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Abstract

Dynamic Estimation of Oncoming Vehicle Range and Range Rate:
An Assessment of the Human Visual System’s Capabilities and Performance

by
Joseph Edward Barton

Doctor of Philosophy in Engineering-Mechanical Engineering
University of California at Berkeley

Professor Theodore E. Cohn, Co-Chair
Professor Masayoshi Tomizuka, Co-Chair

The detection of impending collisions and the subsequent choice and regulation of
maneuvers to deal with them are general problems of locomotor control that arise in
many situations, both human and non-human. When an object moves towards an
observer, the size of the image that it projects onto the retina of the observer’s eyes
increases, providing a powerful sensation of motion. Physiological and psychophysical
research into this “looming” effect provides strong evidence for the existence of neural
“looming detectors” that are used by humans and non-humans alike to detect and respond
to oncoming objects. Automotive applications constitute an important context for the
study of the visual perception of looming. To date, however, this aspect of the driver’s
performance has largely been neglected, and human driver models typically incorporate
representations of the visual system that are based upon idealized behavior and in some

cases questionable assumptions.

In this thrée part study we begin to address this deficiency by quantifying the visual
system’s ability to detect and track an object’s approach, as represented by the rate of
change of the angle 0 that its image subtends on the retina of the eye. In the first part we
tested a long-standing assumption of an absolute threshold in the human’s ability to
detect d6/dt, below which humans are unable to discern that 0 is changing (and thus that
a collision is imminent). The results provide evidence contradicting the threshold
assumption, and indicate instead that the detection task is more accurately described as
one of signal detection (detection of the signal d6/dt in the presence of noise) with no
threshold limitation. Collision avoidance requires that an observer accurately and
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continuously track an approaching object’s distance and closing speed. In the second part
of this study we investigated the dynamic response of the visual system to changes in 6,
employing both psychophysical and classical frequency response techniques. We found
that the visual system exhibits a band-pass characteristic in this task that is well described
by a linear, minimum phase, second order transfer function. Further analysis revealed
that this aspect of the visual system exhibits a biphasic impulse response, which is the
focus for the third part of our study. According to the model, certain pairs of “impulsive”
stimuli presented in the proper sequence will reinforce one another, and thus be more
easily detected, while others will cancel each other and be less so. This final series of

experiments provided evidence consistent with this hypothesis.

The shortcomings of human driver models based upon current assumptions are
discussed, and the development of improved models based the dynamic response
characteristics of the visual system and the principles of signal detection are described.
To focus our efforts we have assumed a fairly constrained driving scenario (the ‘Lead
Vehicle Braking” scenario), but these results are applicable to any scenario (automotive
or not) in which the observer has an unobstructed view of the approach of an object or

stationary obstacle.
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1 INTRODUCTION
The detection of impending collisions and subsequent regulation of maneuvers to deal

with them is a general problem of locomotor control that arises in many situations, both
human and non-human. A bird landing on a perch, a snake striking at its prey, and a
human driver braking to avoid a collision are all examples of this. When an object moves
towards an observer the size of the image that it projects onto the retina of the observer’s
eyes increases. Even though this effect could be the result of an increase in the physical
size of a stationary object, it provides a powerful sensation of motion. Much research has
concentrated on this “looming” effect (1). Several psychophysical studies (2, 3, 4)
strongly suggest the presence of “looming detectors” in humans that interpret expanding

retinal images as an approaching object. Furthermore, these studies find that the visual

system is sensitive to looming in both an absolute (6=d6/dt) and relative (6/6) sense,

where from Figure 1,

W
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R R

2

. WR _ OR v

A A @
6__R

0 R

! Psychophysics is that branch of psychology that deals with the relationships between physical stimuli and
Sensory response.
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Observer

Definition of Approach Velocity
Figure 1

The information provided by 6 and 6/6 alerts the observer that the object is moving
towards him or her but it is not possible with this alone to sense the velocity of approach
(or Range Rate) R, which is necessary to deal effectively with the object’s arrival (for
example, by catching a ball or stopping just in time to avoid striking the object). This can

be seen more clearly by rearranging the second of Equs. (1),
.0
R=-—R. 2
5 2

Information about the object’s distance, or Range, (R) is also required, which cannot be
provided by monocular cues alone. Binocular cues could help, but they are ineffective
beyond about 10 m. They therefore do not explain how observers can respond to far-
away, fast approaching objects—if the observer had to wait for the binocular cues to
become effective there would in many cases be too little time left to react once they were
received. The visual system must therefore be relying on some other cue or cues in the

collision detection/avoidance task.



It is possible to extract information about the timing of an object’s approach,

however, from the simple relation 2
0
T=~=. 3
5 3)

T, the “time to collision”, is the time it will take the object to reach the observer. The
ability of humans to perceive t directly has been the subject of several psychophysical
studies, the most compelling of which is that by Regan and Hamstra (5). Though these
and others have provided persuasive evidence that humans’ behavior in collision
detection/response situations is consistent with a knowledge of 1, they fail to demonstrate
conclusively that T was being sensed directly and not inferred by other means (by
estimating the necessary parameters, for example, or relying on experiential knowledge
of them). Because of this [and also because, unlike looming detectors, no
neurophysiological correlates to T have to date been identified in primates (6)] the direct
perception of T remains the subject of ongoing research and debate. It is plausible to

assume, though, that if this is possible it is accomplished with the same sensory

mechanisms ® that detect 6 and 6/60. It is apparent, then, that looming and the
mechanisms that detect it play an important, if not exclusive, role in the collision

detection/response task.

Automotive applications constitute an increasingly important context for the study of

the visual system’s capabilities with regard to collision detection/avoidance, especially

% This was first presented in the science fiction novel “The Black Cloud”, by Sir Frederick Hoyle (Harper,
1957).

* Mechanism refers to the physiological entity responsible for detecting a stimulus, or discriminating a
difference between stimuli. It commonly refers to a single neural unit or perhaps to a small pool of neural
units with nearly identical tuning for particular stimulus dimensions.
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given the trend towards automated driving. Though the current automation technologies
are admirably suited to overcome some of the more obvious human driving deficiencies
(slow response, distractibility, fatigue, impaired performance), humans bring a number of
truly remarkable skills to the driving task that no technology can yet duplicate (superior
information acquisition and processing capabilities and the cognitive-based abilities to
adapt and anticipate). Attempting to automate even part of the overall driving task with
current technology will therefore solve some problems but create others. Ideally, of
course, we would like to integrate the human driver with automation technologies in a
way that keeps the best of both worlds. The most efficient route to this objective is to
develop a comprehensive, quantitative model of human driving behavior. Though human
driver models of varying scope and complexity have been developed, none has to date
incorporated a scientifically grounded representation of the visual system, which, as with
the human driver they seek to represent, constitutes their chief source of input. This is
somewhat surprising, given how dependent the performance of these models will

necessarily be on that of their visual system component.

In this study we begin to address this deficiency by quantifying the visual system’s
ability to detect and respond to changes in visual angle 0 (and thus defer the
aforementioned issues surrounding t and R to a subsequent investigation). To focus this
effort we consider a very specific driving scenario, the “Lead Vehicle” (LV) Braking
Scenario, in which two automobiles are traveling relatively close together at the same
speed (zero range rate) and in the same direction along a straight section of road. At
some point the LV unexpectedly engages in maximum braking to come to a complete

stop, and in order to avoid a rear end collision (REC), the following vehicle’s (FV’s)
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driver must brake to a stop just before making contact with the by-then fully stopped LV.
The motivation for this approach is several-fold:

1. The driving scenario under consideration has a definite, well defined beginning (onset
of LV braking) and end (FV comes to a complete stop);

2. Tt allows us to isolate © (as much as possible) as the only cue available to the FV
driver;

3. It also allows us to restrict the collision avoidance maneuvers available to the FV
driver to only one, braking, whose regulation requires the continued monitoring of 0.

Even though this is a rather constrained scenario, the General Estimates System (7)
reported that in 2001 about 4% of all REC’s involved a decelerating LV and an attentive
FV driver. This represents approximately 76,000 collisions and 2300 fatalities.
Furthermore, the results of this study are quite general and can be applied to any
scenario—driving or not—in which in which the observer views the approach of another
object or stationary obstacle.

1.1 Contribution
In this study we conducted an experimental program to develop a model of the visual

system as it relates to the collision detection/avoidance task (i.e., detection of and
response to changes in visual angle 6.) The model, consisting of a linear filter, a
nonlinear criterion detector, and an adjustment mechanism (see Figure 31), exhibits the
following characteristics:

1. The linear filter exhibits a band-pass frequency response characteristic (Figure 34)
which is well described by a minimum phase, second order transfer function. This in
turn gives rise to a damped, second order response characteristic (Figure 39).

2. The criterion detector monitors the output of the filter and signals the onset of looming
(6 > 0) when some aspect of the filter’s output reaches some criterion value. Our
experiments indicate that it senses either the absolute magmtude of the filter output or
its peak-to-peak excursion.

3. Detection of the onset of looming is based on a signal/noise paradigm. This is in
contrast to the widely held assumption that a threshold is associated with the detection
task. This carries two significant implications for the detection/monitoring task:
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- The criterion value is not fixed but instead is a function of the expected costs and
benefits associated with the detection task. It can be set by the adjustment
mechanism to any value necessary to maximize the task’s expected net benefit.

- The filter’s output is not altered in any way by the criterion detector. Information
loss thus does not occur and the filter’s output is available in its entirety for other
visual tasks, whether the criterion detector senses the onset of looming or not.



PART I: BACKGROUND
The concept and design of the experiments performed in this study were guided by

prior research in both the engineering and vision sciences. The relevant findings from
each field are reviewed in the next three chapters so that the results of the experiments
performed in this study can be more fully understood and appreciated. We begin in
Chapter 2 with a review of three important experimentally based engineering models of
manual control. The earliest, McRuer’s crossover model (1965), is notable in that it
separates the function of the human operator into separate sensory (visual), control, and
actuation components, with separate experimentally derived representations for each.
This basic structure can be discerned in many subsequent manual control models, even up
to the present day, including Kleinman’s LQG model (1970) and Fancher and Bareket’s
headway control model (1994), which are also described. McRuer’s and Kleinman’s
models were originally developed to assist in the design of pilot interfaces and controls
for high performance aircraft, but in later years were adapted to address the automotive
lateral control (lane keeping) problem. Fancher and Bareket’s model, which is much
more recent, differs in that it addresses the automotive longitudinal control (rear end

collision avoidance) problem.

Chapter 3 provides a brief overview of the human visual system’s “motion pathway”
and describes the neural mechanisms along it that underlie our ability to perceive motion
in the environment. Our performance in this regard is predicated upon the capabilities
and limitations of these mechanisms, and to better understand them we review prior
studies that have quantified their response characteristics. (Linear systems theory and
signal detection theory have proven to be especially effective and powerful tools with

which to conduct this research and understand its results.) This chapter concludes with a
7



description of a neural looming detection mechanism, which forms the basis for the

perceptual model developed for this study.

Chapter 4 begins by summarizing and comparing the results of two related sets of
studies. First, the response characteristics of an retinal ganglion cell and human
observers for the detection of temporally varying light stimuli are compared. Then the
response characteristics of human observers for the detection of temporally varying light
stimuli and motion stimuli are compared. Given that the motion pathwa§ begins with the
retinal ganglion cell receptive field, the pefformance of all downstream mechanisms will
be dictéted by that of the retinal ganglion cell. These three sets of response
characteristics, then, should be similar. We next review the flicker detection models of
DeLange (36) and Kelly (37), and Stork and Falk’s (38) follow-on analysis of Kelly’s
data for insight into the structure of the looming detection mechanism that will be

investigated in this study.



2 ENGINEERING MODELS OF MANUAL CONTROL
2.1 McRuer’s “Crossover” Model

One of the first comprehensive human operator (HO) models was McRuer, et al’s
1965 “crossover” model (8). This was the product of an experimental program in which
test subjects (all experienced pilots) controlled a simulated aircraft using a simple
joystick. Their task was to track an input forcing function using the position error
between this function and the aircraft’s response to their control action as their only input
signal. This error signal appeared as a spot on an oscilloscope display constrained to

move only along its horizontal axis. This is described schematically by the block

diagram in Figure 2. The spot’s distance from the center of the screen represented the

Oscilloscope
Forcing {:"‘: Eer(l;())r Limb Applied
Function Test Subject —L-2rCe
Input
Simulated | Joystick |
Aircraft | Dynamics |

Test Procedure Schematic
Figure 2

direction and magnitude of the error. The joystick was a spring-resistant device,
constrained to move only left or right, with very little mass or damping. Hence its
contribution to the overall dynamics of the system could be neglected. The Forcing
Function input consisted of 10 independent sine waves with a Gaussian amplitude
distribution, and with frequencies chosen to make the resultant signal appear random, so
that the test subject could discern no repeatable pattern that would allow him to anticipate

the future trajectory of the spot. Two first order and two second order aircraft models
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were employed. One of each was marginally stable, and the other was unstable. For
each combination of Forcing Function Input and aircraft model the HO’s frequency

response was obtained.

The final crossover model is shown in Figure 3. (Here s is the Laplace variable.)

This is a quasi-linear model consisting of a linear describing function (the Visual System,

Visual Scene
(Oscilloscope)

Er
Forcing + e

Function —>()—

Input -4

Controlled Joystick Limb Applied Force
Element |« .|
. Dynamics
Dynamics
. J/
Y
Gy

McRuer’s Crossover Model
Figure 3

Cognitive Processes, and Neuromuscular System blocks in the figure) and a Remnant,
which takes into account time-varying and non-linear behavior (including noise). The
parameters of the describing function are adjusted according to a set of verbal rules to
match the task at hand, which is defined by specifying a particular Forcing Function
Input and Controlled Element Dynamics. McRuer and others adapted the crossover
model for use in automobile steering applications (9). No further elaboration of the
human operator components (and in particﬁlar the visual component) shown in Figure 3

was undertaken, however.
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Several of this study’s results and assumptions are pertinent to the current study:

1. The HO exhibits an adaptive capability which allows him to compensate the system for
the Controlled Element Dynamics and his own reaction time delay. This is
accomplished in the model by the adjustment of the Cognitive Processes’s parameters
Kp, T1, and T;. The effect of this is to make the open loop transfer function G¢ Gp in
the vicinity of the crossover frequency (.~ 7 rad/sec) approximately that of a simple
integrator plus a time delay, i.e.,

(Dc e STe

G.G,(s) =

where o, and T, are both variable. The effect of this adaptation is to achieve absolute
system stability and minimization of steady state error.

2. Interestingly, the study found no evidence for significant nonlinear behavior on the
part of the HO. The primary sources of remnant were nonstationary behavior (i.e.,
time-varying components in the effective time delay and gain), and noise. For
extremely unstable controlled elements HO’s also exhibited a pulsing control action,
which was reflected in the remnant as well.

3. The visual system is represented here as a pure time delay—specifically, the shortest
time that the signal from a flash stimulus can travel from the retina to the visual cortex
(.04<1,<.07 sec). In other words, the visual system is represented as a perfect sensor,
responding instantly (except for this delay) and perfectly to any visual input.

We know from the vision sciences that the representation described in this point is not
the case. The visual system typically exhibits temporal dynamics in its response,
information loss, self-generated noise, and steady state error. One way in which these
imperfections might manifest themselves is shown in Figure 4. Since the crossover
model was developed from actual experimental data taken from human subjects, it
contains these additional characteristics. Since they are not represented in the Visual
System element, they must be embedded in one or more of the Cognitive Processes
block, the Remnant, and the Parameter Adjustment Rules. This brings us to the crux of
the matter, and our ultimate goal, of which this study is a first step: to separate the visual
system functions from the other elements and contain them in a single, comprehensive

sub-model for inclusion in HO models such as this one. This will result in a more
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accurate and robust model which relies less on heuristic rules of thumb for its operation,
and which gives greater insight into the processes underlying human performance in the

manual control task.

2.2 Kleinman’s LQG Model
Kleinman, et al (10) extended McRuer’s model; using optimal control theory and

state space techniques. The resulting two-input, single-output, Linear Quadratic
Gaussian (LQG) model is shown in Figure 5. The most significant differences between

the two models are:

1. Kleinman’s is a linear model and does not provide for discontinuous or nonlinear
behavior.

2. Kleinman represents McRuer’s remnant as zero-mean, Gaussian observation and motor
noise, whose variances must be determined empirically®.

3. The visual system is now represented by a time delay, a Kalman filter, and observation
noise.

* In a related study the authors found that for a wide range of foveal viewing conditions employing this type
of visual input, observation noise was well represented by zero-mean Gaussian noise whose covariance
was equal to .01 &t times the variance of the visual signal being observed.
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4. The time delayed observation emanating from the Kalman filter is explicitly

extrapolated to the present by a Predictor, which presumably resides in the higher level
processing centers of the brain.

5. The HO behaves as an optimal controller, seeking to minimize some endogenous cost

function subject to the inherent limitations imposed by the observation noise and time
delay.

Visual Scene
(Oscill )

Forcing

Function ——()—

Input -4 Eri

x(t) Controlled
Element
Dynamics

L{0)

A

Kleinman’s Linear Quadratic Gaussian Model
Figure 5

As with McRuer’s model, the HO here acts as a “null operator” in that he observes
the lateral position and velocity of a point on a display (an error signal) and applies
control action to place and keep it at the display’s origin. Both the Kalman filter and the
Predictor operate on the basis of minimizing this deviation. The cost function that the

HO seeks to minimize is assumed to take the form

T
J@=lim B{= | | Yax +rut@+gi© [dt|y,(0), o=ty @)
i=1

0

where, as indicated in Figure 5, x; is the controlled element state [which here would be
the deviation between the desired (x;=0) and actual states], u the control action, u the

rate of change of control action, and y, the Kalman filter input. The weightings q;, r, and
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g are unknown and must be determined empirically. Note that this is tantamount to

specifying the HO’s control objectives.

Kleinman applied this model to the task of maintaining the longitudinal position of a
hovering VTOL aircraft, presenting the HO with two visual displays:

1. Deviation in longitudinal position from desired;

2. Deviation in aircraft pitch from horizontal.

Both signals were presented, as in McRuer’s study, as spots on separate oscilloscope
screens that could move only laterally about the origin. The HO controlled the aircraft by
varying its pitch, based upon the information provided by the two signals. He was thus
required to scan back and forth between the two oscilloscopes to obtain this information.

Agreement between the model’s predictions and the experimental data was very good.

