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1.  INTRODUCTION 
The purpose of this paper is to 
!" identify two distinct types of payoff kinks in preference functions over monetary 

lotteries, namely “locally separable” versus “locally nonseparable” kinks 
!" illustrate the relationships between a preference function’s (directional) payoff deriva-

tives and its probability derivatives in the presence of these different types of kinks,  and  
!" compare the expected utility model and two important non-expected utility models with 

respect to the types of payoff kinks that they can, cannot, or must exhibit. 

 There are several situations where an individual’s preferences over lotteries might be 
expected to exhibit kinks in the payoff levels. The simplest and undoubtedly most pervasive are 
piecewise-linear income tax schedules, which imply that the individual’s utility of before-tax 
income will typically have kinks at the boundaries of the tax brackets. Similar instances include 
kinks induced by the option of bankruptcy, or the intended purchase of some large indivisible 
good. Alternatively, payoff kinks may be an inherent part of underlying attitudes toward risk. We 
also briefly consider another source of kinks, namely the phenomenon of temporal risk. 

 Models of preferences over lotteries, like models of preferences elsewhere in economics, 
should be flexible enough to be able to exhibit kinks in situations where they might be expected 
to occur, as well as avoid kinks (be globally smooth) in situations where they might not. As it 
turns out, three important models – (1) expected utility risk preferences, (2) Fréchet differen-
tiable risk preferences, and (3) rank-dependent risk preferences – all exhibit this flexibility with 
respect to the first type of payoff kink (locally separable). However, none of these models are 
flexible with respect to the second type: Whereas expected utility and Fréchet differentiable 
preferences cannot exhibit locally nonseparable payoff kinks, probability-smooth rank-dependent 
preferences cannot avoid exhibiting them at every lottery.  

 As mentioned, another purpose of this paper is to clarify the relationship between payoff 
kinks, payoff derivatives, and probability derivatives of preference functions over lotteries. 
Probability derivatives have proven useful in generalizing many of the basic concepts and results 
of expected utility analysis to more general non-expected utility preferences. For the expected 
utility preference function VEU(x1, p1;...;xn, pn)  #  $n

i=1U(xi)%pi, the probability coefficient of a 
payoff level x – the coefficient of VEU(%) with respect to changes in prob(x) – is simply x’s utility 
level U(x). By viewing expected utility results as statements about probability coefficients, 
researchers have exploited the natural correspondence between coefficients in linear algebra and 
partial derivatives in calculus to generalize many expected utility results to smooth non-expected 
utility preference functions V(%). As is usual in the linear algebra & calculus correspondence, 
such “generalized expected utility” theorems include both local and exact global results. 

 Early work in generalized expected utility analysis imposed the smoothness property of 
Fréchet differentiability, which is not satisfied by the rank-dependent form. However, Chew, 
Karni and Safra (1987) showed that most of its basic results also hold under weaker notions of 
smoothness, and that many indeed apply to the rank-dependent form. This paper helps clarify the 
boundaries of this extension, namely that a generalized expected utility result will typically hold 
for the rank-dependent form unless it involves its (full or directional) payoff derivatives, in 
which case it is usually invalidated by the specific nature of rank-dependent payoff kinks. 



2 

 This paper does not provide an exhaustive mathematical classification of all types of kinks 
(nondifferentiabilities) in univariate or multivariate functions. Nor does it provide an axiomatic 
characterization of smooth versus kinked preference functions over lotteries.1 Rather, this paper 
is analytical, and like most analytical work in consumer theory,2 is directed at both axiomatized 
and unaxiomatized functional forms, as well as the general unspecified form. As in the standard 
case, we will find that some functional forms exhibit very specific properties.3  
 Section 2 of this paper provides the background for the analysis by outlining the relationships 
between payoff derivatives, probability derivatives and Fréchet differentiability. Section 3 identi-
fies the two distinct types of payoff kinks mentioned above. Sections 4 and 5 examine the 
different properties of expected utility, Fréchet differentiable, and rank-dependent risk preferen-
ces with respect to these two types of kinks. Section 6 concludes with brief discussions of 
modeling implications, the empirical evidence, and induced preferences.  
 

2.  THE CALCULUS OF PROBABILITIES AND PAYOFFS 
We consider the family L of all finite-outcome lotteries P over some real interval [0,M].4 Each 
such lottery can be uniquely represented by its probability measure '(%), or alternatively, by its 
cumulative distribution function F(%). Such lotteries can also be represented by the notation  

(1)                                                      P  =  (x1, p1;...; xn, pn)      xi ( [0,M],  pi ( [0,1],  $n
i=1 pi  = 1 

As the specification (1) allows us to display more specific information about a lottery than either 
of the general notations '(%) or F(%), we adopt it for our analysis. However, since this specifica-
tion allows two or more of the payoff values x1,..., xn to be equal, as well as one or more of the 
probabilities p1,..., pn to be zero, it does not provide a unique representation of any given lottery. 
For example, the following expressions all denote the same lottery P in L : 

( 30 ,! ; 40 ,! )     ( 40 ,! ; 30 ,! )     ( 30 ," ; 30," ; 40 ,! )     ( 30 ,! ; 40 ,! ; 100, 0 ) 
In other words, the specification (1) inherently involves the following identifications – that is, the 
identity of expressions that that differ only in one or more of the following manners: 

(2)          

1 1 1 1

(...; , ;...; , ;...) and (...; , ;...; , ;...) order of ( , ) pairs
(...; , ;...; , ;...) and (...; , ; ...) equal-outcome ( , ) pairs

( , ;...; , ) and ( , ;...; , ; ,0 ) zero-probabin n n n

x p x p x p x p x p
x p x p x p p x p

x p x p x p x p x

) ) )) )) )) )) ) )
) )) ) ))*

lity outcomes
 

We could eliminate the need for these identifications by imposing the additional conditions that 
all payoff levels in any expression P = (x1, p1;...;xn, pn) be distinct, and that all probabilities be 
positive. However, the notational approach (1)/(2) will prove best for our analysis, as it does not 
require a change in n each time two payoffs xi,  xj merge to a common value, or diverge from a 
common value, or some probability pi becomes 0. Throughout, we assume that the individual’s 
risk preferences can be represented by a real-valued preference function V(%) over L, which 
accordingly assigns the same value to any pair of identified expressions in (2). 
                                                 
1  Axiomatic characterizations of smooth preferences under certainty and uncertainty have been provided by Debreu 

(1972), Allen (1987) and others. 
2  Such as income and substitution effect analysis. 
3  E.g., in the standard case we find that that all Cobb-Douglas utility functions have zero cross-price elasticities. 
4  Although many of our results can be extended to general probability measures on R1

 (or Rn), we do not do so here. 
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2.1  Payoff Changes vs. Probability Changes 
Ultimately, there is no real difference between changing the payoffs of a given lottery and 
changing its probabilities. That is, for any two lotteries P = (x1, p1;...; xn, pn) and P* = 
(x1*, p1* ;...; xn**, pn**), we can represent the change P + P* as either 
                  a change  in the  probabilities associated with some fixed list of  payoff levels, or 
                  a change  in the  payoff levels  associated with some fixed list of  probabilities 
To represent P + P* as a change in the probabilities, invoke (2) to write 

(3)     1 1 1 *

1 1 1 * *

* *

* * * *
  ( , ;... ; , ; , 0 ; ... ; , 0 )

*  ( ,0 ; ... ; , 0 ; , ; ... ; , )
n n n

n n n

x p x p x x
x x x p x p

,

,

P
P

 

so P + P* is seen as the changes (–p1,...,–pn,+p1*,...,+pn**) in the probabilities assigned to the re-
spective payoffs (x1,..., xn ,x1*, ..., xn**). To represent it as a change in the payoffs, invoke (2) to write 

(4)     1 1 1 1 1 1

1 1 1 1 1 1

* * * *

* * * * * * * *

  ( , ; ... ; , ;......; , ; ... ; , )

*  ( , ; ...; , ;......; , ; ... ; , )
n n n n n n

n n n n n n

x p p x p p x p p x p p

x p p x p p x p p x p p

, % % % %

, % % % %

P

P
 

so that P + P* is seen as the changes (x1*–x1 ,…, xn** –x1,……, x1*–xn ,…, xn** –xn) in the payoff 
levels received with the respective probabilities (p1%p1*,…, p1%pn**,……, pn%p1*,…, pn%pn**). 

 Since lotteries can be viewed as probability measures over the payoff space [0,M], it might 
seem most natural to work in terms of changes in the probabilities assigned to the respective out-
comes. On the other hand, many economic situations – such as portfolio choice, insurance and 
contingent production/exchange – involve optimization and/or equilibrium with respect to the 
payoff levels over some fixed set of states of nature, in which case working with payoff changes 
would be most natural.5 A situation where both types of changes come into play is Ehrlich and 
Becker’s (1972) analysis of an agent facing both self insurance options (activities that can miti-
gate the magnitude of a potential disaster, though not its likelihood) as well as self protection 
options (activities that can mitigate the likelihood of the disaster, though not its magnitude).6 The 
equivalence of (3) and (4) implies that an individual’s risk preferences can be completely 
represented by either their attitudes toward probability changes or their attitudes toward payoff 
changes – e.g., by either the probability or payoff derivatives of their preference function V(%). 

2.2  Payoff Derivatives 
The effect of differentially changing payoff level xi in a lottery P = (x1, p1;...; xn, pn), that is, of 
shifting its probability mass pi to payoff level xi +dxi, is given by V(%)’s regular payoff derivative 

(5)    (...; , ;...) (...; , ;...)( ) i i i

i i ix x

V x p V x pV
x x x ,

- --
, ,

- - -
P def

 

We can also consider the effect of shifting just a part of xi’s probability mass, say some amount 
. < pi, to obtain the partial-probability payoff derivative 
                                                 
5  See Savage (1954), as well as the economic applications in Arrow (1953, 1964), Debreu (1959, Ch.7), Hirshleifer 

(1965, 1966, 1989) and Chambers and Quiggin (1999).  
6  Important analyses of self insurance vs. self protection include Boyer and Dionne (1983, 1989), Dionne and Eeck-

houdt (1985), Chang and Ehrlich (1985), Briys and Schlesinger (1990), Briys, Schlesinger and Schulenburg 
(1991), Sweeney and Beard (1992), and in a non-expected utility framework, Konrad and Skaperdas (1993). 
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(6) (... ; , ; , ; ...)i i

ix x

V x x p
x

. .

,

- /
-

 

Finally, when the same payoff level x is given by more than one (xi, pi) pair in P, we can also 
consider the effect of shifting all the probability mass assigned to this payoff level – that is, the 
whole-probability payoff derivative 

(7)   0 ! ! ! 1
all pairs yielding payoff level 

(...; , ;...) ...; , ; ... ; , ; ... ; , ; ...i i
j kW

x

dV x p d V x p x p x p
dx dx

, "
#$$$$%$$$$&

def  

 One might expect a preference function’s regular, partial-probability and whole-probability 
payoff derivatives to satisfy the following total derivative relationships 

(8)        (...; , ;...) (... ; , ; , ; ...) (... ; , ; , ; ...)i i i i i i

i i ix x x x

V x p V x x p V x x p
x x x

. . . .

, ,

- - / - /
, *

- - -
 

(9) (...; , ;...) (...; , ;...)

j

i i i i
W

x x j

dV x p V x p
dx x,

-
,

-
$  

(10)   
0

(...; , ; , ;...) (...; , ; , ;...) (...; , ; , ;...)i i j j i i j j i i j j

i jt

dV x t p x t p V x p x p V x p x p
dt x x

2 3
2 3

,

* % * % - -
, % * %

- -
 

and the payoff derivatives of any smooth expected utility preference function VEU(%), given in  
(23) and (24) below, do satisfy them. But for a non-expected utility preference function V(%), 
even if (2) holds and even if V(%)’s payoff derivatives (5) – (7) all exist, they will not necessarily 
satisfy (8) – (10) unless additional smoothness is imposed on V(%). The reason is that the payoff 
derivatives (5) – (7) represent movements along three different paths in the underlying space of 
measures over [0,M],7 so they will not satisfy (8) – (10) without additional smoothness on V(%) 
that links its responses to movements along these distinct paths. Section 2.4 presents such a 
smoothness condition (Fréchet differentiability), Section 4 examines preferences that satisfy this 
smoothness condition and hence the above total derivative relationships, and Section 5 examines 
an important example of risk preferences that do not (and can not) satisfy this smoothness 
condition, and whose payoff derivatives generally violate these total derivative relationships. 

2.3  Probability Derivatives and Local Utility Functions 
Since the probabilities in a lottery (x1, p1;...;xn, pn) must sum to one, there is no behavioral mean-
ing to an individual’s attitude toward changes in a single probability pi. Nor is it mathematically 
appropriate to define a probability derivative -V(x1, p1;...;xn, pn)/-pi by the standard formula 

(11) 1 1 1 1

0

( , ;...; , ;...; , ) ( , ;...; , ;...; , )lim
i

i i i n n i i n n

p
i

V x p x p p x p V x p x p x p
p4 +

*4 /
4

 

since the “object” (x1, p1;...; xi, pi +4pi ;...; xn, pn) lies outside the set of lotteries L, and hence 
outside the domain of V(%).  
                                                 
7  Defining 5 x(%) as the measure that assigns unit mass to x, the three paths are {$j6i pj %5 xj(%) + pi %5 xi +t(%)! t }, 

{$j6i pj %5 xj(%) + (pi–.)%5 xi(%) +.%5 xi+t(%)! t } and {$xj6x  pj %5 xj(%) + ($xj =x  pj)%5 x+t(%)! t }, which typically have no 
common elements beyond their starting point at t = 0. 
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 Rather, since probability changes can only occur jointly (at least two at a time) and always 
sum to zero, probability derivatives can only be defined, evaluated or applied with respect to 
such zero-sum change vectors (4p1,...,4pn). We thus define V(x1, p1;...;xn, pn)’s derivatives with re-
spect to the variables  p1,..., pn as any set of values {-V(x1, p1;...;xn, pn)/-pi!i = 1,…,n} that satisfies 

(12)   1 1 1 1 1 1 1
0

1

( , ; ... ; , ) ( , ; ... ; , ) ( , ; ... ; , )lim
n

n n n n n n n
it

i i

V x p t p x p t p V x p x p V x p x p p
t p+

,

* %4 * %4 / -
, %4

-$  

for all change vectors {4p1,...,4pn} such that $n
i=14pi = 0.8 Observe that if a set of values 

{-V(x1, p1;...;xn, pn)/-pi!i=1,…,n} satisfies this property, so will any other set of the form 
{-V(x1, p1;...;xn, pn)/-pi  + k!i=1,…,n} for any constant k. To include probability changes 4pn+1 7 
0,…, 4pm 7 0 for one or more payoff levels xn+1,…,xm outside of {x1,...,xn}, we define V(%)’s 
probability derivative function at P = (x1, p1;...; xn, pn) as any function -V(P)/-prob(x) satisfying 

(13)      
0 1 0 11 1

0
1

1,...,1,...,

...; , ;... ...; , ;... , ;...; , ( )lim
prob( )

m
i i i j j n n

kt
k k

j n mi n

V x p t p x t p V x p x p V p
t x+

,

, *,

* %4 %4 / -
, %4

-$ P
'$$($$)'$$($$)

 

for all zero-sum change vectors {4p1,...,4pn, 4pn+1,...,4pm}, and observe that the function 
-V(P)/-prob(x) is similarly invariant to any transformation of the form -V(P)/-prob(x) + k. 

 Given a specific formula for V(%), it is usually possible to determine its probability derivative 
function -V(P)/-prob(x) by direct inspection. When this is not the case, or when a formal deriva-
tion is desired, a function -V(P)/-prob(x) satisfying (13) at a given P = (x1, p1;...; xn, pn) can 
always be derived, by selecting any of P’s positive-probability outcomes xi*, and defining 

(14)           1 1 * * 1 1

0

( , ;...; , ;...; , ; , ) ( , ;...; , )( ) lim
prob( )

i i n n n n

p

V x p x p p x p x p V x p x pV
x p4 +

/4 4 /-
#

- 4
P  

for all x ( [0,M], in which case -V(P)/-prob(xi*) = 0. To obtain a function -V(P)/-prob(x) satis-
fying the uniform normalization -V(P)/-prob( x ) #" 0 for all P ( L, replace (14) by 

(14)"#   1 1 * * 1 1 * *

0

( , ;...; , ;...; , ; , ) ( , ;...; , ;...; , ; , )lim i i n n i i n n

p

V x p x p p x p x p V x p x p p x p x p
p4 +

/4 4 / /4 4
4

 

for any fixed x. On the understanding that they must be formally evaluated by joint-change 
formulas such as (14) or (14)" rather than a single-change formula such as (11), we heretofore 
suppress the xi* and/or x terms, and express V(%)’s probability derivatives by simpler notation 

(15)        1 1 1 1

0

( , ;...; , ) ( , ;...; , ; , )( )
prob( ) prob( )

n n n nV x p x p V x p x p xV
x x .

