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Abstract

Quantifying the uncertainty in the dynamic properties of large-scale complex engi-

neering structures presents significant computational challenges. Monte Carlo sim-

ulation (MCS) method is extensively employed to perform uncertainty quantifica-

tion (UQ) because of its generality, stability, and easy implementation. However,

a brute-force MCS approach may be unaffordable and impractical when the target

model contains a large number of uncertain parameters. In this circumstance, MCS

requires a potentially burdensome (if not computationally intractable) number of

model evaluations to obtain a credible estimate of the global statistics. In this study,

a general framework for analytical UQ of model outputs using a Gaussian process

(GP) metamodel is presented, where case inputs are characterized as normal and/or

uniform random variables. A detailed derivation of important low-order statistical

moments (mean and variance) is given analytically. This analytical method is adopt-
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ed to characterize the uncertainty of modal frequencies of two bridges with assumed

normally- and uniformly-distributed parameters. Meanwhile, the brute-force MCS

approach is used for comparison of GP metamodel-derived statistics. Results show

that the GP method outperforms the MCS methodology in terms of computation-

al cost, with consistency in the ”true” values obtained by MCS. It demonstrates

that this GP method is feasible and reliable for modal frequency UQ of complex

structures.

Keywords: Uncertainty quantification, Structural dynamics, Modal frequency,

Monte Carlo simulation, Gaussian process Metamodel, Bridge structure

1. Introduction

Uncertainty is ubiquitous in all sorts of structural analysis and system identifica-

tion applications. Specifically, as-built engineering structures are inevitably subject-

ed to many sources of variability, including but not limited to manufacturing-induced

geometric tolerances, inherent random variation of materials, imprecisely controlled

boundary conditions, load variation, and ambient temperature fluctuation. In the

risk assessment community, uncertainties are classified into two categories: aleatory

and epistemic, according to their fundamental essence (Parry (1996)). The for-

mer (also termed stochastic, irreducible, or type A uncertainty) is the uncertainty

stemming from inherent variation or randomness, whereas the latter (also termed

subjective, reducible, or type B uncertainty) is the uncertainty due to incomplete

information. Understanding these sources of uncertainty plays an important role in

dealing with it, because different types of uncertainty call for different methods of

treatment. For a comprehensive understanding of uncertainty sources and the asso-

ciated management methods, see O’Hagan (2006), Roy and Oberkampf (2011) and

Liang and Mahadevan (2011).
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The quantification of uncertainty in structural dynamic properties remains an im-

portant topic, as such properties are used in a variety of important decision-making

applications, such as structural health monitoring, model updating, or test valida-

tion/verification. Such dynamic properties include (but aren’t necessarily limited

to) natural frequencies, mode shapes, the frequency response function (FRF). To ob-

tain more credible predictions for dynamic properties or for proper use in hypothesis

testing, the uncertainty present in them should be taken into account. Among these

various properties, there is a large body of research work regarding the uncertainty

quantification of the FRF. This is due to the fact that FRF has clear physical inter-

pretation and does not require a modal analysis; thus modal parameter identification

errors are eliminated. Moreover, FRF data are much more easily accessible than

other dynamic properties. The approaches exploited by researchers to characterize

uncertainty of the FRF consist of MCS (Farrar et al. (1998)), random matrix theory

(Soize (2005)), fuzzy set theory (Moens and Vandepitte (2005)), interval analysis

(Moens and Vandepitte (2007)), MCS in conjunction with metamodeling technique

(DiazDelaO et al. (2013); Xia and Tang (2013)), statistical modeling approach (Mao

and Todd (2013)). Modal frequencies are an indispensable structural dynamic quan-

tity that provides global resonant information about the structure, and because they

are relatively easily and robustly measured and relatively low-dimensional, they are

often used in the areas of FEM updating (Jaishi and Ren (2005); Ren and Chen

(2010); Fang et al. (2012)) and damage identification (Xia et al. (2002)). Modal fre-

quencies also play a critical role in many structural design processes. For example,

if the modal frequencies of a pedestrian bridge fall in the range of human move-

ment frequencies, the human-induced vibration will make pedestrians uncomfortable

and even cause safety problems. This paper will thus focus on the quantification of

modal frequencies where uncertainty is present in the structure. The uncertainties
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that have a considerable impact on the modal frequencies include parameter uncer-

tainty, boundary condition variability, and temperature fluctuation. In this work,

we restrict our scope on parameter uncertainty, which is the most studied type of

uncertainty.