Both the Kalman filter and the Predictor require a model of the system being
controlled, implying that the HO is capable of developing an internal model of his
environment. The requirement to project the delayed observation forward to the present
is also significant. McRuer’s model also incorporates a delay in perceiving the visual
stimulus, so this projection capability must also be present in it as well, residing most
likely in the Equalization System. Kleinman’s model is an improvement over McRuer’s
in that it expands upon and separates out the visual system function. As previously
noted, there is scientific evidence that both transmission delays and noise are present in

.the visual system. (There i\s also evidence, as we shall discuss, that the visual system is
required to filter its input). Given this, the existence of a mechanism to project the
delayed visual signal forward appears a logical necessity, though to date no one has

actually identified such an mechanism in the visual system. Still missing is a
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representation of the visual system’s temporal dynamics. The form of the filter,
predictor, and control law that Kleinman has assumed are of course not
neurophysiologically grounded. As with McRuer’s model, Kleinman’s model represents
the result that a control systems engineer would arrive at were he asked to design a
controller for these tasks. Even so, these models constitute an important step in the study

of human control and provide valuable insights into the HO’s function.

Levison, one of Kleinman’s co-authors, continued to work on the multiple input
problem, and developed the Integrated Driver Model (11) to assist in the design of
automotive information systems. The model is the same as Kleinman’s, except that it has
been adapted to simulate a constant speed lane-keeping task and presents more than two
visual inputs, not all related to the driving task. Longitudinal control is ﬂot addressed.

2.3 Fancher and Bareket’s Headway Control Model
Fancher and Bareket’s Driver Headway Control Model (12) is based upon concepts

they had previously derived from kinematic and dynamic relationships to aid in the
design and evaluation of Automatic Cruise Control (ACC) (13). Their model (which has
been recast to facilitate comparison with McRuer’s and Kleinman’s models\) is shown in
Figure 6. Here the FV driver acts not upon an error signal, but instead upon LV Range
(R), Range Rate (R ), and FV velocity (Vgy), which he receives simultaneously from the
scene before him. With these, the LV driver predicts what his range will be some period

T into the future, and also establishes a desired range Rges, according to

R(t+T)=R(t)- T +R(t),
5
Ry (t+T) =V, - T, ®)

des.
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Figure 6

Here T, the “preview time” (14), is not specified and must be obtained empirically. Tges

is the FV driver’s desired headway time, also obtained empirically, but typically in the

range of one to two sec. The velocity command V¢ is then determined to make

R(t+T)=Rges(t+T). This is accomplished with reference to the R(t)—R(t+T) phase

plane, developed by the authors and shown in Figure 7 and Table 1. The driver then sets

Zone Command Equation
Arw : ‘ 1 VC = Vfree
ik Zone 1 2 : R, (t+T
K; .,-r",@;\\\\ Zoned 2 VC = VLV - .__d*u. T2
Rity & \\"“m ik Zone3 : R(t + T)
%\buf Lt Rdas(t+T)
s £ 'l‘l’l‘f(h 3 Vc = VLV + ' T3
o R(t+T)
e one o VeVt [R(t+T)-R, (t+D] T,
+R(b)
RSN Ll 5 |dV, =sgn[R(t+T)-R_(t+T)]-a,
R(t)-R(t+T) Phase Plane Computation of V¢

Figure 7

Table 1

the accelerator or brake pedal to achieve the desired velocity. In the table Ve, is the

speed the FV driver would choose if there were no LV

in front of him. The constants T}

to T4 are empirically obtained “time constants”, ag is chosen by the FV driver to affect a
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comfortable acceleration/deceleration, and “sgn” is the sign function. It is assumed that
V¢ is achieved via a feedback loop that incorporates some internal model of the vehicle’s
dynamics. The time constants for this inner loop are assumed to be much shorter than
those for the outer loop that establishes V¢, hence V¢ is achieved well before any

subsequent decisions to alter it are made.

In its present configuration the model’s visual component operates without noise,
time delay, or temporal dynamics. (We noted that the Predictor function projects the
non-delayed quantities R and Ryes into the future, as opposed to Kleinman’s model, which
projects delayed quantities to the present. Though the authors note the possibility that the
FV driver’s function may involve a pure time delay, they do not incorporate one, nor do
they specify which aspect of the driver’s function it might be associated with.) The
Visual System block in Figure 6 thus acts as a perfect sensor. The authors, however,
have incorporated two assumptions of non-ideal behavior from Hoffman (15) and
Hoffman and Mortimer (16), which form the basis for the zone boundaries in Figure 7:

1. There exists a threshold in the perception of © such that for l9| <.003 rad/sec the FV
driver is unable to distinguish it from zero;

2. The LV’s range R(t) can only be perceived to within 12% of its true value.

We are skeptical of these, however, and investigate them in Chapter 5. The performance
of the model, of course, is critically dependent upon these assumptions and should they
prove unwarranted, a much different model of human driving behavior would result.
Hoffman and Mortimer’s assumptions have been widely disseminated and can be found

in a number of other human driver models. [For example, (17), (18), and (19)].
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24 Summary
In this chapter we reviewed three engineering models of manual control whose

development and basic structure guided the design of this study’s design. All can be

reduced to the basic structure of Figure 8. The loop begins with the subject vehicle,

Other NNNNNNHiman Briver
Vehicle(s) A A
. . nitive { euromuscula
Visual Scene —3# Visual System g Cog u ¢ S
N Processes . System  j
Stationary AR . TR
Obstacle(s) -
Subject
Vehicle

A Basic Human Driver Model
Figure 8

which interacts with other vehicles and objects in the environment to produce the actual
visual scene viewed by the subject vehicle’s driver. The driver’s cognitive processes
decide on a course of action based not upon the actual scene [y(t)], but the perceived
scene [yp(t)], and issue commands to the driver’s body (the neuromuscular system) to

implement it. The subject vehicle responds to the driver’s actions and the loop repeats.

We noted that to date the vast body of relevant research from the vision sciences have
not been incorporated into these models, whose visual elements are instead based upon
idealized behavior and in some cases questionable assumptions. It should also be pointed
out that in developing comprehensive models such as these in one step, the experimenter
has at hand many free parameters with which to fit the model to the data. This almost
ensures reasonably good agreement between the two. Predictions based on such models,
then, must be made with great care. The approach taken in this study is to isolate the

visual function and separately develop a model of its ability to detect and track looming

18




based upon the visual cues associated with such motion. Once complete, this
representation can be incorporated back into the larger human driver model. For

guidance in this effort we now turn to a review of the relevant research from the vision

sciences.
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3 ANATOMY OF THE VISUAL SYSTEM’S MOTION PATHWAY®
The magnocellular or motion pathway is one of perhaps 20 pathways or streams in

the visual system (22). They are distinguished by their functionality: each is specialized
to analyze a different aspect of vision. They are not isolated from one another, however,
and a good deal of interaction can occur between them throughout their length. The

motion pathway is one of the most extensively studied visual pathways.

Vision Research has revealed a number of important “principles”, which give a
broader perspective of the brain’s activity regarding vision generally and motion

processing in particular. Key among these are:

1. The existence (referred to above) of a “processing stream” made up of interconnected
regions within the brain that are specialized for the detection and interpretation of
motion signals.

2. A cascading structure of increasing functionality, in which upstream neural
mechanisms capable of detecting and analyzing simpler aspects of motion converge to
form more complex downstream mechanisms that can perform more sophisticated
detection and interpretation tasks.

3. An adaptive capability that optimizes the system’s limited sensory capabilities for the
viewing conditions at hand.

3.1 The Neuron
The neuron is the fundamental element of the visual system, as it is of the rest of the

nervous system (which includes the brain). It is a type of cell found only in the nervous
system, and is unique from all other cells in that it can communicate with other neurons.
A prototypical neuron is shown in Figure 9. The axon, dendrites, and synapses (not
shown) are the ﬁnique features that enable it to communicate with other neurons. A
neuron receives its input from the axon of a sending neuron, which makes contact either

directly with the receiving neuron’s body or, more typically, with one of its dendritic

> Except where otherwise noted, Chapters 3 and 4 and the figures contained therein are based on Smith &
Snowden (1), Purves, et. al. (20), Wandell (21), and De Valois & De Valois (24).
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A Prototypical Neuron
Figure 9

branches. A neuron issues its output via its axon, an extension of the cell body
specialized for signal conduction. Neurons can have any number of dendritic branches,
but no more than one axon, which can branch at its terminus to form as many as 1,000
separate contact points (not shown in Figure 9). (A few types of neurons have no axons
at all.) Axons are typically only a few millimeters long, though a few are much longer.
Retinal ganglion cell axons, which extend from the retina to the mid brain-region, are
about five centimeters long. Signals travel along the axon by means of self-generating

electrical waves called action potentials.

Neurons transmit information by means of generated electrical potentials, of which
there are two basic types: graded potentials and action potentials. Graded potentials are
generated in sensory receptors (such as the photoreceptors of the eye) and in dendrites.

They are usually sustained in nature, last as long as the stimulus, and have an amplitude
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that is proportional to the strength of the stimulus. Graded potentials are not regenerated,
and so their amplitudes diminish with the distance from their site of generation. They
add together, and may be either positive of negative. Graded potentials have no
threshold, for example, a single photon of light absorbed by a photoreceptor generates a
small, graded potential. Action potentials, often called impulses or spikes, are relatively
large (.1 volts) transient (1 to 2 milliseconds in duration) potentials that are transmitted
along axons. Despite its intrinsically poor electrical characteristics, the axon constitutes a
kind of “booster system” that continually regenerates these signals along its length,
providing for their transmission over long distances without any reduction in amplitude.
Axon potentials signal the strength of a stimulus by their frequency rather than their
amplitude. They also have a threshold, typically requiring a change in cell membrane
potential of about 15 mV before they can be generated. Some neurons with short axons
or no axons transmit signals only by way of the graded potentials developed at their
dendritic synapses. Most neurons, however, have both kinds of potentials. The graded
potentials in the dendrites sum to change the ﬁembrane potential of the neuron by a
sufficient amount to trigger the firing of action potentials in the axons. Graded potentials

thus generate action potentials in these neurons.

Underlying both graded and action potentials is a resting potential, which is the
membrane potential of the unexcited neuron. In its unstimulated state, the electrical
potential across a neuron’s plasma membrane is typically —40 to -90 mV: the cell’s
inside charge is negative relative to the outside charge. Action potentials are elicited
when an ionic current passes across the membrane of the neuron. Under normal

circumstances, such a current is generated by another neuron (at the synapse between the
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two nerve cells), or by the transduction of an external stimulus in sensory neurons. If the
current is such as to make the membrane potential more positive than the resting potential
(depolarization), then at a certain point, called the threshold potential, an action potential
occurs.

3.2 TheEye
Figure 10 gives a schematic representation of the imaging components of the eye.

The formation of focused images on the photoreceptors of the retina is accomplished by
the refraction (bending) of light by the cornea and the lens. The cornea is responsible for

most of this refraction. The lens has considerably less refractive power than the cornea;

Iris
Aqueous humor
in anterior chamber

Optic disk

Optic nerve
and retinal vessels

Imaging Components of the Eye
Figure 10

but it can be adjusted through the action of the ciliary muscle (not shown) that connects

around its circumference. Objects that lie at various distances from the observer can thus
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be brought into sharp focus on the retinal surface. Adjustments in the size of the pupil

(the circular opening in the iris) also contribute to the clarity of images formed on the

retina.

The retina lines approximately 200° along the back of the eye and despite its
peripheral location, is actually part of the brain. It contains several different types of
neurons that convert light first into graded electrical potentials, and then into action
potentials. Two of these, the rod and cone photoreceptors, are the only elements of the
retina that are sensitive to light. They contain different types of photopigment, a light-
absorbing substance. Absorption of light by these photopigments initiates a cascade of
events, known as phototransduction, that results in the generation of a graded potential,
as shown in Figure 11. Information about the retinal stimulation is ultimately
communicated (through several classes of intermediary neurons) to the retinal ganglion

cells (RGC’s), whose axons form the optic nerve. The RGC’s communicate this

Current (pA)

0 0 0.4 0.6

.2 .
Time (sec)
Response of a Cone Photoreceptor to Brief Flashes of Light (23)
Figure 11
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information (via action potentials) to the rest of the central nervous system, and are the

only cells to do so.

The rod and cone systems (by which we mean the photoreceptors and their
connections within the retina) are specialized for different aspects of vision. Rod
photoreceptors are able to capture more light, and the transduction mechanism in rods
provides greater amplification than that in cones. (A rod can respond to a single photon.)
The rod system is therefore extremely sensitive to light. Rod systems exhibit very low
spatial resolution, however. In contrast, the cone system exhibits high spatial resolution

but low sensitivity to light. (More than 100 photons are required to activate a cone.)

Both rods and cones transmit information about the wavelength of light as a function
of the types of the photopigments they contain. All rods contain the same
photopigment—rhodopsin—whereas individual cones contain one of three different
photopigments, collectively called cone opsins, that have different but overlapping
absorption spectra. The relative activity of these three sets of cones [referred to as S, M,
and L cones for the short (blue), middle (green), and long (red) wavelengths] generates
retinal signals that ultimately give rise to the sensation of color. Besides it aesthetic
appeal, color vision makes it possible to distinguish objects that might be difficult to

contrast with their surroundings.

When light arrives at the photoreceptor its intensity varies sinusoidally but
superimposed on this are high frequency variations due to quantum fluctuations. In
addition, there are also high frequency fluctuations due to the probabilistic nature of

photon capture (less than 10% of the available light is actually captured by the
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photoreceptors) and the whole phototransduction process. The electro-chemical
processes involved in phototransduction have the effect of averaging information over
time (over a period of some milliseconds), and filtering out this quantum and
physiological noise. These filtering properties change as a function of background light
level. At low light levels, there is not enough information available (few photons per unit
time) to resolve high temporal frequencies and the high frequency cutoff is therefore
relatively low. The high frequency cutoff shifts to higher temporal frequencies as the
background light level increases, to take advantage of the greater information content
(more photons per unit time) and the concomitant increase in signal to (quantum) noise

ratio (24).

The region of highest visual acuity in the retina is the fovea (See Figure 10). When
we turn our head and eyes to focus on a point in the environment, we are placing its
image on the fovea. Figure 12 shows how the image of object ABC is formed on the
retina. (To a good degree of approximation we can ignore the lens and consider only the
refractive effects of the cornea.) The central rays from points A, B, and C strike the
cornea normal to its surface and pass through it without being refracted, falling on points
A’, B’, and C’ of the retina. Here the observer is assumed to be fixing his gaze on point
B, so B’ falls on the fovea. These central rays all intersect at the nodal point N of the
eye. (The dimensions shown in the figure are typical for a normal, adult eye.) Ray B-N-
B’ constitutes the visual axis of the eye. The angle subtended by the object, a, is referred
to as the visual angle. Specific locations on the retina are typically described in terms of
their angular distance from the fovea. This is referred to as eccentricity (€), as shown in

Figure 12.
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Visual Angle and Eccentricity
Figure 12

There are approximately 120 million rods and 6 million cones in the retina of each
eye. Their distribution across the surface of the retina varies markedly, as Figure 13

shows. The central human fovea contains approximately 50,000 cones and no rods,

Receptor density (mm™2 x 10%)
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Distribution of Rods and Cones in the Human Retina
Figure 13

which explains why it is the region of highest visual acuity. Although cones are not

restricted to the fovea, their lower density outside the fovea, as well as the lower density

of the ganglion cells that they can connect to, explains why visual acuity declines so
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markedly as we move away from it. Acuity is reduced by 75% just 6° eccentric to the

line of sight.

3.3 Retinal Ganglion Cell Receptive Fields
Signals from the approximately 126 million photoreceptors in each eye converge

upon approximately one million retinal ganglion cells (RGC’s), which are communicated
to the rest of the brain. This compression is accomplished by way of the receptive field
structure. The receptive field of an RGC consists of an approximately circular array of
photoreceptors divided into two groups: a circular center and an annular surround. Not
all of the photoreceptors contained within this circular region connect to the RGC in
question, and the photoreceptors that do can also be connected to other RGC’s. Thus an
individuai photoreceptor can be a member of a number of RGC receptive fields.
Receptive fields can vary in both their size and in the number of photoreceptors making
them up. In the fovea, an RGC contacts only a single photoreceptor (though again, that
photoreceptor may contact a number of RGC’s). Receptive fields of varying sizes are
encountered outside the fovea. Thus the entire retina of each eye is covered by many
overlapping receptive fields of different sizes. In general, however, receptive field size
increases and the number of receptive fields dec‘rease with increasing eccentricity.
(Foveal RGC’s don’t exhibit this center-surround receptive field structure, since they are

connected to only a single photoreceptor in this region.)

RGC’s respond to illumination of their receptive fields with a series of action
potentials, which were previously defined as a series of voltage spikes with a constant
magnitude of approximately .1 volts. The strength of an RGC’s response is reflected by
the frequency of this impulse series, in units of impulses, or spikes, per second. Action

potential frequency, or spike rate, changes over the time course of the RGC’s response.
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RGC action potentials have been recorded in cats and monkeys using a microelectrode
which is placed either near the RGC’s body or near its axon in the optic nerve. As with
all neurons, noise and variability are inherent in an RGC’s response . Therefore a
number of such responses to the same stimulus are usually recorded and then averaged
together. Spike rate as a function of time is then estimated by first dividing the time
course of this averaged response into increments and then dividing the number of spikes
occurring in each increment by its duration. A plot of this averaged response versus time

is called a peri-stimulus time histogram (PSTH).

RGC’s respond poorly to uniform illumination of their receptive field, though
response (as measured by spike rate) does increase with increasing luﬁlinance level. The
response at any given level of uniform illumination is called the spontaneous firing rate.
The situation is dramatically different if, in addition to this uniform field, a small spot of
light is directed at various points within the cell’s receptive field. Kuffler (25), who was
the first to investigate RGC receptive fields in this way, found that when a spot of light
was placed in the center of its receptive field, some RGC’s responded with a distinct
increase in spike rate over the spontaneous firing rate. Moving the spot to the surround
resulted in a response that was below the spontaneous rate. Such receptive fields were
labeled on-center, off-surround, and about half the RGC’s have receptive fields are of
this type. The other half have off-center, on-surround receptive fields, and behave in an
opposite manner. These results show that an RGC is sensitive to the difference between
the level of illumination falling on its receptive field center and the level falling on its
surround. Thus, the signal supplied by the retina to central visual structures does not give

equal weight to all regions of the visual scene; rather it emphasizes the regions that
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contain the most information—namely, the regions where there are differences in

luminance.
{
Stimulus contrast is defined as the ratio of the luminance at a particular point to that
of the region surrounding it. To place this on a firmer mathematical footing, let €(x,y) be
the luminance of a pencil of light falling on a point (x,y) anywhere within the area of an

arbitrarily shaped stimulus. The contrast of that point with respect to the entire stimulus

region is defined as

E(X: Y) - eavg — Ae

b = bl 6
oo y) == T ©)
where
1
Cap = [JECOY) dx . (7)

>

Here €, is the integrated average luminance falling on the stimulus and A the area of the

stimulus. Note that A€ can be either positive or negative.

