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ABSTRACT OF THE THESIS

JShrink: Debloating Modern Java Applications

by

Jaspreet Singh Arora

Master of Science in Computer Science

University of California, Los Angeles, 2020

Professor Miryung Kim, Chair

Modern software is bloated. Demand for new functionality has led developers to include

more and more features, many of which become unneeded or unused as software evolves.

This phenomenon of software bloat results in software consuming more resources than it

otherwise needs to. Automation of effective debloating is a long standing problem in soft-

ware engineering. Various software debloating techniques have been proposed since the late

1990s. However, many of these techniques are built upon pure static analysis and have yet

to be extended and evaluated in the context of modern Java applications where dynamic

language features are prevalent. To this end, we develop an end-to-end bytecode debloating

framework called JShrink. JShrink augments traditional static reachability analysis with

dynamic profiling and type dependency analysis, and renovates existing byte-code transfor-

mations to perform effective debloating. We highlight several nuanced technical challenges

that must be handled properly to debloat modern Java applications and further examine

behavior preservation of debloated software via regression testing. Our study finds that (1)

JShrink is able to debloat our real-world Java benchmark suite by up to 47% (14% on

average); (2) accounting for reflection and dynamic language features is crucial to ensure

behavior preservation for debloated software — reducing 98% of test failures incurred by a

purely static equivalent, Jax, and 84% for ProGuard; and (3) compared with purely dynamic

approaches, integrating static analysis with dynamic profiling makes the debloated software
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more robust to unseen test executions—in 22 out of 26 projects, the debloated software ran

successfully under new tests. We enhance JShrink with the checkpointing feature to ensure

100% behaviour preservation with minimal loss in code size reduction(0.9% om average),

to make it a practical solution for balancing semantic preservation and code size reduction

benefits.
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CHAPTER 1

Introduction

The size and complexity of software has grown tremendously in recent decades. Though

largely beneficial, this has led to unchecked bloat issues that are especially severe for modern

object-oriented applications due to their excessive use of indirection, abstraction, and ease

of extensibility. This problem of customizing and tailoring modern applications to only used

components, in an automated fashion, is a long standing problem [42, 21, 55, 57, 41, 25, 59,

48, 29, 63, 44, 64].

Prior work on code size reduction focuses primarily on C/C++ binaries [42, 21, 48, 29,

41, 64], motivated by the long-held belief that C/C++ programs are easier to attack and

are often choices for software development for embedded systems. However, with the rise

of cloud computing, Android-based smart-phones, and smart-home internet-of-the-things, a

managed, object-oriented language such as Java is making its way into all important domains

and machines of all sizes. Although reducing the size of Java bytecode, which is the main goal

of our effort, may not ultimately lead to a significant improvement in a traditional stand-

alone machine setting, its benefit becomes orders of magnitude more significant in many

modern small and large-scale computing scenarios—smaller bytecode size directly translates

to reduced download size and loading time in smartphones and reduced closure serialization

time in big data systems such as Apache Spark; these are all important performance metrics

for which companies are willing to spend significant resources in optimizing.

However, past work has not given much attention to Java, especially debloating modern

Java applications. Of particular interest to us is Tip et al.’s work [57] in the late 1990s

that proposes various bytecode transformations for software debloating, which have since
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been utilized by other researchers [20, 8, 25]. In surveying the available literature, we find

that their effectiveness has yet to be systematically evaluated on a real-world benchmark of

modern Java applications. All previous implementations of those bytecode transformations

relied on pure static analysis to identify reachable code, hereby ignoring code reachable

through reflection, dynamic proxy, callbacks from native code, etc. Recent studies find

that dynamic language features are prevalent in modern Java applications and they pose

direct challenges in the soundness of static analysis [28, 35]. This unsoundness subsequently

makes debloating unsafe—removing dynamically invoked code and inducing subsequent test

failures. Furthermore, evaluations in prior work focus mostly on size reduction rather than

behavior preservation, which raises a big safety concern for adopting debloating techniques

in practice.

Therefore, we undertake the ambitious effort of modernizing and evaluating Java byte-

code debloating transformations to account for new Java language features, e.g., dynamic

proxy, pluggable annotation, lambda expression, etc., and quantify the tradeoff between size

reduction and debloating safety. We augment static reachability analysis with dynamic pro-

filing to handle dynamic language features. We incorporate a new type dependency analysis

to account for a variety of ways to reference types in modern Java, like annotations and

class literals to ensure type safety after debloating. We replicate and extend four kinds of

debloating transformations—method removal, field removal, method inlining, and class hier-

archy collapsing into a fully automated, end-to-end debloating framework called JShrink.

JShrink allows for the utilization of these transformations either individually or en-masse.

To effectively evaluate those bytecode transformations, we built an automated infras-

tructure to construct a benchmark of real-world, popular Java applications. We applied a

rigorous set of filtering criteria—(1) reputation score based on the GitHub Star rating system,

(2) executable tests, (3) a Maven build script [37], which provides a standardized interface

for obtaining library dependencies and regression testing, and (4) compatibility with the

underlying bytecode analysis framework, Soot [60]. The availability of runnable test cases

enables us to examine to what extent the behavior of original software is preserved after

2



debloating via regression testing. Currently, the resulting benchmark includes 22 projects

with SLOC ranging from 328 to 99,779 and with up to 69 library dependencies. We then

apply JShrink to this benchmark to quantify size reduction, the degree to which test be-

havior could be preserved, and the impact of Java dynamic language features by answering

the following research questions:

RQ1 What Java bytecode size reductions are achievable when applying JShrink’s transfor-

mations?

RQ2 To what extent, does JShrink preserve program correctness when debloating software?

RQ3 What are the trade-offs in terms of debloating potential and semantic preservation?

RQ4 How robust is the debloated software to unseen executions such as new test cases?

JShrink reduces a project’s size (application and included library dependencies) by up

to 46.8% (14.2% on average). The method removal component reduces the application by

the most (11.0% on average) followed by field removal (1.5% on average), method inliner

(2.1% on average), and class hierarchy collapser (0.1% on average). A hybrid static and

dynamic reachability analysis is necessary for improving behavior preservation of debloated

software. JShrink does not break any existing tests for 22 out of 26 Java projects after

debloating, while three existing techniques, Jax [57], JRed [25], and ProGuard [20] that

rely on pure static analysis preserve behavior for only 9, 11, and 15 projects respectively.

While this comparison in terms of the number of projects may look marginal, 98% of test

failures encountered in Jax (83% for ProGuard) can be actually removed by JShrink’s

enhancements. This result implies the effort of handling new language features is absolutely

necessary and worthwhile for improving the behavior preservation of debloated software,

which justifies the need to address the long-standing debloating problem in the modern

context. We find that size reduction potential is minimally impacted by this incorporation

of dynamic reachability analysis. In other words, we only sacrifice size reduction by 2.7% on

average, while providing stronger behavior preservation guarantees. In order to achieve 100%
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behavior preservation we enable checkpointing; a feature of JShrink where transformations

are reverted if they are found to break the semantics of a target program. Though this

strategy incurs a marginal loss in size reduction (0.9% on average), we believe checkpointing

to be a practical solution for balancing sematic preservation and code size reduction benefits.

Our work makes the following contributions:

• We present JShrink, an end-to-end Java bytecode debloating framework that repli-

cates and modernizes four distinct bytecode transformations to handle new language

features in the modern context.

• We develop JMTrace, a native profiling agent using JVM TI API [40], which captures

the use of dynamic features in Java code and augments static reachability analysis in

JShrink. We use a benchmark dataset by Sui et al. [53] to compare the effectiveness

of JMTrace with Tamiflex [5] in capturing the use of dynamic features.

• We demonstrate the necessity of handling dynamic features and ensuring type safety.

JShrink successfully removes 98% and 83% of test case failures incurred by Jax [57]

and ProGuard [20].

• We find bytecode reduction of up to 46.8% is possible, where reachability-based method

removal plays a dominant role in size reduction. JShrink ensures that debloated

software passes 98.0% of existing tests without checkpointing, and 100% of the tests

with checkpointing.

• We put forward an automated infrastructure of constructing real-world Java applica-

tions with test cases, a build script, and library dependencies for assessing debloating

potential and checking behavior preservation using tests.

• We extend JShrink with an optional checkpointing feature to ensures complete se-

mantic preservation at the cost of code size increase to enable practical use of JShrink

in the imperfect world of being unable to capture any call dependencies.
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The main research contribution of this work is the development of an end to end frame-

work for debloating of modern Java applications, as well as the systematization of the com-

munity’s knowledge of Java debloating in the modern era. The seminal works of Java de-

bloating [57, 25] are extended in a new context to account for dynamic Java language features

and to manage the tradeoff between size reduction and debloating safety. We make publicly

available the replication data set, an automated infrastructure for constructing a modern

Java application benchmark with rigorous filtering criteria, replicated implementation of

prior work, and JShrink1. The full list of Java applications used is listed in Appendix A.

1https://github.com/tianyi-zhang/call-graph-analysis/
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CHAPTER 2

Related Work

2.1 Code Bloat

Code size reduction is an important development activity in areas such as networking and

embedded systems. A large body of work exists on code compression [30, 27, 9, 12, 31] or code

compaction [11, 61, 62] to reduce the size of binary code for efficient executions on embedded

hardware with limited memory. We refer the interested reader to Beszédes et al. [4] for a

detailed survey and comparison. Program slicing [56, 46, 52, 22, 51] is a dataflow-based

static technique that computes, from a given seed, a subset of statements that can still form

a valid and executable program. Slicing reduces code size by computing a dependence graph

and preserving only the statements that are directly or transitively reachable from the seed

on the graph. Fine-grained static slicing is known to have limitations due to imprecision of

heap modeling and pointer handling and thus does not work well for large-scale applications

with pointers, reflection, and dynamic class loading.

The past few years have seen a proliferation of debloating techniques [43, 42, 63, 13, 48, 21]

designed for various domains, including JavaScript programs [63], application containers

(e.g., docker) [13], or native C programs [43, 42]. These range from static analysis [48, 13]

to load/runtime techniques [42] and machine learning [21]. However, none targets modern

Java, notoriously different from native programs in terms of memory management or dynamic

method invocation.

Existing debloating techniques for Java only assess code reduction and performance im-

provement achieved by different kinds of bytecode transformations [58, 25, 20, 24], while

ignoring the correctness of reduced programs by running existing test cases. Furthermore,
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these techniques only perform static call graph analysis to approximate used code, which are

incomplete in the presence of various dynamic language features discussed later. This makes

test failures inevitable, as dynamically invoked code could be removed by debloating. In this

thesis, we report the results of taking a profile-augmented static debloating approach—we

augment static reachability analysis with dynamic reachability analysis using existing tests;

we revisit and augment existing bytecode transformation techniques; and we check behavior

preservation with real world tests.

2.2 Static Bytecode Debloating

In the late 1990s, Tip et al. developed Jax, which included, the most comprehensive set

of transformations to reduce Java bytecode so far, including method removal, field removal,

method inlining, class hierarchy transformation, and name compression [57]. They later in-

troduced two more transformations, class attribute removal and constant pool compression

in their 2002 journal paper [58]. Recent techniques are based on a subset of these trans-

formations, partially, to debloat new types of applications, e.g., Android [24] and Maven

libraries in continuous integration [8]. JRed [25] and RedDroid [24] only support the method

removal and class removal transformations, while Molly [8] supports field removal as well.

These above mentioned techniques are either outdated or not publicly available. Furthermore,

their evaluations mainly focus on code size reduction without systematically quantifying the

degree to which debloated software preserves semantics. However, behavior preservation is

crucial for these techniques to be adopted in practice.

2.3 Dynamic Feature Analysis for Java

Dynamic features are highly challenging to model through pure static analysis. Livshits et

al. [36] pioneered the static analysis of dynamic features in 2005 using points to analysis

to resolve dynamic method invocation targets statically. There have been other attempts

mostly focused on specific dynamic features such as reflection [33][50], dynamic proxy [14],
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etc. Liu et al. [34] proposed a novel technique to apply reflection-oriented slicing to resolve

reflection call sites with more precision. The paper by Landman et al. [28] cites 24 different

techniques and tools developed to deal with reflection. Most static analysis tools thus focus

on generation of balanced ”sound” call graphs, tolerating and encouraging some level of

unsoundness, by under approximation of these features to keep the analysis usable and

scalable [35].

Due to limitations of static analysis, a lot of research focuses on a hybrid analysis by

adding dynamic analysis to augment static analysis tools. Tamiflex [5] uses java agent

instrumentation to log reflective calls through a play out agent. Another approach is analysis

of heap snapshots to capture method invocations and object initializations [17, 18]. Sui et

al. [54] analyzed stack traces from Github issues and Stack Overflow forums to augment static

call graphs. Features such as reflection resolution are still challenging for static analysis [28]

and usually requires dynamic analysis [5]. Other challenges include tracking externally loaded

classes through custom class loaders and serialization. Sui et al. [53] and Reif et al. [45] have

categorized the dynamic features in Java and have provided micro-benchmarks of these

features to compare the coverage of these features by various call graph construction tools.

Reif et al’s [45] evaluated the two most widely used Java analysis frameworks, Soot [60] and

WALA [23], and found that neither provided complete coverage for all dynamic features in

Java. In Chapter 3, we systematically define a list of dynamic features in Java uncovered in

our literature survey, and report the coverage of these dynamic features through by JShrink.

2.4 Delta Debugging

Given a test oracle, delta-debugging based techniques can repeatedly split the original pro-

gram into different sub-programs and re-check the test oracle to produce a debloated pro-

gram [72, 44, 55, 26]. For example, JReduce [26] partitions the original program into tran-

sitive closures based on class-level dependencies and isolates a debloated program that still

passes the test. Chisel [21] uses reinforcement learning to reduce the number of search it-

erations during delta debugging. While these approaches ensure behavior preservation of
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debloated software by repeatedly running existing tests on each intermediate program, they

suffer from two limitations—(1) the resulting debloated software may not retain any func-

tionality beyond test-exercised code, simply reflecting test coverage, and (2) the debloated

software cannot be easily configured to retain code statically reachable from public APIs

or main method entries, since designing such oracle would be exactly the same task we un-

dertook in JShrink. In Chapter 5, we quantify the value of static reachability analysis for

debloating. We exclude a subset of test cases during profiling and observe increase in test

errors in only 4 out of 26 projects in our benchmark after debloating.

2.5 Runtime Bloat

Researchers have proposed a range of dynamic techniques that look for inefficiencies in data

structure usage [39, 65, 66], object lifetime patterns [67], or reference copy chains [68, 71].