.
. ,

- --
, ,

- - -
P  

 The identifications (2) imply that if xi = xj = x in some lottery P = (x1,p1;...;xn,pn), then 

(16)     
( )(...; , ; , ;...) (...; , ; , ;...)( ) ...; , ;...

prob( ) i j

i j i j

i j p p p

VV x p x p V x p x pV x p
x p p p , *

-- --
, , ,

- - - -
P  

                                                 
8  A final condition for V(x1, p1+t%4p1;...;xn, pn+t%4pn) to remain within the set of lotteries for all small enough t is 

that if any pi is initially 0, we require 4pi 7 0 and also evaluate the limit in (12) as t approaches zero from above 
(“t80”). This condition will be understood to hold for all probability derivatives considered in this paper. 
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That is, if the same payoff value x appears in both the pairs (x, pi), (x, pj), the effect of raising its 
overall probability does not depend on whether this is done by raising pi in the pair (x, pi), raising 
pj in the pair (x, pj), or raising pi + pj in a notationally combined pair (x, pi + pj). In other words, the 
probability derivative -V(P)/-prob(x) is independent of alternative representations (2) of any 
lottery P in L. In situations when the probabilities pi, pj in the pairs (x, pi), (x, pj) both change, 
then if any of the six derivative terms in the following two total derivative relationships exist, (2) 
implies that they all exist, and will satisfy both relationships, namely 

(17)       
0

(... ; , ; , ; ...) (... ; , ; , ; ...) (... ; , ; , ; ...)i j i j i j

i j

dV x p x p V x p x p V x p x p
d p p.

. .
. ,

* * - -
, *

- -
 

and more generally 

(18)      
0

(...; , ; , ;...) (...; , ; , ;...) (...; , ; , ;...)i j i j i j

i jt

dV x p t x p t V x p x p V x p x p
dt p p

2 3
2 3

,

* % * % - -
, % * %

- -
 

The reason for this is that, in contrast with the payoff derivatives (5) – (7), the six individual 
derivative terms in (17) and (18) all represent the effect of moving, though at different speeds, 
along the same path in the underlying space of measures over [0,M].9  

 As noted in the Introduction, the analytical value of a smooth V(%)’s probability derivatives 
-V(P)/-prob(x) stems from their correspondence to the probability coefficients U(x) of the ex-
pected utility preference function VEU(%). To highlight this correspondence, we adopt the notation 

(19) ( )( ; )
prob( )
VU x

x
-

,
-

PP  all x, P 

and refer to U(%;P) as the local utility function of V(%) at P.10  

 The simplest example of this correspondence involves the property of global first order 
stochastic dominance (FSD) preference, which for an expected utility VEU(%) is characterized by 
its utility function U(%) being nondecreasing, and for a smooth non-expected utility V(%) will be 
characterized by its local utility functions {U(%;P)!P ( L} all being nondecreasing. To see this, 
observe that every FSD shift P+  P* can be built out of two-outcome FSD shifts, each of which 
moves some amount 4p of probability mass from a payoff level x" up to some higher level x!, so 
that the variables prob(x"), prob(x!) undergo the equal and opposite changes –4p, +4p. From 
linear algebra, a function VEU(%) that is linear in these variables will always weakly prefer such 
changes if and only its coefficient with respect to the rising variable prob(x!) is always at least as 
great as its coefficient with respect to the falling variable prob(x"), that is, if and only if 

(20) U(x")  9  U(x!)      whenever      x"  <  x! 

The corresponding condition for non-expected utility is derived by observing that any such pair 
of equal and opposite discrete changes –4p, +4p in the variables prob(x"),  prob(x!) can be 
viewed as the accumulation of equal and opposite differential changes –dp, +dp in them. If V(%) is 
smooth in these variables, it always weakly prefers such changes if and only if at each lottery P, 
                                                 
9  Namely the path {$k6i,j,i* pk%5 xk(%) + (pi*–t)%5 xi*(%) + (pi+pj+t)%5 x(%)! t} starting at t = 0. 
10  Thus at each distribution P, the local utility function U(%;P) for the expected utility formula $n

i=1U(xi)%pi is simply 
its von Neumann-Morgenstern utility function U(%). 
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V(%)’s derivative with respect to the rising variable prob(x!) is always at least as great as its 
derivative with respect to the falling variable prob(x"), which gives the corresponding condition11 

(20)" U(x";P)  9  U(x!;P)      whenever      x"  <  x! all P ( L 

 This correspondence between von Neumann-Morgenstern utility functions and local utility 
functions also applies to the property of global risk aversion. Consider the special case of an 
equally-spaced three-outcome mean preserving spread, that moves amount 4p of probability 
mass from payoff level x! down to x" and amount 4p from x! up to x", where x!– x" = x"– x!. 
This yields changes +4p, –2%4p, +4p in the variables prob(x"),  prob(x!),  prob(x"). Any VEU(%) 
will weakly disprefer this if and only if its coefficients with respect to these variables satisfy 
(21)           + U(x")  –  2%U(x!)  +  U(x")   9   0      whenever  x!– x"  =  x"– x!  >  0 
which is equivalent to the concavity condition 
(22)             U(x!) – U(x")   7   U(x") – U(x!)       whenever  x!– x"  =  x"– x!  >  0 
For a smooth non-expected utility V(%), we again treat this set of discrete changes +4p, –2%4p, 
+4p in prob(x"),  prob(x!),  prob(x") as the accumulation of differential changes of the form +dp, 
–2%dp, +dp. As before, such differential changes (hence their discrete accumulations) will always 
be weakly dispreferred if and only if V(%)’s derivatives with respect to these variables satisfy  
(21)"    + U(x";P) – 2%U(x!;P) + U(x";P)   9   0     whenever  x!– x" = x"– x!  >  0 all P ( L 
which is again equivalent to the concavity condition 

(22)"  U(x!;P) – U(x";P)  7  U(x";P) – U(x!;P)    whenever  x!– x" = x"– x!  >  0 all P ( L 

on each of V(%)’s local utility functions {U(%;P)}. Although this argument assumed equally-
spaced payoffs, it can be adapted for non-equal spacing.12 More generally, weak monotonicity of 
the local utility functions {U(%;F)} will characterize weak first order stochastic dominance 
preference, and weak concavity of the local utility functions {U(%;F)} will characterize weak 
aversion to all mean preserving spreads, for general probability distributions F(%) on [0,M].13 

 This use of local utility functions (probability derivatives), termed generalized expected 
utility analysis, has been applied to generalize additional results of expected utility analysis  
– including aspects of the Arrow-Pratt characterization of comparative risk aversion, Rothschild-
Stiglitz comparative statics of risk, insurance theory and state-dependent preferences – to 
probability-smooth non-expected utility preference functions.14  

2.4  Fréchet Differentiability and the Link between Payoff and Probability Derivatives 
When its von Neumann-Morgenstern utility function U(%) is differentiable at a payoff level x = xi, 
the regular payoff derivatives of the expected utility preference function VEU(%)  are given by 
                                                 
11 This equivalence must be expressed in terms of weak inequalities on the probability derivatives and weak FSD 

preference, for the usual calculus reason that globally positive derivatives are not equivalent to strict monotoni-
city, as exemplified by the univariate function g(z) = z3 which is globally strictly increasing even though g"(0) = 0. 

12  In which case the respective probability changes take the form (x"– x!)%4p,  – (x"+ x")%4p, ( x!– x")%4p. 
13  Machina (1982, Theorems 1,2). 
14 See for example the applications and extensions in Allen (1987), Bardsley (1993), Chew, Epstein and Zilcha 

(1988), Chew and Nishimura (1992), Karni (1987, 1989), Machina (1989, 1995), Röell (1987) and Wang (1993). 
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(23) 
( ) ( )(...; , ;...) ( )

i

j i j j iEU i i
i i

i x x

U x p U x pdV x p p U x
x dx

6

,

$ % * %: ;- < = ), , %
-

 

This formula is seen to apply even if pi = 0, and even if the lottery (...; xi, pi ; ...) contains other 
(x, p) pairs with the same payoff level xi. The partial-probability and whole-probability payoff 
derivatives of VEU(%) are similarly given by 

(24)       0 1(...; , ; , ;...) (...; , ;...)( ) ( )
j

EU i i EU i i
i jW

x xix x

V x x p dV x pU x p U x
x dx
. .

.
,,

- / ) ), % , %
- $  

Note that in each case, the effect of a differential shift of probability mass from a given payoff 
level is proportional to, or additive in, the amount(s) of probability mass shifted. As noted above, 
these expected utility payoff derivatives satisfy the total derivative formulas (8) – (10). 

 Provided a non-expected utility preference function V(%) is sufficiently “smooth,” it will 
satisfy corresponding relationships linking its payoff derivatives to its local utility functions, and 
corresponding total derivative relationships linking the payoff derivatives themselves. A 
smoothness property that suffices for this is Fréchet differentiability. Although it can be defined 
more generally,15 Fréchet differentiability is typically defined with respect to the L1 norm as 
applied to lotteries’ cumulative distribution functions F(%) on [0,M]: 

(25) 
0

*( ) ( ) *( ) ( )
M

F F F x F x dx% / % # / %>  

For finite-outcome lotteries, this norm implies convergence in each of the following instances16 

(26) 
1 1 1 1 1 1

1 1 1 1 1 1

* * * *

* * * *

( , ; ... ; , ) ( , ;... ; , ) as ( ,..., ) ( ,..., )

( , ; ... ; , ) ( , ;... ; , ) as ( ,..., ) ( ,..., )

(...; , ; , ;...) (...; , ; ...) as ,

n n n n n n

n n n n n n

x p x p x p x p x x x x

x p x p x p x p p p p p

x p x p x p p x x x

+ +

+ +

) ) )) )) ) )) ) ))+ * +

 

A preference function VFR(%) is said to be Fréchet differentiable at a general probability 
distribution F(%) over [0,M] if there exists a continuous (in $%$) linear function ?(%@F ) such that 

(27)    0 1 0 1 0 1 0 1*( ) ( ) *( ) ( ); *( ) ( )FR FRV F V F F F F o F F?% / % , % / % * % / %  

where o(%) denotes a function that is 0 at 0 and of higher order than its argument, so that  

(27)" 
0 1 0 1 0 1

*( ) ( ) 0

*( ) ( ) ;*( ) ( )
lim 0

*( ) ( )
FR FR

F F

V V F F FF F
F F

?
% / % +

/ / % / %% %
,

% / %
 

where the convergence is uniform in $F*(%) – F(%)$. This can be shown to imply 

(28) 0 1 0 1 0 1 0 1
0

( ; ) *( ) ( ) *( ) ( )*( ) ( )
M

FR FRV V U x F dF x dF x o F FF F/ , % / * % / %% % >  

and hence, for finite-outcome lotteries P = (x1, p1;...; xn, pn) and P* = (x1*, p1* ;...; xn**, pn**), 

(29) A B 0 1*
1 1* *( *) ( ) ( ; ) ( ; ) *n n

FR FR i i i i i iV V U x p U x p o, ,/ , % / % * /$ $P P P P P P  

                                                 
15 E.g., Huber (1981, Sect. 2.5), Wang (1993). 
16  Machina (1982, Lemma 1) shows that the norm (25) in fact induces the topology of weak convergence on proba-

bility distributions over [0,M] (e.g., Billingsley (1971; 1986, Ch. 25)). 
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for some absolutely continuous17 (and thus almost everywhere differentiable) function U(%;F) or 
U(%;P). Differentiating (29) as in (14)/(14)" and invoking the properties of o(%) yields that the 
function U(%;P) in (29) is indeed the probability derivative/local utility function of VFR(%).18 Note 
that Fréchet differentiability is stronger than just “differentiability in the probabilities,” in that it 
implies convergence to the first order terms in (28), (29) for any “sideways” approach of F*(%) to 
F(%) or P* to P – that is, for convergence in the payoff values as in the first or third lines of (26). 

 Although Fréchet differentiability is stronger than differentiability in the probabilities, and it 
implies continuity in the payoff levels, it does not necessarily imply differentiability in the payoff 
levels. To see this, consider any expected utility function VEU(%) with an absolutely continuous 
but kinked U(%). Since VEU(%) satisfies (28) and (29) with no error term at all, it is Fréchet 
differentiable at every lottery. But any kink in U(%) will of course imply payoff kinks in VEU(%).  

 However, if a Fréchet differentiable VFR(%)’s local utility function U(%;P) is differentiable at a 
payoff level x  =  xi, then its regular, partial-probability and whole-probability payoff derivatives 
all exist, and are given by the analogues of the expected utility formulas (23), (24), namely  

(30)    (...; , ;...) ( ; )FR i i
i i

i

V x p p U x
x

- ), %
-

P  

(31)    0 1(...; , ; , ;...) (...; , ;...)( ; ) ( ; )
j

FR i i FR i i
i jW

x xix x

V x x p dV x pU x p U x
x dx

. . .
,,

- / ) ), % , %
- $P P  

Thus as under expected utility, the effect on VFR(%) of a differential shift of probability mass from 
any payoff level will be proportional to, or additive in, the amount(s) of mass shifted. These pay-
off derivatives are also linked to each other by the total derivative formulas (8) – (10), i.e.19  

(32)     (...; , ;...) (... ; , ; , ; ...) (... ; , ; , ; ...)FR i i FR i i FR i i

i i ix x x x

V x p V x x p V x x p
x x x

. . . .

, ,

- - / - /
, *

- - -
 

(33) (...; , ;...) (...; , ;...)
j

FR i i FR i i
W

x x j

dV x p V x p
dx x,

-
,

-
$  

(34)   
0

(...; , ; , ;...) (...; , ; , ;...) (...; , ; , ;...)FR i i j j FR i i j j FR i i j j

i jt

dV x t p x t p V x p x p V x p x p
dt x x

2 3
2 3

,

* % * % - -
, % * %

- -
 

The common feature of equations (30) – (34) is that a Fréchet differentiable VFR(%)’s payoff 
derivatives at a lottery P are linked to each other, and to its local utility function U(%;P), in a 
manner that exactly parallels how an expected utility VEU(%)’s payoff derivatives are linked each 
other, and to its von Neumann-Morgenstern utility function U(%).  

 To see how Fréchet differentiability implies these relationships, let VFR(%)’s local utility func-
tion U(%;P) at P = (...; xi,pi;...) be differentiable at x = xi. Eqs. (25),  (29) and the o(%) property yield 

                                                 
17  E.g., Rudin (1987, pp.144-146), Kolmogorov and Fomin (1970, pp. 336-340). 
18  In the infinite-outcome analysis of Machina (1982), the local utility function U(%;F ) is defined directly by (28). 
19  With reference to the discussion following (10), Fréchet differentiability serves to link V(%)’s responses to 

differential movements along the three distinct paths of Note 7, which differ in the amounts pi, ., and $xj =x pj of 
probability mass shifted from the payoff level xi or x.    
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(35)     A B 0 1

0 1

0

0 0

0

(...; , ;...)
(...; , ;...) (...; , ;...)

( ; ) ( ; ) (...; , ;...) (...; , ;...)

