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ORIGINAL RESEARCH

Pediatric brain tumors are the most common solid ma-
lignancies in children, and of these, pediatric low-grade 

gliomas (pLGGs) are the most prevalent (1). pLGGs are 
heterogeneous in their molecular underpinnings, natural 
history, and aggressiveness, making management decisions 
challenging (2–4). Optimal risk stratification, response as-
sessment, and surveillance for pLGG hinge on the abil-
ity to accurately localize, measure, and characterize brain 
tumors on MR images, which in turn relies on accurate 
tumor segmentation. Accurate tumor segmentation would 
enable real-time practical volumetric assessment as well as 

serve as an important localizer for radiomics analyses and 
image classification models.

Manual segmentation of pediatric brain tumors is time-
consuming, labor intensive, and requires specialized exper-
tise. Given these inherent limitations, there has been inter-
est in developing autosegmentation tools for pediatric brain 
tumors (5–7). Advances in medical imaging techniques 
and computational methods have led to various approaches 
for brain tumor segmentation (7–9). Recently, deep learn-
ing for medical imaging has emerged, offering solutions to 
diverse clinical challenges (10–16). Deep learning–based 

This copy is for personal use only. To order printed copies, contact reprints@rsna.org

Purpose: To develop, externally test, and evaluate clinical acceptability of a deep learning pediatric brain tumor segmentation model using 
stepwise transfer learning.

Materials and Methods: In this retrospective study, the authors leveraged two T2-weighted MRI datasets (May 2001 through December 
2015) from a national brain tumor consortium (n = 184; median age, 7 years [range, 1–23 years]; 94 male patients) and a pediatric cancer 
center (n = 100; median age, 8 years [range, 1–19 years]; 47 male patients) to develop and evaluate deep learning neural networks for 
pediatric low-grade glioma segmentation using a stepwise transfer learning approach to maximize performance in a limited data scenario. 
The best model was externally tested on an independent test set and subjected to randomized blinded evaluation by three clinicians, wherein 
they assessed clinical acceptability of expert- and artificial intelligence (AI)–generated segmentations via 10-point Likert scales and Turing 
tests.

Results: The best AI model used in-domain stepwise transfer learning (median Dice score coefficient, 0.88 [IQR, 0.72–0.91] vs 0.812 
[IQR, 0.56–0.89] for baseline model; P = .049). With external testing, the AI model yielded excellent accuracy using reference standards 
from three clinical experts (median Dice similarity coefficients: expert 1, 0.83 [IQR, 0.75–0.90]; expert 2, 0.81 [IQR, 0.70–0.89]; expert 
3, 0.81 [IQR, 0.68–0.88]; mean accuracy, 0.82). For clinical benchmarking (n = 100 scans), experts rated AI-based segmentations higher 
on average compared with other experts (median Likert score, 9 [IQR, 7–9] vs 7 [IQR 7–9]) and rated more AI segmentations as clinically 
acceptable (80.2% vs 65.4%). Experts correctly predicted the origin of AI segmentations in an average of 26.0% of cases.

Conclusion: Stepwise transfer learning enabled expert-level automated pediatric brain tumor autosegmentation and volumetric measurement 
with a high level of clinical acceptability.

Supplemental material is available for this article.
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scenario by leveraging stepwise transfer learning, external testing, 
and randomized blinded human acceptability testing.

Materials and Methods

Study Design and Datasets
This study was conducted in accordance with the Declaration 
of Helsinki guidelines and following the approval of the lo-
cal institutional review board. Waiver of consent was obtained 
from the institutional review board prior to research initiation 
due to use of public datasets and the retrospective nature of the 
study. This report adheres to the Checklist for Artificial Intel-
ligence in Medical Imaging guidelines (25). Data from one na-
tional consortium (Children’s Brain Tumor Network [CBTN]) 
and one high-volume academic institution (Dana-Farber 
Cancer Institute/Boston Children’s Hospital [DFCI/BCH]) 
from May 2001 through December 2015 were included. We 
decided to develop a T2-weighted MRI segmentation model 
given that this is the most commonly used sequence used for 
pLGG volumetrics and was the most consistently available. 
Scans were subject to manual quality control, removing scans 
with substantial artifact and/or poor image quality. Patient in-
clusion criteria were the following: (a) 0–25 years of age, (b) 
histopathologically confirmed pLGG, and (c) availability of 
preoperative brain MRI with a T2-weighted imaging sequence. 
Spinal cord tumors were not considered for this study. Of the 
212 scans available from the CBTN as of data abstraction, 184 
(88%) were included in this study as a development dataset. 
One hundred pretreatment MRI acquisitions were selected at 
random from the DFCI/BCH pLGG clinic patients for valida-
tion studies. Adult glioma MRI acquisitions (n = 1251) with 
expert-generated segmentation masks were acquired from the 
2021 Brain Tumor Segmentation Challenge (BraTS) (26–28) 
to support transfer learning. All BraTS patients (n = 1251) 
in this study have been analyzed in previous publications, yet 
none of these previous studies have focused on transfer learn-
ing for pLGG. A subset of CBTN patients (n = 140) was pre-
viously analyzed in another study (5). However, this previous 
study incorporated four MRI sequences, whereas our study 
focused solely on T2-weighted images.