Such runtime bloat work is orthogonal to this work that removes code bloat via static

bytecode transformations.
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CHAPTER 3

Background

3.1 Scope - Java Bytecode

The problem of software bloat has been a center of research studies for more than a decade in

the area of performance tuning and optimization. Recently, there is a revived interest—partly

due to the need of cyber defense (e.g., US Navy’s Total Platform Cyber Protection (TPCP)

program [2]) — in extending traditional debloating techniques to reduce code size, improve

runtime performance, and remove attack surface for a wide spectrum of software applications,

including JavaScript programs [63], native applications [42], and Docker containers [43].

In this thesis, we focus on code size reduction as opposed to runtime memory bloat that

was the target of a large body of prior work [68, 38, 70, 66, 69]. While code bloat exists

commonly in a broad range of applications, we focus on object-oriented programs (specifically

Java bytecode) as our scope for two reasons.

First, the culture of object orientation encourages developers to use frameworks, pat-

terns, and libraries even for extremely simple tasks, resulting in a large number of classes

and methods, which, though not used at all during execution, still need to be loaded by

JVM due to type-induced dependencies. These classes and methods consume extra space

and memory, thereby negatively impacting the performance of resource-constrained systems

such as smart phones or IoT devices. Furthermore, they can potentially contain security

vulnerabilities (e.g., gadgets in return-oriented programming [7]), which can be exploited by

remote attackers to execute code segments that could not have been reached otherwise.

Second, many recent techniques [42, 21, 48, 41] on code bloat target native x86 programs,
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aiming to reduce the size of executable binaries. Native programs are significantly different

from object-oriented programs in terms of compilation and execution. Native programs

are statically compiled and linked, with most libraries statically loaded. In many cases, a

compiler can already remove much of dead code. On the contrary, object-oriented programs

are often dynamically compiled and loaded; the ubiquitous use of dynamic features such as

dynamic class loading and reflection dictates that a compiler would not know which classes

to load until the moment they are needed.

3.2 Motivation for Modernizing Software Debloating

Java offers a number of dynamic features widely used in real-world Java programs [28]—reflection,

dynamic class loading, dynamic proxy, etc., which are highly challenging to model through

pure static analysis. Landman et al. conduct a systematic literature review and an empir-

ical study to assess the effectiveness of 24 different static analysis tools in the presence of

real-world Java reflection usage [28]. They find that static analysis is inherently incomplete

and reflection cannot be ignored for 78% of projects. This finding motivates our effort to

extend, replicate, and evaluate the safety of debloating techniques in the context of dynamic

language features. In Section 5.1.5, we quantify this benefit of handling dynamic features—

without explicit profiling, debloated software based on static analysis alone would fail 3327

more tests in 26 projects.

3.3 Dynamic Profiling for Java

Dynamic profiling for Java can be performed through a variety of methods. The main

methodology is the extraction of runtime information like the executed methods, allocated

objects and loaded classes during the execution of a Java program. We conducted proofs of

concept for the following methods of dynamic analysis to decide the most effective profiling

approach for JShrink.
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3.3.1 Customized JVM

We used the OpenJDK 8 JVM1 and modified the internal code to create a customized JVM

for our investigation. The customization focused on the alteration of the hotspot part of the

JVM, which controls the flow and execution of a Java application inside the JVM. The altered

code profiles the methods, classes and fields as they are created, invoked and destroyed in

the JVM during the execution of a Java application. This involves modification of the flow

of method invocation and object instantiation inside the JVM. The following methods must

be altered to profile the dynamic dependencies of a Java application.

1. Method resolution function is the point of entry for method invocation that resolves a

method invocation to actual method bytecode in memory.

2. Method execution function that executes the bytecode with parameters.

3. Invokedynamic method execution function that executes dynamic method bytecode

with parameters.

4. Class loading function that loads a class file into memory on reference.

5. Object reference resolution function that resolves reference to a class type in memory.

6. Object memory allocation function that allocates memory for a class object.

The methods responsible for method resolution and method execution are modified to

include instructions to log the class and signature of the resolved methods as well as the

signature of the callee methods before execution. This information is then processed to

extract the callee-caller relationships and thus a rudimentary call graph for a particular run

of a Java program. The methods determined for method resolution is responsible for method

resolution in all cases except static methods and reflection.

This approach has the least overhead with the most comprehensive coverage, but was

deemed unfit for our use case, since it would require the execution of a Java program with a

1http://hg.openjdk.java.net/jdk8/jdk8/hotspot/file/
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custom JVM, making it difficult to deploy and adopt. This requires the installation of this

custom JVM along with JShrink, which is cumbersome for the users of the tool. In addition,

the maintenance of a custom JVM is laborious, as the exact JVM methods modified might

be changed or updated as Java evolves and the documentation for the OpenJDK code is not

always complete.

3.3.2 Heap/Thread dumps

This method involves extracting heap dumps or thread dumps during program execution to

log stack frames at regular intervals. This is a common method used for profiling, especially

to profile and determine resource heavy methods in code or for recognizing bottlenecks in

a Java program [17, 18]. There are built-in Java command line tools that can be leveraged

for extracting thread dumps and heap dumps such as jcmd, jfr, jstack, jmx, hprof.

A proof of concept tool extracts heap dumps from hprof and jcmd at intervals of 1ms to

an external log file. These dumps are then processed to interpret the stack frames and to

extract callee-caller relationships among the methods. The tool is highly contingent on the

interval time used to extract information. Even with the shortest possible interval time,

there is a chance that a method would be missing from the thread dumps if it takes less time

for execution as compared to the interval time. In addition, the generated log files are large

in size even for smaller programs and contain a lot of redundant information. It wastes a lot

of resources and time to process these files to extract the required information.

3.3.3 Java Virtual Machine Tool Interface (JVM TI)

The Java Virtual Machine Tool Interface is a native programming interface provided as part

of the Java Virtual Machine(JVM) and provides an interface for creating monitoring and

development tools to track and modify the state and control flow of programs executing in the

JVM[40]. A JVM TI client(or agent) is a C/C++ dynamic library which can be provided as

an argument to the JVM while executing a Java program. Agents are executed concurrently

with the JVM and have a direct line of communication with the JVM instance. An example
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of binding a JVM instance to a native agent is show in Figure 3.1. The interface also supports

java −agentpath : / home/ foo / jvmti/<jvmti−agent−l i b r a ry−name> |

−ag en t l i b :< jvmti−agent−l i b r a ry−name> MyClass

Figure 3.1: Running a JVM TI agent with a JVM [40]

bytecode instrumentation, which allows developers to edit JVM byetcode instructions on the

fly. The API provides two methods of operation:

• Query Interface - An agent is hooked to the JVM instance on initialization and

receives an instance of the environment as a native object. Throughout the lifecycle

of the instance, the agent can query the JVM for information about the state of the

program and monitor its state.

• Event Subscription - An agent can subscribe to various control flow and monitoring

events and register method callbacks. This transfers control of execution to the method

inside the agent along with relevant event information (Java Native Interface objects)

when that particular event occurs inside the JVM instance. Some events that are

useful for instrumentation and profiling include – Class File Load, Class Load, Method

Entry, Method Exit, Native Method Bind[40]. Figure 3.2 contains the complete list of

events available through JVM TI.

JMV TI agents are easy to develop, maintain and distribute, since they use built-in well

documented API, and are more comprehensive in terms of data extraction than heap/thread

dumps. Therefore, even though they add more overhead to the Java application execution

time during profiling as compared to the other approaches, we implement the profiling for

dynamic analysis in JShrink as a native JVM TI agent, JMtrace. The overhead is a con-

cern in profiling, as the program is likely to be executed multiple times to extract different

instances of execution, so we compare the performance of the following two approaches used

to implement profiling through the JVM TI API. Appendix B discusses the experiments con-
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1 typedef struct {

2 jvmtiEventVMInit VMInit;

3 jvmtiEventVMDeath VMDeath;

4 jvmtiEventThreadStart ThreadStart;

5 jvmtiEventThreadEnd ThreadEnd;

6 jvmtiEventClassFileLoadHook ClassFileLoadHook;

7 jvmtiEventClassLoad ClassLoad;

8 jvmtiEventClassPrepare ClassPrepare;

9 jvmtiEventVMStart VMStart;

10 jvmtiEventException Exception;

11 jvmtiEventExceptionCatch ExceptionCatch;

12 jvmtiEventSingleStep SingleStep;

13 jvmtiEventFramePop FramePop;

14 jvmtiEventBreakpoint Breakpoint;

15 jvmtiEventFieldAccess FieldAccess;

16 jvmtiEventFieldModification FieldModification;

17 jvmtiEventMethodEntry MethodEntry;

18 jvmtiEventMethodExit MethodExit;

19 jvmtiEventNativeMethodBind NativeMethodBind;

20 jvmtiEventCompiledMethodLoad CompiledMethodLoad;

21 jvmtiEventCompiledMethodUnload CompiledMethodUnload;

22 jvmtiEventDynamicCodeGenerated DynamicCodeGenerated;

23 jvmtiEventDataDumpRequest DataDumpRequest;

24 jvmtiEventReserved reserved72;

25 jvmtiEventMonitorWait MonitorWait;

26 jvmtiEventMonitorWaited MonitorWaited;

27 jvmtiEventMonitorContendedEnter MonitorContendedEnter;

28 jvmtiEventMonitorContendedEntered MonitorContendedEntered;

29 jvmtiEventReserved reserved77;

30 jvmtiEventReserved reserved78;

31 jvmtiEventReserved reserved79;

32 jvmtiEventResourceExhausted ResourceExhausted;

33 jvmtiEventGarbageCollectionStart GarbageCollectionStart;

34 jvmtiEventGarbageCollectionFinish GarbageCollectionFinish;

35 jvmtiEventObjectFree ObjectFree;

36 jvmtiEventVMObjectAlloc VMObjectAlloc;

37 } jvmtiEventCallbacks;

Figure 3.2: Complete list of JVMTI subscribable events [40]

ducted to compare the overhead introduced by both agents while profiling Java applications

in our benchmark.

3.3.3.1 Callback Agent

– This involves the creation of a native JVM TI agent which subscribed to relevant events

in the JVM. The registered callback receives an environment object which can be used to

query the JVM for the required information, such as signatures for the invoked methods,
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callee information, class names, etc. An example of a JVMTI agent which is subscribed to

the JVMTI EVENT CLASS FILE LOAD HOOK event can be seen in Figure 3.3. In this agent, the

method cbClassFileLoadHook will be invoked with the class information when a class file

is loaded into the JVM. Similarly we can subscribe to the method entry and method exit

events through the JVM TI API. This information is then logged to an external file which

can be processed offline to extract information for dynamic analysis.

3.3.3.2 Bytecode Instrumentation Agent

– This method involves the instrumentation of the Java program byte code at runtime to log

the profiling information to an external destination, such as a log file. The instrumentation

is implemented through a native JVM TI agent inside a callback. An example of a JVMTI

agent which is subscribed to the JVMTI EVENT CLASS FILE LOAD HOOK event can be seen in

Figure 3.3. In this agent, the method cbClassFileLoadHook will be invoked with the class

information when a class file is loaded into the JVM. An example of the callback method

can be seen in Figure 3.4. This method instruments the loaded class on a class load event in

the JVM. The instrumentation depicted in the figure inserts a callback to the MTRACE class

methods MTRACE entry and MTRACE exit at the entry and exit of each method in the loaded

class, which receives the method signature, callee signature, and class names as parameters.

This information is then logged to an external file in the MTRACE entry method. Bytecode

instrumentation through a JVMTI agent is favoured as compared to other approaches of

bytecode instrumententation such as Java Agents2, as instrumentation through a native

agent has less latency and memory overhead.

As the results in Appendix B show, the JVM TI instrumentation agent is 1.5x to 5x

faster as compared to the JVM TI callback agent. Based on these factors, we choose the

bytecode instrumentation method to implement the profiling tool JMtrace for JShrink. As

we show in Chapter 5, this approach is proficient in profiling usage of all types of dynamic

features in Java.

2https://docs.oracle.com/javase/8/docs/api/java/lang/instrument/Instrumentation.html

16



1 static void JNICALL

2 cbClassFileLoadHook(jvmtiEnv *jvmti, JNIEnv* env, jclass class_loaded, jobject loader,

3 const char* name, jobject protection_domain,

4 jint class_data_len, const unsigned char* class_data,

5 jint* new_class_data_len, unsigned char** new_class_data);

6

7 /* Agent_OnLoad: This is called immediately after the agent is

8 * loaded. This is the first code executed.

9 */

10 JNIEXPORT jint JNICALL

11 Agent_OnLoad(JavaVM *vm, char *options, void *reserved)

12 {

13 jvmtiEnv *jvmti;

14 jvmtiError error;

15 jvmtiCapabilities capabilities;

16 jvmtiEventCallbacks callbacks;

17

18 /*Get JVM TI env*/

19 res = (*vm)->GetEnv(vm, (void **)&jvmti, JVMTI_VERSION_1);

20

21 (void)memset(&capabilities,0, sizeof(capabilities));

22 capabilities.can_generate_all_class_hook_events = 1;

23 error = (*jvmti)->AddCapabilities(jvmti, &capabilities);

24

25 /* Providing the pointers to the callback functions to this jvmtiEnv*/

26 (void)memset(&callbacks,0, sizeof(callbacks));

27

28 /* JVMTI_EVENT_VM_START */

29 callbacks.VMStart = &cbVMStart;

30 /* JVMTI_EVENT_VM_INIT */

31 callbacks.VMInit = &cbVMInit;

32 /* JVMTI_EVENT_VM_DEATH */

33 callbacks.VMDeath = &cbVMDeath;

34 /* JVMTI_EVENT_CLASS_FILE_LOAD_HOOK */

35 callbacks.ClassFileLoadHook = &cbClassFileLoadHook;

36

37 error = (*jvmti)->SetEventCallbacks(jvmti, &callbacks, (jint)sizeof(callbacks));

38

39 error = (*jvmti)->SetEventNotificationMode(jvmti, JVMTI_ENABLE, JVMTI_EVENT_VM_START, (jthread)NULL);

40

41 error = (*jvmti)->SetEventNotificationMode(jvmti, JVMTI_ENABLE, JVMTI_EVENT_VM_INIT, (jthread)NULL);

42

43 error = (*jvmti)->SetEventNotificationMode(jvmti, JVMTI_ENABLE, JVMTI_EVENT_VM_DEATH, (jthread)NULL);

44

45 error = (*jvmti)->SetEventNotificationMode(jvmti, JVMTI_ENABLE, JVMTI_EVENT_CLASS_FILE_LOAD_HOOK, (jthread)NULL);

46

47 return JNI_OK;

48

49 }

Figure 3.3: Example of JVMTI agent subscribed to the Class file load event
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1 /* Callback for JVMTI_EVENT_CLASS_FILE_LOAD_HOOK */

2 static void JNICALL

3 cbClassFileLoadHook(jvmtiEnv *jvmti, JNIEnv* env, jclass class_being_redefined, jobject loader,