( ; ) ( ; )

FR i i
FR i i FR i i

i

i i i i i i i i

i i i i i

t

t t

t

d
dt

d d
dt dt

V x p
V x t p V x p

x

U x t p U x p o x t p x p

dU x p o t p U x p
dt

,

, ,

,

-
, : ;* /< =-

, * % / % * * /

) ), % * % , %

P P

P P

 

which is (30). Since this derivation does not require xi to be distinct from any other outcome xj, 
the identifications (2) in turn yield the derivative formulas (31), and thus also (32) and (33).20 

 For an example of generalized expected utility analysis using payoff derivatives, recall that 
under expected utility with differentiable U(%), the marginal effect of a constant (“risk-free”) 
addition t to a lottery P = (x1,p1;...;xn,pn) is given by the formula $n

i=1U"(xi)%pi, that is, by expected 
marginal (von Neumann-Morgenstern) utility. For a Fréchet differentiable non-expected utility 
VFR(%) with differentiable local utility functions, a derivation similar to that of (34)21 yields that 
this effect is given by expected marginal local utility 

(36)   1 1

10

( , ;...; , ) ( ; )
n

FR n n
i i

it

dV x t p x t p U x p
dt ,,

* * ), %$ P  

This formula – like its expected utility counterpart – holds whether or not the payoffs (x1,...,xn) 
are mutually distinct. Similarly, consider an individual with total investible funds w, facing a 
riskless asset with net return r and a risky asset whose net return ~x has distribution (x1, p1;...; 
xn, pn). If 2 is the amount invested in the risky asset, the marginal effect of a rise in 2 on 
expected utility is given by the standard formula $n

i=1(xi – r)%U"(w%(1+r) +2%(xi – r))%pi, and the 
marginal effect on a Fréchet differentiable VFR(%) will be given by the corresponding formula 

(37)    
1

( ) (...; (1 ) ( ), ;...) ( ) ( (1 ) ( ); )
n

FR FR i i
i i i

i

dV dV w r x r p x r U w r x r p
d d

2
2

2
2

2 2 ,

/
/

% * * % ), , / % % * * % %$P P  

where P2 = (…;w%(1+r) +2%(xi – r), pi ; ...) is the distribution of random wealth w%(1+r) +2%(~x – r).  

3.  LOCALLY SEPARABLE vs. LOCALLY NONSEPARABLE KINKS 
It is well-known that calculus can also be used for the exact analysis of nondifferentiable 
functions, as long as they are not too nondifferentiable. Consider the Fundamental Theorem of 
Calculus, which gives conditions under which a function ƒ(%) :  R1

 + R1 can be completely and 
exactly characterized in terms of its derivatives, via the formula ƒ(z) # ƒ(0) + >0

z
ƒ"(C)%dC. Global 

differentiability is not required for this result: A continuous ƒ(%) can have a finite or even 
countably infinite number of isolated kinks and the formula will still exactly hold: we simply 
“integrate over” such kinks. More generally, a function ƒ(%) will satisfy the Fundamental 
Theorem of Calculus as long as it is absolutely continuous over the interval in question. Provided 
such a multivariate function ƒ(%,…,%) also only has a finite or countable number of kinks, the 
Fundamental Theorem similarly links global changes in ƒ(%,…,%) to its line and path integrals. 
                                                 
20  Since (25) implies $(...; xi +2%t, pi ;  xj+3%t, pj;...) – (...; xi, pi ; xj, pj;...)$ # !2%pi %t!+!3 %pj %t! for all sufficiently small t, 

whether or not xi and xj are distinct, a similar derivation establishes (34). 
21  Again, (25) implies $(x1+k, p1;...; xn+k, pn) – (x1, p1;...; xn, pn)$ # !k!, whether or not the values x1,...,xn are distinct. 
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 However, there also exist mathematical functions that are simply “too nondifferentiable” to 
admit of this type of analysis. The most notorious example is the well-known Cantor function22 
C(%) over [0,1], which is continuous, nondecreasing, satisfies C(0) = 0 and C(1) = 1 and is differ-
entiable almost everywhere on [0,1], yet has derivative C"(%) = 0 almost everywhere, so it does 
not satisfy the Fundamental Theorem. Except on regions over which it is constant, this function 
is completely unamenable to calculus. 

 As mentioned, this paper does not consider all types of kinks (nondifferentiabilities), and in 
particular, there is little theoretical, empirical or intuitive reason to expect that agents exhibit 
“Cantor-type” preferences over monetary lotteries.23 Rather, we consider functions whose 
various types of kinks still admit of first order approximations (albeit kinked ones), and consider 
their amenability/non-amenability to standard multivariate calculus, including implications for 
choice under uncertainty. We can exemplify the key distinction examined in this paper – the two 
types of multivariate kinks mentioned in the Introduction – by the two functions24 

(38)         S(z1, z2)   #   min{z1,1} + min{z2,1}        vs.        L(z1, z2)   #   min{z1, z2} + 1 z1, z2 7 0 

and in particular, by their properties about the point (z1, z2) = (1,1). The common feature of these 
two functions’ kinks at (1,1) – and of all the kinks examined in this paper – is that they each 
admit of a “local piecewise-linear approximation,” that is, a set of tangent hyperplanes which 
together serve as a first order approximation to the function about the point (1,1). Section 3.1 
formally describes this property. The distinct features of the two functions’ kinks at (1,1) (and 
elsewhere), with their respective implications for the applicability of calculus, are laid out in 
Sections 3.2. Section 3.3 compares the ordinal implications of these two types of kinks. 

3.1  Piecewise-Linearity and Local Piecewise-Linearity 
A function Ĥ(%,...,%) over Rn is said to be piecewise-linear about the origin (0,...,0) if there exists a 
finite partition of Rn into convex cones {E1,…,EJ},25 and linear functions Ĥ1(%,...,%),…, ĤJ(%,...,%) 
on each of these cones, such that 

(39) Ĥ(z1,...,zn)   #   Ĥj(z1,..., zn)         (z1,..., zn) ( Ej,   j = 1,…, J 

More generally, we say Ĥ(%,...,%) is piecewise-linear about the point Z0 = (–z1,...,–zn)  if it satisfies 

(40)    Ĥ(z1,...,zn)    #    Ĥ(–z1,...,– zn)   +   Ĥ0(z1– 
–z1,..., zn – 

–zn) 

for some Ĥ0(%,...,%) that is piecewise-linear about the origin. Although it might be more accurate 
to describe Ĥ(%,...,%) in (40) as “piecewise-affine,” we retain the slight abuse of terminology to 
conform with standard usage. A function H(%,…,%) has a piecewise-linear kink at Z0 if it is 
piecewise-linear about Z0 but not linear there, or else is identically equal to such a function over 
some open neighborhood of Z0.  
                                                 
22  See for example Kolmogorov and Fomin (1970, pp.334-336) or Feller (1971, pp.35-36). 
23  Though see Dekel’s (1986) ingenious use of the Cantor function in a counterexample to a theoretical proposition.   
24  S stands for “separable” and L for “Leontief”. An additive term z1 + z2 can be appended to these functions to make 

each of them strictly increasing, with no relevant change in their respective kink properties. 
25  A convex set Ej D Rn is a convex cone if (z1,...,zn) ( Ej  E  (F %z1,...,F %zn) ( Ej for all F > 0. Note that while only 

one cone in the partition {E1,...,EJ} will actually contain the origin, it will be in closure of each cone Ej. 
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 Although linearity of each Ĥ1(%,...,%),…,ĤJ(%,...,%) implies that the function Ĥ(%,...,%) in (39) is 
continuous at (0,…,0), it does not imply that Ĥ(%,...,%) is globally continuous, or even that it is 
continuous over any open neighborhood of (0,…,0). For example, the function Ĥ(z1, z2) # 
z1%sgn[z2] is piecewise-linear about (0,0), with cones {E1, E2, E3} = {upper half-plane, horizon-
tal axis, lower half-plane} and corresponding linear functions {Ĥ1(z1,z2), Ĥ2(z1,z2), Ĥ3(z1,z2)} # 
{z1, 0, –z1}. However, Ĥ(%,%) is discontinuous at each horizontal axis point (z1,0) except (0,0). 
Thus, whenever global continuity of such a function is desired, it must be separately established 
or imposed. Similar remarks apply to the piecewise-linear function Ĥ(%,...,%) in (40).  

 Figures 1a and 1b illustrate the piecewise-linear structures of the functions S(%,%) and L(%,%) 
about the point (1,1), by indicating the formulas they take over different regions in their domain 
R+

2. In addition to their piecewise-linear kinks at (1,1), S(%,%) is seen to have piecewise-linear 
kinks at each point on the horizontal and vertical dashed lines (wherever z1 or z2 equals 1), and 
L(%,%) has piecewise-linear kinks at each point on the 45º line (wherever z1 = z2). 

Figures 1a and 1b  
Piecewise Linear Structure of the Functions S(%,%) and L(%,%) 

 In standard usage, calling a function locally linear about a point Z0 = (–z1,...,–zn) does not 
denote that it is exactly linear over any open neighborhood of Z0, but rather, that it has a 
(continuous) linear first-order approximation there. By analogy, we say that H(%,...,%) is locally 
piecewise-linear about Z0 if there exists some globally continuous Ĥ(%,...,%;Z0) that is piecewise-
linear about the origin, such that 

(41)         H(z1,...,zn)  –  H(–z1,...,––zn)    =    Ĥ(z1– 
–z1,..., zn – 

–zn ;Z0)  +  o($(z1,...,zn) – (–z1,...,–zn)$) 

where $%$ is the Euclidean norm over Rn. If Ĥ(%,...,%;Z0) is piecewise-linear but not linear, H(%,..,%) 
is said to have a locally piecewise-linear kink at Z0. Geometrically, its first order approximation 
at ( 

–z1,...,––zn) consists of the J tangent hyperplanes generated by Ĥ(%,...,%;Z0) over each of its 
convex cones {E1,…,EJ}. It is straightforward to verify that for any differentiable function .(%), 
the function H*(%,...,%) # .(H(%,...,%)) is also locally piecewise-linear about Z0, with piecewise-
linear first order approximation function Ĥ*(%,...,%;Z0) = ."(H(–z1,...,––zn))%Ĥ(%,...,%;Z0).  

0 z1 1 

z2 

1 

0 z1 1 

z2 

1 

 2 

 z1+z2 

z1+1 

1+z2 

 z1 + 1 

z2 + 1 

S(z1, z2)  #   
min{z1,1} + min{z2,1} 

L(z1, z2)  #   
min{z1, z2} + 1 
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 As mentioned, this paper is restricted to functions with such locally-piecewise linear kinks. 
Nevertheless, it is worth noting that not all kinks in multivariate (or even univariate) functions 
take this form: For example, neither the kink in the function H(z)  #  max{G

–z–––1, 0} at z  =  1, nor 
the kink in the Cantor function C(%) at z  = 1/3, has a local piecewise-linear approximation as in 
(41), even though both functions are continuous and nondecreasing about these points. Although 
we do not provide an axiomatic analysis such as in Debreu (1972), we will ultimately 
concentrate on the same type of preference functions as in his analysis, namely those whose first 
order approximations (in our case, either linear or piecewise-linear) are strictly increasing. For 
preference functions over lotteries, this will be taken to mean that V(%)’s first order 
approximations are increasing with respect to first order stochastically dominating shifts. 

3.2  Local Separability vs. Local-Nonseparability 
The functions S(z1,z2) # min{z1,1} + min{z2,1} and L(z1,z2) # min{z1,z2} + 1 from (38) take the 
same value at their common kink point (1,1), have identical left and right partial derivatives with 
respect to both z1 and z2 there,26 and in fact, take identical values at all points on the horizontal 
and vertical dashed lines in Figure 1a. That is, they respond identically to both local and global 
changes in z1 or z2 from (1,1), so long as only one of these variables changes. Nonetheless, the 
two functions have qualitatively distinct properties about (1,1) and about each of their other kink 
points, due to the way they respond to joint changes in z1 and z2. In particular, while S(%,%)’s kinks 
are amenable to the local and global calculus of directional derivatives, L(%,%)’s are not. 

 To see this, consider the effect of moving from the point (1,1) in arbitrary direction (k1,k2) or 
its opposite – that is, of moving along the line (1+k1%t,1+k2%t) as t rises/falls from 0. The effect on 
any differentiable function H(%,%) is given by the standard total derivative formula 

(42) 1 2
1 1 2 2

0

(1 ,1 ) (1,1) (1,1)
t

d H k t k t k H k H
dt ,

* % * %
, % * %  

where H1(%,%) and H2(%,%) denote the respective partial derivatives of H(%,%). The natural analogues 
of this relationship link the left/right directional total derivatives of the kinked function S(%,%) at 
(1,1) to its left/right directional partial derivatives S1

L(%,%), S1
R(%,%), S2

L(%,%) and S2
R(%,%) there, namely 

(43)     

1 2
1 2

1 2
1 2

 if 0  if 0
 if 0  if 01 2

1 1 2 2
0

 if 0  if 0
 if 0  if 01 2

1 1 2 2
0

(1 ,1 ) (1,1) (1,1)

(1 ,1 ) (1,1) (1,1)

L k L k
R k R k

L
t

R k R k
L k L k

R
t

d S k t k t k S k S
dt

dS k t k t k S k S
dt

H H
I I

,

H H
I I

,

* % * %
, % * %

* % * %
, % * %

 

Both (42) and (43) can be generalized to movements along any differentiable path (1+J1(t), 
1+J2(t)) through (1,1), by replacing k1 and k2 in their right sides by J1"(0) and J2"(0). Thus 
standard multivariate marginal analysis – in the sense that the marginal effects of (directional) 
changes in the variables can be added when these changes occur jointly – still holds for the 
function S(%,%). In addition, as long as we account for directions, the Fundamental Theorem of 
Calculus still applies to all of S(%,%)’s line and path integrals, even integrals along its horizontal 
and vertical lines of kink points in Figure 1a. That is, given arbitrary –z1 > z1,  or   –z2 > z2 , we have 
                                                 
26  At (1,1), both functions’ left derivatives with respect to z1 and z2 equal 1, and their right derivatives equal 0.  
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(44)         

1 1

1 1

2 2

2 2

11 1 1 1 1 1 1

22 2 2 2 2 2 2

( ,1) ( ,1) ( ,1) ( ,1)

(1, ) (1, ) (1, ) (1, )

z zL R

z z

z zL R

z z

S z S z S z dz S z dz

S z S z S z dz S z dz

/ , % , %

/ , % , %

> >
> >

 

 On the other hand, the directional total and directional partial derivatives of the function L(%,%) 
are not linked by linear relationships like (43). Even for the simple case of  k1 =  k2  =  1 we have 

(45)                 0 0 0

0 0 0

(1 ,1 ) (1 ,1) (1,1 )1 2

(1 ,1 ) (1 ,1) (1,1 )1 0

L L L
t t t

R R R
t t t

d L t t d L t d L t
dt dt dt

d L t t d L t d L t
dt dt dt

, , ,

, , ,

* * * *
, 6 , *

* * * *
, 6 , *

 

In other words, standard additive marginal analysis fails at (1,1), as well as at every other kink 
point of L(%,%).27 This in turn yields a failure of the standard line integral formula along the line of 
L(%,%)’s kink points (the 45º line). That is, for arbitrary –z > z  we have the pair of failures28 

(46)     
A B

A B

1 2

1 2

( , ) ( , ) 2 ( ) ( , ) ( , )

( , ) ( , ) 0 ( , ) ( , )

z L L

z
z R R

z

L z z L z z z z z z L z z L z z dz

L z z L z z z z L z z L z z dz

/ , / 6 % / , * %

/ , / 6 , * %

>
>

 

 The distinction between S(%,%) and L(%,%) that leads to these different amenabilities to calculus 
is not the presence versus absence of piecewise-linearity, since both functions are piecewise-
linear about (1,1) and over open neighborhoods of each of their kink points in R+

2
 . Nor is it the 

presence versus absence of additive separability – although S(%,%) is additively separable and L(%,%) 
is not, corresponding distinctions will also hold between the two nonseparable functions  

(47)  S*(z1,z2)  #  .(S(z1, z2))        vs.        L*(z1,z2)  #  .(L(z1, z2)) 

for any smooth .(%) with ."(%) 6 0. Rather, the key property that distinguishes S(%,%) from L(%,%),  
and also S*(%,%) from L*(%,%), is the separability/nonseparability of their local structure about (1,1). 

