state of residence and year of dialysis initiation (Song et al., 2010).

Statistical analysis
Descriptive statistics were used to describe cohort characteristics and comorbidity
prevalence. For example, standard diagnostic statistics (sensitivity (SN), specificity (SP))
and concordance statistic (kappa) were computed to assess the agreement of the two data
sources for each comorbid condition, along with McNemar’s test for correlated data; a
larger value close to 1 is interpreted as higher agreement for SN, SP and kappa although
kappa can be low for a variable with low prevalence despite high agreement (Byrt, Bishop
& Carlin, 1993). We chose >0.5 as an ad-hoc threshold for acceptability. We intentionally
did not attempt to assess accuracy because neither data source can be considered as gold
standard. To examine factors that are associated with the outcome (discordance = 0/1
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Table 1 Cohort characteristics (N = 61,280).

Patient level Category N % Facility level Category N %

Age [67,75) 24,336 39.7 Number of patients
per facility (volume)

Missing 899 1.5

[75,85) 27,616 45.1 ≤40 10,000 16.3
≥85 9328 15.2 41–63 13,651 22.3

Gender Female 28,088 45.8 64-91 16,670 27.2
Male 33,190 54.2 >91 20,060 32.7
Unknown 2 Region Missing 583 1

Race Black 11,514 18.8 Northeast 11,227 18.3
White 46,956 76.6 South 23,857 38.9
Other 2,810 4.6 Midwest 15,508 25.3

Ethnicity Non-Hispanic 56,417 92.1 West 10,105 16.5
Hispanic 4,863 7.9 RUCA Missing 750 1.2

Primary cause of ESRD Diabetes 24,834 40.5 Urban 47,649 77.8
Hypertension 23,098 37.7 Large Rural 8,865 14.5
Glomerulo-nephritis 2,806 4.6 Small Rural 3,267 5.3
Other 10,542 17.2 Isolated Small Rural 749 1.2

Healthcare Utilizationa 1 5,168 8.4 All people below
poverty in past 12
months, %

Missing 719 1.2

Quartile 2 11,456 18.7 <5 3,737 6.1
3 22,175 36.2 5–9.9 12,048 19.7
4 22,481 36.7 10–14.9 12,384 20.2

Institutionalization No 52,165 85.1 15–19.9 12,407 20.3
Yes 9,115 14.9 20–24.9 8,964 14.6

Prior nephrology care <6 months 8,590 14 ≥25 11,021 18
6–12 months 10,569 17.3 Adults ≥25 yr who

has Bachelor or
higher, %

Missing 627 1

>12 months 18,607 30.4 <20 20,931 34.2
No 15,336 25 [20,30) 17,410 28.4
Unknown 8,178 13.4 ≥30 22,312 36.4

Notes.
aHealthcare utilization is defined as reimbursement per decedent for inpatient hospitalization during the last 6 months at state level.

for No/Yes) using Method B, we implemented a hierarchical logistic regression model
with dialysis facility as random intercept and multi-variable adjustment (listed in Table 1)
(Fitzmaurice, Laird & Ware, 2011). We computed conditional odds ratio (OR) along with
95% confidence interval (CI) and p-value, where a larger value of OR above 1 indicates
more discordance and a lower value of OR below 1 indicates less discordance, equivalently,
more concordance.

As education level and poverty level tend to be correlated, we conducted sensitivity
analyses with either education or poverty, not both in the model, to handle the collinearity
issue. In order to handle the multiple testing issue, we indicated p< 0.0001, in addition to
p< 0.05, where we used p< 0.0001 as a conservative threshold for the summarization of
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the results and assessing statistical significance. All analyses were conducted using SAS
R©

version 9.4 (SAS Institute, Cary, NC, USA).

RESULTS
Cohort characteristics
Our analyses included 61,280 patients from 5,588 dialysis facilities who initiated in-center
hemodialysis during the period of 2011-2013 and who were also Medicare beneficiaries
during the year prior to dialysis initiation; see Fig. 1 for inclusion/exclusion criteria. Table
1 summarizes the study cohort regarding patient- and facility/area-level characteristics.
About 60% of patients were 75 years old or older. About 75% of patients were White, 19%
were Black, and 8% of patients identified as Hispanic. The most common primary causes
of renal failure were diabetes (41%) and hypertension (38%).