4 const char* name, jobject protection_domain,

5 jint class_data_len, const unsigned char* class_data,

6 jint* new_class_data_len, unsigned char** new_class_data)

7 {

8 enter_critical_section(jvmti); {

9 if ( !gdata->vm_is_dead ) {

10 const char *classname;

11 classname = strdup(name);

12

13 /* The tracker class itself? */

14 if ((strcmp(classname, STRING(MTRACE_class)) != 0)) {

15 int system_class;

16 unsigned char *new_image;

17 long new_length;

18 new_image = NULL;

19 new_length = 0;

20

21 /* Call the class file write code to instrument class methods*/

22 java_crw_demo(cnum,

23 classname,

24 class_data,

25 class_data_len,

26 system_class,

27 STRING(MTRACE_class), "L" STRING(MTRACE_class) ";",

28 STRING(MTRACE_entry), "(II)V",

29 STRING(MTRACE_exit), "(II)V",

30 NULL, NULL,

31 NULL, NULL,

32 &new_image,

33 &new_length,

34 NULL,

35 &mnum_callbacks);

36

37 if ( new_length > 0 ) {

38 unsigned char *jvmti_space;

39 jvmti_space = (unsigned char *)allocate(jvmti, (jint)new_length);

40 /*send new class body to JVM*/

41 (void)memcpy((void*)jvmti_space, (void*)new_image, (int)new_length);

42 *new_class_data_len = (jint)new_length;

43 *new_class_data = jvmti_space;

44 }

45 else{

46 log_message(gdata->log, "Could not edit class %s\n",classname);

47 }

48 (void)free((void*)new_image);

49 }

50 } (void)free((void*)classname);

51 }

52 } exit_critical_section(jvmti);

53 }

Figure 3.4: Example of JVMTI agent instrumenting a class in the Class file load callback
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CHAPTER 4

Approach

We build an end-to-end bytecode debloating framework called JShrink. Given the byte-

code of a Java program and a set of test cases, JShrink takes three phases to debloat

bytecode and to verify its correctness. In Phase I, JShrink performs profile-augmented

static analysis to determine used and unused code. In Phase II, JShrink applies four byte-

code transformations: remove unused classes and class members, merge a class hierarchy to

delayer unnecessary abstractions, and inline methods to avoid indirection. Finally, JShrink

reruns the given test cases to check the behavior consistency between the original program

and its debloated version.

We apply three types of analyses—static reachability analysis, dynamic profiling, and

type dependency analysis to capture method invocation, field access, and class reference

relationships between class entities. This is essential to determine unused code in the presence

of dynamic language features and to ensure type safety of debloated bytecode, especially in

class hierarchy merging.

4.1 Static Reachability Analysis

Static call graph analysis is a standard method used by previous bytecode debloating tech-

niques [58, 25, 24] to decide unused methods. Given a set of methods (e.g., main methods,

test cases, etc.) as entry points, it analyzes the body of each method and identifies call sites

in the method body. Call graph analysis then constructs a directed graph for each entry

method and adds edges from the entry method to its callee methods, indicating that a callee

is reachable from the caller. Those callee methods are then treated as new entry points and
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the process continues until no additional methods are found, reaching a fix point.

Due to polymorphism in object-oriented languages, multiple call targets could be invoked

from a call site via dynamic dispatching, depending on the runtime type of the receiver ob-

ject. Various techniques have been proposed to approximate possible targets of dynamic

dispatching, e.g., class hierarchy analysis (CHA) [10], 0-CFA [49, 19], rapid type analysis

(RTA) [3], points-to analysis [47, 32], etc. Specifically, JShrink leverages CHA to construct

call graphs, which identifies all corresponding method implementations of a callee in the sub-

classes of the declared receiver object type and considers them as potential call targets. We

also experimented with alternative approaches such as RTA and points-to analysis. Though

these approaches can more precisely identify call targets than CHA, these approaches induce

more computation overhead and thus do not scale to large Java projects with many library

dependencies. Therefore, we choose CHA as a tradeoff, to include more large, representative

Java projects. We perform a whole-program analysis, including application code, imported

third-party libraries, and JRE, to build call graphs. We further extend call graphs with field

access instructions in each method using ASM [6] and associate the method with referenced

fields.

4.2 Dynamic Reachability Analysis

To handle dynamic language features in Java, we initially considered using a lightweight

dynamic analysis approach called TamiFlex [5], as it is a well known technique for address-

ing unsoundness caused by Java reflection. Tamiflex instruments Java reflection call sites

to capture method calls and field accesses via reflection at runtime. However, TamiFlex is

designed for reflection APIs only and thus lacks support for other dynamic features, which

leads to many test failures, evidenced by our comparison results in Section 5.1.6. To system-

atically account for dynamic features, a literature survey was conducted to define the scope

of dynamic features in Java.
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4.2.1 Definition of Scope

Landman et al. [28] analyzed real world projects to categorize the possible use cases of Java

Reflection and group the 181 public methods in the Java Reflection API into 17 functional

categories. We also referred to research by Sui et al. [53] and Reif et al. [45] which include

benchmarks for capturing the use cases of dynamic features in Java. Based on this analysis,

we created a comprehensive list of dynamic features in modern Java.

1. Reflection is a dynamic feature that enables users to dynamically instantiate classes,

access fields, and invoke methods. It is widely used in modern Java context and is the

foundation for many frameworks such as Spring and JUnit [28]. Figure 4.1 shows an

example of Java’s reflective call API. The method foo is not directly invoked from the

main method, but is invoked through reflection, which affects the generation of the call

graph.

1 import java.lang.reflect.*;

2

3 class Reflection{

4 public static void main(String[] args)

5 throws IllegalAccessException, InvocationTargetException, InstantiationException, NoSuchMethodException {

6

7 Class appClass = Reflection.class;

8 Object appObj = appClass.newInstance();

9

10 Method method1 = appClass.getMethod("foo");

11 method1.invoke(appObj);

12

13 Method method2 = appClass.getMethod(args[0]);

14 method2.invoke(appObj);

15 }

16 public List foo(){

17 System.out.println("Hello List " + fooCalled());

18 return null;

19 }

20 public Set foo(){

21 System.out.println("Hello Set " + fooCalled());

22 return null;

23 }

24 public void fooCalled(){

25 System.out.println("world!");

26 }

27 }

Figure 4.1: An example of Java reflection API
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2. Ambiguous Reflection refers to a special case where multiple potential targets exist

(e.g., overloading methods with different return types) for a dynamic invocation via

reflection. Such bytecode is often generated by bytecode manipulation instead of by

standard compilers. Figure 4.1 shows an example with overloaded foo methods. The

invocation is ambiguous which affects the generation of the call graph.

3. Dynamic Classloading involves classes loaded through custom class loaders. Fig-

ure 4.2 shows an example where a method is invoked on a class loaded through a

custom classloader. The class and method name could be parameters, which affects

the generation of the call graph.

1 class ClassLoading{

2 public static void main(String[] args) {

3 CustomClassLoader customClassLoader = new CustomClassLoader();

4 try {

5 Class<?> c = classLoader.findClass("CustomClassLoaderTarget");

6 c.getMethod("accessMethod").invoke(c.newInstance());

7 } catch (Exception e) {}

8 }

9 }

Figure 4.2: An example of Java Custom Classloading

4. Invokedynamic is a new bytecode instruction introduced in Java 7 that enables dy-

namic method invocation via method handles. It is often used to support lambda

expressions. Figure 4.3 shows an example of a Java lambda expression.

1 public class LambdaFunction {

2 public static void main(String[] args){

3 java.util.function.Function<Integer, String> c = (i) -> target();

4 c.apply(3);

5 }

6 public String target(Integer input) {

7 return null;

8 }

9 public String target() {

10 return null;

11 };

12 }

Figure 4.3: An example of Java Lambda Expression
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5. Dynamic Proxy refers to the proxy feature provided after Java 7 to dynamically

create invocation handlers for a class and its methods. Figure 4.4 shows an example

where the invoke method of the DynamicProxy class run as proxy for the methods in

the class ProxiedClass at runtime. The invoke method is not explicitly invoked and

the actually invoked method proxiedMethod might never be invoked inside the proxy.

This affects the generation of the call graph.

1 import java.lang.reflect.*;

2 public class DynamicProxy implements InvocationHandler {

3 @Override

4 public Object invoke(Object o, Method method, Object[] objects) throws Throwable {

5 System.out.println("Dynamic Proxy: "+method.getName());

6 return null;

7 }

8 }

9 public class DynamicProxyClient {

10 private ProxiedClass proxy;

11 public static void main(String[] args){

12 proxy = (ProxiedClass) Proxy.newProxyInstance(ProxiedClass.class.getClassLoader(), new Class[] { ProxiedClass.class }, new DynamicProxy());

13 proxy.proxiedMethod();

14 }

15 }

Figure 4.4: An example of Java Dynamic Proxy

6. Serialization refers to dynamically loaded classes via class deserialization. Figure 4.5

shows an example of a class deserialized and loaded at runtime.

1 import java.io.*;

2 public class DeserializationExample {

3 public static void main(String[] args) throws Exception{

4 ObjectInputStream ois = new ObjectInputStream(new FileInputStream(args[0]));

5 ((TargetInterface) ois.readObject()).target();

6 ois.close();

7 }

8 }

9 //Example of a Serializable class implementing TargetInterface

10 class Target implements TargetInterface, Serializable{

11 public void target(){

12 System.out.println("Hello world");

13 }

14 }

Figure 4.5: An example of invocation for a deserialized class
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7. Java Native Interface (JNI) is a framework that enables Java to call and be called

by native code. Figure 4.6 shows an example of a class with a JNI method.

1 //JNIExample.java

2 public class JNIExample {

3 static {

4 System.loadLibrary("native");

5 }

6 public static void main(String[] args) {

7 new JNIExample().target();

8 }

9 private native void target();

10 }

11 //JNIExample.h

12 JNIEXPORT void JNICALL JNIExample_target(JNIEnv *, jobject);

Figure 4.6: An example of invocation for a JNI method

8. sun.misc.Unsafe is a low level API which can be used to directly manipulate memory

in the JVM at runtime, including dynamically loading classes, throwing exceptions,

swapping instances, allocating new instances, etc. Figure 4.6 shows an example of the

use of sun.misc.Unsafe API where the reference of a variable is changed from one

class to another at runtime.

1 public class UnsafeExample {

2 public Target target;

3 public static void main(String[] args) throws Exception {

4 target = new Target();

5 //dynamically changing reference from Target to class Target2

6 sun.misc.Unsafe unsafe = null;

7 try {

8 Field f = sun.misc.Unsafe.class.getDeclaredField("theUnsafe");

9 f.setAccessible(true);

10 unsafe = (sun.misc.Unsafe) f.get(null);

11 unsafe.putObject(this,

12 Utility.getUnsafe().objectFieldOffset(UnsafeExample.class.getDeclaredField("target")),

13 new Target2());

14 } catch (Exception e) {}

15 target.target();

16 }

17 }

Figure 4.7: An example of the use of sun.misc.Unsafe to change reference at runtime
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A test project1 created to include all possible use cases of dynamic features is used to

systematically build the profiling tool and measure the soundness of the generated call graph

analysis at each step. The test project is included in Appendix C.

4.2.2 JMtrace

To handle various dynamic language features in Java, we develop our own native profiling

agent called JMtrace, which instruments method invocations using JVM TI APIs2 to inject

logging statements at the entry and exit of each method in a class during class loading.

JMtrace is based on the mtrace utility included as an example JVM TI agent with OpenJDK

83. It is implemented as a native profiling agent which leverages the bytecode instrumentation

approach. In this section, we discuss the different components of JMtrace.

4.2.2.1 Native Agent

A native JVM TI agent(mtrace.c) is responsible for subscription to JVM events, as well as

management and logging of information to an external log file. It subscribes to the following

events of the JVM TI API –

1. JVMTI EVENT VM INIT - Event at the initialization of a Java Virual Machine

2. JVMTI EVENT VM DEATH - Event at the death of a Java Virtual Machine

3. JVMTI EVENT CLASS FILE LOAD HOOK - Event at the load of a class file

4. JVMTI EVENT THREAD START - Event at the start of a new thread

5. JVMTI EVENT THREAD END - Event at the end/death of a thread

1https://github.com/jay-ucla/jvmmethodinvocations

2https://docs.oracle.com/javase/8/docs/technotes/guides/jvmti/

3http://hg.openjdk.java.net/jdk8/jdk8/jdk/file/687fd7c7986d/src/share/demo/jvmti/

mtrace
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The JVM initialization event is used to set up the necessary data structures inside the native

agent. The instrumentation for profiling is performed in the handler for the class file load

event. Every time a required class is loaded into JVM during execution, it triggers a class file

load event and invokes the handler method in the native agent. The agent stores information

about the loaded class in a global data structure (Figure 4.9) and iterates through all methods

in the class file. It injects each method with two callbacks – an invocation of method entry in

the JMtrace Callback Class at the beginning of every method, an invocation of method exit

in the JMtrace Callback Class before the return from the method. This is illustrated through

an example in Figure 4.8 which shows an Example class before and after instrumentation.

The JMtrace Callback Class is shown in Figure 4.13. For native Java methods(JNI), similar

callback injections are instrumented directly to the entry and exit methods in the native

agent.

1 class Example{

2 private int field1;

3 private void target1(){

4 System.out.println("target1");

5 }

6 public void target2(){

7 System.out.println("target2");

8 }

9 }

(a) Before instrumentation

1 class Example{

2 private int field1;

3 private void target1(){

4 Mtrace.method_entry(1,1);

5 System.out.println("target1");

6 Mtrace.method_exit(1,1);

7 }

8 public void target2(){

9 Mtrace.method_entry(1,2);

10 System.out.println("target2");

11 Mtrace.method_exit(1,2);

12 }

13 }

(b) After instrumentation

Figure 4.8: An Example Java class

The entry and exit methods in the native agent extract the invoked method signature,

callee information and class information from the thread instance. The information is stored

into a global object in the native agent as shown in Figure 4.9. In case this method had

been invoked by another method, the callee is appended in the list of callers for this method.

Otherwise, this method is added to the list of invoked methods with the callee as the only

member of the caller list as shown in the sample log in Figure 4.11 at line 3. The agent also
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1 /* Data structure to hold method and class information in agent */

2 typedef struct MethodInfo {

3 const char *name; /* Method name */

4 const char *signature; /* Method signature */

5 int calls; /* Method call count */

6 int returns; /* Method return count */

7 char *callers;

8 } MethodInfo;

9 typedef struct ClassInfo {

10 const char *name; /* Class name */

11 int mcount; /* Method count */

12 MethodInfo *methods; /* Method information */

13 int calls; /* Method call count for this class */

14 } ClassInfo;

15 /* Global agent data structure */

16 typedef struct {

17 /* JVMTI Environment */

18 jvmtiEnv *jvmti;

19 jboolean vm_is_dead;

20 jboolean vm_is_started;

21 /* Data access Lock */

22 jrawMonitorID lock;

23 /* Options */

24 char *include;

25 char *exclude;

26 int max_count;

27 /* ClassInfo Table */

28 ClassInfo *classes;

29 jint ccount;

30

31 /*Logfile*/

32 FILE *log;

33 } GlobalAgentData;

Figure 4.9: The global data structures in the native agent

maintains a count for the number of times any particular method has been invoked.