MRI Preprocessing
MR images were converted from Digital Imaging and Com-
munications in Medicine (DICOM) format to Neuroimaging 
Informatics Technology Initiative (NIfTI) format via raster-
ization packages using the dcm2nii package in Python v3.8 
(Python Software Foundation). N4 bias field correction was 
adopted to correct the low-frequency intensity nonuniformity 
present on MR images using SimpleITK in Python v3.8. All 
scans were resampled to 1 × 1 × 1 mm3 voxel size using lin-
ear interpolation and then coregistered to a pediatric MRI 
template sourced from the National Institutes of Health MRI 
Study of Normal Brain Development (NIHPD) Objective 1 
Atlases (29) using rigid registration with SimpleITK. Lastly, 
brain extraction was performed for all the scans using the HD-
BET package in Python v3.8 (30).

autosegmentation is a promising approach for accurate and ef-
ficient brain tumor segmentation, including pediatric tumors 
(5,17,18), though distinct challenges remain. With less than 
2000 annual average cases (19), pLGGs are relatively rare tumors, 
and there are no publicly available datasets for training models. 
Most brain tumor segmentation algorithms have been developed 
for adult glioma, which are much more common and have large 
volumes of public and institutional data for training (20,21). In 
contrast, there has been only limited study of dedicated pediat-
ric glioma segmentation, with a paucity of pLGG-specific models 
that rely on small single-institution datasets that have not been 
externally tested nor subjected to clinical testing (17,18). Human 
clinical evaluation of segmentation models is essential to bench-
mark performance to experts and determine their true level of per-
formance and potential for clinical translation.

Recently, advances have been made in knowledge transfer 
learning (22) and self- (23) and semisupervision (24) as methods 
to improve deep learning performance in limited-data scenarios. 
These techniques have shown promise in improving medical 
image analysis algorithms. However, they can be challenging to 
implement and have not yet been applied to pediatric brain tu-
mors. Pediatric brain tumors represent an ideal setting for apply-
ing these techniques, given the need to maximize performance 
with relatively scarce data. Here, we aim to bridge the transla-
tional gap for pediatric brain tumor segmentation algorithms 
and achieve clinically acceptable performance in a limited-data 

Abbreviations
AI = artificial intelligence, BraTS = Brain Tumor Segmentation 
dataset, CBTN = Children’s Brain Tumor Network, DFCI/BCH = 
Dana-Farber Cancer Institute/Boston Children’s Hospital, DSC = 
Dice score coefficient, FLAIR = fluid-attenuated inversion recovery, 
pLGG = pediatric low-grade glioma, RVD = relative volume differ-
ence

Summary
A deep learning MRI-based autosegmentation model for pediatric 
low-grade glioma that was developed and externally tested using a 
stepwise transfer learning approach demonstrated comparable perfor-
mance and clinical acceptability with pediatric neuroradiologists and 
radiation oncologists.

Key Points
 ■ Stepwise transfer learning demonstrated gains in performance 

for deep learning segmentation of pediatric low-grade glioma at 
T2-weighted MRI (median Dice score coefficient, 0.88 [IQR, 
0.72–0.91]) compared with other methodologies and yielded seg-
mentation performance comparable to human experts at external 
testing.

 ■ For blinded clinical acceptability testing, the model received a 
higher average Likert score rating and a greater proportion of clini-
cally acceptable segmentations compared with experts (transfer-
encoder model [80.1%] vs average expert [65.4%]).

 ■ Turing tests showed uniformly low ability of experts’ ability to cor-
rectly identify the origin of transfer-encoder model segmentations 
as artificial intelligence generated versus human generated (mean 
accuracy, 26%).

Keywords
Stepwise Transfer Learning, Pediatric Brain Tumors, MRI Segmen-
tation, Deep Learning
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medical imaging tasks as well as its general-purpose nature. 
Early stopping was implemented, ending training if there was 
no improvement on the validation set for 50 epochs, with a 
maximum of 1000 epochs. All other training parameters in-
clude learning rate, batch size, data augmentations, and loss 
function, followed the default settings of nnU-Net (31). Mod-
els were trained with the nnU-Net built-in fivefold cross-vali-
dation procedure and with the final model consisting of an en-
semble of the five folds. Prior to training, we randomly split the 
CBTN development set (n = 184) into a training set (n = 124; 
67%) to be used for the fivefold cross-validation procedure and 
a blinded internal hold-out test set (n = 60; 33%). We investi-
gated five model frameworks as specified below, and each ap-
proach was evaluated and compared via performance on the 
CBTN hold-out test set (n = 60) (Fig 1A). The top-performing 
model was selected for further testing using the external test set 
from DFCI/BCH (n = 100).