Comorbidities: prevalence, sensitivity, specificity, and kappa
We compared the prevalence of 11 comorbidities and the agreement of data (presence
vs. absence of comorbidity) between CMS-2728 and Medicare claims, where claims were
processed by the three different methods described earlier; see Table 2. We used claims data
as the reference standard in all comparisons. Among comorbid conditions, the category
‘other cardiac diseases’ was largely affected by which particular method was used to process
the claim (41.8, 32.3, 26.8% with methods A, B, C, respectively). In general, prevalence
of comorbidities based on CMS-2728 was uniformly lower than that based on claims
data. This discordance was especially notable for some conditions (i.e., AHD, COPD,
CBVD, PVD, alcohol dependence, drug dependence, and tobacco usage) where prevalence
estimates on theCMS-2728 formwere less than half of that whichwas determined by claims.

Overall specificity was high; most comorbidities showed specificity >0.9, except for
AHD (0.86–0.85), CHF (0.79–0.84), and other cardiac diseases (0.77–0.78). However,
sensitivity varied dramatically across comorbid conditions, ranging from 0.04 to 0.86. The
comorbidity of DM had the highest sensitivity (SN 0.83–0.86), a lower but acceptable value
for CHF (SN 0.57–0.59) and all other conditions showing SN<0.5. The lowest sensitivity
was observed for tobacco use and drug dependence (SN< 0.1). The corresponding kappa
statistics between the two data sources also variedmarkedly, ranging from0.07 to 0.73. Once
again, the lowest agreement (kappa ≤ 0.1) was observed in drug dependence and tobacco
use. DM showed the highest agreement (∼0.72), while all other conditions showed <0.5.

In terms of the three methods for claims data processing, Methods B and C tended to
yield lower prevalence of each comorbidity, but a slightly higher sensitivity with specificity
virtually unchanged, compared to Method A.

Factors associated with discordance between CMS-2728 and claims
Table 3 presents ORs along with 95% CIs for each factor and discordance for 10
comorbidities, where alcohol dependence was excluded due to non-convergent model
fit. Institutionalization and geographic region were significantly associated with data
discordance for the largest number of the comorbidities we examined; an institutionalized
patient status was associated with discordance for six comorbidities (i.e., AHD, CBVD,
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Table 2 Prevalence and Agreement: Medical evidence (CMS-2728) vs. claims data (N = 61,280).

Comorbidity % (CMS-2728) Methoda % (Claims) Kappa Sensitivity Specificity

Diabetes mellitus 57.3 A 64.8 0.71 0.83 0.91
B 62.6 0.72 0.85 0.89
C 61.8 0.73 0.86 0.89

Cancer 11.9 A 18.9 0.42 0.41 0.95
B 15.6 0.42 0.44 0.94
C 15.6 0.42 0.44 0.94

Congestive heart failure 41.1 A 60.7 0.38 0.57 0.84
B 52.8 0.38 0.59 0.79
C 56.0 0.39 0.59 0.82

Chronic obstructive pulmonary disease 14.3 A 33.6 0.34 0.34 0.96
B 30.1 0.36 0.36 0.95
C 31.3 0.35 0.35 0.95

Cerebrovascular disease 11.6 A 23.0 0.24 0.27 0.93
B 17.4 0.27 0.31 0.92
C 17.9 0.27 0.31 0.93

Atherosclerotic heart disease 27.2 A 57.4 0.21 0.37 0.86
B 52.5 0.22 0.38 0.85
C 53.5 0.22 0.38 0.85

Peripheral vascular disease 16.3 A 39.2 0.19 0.27 0.9
B 32.9 0.21 0.28 0.9
C 33.9 0.21 0.28 0.9

Alcohol dependence 0.8 A 2.3 0.21 0.14 1
B 2.0 0.2 0.15 1
C 2.2 0.21 0.15 1

Other cardiac 26.9 A 41.8 0.13 0.34 0.78
B 32.3 0.14 0.36 0.77
C 26.8 0.14 0.37 0.77