Suppose that an RGC receptive field is uniformly illuminated with light having
luminance €,g, evoking a spontaneous firing rate rss. At some point (x,y) we then
superimpose a pencil of light having a contrast ratio c(x,y). This will evoke some
response r(x,y) from the RGC, so that Ar(x,y)=r(X,y)-Isw For a given background, €,yg,

and for stimulus contrast ratios in the range of approximately +30%, the derivative

0(Ar)
oc

is approximately constant with respect to ¢ (though it will vary across x and y). A

linear relationship thus exists between Ar(x,y) and c(X,y), which can be written as
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0(Ar)

Ar(x,y) = %

(x,¥)-c(x,y). (8)

Kuffler’s work has been extended by directing individual pencils of light of equal
intensity to various locations within an RGC’s receptive field that is otherwise subjected
to uniform illumination, and then measuring Ar(x,y). A surface plot of these individual
responses vs. the location of the stimulus that evoked them (for an on-center RGC) has an

appearance very similar to that shown in Figure 14a. It is referred to as the RGC’s two-

iy
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Figure 14

dimensional, steady state receptive field. Superposition also holds, and once o(ar) (x, y)

is determined for every position (x,y) within an RGC’s receptive field (which can be
done experimentally), the response Ar to a general stimulus whose contrast varies across

the receptive field according to c(x,y) can be estimated from

Ar=Za(af) ¢, (x,). ©)
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In the mid-1960°s Rodieck (26), Enroth-Cugell and Robson (27), and Enroth-Cugell, et al
(28) developed a receptive field model that continues to be the basis for most analytical
work in this area. Their “Difference of Gaussians” model relates the receptive field’s

steady state response to point stimulation anywhere within it by the expression (26)

Ar, =k, e * -ke % |, (10)

where k. and k; are the senéitivities of the center and surround region, respectively, and
o. and o; measures of their respective sizes. (Note that in this model the surround region
includes the center region.) This is indicated in Figure 14b. Given its linear behavior,
the response to more complicated stimuli can be obtained through integration of Equ.

(10).

These receptive fields constitute, to a good degree of approximation, a quasilinear
system. At any given level of average luminance, its response varies linearly with
stimulus contrast. Moving to a different average luminance results in a different linear
relationship between response and stimulus contrast. This is true of the visual system in
general, and this responsive adjustment is referred to as adaptation. This “scheme” fits
the visual system to its environment very well. Over the course of the day the
background intensity can vary by as much as 14 log units (from starlight to midday sun).
Under any particular set of viewing conditions, however, the variation in light intensity is
much less—of the order of two log units. RGC neurons give their full range of output
over a two log unit range of light intensity. Furthermore, at any particular level of
background intensity, its output to small perturbations within this two log unit range is

approximately linear. The previously mentioned constraint on using the linearity
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assumption should not be viewed as overly severe, for two reasons. First, within any two
log unit range of illumination, contrast variations of +30% about the mean level of
illumination constitute approximately 30% of this range. Secondly, the detection tasks

considered here involve far less than a 30% variation.

The particular level of average luminance that the visual system is operating at is
often referred to as the adaptation or background level. At the level of the RGC
receptive field, adaptation manifests itself in three important ways:

1. Both rods and cones exhibit a decrease in sensitivity with increasing light intensity.

2. Cones (but not rods) exhibit a shift in their operating range such that their whole
response range is utilized for the range of intensities about each adaptation level.

3. The temporal frequency response characteristics of the individual photoreceptors, and
hence the receptive fields that they make up, change with background intensity, as
discussed in Section 3.2.

This is accomplished by a variable gain control mechanism, a large part of which exists at
the level of the photoreceptors themselves (24). A complete specification of RGC
performance, then, must stipulate these relationships as well.

3.4 Downstream Receptive Field Structures
We have seen that RGC receptive fields detect regions of light-dark contrast.

“Downstream” neurons in higher level visual processing centers of the brain combine
individual RGC receptive fields in various ways to perform more sophisticated detection
tasks. Two such neurons pertinent to this study are orientation selective (OS) and
direction selective (DS) neurons. Orientation selective neurons have adjacent excitatory
and inhibitory regions (as opposed to the concentric excitatory/inhibitory regions of RGC
neurons), which are longer in one dimension than the other. Lines or edges in the visual
field whose orientation, or angle of rotation, coincide with its main axis invoke the

strongest response from such a neuron. Two possible schemes are shown in Figure 15a.
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OS neurons retain the basic linear response characteristics of RGC neurons whose

outputs they inherit. They are an example of simple cells.

Preferred Direction—»

B
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I

a) Orientation Selective Receptive Field b) Basic Reichardt Detector with

OS Receptive Fields
Figure 15

DS neurons respond strongly to motion in one direction but not the opposite direction.
DS neurons are thus motion detectors. Their operation, first postulated by Werner
Reichardt and colleagues (29), is shown schematically in Figure 15b. An object’s image
moving across the retina from left to right evokes a response from the receptive field
located at position A on the retina. This response is transmitted through a time delay At
to a multiplication junction. (Except for the time delay, all transmissions are for
simplicity assumed to be instantaneous.) Later the image passes across the receptive field

at location B, eliciting a response from it. If the speed of the retinal image is

AX
vV=—o,
At
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where Ax is the distance between the two receptive field locations, both responses will
arrive at the multiplication junction at the same time, yielding a large positive value. If
the speed is significantly different from v, or the direction is significantly different from
the preferred direction the multiplication will yield a value close to zero. Image speed,
and thus the object’s speed, is inferred by the distance Ax between the two receptive field
locations. Direction is inferred by the orientation of the two receptive fields with respect

to one another in retinal x-y space.

Reichardt, et. al. determined that for such a mechanism to work, it must incorporate a
spatially asymmetric component and a nonlinear component [Chapter 2 of (6)]. Spatial
asymmetry simply says that if, as in this example, a neuron is to be sensitive to left-right
motion, then something must be different between left and right. The simplest scheme to
accomplish this is shown in the figure: inputs from only two locations are polled, and the
one coming from the left is time-delayed (the spatial asymmetry). Time delays are the
most common form of spatial asymmetry employed in motion detection models, but other
forms have also been suggested. For example, the left input could act to enable (or gate)
a response from the neuron to the right input, but be unable to evoke such a response on
its own. Alternatively, one input could be inhibitory and the other excitatory, and their

interaction nonlinear.

Poggio and Reichardt (30) later proved mathematically that a purely linear motion
detector would be incapable of determining the direction of motion, even with a spatially
asymmetric element. Large portions of the detector could be linear, but at some stage
nonlinearity is required. The simplest type of nonlinearity that can be employed is a

quadratic one. Multipliers or sum-and-square operations are in turn the simplest forms of
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quadratic nonlinearities, and the ones most frequently employed in motion detection

models. Other types of nonlinearities are also possible, of course.

DS neurons appear to be constructed from other simple neurons having either
circularly symmetric receptive fields (like those of RGC’s) or OS receptive fields. If the
input receptive fields are circularly symmetric, the DS neuron would be sensitive to the
movement of blobs of light of the appropriate dimension, and lines or edges at any
orientation. If they consist of OS receptive fields, the DS neuron would be sensitive to
the movement of blobs of lig'ht or lines and edges at the preferred orientation. The latter
scheme is shown in Figure 15b. The response characteristics of a monkey DS neuron,
recorded by Hubel and Wiesel (31), are shown in Figure 16. Here the strongest response
is evoked when the line is oriented with the neuron’s receptive field (indicated by the
dashed rectangle) and moving up and to the right (Case 4). The greater the line/edge’s
departure from the preferred orientation, direction, or speed, the lower the DS neuron’s
response. Because of their nonlinear response characteristics, DS neurons have been
classified as complex cells to distinguish them from the linear simple cells. Note, though,
that their basic inputs (simple cells) are linear. Because of its temporal attribute, the

overall receptive field of a DS neuron is known as a space-time receptive field.

Beyond the DS neurons are neurons sensitive to image contraction/expansion, from
which longitudinal motion can be inferred. Though still the subject of ongoing research,
it is plausible to assume that these contraction/expansion receptive fields are constructed
from DS inputs. Perhaps the simplest way in which such inputs could be combined to
construct the receptive field of an expansion sensitive neuron, or “looming detector”, is

shown in Figure 17. It arranges DS receptive fields such that one with a sensitivity to
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upward motion forms the top of the looming detector’s receptive field, one sensitive to
rightward motion forms the right side, and so on. When an image of the appropriate size
expands within this composite receptive field, and its edges expand over the component
receptive fields at the appropriate (lateral) speed, each component will send a maximal
signal to the expansion selective neuron (ES in the figure), which combines these in a
nonlinear fashion and in turn issues a maximal signal. Though this structure is plausible
in view of known neurophysiology, fhis is still an area of active research. Sekuler
(32),for example, performed psychophysical studies of speed discrimination in looming
displays, and concluded that a simple linear summation of the individual lateral motion
inputs of as few as four well distributed DS neurons is sufficient to explain the results
predicted by the properties of looming detectors. The preponderance of evidence at this
point, however, argues in favor of an arrangement similar to that of Figure 17 (See, for

example, 33).
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A Basic Looming Detector
Figure 17

3.5 Summary
In this chapter we introduced the brain’s fundamental processing element, the neuron,

noting the differences between it and other cells and describing its signaling capabilities
and characteristics. We next described the receptive field structure and identified its most
distinctive feature: its sensitivity to stimulus contrast as opposed to absolute stimulus
intensity. We described how light signals entering the eye are transformed and processed
by progressively more complex and sophisticated receptive field structures to extract
information from complex motion stimuli. Our review culminated in the presentation of
physiologically grounded neural models for motion detection (Figure 15b) and looming
detection (Figure 17). These two models form the physiological and theoretical basis for

this study.
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The construction and response characteristics of OS neurons, DS neurons, and
looming detectors reveal a general theme that applies throughout the visual system:
downstream neurons combine the outputs of simpler upstream neurons to form more
sophisticated and compléax receptive field structures, with which to better discriminate
and disambiguate the complex visual signals that the eyes receive. Here we have seen
that OS neurons integrate the outputs of RGC neurons to form OS receptive fields, DS
neurons integrate the outputs of OS neurons to form DS receptive fields, and looming

detectors integrate the outputs of DS neurons to form receptive fields sensitive to image

expansion.
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4 NEURAL AND PSYCHOPHYSICAL RESPONSE TO TIME-VARYING
VISUAL STIMULI
There are two important conclusions that can be drawn from our review of the motion

pathway that form the logical basis for this study’s approach:

1. All visual detection tasks (including the detection of motion and looming) are
accomplished by specialized receptive fields that are built up from RGC receptive
fields. Their response characteristics should therefore be similar to the RGC'’s basic
response characteristics.

2. Luminance patterns that may vary over space and/or time are the only stimuli that
RGC receptive fields are sensitive to. The detection of any feature or event in the
environment must therefore reduce to the detection of a particular luminance pattern
or patterns. Thus, the response characteristics of any detection task (such as motion
or looming) should therefore be similar to the RGC'’s response characteristics to
luminance variation.

In this chapter we present two sets of experiments to demonstrate these similarities. We

first demonstrate the similarity between the frequency response characteristics of an RGC

and a human test subjects to temporally varying light stimuli. We next demonstrate the
similarity between the frequency response characteristics of human test subjects to

temporally varying light stimuli and motion stimuli.

4.1 Neural and Human Psychophysical Response to Flicker
Flicker refers to the periodic temporal variation of a spatially uniform light stimulus.

If the variation is sinusoidal then the luminance of the stimulus can be described by

(=2, [1 + ea

avg

sin(2nf, t)] =0, [1+c(O)], (11)

where €,y is the average level of luminance, a the amplitude of the sinusoidal variation,
and f; the temporal frequency in cycles per second. An RGC’s frequency response
characteristic to such a stimulus can be obtained by determining the contrast amplitude
a(f;)/ €avg at each frequency required to elicit some steady state criterion level of response
from it. The criterion level of response is an arbitrarily assigned spike rate. It is set to a
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value sufficiently far away from the neuron’s spontaneous firing rate to allow the two to
be reliably (in a statistical sense) distinguished from one another, given the presence of
noise. (We identified two sources of noise in Sections 3.2 and 3.3, and will discuss this
further in Section 5.4.1). The contrast amplitude necessary to evoke this response is
called the contrast threshold, and its reciprocal the contrast sensitivity.

4.1.1 Neural Response to Flicker
Derrington and Lennie (34) performed an experiment whose stimulus was very

similar to that described by Equ. (11)°, using the RGC of a macaque monkey. (the
corresponding experiment can not be performed on human subjects, but the behavior of
human RGC’s is believed to closely resemble that of the macaque.) This produced the

result shown in Figure 18. As was the case with receptive field response to spatially

100.00

10.00 1

1.00 1

Contrast Sensitivity

0.10 1

0.01

T T 1
0.1 1.0 10.0 100.0

Frequency (Hz)

Temporal Contrast Sensitivity Function for a Macaque Monkey RGC
Figure 18 -

% In their experiment the stimulus varied in both space and time according to

(x,H=¢, I:l + [.02 -sin(Smx)e €a -sin(2nf, t)]:i )

avg

where x is measured in degrees of visual angle.
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varying contrast patterns (Section 3.3), response to temporal contrast patterns is also

linear for a given adaptation level and small changes in contrast (35).

The low-frequency cut-off exhibited by the RGC is noteworthy. Based upon the
considerations outlined in Section 3.2 (neural coding and conduction time delays) we
expect a high frequency cutoff. In fact, at very high temporal frequencies the stimulus
takes on the appearance of a uniform field whose equivalent luminance €, is equal to the

time averaged luminance, that is,
1 et
Cu=7 [ ewat. (12)

This is a statement of the Talbot-Plateau Law. Different sized receptive fields will have
different numbers of neurons and different transmission distances associated with them,
and will thus have different temporal characteristics in this regard. There are no obvious

physiological grounds, however, for a low pass cutoff.

We do know, however, that the visual system is tuned to identify those features of the
visual scene that convey the most information, i.e., features that are undergoing
significant change over space/time. Other elements of the scene are typically passed over
and ignored. The low-frequency cut-off here may be a manifestation of this, indicating
that objects whose luminance changes very slowly over time are not of much interest and
that information regarding them is thus being discarded in favor of those whose

luminance changes more quickly.
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4.1.2 Human Psychophysical Response to Flicker
As with an RGC’s response to temporally varying stimuli, above some critical

frequency a human observer can no longer perceive the temporal variation and instead
senses a constant and uniform field (fiusion) whose luminance is given by Talbot-
Plateau’s Law [Equ. (12)]. The critical frequency at which this transition takes place is

given by Porter’s Law:

f,=k,-In€, +k,, 13)

where £ is the time averaged luminance of the stimulus [from Eq. (12)], or adaptation
level, and the constants k; and k, depend on the form of the temporal variation, the
adaptation level, and the location on the retina that the stimulus’ image falls on. In their
experiments, DeLange (36) and Kelly (37) established for various flicker frequencies f;
the amplitude a for Which human test subjects could “just detect” flicker. Though these
experiments eschew spatial variations in stimulus luminance, they are nonetheless
comparable to the result described in previously (Section 4.1.1). These experiments and
the follow-on analysis of Stork and Falk (38) served as prototypes for the motion
detection experiments and analyses performed in this study, given their close similarity in

both concept and design.

We have seen in Section 3.2 that the RGC receptive field acts as a temporal filter.
Furthermore, if Talbot-Plateau’s Law [Equ. (12)] is to be satisfied, this filter must be
linear and precede any nonlinear element. Based on these observations DeLange and
Kelly both assumed the same underlying neural mechanism for the psychophysical
flicker detection task. It consists of a linear filter followed by a nonlinear pulse generator
and a “threshold” detector, as shown in Figure 19. Flicker input [A sin(wt)] to the visual
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system is temporally filtered by the RGC receptive field and converted to graded
potentials (Section 3.2) by the photoreceptors making it up. The filter’s continuous output
[Bsin(wt+@)] is the combination of these graded potentials. The nonlinear pulse
generator transforms the filter’s output to a series of action potentials whose frequency
[N(t)] codes the strength of the filter output. The pulse generator’s output is assumed to
vary instantaneously and monotonically with its input. There is therefore no information
loss through the pulse generator, and the transient performance of the filter/pulse
generator is just that of the filter. The pulse generator represents all of the neural
elements between the photoreceptors and the threshold detector, which is assumed to be
located somewhere before the visual cortex at the back of the brain. DeLange noted that
aé a result of the requirement that the linear element (the filter) precede the nonlinear
element (the pulse generator) the two will behave as a linear system to stimuli at or above
the critical frequency, whose average luminance is constant. Under these conditions the
filter attenuates any varying input to such a small fluctuation about its mean that the pulse

generator output N(t) is approximately linearly related to its input Bsin(wt+ ¢).

Neither researcher addressed the threshold detector in detail. Kelly described it as a

neural element beyond which information required for an appropriate detection response
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could not pass, under sub-threshold conditions’. Their models applied only up to the
input of the threshold detector. Even so, the models were not viewed as inherently
limited to threshold stimuli, and Kelly applied his model to quite different stimuli (e.g.,

impulse and step inputs).

Neither DeLange nor Kelly provided for the existence of pure transmission delays,
which are known to exist for all visual processes (and which the engineering models
described in Section 2 correctly incorporated.) Temporal response to a stimulus, then,
begins with the onset of the response, not the presentation of the stimulus. Methods can

be devised to measure this time delay (see Section 9.1).

The linearity of the filter permits the use of classical frequency response techniques to
measure its frequency response to periodic stimuli. A straightforward application of
these techniques, however, is not possible because the output of the filter cannot be
measured directly, only the observer’s response. Using the assumptions underlying their
model, however, DeLange and Kelly were able to circumvent this difficulty. Recall first
that if we excite a linear system with a sinusoidal input of the form A sin(wt), its response

will be a sinusoid of the form Bsin(wt+¢). Repeating the process for a number of

different frequencies provides the system’s gain and phase characteristic, %(m) and

o(w). Since the system is linear, the output amplitude remains proportionate to the input
amplitude for each frequency. The ratio B/A is thus unaffected by the particular value
that we choose for A. We could therefore keep A constant for each frequency that we

test for, or we could vary A so as to keep the output amplitude B constant. Since under

7 This represents the historical view of an absolute threshold, which is described in Section 5.2.

45



these experimental conditions the criterion value C is assumed to remain constant, the
input amplitude A can be adjusted until the maximum pulse generator frequency Npmax is
just equal to C. Npax will thus remain constant throughout the experiment, as will the
filter’s output amplitude B that produced it. The fact that the magnitude (and for that
matter, the units) of B remains unknown is not critical to the analysis, since it remains
constant throughout the experiment. It can thus be taken to be unity. (This means that
the derived results will be known to within a multiplicative constant.)
4.1.2.1 DeLange’s Electrical Analog Flicker-Fusion Model

Delange is credited with being the first to apply linear systems theory to visual
psychophysics, and with it unified a substantial body of data gathered by previous
investigators. Using his own experimental results he showed that the visual system
behaves approximately linearly near the flicker detection threshold.