 Formally, we say that a locally-piecewise linear function H(%,...,%) is locally separable about a 
point Z0 = (–z1,...,––zn) if there exists a set of univariate functions {Ĥ1(%;Z0),...,Ĥn(% ;Z0)} such that 

(48)       
0 1
0 1

1 1 1 1 0 1 1
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,
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Z

Z
 

that is, if its piecewise-linear first order approximation function Ĥ(%,..,%;Z0) from (41) is additive-
ly separable. By piecewise-linearity of Ĥ(%,..,%;Z0), and hence of each Ĥi(%;Z0), this takes the form 

(48)"       0 10 0 1 11 1
ˆ ˆ(0; ) ( ) (0; ) ( ) ( ,..., ) ( ,..., )n nL R

i i i i i i n ni iH z z H z z o z z z z/ *
, ,

) ), % / * % / * /$ $Z Z  

where (zi –––zi)– = min{zi –––zi ,0} and (zi –––zi)+ = max{zi – 
––zi ,0}, and for the 2%n directional partial deri-

vatives Ĥ"1L(0;Z0), …, Ĥ"nL(0;Z0) , Ĥ"1R(0;Z0),…, Ĥ"nR(0;Z0). It is this property of local additivity in 
                                                 
27  Although additivity does hold when k1, k2 have opposite signs, it fails for negative k1, k2. For general piecewise-

linear Ĥ(%,...,%) as in (39) or (40), additivity only holds when the individual variables’ directions (k1, 0, …, 0),…, 
(0, … , 0, kn), and hence their joint direction (k1,…,kn), all lie in the same convex cone Ej, on which Ĥ(%,...,%) is linear. 

28  Do the properties of multivariate functions at kink points, or along one-dimensional loci of kink points, really 
matter for economic analysis? From standard consumer theory (and Figures 3a,b below), we know that a maxi-
mizing agent is at least as likely to be at a kink point, and move along a locus of kink points, as be anywhere else. 
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the signed variable changes – not shared by locally nonseparable forms such as min{z1,z2}, 
max{z1,z2}, .(min{z1,z2}), etc.  – that makes locally separable functions amenable to the calculus 
of directional derivatives.  

 It is clear from (48)/(48)" that if a locally separable H(%,..,%) is kinked at Z0 = (–z1,..,–zn),  
it must have at least one univariate kink of the form -H(–z1,..,–zn)/-zi

L 6 -H(–z1,..,–zn)/-zi
R. In  

such a case, H(%,..,%) will also have directional kinks of the form dH(–z1+k1%t,..,–zn+kn%t)/dtL!t=0  6  
dH(–z1+k1%t,..,–zn+kn%t)/dtR!t=0 in at least some more general linear directions (k1,..,kn). However, 
the locally nonseparable function 

(49)    A B K L
1 2 1 2

1 2 1 2 1 2 1 2 1 2

min{ , }   for  , 0
( , ) sgn[ ] sgn[ ] min max{ , }   for  , 0

    0         otherwise   
| |,| |

z z z z
H z z z z z z z z z z

HM
N, % * % , IO
NP

!  

has no univariate or directional kinks through (0,0), yet it is still kinked at (0,0) since it has no 
first order linear approximation there, and exhibits the same type of multivariate calculus failures 
as (45), namely 

(50)      
0 0 0

( , ) ( ,0) (0, )1 0
t t t

d H t t d H t d H t
dt dt dt, , ,

, 6 , *  

This example underscores the important point that for multivariate functions, the distinction 
between “smooth” and “kinked” is an inherently multivariate concept rather than simply a 
univariate or directional one, and that a function can be locally nonseparably kinked at a point  
– and thus unamenable to the calculus of directional derivatives – in spite of    having smooth 
left = right derivatives in each individual variable and in every linear direction from that point. In 
fact, for locally nonseparable functions, smooth univariate and directional derivatives can mean 
very little indeed: The locally non-separable function H(z1,z2) # {1 if  0 < z2 <  z1

2
 ;  0 otherwise} 

satisfies dH(k1%t,k2%t)/dt!t=0 = 0 in every direction (k1,k2) from (0,0), including along each axis, 
yet it is not smooth, locally piecewise-linear, or even continuous at (0,0). 

3.3  Ordinal Implications of Locally Separable vs. Locally Nonseparable Kinks 
Preference functions over lotteries, like elsewhere in consumer theory, represent an individual’s 
preferences over the objects of choice by mapping them to unobservable “preference levels.” 
Although researchers occasionally derive results directly from the underlying preference relation, 
most analyses of maximizing behavior and its comparative statics operate on the preference 
function, especially when it is posited to have some specific functional form. 

 However, not all properties of a preference function are empirically meaningful. Properties 
like “the level of V(P) is positive for all P ( L ” or “the derivative -V(P)/-prob(x) is less than 2 
whenever prob(x) = ½ and x = 8” have no observable implications. For a mathematical property 
of a preference function to have empirical significance, it must have implications for its indiffer-
ence curves, Engel curves, certainty equivalent function or some other such observable construct. 
But since local separability / local nonseparability are precisely properties of a function’s level 
and/or derivatives, such ordinal implications must be established. 

 The link between a function’s first order (linear or piecewise-linear) approximation about a 
point and its ranking about that point are not exact, even for the simplest of properties. Consider: 



16 

!" H(z1, z2)  =  z1  +  ( z2 – 1)3, whose first order linear approximation about (1,1) is 1%4z1 +  0%4z2,  
even though H(%,%) is strictly increasing in both z1 and z2 about (1,1) (and globally) 

!" H(z1, z2) = (2%z1 + z2 – 3)3, whose first order linear approximation about (1,1) is 0%4z1 +  0%4z2, 
even though H(%,%)’s marginal rate of substitution is exactly –2 about (1,1) (and globally) 

For smoothness / kink properties, such “cardinal/ordinal disconnects” can arise from either: 
!"  kinked labeling of indifference curves: As with H(z1, z2) = min{2 + z1+z2, 2%(z1+z2)}, whose 

first order approximation about (1,1) is the locally nonseparably kinked function 
min{4z1+4z2, 2%(4z1+4z2)}, even though its indifference curves are all parallel straight lines 

!" “locally-horizontal” (zero-derivative)  labeling  of  indifference curves: As with H(z1, z2) = 
(min{z1, z2} – 1)3 which is differentiable at (1,1) with first order linear approximation 0%4z1 
 + 0%4z2, even though its (Leontief) preferences are locally nonseparably kinked there 

The formal links between the smoothness / kink properties of a function and of its ordinal 
preferences that do exist can take two forms: one-way implications from local properties of the 
function to local properties of its ranking; and two-way correspondences between local/global 
properties of the function and local/global properties of its observable “valuation functions,” 
which hold as long as the function has been “normalized” to eliminate the above type of kinked 
or locally-horizontal labeling at the appropriate locations. We consider each type of link in turn: 

Local Rankings  
The successively stronger properties of (i) local piecewise-linearity (which allows locally non-
separable kinks in H(%)), (ii) local piecewise-linearity + local separability (which allows only 
locally separable kinks), and (iii) local linearity (no kinks) ensure successively stronger 
conditions on H(%)’s rankings about a point Z0. It is straightforward to show that these local 
properties of H(%) at Z0 – that is properties of its piecewise-linear first order approximation 
Ĥ( %;Z0) from (41) – have the following successively stronger implications for H(%)’s ranking 
about Z0, interpretable as properties of its indifference surfaces about the point Z0:29 

For H(%) locally piecewise linear about Z0 with respect to the convex cones {E1,...,EJ}: 

(51)        0 1 0 1 0 1 0 10 0 0 0
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For H(%) locally piecewise linear + locally separable about Z0: 
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For H(%) locally linear about Z0: 

(53)         0 1 0 1 0 1 0 10 0 0 0

, all all sufficiently small 0arbitrary 
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29 In each case, “all sufficiently small t > 0” denotes “for all positive t less than some tZ0,4ZA,4ZB,4Z > 0.” 
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Although these local ranking properties are implied by the respective local properties of H(%), 
they do not necessarily imply them, as seen by the above kinked-labeling example H(z1, z2)  = 
min{2 + z1+z2, 2%(z1+z2)}, which is not differentiable about Z0 = (1,1) yet does satisfy (53) there.  

Local and Global Valuation Functions  
In addition to the local ranking properties (51) – (53), there are also straightforward conditions 
under which the smoothness / kink properties of a preference function directly “pass through” to 
an important class of its observable constructs, namely its valuation functions. Given a function 
H(%) over some compact subset of Rn, let {Z2 = (z1(2),...,zn(2))!2 ( [2 ,2–]} be any smooth path 
from H(%)’s lowest-valued point to its highest-valued point, such that H(Z2) is increasing in 2. 
H(%)’s 2-equivalent function 2(%), defined by H(Z2(Z))  #Z  H(Z), is an observable function which 
represents H(%)’s global ranking. For any point Z on or off the path, if dH(Z2)/d2 exists and is 
positive at 2  = 2(Z), the implicit function theorem30 implies that the first order (linear or piece-
wise-linear) approximation of 2(%) about Z will differ from the first order approximation of H(%) 
about Z only by the positive multiplicative term [dH(Z2)/d2!2=2(Z)]–1. This implies that H(%)’s 
smoothness / kink structure about any point Z – including its local separability / nonseparability 
properties – passes directly through to the observable function 2(%) about that point. 

 Of course, the smoothness / kink properties of H(%) generally do not pass through to 2(%) at 
any point Z where the positive derivative condition dH(Z2)/d2!2=2(Z) > 0 fails, either because 
H(%) has a kinked labeling along the path { Z2 !2 ( [2 ,2–] } at 2  = 2(Z), or else because it has a 
locally-horizontal labeling there. Furthermore, for given H(%), some paths and their implied valu-
ation functions may satisfy the positive derivative condition at a given Z, while other paths and 
valuation functions may not. However, for any given path { Z2!2 ( [2 ,2–]} with implied valua-
tion function 2(%), as long as H(Z2) is at least increasing in 2,  H(%)"will have an ordinally equiva-
lent “normalization” (increasing transformation) H*(%) that satisfies dH*(Z2)/d2 > 0 along the 
entire path, such as the transformation H*(%) = Q–1(H(%)) for Q(2)  #2   H(Z2). Since such an H*(%) 
satisfies dH*(Z2)/d2!2 =2(Z) > 0 for all Z, its local smoothness / kink structure passes through to 
the observable function 2(%) at every point Z in its domain. Should H*(%)’s local nonseparability 
along some ridge of kink points yield a breakdown of a global line or path integral formula (as in 
(46)), this global breakdown will generally also pass through to the observable function 2(%). 
 A simple example of this for standard utility functions H(%) over commodity bundles Z = 
(z1,...,zn) consists of selecting { Z2!2 ( [2 ,2–] } as the consumer’s income-consumption locus 
(expansion path) with respect to income 2 at given prices, so that 2(%) represents the consumer’s 
observable income-equivalent function (or money-metric utility function) over all commodity 
bundles Z. Thus, if H(%) satisfies (or has been normalized to satisfy) dH(Z2)/d2 > 0 at all income 
levels 2, the income-equivalent function 2(%) inherits H(%)’s smoothness / kink structure about 
each bundle Z. Straightforward extensions yield similar results for the consumer’s observable 
willingness-to-pay and willingness-to-accept functions for changes from any bundle Z. 

 In our context of preference functions V(%) over lotteries, this framework takes the form of a 
smooth path {P2!2 ( [2_ ,2– ] } from V(%)’s least preferred lottery to its most preferred lottery,  
with valuation function 2(%) defined by V(P2(P))  #P  V(P) and positive derivative condition 

                                                 
30  Or rather, its natural extension from locally linear functions to locally piecewise-linear functions. 
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dV(P2)/d2!2 =2(P) > 0 at a given P.31 About any such P, the observable function 2(%) again inherits 
the general smoothness /kink structure of V(%) in any given set of variables (payoffs and/or proba-
bilities), including its local separability/ nonseparability properties. Two important examples are: 
!"certainty equivalents: If {Px = (x,1)!x ( [0,M]} is the path of degenerate lotteries over 

[0,M], its associated valuation function is V(%)’s certainty equivalent function CE(%). At any 
P where dV(x,1)/dx!x =CE(P) > 0, the local separability/ nonseparability properties of V(%) 
about P will pass through to its certainty equivalent function CE(%) 

!"probability equivalents: If {P." = (0,1–. ;M, .)!. ( [0,1]} is the path of basic reference lot-
teries over the payoff levels 0 and M, its associated valuation function is V(%)’s probability 
equivalent function PE(%). At any P where dV(0,1–. ;M,.)/d.!. =PE(P) >  0, the local separa-
bility/ nonseparability properties of V(%) will again pass through to its function PE(%) 

 Note that if U(%) in the additive expected utility form VEU(P)  # $n
i=1U(xi)%pi has kinks, this 

form fails the condition dVEU(x,1)/dx!x =CE(P) > 0 at any P whose certainty equivalent is a kink 
point of U(%), although VEU(%)’s smoothness / kink structure does pass through to CEEU(%) at all 
other P. On the other hand, assuming U(M) > U(0), VEU(%) satisfies dVEU(0,1–. ;M,.)/d.!. =PE(P) > 
0 at every P, so that all kinks in VEU(%) pass through to its probability equivalent function 
PEEU(%). For a Fréchet differentiable VFR(%) with local utility function U(%;P), (35) and (19) imply 
that these positive derivative conditions take the respective forms U"(x ;(CE(P),1))!x =CE(P) > 0 and 
[U(M;(0,1–. ;M,.)) – U(0;(0,1–. ;M,.))]!. =PE(P) > 0. Although we do not introduce it until Sect-
ion 5, we note here that if the functions R(%) and G(%) in the “rank-dependent” form VRD(%) are 
both smooth with positive derivatives (as we shall assume), the conditions dVRD(x,1)/dx!x =CE(P) 
> 0 and dVRD(0,1–. ;M,.)/d.!. =PE(P) > 0 hold at all P, so that VRD(%)’s smoothness / kink structure, 
including its prevalence of locally nonseparable payoff kinks, passes through to both its certainty 
equivalent function and its probability equivalent function about every P in L.32  

4.  EXPECTED UTILITY AND FRÉCHET DIFFERENTIABLE PAYOFF KINKS  
A preference function V(%) over lotteries is said to be piecewise-linear in the payoffs about a 
lottery P ( L if, for each representation (–x1, 

–p1;...; 
–xn, 

–pn) of P, V(x1, 
–p1;...; xn, 

–pn) is piecewise-linear 
in the payoff variables (x1,...,xn) about the values (–x1,...,–xn). Similarly, V(%) is locally piecewise-
linear in the payoffs about P if V(x1, 

–p1;...; xn, 
–pn) is locally piecewise-linear in (x1,...,xn) about  

(–x1,...,–xn) for every representation (–x1, 
–p1;...; 

–xn, 
–pn). This implies that V(%)’s regular, partial-

probability and whole-probability payoff derivatives  

                       (...; , ;...) (... ; , ; , ; ...) (...; , ;...)i i i i i i
W

i ix x

V x p V x x p dV x p
x x dx

. .

,

- - /
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or at least their left/right directional versions, all exist. A locally piecewise-linear V(%) is said to 
be kinked in the payoffs (or have a payoff kink) about P if V(x1, 

–p1;...;xn, 
–pn) is not differentiable in 

(x1,...,xn) about (–x1,...,–xn) for some representation (–x1, 
–p1;...;–xn, 

–pn). In this and the following 
sections, we examine the nature and prevalence of such payoff kinks in expected utility, Fréchet 
differentiable and rank-dependent risk preferences. 
                                                 
31 As before, if V(%) does not already satisfy dV(P2)/d2 > 0 at every point on a given path {P2!2 ( [2_ ,2– ] }, it has an 

increasing transformation V*(%) that does. 
32  We shall also compare the global patterns of kinks implied by the expected utility versus rank-dependent forms. 
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4.1  Local Separability of Expected Utility Payoff Kinks 
It is clear that an expected utility preference function VEU(P) # $n

i=1U(xi)%pi will exhibit payoff 
kinks if and only if its von Neumann-Morgenstern utility function U(%) is kinked at one or more 
payoff levels. As noted in the Introduction, this may be due to kinked tax schedules, indivisibili-
ties, bankruptcy, or it may be an inherent property of the individual’s underlying preferences 
over wealth or consumption lotteries. Since VEU(%) is globally separable in the payoffs regardless 
of the shape of U(%), expected utility payoff kinks must all be locally separable – i.e., expected 
utility preferences cannot exhibit locally nonseparable payoff kinks.33  

Figures 2a and 2b 
Kinked von Neumann-Morgenstern Utility Function and its Indifference Curves 

(indifference curves are kinked along dashed lines) 

 Figures 2a and 2b illustrate a strictly risk averse von Neumann-Morgenstern utility function 
U(%) with a kink at payoff level x = 100, along with its indifference curves in the Hirshleifer-
Yaari diagram,34 for fixed state probabilities –p1, –p2. These curves will be smooth at all points 
(x1, x2) off of the horizontal and vertical lines in Figure 2b, with marginal rate of substitution 
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1 2
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V

dx U x pMRS x x
dx U x p

%
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, , /
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Since MRSEU(x, x) = – 
–p1/–p2 at all certainty points (x, x) except (100,100), the common slope of 

the indifference curves along the 45º line or certainty line in the figure reveals the individual’s 
subjective probabilities or odds ratio for the two states. The downward sloping straight line 
segments are portions of iso-expected value lines or fair odds lines, that is, loci of (x1,x2) points 
with a common expected value x1% –p1 +  x2% –p2, which are tangent to the indifference curves at all 
points on the certainty line except the kink point (100,100). 