Tobacco use 3.5 A 22.5 0.1 0.09 0.98
B 21.4 0.1 0.09 0.98
C 22.1 0.1 0.09 0.98

Drug dependence 0.1 A 1.0 0.07 0.04 1
B 0.9 0.07 0.04 1
C 0.9 0.07 0.04 1

Notes.
aMethod A, B, and C: see Method section.
Sensitivity and Specificity were computed with claims data as reference standard. FromMcNemar’s test p < 0.0001, except for ‘Other cardiac’ (p = 0.60 for Method C vs CMS-
2728).

other cardiac, PVD, COPD, drug dependence) with OR = 1.1–2.3, with p < 0.0001.
Geographic region of patient residence was associated with 5 comorbidities (i.e., AHD,
CBVD, other cardiac, PVD, tobacco use) with OR = 0.5–1.3. In contrast, other factors
such as regional indicator of health care utilization, volume/size of the dialysis facility,
urbanicity and regional socio-economic indicators (poverty and education levels) did not
show systematic associations. Also, discordance appears to be non-informative for CHF
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Table 3 Environment-related factors associated with discordance between CMS-2728 and past year claims data.

a. Cardiovascular disease-related comorbidities

Odds ratio (95% confidence interval)

Factors AHD CHF CBVD Other cardiac PVD

Institutionalization Yes vs. No 1.1(1.1–1.2) 1.1(1.0–1.1) 1.4(1.3–1.5) 1.2(1.2–1.3) 1.3(1.3–1.4)

Healthcare 2 1.1(1.0–1.2) 1.0(0.9–1.1) 1.0(0.9–1.1) 1.0(0.9–1.1) 1.0(0.9–1.1)
utilization 3 1.2(1.1–1.3) 1.0(1.0–1.1) 1.0(0.9–1.1) 1.0(1.0–1.1) 1.1(1.0–1.2)
quartile 4 vs. 1 1.4(1.3–1.5) 1.1(1.0–1.2) 1.0(1.0–1.1) 1.1(1.0–1.1) 1.2(1.1–1.2)

Volume (no of patients per facility) 41–63 1.0(0.9–1.0) 1.0(1.0–1.1) 1.0(1.0–1.1) 1.1(1.0–1.1) 1.0(1.0–1.1)
64-91 0.9(0.9–1.0) 1.0(0.9–1.0) 1.0(1.0–1.1) 1.0(1.0–1.1) 1.0(1.0–1.1)
>91 vs. ≤40 0.9(0.9–1.0) 1.0(1.0–1.1) 1.0(0.9–1.1) 1.0(1.0–1.1) 1.0(1.0–1.1)

Region Midwest 1.2(1.1–1.3) 1.0(0.9–1.1) 1.1(1.0–1.2) 1.1(1.0–1.2) 1.1(1.1–1.2)
Northeast 1.0(1.0–1.1) 1.0(0.9–1.1) 1.1(1.0–1.2) 1.2(1.1–1.2) 1.3(1.2–1.4)
South vs. West 1.3(1.2–1.4) 1.1(1.0–1.1) 1.2(1.1–1.3) 1.1(1.1–1.2) 1.0(1.0–1.1)

RUCA Large rural 0.9(0.8–0.9) 0.9(0.9–1.0) 0.9(0.9–1.0) 1.0(0.9–1.0) 1.0(0.9–1.0)
Small rural 0.9(0.8–1.0) 0.9(0.8–1.0) 0.9(0.8–1.0) 1.0(0.9–1.0) 0.9(0.8–1.0)
Isolated small
rural vs. Urban

0.8(0.7–0.9) 1.0(0.9–1.2) 1.0(0.8–1.2) 1.1(1.0–1.3) 1.1(0.9–1.3)

People in poverty, % <5 1.1(1.0–1.3) 0.9(0.8–1.0) 1.1(1.0–1.3) 1.2(1.1–1.3) 1.1(1.0–1.2)
5–9.9 1.0(1.0–1.1) 1.0(0.9–1.0) 1.1(1.0–1.2) 1.1(1.0–1.2) 1.0(1.0–1.1)
10–14.9 1.0(1.0–1.1) 1.0(0.9–1.0) 1.1(1.0–1.1) 1.1(1.1–1.2) 1.0(1.0–1.1)
15–19.9 1.0(0.9–1.0) 1.0(0.9–1.0) 1.1(1.0–1.1) 1.1(1.1–1.2) 1.0(0.9–1.1)
20–24.9 vs.
≥25