DeLange measured the just-detectable amplitude of a flickering stimulus consisting of
a bright, circular, sharp-edged spot of light superimposed upon a dark background®. The
central spot fell on the central 2° of the retina®. This stimulus was modulated according
to four different square wave patterns (shown in the inset to Figure 20). The luminance
of the background was made equal to the time-averaged luminance of the central spot,
such that background luminance also set the adaptation level. The frequency response
characteristic that DeLange measured is shown in Figure 20. He found that for all but the
lowest flicker frequencies the filter’s attenuation characteristic was so great that only the

first harmonic of the stimulus, given by

% In these experiments stimulus luminance is measured in trolands, the retinal illuminance that results when
a surface luminance of 1 cd/m? is viewed through a pupil area of 1 mm’.

o The fovea occupies the central 2° of the retina, so this stimulus entirely fills it.
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avg

L) = eavg [1 + ;4 -sin(2nf, t):l R

was perceptible to the observer. The ordinate in the figure is thus €,.,/€;. Detection
performance, for the 430 troland case in particular, approximately mirrors that previously
presented for an individual RGC (Figure 18). Peak sensitivity occurs at approximately
the same frequency. Low frequency attenuation is not as pronounced as it is for the

RGC, and high frequency attenuation declines more rapidly.

Based in these results DeLange postulated an electrical analog for the linear filter,
consisting of n, loosely coupled RC elements. (Only resistors and capacitors were chosen
for this model because thé filtering éction is in reality a chemical process that includes
diffusion, and these processes are governed by the same laws as electrical networks
containing only resistances and capacitors.) The individual resistance and capacitance

values can in principle be different from one another, but for convenience DeLange
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assumed each type of element had the same value, which along with n were determined

by the adaptation level. The transfer function for the filter thus takes the form

G =— (14)

(1+RCs)?

where s is the Laplace variable. For the 430 troland data n=12 and RC=.0035 sec.

4.1.2.2 Kelly’s Single Channel Flicker-Fusion Model
In contrast to DeLange’s stimulus, Kelly employed a wide field, edgeless stimulus.

Here the instantaneous luminance of the flickering field was uniform for the first 50° of
visual angle. Between 50° and 68°, the luminance was gradually reduced to zero, giving
the boundary of the flickering field a blurred appearance. Kelly’s experiments also
differed in that he used a purely sinusoidal stimulus, whose luminance varied according
to |

a0=€M[L+£Lstnﬂ0} (15)

avg

Kelly’s results are shown in Figure 21. Both the low and high frequency attenuation
exhibited here are more consistent with that of the RGC (Figure 18) than DeLange’s data
(Figure 20), but peak sensitivity occurs at a lower frequency. He attributed the more
pronounced bandpass characteristic of his response curves primarily to the elimination of
a sharp stimulus edge. This precludes the effect of “spatial derivatives” on detection
performance and gives results that are more consistent with those obtained from
individual retinal channels, which Kelly defined as some retinal spatial unit (i.e., one or a

group of photoreceptors) that transmits signals independently of its neighbors, up to a
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certain point. The “single channel” model that Kelly derived from this data, then, should

be representative of an RGC receptive field.

Based on his results and physiological considerations, Kelly assumed a filter
described by a minimum phase transfer function and constrained by the following

observations and conditions:

1. It behaves as a second order differentiator for low frequencies and a second order
integrator for high frequencies.

2. g(t=0)=0 and 98

<o, where g(t) is the filter’s temporal response.
t=0

dt

3. Since neither the magnitude nor the units of the filter’s output were known, Kelly for
convenience assumed it to be numerically equal to the input at zero frequency, so that
G(0)=1.

With these the filter transfer function describing the 850 troland response characteristic

becomes
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2
G(S) — k4 . a (89)4 ) .00372s" +.0725s +1

(k +s)* (89 +5)* ' (16)

Taking the inverse Laplace Transform of Equ. (16) gives the impulse response,

h(t) =k* at+l(b—2ak)t2+l(l—bk+ak2)t3 ekt
2 6
17)
=2.3-10° [t ~79.2¢> +1071t3]e-”‘ .

h(t) is plotted in Figure 22. Since, as we discussed in Section 4.1.2, we know neither the

Kelly’s Single Channel Impulse Response
Figure 22

magnitude nor the units of the filter’s output, the ordinate of this plot reflects relative
scaling. Further, since transmission delays have not been addressed in this model the

initial time in the plot coincides with the onset of the response, not the presentation of the

stimulus.
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4.1.2.3 Stork and Falk’s Model-Independent Impulse Response Derivation
In their studies DeLange and Kelly developed physiologically based models whose

free parameters were then specified with reference to experimental data. The danger of
such an approach is that the experimenter’s task can become one of fitting the data to the
model, causing experimental results that are inconsistent with the model to be obscured.
Stork and Falk employed the Kramers-Kronig (39) relations to develop a
psychophysically determined temporal impulse response so as to place strict model-

independent constraints on these models.

Let f(z) be a complex function given by
f(z)=f(x+iy)=u(x,y) +iv(x,y). (18)

The Kramers-Kronig relations show that under a given set of assumptions (analyticity
and boundedness), the real and imaginary parts of f(x,0)=u(x) +iv(x) are Hilbert

Transforms of one another. In their simplest form they can be written as

oL 2 s

0 X — X,

(19)

V(Xo)=—%Jw u(x) dx,

0 X — X,

where the Cauchy principle value of the integral is assumed. This is actually a statement

of Titchmarsh’s (40) Theorem. Let G(w) be the Fourier Transform of g(t):
G(o)= [ g(t)e™ dt.

Titchmarsh’s Theorem states that if G(®) is square integrable over the real w—axis, then
any one of the following three conditions implies the other two:
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1. The inverse Fourier transform g(t) of G(w) is zero for t<0 (causality);

2. Replacing @ by z=x+1y, G(z) is analytic in the complex z—plane for y>0 and
approaches G(x) almost everywhere as y— 0. Further

r|G(x+iy)|2 dx < C (y >0).

That is, the integral is bounded.
3. The real and imaginary parts of G(z) are Hilbert transforms of one another [Equs. (19)].
Thus if G(®) is causal (condition 1), and absolutely stable (condition 2), then by
Titchmarsh’s Theorem, the third condition applies. This result is generally applicable to

any analytic, bounded, complex function, independent of the details of its particular

application.

Using these relations Stork and Falk derived a psychophysically-based impulse
response corresponding to Kelly’s data for 9300 trolands (Figure 21). Their result is
plotted in Figure 23. For comparison Kelly’s result (Figure 22) for 850 troland is also

plotted. The two approaches give quite similar results.
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The conditions of Titchmarsh’s Theorem are also satisfied by a minimum phase
transfer function. Such systems are optimal in the sense that they exhibit the fastest
response of any system having the same gain characteristic. It is not possible to verify
that this aspect of the human visual system is minimum phase without employing
invasive experimental techniques to actually measure its phase characteristic. It is
reasonable to assume that this is the case, however, since the detection of luminance
variation is a critical task for the survival of any organism. The ability to respond to such
a stimulus in the shortest possible time would thus confer an advantage to those
organisms possessing this capability and one could conclude from this that the visual
system has evolved to exhibit minimum phase behavior. Based on these considerations
we employ the assumption here that the system under study here is minimum phase. The
Matlab p-tools function fitmag (41) constructs a minimum phase transfer function of a
specified order using as its input the system gain characteristic, based upon the algorithm
described by Oppenheim (42). Using fitmag, a second order transfer function was fitted
to Kelly’s 9300 troland data. Its impulse response was identical to Stork and Falk’s
result.

4.2 Human Psychophysical Response to Motion
4.2.1 Sensitivity to Monocular and Disparity Oscillation

Tyler (43) measured human visual sensitivity to two types of apparent motion. For
each the stimulus consisted of two bright, thin lines drawn parallel to one another on an
oscilloscope display. Each was then displaced laterally in a sinusoidal fashion at the
same frequency and amplitude. The test subject viewed the display through a set of
conventional orthogonal polarizers. When the lines were modulated in phase with one

another, one line appeared to be stationary while the other moved sinusoidally from side
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to side (monocular oscillation). When they were modulated out of phase, one line
continued to appear stationary, but now the other appeared to move sinusoidally forward
and backward in space (disparity oscillation). For a range of frequencies between .1 and
5 Hz, the test subject adjusted the amplitude of the modulation to the level at which it was
just detectable. Detection performance for a single observer is shown in Figure 24

(where A is the just detectable modulation amplitude in degrees of visual angle).
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Figure 24

Neither of these motion stimuli would be detected by the looming detector (Figure
17) that we assume will be active in the experiments we will conduct. The monocular
motion stimulus, however, would be detected by the basic Reichardt detector (Figure
15b), that we assume makes up our looming detector. This experiment are therefore quite
relevant to our own, and we expect our results to be somewhat similar to these. The
stereoscopic motion stimulus would be detected by neurons sensitive to binocular
disparity, whose study we have deferred (See Section 9.1). A comparison of the two

results does confirm our prioritization: sensitivity to the monocular stimulus is

54



approximately three times a great as that to the stereoscopic stimulus. We expect that this
would carry over to the case of looming detection as well, and that even if these two cues
were pooled by the visual system in the detection of looming, the improvement due to the
stereoscopic cue would not be that great.

4.2.2 Sensitivity to Changes in Lateral Velocity
Harrison, et al (44) measured sensitivity to periodic velocity modulation of the base

lateral velocity of an object for three periodic waveforms (sine, square, and triangle). For
modulation frequencies ranging from one to nine Hz and base velocities between three
and nine deg/sec. They found that human test subjects were able to detect each type of
modulation equally well. Frequency response characteristics were bandpass with peak
sensitivity at approximately three Hz. These results are again similar to those of the
previous experiments.

4.3 Summary
In this chapter we showed that human performance in the flicker detection task is

similar to that of the RGC (as measured by frequency response). We then showed that
human performance in the detection of certain motion stimuli are in turn similar to flicker
detection performance. (These motion stimuli are similar but not identical to the looming
stimuli that we will be using in the present study.) These results are expected given the
observations (Section 3.5) that all detection mechanisms are built up from RGC receptive
fields, and that all visual stimuli reduce to changing luminance patterns. We then
reviewed the flicker detection models proposed by DeLange (36) and Kelly (37). Based
upon these results and observations we conclude that the basic structure of these models
is applicable to the looming detection task. Finally, Stork and Falk’s (38) follow-on

analysis of Kelly’s data showed that the assumption of minimum phase behavior is
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justified, and presents an equivalent, simpler approach to the development of the filter

model.
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PART II: EXPERIMENTAL PROCEDURES AND RESULTS
Introduction
As noted in the Introduction (Section 1), expansion of an object’s image in an

observer’s visual field, as represented by 6 increasing from zero, provides a powerful
sensation of its approach. This isn’t the only visual cue available for the detection of
looming objects, but it is generally regarded as one of the most important. In these
experiments we consider only the cue of two-dimensional image expansion (which needs
only one eye to appreciate), and we study it in isolation from any other. Because it is
two-dimensional, presentation of an expanding shape on a two dimensional visual display
produces qualitatively the same effect as an object approaching an observer in three-
dimensional space. This more tractable approach will be taken in these experiments.

A complete model would of course combine the results of separate studies
quantifying the visual system’s detection and response capabilities for other cues to
looming. Two that we will discuss later (Section 0) are:

1. “Second order” motion,;

2. Binocular disparity.
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5 A TEST OF THE THRESHOLD ASSUMPTION
5.1 Introduction
It is generally accepted that humans detect and avoid impending collisions through

the perception and regulation of Time-to-Collision (t). Judgments of T are in turn
assumed to involve judgments of the speed at which the FV and LV are approaching one
another. Earlier (see Section 1) we showed that when an object approaches an observer

the monocular image that it projects onto the retina of the observer’s eyes expands at a

rate O given by

. WR OR
o=-% ~®° 20

where 0 is the visual angle subtended by an object of width W, at a distance or range R,

and approaching the observer at a speed, or range rate R . Tis in turn given by
0
T==. 21
5 (21)

[See Equs. (1) and (3)]. In their study, Hoffman and Mortimer (16) assert the existence

of a just-noticeable “threshold” in the perception of 0 , of approximately 0.003 rad/sec.

Fancher and Bareket (12) apply this to Equ. (20) to assert the existence of a threshold in

the perception of R of approximately +0.00164 R?, which they employ in their Headway

Control Model (Section 2.3).

Implicit in these treatments is the assumption that the calculations of © and t

describe how a human observer actually perceives these quantities. In reality, these are
two different concepts. The equations given above for 6 and 7 are concepts of geometry,

while the percepts 6 and 1 obtained by a human observer in performing a certain
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judgment are behaviorally determined quantities. The assumption linking the two, while
attractive, is unfounded. Certainly, no experimental evidence has been presented in
support of it, and in fact a number of studies have presented evidence contradicting it.
Regan and Hamstra (5), for example, have studied the intrinsic visual act of judging t and
have found evidence for independent mechanisms in the human brain sensitive separately
to tand to O (though, as we noted in Section 1, the existence of a neural correlate to T
has yet to be conclusively proven). A second assumption, again presented without
evidence, is that there is a threshold associated with the detection of 6, and below which
the human can perceive nothing. Again, a number of studies have presented
contradictory evidence. Evans and Rothery (45) showed evidence that drivers were
sensitive to relative speed and spacing even when angular change was “too small” to be
seen. Schiff and Detwiler (46) have also pursued studies using the threshold concept.
These issues have significance for human driver models because, if the assumptions are
incorrect, the models will not effectively convey what drivers actually do, even if

calculations based upon them are approximately accurate.

In this study we conducted two experiments to test the existence of a threshold for
detecting 6. These experiments are based on the methods of Tanner and Swets (47),
who investigated the existence of a “classical” threshold associated with the detection of
light signals. (As we explained in Section 4, all visual detection tasks ultimately reduce
to this.) The implications that these results have for human driver models are far
reaching: they suggest the need for a fundamentally different kind of model whose output
lends insight not only into the manner in which humans perform this driving task, but

also the ways in which their performance can go awry.
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5.2 Background
The concept of threshold was first formalized by Gustav Fechner (48), who asked the

most fundamental question of all concerning the visual system: what is the least amount
of light that can be seen? Fechner’s hypothesis, that there must exist some limit below

which a light signal was too weak to be perceived, is shown schematically in Figure 25a.
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This plots an observer’s ability to detect a stimulus as a function of stimulus strength, I.
Below some threshold value, the visual system is unable to detect the stimulus and it goes
unseen. Above this threshold, “phenomenal seeing” takes place, and the observer is
always able to detect the signal. Fechner and others disproved this hypothesis, however,
when they attempted to measure this threshold. Instead of measuring the same sharply
defined threshold each time, different ones were measured at different times with no
apparent pattern to the changes. Presenting an observer with a large number of stimuli at
each of a number of different signal strengths did produce a fairly repeatable result—the
“smeared” detection curve shown in Figure 25b. Notice first the lack of a distinct
threshold, which when discovered was explained by the fact that the threshold is not
static, but randomly fluctuates over time. Secondly, when stimulus strength is very low,

the observer isn’t sure if the stimulus is there or not, and so resorts to guessing. The
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probability that he will correctly detect the stimulus approaches not zero but some
guessing rate r. It is important to keep in mind, however, that even in this modified view
a specific threshold is assumed to be in effect every time a stimulus is presented. The
uncertainty reflected in the ordinate of Figure 25b reflects the uncertainty associated with
the particular location of the threshold at any particular instant. The observer is still
assumed able to detect the stimulus with complete certainty whenever the stimulus
strength exceeds the threshold in effect at the particular instant the stimulus is presented
in.

The repeatability of the experimentally derived detection curve of Figure 25b allows
us to establish stimulus levels that will produce any desired detection rate. Formal
procedures called staircase algorithms have been developed to accomplish this. This fact,
along with the ideas of an instantaneous threshold and of guessing when the signal
strength is below threshold, form the basis for the experiments performed here.

5.3 Experiment 1
Consider an experimental trial in which an observer is presented with a visual display

divided into four time epochs. During a particular epoch a stimulus of strength I is
presented and later the observer is asked to indicate which epoch it was presented in. If
the stimulus strength was set to achieve a 75% detection rate, then over many such trials
the observer will correctly identify the epoch 75% of the time. On those trials for which
the observer chose incorrectly, the threshold concept asserts that he “saw” nothing. If the
observer were asked on these trials to try again, then the probability that he could achieve
a correct choice would be no better than chance—in this case Y. If, on the other hand,
the observer managed to glean some information when the stimulus was shown (as for

example, if there was no threshold), his success rate on the second try would be greater
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than %, contradicting the threshold assumption. In this first series of experiments we will
test the null hypothesis, that the second choice success rate is 3, against the alternative
that it is greater than ;.

5.3.1 Methodology and Procedure
Three young adults, all in their early 20’s and having (corrected) normal vision,

participated (they are identified as TS1, TS2, and TS3 in Table 2 and Table 3.) The
stimuli were generated by a personal computer and consisted of four white squares
presented sequentially against a gray background, an example of which is shown in

Figure 26. Each of the squares was randomly displaced vertically and horizontally from

At, At, At
time —»
Stimulus Presentation
Figure 26

the center of the screen by a small amount (exaggerated in the figure) to prevent the
observer from establishing any fixed points of reference. The time increment during
which each square was presented was the same: 500 msec. One of the squares, chosen at
random, expanded by a small amount on all sides. This expansion took place 200 msec
after the presentation of the square, and occurred over a single screen refresh cycle (1/72
or 1/75 sec). (The expanded square thus remained visible for the last 300 msec of the 500
msec time interval.) Test subjects were instructed to fix their gaze on the number at the

center of each square as it appeared. The initial size of the squares, the amount by which

62



it increased, and the distance between the test subject and the display were determined in
pilot tests beforehand to achieve approximately a 75% detection rate on the first choice.
All test parameters and the manner in which they were adjusted based on the pilot tests

are given in Table 2a.

The small number of test subjects used in this study is justified by the nature of the
tests performed. These tests are intended to assess the capabilities of the human visual
system, and we know based on longstanding experience that these capabilities do not
vary appreciably (in statistical terms) between individuals with normal vision, as selected
here. (Perception, that is, the interpretation of the incoming sensory data, may indeed
vary, but the neural events triggered by incoming photons of light do not.) Forced choice
experiments (“Which square expanded?”’) involving stimuli of limited dimensionality (an
expanding square) of the kind performed here minimize the test subjects’ opportunity to
voice subjective judgments and push them instead to accept one of four alternative
hypotheses without elaboration. There are, of course, factors that do affect sensory
function—age and neural disease being two prominent examples, and if we were
investigating these effects we would want to diversify the type of subjects studied. This,
though, is not the goal of the present study, which is inteﬁded to quantify the best

performance that can be achieved by the normally functioning human visual system.