At the event of the death of the JVM, the captured information is logged to an external

file. Figure 4.10 shows a code snippet from the handler function for the JVM death event

that logs the profiling information into the log file. This file is later parsed to extract the

caller-callee relationships and referenced classes to obtain information for dynamic analysis

in JShrink. Figure 4.11 shows a snippet from the profiling log generated by JMtrace for a

sample Java application. The format for the log file is shown in Figure 4.12.
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1 log_message(gdata->log, "Class,%s,%d,calls\n", cp->name, cp->calls);

2 /* Sort method table (in place) by number of method calls. */

3 qsort(cp->methods, cp->mcount, sizeof(MethodInfo), &method_compar);

4 for ( mnum=cp->mcount-1 ; mnum >= 0 ; mnum-- ) {

5 MethodInfo *mp;

6 mp = cp->methods + mnum;

7 log_message(gdata->log, "Method,%s,%s,%d,calls,%d,returns,%s\n",

8 mp->name, mp->signature, mp->calls, mp->returns, mp->callers);

Figure 4.10: Native agent code snippet that logs the profiling information from global data

structures

1 Class,com/test/Main,22,calls

2 Method,staticHello,(Ljava/lang/String;)V,13,calls,13,returns,com.test.Main: main

3 Method,instanceHello,()V,2,calls,2,returns,com.test.Main: main;com.test.Main: innerHello

4 Method,main,([Ljava/lang/String;)V,1,calls,1,returns,

5 Method,reflectiveHello,(Ljava/lang/String;)V,1,calls,1,returns,sun.reflect.NativeMethodAccessorImpl: invoke0

6 Method,innerHello,()V,1,calls,1,returns,com.test.Main: main

7 Method,instanceHello,(Ljava/lang/String;)V,1,calls,1,returns,com.test.Main: main

8 Method,lambdaPrint,(Ljava/lang/String;)Z,1,calls,1,returns,com.test.Main: main

9 Method,staticHello,()V,1,calls,1,returns,com.test.Main: main

10 Method,<init>,()V,1,calls,1,returns,com.test.Main: main

11 Method,sayHello,(Ljava/lang/String;)V,0,calls,0,returns,(null)

Figure 4.11: Sample log file generated by JMtrace

1 # For Classes in Java application

2 Class,<ClassName>,<No. of times class is referenced in application>,calls

3 # For Methods in application class <ClassName>

4 Method,<MethodName>,<Method return type>,<No. of times invoked>,calls,<No. of times finished execution>,returns,<List of callee methods>

Figure 4.12: Profiling log file format
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4.2.2.2 JMtrace Callback Class

A Java class(Mtrace.java) includes the Java class and static methods which are invoked

from each instrumented method in the Java application at entry and exit. As shown in

Figure 4.13, these methods receive a thread instance and the relevant parameters to identify

the class in the native agent. The thread instance is used to obtain the caller information

which is passed on to the native method entry and method exit methods in the JMtrace

Native Agent along with the method information.

1 public class Mtrace {

2 /* At the very beginning of every method, a call to method_entry() is injected */

3 private static int engaged = 1;

4 private static native void _method_entry(Object thr, int cnum, int mnum, String caller);

5 public static void method_entry(int cnum, int mnum)

6 {

7 if ( engaged != 0 ) {

8 String caller = "";

9 StackTraceElement ste[] = Thread.currentThread().getStackTrace();

10 if(ste.length>3){

11 caller += ste[3].getClassName()+": "+ste[3].getMethodName();

12 }

13 _method_entry(Thread.currentThread(), cnum, mnum, caller);

14 }

15 }

16 /* Before any of the return bytecodes, a call to method_exit() is injected */

17 private static native void _method_exit(Object thr, int cnum, int mnum);

18 public static void method_exit(int cnum, int mnum)

19 {

20 if ( engaged != 0 ) {

21 _method_exit(Thread.currentThread(), cnum, mnum);

22 }

23 }

24 }

Figure 4.13: The entry and exit methods in the Mtrace class

4.2.3 Integration of JMtrace with JShrink

JMtrace is integrated into JShrink as an optional tool. JMtrace is integrated as an alter-

native to Tamiflex [5] or as an additive component for dynamic analysis. The integration

includes a Java class which is responsible for the interaction of JShrink and JMtrace. The

Java class executes JMtrace with a Java project test suite provided through JShrink to
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gather the run-time information from the project into a log file. The class also parses the

log file to extract callee-caller relationships and class references. JShrink uses this dynamic

information to augment the existing static call graph of the project with new entry points.

Figure 4.14 shows an example of such call graph augmentation through dynamic analysis.

Figure 4.14(a) contains a Java program which uses the dynamic proxy feature. Figure 4.14(b)

shows the call graph for the invocation of the target method in the ConcreteProxiedClass.

The white nodes show the part of the callgraph constructed through static analysis of the

code in (a). The DynamicProxy class implements the proxy method invoke, which is not

captured in the original call graph constructed through static analysis. JMTrace captures

1 import java.lang.reflect.*;

2 public interface ProxiedClass {

3 public void targetMethod();

4 }

5 public class ConcreteProxiedClass{

6 public void targetMethod(){ System.out.println("Target

Invoked"); }

7 }

8 public class DynamicProxy implements InvocationHandler {

9 @Override

10 public Object invoke(Object o, Method method, Object[]

objects) throws Throwable {

11 //Dynamic Proxy interrupts targetMethod

12 return null;

13 }

14 }

15 public class DynamicProxyClient {

16 private ProxiedClass proxy = (ProxiedClass) Proxy.

newProxyInstance(ConcreteProxiedClass.class.

getClassLoader(), new Class[] { ProxiedClass.class },

new DynamicProxy());

17 public void invokeTarget(){

18 proxy.targetMethod();

19 }

20 }

21

22 public class MyMain {

23 public static void main(String[] args){

24 new DynamicProxyClient().invokeTarget();

25 }

26 }

(a) Dynamic proxy example (b) Call graph for invokeTarget on line 24 in (a).

Figure 4.14: Example call graph augmentation through dynamic analysis.

the execution of the internal methods of the intermediate Proxy class created in the JVM and
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Table 4.1: Capability of Handling Different Dynamic Features

Java Feature Static Tamiflex JMtrace

Reflection #   

Reflection-ambiguous # G#  

Dynamic class loading #   

Dynamic proxy # #  

Invokedynamic G# G#  

JNI # #  

Serialization #   

Unsafe # G#  

the DynamicProxy class method invoke at runtime, and augments the call graph with these

additional nodes, shown in blue color in Figure 4.14(b). Thus, JMTrace helps capture the

runtime information not accessible through static analysis through profiling actual execu-

tion. In case of low test coverage from existing tests, this augmentation lets JShrink retain

functionality statically reachable from user-specified entry points, such as public methods,

main methods, and method entries from existing test cases. Since JMtrace only instruments

method bodies, it is not capable of identifying dynamically accessed fields via reflection.

Therefore, we customize TamiFlex [5] to only instrument reflection calls related to field ac-

cesses and use it together with JMtrace. Instrumentation to other reflection calls is disabled

to avoid redundant profiling.

Table 4.1 compares the capability of handling different kinds of dynamic features between

static call graph analysis, TamiFlex, and JMtrace performed using the test project. The test

project is included in its entirety in Appendix C.
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4.3 Type Dependency Analysis

Traditional reachability analysis only keeps track of invoked methods and accessed fields,

which is sufficient for method and field removal. Previous bytecode debloating techniques

consider a class unused if none of its methods or fields is reachable from entry points [57,

25, 24]. However, we find this definition of unused classes is problematic in practice. Be-

cause modern Java allows developers to reference classes in various ways not just limited

to variable and method declaration or class inheritance, but through pluggable annotations,

class literals, throws clauses, etc. Therefore, a program could only reference a class without

instantiating it, invoking a method on it, or accessing its field member. In such a case,

removing reference-only classes that do not have any method or field usage will cause a byte-

code verification failure during class loading in JVM or lead to ClassNotFoundException at

runtime. It is crucial to ensure type safety during class removal and class hierarchy collaps-

ing. Therefore, JShrink builds type dependency graphs by scanning through Java bytecode

using ASM. If a class A is referenced by a class B, we add an edge from B to A in the type

dependency graph.

Based on static analysis, profiling of dynamic features, and type-dependency analysis,

JShrink determines unused code at four granularities, listed below. We use “class” as a

general term for concrete classes, abstract classes, and interfaces in Java.

• Unused Method: A method is unused if it is not reachable from any given entry

point in the call graphs.

• Unused Field: A field is unused if it is not accessed by a used method in a call graph

or dynamically accessed via reflection.

• Unused Class: A class is considered unused, if none of the following three conditions

are satisfied: (1) A method in the class is reachable from given entry points; (2) A field

in the class is reachable from given entry points; (3) A descendant of this class in the

class hierarchy is used.
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• Reference-only Class: A class is not used but referenced by another used or reference-

only class based on given type dependency graphs. This is a special category of classes

not handled safely by existing bytecode debloating techniques [57, 25, 24]. In prior

work, unused classes are completely removed, if none of their class members are reach-

able. However, when replicating class-level bytecode transformations, we find that

this is an unsafe choice, causing many ClassNotFoundErrors at runtime. Therefore,

JShrink partially debloats reference-only classes to ensure type safety, as explained

in class hierarchy collapsing.

4.4 Bytecode Debloating Transformations

Inspired by Tip et al. [57], JShrink provides the following bytecode debloating transforma-

tions. We do not replicate class attribute removal and constant pool compression as they

are already implemented in Soot [60].

4.4.1 Unused Method Removal

JShrink provides three method removal options for a user to choose from—(1) completely

remove the definition of an unused method, (2) only remove the body of an unused method

but keep the method header, and (3) replace the method body with a warning statement

indicating the method is removed. To safely wipe a method body, JShrink injects byte-

code instructions to return dummy values if the return type is not void. The first op-

tion could achieve maximum code size reduction at the cost of safety, as it may lead to

NoSuchMethodError if a removed method is triggered in future usage. With the second and

the third options, unused methods are still defined in bytecode and thus programs will fail

gracefully without catastrophic program crashes. The third option is the most informative,

as it lets a user know which method is invoked at runtime but not captured by static analysis

or given test cases when using debloated software in the future.
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4.4.2 Unused Field Removal

Given an unused field, JShrink completely removes its definition. Note that this trans-

formation should be used in pair with method removal. If those unused methods accessing

an unused field are not removed, JVM will report FieldNotFoundError that crashes the de-

bloated software. Enabling this transformation alone requires fine-grained transformation

within a method body, e.g., removing all field access instructions and subsequent instructions

with data dependencies to the field.

4.4.3 Method Inlining

JShrink inlines a method if the method has only one call site in the call graph and the

method is the only call target the callsite. The former ensures that JShrink does not intro-

duce code duplication during inlining, while the latter is crucial for semantic preservation in

case of polymorphism.

Type safety of method inlining is widely discussed in the compiler literature [15, 16].

In modern Java context, JShrink applies three constraints to ensure type safety. First,

JShrink does not inline class constructors. Second, JShrink does not inline native meth-

ods, abstract methods, and interface methods as they do not have method bodies. Third,

JShrink does not inline a method if it accesses other class members that become invisible

after inlining (detailed in Section 4.6). Furthermore, JShrink does not inline synchronized

methods.

4.4.4 Class Hierarchy Collapsing

JShrink performs two basic transformations to collapse class hierarchy. The first, more

sophisticated, transformation is to merge a base class X and a subclass Y , if Y is the

only used subclass of X. JShrink checks if, for any overridden method m′ in Y , and the

corresponding original method m, only one of either m and m′ is used. If both are used,

JShrink does not collapse the classes. If this rule was not enforced, JVM would not be
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able to delegate an invocation on m to its overridden method, m′, based on the real type

of the receiver object at runtime. The second transformation is to remove unused classes.

Specifically, for a reference-only class, JShrink removes its class members and only retains

the class header to avoid ClassNotFoundError. If a reference-only class is a concrete class,

JShrink further injects a default constructor as enforced by JVM. If a reference-only class

is an interface, JShrink keeps those method declarations whose method implementations

in a subclass are used.

To implement the first transformation of merging a subclass Y into a base class X,

JShrink takes three steps. First, JShrink moves all used method and field members of X

into Y while removing unused class members in Y . Secondly, JShrink updates all references

to the merged subclasses, their method and field members, to their new locations after

merging. During the merging and updating process, name conflicts may occur due to method

overloading rules enforced by Java. For instance, class B may have overloaded methods void

m(A a) and void m(SubA a). After merging SubA to A and updating the parameter type of the

second method in B, the signatures of the two methods become identical. Therefore, to handle

name conflicts, JShrink renames methods and further updates references to those renamed

methods as needed. Since class constructors cannot be renamed, in instances where naming

conflicts with them, we add a new dummy integer parameter to “rename” a constructor and

update all call sites of the renamed constructor by pushing an integer value, 0, on the stack.

Though merging classes may not lead to significant size reduction, it reduces constant pool

duplication across classes and reduces unnecessary use of indirection and abstraction.

4.5 Checkpointing

While experimenting with real-world Java projects, we note that test failures may still occur

due to rare but challenging corner cases caused by known limitations of JVMTI and Soot

(Section 5.1.5). Therefore, JShrink implements an additional strategy of checkpointing

to ensure safety as an optional feature, which enables JShrink to ensure 100% semantic

preservation at the cost of code size reduction. Another motivation for the implementation
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of this feature was to let the users of JShrink extract the most benefit from the tool

with the assurance of preservation of the functionality of their code. The preservation is

maintained by leveraging the test suite of the program. It checkpoints each type of debloating

transformation, runs tests, and reverses failure-inducing transformations. In this section, we

discuss the details of this feature.

4.5.1 Checkpoint

A checkpoint refers to the state of the program at a fixed time during the processing of the

program by JShrink. The state of the program is represented by the actual class files of

the application code as well as the library dependency class files and JARs. The checkpoint

service in JShrink provides an interface in the code for copying the state of the program to

a specified location, running the test suite for the program, resolving original file paths for

program artifacts to the checkpoint location of those artifacts, and rolling back. The class

diagram for the Checkpoint class is shown in Figure 4.15 (a).