1.0(1.0–1.1) 1.0(1.0–1.1) 1.0(1.0–1.2) 1.1(1.0–1.1) 1.0(1.0–1.1)

Adults with ≥bachelor degree, % 20–29.9 1.0(0.9–1.0) 1.0(0.9–1.0) 1.0(1.0–1.1) 1.0(1.0–1.1) 1.0(0.9–1.0)
≥30 vs. <20 0.9(0.8–0.9) 1.0(0.9–1.0) 0.9(0.9–1.0) 1.0(0.9–1.0) 0.9(0.9–1.0)

b. Non-cardiovascular disease-related comorbidities

Factors Odds ratio (95% confidence interval)

COPD Cancer Diabetes
mellitus

Drug
dependence

Tobacco
use

Institutionalization Yes vs. No 1.2(1.2–1.3) 0.9(0.9–1.0) 1.1(1.0–1.1) 2.3(2.1–2.6) 1.1(1.0–1.1)

Healthcare 2 1.0(0.9–1.1) 1.0(0.9–1.1) 1.1(1.0–1.2) 1.1(0.9–1.4) 1.0(0.9–1.1)
utilization 3 1.1(1.0–1.2) 1.0(0.9–1.1) 1.2(1.0–1.3) 1.0(0.8–1.3) 1.0(0.9–1.1)
quartile 4 vs. 1 1.1(1.0–1.2) 1.0(0.9–1.1) 1.2(1.1–1.3) 1.0(0.8–1.3) 1.0(0.9–1.1)

(continued on next page)
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Table 3 (continued)

b. Non-cardiovascular disease-related comorbidities

Factors Odds ratio (95% confidence interval)

COPD Cancer Diabetes
mellitus

Drug
dependence

Tobacco
use

Volume (no of patients per facility) 41–63 1.0(0.9–1.0) 1.0(0.9–1.1) 1.0(0.9–1.0) 0.7(0.5–0.8) 1.0(0.9–1.1)
64–91 0.9(0.9–1.0) 1.1(1.0–1.2) 0.9(0.8–1.0) 0.8(0.6–1.0) 1.1(1.0–1.1)
>91 vs. ≤40 0.9(0.9–1.0) 1.0(0.9–1.1) 1.0(0.9–1.1) 0.8(0.7–1.1) 1.0(0.9–1.0)

Region Midwest 1.0(1.0–1.1) 1.1(1.0–1.2) 1.0(0.9–1.1) 0.5(0.4–0.8) 1.2(1.1–1.3)
Northeast 1.0(1.0–1.1) 1.1(1.0–1.2) 1.2(1.1–1.3) 0.6(0.4–0.8) 1.1(1.0–1.2)
South vs. West 1.0(1.0–1.1) 1.1(1.0–1.2) 1.1(1.0–1.2) 0.7(0.5–0.9) 1.0(0.9–1.1)

RUCA Large rural 1.0(1.0–1.1) 1.0(0.9–1.0) 0.9(0.9–1.0) 0.9(0.7–1.2) 1.0(0.9–1.1)
Small rural 1.0(0.9–1.1) 0.9(0.8–1.0) 0.8(0.7–0.9) 0.4(0.3–0.7) 0.9(0.8–1.0)
Isolated small
rural vs. Urban

1.0(0.8–1.2) 1.0(0.8–1.2) 0.8(0.6–1.0) 1.6(0.8–3.3) 1.1(0.9–1.4)

People in poverty,% <5 1.0(0.9–1.1) 1.1(1.0–1.3) 1.0(0.9–1.2) 0.7(0.4–1.3) 1.2(1.1–1.4)
5–9.9 1.0(1.0–1.1) 1.1(1.0–1.2) 0.9(0.8–1.0) 0.6(0.5–0.9) 1.2(1.1–1.3)
10–14.9 1.0(0.9–1.1) 1.1(1.0–1.2) 1.1(0.9–1.1) 0.8(0.6–1.1) 1.1(1.0–1.2)
15–19.9 1.0(0.9–1.1) 1.1(1.0–1.2) 1.0(0.9–1.1) 0.8(0.6–1.1) 1.1(1.0–1.2)
20–24.9 vs.
≥25