Each observer viewed the display in a darkened room, and took approximately 75
practice trials to become familiar with the stimulus display and test regimen. Five to
eight 300-600 trial tests were then conducted over a three day period. The tests were

somewhat tedious and thus were generally limited to 300 trials to ensure that fatigue did
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not compromise the results. (Test subjects were also allowed to rest during the course of
a test as needed.) On several occasions test subjects reported that they were not fatigued
and could continue, so the test was»extended to 400 or 600 trials. The tests took
approximately 20 minutes per 300 trials to complete. The number of trials performed for
each test is given in Table 2b. At the end of each trial the test subject was given two
chances via prompts to identify the square that had expanded via the keyboard. Different
pitched tones sounded to indicate correct vs. incorrect choices. (There was no time limit
placed on the subjects’ response, but they typically responded within a couple of seconds
of each prompt.) Test subjects were paid 4¢ for each correct first choice, and 2¢ for each
correct second choice (when the first choice was incorrect). This ensured that they would
choose correctly on the first choice if they could, but also encouraged them to try their
best on their second choice in the event that the first was incorrect. At these detection
rates and payouts the test subjects could earn approximately $10 per 300 trial test. An
experimenter was present at all times to monitor the test. The correct choice and the
responses for each trial were logged into a data file for later processing.

5.3.2 Experiment 1: Results
We measured the ability to identify which of the four squares expanded. Performance

was about 75% correct on the first choice. A second choice was also recorded. The
results of these experiments are summarized in Table 2b and Figure 27. The individual
trials making up a given test constitute Bernoulli Trials, for which the Proportion Correct

and the Standard Error are given by

pote 5o [BOE)
n, n,
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Proportion Correct

Test

Second Choice Performance
Figure 27

where i1=1,2 (see Table 2b). [For a review of all the statistical methods employed in this
study, see (49).] If it is true that our test subjects perform no better than chance ('5) on
their second choice, then in a series of tests like the ones conducted here their second
choice performance should be above chance about half the time and at or below chance
the other half (assuming that the probability distribution the second choice results
actually correspond to has a median of '5). The 14 tests performed here then constitute

another set of Bernoulli Trials in which

Probability{Success} = Probability {Pz < %} - % :
Probability {Failure} = Probability {Pz > %} = % .

By this reasoning, then, we would expect only 7 of the 14 tests to yield correct response
rates in excess of 5. We find, however, that 12 of the tests did. Since the underlying

probability distribution for Bernoulli Trials is the Binomial Distribution, the probability
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that we could encounter 12 (or more) failures if indeed the true probability of failure is 2

is given by

Probability(x 212} = 3"

x:lzx'(n X):P (1-p)"~* =.0065.

where n=14 and p=Y%. Since this probability is less than 1%, we can reject with 99%
confidence that these subjects are able to do no better than chance on their second choice

in favor of the alternative, that their performance is better than chance.

One possible explanation for the results of Experiment 1 is that test subjects, being
aware of the experimenter’s interest in the 2™ choice detection rate, “saved” responses
for some trials that they were sure of for the 2™ choice. This would inflate the 2™ choice
detection rate but at the same time reduce the 1% choice detection rate, causing the two to
be negatively correlated. To investigate this, the data for each test was subdivided into
10 non-overlapping 30-trial “windows”, and p; and p, calculated for each. The first
window thus contains trials 1-30, the second window trials 31-60, and so on to the tenth
window, which contains trials 271-300. The correlation coefficient r measures the

correlation between p; and p,, and is given by

= SPl P2

SP) SPz

where the covariance and variance terms are given by

>3, ~5) @, ~F) (o, -5, Sr, -

— =1=1 =
PPy n ’ Sp, = n ) Sp, n

w w w
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and where ny, is the number of trial windows and p, and p, the overall detection rates of

the two series. The far right column of Table 2b gives the correlation coefficient for all
of the tests. We can again construct a test of the hypothesis that there is no correlation
between p; and p,. Here, then, we would expect half the computed values of r to be non-
negative and the other half to be negative. According to Table 2b this is almost exactly
the result that we observe, leading us to conclude that test subjects were not saving
correct responses for their second choice. Apparently, contrary to threshold theory,
observers can do better than chance if given a second choice.
5.4 Experiment 2
5.4.1 Introduction

In their investigation, Tanner and Swets (47) hypothesized that the detection problem
was really one of distinguishing between two signals in the presence of noise. In their
experiments the first signal consisted of a uniform light background of luminance I, and
the second consisted of a circular target of luminance I+ Al superimposed on this
background. The noise that they spoke of arises from many sources: it is intrinsic to all
visual stimuli (Section 3.2), and physiological noise is also present in every phase of the
visual detection process (Section 3.3). A useful way in which to treat noise, both for
experimental and analytical purposes, is to aggregate it together from all its various
sources and associate it with the domain of the visual stimuli, as indicated schematically
in Figure 28a. A common assumption in this regard is that this “equivalent” noise is
normally distributed and additive, so that both distributions have the same variance.
Introduction of the target of strength I+ Al thus has the effect of shifting the background

distribution to the right by g(AI). The observer distil‘iguishes between the two signals by

selecting a criterion level C and deciding that neural activity corresponding to signal
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strengths less than C indicates background alone, while neural activity corresponding to
signal strengths greater than C indicates background plus target'®. In so doing, the
observer accepts that only a fraction of all the targets presented will be correctly
identified (“hits”). Those that aren’t identified are labeled “misses”. Furthermore, some
background-only stimuli will be mistakenly included as well (a “false alarm™).
Background-only stimuli that are correctly identified are labeled “correct rejections”.
These possible outcomes are indicated in Figure 28b. The actual level at which the
observer sets the criterion will depend both on the expected benefit derived from each
type of correct assessment of the signal and the expected cost incurred from incorrect
ones. The observer can thus vary C (and be influenced to vary C), and in so doing obtain
different proportions Py;(C) and Pra(C). I and Al are under the control of the
experimenter and thus known. If in addition the variance o can be determined, then it is
an easy matter to compute Pra(C) and Py;(C) for different C (while holding I and Al
fixed). Plotting them against one another gives a single Receiver Operating |

Characteristic (ROC) curve, as shown in Figure 29, thus allowing us to predict in

1 Implicit in this is the assumption that neural activity is a monotonically increasing function of signal
strength.
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advance the observer’s performance for any C. (Repeating this calculation for different
Al leaving I constant, would yield a family of such curves.) False alarms are thus not
guesses made in the absence of any information, but rather the result of an informed
cost/benefit tradeoff. An easy way to influence this tradeoff, and hence the observer’s
selection of the criterion level, is to change the costs and benefits associated with the
various outcomes of the detection task.

Threshold theory specifies a different relationship between Pra and Py [Green, Swets
(50)], which we can use as the basis for a second test of its validity. Under the (varying)
threshold theory, signals whose strength exceeds the threshold in effect at the instant they
are presented will always be seen, and those that do not will never be seen. When we
conduct experiments such as the kinds performed in this study and those performed by
Tanner and Swets (47), we observe a hit rate less than the actual percentage of times a

signal was presented, as well as a non-zero false alarm rate. The former is easily
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explained according to the theory already presented: the strength of the signal presented
during a particular trial did not exceed the threshold in effect at the instant it was
presented. The non-zero false alarm rate is more problematic, because according to this
theory observers should never “see” a signal that isn't there. To explain this, threshold
theory was augmented by the assumption that in addition to a varying threshold, a certain
amount of guessing must be taking place as well. But if guessing inflates the false alarm
rate (from zero), it must inflate the hit rate too. The observed hit rate, then, results from
“true detections” and “guesses”. The mathematical expression of this relationship is

straightforward:

PHit

=Pt + r(l - P;m).
Puit here is the observed hit rate. Py, is the true hit rate, which depends only on I and Al

(which are under the experimenter’s control). r is a guessing factor that operates in the

absence of a true hit. By definition, though, this is the observed false alarm rate Pga, so

we have
Py = Pltlit +Ppy (1 - Plt{it) .

Since Pj;, remains fixed for a given I and Al, the relationship between Pra and Py;; is
linear. Experimentally obtaining one pair of points (Pga, Puit) and observing that
P

it (Pea =1)=1 then allows us to plot this relationship. This is shown in Figure 30, along

with the previously derived ROC curve for comparison. [We note too that by

extrapolating this plot to the abscissa, we can obtain P, , since Py, (P, =0)=Py, 1.

These considerations lead us to another way to test the threshold theory: Perform the
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“rating scale” version [Green and Swets (50), described below] of the first experiment to
obtain two pairs of points (Pga, Pui). Construct a straight line passing through the
rightmost pair and (1, 1), and plot it as in the Figure 30 (filled circles). If the leftmost
pair (open diamond) falls on this line, it would lend support to the threshold theory. Ifit
falls significantly below this line, however, it would contradict this theory and lend
support to the signal detection theory. This was pursued in our second set of

experiments.
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5.4.2 Methodology and Procedure
The same subjects participated in this experiment as the first. The stimulus was

generated by a personal computer and consisted of a single white square presented in the
center of the display monitor, against a gray background. The square, which appeared for
a total of 150 msec, expanded by a small amount on all sides or not, in a random fashion.
If it expanded, it did so 75 msec after it first appeared, and the expansion took place over
a single screen refresh cycle (1/72 sec), giving an angular expansion of approximately
0.05 rad/sec. The expanded square then remained visible for the last 75 msec of its
presentation. Test subjects were instructed to fix their gaze at the center of the square as
it appeared. At the end of each trial the test subject was asked to indicate whether or not
the square had expanded in one of three ways:

e Certain
e Possibly
e Certain It Didn’t

A tone sounded if the subject incorrectly chose Certain or Certain It Didn’t. No tone
sounded for Possibly. The subjects were paid +4¢ for a correct choice, +2¢ when they

indicated Possibly, and penalized -3¢ for an incorrect choice.

The inclusion of the Possibly category is an efficient way to obtain two pairs of points

(P.. ,Py ) in a single test. The Possibly responses represent those trials that the test

subject was most ambivalent about. In the absence of this choice, he would have
recorded these trials as either Certain or Certain It Didn’t, depending upon the relative
magnitudes of the reward and penalty offered. To see how two sets of points can be
derived from this data, we first note all the possible stimulus-response outcomes for a

trial:
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e Signal (Square Expanded) --------------- Certain Hit

e Signal Possibly MaybeHit

e Signal Certain Didn’t ------------- Miss

e NoSignal (Square Didn’t Expand)------ Certain FalseAlarm

e NoSignal Possibly MaybeFalseAlarm
e NoSignal Certain Didn’t ------------- CorrectReject

The two pairs of data points are then given by

_ #Hit P = # Hit + # MaybeHit
Hit1 ™ # Signal ’ Hit,2 ™ # Signal ’
P = # FalseAlarm P = # FalseAlarm + # MaybeFalseAlarm
FAL™ # NoSignal ’ FA2 # NoSignal '

Furthermore, because all of the data is derived from a single sequence of test trials, this
scheme has the added benefit of ensuring that the same psychophysical parameters (e.g.,
motivation, fatigue, and external conditions) apply to each of the computed pairs of

points.

In order for this scheme to provide the desired information, the various test
parameters and payments/rewards must be set properly to influence the appropriate
utilization of the Possibly Expanded category. Too few responses in this category
(brought about by either a too easily detected square expansion and/or by an insufficient
penalty for wrong choices) will yield data points that plot too close together in Figure 30,
making it difficult to discern the leftmost point’s location vis-a-vis the straight line
threshold prediction constructed through the rightmost data point. Too many responses
in this category, on the other hand, places the rightmost pair of points too close to (1, 1),
calling into question the exact location of the straight line. For this reason the test
parameters cited above (the presentation times, initial size of squares, amount by which

the square expanded, and the distance between the test subject and the display) and
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payments/penalties were adjusted from the stated nominal values to provide an adequate
mix of responses for each test. This adjustment had to be performed at the beginning of
each test because the performance of the test subjects could vary from test to test. (No
adjustments were made during the course of a test.) The results of these adjustments for
each test are indicated in Table 3a. The procedure was very similar to that of Experiment
1. After approximately 75 practice trials to become familiar with the stimulus display
and test regimen, each test subject completed three to five 300 - 600 trial tests.

5.4.3 Experiment 2: Results
We measured the ability to detect a randomly expanding square according to a three-

category rating scale. The results of these experiments are summarized in Table 3b. The

far right column indicates whether the pair (PF ALl ,PH“’I) (the open triangle in Figure 30)
fell on/above (+) or below (-) the straight line constructed through (PF A2 *PHit, 2) and (1,1).
Assuming that the threshold theory holds, the pair (PF ALl ,PHit,l) should be collinear with
(Pra.2 -Prai, ) and (1,1). For these tests, then, we would expect (Py, Py ) to plot on or
above this straight line half the time and below it the other half. Thus, we can again treat

these tests as a set of Bernoulli Trials for which

Probability {Success} = Probability {(PF Al ,PHit,l) lies on or above the line} = % ,
Probability {Failure} = Probability {(PFA,1 Py, ) lies below the line} = % .

According to Table 3b, we encountered only one “success” among the 12 tests (TS3-
014). Since the probability of getting 11 (or more) failures when the true probability of

success is %2 is
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12

Probability{x >11} = 5)12-x =.0032,

,(12 TA2-%)1 el GO Gl

x=11
We can with 99% confidence reject that (PF Al ,PHit’l) is collinear with

(Pra,2 Py 2) and (1,1), and accept instead that it lies below the line formed by these

latter pairs of points. This result suggests that the data is better described by an ROC
curve, consistent with a signal detection theory that includes underlying noise but no
sensory threshold, than by the linear relationship derived from threshold theory.

5.5 Discussion

5.5.1 Implications for Threshold Theory
These experiments tested the assertion of the existence of a threshold associated with

the detection of expansion rate, §, and provide evidence contradicting it. Hoffman and
Mortimer (16) asserted that the just-noticeable expansion rate is 0.003 rad/sec. This is a
statement of static threshold theory, according to which rates below this value can’t be
detected at all while those above it can be detected all of the time. “Threshold” thus takes
the form of the step function presented in Figure 25a. The expansion rates used in these
experiments (0.038 <A0/At<0.102 rad/sec) are over an order of magnitude greater than
Hoffman and Mortimer’s threshold and yet correspond to an approximately 75%
detection rate. This highlights the problem for human driver models that incorporate the
absolute threshold assumption. Though at expansion rates less than 0.003 rad/sec
detection levels may very well be near zero, human drivers will continue to err
significantly in detecting expansion rates quite a bit larger than 0.003 rad/sec. The
models, however, will fail to pick this up, and will instead predict perfect detection at
these higher levels. The threshold concept is problematic on at least three levels because

it is at variance with the large body of widely accepted evidence amassed by the visual
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and perceptual sciences, particularly since Tanner and Swets explored the issue. The first

difficulty, which was noted in the introduction to this study, is that implicit in this
treatment is the assumption that Hoffman and Mortimer’s calculation of 9, describes

how a human observer actually perceives this quantity. These, as we pointed out, are two
different concepts.
5.5.1.1 Static Threshold

The second difficulty has to do with the fundamental concept of a static threshold. As
we also noted, the hypothesis’ author, Gustav Fechner, and his contemporaries disproved
it when they attempted to measure it. We now know that noise (a concept unknown to
Fechner) is responsible for this result. In the absence of noise, it has been found that the
photoreceptors of the eye are capable of sensing light right down to the level of a single
photon. Hence, if we wish to speak of a static, absolute limit to detection, it would be the
limit on the divisibility of light itself. As discussed in Section 4, motion, like all visual
stimuli, is ultimately perceived by the photoreceptors of the eye as light signals of
varying intensity. Thus we should be skeptical of an assertion of a threshold associated
with any aspect of the visual system. In the present study, we disproved the existence of
a static threshold in our experimental setup phase. If such a threshold existed it wouldn’t
have been possible to establish conditions under which an expanding square was detected
75% of the time—it would have either been detected all of the time or never. [In addition
to the postulation of an expansion rate threshold, Hoffman and Mortimer (16) also
asserted the existence of a threshold in perceiving changes in subtended visual angle of
AB8/6=.12. Our study employed quantities in the range 0.002<A6/6<0.008 — 15-60

times Jess than this amount—which were routinely detected by all of the test subjects.]
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We did not comment on this at the time and tested instead the more recent (but still
unproved) concept of a varying threshold.
5.5.1.2 Prior Tests Purporting to Demonstrate a Threshold

The third difficulty has to do with the type of experiment Hoffman and Mortimer
conducted to verify the existence of an expansioh rate threshold: pairs of four-second
film clips of oncoming vehicles were shown to test subjects, who were asked to identify

the clip exhibiting the faster speed of approach (i.e., the relative speed R in the
previously developed expressions for § and ) and then to ¢stimate the ratio of the faster
to the slower speed of approach. The authors noted that “at low relative speeds, the
subjects were unable to scale the relative speed between the vehicles”. They thus defined
a “threshold relative speed” R, as “the point at which the subject starts to scale the
relative speed, i.e. where the subjective speed increased above a ratio of unity”. The

threshold angular speed 8, was then calculated as a function of R, :

= W Rthresh
thresh R2 '

0
Thus the existence of an expansion rate threshold was never tested directly but instead
inferred from a calculation based on the unfounded assumption of a relative speed
threshold. Furthermore, other visual cues, most notably changes in subtended visual
angle and changes in headway (which Hoffman and Mortimer themselves noted), were
also present in these film clips, further confounding the issue. Though headway changes
can and should be eliminated from an experiment investigating the rate of expansion of

visual angle, subtended visual angle will always be present. Its effect can be minimized,

however, by reducing the time interval over which the expanding object is shown. [It’s

79



interesting to note in this regard that Hoffman and Mortimer expressed concern that the
film clip durations (4 seconds) were too short. The concern could also be the other way
around—4 seconds is a rather long stimulus duration for studies aimed at quantifying the
visual system’s detection capabilities. ]

5.5.2 Implications for Criterion Detection
Experiment 2 showed that the criterion level can be shifted at will by the observer.

(The experiment produced two different points on the ROC curve, corresponding to two
different criterion levels). This is significant because it refutes a fundamental concept
upon which threshold theory is based. Threshold theory holds that because of inherent
limitations in the visual system, sub-threshold information is lost and inaccessible to the
observer. The threshold level is thus fixed and unalterable. Experiment 2, however,
showed that the observer can place thé criterion level wherever he desires'’. There is no
lower limit, then, to the information the observer has access to. The criterion level is a
necessary aid that the observer uses to judge whether neural activity reflects the presence
of noise alone or a signal in addition to the noise. The process of setting a criterion level
and arriving at a detection decision based on it thus does not alter the neural activity that
this decision is based on. Neural activity below the criterion level is not lost, and the
observer remains aware of it even though he may have judged that it does not reflect the
presence of a signal. Finally, it should be noted that the observer does not make detection
decision with complete certainty. He is aware that his choice could be incorrect and will

alter the criterion level should he determine that a greater net benefit will ensue (See

" To better see this, consider the strategy an observer would employ if offered $1,000 for every hit, and no
penalty was extracted for false alarms. Compare this to the strategy employed if a penalty of $1,000 was
extracted for each false alarm but no reward given for hits.
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Section 9.1). This has important implications for the looming detection model that we

propose in the next chapter (Section 6.2.1).
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6 SENSITIVITY TO SIZE MODULATION OF A TWO-DIMENSIONAL
SHAPE

6.1 Introduction

To better understand and quantify the visual system’s dynamic response to looming,
we conducted experiments measuring observers’ ability to detect sinusoidal modulation
of an image’s size on the retina of the eye, as would be induced by an object moving
towards and away from an observer in three dimensional space. As noted in the
Introduction to Part II, this can be satisfactorily represented by the expansion/contraction

of a circle presented on a two-dimensional analog CRT.