                                                 
33 Although a multi-commodity expected utility preference function such as $n

i=1U(xi,yi)%pi # $n
i=1min[xi,yi]%pi could 

exhibit nonseparable kinks across commodities within any given outcome bundle (xi,yi), it remains globally 
separable across mutually exclusive bundles (xi,yi) vs. (xj,yj). 

34  Hirshleifer (1965, 1966), Yaari (1965, 1969). Each point (x1,x2) in the diagram represents the lottery (x1 ,–p1; x2 ,–p2). 
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 U(%)’s concave kink at x = 100 implies that its indifference curves will have quasiconcave 
kinks at the certainty point (x, x) = (100,100) as well as at all other points on the vertical line 
x1 = 100 and horizontal line x2 = 100 in the figure. At such kink points, VEU(%)’s directional 
payoff derivatives are given by the natural analogues of (23), (24), namely 
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and as seen, they continue to be proportional to / additive in the amount(s) of probability mass 
shifted in a given direction, although the coefficient of linearity, namely UL"(xi) vs. UR"(xi), now 
depends upon the direction of shift (left vs. right). These directional payoff derivatives also 
satisfy the directional analogues of the total derivative formulas (8) – (10), for example 
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This in turn implies the natural analogue of (54), linking U(%)’s directional payoff derivatives and 
VEU(%)’s left/right marginal rates of substitution 
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Finally, the fundamental theorem of calculus continues to link global changes in VEU(%) with its 
directional partial derivatives along any line of kink points, for example 

(59) 
150 150

1 1 2 1 1 2
1 2 1 2 1 1

50 501 1

( , ;100, ) ( , ;100, )(150, ;100, ) (50, ;100, ) EU EU
EU EU L R

V x p p V x p pV p p V p p dx dx
x x

S S
T T
T T
U U

- -
/ , % , %

- -
 

In these senses, expected utility payoff kinks remain amenable to the local/global calculus of 
directional payoff derivatives.35 

 Figures 3a and 3b illustrate some implications of expected utility payoff kinks for optimiza-
tion and comparative statics. Figure 3a is the standard illustration of how an individual at a risky 
initial point C might purchase full coinsurance, even at an actuarially unfair price.36 However, if 
U(%) has a single kink at x = 100 this will be a knife-edge phenomenon, in the following sense: 
For any initial point C, there is exactly one actuarially unfair load factor that would lead the 
individual to choose full insurance, namely, the one whose budget line from C leads exactly to 
the point (100,100). Any larger or smaller load factor from C will lead to a partial insurance 
optimum, at either a tangency or kink point, located strictly southeast of the certainty line.37 

 Figure 3b illustrates a potential comparative statics implication of a kinked U(%) that is not 
knife-edge. The uninsured positions A, B, C, D, E lie along a line of slope +1, that is, they differ 
from each other only in the addition/subtraction of some sure amount of wealth. As such 
                                                 
35  As mentioned, we restrict attention to locally piecewise-linear kinks (e.g., U(%) cannot be the Cantor function). 
36  Actuarially unfair insurance induces a budget line from C to a point on the certainty line with lower expected value. 
37  Any actuarially unfair budget line that intersects the certainty line at a point (x,x) other than (100,100) will cut the 

smooth indifference curve through that point from above, which implies an optimum strictly southeast of (x,x). 
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increases in wealth raise the individual from A to E, the amount of insurance purchased first rises 
at a constant rate, becomes complete at the wealth corresponding to point C, and then falls at a 
constant rate – that is, the Engel curve for insurance is V-shaped. To see that this implication is 
generally not knife-edge, observe that since the kinks in the figure are strictly quasiconcave, 
there will be a non-degenerate range of load factors about the one in the figure, each of which 
leads to a similar V-shaped Engle curve for insurance. Each load factor in this range will  imply a 
full insurance optimum at (100,100) from some unique point C" on the line A——E, which for higher 
load factors will lie above point C on the line, and for lower load factors, below it. 

Figures 3a and 3b 
Full Purchase of Actuarially Unfair Insurance; Wealth Effects on the Demand for Coinsurance 

4.2  Local Separability of Fréchet Differentiable Payoff Kinks 
As with expected utility preference functions, Fréchet differentiable preference functions are also 
locally payoff-separable. To see this, pick arbitrary P0 = (–x1, 

–p1;...;–xn, 
–pn) and consider alternative 

lotteries of the form P = (x1, 
–p1;...; xn, 

–pn). Fréchet differentiability (eq. (29)) will imply38 
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so that VFR(%) exhibits local separability (eq. (48)) with respect to the set of univariate functions 

(61) A B0 0 0
ˆ ( ; ) ( ; ) ( ; )i i i i i iH x U x x U x p4 # *4 / %P P P  i = 1,…,n 

 To establish (60), observe from (25) that for small enough !x1 – 
–x1!,…,!xn – 

–xn! we will have  

(62)      K L0 1 11 max ( ,..., ) ( ,..., )1,...,n
i i i i i n ni p x x x x x x x xi n,

/ 9 % / 9 / 9 /,$P P  

and hence 
                                                 
38 Equation (60) differs from (29) in that it is treated as a function of the payoffs x1,...,xn alone for fixed probabilities  

–p1,…, –pn, and hence has higher order term o($(x1,...,xn) – (–x1,...,–xn)$) rather than o($P – P0$). 
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(63) 
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From (62), convergence of (x1,...,xn) to (–x1,...,–xn) in the Euclidean norm implies uniform 
convergence of P to P0 in the lottery norm (25). By (29) this implies that the left side of (63) 
converges to 0, and thus so does the right side (and does so uniformly in $(x1…,xn) – (–x1,…, 

–xn)$), 
which establishes (60) and hence the property of local separability in (individual or joint) regular 
and whole probability payoff changes. Local payoff separability in all partial-probability payoff 
changes, say two-outcome partial-probability changes from x1, is established by invoking (2) to 
write P0 as ( 

–x1,  
–p1–.a –.b ; ya, .a ; yb, .b ; 

–x2, 
–p2; ... ; 

–xn,  
–pn)!ya = yb = –x1 and applying (60) to the n +2 

payoff variables ( x1, ya,  yb,  x2,..., xn) about the values (–x1, 
–x1, 

–x1, 
–x2,...,–xn). A similar argument 

applies for the n +k variables ( x1, y1,..., yk, x2,...,xn) about (–x1, 
–x1,...,–x1, 

–x2,...,–xn), etc. Accordingly, 
all regular, partial-probability and whole-probability payoff kinks in Fréchet differentiable 
preference functions will be locally separable. 

 A derivation equivalent to (35) yields that if U(%;P) has directional derivatives at a payoff 
level xi, then VFR(%) has directional payoff derivatives corresponding to the expected utility 
formulas (55), (56), namely 

(64)   //

(...; , ;...) ( ; )FR i i
i L R iL R

i

V x p p U x
x

- ), %
-

P  

(65)   0 1/ // , /

(...; , ; , ;...) (...; , ;...)( ; ) ( ; )
j

FR i i FR i i
L R i j L RL R W L R

x xix x

V x x p dV x pU x p U x
x dx
. .

.
,,

- / ) ), % , %
-

$P P  

which are again proportional/additive in the amount(s) of probability mass shifted in a given di-
rection from a given mass point. These formulas imply the natural analogues of (58), linking 
VFR(%)’s left/right marginal rates of substitution and U(%;P)’s directional payoff derivatives  

(66)  1 1 1 1
, 1 2 , 1 2

2 2 2 2

( ; ) ( ; )( , ) ( , )
( ; ) ( ; )

L R
FR L FR R

R L

U x p U x pMRS x x MRS x x
U x p U x p
) )% %

, / , /
) )% %

P P
P P

 

In addition, the directional payoff derivatives (64), (65) are also seen to satisfy the directional 
analogues of the total derivative formulas (8) – (10), for example,39 

(67)   
1 1 2 2 1 1 2 2 1 1 2 2

0 1 2

1 1 2 2

( , ; , ) ( , ; , ) ( , ; , )

( ; ) ( ; )

FR FR FR
R R R

t

R R

dV x t p x t p V x p x p V x p x p
dt x x

U x p U x p

2 3
2 3

2 3
,

* % * % - -
, % * %

- -
) ), % % * % %P P

 2, 3  > 0 

That is, the marginal effect of a joint payoff shift equals the sum of the marginal effects of its 
individual component shifts.  

 Some specific non-expected utility functional forms for V(x1, p1;...;xn, pn), and researchers 
who have studied them, are: 
                                                 
39  More generally, the appropriate left/right directional derivatives on the right side of an equation such as (67) will 

be determined by the direction of change of t and the respective signs of 2 and 3  in the same manner as in (43).  
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(68)       0 1
1 1

2 3
1 1 1

1 1

weighted utility ( ) ( ) Chew (1983)

moments of utility ( ) , ( ) , ( ) Hagen (1989)

quadratic in Chew, Epstein ( , )the probabilities and S

n n
i i i i i i

n n n
i i i i i i i i i

n n
i j i j i j

x p x p

g x p x p x p

x x p p

R W

R R R

J

, ,

, , ,

, ,

% %

% % %

% %

$ $

$ $ $

$ $ egal (1991)

 

These forms are similar to expected utility in that they can be used to represent payoff-smooth 
preferences, by choosing smooth component functions R(%), W(%), g(%,%,%) or J(%,%)), as well as 
preferences with kinks at prespecified (e.g., tax-bracket) payoff levels, by choosing component 
functions with kinks at those values.40 In the latter case, these forms will: continue to have well-
defined local utility functions, satisfy the generalized expected utility results of Section 2.3, 
satisfy the directional payoff derivative formulas (64) – (67), and satisfy the first order and first 
order conditional risk aversion properties and results of the following section. 

4.3  First Order and First Order Conditional Risk Aversion 
Segal and Spivak (1990) have defined and characterized a particular sense in which risk 
preferences about piecewise-linear payoff kinks can be qualitatively different from smooth 
preferences: For a given an initial wealth level x* and a nondegenerate zero-mean risk X~, denote 
the standard risk premium for any additive risk X~ by Y(X~; x*), so that the individual is indifferent 
between the risky wealth x* +  X~ and the sure wealth x*– Y( X~; x*). It is well known (e.g., Pratt 
(1964)) that expected utility preferences with a differentiable U(%) satisfy -Y( t %X~; x*)/-t!t = 0 = 0. 
Segal and Spivak define an individual as exhibiting: 

  2
0

00

about * if ( ; *) 0

about * if ( ; *) 0 but ( ; *) 0
t

tt

first order risk aversion  x t x t

second order risk aversion x t x t t x t

Y X

Y X Y X
8

Z
8,

- % - H

- % - , - % - H

*

* *
 

for every nondegenerate zero-mean X~. Segal and Spivak show that if an individual (expected 
utility or otherwise) exhibits first order risk aversion about x*, then for small enough positive k, 
the individual will strictly prefer  x* over the random wealth x* + t%(k +X~) for all sufficiently small 
t > 0. They also provide the following expected utility results linking properties of the von 
Neumann-Morgenstern utility function U(%) to its order of risk aversion about wealth level x*: 

!" If a concave utility function U(%) is not differentiable at x* but has well-defined left and 
right derivatives there, then the individual exhibits first order risk aversion about x* 

!" If a concave utility function U(%) is twice differentiable at x* with U!(x*) 6 0, then the 
individual exhibits second order risk aversion about x* 

 This notion is not limited to preferences about certainty. Loomes and Segal (1994) have 
shown that any risk averse U(%) with a kink at x* also exhibits first order conditional risk aver-
sion about x* in the following sense: Consider a random wealth of the form [ p chance of x*+ X~ : 
 (1–p) chance of ~x ]. Such distributions arise in cases of uninsured events, such as war or “acts of 
God,” in which wealth is exogenously ~x and no indemnity is paid. Many insurance contracts 
explicitly specify such events, and may or may not refund the original contract price if they 
occur. The individual’s risk premium Y( X~; x*, 

~x , p) for contracts that give such refunds will solve 
                                                 
40  Chew, Epstein and Segal (1991) have shown that when the function J(%,%) in the quadratic form is not smooth, but 

instead takes the Leontief form J(xi,xj) = min{xi,xj}, then the quadratic formula $$J(xi,xj)%pi %pj reduces to the 
rank-dependent form (70) with R(x) # x and G(p) # G–p, which is not Fréchet differentiable.   
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(69)        p%E[U(x*+ X~ )] + (1–p)%E[U( 
~x )]  =  p%U(x*–Y( X~; x*, 

~x , p)) + (1–p)%E[U(~x)] 

For contracts that do not give such refunds, the final term in (69) takes the form (1–p)% 
E[U( 

~x –Y( X~; x*, 
~x , p))]. In either case, if U(%) has a kink at x* we get -Y( t %X~; x*, 

~x , p)/-t!t80 > 0.41 

 Segal and Spivak (1990, 1997) have also generalized the above expected utility results to Fré-
chet differentiable preferences: Given a risk averse VFR(%), if its local utility function U(%;Px*) at 
any degenerate lottery Px* = (x*,1) has a kink at x = x*, VFR(%) will exhibit first order risk aversion 
at x*. Similarly, if VFR(%)’s local utility functions are twice differentiable (and U(x;P), U"(x;P), 
U!(x;P) are continuous in P), V(%) exhibits second order risk aversion at all sure wealth levels.42 

5.  RANK-DEPENDENT PAYOFF KINKS 
As it turns out, one of the most important non-expected utility preference functions has proba-
bility derivatives that are amenable to generalized expected utility analysis, but payoff kinks that 
are not (nor to the calculus of directional derivatives). This form, proposed by Quiggin (1982),43 
is known as the “rank-dependent expected utility” or rank-dependent form. For general cumula-
tive distribution functions F(%) over [0,M], it has the structure VRD(F(%)) # >0

MR(x)%d(G(F(x)) for 
increasing continuous functions R(%) and G(%) with normalizations G(0) = 0 and G(1) = 1.44 In our 
setting of finite-outcome lotteries, this implies the form 

(70)        
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i j jx G p G pR
9 I

%: / ;< =$ $

 x̂1 9 ... 9 x̂n 

where x̂1,  p̂1 denote P’s lowest payoff and its associated probability, x̂2,  p̂2 denote P’s second low-
est payoff and its probability, etc. (In the lower formula, for i = 1 the sum $j<i  p̂j  will be vacuous 
and hence takes value 0.) When two or more of P’s payoff values are equal, ties in the definition 
of x̂i,  p̂i can be broken in any manner. The structure of (70) ensures that VRD(%) satisfies the 
identifications (2). When G(%) is linear (so that G(p) # p), VRD(%) reduces to the expected utility 
                                                 
41  U(%) exhibits second order conditional risk aversion about x* if -Y /-t!t = 0  from (69) equals 0 and - 

2Y /- t2!t80  > 0. 
42  Safra and Segal (2000) have further shown that both expected utility and Fréchet differentiable preferences are 

necessarily: (i) second order risk averse about x* for almost all x* ( [0,M]; (ii) for arbitrary  p and ~x, second 
order conditionally risk averse about x* for almost all x* ( [0,M]. 

43  See also Quiggin (1993), Weymark (1981) who proposed a similar form in the context of social welfare func-
tions, Yaari (1987), who proposed a special case, and Allais (1988). 