Adult brain tumor model: BraTS model.— To determine if an 
adult glioma model could perform well in the pediatric setting 
out of the box, we trained the nnU-Net framework using the 
BraTS 2021 training set (n = 1251) and the internal hold-out set 
from CBTN (n = 60).

Training from scratch: scratch model.— To investigate the hy-
pothesis that a model trained on pediatric brain tumors would 

MRI Review and Segmentation
For model development and initial training, tumors on all T2-
weighted scans within the CBTN (n = 184) and 60 scans within 
the DFCI/BCH cohort were initially segmented by a board-cer-
tified radiation oncologist (B.H.K.) to serve as primary reference 
standard segmentations. To determine segmentation variation 
across clinical experts of different specializations, a board-certified 
radiation oncologist specializing in central nervous system tumors 
(M.J.T.) and a board-certified pediatric neuroradiologist (S.P.P.) 
independently annotated 100 scans from the DFCI/BCH exter-
nal dataset for clinical acceptability testing. During a file saving 
procedure, unexpectedly, nine and 11 scans, respectively, were 
found to have corrupt data. Thus, 91 and 89 scans, respectively, 
were included for these two annotators in the analysis. All the an-
notators were instructed to segment all areas of T2-weighted signal 
abnormality concerning for tumor involvement, including areas 
of peritumoral T2-weighted hyperintensity if suspicious for tumor 
involvement. Segmentations were performed and saved in NIfTI 
format using ITK-SNAP v4.0 (http://www.itksnap.org) with three-
dimensional axial, sagittal, and coronal views (Fig S1).

Deep Learning Approach: Stepwise In-Domain Transfer 
Learning
The baseline model used the nnU-Net architecture (31) with 
built-in ensembling for training and inference. The nnUNet 
architecture was used due to the proven performance on many 

Figure 1: Schematic illustration of the study design. (A) An overview of the study workflow, including data preprocessing, expert segmentation of the tumors, model 
training and testing, and the model clinical acceptability evaluation. Statistical model evaluation includes the primary end point of Dice score coefficient (DSC) and the sec-
ondary end point of relative volume change. (B) A workflow showing the proposed in-domain stepwise transfer learning with detailed sequential steps involved in this ap-
proach. (C) A workflow detailing the two-phase clinical acceptability evaluation. AI = artificial intelligence, BraTS = Brain Tumor Segmentation dataset, CBTN = Children’s 
Brain Tumor Network, 3D = three-dimensional.
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the BraTS model and/or the transfer-encoder model) selected at 
random (n = 300 total segmentations per reviewer). The expert 
raters were blinded to the origin of the segmentations. The order 
and color of the segmentations displayed for each scan was ran-
domized to reduce bias. The ratings were carried out using Seg-
mentationReview (35). Experts were given written instructions 
and asked to rate each of the three segmentations on a scale from 
1 (worst) to 10 (perfect), with a 7 being defined as a clinically ac-
ceptable threshold for volumetric assessment (Fig S2). For each 
segmentation, raters were also asked to guess whether the seg-
mentation was AI generated (ie, a Turing test). For comparing 
paired measurements while appropriately addressing the depen-
dency between measurements on the same cases, we analyzed the 
mean interrater group DSC values using the Wilcoxon signed 
rank test. Expert rating scores underwent analysis using the 
Kruskal-Wallis test, followed by Mann-Whitney U tests as post 
hoc tests. Additionally, the clinical acceptability and Turing test 
results were subjected to analysis using the χ2 test. To adjust for 
multiple group analysis, we employed the Benjamini-Hochberg 
correction to correct P values. Two-sided tests with a significance 
level of P < .05 were considered statistically significant. Statistical 
analyses were conducted using the Statsmodels 0.14.1 and the 
SciPy 1.11.0 packages in Python 3.8.

Data and Code Availability
BraTS data including raw MR images may be requested from 
The Cancer Image Archive (https://www.med.upenn.edu/cbica/
brats/). Although raw MRI data cannot be shared, all mea-
sured results to replicate the statistical analysis are shared 
at the GitHub web page (https://github.com/AIM-KannLab/
pLGG_Segmentation). Furthermore, we include test samples 
from a publicly available dataset with deep learning and ex-
pert reader annotations. The code of the deep learning system 
as well as the trained model and statistical analysis are pub-
licly available.

Results

Patient Characteristics
The pLGG cohort included 284 patients from two cohorts, 
184 patients in the CBTN development set and 100 patients 
in the DFCI/BCH external test set (Table 1). In the CBTN 
cohort, the median age was 7 years (range, 1–23 years), 
with 84 (45.7%) female and 94 (51.1%) male patients. In 
the DFCI/BCH cohort, the median age was 8 years (range, 
1–19 years), with 53 (53%) female and 47 (47%) male pa-
tients. All patients had pathologically diagnosed grade I or 
II low-grade glioma, with various histologic subtypes and 
tumor locations. MRI scan parameters across datasets are 
found in Table S3 and S4.