(a) (b)

Figure 4.15: Class Diagram for (a)Checkpoint (b)BackupService
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4.5.2 Backup Service

The backup service is a high level abstraction above checkpoints which manages various

checkpoints during the execution of JShrink for a particular program. It manages check-

points in a first-in, last-out fashion, with the latest checkpoint being available for verification

and manipulation in JShrink. It provides an interface to create a new checkpoint, resolve

class paths to a checkpoint, verify the current state at a particular checkpoint, and rolling

forward/backward the project code to any particular checkpoint. The class diagram for the

Backup Service class is shown in Figure 4.15 (b).

4.5.3 Workflow

The workflow of this feature in JShrink is as follows. The workflow of the Checkpointing

feature is also illustrated in the code snippet from JShrink in Figure 4.16.

1. BackupService is initialized inside the Application class.

2. An initial checkpoint is created before applying any transformation.

3. At the end of each transformation on the SOOT classes (in memory representation of

classes), workflow is kicked off for checkpoint verification.

4. A new checkpoint is created. This copies the original project folder to a temporary

location as mentioned at a path in backupFolder.

5. This temporary project copy is modified through JShrink.

6. Tests are executed for this copy.

(a) If all test cases pass, we move on.

(b) If test cases fail:

i. This checkpoint is deleted.

ii. Modified files are copied from the last checkpoint folder to the project folder.
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7. Modified files are copied from the last checkpoint folder to the project folder.

8. All checkpoints are deleted (All temporary copies of project are removed).

9. The Application exits after completing execution.

1 //add new checkpoint before applying tranformation

2 backupService.addCheckpoint(transform);

3

4 //update files in the checkpoint location

5 jShrink.updateClassFilesAtPath(backupService.resolveFiles(jShrink.getClassPaths()));

6

7 //execute test set

8 if(!backupService.validateLastCheckpoint()){

9 //if not safe

10 //remove the current checkpoint

11 backupService.removeCheckpoint();

12 //revert application code to previous checkpoint

13 backupService.revertToLast();

14 //clean up all checkpoints

15 while(backupService.removeCheckpoint()){}

16 System.err.println("Exiting after checkpoint failure - "+transform);

17 toLog.append(jShrink.getLog());

18 return false;

19 }

20 else{

21 //all tests successfully passed

22 return true;

23 }

Figure 4.16: Code snippet illutsrating checkpointing workflow

4.6 Implementation and Nuanced Extensions

We implement those bytecode debloating transformations using a Java bytecode analysis

and manipulation framework called Soot [60]. We use the CHA implementation in Soot for

static analysis, use ASM [6] to gather field accesses, and implement JMtrace using JVM

TI API [40]. In addition to dynamic profiling and type dependency analysis, we highlight

several nuanced extensions we implemented to ensure type safety and behavior preservation

of debloated software.

1. Co-variant return type. From Java 5 onward, JVM supports co-variant return types,

which allow an overridden method to have a return type different to the original.
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Therefore, instead of simply comparing whether two method signatures are the same,

we account for co-variant return types to determine overridden methods when merging

two classes. Otherwise, JVM will throw a verification error. An example is shown in

Figure 4.17.

1 class A {}

2 class B extends A {}

3 class C {

4 A target() { return new A(); }

5 }

6 class D extends C {

7 //Overrides target() in parent class C

8 B target() { return new B(); }

9 }

Figure 4.17: An example of co-variant return types in a class hierarchy

2. Class member visibility. When inlining a method or merging a class, it is important not

to break access controls. For example, if method m from class A, is to be inlined into

class B, JShrink enforces that m does not call other private methods in A. Otherwise,

JVM will raise IllegalAccessError since those private methods are not visible to B.

Similarly, if subclass A is in a different package compared with its superclass B and A

contains a protected method that is called by another class C in the same package as A,

merging A into B will cause IllegalAccessError since A.m becomes invisible to C after

moving to a different package. Before merging a class to a different package, JShrink

checks whether a protected method or field will become invisible after merging.

3. Lambda expression. Lambda expressions are introduced in Java 8. They are anony-

mous functions that can be passed as parameters to method calls. For example, in

v.forEach(x -> A.foo()), the lambda x -> A.foo() is passed to the forEach method

and could be executed at runtime. Therefore, the method call foo must be captured by

call graph analysis. Furthermore, this expression can be rewritten to v.forEach(A::foo(x))

using the new method reference operator “::”. JShrink checks for both cases and adds

missing edges between the caller and method calls in a lambda expression to call graphs.
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4. Class literals. Class literals such as X.class are compiled to string constants in Java

bytecode. It is critical to identify class references via class literals and add them to type

dependency graphs to avoid ClassNotFoundError. JShrink identifies class literals by

matching “*.class” against string constants used in a class. JShrink also updates the

class literal of a merged class to its superclass to avoid ClassNotFoundError.

5. Method inheritance. Merging classes in presence of both method overriding and inher-

itance could be problematic. Consider the following scenario. Suppose a base class

B inherits a method m from its super class A and its subclass C overrides m. If A.m is

reachable from an entry point, it is hard to decide whether A.m is actually invoked on A

objects or B objects due to polymorphism. If A.m is only invoked on A objects, we can

safely merge class C into B even when the overridden method C.m is also used. How-

ever, if A.m is invoked on B objects, moving C.m into B will alter the dynamic patching

behavior. In such a case, we make a conservative choice of not merging a subclass

to its base class, if (1) the base class inherits a used method from its superclass or

an ancestor, (2) the subclass also overrides the same method, and (3) the overridden

method is also used. An example is shown in Figure 4.18 along with a code snippet in

Figure 4.19.

Figure 4.18: An example of an unsafe inheritance hierarchy for class collapsing
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1 class A{

2 public void getType(){

3 System.out.println("Target A");

4 }

5 }

6 //Class B inherits target from A

7 class B extends A{

8 }

9 class C extends B{

10 @Override

11 public void getType(){

12 System.out.println("Target C");

13 }

14 }

15 class UnsafeExample{

16 //Unsafe to merge C into B

17 public static void main(String args[]){

18 A a = new B();

19 //if C is merged into B, the behaviour of a.target changes

20 a.getType();

21 C c = new C();

22 c.getType();

23 }

24 }

25 class SafeExample{

26 //Safe to merge C into B

27 public static void main(String args[]){

28 A a = new A();

29 //if C is merged into B, the behaviour of a.target in unchanged

30 a.getType();

31 C c = new C();

32 c.getType();

33 }

34 }

Figure 4.19: A code snippet demonstrating unsafe inheritance hierarchy for class collapsing

In summary, in comparison to prior debloating work [57, 25], we make major extensions

to handle modern Java: (1) augmenting static reachability analysis with JVM TI based

dynamic profiling, (2) incorporating type dependency analysis, (3) extending method inlining

and class hierarchy collapsing transformations to ensure type safety, and (4) all nuanced

extensions in Section 4.6 to handle new language features properly.
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CHAPTER 5

Evaluation & Results

We conduct a systematic evaluation of bytecode debloating transformations using modern

Java applications in Section 5.1 to tackle the research questions outlined in Chapter 1. In

Section 5.2, we conduct a systematic evaluation of our native dynamic profiler, to evaluate

its capability of handling different dynamic features in Java. This helps gain further insight

into the usefulness of dynamic profiling for bytecode debloating.

5.1 JShrink Evaluation

5.1.1 Benchmark

To conduct a systematic study on modern Java applications, we build an automated infras-

tructure to construct a benchmark. The infrastructure uses the Google BigQuery API1 to

query GitHub projects and automatically applies a rigorous set of filtering criteria listed

below. A complete list of the projects in the current benchmark is included in Appendix A.

• Popular Java projects. We are interested in high-quality Java projects, widely used by

software developers. Therefore, our infrastructure chooses projects with at least 100

GitHub stars from other developers. The star rating ranges from 188 to 16205 on our

benchmark, with an average of 3145.

• Automated build system. Our infrastructure requires a standardized API to automat-

ically resolve library dependencies, compile target projects, and run test cases. The

1https://cloud.google.com/bigquery/public-data/

42



current implementation supports Maven [37], a popular build system used in Java.

• Compilable. After downloading those projects, we exclude those that induce build

failures on our environment (an Amazon r5.xlarge instance with Ubuntu 18.04 and

JDK 1.8.0), due to specific hardware or library configurations.

• Executable tests. We rely on test cases to evaluate to what extent debloated software

preserves its original behavior. Therefore, after compiling a project, our infrastructure

runs the Maven test command and parses generated test reports to identify the number

of test cases and test failures. Projects with no test or any test failure are excluded.

• No JVM verification errors. Note that, when Soot writes code from its intermediate

language, Jimple, back to bytecode, it automatically applies several optimizations such

as constant pool compression. Therefore, we first pre-process all Java bytecode using

Soot to fairly measure code size reduction achieved by JShrink. In this preprocessing

step, fatal JVM verification errors could occur in some Java projects. We discard those

projects due to JVM verification errors.

• No Timeout. Our infrastructure enforces a timeout constraint on the profile-augmented

static analysis, since generating call graphs for some projects may take an excessively

long time. We set this timeout to 10 hours to keep our research experiment under a

reasonable time.

Table 5.1: Project statistics

Stars Tests Libs SLOC (App Only) Size (KB: App+Libs)2

Max 16,209 1,081 69 99,779 114,312

Min 188 1 0 328 30

Mean 3,135 237 15 14,729 15,734

Median 2,000 60 9 5,863 3,193

Total 69,189 5,213 332 324,035 346,160

SD 3,595 370 17 22,288 30,766
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The final benchmark shown in Table 5.2 covers a wide spectrum of Java programs, includ-

ing popular libraries, web applications, development and testing frameworks, and desktop

applications. Table 5.1 summarizes the statistics for those 26 benchmark programs. All are

popular GitHub projects with a median of 2,000 stars, where the average number of test

cases and external library dependencies are 237 and 15 respectively. The size ranges from

30KB to 112MB. The median is 3MB. Cobertura [1] reports 34.1% statement coverage by

their existing tests, which we use for assessing behavior preservation after debloating.

5.1.2 Experiment Setup and Baselines

Our experiments run on an Amazon r5.xlarge instance (3.1 GHz 4-core Intel Xeon Platinum

processor, 32GB Memory) with Ubuntu 18.04 and JDK 1.8.0 installed. We choose this

standard cloud-based setup to ease the replication effort for other researchers. We compare

JShrink with Jax [57], JRed [25], and ProGuard [20]. Since both Jax and JRed are not

available, we faithfully re-implement them based on their paper descriptions.

Jax includes the most comprehensive set of bytecode transformations. To replicate Jax, we

adapt JShrink to use static call graph analysis only and disable Section 4.6’s extensions.

Jax imposes an additional constraint that requires unused, to-be-removed classes must not

have any derived classes. So we modify the class collapsing transformation accordingly.

JRed is recent but only supports method removal and class removal. Both tools rely on

static call graph analysis only. To replicate JRed, we adapt JShrink to use static call

graph analysis exclusively, only enable unused method removal and unused class removal,

and disable all extensions from Section 4.6.

ProGuard shrinks and obfuscates Java bytecode and is publicly available. It has been

integrated into Android SDK and is widely used to optimize Android applications. Similar to

Jax and JRed, ProGuard also only performs static analysis. It does not construct call graphs

but instead only traverses bytecode instructions in a given method to calculate a transitive

2The total size reported is that of project and library dependencies in their compiled states.
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closure of all referenced classes, methods, and fields. Unlike Jax and JRed, ProGuard has

some static analysis support for Java reflection but is not accurate, since it only analyzes

hardcoded strings passed into a pre-defined set of reflection calls. As ProGuard is publically

available, we evaluate it directly. We use version 6.3 in this experiment.

5.1.3 Experiments

We run JShrink on the benchmark of 26 popular Java projects and compare it with three

existing bytecode debloating techniques to answer the questions outlined in Chapter 1:

RQ1 What Java bytecode size reductions are achievable when applying different kinds of

transformations?

RQ2 To what extent program semantics is preserved when debloating software?

RQ3 What are the trade-offs between debloating potential and preservation of software

semantics?

RQ4 How robust is the debloated software to unseen executions such as new test cases?

5.1.4 RQ1: Code Size Reduction

To answer RQ1, we apply the four transformations implemented in JShrink on each project

individually and en-masse. The evaluations of Jax [57] and JRed [25] in their original papers

only use main methods as the entry points of their static analysis. However, we find that

many projects such as gson and java-apns in our benchmark are library projects whose public

classes and methods are potentially invoked by downstream client projects. Therefore, in

our experiments, we make a conservative choice of setting all public methods, main methods,

and test methods as entry points to maximally approximate possible usage.

We report the size reduction of bytecode only, excluding resource files. Column Trans-

formations in Table 5.2 shows the size reduction ratio achieved by each transformation.
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Table 5.2: Results of debloating the benchmark projects.