6.2 Background
The experimental approach employed here assumes that the dynamic response we

seek to measure is governed by a linear system, which is consistent with the previously
cited neurophysiological and psychophysical research (Sections 4.1.1 and 4.1.2). Beyond
this, however, we keep our assumptions to a minimum, so as not to impose a
predetermined structure on our analytical results. The assumption of a linear element
allows us to employ traditional frequency response techniques to ascertain its dynamic
response characteristics, but as we cannot measure the output of this element directly, we
resort to the psychometric function and a well established adaptive staircase technique to
surmount this difficulty. These points are described further in the remainder of this
section.

6.2.1 The Looming Detector
We assume that the visual system detects longitudinal motion (looming objects) by

means of the “looming detector” shown schematically in Figure 31. It consists of a linear

95 12

filter, a non-linear “criterion detector” *~, and an adjustment mechanism that sets the

12 A pulse generator is not included in this model, as it was in DeLange’s (Section 4.1.2.1) and Kelly’s
(Section 4.1.2.2). Assuming, as they did, that the pulse generator output varies instantaneously and
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detector’s criterion value. The filter, located in the retina of the eye, senses the size
modulation of an image on the retina of the eye, converts it to a continuous graded
potential, and then sends this signal to the criterion detector and other higher level
processing centers of the brain via the optic nerve. The criterion detector reacts
instantaneously to this input and signals motion whenever the magnitude of some
characteristic of the incoming signal meets or exceeds the criterion value. The
adjustment mechanism compares observer responses to correct responses subsequently
obtained from the environment and establishes ongoing “hit”, “miss”, “false alarm”, and
“correct rejection” rates. It then forms expectations of the overall net benefit associated
with these rates, based on internally and externally supplied cost/benefit information.

This net benefit is then maximized via adjustment of the criterion level, which in turn

monotonically with its input, and that its performance is approximately linear, it does not alter the filter
output and can be excluding without affecting the performance of the model.
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shifts the proportion of hits and misses. We typically think of the costs and benefits as
coming from the environment, in the form of tangible, performance-based rewards and
penalties conferred upon the observer. They can also have observer-based components,
however (e.g., the “benefit” of “getting the right answer” versus the “cost” of the effort
involved in being especially attentive and focused). It is important to note here that the
criterion value is only affected by the benefits and costs associated with hit and miss
rates, and not by any parameters associated with the stimulus, most notably the
modulation amplitude A or frequency ®. Conversely, the criterion detector does not
affect the filter’s performance in any way. It only aids the observer in making a
judgment regarding the presence of looming The looming detector’s dynamic response
in this task is therefore that of the linear filter, whose response characteristic can be

obtained using classical frequency response techniques.

The particular characteristic that the criterion detector senses is the subject of ongoing
research. Three that have been suggested, and that we will consider in this study, are:

1. The peak value of the signal (maximum of the absolute value of the signal, as in the
flicker detection model); )

2. The peak-to-peak excursion of the signal (jmaximum value - minimum value));

3. The integral of the absolute value of the signal with respect to time.

We assume that the value of the characteristic sensed by the criterion detector increases
monotonically with the amplitude of its input, B, which of course increases
monotonically with stimulus amplitude A. Thus, increasing A will always make a
stimulus more detectable to an observer, while decreasing A will make it less so. If
during the course of a detection experiment the benefits and costs of correct and incorrect

choices are held constant, the observer’s criterion level will quickly reach and then
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remain at some constant value. With the criterion level constant the input amplitude A
can be adjusted until the filter’s output amplitude B is made equal to it. A staircase

procedure will be employed to maintain a constant criterion level.

This approach is patterned after DeLange’s (36) and Kelly’s (37) flicker-fusion
experiments (Sections 4.1.2.1 and 4.1.2.2). Here, however, we performed a “Yes-No”
experiment using Watson and Pelli’s (52) adaptive staircase algorithm to establish, for
each of a number of radius modulation frequencies, the modulation amplitude that could

be detected with a probability of 79.6% (Sections 5.2 and 6.2.2 below).

We don’t know the modulation amplitude of the filter’s output. Since it remains
constant throughout our experiment we can take it to be unity. (This means that the
results we derive will each be known to within a multiplicative constant.) We are also
unable to measure ¢(w) directly but we can calculate it based on the assumption that the
filter exhibits a minimum phase characteristic (Section 4.1.2.3).

6.2.2 The Psychometric Function
Though threshold theorists incorrectly interpreted the “variable threshold” curve of

Figure 25b, it is an experimentally derived result (unlike the absolute threshold curve of
Figure 25a). It is more formally known as a psychometric function. In general,
psychometric functions describe the relation between some physical measure of a
stimulus and the probability of a particular psychophysical response. Here the physical
measure is the luminance of the light stimulus, €, and the psychophysical response is
“detect” or “didn’t detect”. Two of the more common types of experiments used to
obtain psychometric functions are the Yes-No experiment and the Two Alternative,

Forced Choice experiment:
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1. A Yes-No experiment consists of a number of individual trials. For every trial a
uniform background of constant luminance £,y is displayed to the observer. For

approximately half, chosen at random, a light stimulus of luminance € is superimposed
on the background. At the end each trial the observer indicates “Yes, I saw the
stimulus”, or “No, I didn’t”.

2. A Two Alternative, Forced Choice experiment also consists of a number of trials.
Here, though, each trial is divided into two time epochs. In each a uniform
background of constant luminance €, is displayed. For one of the two, again chosen
at random, the light stimulus is superimposed on the background. At the end of the
trial the observer indicates in which time epoch the stimulus appeared.

In each type of experiment, the stimulus strength for the next trial is generally decreased
for correct choices and increased for incorrect ones. Staircase methods are commonly
employed to control this adjustment process. The experiment proceeds until the stimulus
strength becomes sufficiently close to that corresponding to a particular detection rate.
The detection rate that is approached depends on the particular form of the staircase
method employed, and any factors (such as monetary rewards or penalties) that would
influence the observer in setting his criterion level (Section 5.4.1). A functional form
based on the Weibull (51) distribution has proven to be an excellent empirical description

of psychometric data obtained from such experiments:

p.(£)=1- % e'(? ) . 22)

Here pr(€) is the probability of a correct detection when a stimulus of strength € is
presented. The parameters € and  depend on the particular type of staircase method
employed. The pair [€, pr(€)] produced by the experiment then allows determination of
T, the threshold measure. T sets the “position” of the function along the abscissa, as well
as its “spread”, as indicated by the plots in Figure 32a. T is therefore a convenient

“landmark” for the psychometric function it defines.
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The adaptive staircase algorithm developed by Watson and Pelli (52) can quickly and
efficiently establish T directly, within any desired confidence limit, by adjusting € in a
series of experimental trials until €=T, thus fitting Equ. (22) to the data for that
experiment. When this algorithm is employed in a Yes-No experiment, the parameters €

and B become

e=1.142, B

35,

and when €=T,
p,(£=T)=.796.

For a Two Alternative, Forced Choice experiment,

£=1.189, PB=35,
p(£=T)=.920.

In view of these considerations we can see that an absolute or even a varying
threshold, as proposed by Fechner and others before Tanner and Swets’ study, does not
exist. The term continues to be used, however, and generally refers to the narrow region

(perhaps covering an octave in contrast or energy) in stimulus parameter space wherein
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performance varies from close to chance to nearly perfect. This region is indicated in
Figure 32b, bounded by [€min, €max]. Each coordinate pair [€, pr(€)] within it is
associated with a unique criterion value, as set by the observer. The term is also be used
to identify a particular point within this region, as in “threshold measure” or “criterion
level of response”. The latter term is often used to define the predetermined detection
rate whose associated stimulus luminance we seek in a staircase experiment. In Watson

and Pelli’s algorithm, the criterion level of detection equals the threshold measure.

88



6.3 Experiment3
6.3.1 Methodology and Procedure
The experimental apparatus is shown schematically in Figure 33. It consists of the

following components:

- Standard personal computer;

- 50 kQ precision potentiometer;

- National Instruments 6024E Data Acquisition Card (NI-DAC);
- Global Specialties PW-2120 Function Generator;

- In-house produced filter/integrator circuit consisting of standard electronic
components;

- Tektronix 606B X-Y Monitor;
- In-house produced button box consisting of standard electronic components.

———————— Asin(o t)
| Data Acquisition L Precision > vea | Function
— ! > . >
-—»'_ - E_a'f —_ _! Potent ter Generator Filter
Integrator
Personal Computer (Phase Shift)
Electronic Circuit
X=[R, +Asin(ot)]sin(2nf,t) [X Y] Y=[R,+Asin(ot)]cos(2at,t)

3.5 cm radius

circle

Tektronix 6068 X-Y
Monitor
]
L Wasn't Paying
Saw It Didn't See It Attention

Record Response and Reaction Time

Experimental Apparatus
Figure 33

To understand the operation of the apparatus we first consider the display of an
unmodulated circle on the Tektronix monitor. This is accomplished by providing a sine

wave and cosine wave of the form
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V, =R, sin(2=nf;t),
V, =R, cos(2nf,t)

to its X- and Y-inputs, respectively, where Ry is the voltage corresponding to a 3.5 cm
deflection on the monitor and fy=36 kHz. With this input the monitor will display a 3.5
cm radius circle, drawing it at a frequency of 36 kHz. The function generator is manually
set to provide Vx directly. Vy is obtained by splitting Vx and passing one of the resulting

signals through the filter/integrator circuit to obtain a 90° phase shifted signal.

To modulate the circle’s radius, we generate a second sine wave using the NI-DAC

and input this to the “VCA” input of the function generator. This sinusoid takes the form
Asin(ot)=Asin(2nft),

where A is the modulation amplitude (volts) and ® and f the modulation frequency
(rad/sec and Hz, respectively). The corresponding modulation of the circle’s radius is

then given by

€sin2nft) cm.

The NI-DAC can generate a discrete sinusoidal waveform with a maximum amplitude of
10 V, divisible into 2,048 increments. (Thus the minimum incremental voltage change
that the NI-DAC can produce is .00488 V.) The value of A corresponding to the
threshold measure T will be much less than this, of the order of .01 V. Thus, in order to
maintain the full resolution of the NI-DAC for the experiment, its output is passed
through a precision potentiometer to attenuate the signal to the desired range. The
amount of attenuation, and thus the setting of the potentiometer, is varied for each

frequency o to keep it within an optimal range. The generated waveform consists of
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1000 discrete points per cycle. This upstream circuitry thus inputs the amplitude-

modulated waveforms

V, =[R, + Asin2nf t)]sin2nf;t),

V, =[R, + Asin(2nf t)] cos(2nf, t)

to the Tektronix monitor. Finally, three of the NI-DAC’s digital input ports and its
internal clock/timer are utilized to record the test subject’s response to a particular trial,
as well as his reaction time (the time between the initiation of the stimulus and his

response via the push buttons).

If the Tektronix monitor’s phosphors do not “turn on” and off quickly enough, the
modulating circle will have a “smeared” appearance, thus compromising the findings. To
ensure that this is not the case, the dynamic response of the phosphors to a square wave
input was measured with a Photo Research Spectra Pritchard photometer (Model 1980A).
The phosphors were found to decay to less than 10% of their peak luminance value in .05
msec. For the highest frequency modulating sine wave (20 Hz), the phosphors will have
decayed to less than 10% of their peak value by the time each subsequent point on the
waveform is presented. This is fast enough to make negligible any effect due to phosphor

latency.

Three subjects, all males having (corrected) normal vision, participated. (They are
hereafter identified as TS4, TSS, and TS6.) They were seated 110 cm from the display
(at this distance the circle subtended a visual angle of approximately 3.6°), and viewed it
in a darkened room. Each was instructed to fix his gaze on the center of the circle as it

appeared. The circle was shown for about two seconds, and throughout this time its
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radius either remained constant or varied sinusoidally (each with 50% probability). The
test subject then indicated whether the circle’s radius oscillated or not. Different pitched
tones sounded to indicate correct and incorrect choices. Depending upon his response
(correct or incorrect), the modulation amplitude was either decreased, increased, or left
unchanged, and another trial was run. The amount by which the amplitude A was varied
was determined using Watson and Pelli’s (52) algorithm. The experiment continued until
the threshold measure T could be estimated to within 7.5%, with 95% confidence. (This
typically required approximately 150 trials.) For each multi-trial experiment, the
frequency of modulation was kept constant. For each test subject, nine experiments were

run for each of nine different frequencies between 0.05 Hz to 20 Hz, as shown in Table 4.

We chose not to offer subjects an explicit monetary reward/penalty for each
individual response (e.g., 5S¢ for a correct response and -3¢ for an incorrect one), relying
instead on each to balance his own internal benefits and costs, as described earlier. It was
only important for our purposes that the overall “values” of these costs and benefits be
consistent across all three test subjects, and as the data will show, we accomplished this.
We did, however, pay test subjects $10 per frequency experiment. An experimenter was
present at all times to monitor the test. Data pertaining to each trial was logged into a file
for later processing.

6.3.2 Experiment 3: Results
We measured the ability of three observers to detect modulation in the radius of the

circle, at each of nine different modulation frequencies from .05 Hz to 20 Hz. For each
frequency, we established the threshold measure € =T (the amplitude at which the
observer could detect modulation at a rate of 79.6%). The overall results of this

experiment are shown in Figure 34 and Table 4. As the figure shows, the test subjects all
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performed quite similarly to one another, supporting our contention that each had arrived

at similar estimates for the costs and benefits involved.
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Experiment 3 Results
Figure 34

Threshold Measure T (cm)
TS4 TS5 TS6

f (Hz) T Std Error T Std Error T Std Error
0.05 0.767 0.029 0.622 0.023 0.593 0.022
0.10] 0.464 0.018 0.537 0.020 0.511 0.019
0.50 0.124 0.005 0.151 0.006 0.116 0.004
1.00] 0.077 0.003 0.111 0.004 0.089 0.003
1.50] 0.061 0.002 0.076 0.003 0.055 0.002
3.25] 0.091 0.000 0.101 0.000 0.084 0.003
5.000 0.114 0.004 0.118 0.005 0.138 0.005

10.00] 0.237 0.009 0.256 0.010 0.245 0.009
15.00] 0.351 0.013 0.431 0.016 0.414 0.015
20.00] 0.445 0.017 0.489 0.019 0.433 0.016

Experiment 3 Results
Table 4
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6.3.3 Experiment 3: Discussion
Detection performance in this experiment exhibited a bandpass characteristic, just as

it did for the flicker-fusion experiments (Sections 4.1.2.1 and 4.1.2.2). In Section 4.1.1
we conjectured that the visual system discards information regarding objects whose
luminance changes very slowly over time in favor of information regarding objects
whose luminance changes more quickly. It appears that the same strategy is in effect
here, and that very slowly moving objects are of less interest than faster moving objects.
6.3.3.1 Integrated Luminance Confound

As the circle radius is modulated, its space-integrated luminance will change in direct
proportion to its perimeter. It is therefore possible that the test subjects were detecting
integrated luminance change instead of (or in addition to) modulation of the circle’s
radius, thus confounding our results. Let L(t) be the circle’s integrated luminance at time

t and K a constant of proportionality. Then
Lt)=K[27x(1)],

where r is the circle’s radius at the instant t. For any modulation frequency o, the

integrated luminance will vary between
K-2-n-[3.5-T(0)] < L(t) <K-2-7-[3.5+T(0)],

since the circle’s base radius is 3.5 cm and at the threshold measure for that frequency
this radius varies by £T(w). Table 5 shows this variation as a percentage of the
unmodulated circle’s integrated luminance. Previous research has demonstrated that the
visual system is sensitive to variations in this range. To investigate whether or not
integrated luminance changes significantly influenced these results we conducted a

second set of experiments in which integrated luminance did not vary.
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f (Hz) TS4 TSS TS6
0.05 £22% +18% =17%
0.1 +13% +15% +15%

050 4% +4% 3%
1.00] +2% +£3% +3% |
150 +2% 2% +2%
5000 *3% +3% +4%
10.000 7% +7% +7%

15.000 *+10% +12% +12%
20.00] *13% +14% +12%
Integrated Luminance Variation (% of Unmodulated Integrated Luminance) at the

Threshold Measure
Table 5

6.4 Experiment 4
6.4.1 Methodology and Procedure
The same experimental setup that was used in Experiment 3 was employed here,

except that now a mask was placed over the CRT display allowing only the right- and

left-most segments of the circle to be displayed. This is shown in Figure 35. For the

Masked CRT
Figure 35

unmodulated circle (r=ry=3.5 cm) the length of each segment sy was taken to be

approximately 2 cm, for which 6y and hy (as defined in the figure) were
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6,=—=—~33°, h0=rosin(%]zlcm.

For any other r, the values of 6 and h required to keep s=s( were thus

9=r19°—, h=rsin(ﬁ—9‘l}
r 2r

The profile of the mask boundary to the left of the circle’s center was the mirror image of
that to the right, and the lower mask profile was the mirror image of the upper mask
profile". The length of the segments showing through the mask were thus the same
regardless of the size of the circle, and since the luminance of the CRT’s beam remained
constant across the display and over time (assumed), a stimulus with a constant integrated
luminance resulted. The same three subjects that participated in Experiment 3 took part
here, and except for the presence of the mask, the identical apparatus and test procedure
were employed. Threshold measures for only the four middle frequencies of Experiment
3 (where test subjects showed the greatest sensitivity) were obtained.

6.4.2 Experiment 4: Results
As in Experiment 3, we measured the ability of three observers to detect modulation

in the radius of a stimulus, this time under conditions of constant integrated luminance.
At each of four different modulation frequencies (listed in Table 6), we established the
threshold measure T (the amplitude at which the observer could detect modulation at a
rate of 79.6%.) The overall results of this experiment are shown in Table 6 and plotted in
Figure 36 (along with the Experiment 3 results for comparison). From the figures, TS5

and TS6 exhibit nearly identical performance in Experiments 1 and 2, and even though

B In actually constructing the mask, it was found that the variations in the height h as a function of circle
radius were so small (for the range of radii of interest) that h could be taken to be hy without introducing
appreciable luminance change.
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Threshold Measure T (cm)
TS4 TS5 TS6

f (Hz) T Std Error T Std Error T Std Error
0.50 0.1921 0.0073 0.1687 0.0064 0.0987 0.0041
1.00 0.1121 0.0043 0.1148 0.0043 0.0700 0.0026
1.50 0.0879 0.0033 0.0718 0.0027 0.0517 0.0021
5.00 0.1518 0.0057 0.1126 0.0043 0.1350 0.0051

Experiment 4 Results

Table 6
A =t " m —eel " A =g
AN =] i = &5z a b=
N X| 2
m ]
TS4 TS5 TS6
Experiment 4 Results
Figure 36

TS4’s quantitative performance for Experiment 4 is significantly below that for
Experiment 3, his qualitative performance is nearly identical. From this we can conclude
that luminance changes provided no information that wasn’t already available from the
motion of the circle’s perimeter, and that the Experiment 3 data reflects the subjects’
ability to detect modulation in the circle’s radius.