1.0(0.9–1.1) 1.1(1.0–1.2) 1.1(1.0–1.2) 1.0(0.7–1.3) 1.1(1.0–1.2)

Adults with ≥bachelor degree, % 20–29.9 1.0(0.9–1.0) 1.0(0.9–1.1) 0.9(0.9–1.0) 1.3(1.0–1.7) 1.0(0.9–1.1)
≥30 vs. <20 0.9(0.8–1.0) 1.1(1.0–1.1) 0.9(0.8–1.0) 1.3(1.1–1.8) 1.0(0.9–1.0)

Notes.
Alcohol dependence was not included due to models not convergent.
If p< 0.0001, then bold; If 0.0001<p<0.05, then italic, where p-values were unadjusted for multiple testing.
AHD, atherosclerotic heart disease; CHF, congestive heart failure; CBVD, cerebrovascular disease; PVD, peripheral vascular disease; COPD, chronic obstructive pulmonary
disease; RUCA, rural-urban commuting area.

(OR = 0.9–1.1 with all p> 0.05), which may imply good reliability in this variable. In
comparison, discordance was most varied for drug dependence (OR = 0.5–2.3).

Finally, our sensitivity analyses that intended to address collinearity between education
and poverty showed very similar results and no impact on the key findings reported above,
e.g., regarding institutionalization, geographic regions and CHF. Results are summarized
in Table S1.

DISCUSSION
Administrative databases are increasingly used in research, public policy and even in
informing health care consumers, as in the case of the Dialysis Facility Compare program.
In our study, we utilized two major sources of comorbidity data in nephrology research
and health policy in the US—the Medical Evidence report (CMS-2728) that is completed
once at the time of dialysis initiation and Medicare claims.
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Prior studies on differences in comorbidity ascertainment methodology in ESRD
patients have demonstrated a high degree of discordance and overall poor sensitivity,
similar to what we found in our study. Longnecker et al. used clinical chart data to validate
comorbid conditions reported on CMS-2728 in 1,005 patients who started dialysis from
1995 through 1998. The average sensitivity was 0.59 and specificity was above 0.9, with
HIV showing the highest accuracy (Longenecker et al., 2000). Krishnan et al. examined
comorbidities recorded on CMS-2728 and claims before and after dialysis initiation based
on 45,357 Medicare-enrolled patients who initiated dialysis between 2007 and 2009.
Excluding DM, the kappa statistic for measuring data concordance (between claims before
dialysis initiation vs. CMS-2728 at dialysis initiation, and between claims before vs. after
dialysis initiation) ranged from 0.05 to 0.58. They also found that patient demographics
and the USRDS network in which the patient received dialysis were associated with data
discordance, but did not study specific dialysis facility or regional characteristics, factors
that we included in our analysis (Krishnan et al., 2015). On the other hand, Solid et al. used
Medicare outpatient dialysis claims to validate vascular access—a variable newly added in
the 2005 revision of the CMS-2728 form—among patients starting hemodialysis in 2010.
The two sources agreed for 94% of 9,777 patients with a kappa statistic of 0.83 (Solid et
al., 2014). Cause of renal failure and predialysis nephrology care were also evaluated using
different data sources over different time periods; the former was reasonably accurate, not
the latter (Byrne & Vernon, 1991; Kim et al., 2012).

The two main goals of our study were (1) to check if there is a meaningful improvement
in quality of comorbidity data in the modern era of the many quality-based initiatives,
compared to that noted in prior studies; and (2) to identify environment-related (e.g., living
condition, socio-economic, dialysis facility or regional area) factors associated with data
disagreement. An ancillary goal was to examine differentmethods of claims data processing,
although comorbidity ascertainment algorithm using claims is relatively well established
for research purposes, as adapted from the SEER method and Charlson comorbidity index.