In-Domain Stepwise Transfer Learning Improves 
Segmentation Performance
The BraTS model exhibited high performance on adult data 
but significantly declined when applied to pediatric data (me-
dian DSC, 0.93 [IQR, 0.89–0.95] to median DSC, 0.81 [IQR, 

outperform a model trained on adult tumors on a pediatric 
test set, an nnU-Net model was trained from scratch using the 
CBTN training set (n = 124), which consisted of limited pe-
diatric data and required less training data compared with the 
BraTS model. As specified above, we conducted a standard five-
fold cross-validation procedure using 20% of the training data (n 
= 24) as validation for each cross-validation fold, with the final 
model representing an ensemble of the five folds.

In-domain transfer learning from adults: transfer model.— We 
hypothesized that fine-tuning a BraTS model with pediatric data 
(ie, in-domain transfer learning) may improve performance. For 
this experiment, the nnU-Net was pretrained with the BraTS 
model weights (n = 1251) and then fine-tuned using additional 
training on the CBTN data (n = 124) following the same proce-
dure as the scratch model.

Stepwise transfer learning.— We hypothesized that freezing 
specific model parameters during fine-tuning could further en-
hance convergence and reduce overfitting in this limited data 
scenario by reducing the number of parameters for optimiza-
tion. To test this, starting with the transfer model checkpoint, 
we further fine-tuned the model while freezing either the en-
coder block (transfer-encoder model) or the decoder block 
(transfer-decoder model) (Fig 1B).

Model Evaluation and Statistical Analysis
The primary performance end point was the Dice score co-
efficient (DSC) (32), with a DSC value greater than 0.80 
indicating suitability for further clinical testing (9). Median 
DSC values were compared between models using Wilcoxon 
rank sum tests on the CBTN test set. The highest performing 
model on the CBTN set was externally tested on the DFCI/
BCH dataset. Furthermore, the relative volume difference 
(RVD) was calculated by dividing the volume difference be-
tween the predicted and reference standard tumor volumes by 
the reference standard tumor volume. Other secondary end 
points also included aggregated DSC and intraclass coeffi-
cient for tumor volumes.

Randomized Blinded Clinical Acceptability Testing and 
Interexpert Variability
While DSC is an important quantitative measure of segmenta-
tion performance, positioning the algorithm for real-world use 
requires clinical validation and benchmarking (33,34). Pairwise 
interexpert variability between the three annotators as well as two 
models (BraTS model and transfer-encoder model) was evalu-
ated with DSC to determine if model performance was compa-
rable to interexpert variability. To assess the clinical utility of the 
artificial intelligence (AI) models, the three experts conducted 
a blinded segmentation rating and acceptability study (Fig 1C) 
as follows: For each of the 100 DFCI/BCH cases, each expert 
was presented with three different segmentations overlaid with 
each other (Appendix S1). The three segmentations consisted of 
one to two expert segmentations (from the other two annota-
tors) and one to two AI-generated segmentations (selected from 

http://radiology-ai.rsna.org
https://www.med.upenn.edu/cbica/brats
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models. Given improvements across several metrics (Table 2), 
we selected the transfer-encoder model for further testing.

External Testing of Stepwise Transfer Learning
On an external testing set with expert segmentations (n = 60 scans 
from DFCI/BCH), the transfer-encoder model achieved a me-
dian DSC value of 0.83 (IQR, 0.74–0.90) and median RVD of 
16.1% (IQR, 5.8%–39.3%) as compared with manual segmenta-
tions. We performed failure analysis for cases with a DSC value 
less than 0.6 and found six cases in total. The failures were caused 
by the following factors: (a) tumor located in ventricle (Fig S3E; n 
= 1), (b) large cystic area in brain (Fig S3A, S3C, S3D; n = 3), (c) 
empty segmentation from poor image quality due to respacing for 
large section thickness (Fig S3B; n = 1), and (d) under-segmenta-
tions for large heterogeneous tumor lesion (Fig S3F; n = 1).

0.56–0.89]; P < .001) (Fig 2; Table 2). Volumetric assessment 
accuracy also decreased significantly on pediatric data (median 
RVD, 5.2% [IQR, 2.4%–11.9%] to median RVD, 19.2% 
[IQR, 10.9%–68.2%]; P < .001). All scratch and transfer 
models surpassed the BraTS model in terms of DSC, with the 
transfer-encoder model exhibiting a significant difference (P = 
.049), achieving a DSC value of 0.88 [IQR, 0.72–0.91] com-
pared with the DSC value of the BraTS model of 0.81 [IQR, 
0.56–0.89]. Among the five models, the transfer-encoder 
model demonstrated the highest DSC values (median DSC, 
0.88 [IQR, 0.72–0.91]; aggregated DSC, 0.84), alongside the 
RVD value (median RVD, 10.9% [IQR, 3.2%–31.0%]), as 
well as the lowest rate of failed or empty segmentations (6.7% 
[four of 60]) (Table 2). Representative cases in Figure 3 high-
light gains in accuracy of transfer-encoder compared with other 