44  > 0
M
R(x)%d(G(F(x)) is seen to equal to the Choquet integral > 0

M
R(x)%dGF(x) of R(%) with respect to the capacity (mono-

tonic but not necessarily additive measure) GF(%) = G('F(%)), where 'F(%) is the measure induced by F(%) (e.g., 
Choquet (1953-54), Schmeidler (1989), Gilboa (1987), Gilboa and Schmeidler (1994), Denneberg (1994)). 
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form VEU(F(%)) # >0
MR(x)%dF(x) or VEU(P)  # $n

i=1R(x̂i)%p̂i  # $n
i=1R(xi)%pi. If R(%) were exogenously 

kinked at some payoff level x*, VRD(%) would exhibit the same type of locally separable payoff 
kinks as illustrated for the expected utility model in Figures 2b, 3a and 3b. Having noted this, 
and in order to concentrate on the additional kinks inherent in the rank dependent form, we 
henceforth assume that R(%) and G(%) are both smooth (continuously or up to infinitely differ-
entiable) with R"(%), G"(%)  >  0.  

5.1  Rank-Dependent Probability Derivatives and Local Utility Functions 
Chew, Karni and Safra (1987) have shown that the rank-dependent form VRD(%) does not / can not 
satisfy the strong smoothness condition of Fréchet differentiability (eq. (29)), except for its 
special case VEU(%). However, they have also shown that as long as G(%) is differentiable, the 
finite-outcome45 rank-dependent form will nonetheless still be differentiable in the probabilities, 
so its local utility function URD(%;P) is well-defined at each distribution P ( L. 
 To derive VRD(%)’s local utility function46 at a given P = (x1, p1;...;xn, pn), observe that each 
existing or potential payoff level x ( [0,M] lies in exactly one47 of the n +1 successive intervals 

(71)        I0 = [0, x̂1),    I1 = [x̂1, x̂2)    . . .    Ik = [x̂k, x̂k+1)    . . .    In–1 = [x̂n–1, x̂n),    In = [x̂n, M]    

Given arbitrary payoff level x in arbitrary interval Ik (k = 0,…, n), from (70) we can write 
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where as before, vacuous sums such as $j<1, (and if relevant, $19 i9 0 or $n< i9 n) take value 0. From 
(15)/(19), the local utility function URD(x;P) = -VRD(x1,p1;...;xn,pn; x,.)/-.!.  = 0 is thus given by 

(73)               0 1 0 1 0 1ˆ ˆ ˆ ˆ( ; ) ( ) ( )
j k j i j i

RD j i j j
k i n

U x x G p x G p G pR R
9 9 II 9

) ) ), % * %: / ;< =$ $ $$P  x ( Ik 

Formula (73) is seen to have the structure  

(74) URD(x;P)   =   ak %R(x)  +  bk  x ( Ik 

for the constants ak =G"($j9 k  p̂j) and bk =$k< i9 nR(x̂i)%[G"($j9 i  p̂j# – G"($j<i  p̂j)] on each interval Ik. 
That is, the local utility function URD(%;P) of the rank-dependent form consists of different affine 
transformations of R(%) over each of the successive intervals I0,…,In. URD(%;P) seen to be continu-
ous from one interval to the next, and smooth over the interior of each interval, with 

(75) 0 1ˆ( ; ) ( )
j k

RD jU x x G pR
9

) ) ), % $P  x ( int(Ik) 

But it also follows that URD(%;P) generally has kinks at the boundaries of these intervals, that is, 
at each of P’s payoff values x̂1,…,x̂n, with distinct left/right directional derivatives at x̂i given by 
                                                 
45  As observed by Chew, Karni and Safra (1987), the result for infinite-outcome distributions is less straightforward. 
46  As with all derivations of probability derivatives/local utility functions, we invoke the discussion preceding (15). 
47  This uniqueness holds even when two or more of P’s outcomes are equal: Say x̂k–1 < x̂k = x̂k+1 = x̂k+2 < x̂k+3 where 

x̂k = x̂k+1 = x̂k+2 = x*. The value x* only lies in the interval [x̂k+2, x̂k+3), since [x̂k, x̂k+1) = [x̂k+1, x̂k+2) = [. 
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(76)              0 1 0 1, ,
ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ( ; ) ( ) ( ; ) ( )
j i j i

RD L i i j RD R i i j
x x x x

U x x G p U x x G pR R
I 9

) ) ) ) ) ), % , %$ $P P   

Figure 4 illustrates the local utility function of a (risk averse) VRD(%) at the three-outcome distri-
bution P = (x1,p1;x2,p2;x3,p3), with kinks at each of P’s (ordered) payoff levels x̂1, x̂2, x̂3. 

Figure 4 
Local Utility Function of VRD(%) at Lottery P = (x1,p1;x2,p2;x3,p3)  

 We know that the expected utility characterizations of first order stochastic dominance 
preference, risk aversion, and even certain aspects of comparative risk aversion48 do not require 
differentiability of the von Neumann-Morgenstern utility function U(%), and this is also true for 
the generalized expected utility characterizations of these properties in terms of not-necessarily-
payoff-differentiable local utility functions U(%;P). For the rank-dependent form, Chew, Karni 
and Safra (1987) have shown that in spite of the kinks in its local utility functions, VRD(%) also 
satisfies Section 2.3’s generalized expected utility results linking monotonicity of the local utility 
functions to global first order stochastic dominance preference and concavity of the local utility 
functions to global risk aversion, as well as comparative concavity of two individual’s local 
utility functions to aspects of comparative risk aversion. In other words, many of the basic results 
of generalized expected utility analysis continue to apply to the inherently kinked local utility 
functions of the rank-dependent form VRD(%). 

 Thus, at least in the above senses, expected utility, Fréchet differentiable, and rank-dependent 
probability derivatives all characterize features of risk preferences in a common manner. 

5.2  Local Nonseparability of Rank-Dependent Payoff Kinks: Illustration 
Rank-dependent attitudes toward payoff changes can be summarized as follows: When R(%) and 
G(%) are both smooth (up to infinitely differentiable), then the rank-dependent form VRD(%): 

                                                 
48  For example, the equivalence of the “comparative probability equivalent,” “comparative certainty equivalent,” 

“comparative concavity” and “comparative arc concavity” conditions in the classic Arrow-Pratt characterization 
of comparative risk aversion (Pratt (1964, Thm. 1, conds. (b),(c),(d),(e))) does not require smoothness of U(%). 

0 x 

URD(x;P) 

x̂2 x̂1 x̂3 



27 

(a)  is smooth with respect to whole-probability payoff changes 
(b)  is generally locally nonseparably kinked with respect to partial-probability payoff changes 

and its payoff derivatives and directional payoff derivatives generally 
(c)  are not proportional to the amount of probability mass shifted from a given payoff level 
(d)  do not satisfy the total derivative formulas (8), (9) linking separate and joint shifts of 

 probability mass from a given payoff level 
(e)  do not satisfy formulas (30), (31) linking the payoff derivatives and local utility function 

 These features can be illustrated by a simple example involving fixed probabilities and just 
two free outcome variables. Say a nonlinear G(%) satisfies 

(77) G(!) – G(")   6   G(#) – G(!) 

Consider lotteries of the form P = (–x1,"; x2,"; x3,"; –x4,"), with fixed probabilities all equal to ", 
fixed lowest and highest payoffs –x1 < –x4 , and where the payoffs x2 and x3 independently vary 
over the open interval (–x1, 

– x4).49 That is, we allow the values of the variables x2 and x3 to cross 
each other, but not to cross –x1 or –x4. By (70), the additive terms for  

–x1 and  
–x4  in the rank-

dependent formula will remain fixed at R( 
–x1)%G(") and R( 

–x4)%[1 – G(#)]. On the other hand, the 
additive terms for x2 and x3 do depend – and in a qualitative manner – on the relative values of 
these two variables, and appear in the formula for VRD(–x1,"; x2,"; x3,"; –x4,") as 
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We can subsume both branches of formula (78) into the single formula  
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so the rank-dependent preference function (70) over such lotteries can be fully written out as  
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Since (77) implies [G(#) – 2%G(!) + G(")] is nonzero, the Leontief component R (max{x1,x2}) in the 
above formulas implies that VRD(–x1,"; x2,"; x3,"; –x4,") is kinked in x2 and x3 whenever x2 = x3. 
Formula (79) (and hence (80)) can also be written in terms of the minimum function 

(79)"                       
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49  Although an even simpler example consists of assuming G(1) – G(!) 6 G(!) – G(0) and looking at lotteries of the 

form (x1,!; x2,!), we use the present setting to show that VRD(%)’s kinks do not just occur at degenerate lotteries. 



28 

By illustrating the way in which the outcome variables x2 and x3 enter the rank-dependent formu-
la, this example highlights the characteristic properties of rank-dependent payoff kinks, namely  

!" such kinks arise from the nonlinearity of G(%) (in this example, inequality (77)), even 
when G(%) and R(%) are both smooth (continuously or even infinitely differentiable)  

!" because of their Leontief-like structure, such kinks are locally nonseparable50 

 The formulas for VRD(%)’s x2 and x3 payoff derivatives can be derived from any of the formu-
las (78) – (80). At any such P = ( 

–x1,"; x2,"; x3,"; –x4,") where x2 6 x3, VRD(%) responds smoothly to 
marginal changes in either x2 or x3 alone, with smooth (left = right) payoff derivatives  

(81)  
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Provided x2 6 x3, VRD(%) also responds smoothly to joint marginal changes in x2 and x3, with 
individual and joint responses linked by the standard total derivative formula (10). 

 Consider now any distribution of the form P = ( 
–x1,"; x,"; x,"; –x4,"), where x2 and x3 initially 

take some common value x between –x1 and –x4. Provided x2 and x3 change jointly and equally, 
VRD(%) still responds smoothly, with left = right derivative51 

(82)    A B( ; , ; , ; ) ( ) ( ) ( )RDdV x x x G G
dx

R), % /
, ," "

# "  

But if x2 and x3 start out equal to x and then only one of them varies, VRD(%) will have a kinked 
response to that variable, with left 6 right directional payoff derivatives 

(83)      
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Thus, the whole-probability payoff changes corresponding to (81) and (82) yields smooth (left = 
right) payoff derivatives, whereas the partial-probability payoff changes corresponding to (83) 
yield kinked (left 6 right) directional payoff derivatives, illustrating properties (a) and (b).  

 Comparison of (82) and (83) also illustrates properties (c) and (d): The nonlinearity of G(%) 
(inequality  (77)) implies 2%[G(!) – G(")]   6  [G(#) – G(")]  6  2%[G(#) – G(!)]. Starting from any 
lottery P = ( 

–x1,"; x,"; x,"; –x4,") with x ( ( 
–x1, 

–x4), shifting amount " of the total ! probability mass 
at x to the right is seen from the bottom line of (83) to have marginal effect R"(x)%[G(#) – G(!)], 
whereas shifting twice as much mass to the right, namely the entire amount !, is seen from (82) 
to have marginal effect R"(x)%[G(#) – G(")] which is not twice the previous effect, illustrating 
property (c). Since this rightward shift of the ! mass at x can also be viewed as a joint rightward 
shift of both " masses at x, this nonproportionality of marginal effects can also be viewed as a 
                                                 
50  As noted below (70), any payoff kinks resulting from exogenous kinks in R(%) would be locally separable. 
51  This follows since both lines of (78) (and hence (79)/(79)") reduce to …+R(x) %[G(#) – G(")] +… for x2 = x3 = x. 
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nonadditivity of marginal effects, illustrating property (d).  Similar arguments holds for shifting 
probability mass leftward from x. 

 To illustrate property (e), namely that VRD(%)’s payoff derivatives and local utility function do 
not generally satisfy the relationship -V(P)/-xi = U"(xi;P)%pi, recall from (76) (or Figure 4) that 
even for x2 and x3 unequal, say x2 < x3, VRD(%)’s local utility function at the lottery P =  
(–x1,";x2,";x3,";–x4,"), will have kinks at both x2 and x3, with left 6 right directional derivatives   

(84) , 2 2 , 2 2

, 3 3 , 3 3

( ; ) ( ) ( ) ( ; ) ( ) ( )

( ; ) ( ) ( ) ( ; ) ( ) ( )
RD L RD R

RD L RD R

U x x G U x x G

U x x G U x x G

R R

R R

) ) ) ) ) ), % , %

) ) ) ) ) ), % , %

P P

P P

" !

! #
 x2 <  x3 

none of which are linked to the payoff derivatives (81), (82) or (83) in the manners (30), (31) or 
their corresponding directional versions (64), (65). 

 The properties illustrated in this section are, except for (a), in contrast with those of an ex-
pected utility VEU(%) with smooth U(%) or Fréchet differentiable VFR(%) with smooth UFR(%;P)’s, 
whose whole- and partial-probability derivatives are all left = right smooth, proportional to the 
mass shifted from a given payoff level, additive in joint vs. individual shifts, and linked to their 
local utility functions via the relationships -VEU(P)/-xi = U"(xi)%pi and -VFR(P)/-xi = U"FR(xi;P)%pi. 

 The Leontief-like structure of the rank-dependent preference function brought out in (79)/ 
(79)" is not readily apparent in its standard formulation (70). Rather, it “lives” in the (usually 
unexplicated) map from the actual payoff variables x1,..., xn to the ordered values x̂1 9 ... 9 x̂n that 
enter the right side of (70). For the case of two variables, we can represent this map as 

(85)            2 1 2 1 2 1 1 2 1 2ˆ ˆ( , ) max{ , } ( , ) max{ , }i
i

x x x x x x x x x x x, , /$  

For three variables, it can be written in the similar form52 

(86)        
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and for four variables, as: 

(87)    
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For n > 4, the formulas for x̂1,…, x̂n remain expressible as linear combinations of the full sum 
$i xi and the maxima of all the 2, 3, 4,..., n element subsets of {x1,...,xn}. For any n, there will be 
some pair of ordered payoffs values x̂k(x1,...,xn) and x̂k+1(x1,...,xn) that exhibit locally nonseparable 
kinks whenever any two payoff variables xi, xj merge to, or depart from, a common value.  
                                                 
52  The formula for x̂2(x1,x2,x3) follows since two of the three terms in the sum $$i<j max{xi, xj} = max{x1, x2} + 

max{x1, x3} + max{x2, x3} must equal x̂3 and the other must equal x̂2. The formula for x̂1(x1,x2,x3) is derived by 
subtracting the formulas for x̂3 and x̂2 from $i xi. The formulas in (87), and also for n > 4, can be derived similarly. 
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5.3  Rank-Dependent Payoff Derivatives and Payoff Kinks: General Formulas & Properties 
Although the previous illustration captures the characteristic features of rank-dependent payoff 
kinks, it is just a specific example. This section presents the more general payoff derivative 
formulas and payoff kink structure of this form. We continue to assume that R(%) and G(%) are 
smooth (continuously or even infinitely differentiable) with R"(%), G"(%) > 0. 