S.No. Application Tests
Transformations Code Size Reduction Test Failures

MR FR CC MI JRed Jax ProGuard TamiFlex JShrink JShrink-C JRed Jax ProGuard TamiFlex JShrink JShrink-C

1 jvm-tools 102 1.7% 0.6% 0.0% 2.0% 2.2% 5.2% 12.2% 4.2% 4.2% 4.2% X (0) × (102) X (0) X (0) X (0) X (0)

2 bukkit 906 15.4% 1.2% 0.2% 1.9% 19.8% 24.0% 72.7% 18.5% 18.5% 18.5% × (906) × (906) × (39) × (3) X (0) X (0)

3 qart4j 1 42.2% 3.7% 0.2% 0.9% 58.0% 64.2% 84.8% 46.8% 46.8% 46.8% X (0) X (0) X (0) X (0) X (0) X (0)

4 dubbokeeper 1 13.8% 1.5% 0.2% 1.9% 17.2% 20.9% 73.1% 17.3% 17.3% 17.3% × (1) × (1) X (0) X (0) X (0) X (0)

5 frontend-maven-plugin 6 18.7% 1.6% 0.2% 2.0% 24.3% 28.2% 65.8% 22.4% 22.4% 22.4% X (0) X (0) X (0) X (0) X (0) X (0)

6 gson 1050 0.3% 0.8% 0.0% 4.4% 0.4% 5.8% 2.3% 5.5% 5.5% 5.5% × (1) × (1) × (58) X (0) X (0) X (0)

7 disklrucache 61 0.1% 1.3% 0.0% 0.2% 0.1% 1.9% 0% 1.7% 1.7% 1.7% X (0) X (0) X (0) X (0) X (0) X (0)

8 retrofit1-okhttp3-client 9 8.4% 0.9% 0.0% 2.2% 11.0% 14.5% 22.7% 12.3% 11.5% 11.5% × (9) × (9) × (3) × (3) X (0) X (0)

9 rxrelay 58 15.7% 1.1% 0.0% 0.7% 17.5% 19.3% 63.5% 17.5% 17.5% 17.5% × (28) × (58) X (0) X (0) X (0) X (0)

10 rxreplayingshare 20 20.1% 0.9% 0.2% 0.9% 24.1% 27.5% 91.9% 22.1% 22.1% 22.1% × (20) × (20) X (0) X (0) X (0) X (0)

11 junit4 1081 1.71% 0.5% 0.1% 4.8% 2.3% 8.0% 9.0% 6.5% 6.8% 1.37% × (1081) × (1081) × (43) × (17) × (13) X (0)

12 http-request 163 0.2% 2.6% 0.0% 3.8% 0.3% 6.7% 0.1% 6.6% 6.6% 6.6% X (0) X (0) × (15) X (0) X (0) X (0)

13 lanterna 34 0.2% 0.8% 0.6% 1.9% 0.2% 2.4% 0% 1.9% 2.0% 2.0% X (0) × (34) X (0) X (0) X (0) X (0)

14 java-apns 111 13.8% 1.3% 0.3% 3.4% 16.0% 21.9% 34.4% 18.9% 18.9% 18.9% × (9) × (107) × (18) X (0) X (0) X (0)

15 mybatis-pagehelper 106 20.1% 1.4% 0.1% 2.3% 25.5% 28.6% 65.0% 24.7% 23.9% 21.55% × (106) × (106) × (85) × (100) × (55) X (0)

16 algorithms 493 0.0% 0.3% 0.0% 5.1% 0.0% 5.6% 3.8% 5.5% 5.5% 5.5% X (0) X (0) X (0) X (0) X (0) X (0)

17 fragmentargs 15 8.9% 2.7% 0.0% 0.1% 11.0% 14.7% 16.8% 11.6% 11.6% 0.0% × (4) × (4) × (4) × (4) × (4) X (0)

18 moshi 835 0.2% 0.0% 0.0% 0.0% 0.2% 0.3% 58.2% 0.2% 0.2% 0.2% × (835) × (835) × (52) X (0) X (0) X (0)

19 tomighty 26 16.5% 1.5% 0.1% 2.2% 20.7% 24.7% 56.4% 20.2% 20.1% 20.1% X (0) X (0) X (0) X (0) X (0) X (0)

20 zt-zip 121 5.4% 2.4% 0.6% 2.9% 6.4% 13.3% 16.4% 11.3% 11.3% 11.3% × (110) × (110) × (115) X (0) X (0) X (0)

21 gwt-cal 92 16.48% 0.69% 0.05% 0.28% 19.37% 20.77% 31.6% 17.51% 17.50% 17.50% × (3) × (3) X (0) X (0) X (0) X (0)

22 Java-Chronicle 8 0.00% 1.09% 0.95% 1.44% 0.00% 3.48% 0.0% 3.48% 3.48% 3.48% X (0) X (0) X (0) × (8) X (0) X (0)

23 maven-config-processor-plugin 77 25.37% 3.20% 0.29% 0.98% 31.5% 35.29% 82.0% 29.82% 29.81% 29.81% × (21) × (21) × (20) X (0) X (0) X (0)

24 jboss-logmanager 42 11.09% 0.48% 0.04% 1.93% 11.69% 14.33% 17.0% 26.18% 13.55% 13.55% X (0) X (0) × (24) X (0) X (0) X (0)

25 autoLoadCache 11 16.5% 1.5% 0.3% 1.9% 18.2% 21.9% Crash 20.2% 20.2% 16.54% × (10) × (10) Crash × (7) × (9) X (0)

26 tprofiler 3 4.7% 4.1% 0.0% 1.4% 6.5% 13.5% Crash 10.2% 10.2% 10.2% X (0) X (0) Crash X (0) X (0) X (0)

Total 5432 — — — — — — — — — — 3174 3408 496 170 81 0

Mean 209 11.0% 1.0% 0.1% 2.1% 13.0% 17.0% 33.8% 15.0% 14.2% 13.3% — — — — — —

Median 60 9.9% 1.23% 0.1% 1.9% 11.4% 14.6% 19.8% 14.8% 12.57% 12.52% — — — — — —

Compared with the other three transformations, method removal (Column MR) is the most

effective in size reduction, achieving an average of 11.0% reduction (up to 42.2%). Method

inlining (Column MI) and field removal (Column FR) reduce bytecode by 2.1% and 1.0%

respectively on average. Surprisingly, despite the significant amount of extension and engi-

neering effort, class hierarchy collapsing (Column CC) only achieves a minimal reduction of

0.1% on average (up to 0.6%).

Column Code Size Reduction in Table 5.2 shows the size reduction achieved by all transfor-

mations, compared with Jax, JRed, and ProGuard. Specifically, Column JShrink-C shows the

size reduction when enabling the checkpoint feature to automatically reverse failure-inducing

transformations. When applying all transformations together, JShrink can reduce a project

by up to 46.8% (14.2% on average). Checkpointing only has a minimal impact on size reduc-

tion (0.9% less reduction) while achieving 100% semantic preservation. JRed achieves the
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smallest size reduction (13.0% on average). This is because JRed only supports two kinds of

transformations, method removal and class removal. Though both Jax and JShrink support

the same set of transformations, Jax achieves a larger size reduction, 17.0% in comparison

to 14.2% in JShrink for two reasons. First, JShrink retains dynamically called methods

and loaded methods. Second, JShrink partially debloats reference-only classes, while Jax

completely removes them. ProGuard crashes on two projects due to a known bug in Pro-

Guard while performing partial evaluation on strings. Compared with JShrink, ProGuard

reduces code more aggressively (33.8% on average) because it performs static reference-based

analysis, producing a relatively smaller set of reachable methods. However, ProGuard causes

6X more test failures than JShrink, as elaborated in the next section.

5.1.5 RQ2: Semantic Preservation

Reduction in bytecode size, however, is only meaningful if the semantics of the target project

is preserved. To assess how closely JShrink preserves program semantics, we run existing

test cases before and after debloating. We consider a program to have broken semantics

if there exist any test failures after debloating. Column Test Failures shows the semantics

preserving quality for JShrink, Jax, JRed, and ProGuard. “X” denotes a project has no

test failure after debloating, while “×” denotes test failures exist after debloating. The

numbers in brackets show the number of failing tests.

When checkpointing is enabled, JShrink achieves 100% behavior preservation as ex-

pected. Disabling checkpointing leads to test failures in 4 projects only. Checkpointing does

not cause significant loss in size reduction, because a single kind of transformation, class

hierarchy collapsing, leads to most test failures (75 of 81) while contributing the least to size

reduction (0.1% on average). The root cause is due to existing bugs in Soot. Soot throws

runtime exceptions when rewriting some classfiles, which interferes our ability to update all

classfiles that reference a merged class when collapsing class hierarchies. By simply reverting

failure-inducing class collapsing transformations, JShrink avoids most test failures.

By contrast, JRed, Jax, and ProGuard cause test failures in 15, 17, and 11 projects
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1 i f ( ob j e c t instanceof SuperClass ){

2 ¬

3 } else i f ( ob j e c t instanceof SubClass ){

4 ­

5 }

Figure 5.1: A failure induced by class reference updating.

respectively. Without checkpointing, only 81 of 5432 test cases fail after debloating using

JShrink. This gives JShrink a test pass rate of 98.5%, in comparison to 41.6%, 37.3%, and

91% by JRed, Jax, and ProGuard respectively. This indicates that incorporating dynamic

profiling, type-dependency analysis, and those nuanced extensions are crucial to semantics

preservation. The majority of test failures caused by JRed and Jax are due to fatal JVM

NoClassDefFoundError and ClassNotFoundException verification errors that crash the

entire test execution — for JRed, 10 of 26 projects fail with these fatal exceptions, while

using Jax results in 13 projects failing fatally. For ProGuard, most test failures are caused

by imprecise static analysis. Though ProGuard strives to handle Java reflection by statically

analyzing string arguments passed into a predefined set of reflection APIs, such static analysis

is neither accurate nor complete, which justifies our choice of augmenting static analysis with

profiling for dynamic language features.

5.1.5.1 An in-depth inspection of test case failures

We rigorously analyzed the cause of other test failures caused by JShrink and classified

them into rare but challenging corner cases. We find that JShrink causes failures in 4 projects.

In total, 81 test cases fail, of 5,432 within the benchmark set. This gives JShrink a pass rate

of 98.5%. Of those 81 failing test cases, we outline below in what manner JShrink breaks

software semantics.

Conditional class reference update failure When a class is collapsed, the subclass

is merged into the superclass, and the subclass is renamed to that of the superclass. E.g.,
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subclass B merged into superclass A would result in B being deleted and all instances of B

in the target application being renamed to A. In most cases this is not a problem. However,

in cases where branching is dependent on an object’s type, errors can arise.

Figure 5.1 shows an example of this behaviour. If object is an instance of SubClass

the branch at ­ would be executed. However, if SubClass is merged into SuperClass via

the class heirarchy collapsing transformation, all instances of SubClass are refactored to

SuperClass. Therefore, the object instance, now an instance of SuperClass, would result

in the branch at ¬ being executed. This thereby breaks the semantics of the program. We

find this problem causes 5.7% of all test case failures. Rectifying this scenario would require

the class hierarchy collapsing to carry out more complex transformations on such conditional

statements.

Soot Issue The field removal, method inliner, and class hierarchy collaper transformations

remove fields, classes, and methods. For these removal to be successful, all references to these

components must be removed otherwise runtime exceptions can be received when classes,

containing references to these non-existant components, are loaded.

However, Soot, the bytecode analysis and modification framework which JShrink builds

upon, is still under active development and therefore is unable to process all Java files.

Though a rare occurance, this breaks our ability to modify these files. JShrink skips these

files for modification but, if these files contain references to removed components, and this

unmodifiable class is loaded at runtime, exceptions can be thrown. In some cases, SOOT

results in malformed Jimple body, which leads to runtime errors. We find this issue results in

a majority of errors received when running JShrink on our benchmark set. The prevalence

of originating from Soot will decrease as Soot continues to mature.

Inlining generic class method invoked through reflection An instance of an anony-

mous class which implements a generic abstract class has 2 versions of the overidden methods

- the method with the exact type T which was used during initialization, called method1(T)
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shown in Figure 5.2, and a method with java.lang.Object in place of the type T, which

invokes method1 internally and is the actual face of this method, called method1(Object)

shown in Figure 5.2. Since method1(T) is only invoked in method1(Object) with no other call

sites, JShrink inlines method1(T) into method1(Object). An issue occurs in junit4 where a

class reflectively searches its class hierarchy for an implementation of method1 to assign the

value of a field. After inlining, this field is assigned the value java.lang.Object instead of

T. This causes unexpected behaviour leads to test case failure.

1 public abstract class Example<T>{

2 protected abstract boolean method1(T var1);

3 }

4 class Implementer$1 extends Example<MyClass>{

5 public boolean method1(MyClass item){

6 return item.boolField;

7 }

8 public boolean method1(Object item){

9 return this.method1((MyClass)item);

10 }

11 }

Figure 5.2: Structure for example anonymous class implementing a generic abstract class

Dynamic code generation In one project, fragmentargs, we found that errors occurred

due to dynamic code generation. Using templates of Java files, code was created and compiled

at runtime. An example is shown in Figure . JShrink analyzes all the bytecode prior to

execution and does not check, while running our dynamic analysis, whether new classes

were created. Therefore, in several instances, we break the semantics of the code. Dynamic

code generation results in an incomplete view of the program which would require significant

engineering effort to solve. Fortunately this problem is rare, accounting for 4 test case failures

out of 81.

5.1.6 RQ3: Trade-offs

To further understand the trade-offs between debloating potential and semantic preserva-

tion, we vary entry points for JShrink’s reachability analysis and also compares with an
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1 import com.google.testing.compile.JavaFileObjects;

2 import static com.google.common.truth.Truth.assert_;

3 import static com.google.testing.compile.JavaSourceSubjectFactory.javaSource;

4 @Test

5 public void assertClassCompilesWithoutError() {

6 String template = "ClassTemplate.java";

7 assert_().about(javaSource())

8 .that(JavaFileObjects.forResource(template))

9 .compilesWithoutError()

10 }

Figure 5.3: Dynamically compiled class in test cases.

alternative profiler called TamiFlex [5].

5.1.6.1 Entry point analysis.

As discussed in Section 4.1, JShrink functions by running call-graph analysis on entry

points. These entry points are a union of two sets: the set of dynamically accessed methods

determined via runtime profiling, and the set of all public, main, and test methods, deter-

mined via static analysis. While the former is dependent on the test suite of each project,

the latter can be set manually. E.g., a user of JShrink may determine that only the main

entry point needsi to be processed as it is the only known entry point to the application.

Such decisions may result in a smaller call-graph and thus increase the deboating potential

of a target project. On the other hand, selecting fewer entry points can make the deloated

software less robust without complete knowledge of used methods. For example, a method

may be removed despite being used by the project via some unexplored entry point.

To understand this trade-off, we run JShrink on all our projects using the main method

as an entry point, the public methods, and just the test methods alone as entry points. Ta-

ble 5.3 shows the experiment results with the baseline where all such methods are considered

as entry points. The size reduction is consistently larger when we select a subset of entry

points to the reachability analysis. When targeting the test entry points, projects can be

debloated by 36.6% more than our conservative baseline. Though, in every case where a

subset of entry points are chosen, the number of test failures increases. While only 1.5% of
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all tests fail when targeting all entry points, this figure jumps to 3.4%, a 70% increase in

test case failures, when selecting a subset.

We therefore conclude that the size reduction and robustness depend on what we choose

as entry points. If preserving program semantics is a hard constraint, we suggest the con-

servative choice of setting all possible entry points.

Table 5.3: Entry Point Analysis.

Entry Point Size Reduction Test Failures

Main, Test, & Public 14.2% 81 (1.5%)

Main Only 18.6% 186 (3.4%)

App Public Only 18.3% 157 (2.9%)

Test Only 19.4% 187 (3.4%)

5.1.6.2 JMtrace vs. TamiFlex.

As discussed in Section 4.2, our native profiler, JMtrace, uses JVMTI to instrument method

bodies in any classes loaded in a JVM. Therefore, it can capture all dynamically invoked

methods. By contrast, TamiFlex [5] only instruments a predefined set of reflection APIs

and thus is considered more light-weight. The two TamiF. columns in Table 5.2 show the

size reduction and test failures caused by the TamiFlex variant of JShrink. We perform

a rigorous comparison between JMTrace and TamiFlex in Section 5.2 and further discuss

these results in Section 5.2.2.