Table 1: Patient Demographics

Parameter

Patient Cohorts

CBTN (n = 184) DFCI/BCH (n = 100)

Age (y)
 Median (range) 7 (1–23) 8 (1–19)
Sex
 Female 84 (45.7) 53 (53)
 Male 94 (51.1) 47 (47)
 Unknown 6 (3.2) 0 (0)
Race or ethnicity
 Non-Hispanic White 118 (64.1) 68 (68)
 African American/Black 24 (13.0) 5 (5)
 Hispanic/Latinx 17 (9.2) 4 (4)
 Asian American/Asian 3 (1.6) 4 (4)
 Other/unknown 22 (12) 19 (19)
Histologic diagnosis
 Pilocytic astrocytoma 58 (31.5) 34 (34)
 Pilomyxoid astrocytoma 10 (5.4) 0 (0)
 Juvenile pilocytic astrocytoma 0 (0) 13 (13)
 Ganglioglioma 1 (0.5) 11 (11)
 Oligodendroglioma 1 (0.5) 0 (0)
 Diffuse astrocytoma 9 (4.9) 3 (3)
 Fibrillary astrocytoma 13 (7.1) 0 (0)
 Optic pathway glioma 0 (0) 3 (3)
 Other low-grade glioma or astrocytoma 92 (50.0) 36 (36)
Primary tumor location
 Posterior fossa 48 (26.1) 28 (28)
 Temporal lobe 13 (7.1) 18 (18)
 Frontal lobe 7 (3.8) 2 (2)
 Cerebellum 0 (0) 18 (18)
 Suprasellar 27 (14.7) 6 (6)
 Optic pathway 27 (14.7) 3 (3)
 Brainstem 23 (12.5) 3 (3)
 Thalamus 7 (3.8) 2 (2)
 Others 32 (17.4) 20 (20)

Note.—Unless otherwise noted, data are reported as numbers of patients with percentages in parentheses. 
CBTN = Children’s Brain Tumor Network, DFCI/BCH = Dana-Farber Cancer Institute/Boston Chil-
dren’s Hospital.

http://radiology-ai.rsna.org
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Clinical Acceptability Testing of Stepwise Transfer Learning 
Model
Interannotator DSC results between experts and AI models 
were calculated using segmentations from expert 1, expert 2, 
and expert 3 as the reference standard on the external test 
set (Fig 4A; n = 60). Based on expert 1, the transfer-encoder 
model exhibited no significant differences in DSC values 
compared with both expert 2 and expert 3 (Fig 4B; transfer-
encoder model vs expert 2: median, 0.83 [IQR, 0.75–0.90] 
vs 0.87 [IQR, 0.79–0.90]; P = .11) (transfer-encoder model 
vs expert 3: median, 0.83 [IQR, 0.75–0.90] vs 0.850 [IQR, 
0.81–0.90]; P = .09). Notably, transfer-encoder, expert 2, 
and expert 3 all demonstrated significantly higher DSC val-
ues than BraTS (P = .02, P = .001, P = .005, respectively). 
With expert 2 (Fig 4C) and expert 3 (Fig 4D) as reference 
standards, transfer-encoder exhibited significantly lower 
DSC values compared with the interexpert variability but 
displayed significantly higher DSC values compared with the 
BraTS model.

For clinical acceptability testing, the overall rating scores for 
segmentations for transfer-encoder (median, 9 [IQR, 7–9]) were 
higher than those for BraTS (median, 8 [IQR, 6–9]), expert 1 
(median, 7 [IQR, 6–9]), expert 2 (median, 8 [IQR, 7–9]), and 
expert 3 (median, 6 [IQR, 5–8]). Based on individual experts, 
the mean segmentation quality scores for the transfer-encoder 
model were consistently higher than or comparable to those of 
the experts and notably higher than those of the BraTS model 
(Fig 5A). For instance, according to expert 2, the transfer-en-
coder model (median, 8 [IQR, 6–9]) exhibited significantly 
higher mean scores compared with expert 1 (median, 6 [IQR, 
5–7]; P = .003), expert 3 (median, 5 [IQR, 5–6]; P < .001), and 
the BraTS model (median, 7 [IQR, 5–8]; P < .001). Overall, 
transfer-encoder exhibited a higher proportion of clinically ac-
ceptable (rating score ≥ 7) segmentations (80.1% [182 of 227]) 
compared with BraTS (72.1% [165 of 229]) and individual ex-
perts (expert 1, 68.3% [82 of 120]; expert 2, 78.7% [122 of 
155]; expert 3, 49.3% [66 of 134]). Based on the individual 
expert, these percentages for transfer-encoder were comparable 

Figure 2: Graph shows the comparative performance of deep learning training methodologies on the internal test set (n = 
60). Among the five different segmentation models assessed, the methods using stepwise transfer learning (transfer-decoder and 
transfer-encoder) had the highest segmentation accuracy. Additionally, the transfer-encoder model generated the fewest segmenta-
tions with a Dice score coefficient (DSC) of 0 (n = 4; 6.7%) (indicating a complete segmentation miss). Conversely, the brain tumor 
segmentation (Brain Tumor Segmentation dataset [BraTS]) model exhibited the highest number of segmentations with a DSC value 
of 0 (n = 11; 18.3%). The transfer-encoder model demonstrated the highest median DSC value (0.88 [IQR, 0.72–0.91]) and was 
selected for further investigation. The BraTS model, trained only on adult glioma, demonstrated the lowest median DSC (0.81 [IQR, 
0.56–0.89]). AI = artificial intelligence. 