6.4.3 Experiment 4: Discussion
Subject TS4 showed the same bandpass character as in Experiment 3 but lesser

modulation sensitivity. The most likely explanation for the difference in TS4’s
performance is that the time between Experiments 3 and 4 was substantially longer for
him than it was for TS5 and TS6. The latter two test subjects performed the experiments
concurrently and began Experiment 4 immediately after completing Experiment 3. TS4,

on the other hand, performed Experiment 3 before TSS and TS6 began, and then
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performed Experiment 4 after they finished. Thus a period of approximately 42 months
elapsed between TS4’s performance of Experiment 3 and Experiment 4. The numerous
physiological and psychophysical conditions associated with these tests could easily have

shifted in this time, producing the observed variation in quantitative results.

As noted, previous research has established that the visual system is quite sensitive to
integrated luminance changes—of magnitudes substantially smaller than those listed in
Table 5. Both integrated luminance change and looming, then, were available to the test
subjects in Experiment 3, and their performance must have reflected the use of both.
Why, then, did performance not degrade when integrated luminance was kept constant in
Experiment 4? It may be that the number of neural detectors available for this task was
so great that the luminance cue provided no additional information. A second possibility
is that the response characteristics of the two detection systems are so similar (as would
be the case, for example, if the same visual processes and mechanisms were involved)
that again, the information provided by the luminance detection system was redundant.
The fact that the two sets of responses both exhibit a band pass characteristic with peak
sensitivity occurring at or near the same modulation frequency is consistent with this
conjecture. A more detailed investigation would be required to establish whether or not
the two detection systems indeed exhibit the same performance characteristics.

6.5 Experiment 3: Analysis
Returning now to Experiment 3, since the performance of all three subjects is so

similar, we will take the arithmetic mean Ty of the three as representative. Ty thus
represents that value of modulation amplitude whose probability of detection is,

according to Equ. (22),
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Py, (€=T,) =.79.

Twum and the experimentally obtained threshold measures TS4-TS6 from which it is
derived are shown in Figure 37a. In going from .05 Hz to 1.5 Hz to 20 Hz, the
representative psychometric function moves from the rightmost curve in Figure 37b to

the leftmost curve, and then back to the middle curve.
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Figure 37

The ultimate goal of our study is to quantify the dynamic response characteristics of
an observer’s visual system to changes in an oncoming object’s visual angle, 6(t). This is
accomplished by deriving the visual system’s transfer function based on the
experimentally derived gain characteristic 1/Ty(w). The derivation of the system
transfer function in general requires both the gain characteristic, which we have
measured, and the phase characteristic @(®), which we have not. Given that the filter is
assumed to exhibit a minimum phase characteristic (Section 4.1.2.3), however, we can
use the Matlab function fitmag to fit such a ﬁansfer function to the gain characteristic.
After modifying fitmag’s result fo remove poles and zeros far removed from the origin,

we obtain

99



s +0.6645

G(s) =258- 5 s
s°+1746s+117.5

‘. s +0.6645
[+ (8.728 + 6.427 )] [s + (8.728 - 6.427 i)]

(23)

The magnitude and phase characteristic of this transfer function are plotted in Figure 38
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as a standard bode plot, along with the experimentally derived gain characteristic
1/Tm(w) for comparison. The agreement between the measured and fitted gain

characteristics is seen to be very good.

The impulse response h(t) of the filter is given by

h(t) =258 ¢ [c0s(6.427 t) — 1.255 5in(6.427 t)].

100

(24)



This shows that the filter’s frequency of response is 6.427 rad/sec and that its settling

time (the time for the response to reach and stay within 2% of its maximum value) is

approximately .5 sec. Referring again to Equ. (23), transient response is dictated by the

pair of second order poles, which gives the system a damping ratio of .8. In engineering

design, there is a general rule of thumb that damping ratios between .4 and .8 provide

optimal transient performance in terms of fast response and acceptable overshoot. It’s

not unreasonable to expect this in a natural setting. From an evolutionary perspective, the

ability to make accurate assessments of movement in the environment in the shortest

possible time is a critical task for the survival of any organism, and organisms possessing

this capability would have an advantage over others that were less capable in this regard.

These same considerations were previously offered in support of the assumption of a

minimum phase filter (Section 4.1.2.3). h(t) is plotted in Figure 39a. As with the flicker
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Figure 39

detection models (Sections 4.1.2.1 and 4.1.2.2), the ordinate of this plot reflects relative

scaling, and the initial time in the plot coincides with the onset of the response, not the

presentation of the stimulus. These results are consistent with those measured in the
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flicker detection studies, adding credence to our hypothesis that both detection tasks
employ the same or similar basic sensory mechanisms. An impulse is a mathematical
artifice that cannot be realized in a real setting. It can, however, be satisfactorily
approximated by a pulse. This is demonstrated in Figure 39b, which plots the filter’s
response to a pulsed increase of the circle’s radius of .225 cm, lasting .01 sec. The
impulse response of Figure 39a is shown again for comparison. Though the ordinal

values of the two plots differ, their temporal characteristics are nearly identical.

Figure 39 displays another important characteristic of this filter—its “biphasic” nature
(i.e., its excursion to negative values before damping out). This presents an opportunity
not only to investigate the limits of our model, but also to better understand how the
visual system uses such a signal to detect looming. If the filter is indeed linear, then
superposition applies and the filter’s response to two successive pulsed expansions

(hereafter referred to as a “Plus-Plus”, or “PP” pulse) separated in time by D will be
r(t) =r(t) +1,(t-D),

where r; and r; are the responses of the two expansions presented individually. If D were
chosen equal to the time between r;’s maximum and minimum values, (approximately .2
sec from Figure 39), the result would be as in Figure 40a. Conversely, presentation of a
pulsed expansion followed by a contraction (a “Plus-Minus”, or “PM” pulse) would
result in the response shown in Figure 40b. Though we don’t know which aspect of the
filter’s output signal the criterion detector senses, we can easily see that “more signal” is
present in the second case. (Recalling from Section 6.2.1 the previously proposed

candidates, the peak magnitude, peak to peak magnitude , and absolute integral of the
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second signal are all greater than those of the first.) We therefore hypothesize that the
second signal will be more detectable than the first. Generalizing from this then, we
expect that when the delay is such that the maximum of the second pulse’s response
coincides with the minimum of the first pulse’s response, a PM pulse will be more

detectable than a PP pulse. This forms a prediction for our final set of experiments.
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7 AN INVESTIGATION OF THE BIPHASIC IMPULSE RESPONSE
CHARACTERISTIC

7.1 Experiment S

If the looming detectors under study actually exhibit a biphasic impulse response
characteristic, then for certain time delays (Figure 40a) a PP pulse should be harder to
detect than a PM pulse. For this experiment pulse inputs with durations of .01 sec were
used and the threshold magnitude of the pulse pairs as a function of the time delay
between the first and second pulse was determined using the adaptive staircase algorithm
described previously. If our model is valid, then for the delays in the vicinity of that
shown in Figure 40, a PP pulse should be more difficult to detect, and hence have a

greater threshold magnitude, than a PM pulse.

7.2 Methodology and Procedure
The same experimental setup and test subjects that were employed in the previous

experiments were employed here as well. Here, though, a two-alternative, forced choice
format was followed, in which a single trial consisted of the presentation of two .5 sec
time epochs in sequence. During both epochs a 3.5 cm radius circle was shown, as in the
previous experiments. In one of the epochs (selected at random with a 50% probability),
the radius was subjected to a pair of pulsed perturbations and during the other it remained
constant. The test subject’s task was to identify the epoch during which the radius was
perturbed. The adaptive staircase algorithm was used here with parameters

corresponding to a two-alternative, forced choice experiment (Section 6.2.2).

As with Experiments 3 and 4, we relied on each test subject to establish his/her own
estimate of the costs and benefits, assuming that these estimates would be consistent
across the three. Because the stimulus presented for this experiment differs so from that

used in Experiment 3, however, it is quite possible that the expected costs and benefits
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associated with its detection will also differ. Further, for the two-alternative, forced
choice format the adaptive staircase algorithm will converge to a different hit rate (92.0 %
as opposed to 79.6 %). Referring to our model in Figure 31, we see that the
corresponding inputs to the adjustment mechanism will change, leading us to conclude
that the criterion level established for this experiment will differ from that of Experiment
3. This is not of concern, however. As with Experiment 3 we only want the criterion
levels to remain consistent between test subjects and constant throughout the course of

Experiment 5.

A single experiment consisted of a number of trials, each initiated by thé observer, in
which PP and PM pulse pairs were randomly mixed with one another and continued until
threshold magnitudes for each pair were arrived at (satisfying the same criteria as in
Experiment 3). The interleaving of PP and PM pulses in this manner ensured that the
same criterion level was in effect for each, at each time delay. The adaptive staircase
algorithm employed previously was modified to deal with each case separately. For a
given experiment, the time delay between pulses was kept constant for all trials. Four
different experiments were run, corresponding to time delays of .0300 sec, .0750 sec,
.1375 sec, and .2000 sec. Test subjects were paid $10 per experiment.

7.3 Results
We measured the ability of three observers to detect pairs of pulsed perturbations in

the radius of the circle, at each of four different time delays from .0300 sec to .2000 sec.
For each time delay we established the threshold pulse magnitude for each type of
perturbation (PP or PM). The overall results of this experiment are shown in Figure 41

and Table 7. Figure 41a and Figure 41b show the performance of the individual test
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subjects in the detection task, Figure 41c averages their performance, and the difference
PP, - PM,, between these averages is shown in Figure 41d. Also shown in Figure 41d
is the pulse response of Figure 39. Positive differences in PP-PM mean that at that value
of D the PM change was easier to detect than the PP change. According to the model (as
represented by the pulse response), the difference should start out negative, increase to
some maximum positive value at the minimum of the pulse response, and then decrease
again. Qualitatively, this is what we get, so this result supports the hypothesis of a linear

filter having a biphasic impulse response. The data suggest, however that the model’s
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PP Response PM Response PP - PM

Test D Std Std Std
Subject | (sec) |Amplitude| Error |Amplitude| Error |Amplitude| Error
0.0300] 0.1813 | 0.0069 | 0.1461 | 0.0055 | 0.0352 | 0.0088

TS4 0.0750f 0.2336 | 0.0080 | 0.1632 | 0.0059 | 0.0704 | 0.0100
0.1375] 0.2002 | 0.0076 | 0.1740 | 0.0066 | 0.0262 | 0.0101

0.2000} 0.1704 | 0.0064 | 0.1416 | 0.0053 | 0.0288 | 0.0083

0.0300] 0.1058 [ 0.0039 | 0.1653 | 0.0063 | -0.0595 | 0.0074

TS5 0.0750] 0.1623 | 0.0062 | 0.1493 | 0.0056 | 0.0131 | 0.0084
0.1375] 0.1818 | 0.0069 | 0.1217 | 0.0046 | 0.0601 | 0.0083

0.2000] 0.1695 | 0.0064 | 0.1326 | 0.0051 | 0.0369 | 0.0082

0.0300f 0.1596 | 0.0060 | 0.1740 | 0.0066 | -0.0144 | 0.0089

TS6 0.0750] 0.0750 | 0.0097 | 0.2070 | 0.0081 | 0.0388 | 0.0126
0.1375] 0.2291 | 0.0087 | 0.1686 | 0.0064 | 0.0605 | 0.0108

0.2000] 0.2408 | 0.0102 | 0.2535 | 0.0099 | -0.0127 | 0.0142

0.0300] 0.1489 | 0.0057 | 0.1618 | 0.0062 | -0.0129 | 0.0084

Average 0.0750] 0.2139 | 0.0081 | 0.1731 | 0.0066 | 0.0408 | 0.0105
0.1375] 0.2037 | 0.0078 | 0.1548 | 0.0060 | 0.0489 | 0.0098

0.2000] 0.1936 | 0.0079 | 0.1759 | 0.0071 | 0.0177 | 0.0106

Experiment 5 Results
Table 7

temporal response is too slow. To be completely consistent with Experiment 5°s results,
we would expect the pulse response to be such that it achieves its minimum not at .2 sec
but where the difference PP -PM reaches its maximum. According to Figure 41d, this
maximum point lies somewhere in between the second (.0750 sec) and fourth (.200 sec.)
data points, say between .1 and .18 sec.'* We will investigate this further in the next
section.

7.4 Analysis
If the filter transfer function were modified to exhibit a faster temporal response, its

performance should more closely match the measured data. To investigate this we return

to the frequency response characteristic obtained in Experiment 3 (Figure 38). A faster

14 Since only one data point (.1375 sec.) lies within this range it is not clear where the actual maximum lies.
Additional data would have to be taken to find out.
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temporal response implies that the magnitude response for the low frequencies should be
lower relative to that for the higher frequencies. Figure 42a shows a frequency response
characteristic in which this modification has been affected, to yield a filter model with the

temporal response of Figure 42b. Note that its minimum approximately coincides with

PP - PM
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the maximum of the measured amplitude difference PP - PM of Experiment 5 (Figure

41d). The transfer function for this modified filter is given by

G, ,(s) =258 — s+1.942 ’
s +17.46s+393.0
(25)
_958. s+1.942
[s+(8.728 +17.801i)][s + (8.728 -17.801)]
and its impulse response by
hoq (1) =258 €77 [c05(17.8 t) —.38125in(17.8 t)]. ‘_ (26)

It’s interesting to note here that this modified system exhibits a damping ratio of .4. This
is at the lower end of the “optimum” range cited in Section 6.5. The original system

exhibited a damping ratio of .8, which was at the upper end, so both models are within
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this optimal range. Based upon this analysis, the implication is that either something
about Experiment 3 led to a consistent underestimation of low frequency sensitivity, or
something about Experiment 4 led to a decrease in low frequency sensitivity. Assuming
the model is correct, one or more of the following may account for the discrepancy:

1. First, the maximum point PP-PM is not necessarily where it’s indicated here. It could
be anywhere between the second and fourth data points.

2. In line with this, there is of course measurement uncertainty associated with both sets
of data that may be combining to contribute to this discrepancy.

3. Thirdly, human performance is inherently variable to some degree, and could have
shifted in approximately four months that passed between the two experiments. It is
therefore possible that the modified frequency response characteristic of Figure 42 was
in effect for Experiment 5, instead of the one originally obtained in Experiment 3.
(This is the same reasoning that we applied in explaining TS4’s performance
difference between Experiments 3 and 4.)

4. Finally, the two experiments aren’t identical in nature, and there could be subtle
differences that could have caused observer performance to change.

But it could also be that the existing model is deficient, and that some aspect of the
detection mechanism has not been capfured adequately. It may be, for example, that the
visual system is able to tune the filter’s parameters to better match it to the task at hand.
In Section 3.3 we noted that for temporally varying luminance stimuli, a variable gain
control mechanism shifts the filter’s temporal characteristics with background light level.
Further investigation will be required to see if a similar mechanism is at work in the case

of looming.

To assess the predictive power of our model, we will use it to compute the PM pulse
amplitude for each time delay, based upon the measured PP pulse amplitude and each of
the three proposed criterion schemes. The differences PPy,,s - PM; (where the subscript, i,

refers to one of the three criterion schemes) will then be compared to the measured
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difference shown in Figure 41d. The algorithm that we employ for this purpose proceeds

as follows:

1. For each time delay compute the filter’s response to a PP pulse pair, where each pulse
has a duration of .01 sec and an amplitude equal to the measured threshold amplitude
for that time delay.

2. Compute for this response the proposed criterion values:
- The maximum of its absolute value;
- Its peak-to-peak excursion (absolute value of the maximum plus the absolute value
of the minimum);
- The integral of its absolute value with respect to time.

3. Determine the amplitude of a PM pulse that would produce criterion values equal to
those calculated for the PP pulse in step 2.

4. Form the differences PPpeas- PM; for each criterion and compare to the measured
differences.

The result is shown in Figure 43 and Table 8. All three criterion schemes capture the

trend of the measured data, the Peak and Peak-to-Peak particularly so: their correlation

Computed PP - PM

Time | Measured Peak to | Absolute
Delay | PP-PM Peak | Peak | Integral

0.030 | -0.0129 ]-0.0743}-0.0697 | -0.1883

PP -PM

0.075 0.0173  10.0494 | 0.0427 | 0.0013

0.138 0.0489 | 0.0623 { 0.0744 | 0.0597

0.200 0.0177 10.0199{ 0.0514 | 0.0252

‘i | | i : | [RMS Error 0.0355 | 0.0502 | 0.0884

o  oos o e e oxs||Correlation Coeff. | 0.8980 | 0.9100 | 0.9068

Time Delay (sec)

Comparison of Modified Model to Experiment 5 Data
Figure 43 Table 8

coefficients are approximately 90%. These results support the validity of our proposed
model (Figure 31). They also point to a very simple criterion scheme (Peak or Peak-to-
Peak) for looming detection. It should be noted, though, that all of the criterion schemes

considered here are correlated with one another. Further fine-tuning of the model can be
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expected to yield even closer agreement with the measured data, but will not be
undertaken as it would offer little additional insight into the underlying process.

7.5 Discussion
In this experiment we investigated the biphasic impulse response characteristic. The

results are consistent with the model after modifying the frequency response
characteristic, and showed that the model fairly accurately predicts the Experiment 3
results via either a peak or peak-to-peak criterion detection scheme. Recalling our
argument for a minimum phase filter (Section 4.1.2.3), since organisms that can detect
looming more quickly would be advantaged compared to those who detect looming less
quickly, it is reasonable to expect this result. The peak detection schemes should be
faster than the integration scheme for two reasons: First, peak or peak-to-peak
amplitudes occur fairly early in the filter’s output signal (certainly for sudden size
changes of the type studied here), so there would be little delay in waiting for the
requisite information to present itself. Alternatively, a scheme involving an integration
would involve a relatively more substantial delay in that the integration could not be
completed until some significant portion of the filter’s output signal was presented.
Secondly the “computation” of a peak amplitude is faster than that of an integral. Such
an argument does not constitute proof that a peak detection scheme of some sort is
actually employed, of course, but it does offer guidance in determining the most
efficacious lines of inquiry to pursue next.