5.1.6.3 An in-depth inspection.

To investigate which extension aided in improving behavior preservation, we chose one

project, java-apns for a thorough investigation into each failure. This is because there are

total 3174 and 3408 test failures for JRed and Jax respectively; thus, it would be prohibitively

time consuming to examine all test failures individually for all projects. java-apns produces

107 test failures after Jax but was error-free when processed by JShrink. We manually
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examined and determined what extension was responsible for rectifying the failure. Incorpo-

ration of JMtrace reduced test failures by 59%. The rest of the enhancements such as type

dependency analysis all contribute to improving a test pass rate, but none was the dominant

contributor. This result indicates that handling dynamic language features is absolutely

necessary, and each of the remaining enhancements contributes to behavior preservation.

5.1.7 RQ4: Software Debloating Robustness

Finally, we assess the robustness of debloated software by running new tests not seen during

dynamic profiling. We use 80% of the original test suite in each project for profiling and de-

bloating. Then we use the remaining 20% as a hold-out test set for examining the robustness

of each debloated project. In particular, for the three projects with one test case, we only use

their tests for robustness assessment. The hold-out test set contains 42 test cases on average.

As shown in Table 5.4, JShrink does not cause any test failures in 22 out of 26 projects when

running the debloated project on its hold-out test set. JShrink causes 3, 5, 45, and 1 test

failures in the remaining four projects respectively—retrofit1-okhttps3-client, junit,

java-apns, and autoLoadCache. This implies that, though there is a chance that unseen

executions may cause runtime exceptions in debloated software, the chance is relatively low

— only 4 out of 26 projects (15%) in our benchmark. This should be attributed to the design

choice of using both static reachability analysis and dynamic profiling in JShrink. While

dynamic profiling precisely captures all invoked methods in previous executions and handles

dynamic features, static reachability analysis overapproximates other potential reachable

code from given entry points, improving the robustness of debloated software compared to

purely dynamic profiling alone.

5.2 JMtrace Evaluation

In this section, we compare the performance of JMTrace to an alternative profiling technique

called TamiFlex [5], using a rigorous benchmark of Java dynamic features. We further
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Table 5.4: Results of held-out tests for the benchmark projects.

Application Tests Tests left out Test Failures
Test Failures

(Table 5.2)

bukkit 906 180 18 18

disklrucache 61 1 0 0

rxrelay 58 10 0 0

rxreplayingshare 20 2 0 0

retrofit1-okhttp3-client 9 3 3 0

Java-chronicle 8 1 0 0

tprofiler 3 1 0 0

jvm-tools 102 40 0 0

qart4j 1 1 0 0

dubbokeeper 1 1 0 0

frontend-maven-plugin 6 6 0 0

gson 1050 209 0 0

gwt-cal 92 15 0 0

jboss-logmanager 42 42 0 0

junit4 1081 215 18 13

http-request 163 2 0 0

lanterna 34 3 0 0

maven-config-processor-plugin 77 14 0 0

java-apns 81 17 45 0

mybatis-pagehelper 106 22 55 55

algorithms 493 99 0 0

autoLoadCache 11 3 10 9

fragmentargs 15 3 4 4

moshi 835 181 0 0

tomighty 26 13 0 0

zt-zip 121 21 0 0
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compare JShrink to a variant of JShrink that uses TamiFlex instead of JMtrace through

the context of JShrink experiment results presented in Table 5.2.

5.2.1 Benchmark

Sui et al. [53] presents a micro-benchmark3 to measure the coverage of dynamic Java fea-

tures by static analysis tools. Their main aim is to capture all features that allow the user

to customise some aspects of the execution semantics of a program. It provides a simple

structure as deterministic source and target methods for each dynamic feature in Java. In

addition, it provides a perfect driver in the form of unit test cases which invoke each source

method. This micro-benchmark, although developed to measure static analysis performance,

works just as well for measuring coverage through a hybrid approach and for our purpose of

gauging the precision of our approach. The benchmark catalogues of a comprehensive list

of dynamic features in modern Java and includes implementations of these features in the

form of Java classes as discussed below:

5.2.1.1 Reflection

The benchmark includes twelve use cases each for different use cases of reflection. The use

cases include different reflection APIs available in Java. It includes simpler reflection cases

such as cases where the parameters to Method.invoke, Class.getMethod are accessible at

the call site and more complex use cases of reflection invocations which require inter method

and intra method analysis of data and control flow.

1. dpbbench.reflection.instantiation.Basic1 - uses the getConstructor and the

newInstance API to instantiate a new object of a Target inner class. The profiling

tool needs to log the invocation of the class constructor as part of the call graph.

2. dpbbench.reflection.instantiation.Basic2 - uses the newInstance API to instan-

tiate a new object of a Target class that is not an inner class. The profiling tool needs

3https://bitbucket.org/Li_Sui/benchmark/src/default/
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to log the invocation of the class constructor as part of the call graph.

3. dpbbench.reflection.instantiation.ConstructorOverloading - obtains an over-

loaded constructor of a target class using the getConstructor API. The newInstance

API is then to instantiate a new object of a Target inner class as shown below. The

profiling tool needs to log the invocation of the class constructor as part of the call

graph.

c l a z . getConstructor (new Class [ ] { ConstructorOver loading . class ,

S t r ing . class } ) . newInstance ( this , ” h e l l o ” ) ;

4. dpbbench.reflection.instantiation.Interprocedural1 - uses the Class.forName

API to load a class with a parameterized name. The name of the class is loaded

loaded from an external file. The class is then used with the getConstructor and

the newInstance API to instantiate a new object. The profiling tool needs to log the

invocation of the class constructor as part of the call graph.

5. dpbbench.reflection.instantiation.Interprocedural2 - uses the Class.forName

API to load a class with a parameterized name. The name of the class is loaded by

invoking a method of another class as shown below. The class is then used with the

getConstructor and the newInstance API to instantiate a new object. The profiling

tool needs to log the invocation of the class constructor as part of the call graph.

c l a z = Class . forName (new ClassNameProvider ( ) . getClassName ( ) ) ;

6. dpbbench.reflection.instantiation.Intraprocedural1 - uses the Class.forName

API to load an inner class with a parameterized name declared as a String inside the

same class. It then uses the getConstructor and the newInstance API to instantiate

a new object. The profiling tool needs to log the invocation of the class constructor as

part of the call graph.

7. dpbbench.reflection.invocation.Basic - uses the getDeclaredMethod API to find

a target method and the Method.invoke API to invoke it. The name of the method is
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declared as a String. The profiling tool needs to log the invocation of method as part

of the call graph.

8. dpbbench.reflection.invocation.Interprocedural1 - uses the getDeclaredMethod

API to find a target method and the Method.invoke API to invoke it. The name of the

method is parameterized and loaded from an external file. The profiling tool needs to

log the invocation of method as part of the call graph.

9. dpbbench.reflection.invocation.Interprocedural2 - uses the getDeclaredMethod

API to find a target method and the Method.invoke API to invoke it. The name of

the method is parameterized and loaded by invoking a method of another class. The

profiling tool needs to log the invocation of method as part of the call graph.

10. dpbbench.reflection.invocation.Intraprocedural1 - uses the getDeclaredMethod

API to find a target method in the same class and the Method.invoke API to invoke

it. The name of the method is parameterized and declared as a String in the main

method. The profiling tool needs to log the invocation of method as part of the call

graph.

11. dpbbench.reflection.invocation.MethodOverloading - uses the getDeclaredMethod

API to find an overloaded target method in the same class with a particular parameter

type as shown below. It then uses the Method.invoke API to invoke it. The name of the

method is parameterized and declared as a String in the main method. The profiling

tool needs to log the invocation of the correct method as part of the call graph.

m = MethodOverloading . class .

getDeclaredMethod ( ” t a r g e t ” , new Class [ ] { St r ing . class } ) ;

12. dpbbench.reflection.invocation.ReturnTypeOverloading - - uses the getDeclaredMethod

API to find an overloaded target method in another class in the project classpath. It

then uses the Method.invoke API to invoke it. The profiling tool needs to log the

invocation of the correct method as part of the call graph.
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5.2.1.2 Reflection with ambiguous resolution

The benchmark includes two use cases for ambiguous reflection where the classes have varied

behaviour depending on the exact JVM used for execution.

1. dpbbench.reflectionAmbiguous.Invocation - iterates over all the methods of the

class using the getDeclaredMethods API to find and invoke a method with a particular

annotation. Since multiple methods can have the same annotation, the resolution is

ambiguous and any one of the methods can be invoked. The profiling tool needs to log

the method which was actually executed at runtime as part of the call graph.

2. dpbbench.reflectionAmbiguous.ReturnTypeOverloading - finds a method using the

getDeclaredMethod API to find and invoke a method that has been overloaded with

different return types as shown below. Since the return type cannot be specified in the

getDeclaredMethod API, the resolution is ambiguous and any one of the methods can

be invoked. The profiling tool needs to log the method which was actually executed at

runtime as part of the call graph.

public Set t a r g e t ( ){ return null ; }

public L i s t t a r g e t ( ){ return null ; }

5.2.1.3 Dynamic classloading

The benchmark includes one use case for dynamic classloading.

1. dpbbench.dynamicClassLoading.CustomClassLoader - uses a custom class loader to

load a class from a byte array and creates a new instance using the newInstance API.

The profiling tool needs to log the invocation of the correct constructor and the custom

class loader methods as part of the call graph.

5.2.1.4 Dynamic proxy

The benchmark includes one use case for dynamic proxy.
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1. dpbbench.dynamicProxy.DynamicProxy - declares a dynamic proxy for the methods

of a class at runtime as shown below. The profiling tool needs to log the invoca-

tion of the proxy method(MyInvocationHandler.invoke) in addition to the invoked

method(MyInterface.foo) as part of the call graph.

public class MyInvocationHandler implements Invocat ionHandler {

public Object invoke ( Object obj , Method m, Object [ ] arg ) {

return t a r g e t ( ( S t r ing ) arg [ 0 ] ) ;

}

}

MyInter face proxy = ( MyInter face ) Proxy . newProxyInstance (

MyInter face . class . getClassLoader ( ) ,

new Class [ ] { MyInter face . class } ,

new MyInvocationHandler ( ) ) ;

proxy . foo ( ” h e l l o ” ) ;

5.2.1.5 Invokedynamic

The benchmark includes four examples to test the support for a typical usage pattern of

invoke dynamic vs general support for the feature. It includes different types of lambda

functions and hardcoded invokedynamic instructions in bytecode.

1. dpbbench.invokedynamic.LambdaConsumer - uses a lambda method to implement a

consumer interface that accepts a single input argument and returns no result. The

profiling agent needs to log the lambda method and the internally invoked method as

part of the call graph.

2. dpbbench.invokedynamic.LambdaFunction - uses a lambda method to implement a

function that accepts a single input argument and returns a result. The profiling agent

needs to log the lambda method and the internally invoked method as part of the call

graph.
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3. dpbbench.invokedynamic.LambdaSupplier - uses a lambda method to implement a

supplier interface that accepts no input arguments and returns a result. The profiling

agent needs to log the lambda method and the internally invoked method as part of

the call graph.

4. dpbbench.invokedynamic.DynamoClient - invokes a target method through a custom

invokedynamic instruction in bytecode as shown below. The profiling agent needs to

log the invoked method as part of the call graph.

6 : invokedynamic #46, 0

// InvokeDynamic #1: t a r g e t : ( Ldpbbench/ invokedynamic

/ ta r g e t /DynamoTarget ; Ljava/ lang / St r ing ; )V

5.2.1.6 Serialization

The benchmark includes one use case for deserialization.

1. dpbbench.serialisation.Deserialisation - loads a serialized object into the JVM

by deserializing it and invokes a method on the object. The profiling agent needs to

log the invoked method as part of the call graph.

5.2.1.7 Java Native Interface (JNI)

The benchmark includes two use cases for native code.

1. dpbbench.jni.Callbacks - uses a native method to register a callback to a Java

method. The profiling agent needs to log the invoked method as part of the call graph.

2. dpbbench.jni.Thread - uses a basic thread setup to invoke a Java method. The

profiling agent needs to log the invoked method in the thread as part of the call graph.

5.2.1.8 Unsafe

The benchmark includes four use cases with different methods in the sun.misc.Unsafe API.
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1. dpbbench.unsafe.UnsafeDynamicClass - compiles and loads a class at runtime that

is not in the classpath using the defineClass method of the sun.misc.Unsafe API. It

then creates a new instance of the class. The profiling agent needs to log the constructor

of the dynamically loaded class as part of the call graph.

2. dpbbench.unsafe.UnsafeInitialization - invokes a method on an uninitialized ob-

ject using the allocateInstance API as shown below. The profiling agent needs to log

the invoked method and not log the constructor of the class part of the call graph.

Fie ld f = sun . misc . Unsafe . class . g e tDec l a r edF i e ld ( ” theUnsafe ” ) ;

f . s e tA c c e s s i b l e ( true ) ;

sun . misc . Unsafe unsa fe = ( sun . misc . Unsafe ) f . get ( null ) ;

TargetClass tc = unsa fe . a l l o c a t e I n s t a n c e ( TargetClass . class ) ;

t c . t a r g e t ( ) ;

3. dpbbench.unsafe.UnsafeException - throws a checked Exception. The profiling

agent needs to log the constructor of the custom exception thrown at runtime as part

of the call graph.

4. dpbbench.unsafe.UnsafeTypeConfusion - changes the value of a reference variable

of one class to an object of another class using the objectFieldOffset API as shown

below. It then invokes a target method on the reference. The profiling agent needs to

log the invoked method of the object that replaced the earlier reference as part of the

call graph.

unsa fe . putObject ( this ,

U t i l i t y . getUnsafe ( ) . o b j e c tF i e l dO f f s e t (

UnsafeTypConfusion . class . g e tDec l a r edF i e ld ( ” t a r g e t ” ) ) ,

new Target2 ( ) ) ;

t a r g e t . t a r g e t ( ) ;
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Table 5.5: Comparison of dynamic feature coverage for Li Sui et al. benchmark [53]

Category Total Package Name Tamiflex JMTrace

Reflection 12

dpbbench.reflection.instantiation

Basic1 X X

Basic2 X X

ConstructorOverloading X X

Interprocedural1 X X

Interprocedural2 X X

Intraprocedural1 X X

dpbbench.reflection.invocation

Basic X X

Interprocedural1 X X

Interprocedural2 X X

Intraprocedural1 X X

MethodOverloading X X

ReturnTypeOverloading X X

Reflection-ambiguous 2 dpbbench.reflectionAmbiguous
Invocation × X

ReturnTypeOverloading X X

Dynamic class loading 1 dpbbench.dynamicClassLoading CustomClassLoader X X

Dynamic proxy 1 dpbbench.dynamicProxy DynamicProxy × X

Invokedynamic 4 dpbbench.invokedynamic

LambdaConsumer × X

LambdaFunction × X

LambdaSupplier × X

DynamoClient × X

JNI 2 dpbbench.jni
Callbacks × X

Thread × X

Serialisation 1 dpbbench.serialisation Deserialisation X X

Unsafe (sun.misc.Unsafe) 4 dpbbench.unsafe

UnsafeDynamicClass X X

UnsafeException × X

UnsafeInitialization × X

UnsafeTypeConfusion × X
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Table 5.6: JShrink execution time breakdown.