Table 2: Model Performance on Internal Test Set from the Children Brain Tumor Consortium  

Model Median DSC Aggregated DSC Median RVD (%) ICC (95% CI)
Percentage of Cases 
 with a DSC Value of 0

BraTS model 0.81 (0.56–0.89) 0.73 19.2 (10.9–68.2) 0.74 (0.59–0.83) 15.0 (9/60)
Scratch model 0.86 (0.67–0.91) 0.82 9.8 (4.0–40.7) 0.80 (0.69–0.88) 10.0 (6/60)
Transfer model 0.87 (0.72–0.91) 0.82 12.4 (3.6–33.4) 0.80 (0.69–0.88) 8.3 (5/60)
Transfer-decoder model 0.88 (0.71–0.91) 0.83 12.6 (5.2–28.9) 0.83 (0.74–0.90) 8.3 (5/60)
Transfer-encoder model 0.88 (0.72–0.91) 0.84 10.9 (3.2–31.0) 0.83 (0.73–0.89) 6.7 (4/60)

Note.—Unless otherwise noted, values are medians with IQRs in parentheses or percentages with numerators and denominators in pa-
rentheses. BraTS = Brain Tumor Segmentation dataset, DSC = Dice score coefficient, RVD = relative volume difference, ICC = intraclass 
correlation coefficient.
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to or higher than those from other experts. For example, from 
expert 1, transfer-encoder (82.9% [58 of 70]) demonstrated 
slightly higher percentages of clinically acceptable segmentations 
compared with expert 2 (82.4% [61 of 74]; P > .99) and expert 3 
(79.4% [50 of 63]; P > .99). However, according to expert 2, the 
transfer-encoder model exhibited a higher percentage of clini-
cally acceptable segmentations (72.0% [54 of 75]) compared 
with those from expert 1 (48.3% [29 of 60]; P = .009), expert 3 
(21.6%, [16 of 71]; P < .001), and the BraTS model (56.8% [46 
of 81]; P = .07) (Fig 5B). Furthermore, results from the Turing 
test revealed a consistent challenge for experts in distinguishing 
AI-generated from expert-generated segmentations. Specifically, 
expert 1, 2, and 3 identified transfer-encoder segmentations as 
AI generated in only 22.9% (16 of 70), 36% (27 of 75), and 
19.5% (16 of 82) of scans, respectively, which are notably lower 
than those from the experts and the BraTS model (Fig 5C). 
Conversely, a large percentage of experts’ segmentations were 
judged to be AI generated by all three experts. For instance, 
expert 2 rated 88.3% (53 of 60) of segmentations from expert 
1 and 90.1% (64 of 71) of segmentations from expert 3 as AI 
generated, while expert 3 rated 41.7% (25 of 60) of segmenta-
tions from expert 1 and 39.5% (32 of 81) of segmentations from 
expert 2 as AI generated. The median Likert score and clinical 
acceptability rate was 9 (IQR, 7–9) and 80.2%, respectively, for 

transfer-encoder segmentations and 7 (IQR, 7–9) and 65.4%, 
respectively, for other experts’ segmentation.

Discussion
In this study, we developed, externally tested, and clinically 
benchmarked a deep learning pipeline using stepwise transfer 
learning for automated expert-level pLGG segmentation and 
volumetric measurement. Stepwise transfer learning yielded 
high segmentation performance (DSC, 0.88; IQR, 0.72–0.91) 
that was comparable to interexpert agreement for clinical eval-
uation. Additionally, experts rated the clinical acceptability of 
the stepwise transfer learning–based model on par or higher 
than other experts’ segmentations. Turing tests also indicated 
uniformly low ability of experts’ ability to correctly identify the 
origin of transfer-encoder model segmentations as AI gener-
ated versus human generated. Accurate tumor autosegmenta-
tion models could be useful for risk stratification, monitoring 
tumor progression, assessing treatment response, and surgical 
approach (5). However, tumor autosegmentation models have 
had limited traction in use for pediatric tumors due to very 
sparse available training data. We leveraged a strategy of in-
domain stepwise transfer learning to demonstrate measurable 
gains in segmentation accuracy and clinical acceptability that 
was on par with clinician performance. To our knowledge, this 