 Except when G(%) is linear (in which it reduces to expected utility), the rank-dependent form 
VRD(%) exhibits the five properties listed at the beginning of the previous section, which can be 
stated more formally as: 
(A)  If no other (positive probability) outcome xj has the same value as xi, then VRD(%) is smooth 

in xi with left = right regular payoff derivative -VRD(...;xi,pi; ...)/-xi 
(B)  If some other xj does have the same value as xi, then VRD(%) generally has distinct directional 

regular payoff derivatives -VRD(...;xi,pi; ...)/-xi
L 6 -VRD(...;xi,pi; ...)/-xi

R, and is locally non-
separably kinked in the variables xi, xj  

(C)  Partial-probability payoff derivatives -VRD(...;x, . ;  xi , pi –. ; ...)/-x 
L/R!x=xi

 are also generally 
kinked, and not proportional to the amount of probability . shifted, even for fixed direction 

(D)  Whole-probability and partial-probability payoff derivatives are generally not linked by the 
total derivative relationships (8), (9),53 or by their directional-derivative analogues  

(E)  Regular, partial- and whole-probability payoff derivatives are generally not linked to the 
local utility function in the manners (30),(31), or their directional versions (64),(65) 

Although properties (B) – (E) each state that some derivative or smoothness property fails to hold 
in general, they do not formally address the prevalence of these failures in the space of lotteries.  
By way of prevalence, we will show: 

(F)  If G(%) is smooth but not identically linear over [0,1], VRD(%) will exhibit locally nonsepar-
able payoff kinks about every lottery P ( L  

 The general payoff kink structure and payoff derivatives formulas for VRD(%) are derived by 
an argument similar to Section 5.2: Consider an arbitrary P = (x1, p1;...;xn, pn) and an arbitrary one 
of its outcomes xi, which may or may not have the same value as any of P’s other outcomes. In 
either case, we can express the total probability mass at payoff level xi by any of the expressions 

(88) 
j i j i j i j i

j i j j j
x x x x x x x x

j i

p p p p p
, , 9 I

6

, * , /$ $ $ $  

which reduce to pi when no other outcome equals xi. This total mass at payoff level xi can be 
represented as entering into the rank-dependent formula via the single additive term 

(89) 0 1 0 1( )
j i j i

i j j
x x x x

x G p G pR
9 I

* %: / ; *< =$ $, ,  

 Consider shifting amount . of the total mass at xi to some higher or lower level xi + t, where . 
may be less than pi, equal to pi, or even greater than pi if some other outcome also has payoff xi. 
If t is small enough so that xi + t does not cross any of P’s other distinct payoff levels xj 6 xi, the 
remaining mass at xi, and the mass . now at xi + t, now enter via the pair of terms 
                                                 
53  As illustrated in Section 5.2, VRD(%) will satisfy the total derivative relationship (10) as long as xi and xj are not 

equal to each other, or to any other positive probability payoff xk. 
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(90) 
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As before, this two-part formula can be represented by the single expression 

(91)   
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or in terms of the minimum function, as 
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,
 for t ! 0 

Formulas (91)/(91)" show that the type of locally nonseparable payoff kink seen in Section 5.2 
arises in general. As long as t is small enough so that xi + t does not cross any distinct payoff level 
xj 6 xi, none of the six square-bracketed weights in (91)/(91)" depend on either the sign or magni-
tude of t. The weights on the Leontief terms R(max{xi, xi+t}) and R(min{xi, xi+t}) are both 
second-order differences of the form \  [G(2) – G(2 –.) – G(3 +.)+G(3 )]. For nonlinear G(%) such 
expressions are generally nonzero, yielding locally nonseparable payoff kinks as in (79)/(79)". 

 Since it includes each type of payoff shift as a special case, (90) allows for the derivation of 
the regular, whole-probability and partial probability payoff derivatives for the rank-dependent 
form. VRD(%)’s regular payoff derivatives, for which . in (90) equals pi, take the directional forms 
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and when no other xj equals xi, they reduce to the smooth (left = right) form 

(93)        0 1 0 1(...; , ;...) ( )
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RD i i
i j j

x x x xi

V x p x G p G p
x

R
9 I

- )# %: / ;< =-
$ $   

VRD(%)’s whole-probability payoff derivative corresponds to . equaling the total probability (88), 
and takes the smooth form 
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Finally, VRD(%)’s partial-probability payoff derivatives, for which . is any amount strictly less 
than the total probability (88), take the left 6 right directional forms  
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The payoff derivatives (92) – (95) are seen to generically exhibit properties (A) – (E) above. 
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 To demonstrate property (F) (locally non-separable payoff kinks about every lottery), pick 
arbitrary P ( L and invoke (2) to express it as P = (x̂1, p̂1;...; x̂m,p̂m), with p̂i > 0 for each i and 
x̂1 < … < x̂m . Since G(%) is smooth but not linear over [0, $ j9 m p̂j] = [0,1], it must be nonlinear on 
at least one of the m successive nondegenerate cumulative probability intervals54 

(96)      A B A B A B A B A B1 1 1 2
1 1

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ0, , , , , , ,j j j j j j
j i j i j m j m j m j m

p p p p p p p p p p
I 9 I / 9 / I 9

* $ $ $ $ $ $, ,  

say the interval [ $ j<i* p̂j,  $ j9 i* p̂j ]. Thus, there exist some .a, .b > 0 with .a +.b  9   p̂i* such that 

(97)           0 1 0 1 0 1 0 1
* * * *
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i i i i
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j j j j
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Express P as (...;  x̂i*,  p̂i*–.a –.b ; ya, .a ; yb, .b ;...)!ya = yb = x̂i* , and consider lotteries of the form 
(...;  x̂i*,  p̂i*–.a –.b ; ya, .a ; yb, .b ;...), where ya and yb independently vary upward from x̂i* over the 
interval [x̂i*, x̂i*+1) (or [x̂i*, M) if i* = m).55 VRD(%)’s term for the pair (x̂i*,  p̂i* –.a –.b) stays fixed at 
R(x̂i*)%[G($ j9 i* p̂j –.a –.b) – G($ j< i*p̂j)], its terms for all other (x̂i, p̂i) pairs stay fixed as in (70), and 
its terms for (ya,.a), (yb,.b) take the form 
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As before, this two-part formula can be represented by a single expression for ya ! yb, namely 
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or in terms of the minimum function, by 
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Since (97) implies that the Leontief terms in (99)/(99)" are nonzero, VRD(%) is locally non-
separably kinked in the payoff variables ya and yb as they vary upward from their common initial 
value of  x̂i* at the lottery P = (...;  x̂i*,  p̂i*–.a –.b ; ya, .a ; yb, .b ;...)!ya = yb = x̂i*, yielding property (F).56 

                                                 
54  If a nonlinear G(%) were linear on each interval in (96), it would have to be kinked at one of their boundary points. 
55  When i* = m and  x̂m = M,  ya, yb cannot vary upward from x̂i*. In this case pick positive .a, .b with .a +.b  9   p̂m and 

G($ j<m p̂j+.a+.b)–G($ j<m p̂j+.a)–G($ j<m p̂j+.b)+G($ j<m p̂j)  6 0, write P = (…; ya,.a ; yb,.b ; x̂m , p̂m–.a–.b)!ya=yb=x̂m  
and let ya, yb vary downward from x̂m = M over (x̂m–1, x̂m]. The term for x̂m is R(x̂m)%[1– G($ j<m p̂j +.a +.b)] and the 
terms for ya and  yb can be written as R(ya)%[G($ j<m p̂j +.a) – G($ j<m p̂j)] + R(yb)%[G($ j<m p̂j +.b) – G($ j<m p̂j)] + 
R(max{ya, yb})%[G($ j<m p̂j +.a +.b) – G($ j<m p̂j +.a) – G($ j<m p̂j +.b) + G($ j<m p̂j)]. Since the Leontief term again 
receives nonzero weight, VRD(%) is locally nonseparably kinked in ya, yb as they vary downward from x̂m about P. 

56 While this shows that VRD(%) will be locally nonseparably kinked in certain multivariate payoff changes about 
every P ( L and hence unamenable to additive marginal analysis, could VRD(%) ever mimic the locally nonsepar-
able example (49) and still be left/right smooth in all univariate or directional payoff changes from a particular 
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6.  CONCLUDING TOPICS 

We conclude with remarks on: 
!"  the qualitatively distinct ways in which Fréchet differentiable and rank-dependent 

 preferences exhibit the non-expected utility property of nonseparability in the payoffs 
!"  informal field evidence regarding payoff kinks, in particular from insurance demand 
!"  payoff and probability kinks in induced preferences over delayed-resolution lotteries 

6.1  Modeling Departures from Separability: Two Approaches 
A primary motivation for the study of non-expected utility models is the large body of evidence 
that individuals’ lottery preferences depart from the expected utility property of payoff separabil-
ity – that is, from the property that for given ( 

–p1,..., 
–pn), preferences over the lotteries P =  

(x1, 
–p1;...; xn, 

–pn) are globally separable in the payoff variables (x1,..., xn). Payoff separability 
follows directly from the foundational Independence Axiom of expected utility theory.  
 The most widely known violation of payoff separability is the Allais (1953) Paradox, which 
consists of the following frequently observed preference rankings (where $1M = $1,000,000) 

(100)                   
K1 2

3 4

.10 chance of $5M
: 1.00 chance of $1M : .89 chance of $1M

.01 chance of $0

.10 chance of $5M .11 chance of $1M: :

.90 chance of $0 .89 chance of $0

a a

a a

MN
O
NP

M M
O O
P P

%

%

 

Under the identifications (2), these four lotteries can be represented in following form, which 
highlights their role as a test of payoff separability (note that a4 is listed above a3): 

(101)                                         

1 2 3

1

2

4

3

$1M $1M $1M
 $5M $0 $1M

$1M $1M $0
$5M $0 $0

x x x
a
a
a
a

 ( 
–p1, 

–p2, 
–p3) = (.10, .01, .89) 

Preferences that rank a1 % a2 and a4 & a3 are nonseparable in the payoff variables (x1, x2, x3), since 
they imply ($1M,$1M, x3) % ($5M,$1M, x3) when x3 = $1M, but the reverse ordering when x3 = 
$0. That is, starting at the payoff values (x1, x2, x3) = ($1M,$1M, x3) the individual’s willingness 
to bear the additional mean-increasing risk implied by the payoff changes (4x1,4x2) = (+$4M, 
–$1M) seems to be inversely related to level of the mutually exclusive variable x3. This specific 
direction of departure from payoff-separability has been observed for more general payoff and 
probability values, and has been termed the common consequence effect.57  

                                                                                                                                                             
P0? For what it’s worth: Yes, whenever G(%) and P0 are such that the identity G($ j9 i* p̂j) – G($ j9 i* p̂j –.)  #

.
 

G($ j<i* p̂j +.) – G($ j<i* p̂j) holds on each of P0’s cumulative probability intervals (96). 
57  E.g., MacCrimmon and Larsson (1979). More recent experimental studies, such Camerer (1989), Starmer (1992), 

Birnbaum and McIntosh (1996), Birnbaum and Chavez (1997) and Wu and Gonzalez (1998) have revealed a 
more varied pattern of departures from payoff separability. 
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 There are two qualitatively distinct approaches to modeling departures from global properties 
such as linearity or separability. Figures 5a and 5b provide an illustration of these two 
approaches, as applied to the more basic task of modeling departures from global linearity in 
preferences over nonstochastic (x1, x2) = (apple, banana) commodity bundles. Say some “classical 
linear theory” hypothesizes a preference function of the form WLIN(x1, x2) # k1%x1 + k2%x2 for fixed 
coefficients k1, k2, and hence predicts a constant marginal rate of substitution over the commodity 
space R+

2. But say the evidence suggests that individuals’ MRS’s vary systematically, and tend to 
be flatter toward in southeast (many apples, few bananas) and steeper toward the northwest (few 
apples, many bananas). Someplace, therefore, preferences must be nonlinear. 

Figures 5a and 5b 
Modelling Departures from Linearity: Smooth Nonlinearity vs. Regionwise-Linear Preferences 
[  Figure 5b: Indifference Curves for the Rank-Dependent Formula  x̂1%G(p̂1)+x̂2%[1– G( p̂1)]  ] 

 The two approaches to modeling such linearity can be exemplified by the functions  

(102)                1 1 2 2 1 2
1 2 1 2 1 2

1 1 2 2 1 2
* *

  for  
( , ) vs. ( , )

  for  SM RL

k x k x x x
W x x x x W x x

k x k x x x
2 3 % * % 9M

# % # O
% * % 7P

 

where we assume k1 + k2 = k1* + k2* to ensure continuity of WRL(%) along the 45º line. While both 
functions capture the phenomenon of “flatness in the southeast / steepness in the northwest,” they 
do so in very different ways. Although the smooth function WSM(%,%) is not exactly linear over any 
region, it is everywhere locally linear, and its indifference curves gradually move from flatness 
to steepness across the domain. On the other hand, the regionwise-linear function WRL(%,%) retains 
the classical property of exact linearity over two large regions of the domain,  and “concentrates” 
all its nonlinearity along the boundary of these regions, namely the 45º line. It is clear from both 
figure and formula that by concentrating its nonlinearity on this lower-dimensional boundary set, 
WRL(%,%) must be locally nonlinear (i.e., kinked) there. 

 Figures 6a and 6b illustrate the same pair of approaches, this time applied to departures from 
global separability. In this case, say the “classic theory” hypothesizes the separable form 
WSEP(x1, x2) # ƒ(x1) + g(x2) for general ƒ(%) and g(%). But say its predictions of how MRS(x1, x2) 

0 x1 

x2 

0 x1 

x2 
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varies over the domain58 were in some way systematically violated by the evidence. As before, 
we could model such nonseparability in two different ways, exemplified by  

(103)      1 2 1 2
1 2 1 2 1 2 1 2

1 2 1 2

ƒ( ) ( )    for  
( , ) vs. ( , )

ƒ*( ) *( )   for  SM RS

x g x x x
W x x x x x x W x x

x g x x x
2 3 ]

* 9M
# * * % % # O * 7P

 

for smooth ƒ(%), g(%), ƒ*(%), g*(%), where we assume ƒ(x) + g(x)  #x   ƒ*(x) + g*(x) to ensure contin-
uity of WRS(%) along the 45º line. As before, WSM(%,%) and its indifference curves are not exactly 
separable over any open set, but are everywhere locally separable, and for different choice of 
parameters (or different smooth functional form) could exhibit the observed form of departure 
from separability smoothly and gradually over the domain. On the other hand, the regionwise-
separable function WRS(%,%) retains exact separability on both regions of its domain, and concen-
trates all its nonseparability along their boundary. But as seen in Figure 6b, by concentrating its 
nonseparability on this lower dimensional set, WRS(%,%) must be locally nonseparable there.59 

 Figures 6a and 6b 
Modelling Departures from Separability: Smoothly Nonseparable vs. Regionwise Separable Preferences 

[  Figure 6b: Indifference Curves for the Rank-Dependent Function VRD(x1, 
–p1; x2, 

–p2) ] 

 The distinction between how rank-dependent and Fréchet differentiable functions model 
payoff-nonseparability is analogous to the examples of Figures 5a/5b and 6a/6b. For any pair of 
probabilities ( 

–p1, 
–p2), expected utility preferences over the lotteries P = (x1, 

–p1; x2, 
–p2) take the 

globally payoff-separable form VEU(x1, 
–p1; x2, 

–p2) = U(x1)%–p1 + U(x2)%–p2. Fréchet differentiable non-
expected utility functions VFR(%), such as the smooth cases of the functions in (68), are typically 
not exactly payoff-separable over any region, but have been seen to be everywhere locally payoff 
separable. On the other hand, rank-dependent preferences over such lotteries have the following 
regionwise outcome-separable structure, seen to be a special case of the form WRS(%,%) from (103): 

                                                 
58  Separability would imply that for any rectangle of points (x1",x2"), (x1!, x2"), (x1", x2! ), (x1!, x2! ) with x1" < x1! and 

x2" < x2! , their marginal rates of substitution satisfy MRS(x1",x2") %MRS(x1!, x2! ) = MRS(x1", x2! ) %MRS(x1!, x2"). 
59  For example, WRS(%,%) generally violates the total derivative formula at x1 , x2, since dWRS(x,x)/dx , ƒ"(x) + g"(x) , 

ƒ*"(x) + g*"(x), yet -WRS(x,x)/-x1
L

 + -WRS(x,x)/-x2
L

 , ƒ"(x) + g*"(x) and -WRS(x,x)/-x1
R

 + -WRS(x,x)/-x2
R

 , ƒ*"(x) + g"(x). 
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(104)         
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Since VRD(x1, 
–p1; x2, 

–p2) is a special case of the form WRS(x1, x2), Figure 6b also serves to illustrate 
its indifference curves, which are seen to be exactly payoff-separable on the region below the 45º 
line in the figure, as well as on the region above it, and concentrate all their nonseparability on 
the 45º line, where they are locally nonseparable.60 

Figure 7 
Six Regions of Exact Payoff-Separability for VRD( x1,$; x2,$; –x3 ,$) 

 Figure 7 illustrates the x1, x2 indifference curves of the three-outcome rank-dependent 
formula VRD( x1,$; x2,$; –x3,$), for fixed probabilities of  $  and payoff x3 fixed at –x3. The regions I, 
II, …,VI correspond to the six strict payoff orderings x1 <  x2 <  

–x3,  x2 <  x1 <  
–x3  ,  … , –x3   <  x2 <  x1, 

and hence the six distinct regions over which rank-dependent preferences will be exactly separa-
ble in the payoffs. The three lines of kink points in the diagram again correspond to the boundary 
points of these regions, along which preferences are generally locally nonseparable. Similarly, 
the x1, x2 indifference curves of the four-outcome formula VRD( x1,"; x2,"; –x3,"; –x4,") for fixed –x3 
< –x4 would have kinks along the 45º line, and along the two horizontal and two vertical lines 
where x1 or x2 equals –x3 and/or –x4, and thus 12 distinct regions of exact payoff separability, etc. 