Total (s) Mean (s)

Static call graph analysis 44779 2132

TamiFlex 8559 407

Profile-based Analysis 14424 687

Setup + Transformations 21395 1019

5.2.2 Results

We consider Tamiflex for comparison with JMTrace, as it was well integrated into the SOOT

framework used for static analysis in the previous version of JShrink. Table 5.5 shows the

comparison for Tamiflex and JMtrace for detection of the relevant nodes in the call graph

for the programs in the benchmark. In our experiment, having a perfect driver as the

available unit test cases, we aimed to capture all possible call sites and targets to obtain

a complete call graph. Tamiflex is able to capture almost all types of reflection, where it

often over approximates the invoked methods and captures a few false positives. Since it is

a speacialized tool built for tackling reflection[5], it falls short in support for features like

JNI, serialization, dynamic proxy, and invokedynamic. JMtrace is able to obtain all relevant

nodes of the callgraph as expected.

These results confirm our observations in Section 5.1. The two TamiF. columns in Ta-

ble 5.2 show the size reduction and test failures caused by the TamiFlex variant of JShrink.

TamiFlex only identifies a subset of dynamic method calls captured by JMtrace and thus

should trim more unreachable methods. However, the size reduction improvement achieved

by TamiFlex is trivial, only 0.06% on average. On the other hand, JShrink with TamiFlex

breaks 52 more test cases in comparison to JShrink with JMtrace. Table 5.6 shows the

breakdown of computation overhead induced by different JShrink components in terms of

execution time. JMtrace is 6X slower than TamiFlex, though both are dwarfed by the most

time-consuming component of static call graph analysis. Thus, we conclude that JMtrace

incorporation to JShrink is worthwhile and necessary to improve behavior preservation.
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CHAPTER 6

Conclusion

Software debloating is a long standing problem and some even consider that this problem

was solved 20 years ago through static reachability-analysis based code transformation. We

therefore set out to replicate, extend, and rigorously evaluate prior software debloating work

in the context of modern Java. Unlike previous research, we handled dynamic language

features, ensured type safety, and took measures to pass the JVM’s bytecode verification

check. We found that prior work significantly falls short of behavior preservation, meaning

debloated software no longer passes the same tests, with a test faulure rate of up to 62.7%.

Such lack of behavior preservation would make it impossible to adopt debloating techniques

in practice, as no one would like to remove unused code at the cost of breaking a majority

of existing tests.

The technical contributions that we made are significant, and our study shows that

these extensions embodied in JShrink, are worthwhile and necessary to improve the test

passing rate of prior work from 35% to 98%. ProGuard, a popular software debloating

tool, reduced software size by almost double but also resulted in 6X more test failures

compared to JShrink. Our in-depth manual investigation of test successes and failures

show that incorporating dynamic profile augmentation is crucial for improving behavior

preservation, and through our rigorous analysis of the dynamic features in Java, we show that

out profiling agent, JMtrace, covers 100% of these features. With checkpointing, JShrink

is able to provide 100% behavior preservation guarantees with marginal decrease in size

reduction(0.9%). The only limitation of our approach is the reliance on developer-written

tests. To the best of our knowledge, we are the first to systematically quantify size reduction,

behavior preservation, and the benefit of dynamic profile augmentation.
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APPENDIX A

List of Benchmark Projects

Table A.1: List of Benchmark Projects

Application GitHub URL

bukkit https://github.com/Bukkit/Bukkit

disklrucache https://github.com/JakeWharton/DiskLruCache

rxrelay https://github.com/JakeWharton/RxRelay

rxreplayingshare https://github.com/JakeWharton/RxReplayingShare

retrofit1-okhttp3-client https://github.com/JakeWharton/retrofit1-okhttp3-client

Java-chronicle https://github.com/peter-lawrey/Java-Chronicle

tprofiler https://github.com/alibaba/TProfiler

jvm-tools https://github.com/aragozin/jvm-tools

qart4j https://github.com/dieforfree/qart4j

dubbokeeper https://github.com/dubboclub/dubbokeeper

frontend-maven-plugin https://github.com/eirslett/frontend-maven-plugin

gson https://github.com/google/gson

gwt-cal http://code.google.com/p/gwt-cal/

jboss-logmanager http://community.jboss.org/

junit4 https://github.com/junit-team/junit4

http-request https://github.com/kevinsawicki/http-request

lanterna https://github.com/mabe02/lanterna

maven-config-processor-plugin http://code.google.com/p/maven-config-processor-plugin

java-apns https://github.com/notnoop/java-apns

mybatis-pagehelper https://github.com/pagehelper/Mybatis-PageHelper

algorithms https://github.com/pedrovgs/Algorithms

autoLoadCache https://github.com/qiujiayu/AutoLoadCache

fragmentargs https://github.com/sockeqwe/fragmentargs

moshi https://github.com/square/moshi

tomighty https://github.com/tomighty/tomighty

zt-zip https://github.com/zeroturnaround/zt-zip
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APPENDIX B

JVM TI Bytecode Instrumentation vs Callback Tests

Table B.1: Performance comparison of JVM TI callback agent vs instrumentation agent1

Project Name gwt-cal Java-chronicle Jboss-logmanager maven-config-processor-plugin

Total Tests 92 8 42 77

Baseline(secs) 0.91 1.68 1.93 2.29

Callback Agent(secs) 1.55 2.3 10.9 3.91

+method name (secs) 3.22 3.8 35.05 6.78

+class(secs) 4.21 4.73 50.79 8.29

+clasname(secs) 4.92 5.32 57.77 9.75

+logging(secs) 5.42 6.29 72.94 10.87

Callback Total(x times base) 5.98 3.75 37.78 4.75

Instrumentation (secs) 1.548 2.275 8.874 3.885

Instrumentation Total(x times) 1.7 1.36 4.59 1.69

1https://github.com/jay-ucla/jvmmethodinvocations/tree/master/latency-sample-projects
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APPENDIX C

Source Code for Dynamic Features Test Project

Figure C.1: DynamicProxy.java

1 package com.test;

2

3 import java.lang.reflect.InvocationHandler;

4 import java.lang.reflect.Method;

5

6 public class DynamicProxy implements InvocationHandler {

7

8 @Override

9 public Object invoke(Object o, Method method, Object[] objects) throws Throwable {

10 System.out.println("Dynamic Proxy hijacked : "+method.getName());

11 return 42;

12 }

13 }

Figure C.2: ProxiedClass.java

1 package com.test;

2

3 public interface ProxiedClass {

4 public void sayHello();

5 }

Figure C.3: ConcreteA.java

1 package com.test;

2

3 public class concreteA implements interfaceClass {

4 @Override

5 public void interfacedHello(String str){

6 System.out.println("Hello from class A "+str);

7 }

8 }
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Figure C.4: ConcreteB.java

1 package com.test;

2

3 public class concreteB implements interfaceClass {

4 @Override

5 public void interfacedHello(String str) {

6 System.out.println("Hello from Class B "+str);

7 }

8 }

Figure C.5: OtherClass.java

1 package com.test;

2

3 import java.lang.reflect.*;

4

5 public class OtherClass {

6 private ProxiedClass proxy;

7 private void privateHello(String str){

8 System.out.println("Hello from the other world "+str);

9 }

10 public OtherClass(){

11 InvocationHandler handler = new DynamicProxy();

12 proxy = (ProxiedClass) Proxy.newProxyInstance(

13 ProxiedClass.class.getClassLoader(),

14 new Class[] { ProxiedClass.class },

15 handler);

16 }

17

18 public void instanceHello(){

19 privateHello("privately");

20 }

21 public void instanceHello(String str){

22 privateHello(str +"privately");

23 }

24 public void unusedHello(){

25 privateHello(". You should not be here.");

26 }

27

28 public static void reflectOnMe(Main m){

29 try {

30 Method h = Main.class.getMethod("reflectiveHello", String.class);

31 h.invoke(m, ". This call came from the OtherClass.");

32 }

33 catch(Exception e){

34 System.out.println("Caught! You’re out!"+e.getMessage());

35 }

36 }

37

38 public void dynamicProxyRun(){

39 proxy.sayHello();

40 }

41 }
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Figure C.6: InterfaceClass.java

1 package com.test;

2

3 public interface interfaceClass {

4 public void interfacedHello(String str);

5

6 default void defaultHello(String str) {

7 System.out.println("default Hi from interface" + str);

8 }

9

10 static void defaultstatic(){

11 System.out.println("static hi from interface");

12 }

13 }

Figure C.7: InterfaceWithInnerClass.java

1 package com.test;

2

3 public interface interfaceWithInnerClass {

4 void interfaceInnerTarget();

5

6 class innerClassToInterface{

7 static String innerClassString = "inner string";

8 void sayHello(){

9 System.out.println("Hi this is "+innerClassToInterface.innerClassString);

10 }

11 }

12 }

Figure C.8: InterfaceWithInnerClass.java

1 package com.test;

2

3 public interface interfaceWithInnerClass {

4 void interfaceInnerTarget();

5

6 class innerClassToInterface{

7 static String innerClassString = "inner string";

8 void sayHello(){

9 System.out.println("Hi this is "+innerClassToInterface.innerClassString);

10 }

11 }

12 }

Figure C.9: ConcreteWithInnerClass.java

1 package com.test;

2

3 public class concreteWithInnerClass implements interfaceWithInnerClass {

4 public void interfaceInnerTarget(){}

5 }
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Figure C.10: CustomClassLoaderTarget.java

1 package com.test;

2

3 public class CustomClassLoaderTarget {

4

5 public CustomClassLoaderTarget(){

6 System.out.println("Created instance of class");

7 }

8 private void customClassPrint(){

9 System.out.println("I’m custom loaded");

10 }

11 public void accessMethod(){

12 this.customClassPrint();

13 }

14 }

Figure C.11: CustomClassLoader.java

1 package com.test;

2

3 import java.io.ByteArrayOutputStream;

4 import java.io.File;

5 import java.io.IOException;

6 import java.io.InputStream;

7

8 public class CustomClassLoader extends ClassLoader {

9

10 @Override

11 public Class findClass(String name) throws ClassNotFoundException {

12 byte[] b = loadClassFromFile(name);

13 return defineClass(name, b, 0, b.length);

14 }

15

16 private byte[] loadClassFromFile(String fileName) {

17 InputStream inputStream = getClass().getClassLoader().getResourceAsStream(

18 fileName.replace(’.’, File.separatorChar) + ".class");

19 byte[] buffer;

20 ByteArrayOutputStream byteStream = new ByteArrayOutputStream();

21 int nextValue = 0;

22 try {

23 while ( (nextValue = inputStream.read()) != -1 ) {

24 byteStream.write(nextValue);

25 }

26 } catch (IOException e) {

27 e.printStackTrace();

28 }

29 buffer = byteStream.toByteArray();

30 return buffer;

31 }

32 }
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Figure C.12: Main.java

1 package com.test;

2

3 import java.lang.reflect.Method;

4 import java.net.URL;

5 import java.util.function.Predicate;

6

7 public class Main {

8

9 public void sayHello(String str){

10 for(StackTraceElement e: Thread.currentThread().getStackTrace()){

11 if(!e.isNativeMethod())

12 System.out.println(e.getClassName()+":"+e.getMethodName());

13 }

14 try {

15 Thread.sleep(10000);

16 } catch (InterruptedException e) {

17 e.printStackTrace();

18 }

19 System.out.println("Hello world "+str);

20 }

21

22 public static void staticHello(){

23 System.out.println("Hello static world");

24 }

25 public static void staticHello(String str){ System.out.println(str);}

26 public static boolean lambdaPrint(String str){System.out.println(str); return true;};

27 public void instanceHello(String str){

28 System.out.println("Hello instance world "+str);

29 }

30 public void instanceHello(){

31 System.out.println("Hello instance world");

32 }

33 public void innerHello(){

34 this.instanceHello();

35 }

36 public void reflectiveHello(String str){

37 System.out.println("Hello reflective world "+str);

38 }

39

40

41 public static void main(String[] args) {

42 // for(int i=0;;i++){

43 // try {

44 // Thread.sleep(10000);

45 // } catch (InterruptedException e) {

46 // e.printStackTrace();

47 // }

48 // m.sayHello("Jay"+i);

49 // }

50 //tests for compiler messages

51 Main.staticHello("Performing static invocation");

52

53 Main.staticHello();

54 Main.staticHello("Created Main class instance");

55 Main m = new Main();

56 Predicate<String> lambdaPrint = Main::lambdaPrint;

57 lambdaPrint.test("lambdaprint");
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59

60 Main.staticHello("Invoked Main instance method");

61 m.instanceHello("J");

62 Main.staticHello("Invoked other Main instance method");

63 m.instanceHello();

64 Main.staticHello("Invoking Main inner method");

65 m.innerHello();

66 Main.staticHello("Creating instance of Other class");

67 OtherClass oc = new OtherClass();

68 Main.staticHello("Invoked OC instance method - should call private hello");

69 oc.instanceHello("J");

70 Main.staticHello("Invoked other OC instance method - should call private hello");

71 oc.instanceHello();

72 Main.staticHello("Invoking main class reflective hello from OC");

73 OtherClass.reflectOnMe(m);

74 Main.staticHello("Invoking dynamic proxy");

75 oc.dynamicProxyRun();

76

77 Main.staticHello("Invoking on object of Concrete A");

78 interfaceClass ic = new concreteA();

79 ic.interfacedHello("J");

80 ic.defaultHello("JJ");

81 interfaceClass.defaultstatic();

82

83 Main.staticHello("Creating anonymous class");

84 interfaceClass ac = new interfaceClass() {

85 @Override

86 public void interfacedHello(String str) {

87 System.out.println("Hi from the anonymous class");

88 }

89 } ;

90 ac.interfacedHello("");

91 ac.defaultHello("JJJ");

92 //m.sayHello("");

93 CustomClassLoader customClassLoader = new CustomClassLoader();

94 Class<?> c = null;

95 try {

96 //c = customClassLoader.findClass(CustomClassLoaderTarget.class.getName());

97 URL url = customClassLoader.getResource("CustomClassLoaderTarget.java");

98 //Object ob = c.newInstance();

99

100 //Method md = c.getMethod("accessMethod");

101 //md.invoke(ob);

102 } catch (Exception e) {

103 e.printStackTrace();

104 }

105

106 Main.staticHello("Interface with inner class");

107 new concreteWithInnerClass();

108 new concreteWithInnerClass.innerClassToInterface().sayHello();

109 }

110 }
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