Figure 3: Expert tumor segmentations and AI-predicted tumor segmentations on T2-weighted images by the Brain Tumor Segmentation dataset (BraTS), scratch, and 
transfer-encoder models from two representative cases. (A) In the case of pilocytic astrocytoma from an 8-year-old boy, the transfer-encoder model exhibited excellent 
tumor segmentation performance, achieving a Dice score coefficient (DSC) value of 0.90 and a volume difference of 13.4%, surpassing the results of BraTS model (DSC, 
0.03; volume difference, 15.5%) and the scratch model (DSC, 0.87; volume difference, 19.6%). Notably, the BraTS model exhibited a small volume difference but a 
very low DSC value due to false-positive predictions on the vasogenic edema (arrow). (B) In another representative case of pilomyxoid astrocytoma from a 17-year-old 
adolescent boy, the transfer-encoder model also demonstrated a higher DSC value (0.83) and lower volume difference (10.3%) compared with the BraTS model (DSC, 
0.477; volume difference, 68.2%) and the scratch model (DSC, 0.78; volume difference, 25.8%). All P values were corrected to adjust for multiple group analysis with the 
Benjamini-Hochberg correction. RVD = relative volume difference. 

http://radiology-ai.rsna.org


8 radiology-ai.rsna.org ■ Radiology: Artificial Intelligence Volume 6: Number 4—2024

Stepwise Transfer Learning for Pediatric Brain Tumor MRI Segmentation 

is the first study to use stepwise transfer learning in this con-
text and to evaluate clinical acceptability of autosegmentation 
tools. The rigorous clinical benchmarking studies with three 
blinded experts suggest that this approach nears a performance 
ceiling for pLGG segmentation (ie, output is comparable and 
indistinguishable to human experts).

The current state-of-the-art approaches for automated 
brain tumor segmentation rely on deep learning. However, 
most available autosegmentation tools have been specifically 
developed and trained for adult brain cancers, particularly glio-
blastoma (8,20,21). In this work, we find that tools such as 
these do not effectively generalize to pediatric brain tumors. 
Performance degradation may stem from the distinctive het-
erogeneous imaging appearance and types of pediatric brain 
tumors compared with adult brain tumors, as well as the ana-
tomic differences resulting from the ongoing brain develop-
ment in children. Several studies have proposed various deep 
learning solutions to address the segmentation of pediatric 
brain tumors, achieving DSC values ranging between 0.68 

and 0.88 (5,17,36,37). However, the clinical acceptability of 
these approaches was not validated or benchmarked against 
adult models. To date, only one study has proposed an algo-
rithm specifically for pLGG, achieving a DSC value of 0.77 
(18). This study utilized fluid-attenuated inversion recovery 
(FLAIR) images from 311 patients from a single institution. 
The proposed model employed deep multitask learning, incor-
porating a genetic alteration classifier of a tumor as an auxiliary 
task to the main segmentation network (18). However, this 
model was trained on a limited number of MRI scans from 
a single institute and lacked external testing and clinical test-
ing. In the present study, our stepwise transfer learning model 
achieved better model performance compared with previous 
work (18). Improved performance may be due to sequential 
knowledge transfer, first from the adult setting, and then the 
pediatric setting. Additionally, freezing the encoder or decoder 
in the final fine-tuning step enabled optimization of a smaller 
parameter space which may have mitigated overfitting given 
the limited amount of data. Training on a sufficient quantity 

Figure 4: The interrater Dice score coefficient (DSC) values among three clinical experts and two artificial intelligence (AI) models us-
ing an external test dataset comprising 60 cases. Overall, the transfer-encoder model exhibits higher DSC values compared with the Brain 
Tumor Segmentation dataset [BraTS] model but lower DSC values compared with the interrater agreement among different experts. (A) 
The distribution plots depict the median interrater DSC values calculated from the segmentations of three experts and two AI models. (B) 
Boxplots display the interrater DSCs for segmentations from two experts and two AI models, with expert 1’s segmentations serving as the 
reference standard. (C) Boxplots illustrate interrater DSC values using expert 2’s (E2) segmentations as the reference standard. (D) Boxplots 
demonstrate interrater DSC values using expert 3’s (E3) segmentations as the reference standard. E1 = expert 1, AI-B = BraTS model, AI-TE 
= transfer-encoder model. All P values were corrected to adjust for multiple group analysis with the Benjamini-Hochberg correction. Points 
outside the whiskers represent outliers. * = P < .05, ** = P < .001.
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of pediatric data from scratch may obviate the need for transfer 
learning, but what represents “sufficient” is yet to be defined 
for pLGGs and current datasets remain relatively small.

U-Net architectures, including the widely validated nnU-
Net, have become the de facto standard for medical imaging 
segmentation challenges in recent years (31). While newer, 
more advanced algorithms have emerged, such as three-di-
mensional attention U-Net (38), hybrid models like M-Net 
(39), and Swin U-Net transformers (40). These models feature 
more sophisticated neural network architectures that typically 
demand larger datasets for training and are susceptible to over-
fitting when applied to small datasets. Thus, these models have 

not shown superiority to nnU-Net in most typical medical im-
aging challenges (31,41). The more acute problem in medical 
image segmentation, particularly for pediatric brain tumors, is 
limited data. Thus, we focused our strategy on ways to improve 
the performance of nnU-Net in a data-limited scenario, spe-
cifically via investigation of various stepwise transfer learning 
approaches. With this data-centric approach, that additionally 
leverages multi-institutional data, external testing, and rigor-
ous blinded clinical evaluation, we were able to demonstrate 
that an nnU-Net–based algorithm can achieve performance on 
par, or perhaps exceeding that of human experts in pediatric 
glioma segmentation.