 Since Figure 7’s indifference curves are smooth over the interior of each region, they might 
seem to contradict property (F) (that VRD(%) has locally non-separable kinks at every lottery). 
Instead, they illustrate property (A): Since any small change from an interior lottery P = 
( x1,$; x2,$; –x3,$) that stays within the plane of the figure represents a whole-probability payoff 
change in x1 and/or x2, VRD(%) indeed does respond smoothly, with smooth left = right derivatives 
(93), which (as mentioned in Note 53) satisfy the local additivity property (10). But as seen in 
Section 5.3, VRD(%) will be locally nonseparably kinked in the payoff variables ya,  yb as they 
depart from this same lottery P = ( x1,$; x2,$; –x3,$) = (…; xi ,$–.a –.b ; ya ,.a ; yb ,.b ; …)!ya=yb=xi , 
for some choices of .a,  .b and choice of  xi = x1, x2 or –x3.  (Similar remarks apply to Figure 6b.) 
                                                 
60  The rank-dependent indifference curves in this figure correspond to R(%) concave and G(–p1) + G(–p2) < 1. Figure 

5b illustrates rank-dependent indifference curves for a linear R(%), with G(–p1) + G(–p2) < 1 (e.g., Yaari (1987)). 
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 Finally, observe that the properties illustrated in Figures 6b and 7 extend to rank-dependent 
preferences over general n-outcome lotteries. That is, for any probabilities (–p1,..., 

–pn), rank-
dependent preferences over the lotteries (x1, 

–p1;…; xn, 
–pn), are regionwise separable in the pay-

offs, but generally locally nonseparably kinked on regional boundaries. For each permutation ^̂̂̂ = 
(^1,...,^n) of the integers {1,…, n}, define the payoff region X^̂̂̂  =  { (x1,..., xn) ( [0, M ]n

 ! x^1 < 
… <  x^n}. Since the ordering (x̂1,..., x̂n) = ( x^1,…, x^n) of the variables (x1,..., xn) remains fixed 
over any such region, their respective probability values (p̂1,…, p̂n) = ( 

–p̂ 1,…, 
–p̂ n) are also fixed, 

so VRD(x1, 
–p1; …; xn,  

–pn) takes the following payoff-separable form over the region X^̂̂̂ : 
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Thus, as in the two- and three-outcome examples of the figures, VRD(x1, 
–p1;...; xn, 

–pn) is exactly 
payoff-separable over each of the n! distinct payoff regions X^̂̂̂ , and concentrates its non-
separability on the boundaries of these regions – that is, at lotteries P = (x1, 

–p1;...;xn, 
–pn) where 

some payoff xi equals one or more of the other payoffs xj – at which points VRD(%) is generally 
locally nonseparable in these variables. Axiomatically, this feature of the rank-dependent model 
derives from its foundational Comonotonic Independence Axiom,61 which imposes exact 
separability in the variables (x1,...,xn) within each region X^̂̂̂ , though not across these regions. For 
any interior lottery P = (x1, 

–p1;...;xn, 
–pn), the remarks of the previous paragraph still hold, namely 

that VRD(%) will be smooth for small changes in the variables (x1,..., xn), but will be locally 
nonseparably kinked in the payoff variables ya,  yb as they depart from P = (x1, 

–p1;...; xn, 
–pn) = 

(…; xi ,  
–pi –.a –.b ; ya ,.a ; yb ,.b ;…)!ya=yb=xi , for some choices of .a,.b and choice of i({1,…, n}. 

6.2  Are Observed Risk Preferences Kinked in the Payoffs? 
Payoff kinks were not among the empirical phenomena reported or modeled in the classic 
expected utility analysis of Friedman and Savage (1948), or in its modification by Markowitz 
(1952) who defined the function U(%) over changes from current wealth and also observed that 
individuals are generally averse to small symmetric gambles about current wealth. In Kahneman 
and Tversky’s (1979) and Tversky and Kahneman’s (1986) analysis of the non-expected utility 
form $n

i=1R(xi)%Y(pi), the function R(%) was asserted to be: (i) defined over changes from current 
wealth; (ii) generally concave over gains and convex over losses; and (iii) steeper for losses than 
for gains, which they define in (1979, p.279) as the property R(–y) – R(–x)  > R(x) – R(y) for 
x > y 7 0. Although these conditions are consistent with a kink at x = 0, they do not imply one,62 
                                                 
61  E.g., Schmeidler (1989), Wakker (1996), Wakker, Erev and Weber (1994). 
62  For example, the function R(%) defined by R(x) # {1 – e–x for x 7 0; –2 + 2%ex/2 for x < 0} satisfies the three condi-

tions and is continuously differentiable at 0. 
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and whereas the graph of R(%) in (1979, Fig.3) has such a kink, the graph of R(%) in (1986, Fig.1) 
appears smooth at x = 0."
 It is impossible to infer the existence of a payoff kink from any finite set of pairwise rankings 
or pairwise choices over lotteries. However in some cases kinks can be inferred from the infinite 
number of pairwise choices implicit in the selection of an optimal lottery from one or more 
budget lines. As seen in Section 4, a natural setting of uncertain payoff choices along budget 
lines are insurance decisions. We briefly examine the implications of the following three 
apparently general phenomena, involving the demand for and/or nature of insurance contracts: 
!" individuals frequently purchase complete coverage of certain forms of insurance offered 

at actuarially unfair prices, and do so at general wealth levels 
!" individuals frequently purchase zero coverage of certain forms of insurance offered 

at better-than-fair (e.g., government subsidized) prices, again at general wealth levels63 
!"as noted above, many insurance policies provide no indemnity payment under certain 

types of events, such as acts of war, insurer bankruptcy, etc. 

 Concerning the first of these phenomena, we saw in Figure 3a how a von Neumann-
Morgenstern utility function U(%) with a kink at a given wealth level (say x*) can lead to first 
order risk aversion about x* and hence the possibility of complete purchase of actuarially unfair 
insurance. However, it was also seen that this phenomenon occurs only in the knife-edge case 
when the budget line from the original uninsured position C hits the 45º line exactly at the point 
(x*, x*) – any steeper or flatter unfair budget line out of C will lead to a partial-insurance opti-
mum. Though one can posit many kink points in U(%), it is fair to say that payoff-kinked expected 
utility cannot be used to model the phenomena of full purchase of unfair insurance at general 
wealth levels. Indeed, as noted in the discussion of Figure 3b, a kinked utility function U(%) 
implies that the Engel curve for insurance can (in whole or part) take an unusual V-shaped form.  

 However, from Figures 5b and 6b it is clear that individuals with rank-dependent preferences 
can exhibit first order risk aversion, and hence full purchase of actuarially unfair insurance, at 
general wealth levels. This feature of rank-dependent preferences, noted by Karni (1992,1995) 
and others, constitutes an argument for modeling risk preferences via the rank-dependent form.  

 The second phenomenon, zero purchase of actuarially more-than-fair insurance, does not 
provide any discriminatory power between the expected utility, Fréchet differentiable, or rank-
dependent models. None of the models can generate risk averse preferences that would exhibit 
this behavior, and all three can generate risk-loving preferences that exhibit it, via indifference 
curves that lie subtangent to the fair odds lines along the 45º line in the Hirshleifer-Yaari dia-
gram, leading to zero purchase of actuarially subsidized insurance for low enough subsidies.  

 The third phenomenon (uninsured events) is probably more a feature of insurance supply 
(nondiversifiable risks) than of risk preferences or insurance demand. Nevertheless, its existence 
does bring out another implication of the rank-dependent model. Figure 7 can be used to illus-
trate the implications of uninsured states of nature on rank-dependent insurance demand. Say 
state 3 is uninsured, has probability $  and yields payoff  –x3. Then, by an argument similar to that 
of Figure 3b, the Engel curves for insurance arising from the rank-dependent preferences in 

                                                 
63 See for example, Kunreuther, et. al (1978), Kunreuther (1996), and the additional references cited there. 
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Figure 7 can take a similar V-shaped form. An important difference between the two cases is that 
while the expected utility kinks in Figure 3b derive from an exogenously hypothesized kink in 
U(%), the rank-dependent kinks in Figure 7 arise generically whenever there is any positive-prob-
ability uninsured event, even when R(%) and the nonlinear function G(%) are arbitrarily smooth. As 
noted above, if there is more than one uninsured state – i.e., if the uninsured event itself involves 
any uncertainty – there will be multiple vertical and horizontal dashed lines in the figure, and 
even though R(%) and G(%) may be smooth, rank-dependent Engle curves for insurance could actu-
ally “zigzag” (be  V_V_-shaped). This potential implication of rank-dependent preferences might 
provide an argument against their use in insurance analysis and similar settings of choice over 
state-contingent payoff levels (x1,..., xn), such as state-contingent asset or commodity markets.  

 On the other hand, since almost all insurance decisions involve subjective rather than objec-
tive uncertainty, it is difficult to gauge how much the above-listed phenomena are actually 
reflecting features of individuals’ risk preferences. An alternative and perhaps more parsimon-
ious way to reconcile the above three phenomena – both with each other and also with the hypo-
thesis of risk aversion – might be to attribute them to heterogeneity of individuals’ subjective 
beliefs. Figures 8a and 8b illustrate the insurance decisions of two risk averters who have the 
same risk preferences – i.e., the same V(x1, p1; x2, p2) function – but have distinct subjective 
probabilities ( 

–p1, –p2) and ( 
––p1, 

––p2), with  
–p1/ 

–p2   <   
––p1/ 

––p2. Since state 2 is the loss state, we term the 
left individual’s beliefs pessimistic and the right individual’s beliefs optimistic.   

Figures 8a and 8b 
Full Purchase of Actuarially Unfair Insurance Due to Pessimistic Beliefs; 

Zero Purchase of Actuarially Better-Than-Fair Insurance Due to Optimistic Beliefs 

 These figures illustrate how disparate beliefs can lead some individuals to buy full insurance 
at actuarially unfair rates, and others to buy no insurance at actuarially more-than-fair rates. The 
“actuarially neutral” odds for the states 1 and 2 (however arrived at) are represented by the 
common dashed line in each figure, and the distinct insurance rates face by the individuals are 
represented by their different budget lines. Figure 8a shows how pessimistic beliefs can lead to 
full purchase of insurance that is actuarially unfair. Figure 8b shows how optimistic beliefs can 
lead a risk averter to purchase zero insurance, even when it is better than actuarially fair. 
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 Individual-specific features such as moral hazard, adverse selection, or simply personal ex-
perience are all potential reasons for diversity in individuals’ subjective probabilities. How much 
diversity is required to credibly attribute full insurance to diversity of beliefs rather than payoff 
kinks? Consider (say) art theft insurance priced on the basis of an actuarial loss probability of 
.005 and a load factor of 20%. Every risk averter with smooth preferences but a personal 
subjective loss probability of at least .006 will buy full insurance. 

6.3  Induced Payoff and Probability Kinks 
Most economically important situations of choice under uncertainty (e.g., agriculture, insurance, 
real investment) involve delayed-resolution risk or uncertainty. In such cases, there are invari-
ably “auxiliary” decisions that must also be made prior to learning the outcome of the uncertain 
choice – if nothing else, consumption/savings decisions – in which case we refer to the delayed-
resolution risk as temporal risk. Researchers such as Markowitz (1959, Ch.11), Mossin (1969), 
Spence and Zeckhauser (1972), Kreps and Porteus (1979), Machina (1984) and Kelsey and 
Milne (1999) have examined how agents’ induced preferences over such temporal lotteries – that 
is, the preferences obtained by maximizing out the auxiliary decision(s) – can systematically 
differ from their underlying risk preferences. In this section we illustrate the types of kinks that 
can arise in such induced preferences. 

 Consider an agent with an (expected utility or non-expected utility) preference function 
V(P,2) that is jointly smooth over lotteries P and an auxiliary choice variable 2 selected from a 
set A. Maximizing out 2 yields the agent’s induced preference function over temporal lotteries 

(106)           ( ) ( ; *( ))W V 2#P P Pdef    where       maxarg*( ) ( ; )
A

V
2

2 2
(

#P Pdef  

or equivalently, W(x1, p1;...;xn, pn) ' V(x1, p1;...;xn, pn;2*(x1, p1;...;xn, pn)) where 2*(x1, p1;...;xn, pn) 
' argmax2(A V(x1, p1;...;xn, pn;2). Depending upon the decision, the auxiliary variable 2 could 
either be continuous or discrete. If it is continuous, and V(% ; %) is such that the optimal choice 
2*(P) varies smoothly in P, then the induced preference function W(P) # V(P;2*(P)) will also be 
smooth in P, and subject to generalized expected utility analysis (Machina (1984)). 

 However, when the auxiliary variable 2 can only take discrete values, the induced preference 
function W(%) is in general only regionwise smooth, which as seen in Section 6.1, implies it will 
generally exhibit locally nonseparable payoff kinks on the boundaries of these regions. For 
example, when A = {2",2!}, the induced preference function W(%) consists of the upper envelope 
of the two smooth functions {V(%;2"), V(%;2!)}, and as such, will have kinks along those ridges of 
lotteries P where the two functions cross. Figure 9 illustrates a portion of the (x1, x2) indifference 
curves of W(x1, 

–p1; x2, 
–p2) for fixed ( 

–p1, –p2), with locally quasiconvex kinks along an upward 
sloping ridge of kink points.64 When such a ridge is not parallel to either the x1 or x2 axis, W(%)’s 
payoff kinks at such ridge lotteries will be locally nonseparable.65  

                                                 
64  In many cases, such as when  –p1 = –p2 = !, V(% ;2")’s and V(% ;2!)’s indifference curves could cross again on the 

other side of the 45º line, leading to at least one more ridge of kinks. For clarity, we omit this from the figure. 
65  For V(% ;2") and V(% ;2!) indifference curves that cross along an upward sloping ridge as in Figure 9, the local 

piecewise linearization of W(x1, –p1; x2, –p2) at a ridge lottery P̄ = (–x1, –p1; –x2, –p2) will have the locally Leontief form 
max{ k1"%x1+ k2"%x2,  k1!%x1+ k2!%x2} = k1!%x1 + k2"%x2 + max{(k1"– k1!)%x1, (k2!– k2")%x2}, where k1" > k1! are the regular x1 
payoff derivatives of V(% ;2") and V(% ;2!) at P̄, and k2" < k2! are their regular x2 payoff derivatives there. 
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Figure 9 
(Solid) Indifference Curves of the Induced Preference Function W(P) # max{V(P;2"), V(P;2!)} 

Although the induced preference function W(%) and the rank-dependent form VRD(%) both exhibit 
locally nonseparable payoff kinks, their kink structure is otherwise quite different. For smooth 
underlying V(P,2) and finite auxiliary choice set, say A = {2",2!}, the induced preference form 
(106) differs from the rank dependent form (70) in that it  

!" can exhibit kinks in whole probability payoff shifts66 
!" does not exhibit first order risk aversion (or risk loving) about certainty67 

!" can only exhibit locally quasiconvex payoff kinks68 

!" is only kinked over lower dimensional manifolds (ridges) of lotteries in L 
69 

!" also exhibits locally nonseparable probability kinks at such ridge lotteries70 

                                                 
66  As illustrated in Figure 9, where W(%) is generally kinked in each payoff at any ridge lottery off the certainty line. 
67  As follows from (35) and illustrated in Figure 9, all of V(% ;2")’s and V(% ;2!)’s indifference curves cross the 

certainty line at the common slope  –p1/ –p2, so W(%)’s indifference curves, which are the lower envelopes of 
V(% ;2")’s and V(% ;2!)’s indifference curves, cannot be kinked at certainty points. 

68  This follows from standard results of convex analysis as applied to the local linearizations of V(% ;2") as V(% ;2!). 
69  Namely the manifold of lotteries solving V(P;2") = V(P;2!). Whenever V(P0;2") 6 V(P0;2!), we have either W(P0) 
# V(P0;2") > V(P0;2!) or else W(P0) # V(P0;2!) > V(P0;2"). Whichever case holds will continue to hold for all for 
all lotteries sufficiently close to P0 in L (including ones that differ by partial-probability payoff shifts), which 
implies smoothness of W(%) about P0.  

70 Probability kinks in induced preferences over lotteries have been illustrated in Markowitz (1959, Ch.11, Fig.2), 
Kreps and Porteus (1979, Fig.3), and Machina (1984, Fig.1). 
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