Our findings relating to the first goal do not demonstrate a meaningful improvement
in data quality. We found similar degrees of poor data discordance and sensitivity between
CMS-2728 andmedical claims as were noted in prior studies, even in a more contemporary
era where the stakes are higher for health care providers of ESRD patients to record accurate
comorbidity data. Previous studies reported low kappa and sensitivity, and substantial
under-reporting in CMS-2728, and our data did not show that these values have improved
over time (Krishnan et al., 2015; Longenecker et al., 2000). In particular, our study can be
directly compared with that by Krishnan et al. with these two studies adopting very similar
inclusion and exclusions criteria, using different years of theUSRDS. In contrast, we utilized
a more contemporary cohort, examined three different methods of claims data processing
(including the method of Krishnan et al.), employed multiple statistical measures (beyond
kappa statistic), and used a better suited statistical model (accounting for clustering). As
anticipated, the two cohorts showed a similar distribution of patient characteristics and
similar kappa values. Medicare has tried on their part to improve comorbidity entry by
health care providers. As a part of the national effort, CMS provides education and outreach
for ‘‘Provider Compliance Program’’ (CMS, 2014b).
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Regarding the second goal, we newly identified that institutionalization (vs. community-
dwelling) and some geographic regions showed a higher frequency of misreporting
comorbidity data than others. Midwestern, Northeastern and Southern regions tended
to show more data discordance, compared to the Western region in most comorbidities
except for drug dependence. Notably, the phenomenon of ‘‘West vs. others’’ in the context
of ESRD care has been observed in prior studies with different outcomes (Kshirsagar et
al., 2017; Mu et al., 2018). This regional variation may have policy implications because
near universal care and coverage are uniquely available for ESRD by Medicare in the
US. Medicare regulators charged with developing future quality metrics that are, in part,
based on comorbidities may need to consider these additional regional variations in
monitoring comorbidity data reliability. As a model example provided by the investigators
from the USRDS data center, ‘vascular access type’ used for dialysis that is being used for
payment (since 2010) successfully passed the data reliability test based on high values in the
proportion of agreement as well as kappa statistic, coupled with the absence of statistically
significant predictors (among demographics) for disagreement (Solid et al., 2014).

We used three different but related methods of claims data processing. While we did
not necessarily find one method to be overall superior to the others, we believe that
Method A is easiest and most inclusive and Method C may be most restrictive (Baldwin
et al., 2006; Krishnan et al., 2015). It is our opinion that investigator assumptions and
preferences, and possibly the particular variable involved, may dictate the method that
future investigators choose. We feel that including the three methods in our study might
provide some guidance on these decisions. CMS currently established the Medicare and
Medicaid Electronic Health Record (EHR) Incentive Programs to encourage health care
providers and institutions to adopt, implement, upgrade, and demonstrate meaningful
use of certified EHR technology (CMS, 2017b). Hopefully with this and advanced medical
informatics and algorithms (Hehner et al., 2017), comorbidity data capture can be more
complete and accurate. Indeed, since the time of this study, Medicare has begun using
prevalent comorbidities to the SMR and SHR calculations (CMS, 2017d).

Our study has several limitations. First, the findings are limited to elderly in-center
hemodialysis patients with Medicare as primary payer prior to dialysis initiation; thus,
generalizability to other populations may be limited. Second, neither data source used
can serve as a gold standard; thus, we could not assess true data accuracy. Claims data are
generally regarded as more accurately recorded, so we used it as the reference standard.
Indeed, Krishnan et al. proposed the use of claims during the 3 months after dialysis
initiation as a useful source of comorbidity data (Krishnan et al., 2015). In our study, kappa
(for concordance) and sensitivity (for diagnostics) yielded qualitatively similar results.
Third, we did not investigate how certain factors, especially those that are not included
in the current profiling model and quality metrics being used by CMS, such as prior
nephrology care and geographic region, impact on the profiling status, which is warranted
in future research (Liu et al., 2016).
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CONCLUSION
Our study raises continued concern about the highly varied data quality in comorbidity
information amongst patients with ESRD in the US. Although we used a more recent
cohort, we conclude that no improvement was observed over the last two decades, and
our results emphasize the concerns about the data accuracy of the comorbidities on the
CMS-2728 form and its associated use in developing health policies. Hopefully, these
studies provide further incentive to improve data accuracy, identify more reliable data
sources and raise awareness of potential bias.
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