Figure 5: Clinical acceptability testing on segmentations. Three human experts were invited to rate randomized artificial intelligence (AI)–generated (Brain Tumor Seg-
mentation dataset [BraTS] model or transfer-encoder model) or expert-generated segmentations while blinded to segmentation origin. (A) The mean segmentation rating 
scores for the three experts and two AI models, as individually evaluated by expert 1 (E1), expert 2 (E2), and expert 3 (E3). Boxplots are used to compare and group the 
rating scores for each expert and AI model, along with the corresponding P values from statistical tests for group comparisons. According to all three experts, the transfer-
encoder model (AI-TE) model consistently shows better or comparable rating scores compared with experts and the BraTS (AI-B) model. (B) The percentage of segmenta-
tions that were considered acceptable, with a rating score of 7 or above, is summarized for each expert and model. (C) The accuracy of determining whether annotations 
were AI generated is shown for each expert and model, indicating how well the experts were able to distinguish between AI-generated and expert-generated segmenta-
tions. All P values were corrected to adjust for multiple group analysis with the Benjamini-Hochberg correction. * = P < .05, ** = P < .001.
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While statistical metrics like the DSC and RVD offer valu-
able insights into a model’s overall segmentation performance, 
it is important to acknowledge their limitations in providing 
a comprehensive evaluation of a model’s utility (6). To ensure 
a thorough evaluation and facilitate the clinical translation 
of our model, we conducted a rigorous clinical acceptability 
evaluation and validation process involving three expert clini-
cians. The involvement of expert clinicians provides valuable 
feedback and insights, accelerating the translation of the model 
into clinical practice. In our study, we went a step further by 
conducting blinded, segmentation rating, acceptability, and 
Turing tests involving the three expert clinicians. Notably, all 
experts performed worse than random chance (50%) in pre-
dicting the origin of the transfer-learned model segmentations, 
suggesting that this model passes the Turing test. Additionally, 
this clinical evaluation captures additional nuance regarding 
clinical utility of different deep learning approaches. For in-
stance, we found that a stepwise transfer learning approach, 
beyond small increases in DSC, also generated more clinically 
acceptable segmentations that were indistinguishable from ex-
pert segmentations than an adult glioma–based model. To our 
knowledge, this is the first brain tumor segmentation study to 
incorporate such a clinical evaluation, which is critical in posi-
tioning a model for clinical translation.

There are several limitations of this study. First, the study was 
retrospective in nature, and selection of scans for inclusion in 
this study, while performed a priori and based solely on avail-
ability and scan quality, may introduce bias. Second, the model 
utilizes only T2-weighted images, as these were the most com-
monly available for all the patients included in our analysis. Both 
T2-weighted and T2 FLAIR sequences are considered the best 
sequences for tracking low-grade glioma (42), yet T2 FLAIR im-
ages were not available for many patients with pLGGs in our 
study, particularly in the CBTN cohort. Consequently, differ-
entiation between vasogenic edema from tumor may have been 
more challenging for annotators, though there was still high 
interannotator segmentation agreement. Despite this limita-
tion, our study demonstrated that stepwise transfer learning is 
a powerful approach to improve deep learning performance in 
a data-limited scenario. We encourage other investigators to use 
our framework in a multiparametric setting. A possible advan-
tage of a T2-weighted–only model is that it may be more widely 
applicable for volumetric assessment in situations where mul-
tiparametric and contrast-enhanced scans are unavailable. Fur-
thermore, it is important to note that our study focused solely on 
whole tumor segmentation and not the segmentation of specific 
tumor subregions. Consequently, the clinical utility of our find-
ings may be restricted in certain cases, such as when change in 
cystic component is not relevant to the clinical response assess-
ment. Finally, it is notable that the algorithm did fail on some 
cases, and while we identified certain factors that were associated 
with failures, it is difficult to predict with certainty why a failure 
occurred owing to the black box nature of deep learning algo-
rithms. Therefore, it is important for the model output to un-
dergo a clinical review prior to use in clinical decision-making.

In conclusion, we developed, externally tested, and clini-
cally benchmarked an automated deep learning pipeline using 

in-domain stepwise transfer learning that enables expert-level 
MRI segmentation of pLGGs. With blinded evaluation, the 
model demonstrated clinically acceptable performance that was 
higher on average than clinical experts. Prospective and longitu-
dinal evaluation of the pipeline is planned to determine the algo-
rithm’s potential for integration into the clinical care of children 
with low-grade glioma.
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