Further investigation will have to be performed to see if such a modification is
warranted, or if further elaboration of the model is instead necessary. Variability due to
the time that passed between the experiments 3 and 5 could be eliminated by conducting

a two alternative forced choice experiment in which both the Experiment 3 and
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Experiment 5 stimuli were mixed together, with costs and benefits made explicit by
providing monetary rewards and penalties for the outcome of each experimental trial.
Because of the large number of trials that would be required, care would have to be taken
in designing the experiment to ensure test subjects did not become overly fatigued. Data
from trials presenting the Experiment 3 stimuli would be used, as before, to construct a
model of the filter, which would then be used to predict PM pulse amplitudes based on
the corresponding PP pulse amplitudes, as was done in Experiment 5. If the predictions
fit the experimental data significantly better than in the analysis performed here, it would
tend to confirm the hypothesis that time-induced performance variations were at least

partly responsible in causing the two sets of data to differ.
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PART III: CONCLUSIONS AND AVENUES FOR FUTURE RESEARCH

8 CONCLUSIONS
8.1 Contribution
In this study we conducted an experimental program to develop a model of the visual

system as it relates to the collision detection/avoidance task (i.e., detection of and
response to changes in visual angle 6.) The model, consisting of a linear filter, a
nonlinear criterion detector, and an adjustment mechanism (see Figure 31), exhibits the
following characteristics:

1. The linear filter exhibits a band-pass frequency response characteristic (Figure 34)
which is well described by a minimum phase, second order transfer function. This in
turn gives rise to a damped, second order response characteristic (Figure 39).

2. The criterion detector monitors the output of the filter and signals the onset of looming
(6 > 0) when some aspect of the filter’s output reaches some criterion value. Our
experiments indicate that it senses either the absolute magnitude of the filter output or
its peak-to-peak excursion.

3. Detection of the onset of looming is based on a signal/noise paradigm. This is in
contrast to the widely held assumption that a threshold is associated with the detection
task. This carries two significant implications for the detection/monitoring task:

- The criterion value is not fixed but instead is a function of the expected costs and
benefits associated with the detection task. It can be set by the adjustment
mechanism to any value necessary to maximize the task’s expected net benefit.

- The filter’s output is not altered in any way by the criterion detector. Information
loss thus does not occur and the filter’s output is available in its entirety for other
visual tasks, whether the criterion detector senses the onset of looming or not.

8.2 Towards a Complete Model of Car-Following
Figure 44 shows how the results of these experiments can be used to improve upon

the basic human driver model that was originally presented in Figure 8. Here the original
visual system block has been expanded to incorporate noise, a transmission delay, a
linear filter, and a nonlinear criterion detector. A quantification of the noise, transmission
delay, and the expected costs and benefits associated with this detection task are the

subject of a future study (See Section 9.1). The basic operation of the model is similar to
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the original. The Following and Lead Vehicle dynamics interact to produce the actual

visual scene before the FV driver. Here the relevant variable is 0(t), the angle that the LV
subtends in the FV driver’s field of view. If 6 >0 the FV is approaching the LV and the

driver implements a breaking strategy to avoid a rear end collision. A number of
strategies have been proposed, perhaps the most widely known is the “tau-dot” strategy
developed by Lee (53). Based upon this the driver issues commands to his body to
implement the strategy and the loop repeats.

8.3 Other Uses
This model could be used not only for design and evaluation, but also as an onboard

driver monitoring device, as shown in Figure 45. The model, shown in the dashed box,
takes in 6(t) via a radar and predicts the driver’s response, G(t). This is then compared
with the driver’s actual response, u(t), which is determined by monitoring the movement
of the accelerator and brake pedals. The system could then perform a number of :

functions, depending on the “mode” it is in:
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1. Adjust the model’s parameters in an adaptive fashion to better match the model to a
particular driver’s behavior.

2. If the driver’s predicted response differs markedly from his actual response, it could
issue a warning.

3. In extreme cases it could intervene in the vehicle’s operation.

In the introduction to this study we noted that these results are not limited to the Lead
Vehicle Braking Scenario. For example, this n;gdel could be used to better understand
how drivers perform in continuously following another vehicle at an approximately
constant range. Given the low frequency cutoff we observed in frequency response
characteristic, for instance, the model éhould predict that drivers would be relatively
insensitive to slowly gaining on or falling behind the vehicle in front, at least as far as the
looming detector is concerned. It could also be applied to other perceptual problems in
driving, such as judging the approach of oncoming trains at crossings, and detecting gaps

in a line of vehicles that a driver seeks to enter.
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9 AVENUES FOR FUTURE RESEARCH
This study constitutes an initial step towards a complete quantification of the visual

system’s ability to detect and respond to looming objects, as would be required for
collision avoidance applications. We proposed a model for looming detection consisting
of a minimum phase linear filter, a nonlinear criterion detector, and a nonlinear
adjustment mechanism. Further research into the function of each is warranted.
9.1 Linear Filter
Noise

Previously (Sections 3.2 and 3.3) we noted that quantum and physiological noise are
present in any detection task. It is possible to estimate the magnitude of the (assumed
Gaussian) noise associated with the looming detection task with Pelli and Farrell’s (54)
technique. Here we would introduce enough external noise (by superimposing Gaussian
fluctuations on the circle’s radius) until the threshold measure (Section 6.2.2) at each
modulation frequency is halved. The magnitude of the external noise at this point is

assumed equal to that of the internal noise, in the sense that all noise is referred to the

input of the linear filter.

Transmission Delay
We also noted the presence of a transmission delay between the stimulus presentation

(the instant at which the circle begins to modulate) and the onset of the filter’s response

(Section 6.5). This too can be estimated. The delay that can most conveniently be

measured is that between the stimulus presentation and depression of the “detect” button

by the test subject. This could be obtained with a modified version of the size

modulation experiment, in which:

1. A monetary reward or penalty is conferred based on the outcome of each trial, each of
which becomes more negative with time. This will encourage test subjects to reach a

decision and then respond as quickly as they are able to, ensuring consistency of
response from trial to trial.
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2. The time between the presentation of the stimulus and the depression of the “detect”
button is measured.

A representative, overall time delay AT can then be computed from these results. This

overall delay consists of three components, as shown in Figure 46, so that

AT = At, + At, + At . Q7)
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Time Delays Associated with the Looming Detection Task (not drawn to scale)
Figure 46

The first, Aty, is the delay we seek. Assuming a simple peak criterion scheme (Section
6.2.1), At; is the time from the onset of the filter response to the first peak in that
response. This is known from the existing model and experimental results. Finally,
assuming that the perception of motion coincides with the neural command to depress the
“detect” button in the experiment, At; corresponds to the neuromuscular delay in actually
carrying out the command. This last delay could be estimated with reference to

physiologically-based studies that have already been conducted on the subject. [See, for
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example, Vickers (55) and McRuer, et. al. (56).] Alternatively, these studies could be
used as guides in developing an experimental procedure to obtain data specific to the
conditions of the present study’s detection experiments. At; is thus the only unknown in

Equ. (27), from which it can then be obtained.

Expected Costs/Benefits for the Detection Task
The criterion C, as noted previously, is set by the FV driver as a consequence of the

tradeoff between the benefits of correct assessments of O and the costs of incorrect ones.
If B, Bumiss, Bra, and Beg, are the benefits/costs (Bi >0 => benefit, B, <0= cost) and

Pit, Pmiss, Pra, and Pcr the probabilities of the respective outcomes (See Figure 28b),

then the expected net benefit realized from this detection task is
Bret =By “Prsic (C)] + [ Btiss " Pasiss (C)] +[Bra *Pea (O)] +[Beg *Per (O)]-

In the car following scenario there are no material benefits conferred upon the FV driver
for hits and correct rejections (Byi;=Bcr=0), but he does realize penalties for misses
(potentially an REC) and false alarms (unnecessary braking). These penalties will be
functions of LV and FV speed (Vgy and Viy), R, and R , some of which may themselves

be dependent upon C. By thus takes the form
B = [BMiss (Vivs Vevs R, R, C)'PMiss(C)] + [BFA (Vivs Vevs R,R, O) Py (C)] - (28)

The inputs to the model, then, are the quantification of these benefits/costs. The criterion

value C is the value that maximizes Equ. (28).

Eventually, all occurrences of LV braking will be detected by the FV driver, the
question is when. If the conditions of a particular car following scenario are such as to

make Py;(C) relatively low, we would expect that the detection of LV braking would be
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delayed. This would of course affect the resulting FV braking profile (less time and
space to stop in), and in extreme cases leave insufficient time to avoid an REC. Itis
interesting too to see how the fundamental premise for our experiments (observers
receive some information on angular expansion, even though it may not be sufficient for
them to conclude such an expansion is actually taking place) factors into this. During the
time between the actual onset of LV braking and the FV driver’s detection of it, he is
nonetheless receiving some information to this effect from the scene before him. Thus he
is acquiring information that Byss is becoming more negative, which should in turn cause
him to shift C to the left in Figure 28b, reducing Pyss (but at the expense of increasing
Pra). This would make it more likely that he would detect the LV’s braking in the next
instant. Finally, the model also provides insight into the ways in which human error can
enter into the problem. The FV driver can err in estimating the probabilities, costs, and
benefits associated with the various outcomes. He can also err in identifying the criterion

level that maximizes the net benefit of the detection task.

Eccentricity
In Section 3.3 we observed that as eccentricity increases, photoreceptor density

decreases'®>, RGC receptive field size increases, and the number of RGC receptive fields
decreases. Sensitivity to any type of stimulus, including looming stimuli, should
therefore decrease with eccentricity. A second line of inquiry would be to quantify the
effects of eccentricity on sensitivity to size modlilation, and this could be accomplished

by repeating the size modulation experiment but with different circle radii.

15 From Figure 13, cone density fall dramatically as soon as we leave the foveal region (approximately 2°
eccentricity) while rod density falls after reaching its maximum at approximately 17° eccentricity.
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Stimulus Contrast and Background Light Level
The size modulation experiment was carried out using a single stimulus contrast at a

single adaptation level. The flicker-fusion studies (Sections 4.1.2.1 and 4.1.2.2) showed
that detection performance varied with adaptation level. (Stimulus contrast was the
dependent variable that was measured in those experiments.) Similarly, detection
performance in the size modulation experiment should vary, both with background light
level and with stimulus contrast at a given background level. A complete quantification
of the visual system’s ability to detect and respond to size modulation characterized by
first order motion stimuli would show how all the performance measures identified
here—threshold measure, time delay, and quantum/physiological noise—vary with

modulation frequency, eccentricity, background light level, and stimulus contrast.

Looming based on first order motion stimuli represents one of a number of
independent cues signaling the approach of an object in three dimensional space. Other
cues are glso available, and the visual system utilizes these as well in the looming
detection/response task. The set of experiments described in this section constitutes a
template that can be used to quantify the visual system’s detection/response capabilities
to looming based these other cues. Two such cues, looming stimuli based on “second
order” motion stimuli and looming based on binocular disparity, and the manner in which

different independent cues can be pooled together are described in the following sections.

Second Order Motion Cues
Size modulation can be detected with second order motion cues when no first order

motion cues are present. This would involve images with no discernible luminance
boundaries, but instead composed of texture patterns. In the actual environment object

surfaces do not exhibit uniform luminance but instead contain variations in luminance
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intensity which form certain repeated patterns called fexture. These patterns can be the

result of physical surface properties such as roughness or oriented strands which often

have a tactile quality, or they can be the result of reflectance differences such as the color
on the surface. Exactly how the visual system perceives second order motion is the
subject of ongoing research, but there is strong evidence that the detection of second
order motion stimuli is carried out by separate neural detection mechanisms,
independently from that of first order motion stimuli. (57, 58). Since different
mechanisms are involved, we can expect somewhat different performance in the
detection task. Size modulation of such an image could be effected in either of the

following ways (59):

1. A circular image consisting of a pattern of random dots is presented on a CRT against
a background of identical, static, random dots. The dots comprising the image then
expand outward/contracts inward against the static background, simulating
longitudinal motion. Note that luminance does not change as a result of the “motion”,

nor are there any sharp boundaries present to distinguish the circular image from its
background. This constitutes a divergence of the optic flow field.

2. The image consists of a random pattern of elements, whose size expands and contracts
to simulate longitudinal motion. The edges of the elements, as well as the boundaries
of the image, are blurred to eliminate the presence of localized lines or edges. Care
must be taken in this case to ensure that the overall luminance remains constant.
(Every expanding/contracting light region in the image is matched with a nearby
expanding/contracting dark region.) This is referred to as dilation of scale.

Examples of each are shown in Figure 47. (The different colors employed in Figure 47a
are not part of the actual stimulus.) A quantification of the visual system’s
detection/response capabilities to looming based on second order motion stimuli can be
carried out using the previously described experiments, using these two stimuli

(separately and in combination) in place of the first order motion stimuli.
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Figure 47

Binocular Disparity Cue
When an object in three dimensional space is viewed by an observer it casts an image

onto different locations within the retina of each eye. This disparity serves as a cue with
which to infer the object’s distance from the observer. Far objects project to more nasal
positions on the retina than near objects. (At about 10 meters, however, the light rays
emanating from the object become nearly parallel, and the disparity cue ineffective
beyond this point.)

The effects of binocular disparity can be ascertained by repeating the first and second
order motion experiments in a simulated three dimensional environment. This can be
accomplished either with a haploscope '® or with special goggles that deliver separate
images to each eye. A three dimensional effect is achieved by first delivering to each eye
only that portion of the stimulus’ image that would be visible to it. These images are then

placed on a slightly different region of each eyes’ retina, consistent with the stimulus’

16 A haploscope is an instrument for presenting separate fields of view to the two eyes so that they may be
seen as one, continuous, superimposed, integrated, or fused field, and hence useful for measuring or
stimulating various binocular functions. Many specially designed experimental and clinical models
provide for elaborate controls of the accommodation, convergence, and fusion stimuli, the color,
brightness, and size of target and field, and stereo-producing disparity.
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“distance” from the observer. In this way a very realistic simulation of a disk moving
towards and away from the observer in three dimensional space can be achieved. Using
such equipment all of the previously described first and second order monocular motion
experiments could be repeated, for each eye separately and then for both eyes together.
These results could be compared and combined with the monocular test results. They
could also be used separately to formulate a model of, and gain insight into, the manner

in which information from each eye is combined for this visual task.

Combination of Cues
In this section we pointed out that a number of different cues, each detected by a

different mechanism in the visual system, are associated with looming. We identified
three: monocular image expansion (the subject of this study), second order motion, and
binocular disparity. Others cues may also be present. The general looming detection
task, then, will involve detections of these individual cues (some of which may signal
looming and others not) followed by a pooling of the results. An expanded looming
detection model that incorporates the pooling of different cues is shown in Figure 48.
(The adjustment mechanisms are omitted for clarity.) The overall pooling element and
criterion detector are here shown as separate mechanisms, but it is also possible that both
functions are performed by the same neural mechanism. Green and Swets (50) show how
such cues can be combined to determine the likelihood that looming has occurred. Other

cues can be incorporated into the model in the same fashion.
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9.2 Nonlinear Criterion Detector
Further Test of Linearity

We have assumed that the criterion detector acts on the output of the linear filter
without altering it, and that no other significant nonlinearities exist between the filter and
the criterion detector. It is not possible to test this assumption directly (in humans, at
least) since we cannot directly measure the neural signal between the filter and the
criterion detector. An indirect test can be performed, however. A square wave of the
form

1 0<2nft<m

S(f)=
(£) {—1 -n<2nft<0

has the Fourier series representation
4 . 4 4
Sf)=—sin[2nf t]+ —sin[2n B ) t]+ —sin[2n (5 ) t] +---
| 3n 5n

Referring to Figure 37a, the higher harmonics of square wave inputs having frequencies

above approximately three Hz will be attenuated to insignificant levels, leaving only the

124



first harmonic. If the system is linear, then performing the modulation sensitivity
experiment with square wave inputs at modulation frequencies greater than three Hz

should yield threshold measures 4/z times greater than those for purely sinusoidal inputs.

Criterion Detection Scheme
In introducing the psychophysical looming detection model (Section 6.2.1) we noted

that researchers have not yet identified the particular signal characteristic that the
criterion detector bases its detection decision on. Based on our analysis of the Biphasic
Impulse Response Experiment (Section 7.4), we showed that a peak detection scheme
was better correlated with the experimental results than an integration scheme, noting as
well (Section 7.5) that detection based on the former schemes should proceed more
quickly than that based on the latter. If this is so, then the duration of the signal
presentation should not affect detection performance. One way to test this would be with
a modified version of the size modulation experiment (Seétion 6.3) where now threshold
measures of stimulus duration are obtained as a function of modulation amplitude and
frequency. Reliance on a peak detection scheme, an integration scheme, or both together
would be indicated by the following experimental outcomes:

1. No correlation between modulation amplitude and stimulus duration for any
modulation amplitude would lend support for a peak detection scheme alone.

2. A negative correlation (threshold duration time increases with decreasing modulation
amplitude) would lend support of an integration scheme.

3. No correlation for high modulation amplitudes and a negative correlation for low
modulation amplitudes would indicate that both are being used.

If the third result were encountered, our next task would be to identify the way in which
the information generated by the separate schemes is combined to arrive at a final

detection decision. A practical implication for the looming detection model is that the
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time to detect a particular looming stimulus [At, in Equ. (27)] will vary depending upon
which scheme “predominates” in the detection process.

9.3 Nonlinear Adjustment Mechanism
In our analysis of the Biphasic Impulse Response experimental results (Experiment 5,

Section 7.4) we modified the filter transfer function obtained in the Size Modulation
experiment (Experiment 3, Section 6.5) by reducing the filter’s low frequency response
characteristic (Figure 42). The resulting ability of the model based on this modification
to predict the Experiment 5 results was observed to be very good. Several experimental
sources for the discrepancy between the two experiment’s results were suggested, as well
as the possibility that further elaboration of the model itself was necessary. To this latter
point it was suggested that a mechanism capable of adjusting the temporal characteristics
of the filter to better match it to the task at hand may exist. Figure 49 shows one way in
which this could be accomplished. The frequency spectrum of the input would be one
input to this mechanism. The possibility that it receives other inputs and/or that its
actions are coordinated with those of the criterion detector adjustment mechanism is also
indicated. If such an adjustment mechanism exists, then it would have been active during
the Size Modulation experiment, affecting those results. More investigations would have
to proceed before we could come to a definitive conclusion either way, but the possibility
leads us to pose the following questions:

1. Whether such a shift in the filter’s frequency response characteristic is random or not,
what is the range of its variability?

2. What are the Filter Adjustment Mechanism’s inputs and outputs?

3. Are the Filter Adjustment Mechanism’s actions coordinated with those of the Criterion
Adjustment Mechanism to match the detector’s performance to the task at hand? If so,
how?
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The discussion in these final two sections has focused on the initial detection of
looming. Once looming is detected it will be necessary to continuously monitor an
object’s approach in order to respond effectively to it. Is the looming detector involved
in this task as well? It appears to possess the necessary neural machinery for the purpose,
and the existence of a separate mechanism possessing many of the same capabilities
would not appear to be an efficient use of the visual system’s limited resources. If the
looming detector is active in the monitoring task, what role do the criterion detector and ‘
adjustment mechanisms play? Further research is required to answer these questions as

well.
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