The aforementioned random matrix theory, fuzzy set theory, and interval analysis

require the structural stiffness and mass matrices for the subsequent UQ of struc-

tural dynamics. For large-scale complex civil structures, they are usually modeled

by the high-resolution FEMs involving up to tens or hundreds of millions complex

elements with the aid of commercial finite element analysis (FEA) packages, such

as ANSYS, ABAQUS and SAP2000. Extracting stiffness and mass matrices from

these FEA packages is not an easy task, and multiple iterations between numerical

software (e.g., MATLAB) and FEA package will increase computational cost in some

degree. The MCS is the most commonly-used and well-known method for uncertain-

ty quantification and propagation. Its robustness depends on neither the type of

problem nor resident dimensionality. Furthermore, MCS for UQ also have the ad-

vantage of easy implementation. The statistical properties of the model outputs can

be obtained by just performing repeated model evaluations using random or pseudo-

random numbers to sample from probability distributions of model inputs. However,

MCS is extremely time-consuming, because it requires a large number of model e-

valuations to characterize statistical properties of the model outputs. The behavior

of most real structures is simulated by a finite element model (FEM) with a large

number of elements (up to tens or hundreds of millions) and complex elements (e.g.,

solid and shell elements). Thus, when applied to execute UQ tasks for these struc-

tures, the brute-force MCS method directly using computationally-expensive FEM

will be limited in its applicability due to the high computational cost. For example,

in the year 2000, Los Alamos National Laboratory (LANL) in the US quantified the
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propagation of uncertainties through a nonlinear FEM simulation of a blast-loaded

structure on one of the worlds most powerful computers at that time, Blue Mountain.

The analysis took over 72 hours and would have required 17.8 years of equivalent

single-processor time (Worden et al. (2005)). Accordingly, the brute-force MCS for

UQ is unaffordable and thus unfeasible, especially for the complex physical system.

For the sake of reduction in computational burden, several researchers use the

fast-running GP metamodel (also called Kriging process) as the surrogate model for

the more computationally-expensive simulation of the complex physical system in

order to facilitate the daunting task of UQ. DiazDelaO et al. (2013) and Xia and

Tang (2013) explore the application of GP metamodel-based MCS for the UQ of

FRFs propagated from uncertain parameters. Lockwood et al. (2011) utilize gradi-

ent information-assisted GP model (usually known as Gradient-Enhanced Kriging,

GEK) to reduce the computational cost associated with MCS for UQ in viscous

hypersonic flows. Within GEK framework, Dwight and Han (2009) employ sparse

grid integration to perform UQ in Computational Fluid Dynamics (CFD). Using

gradient information and prediction uncertainty of GP model, Shimoyama et al.

(2013) develop a dynamic adaptive sampling scheme for efficient UQ. Liu and Görtz

(2014) combine GEK with Niederreiter sequence based quasi-Monte Carlo (QMC)

quadrature to conduct the task of UQ in CFD model subjected to geometric uncer-

tainty. To sum up, these methods all use GP metamodel-based MCS to carry out

UQ with computational time reduced, and some of them introduce gradient informa-

tion, sparse grid integration, dynamic adaptive sampling scheme, or QMC quadra-

ture to further accelerate UQ. This paper proposes an analytical method for UQ

of modal frequencies using a GP metamodel, with the specific formulation that the

uncertain parameters are either uniformly- or normally-distributed. In the machine

learning literature, Girard et al. (2003) have used a GP metamodel with squared
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exponential covariance function to make analytical predictions several time steps a-

head for normally-distributed uncertain inputs. We adopt and extend Girard et al.’s

method, and use a GP metamodel to quantify the uncertainty of modal frequencies

from uniformly- and/or normally-distributed parameters. This present analytical GP

metamodel approach is more efficient and accurate than GP metamodel-based MCS

because it conducts the task of UQ in an analytically integrated manner. It should

be pointed out that if the uncertain parameters do not follow (or cannot be modeled

with) normal or uniform distributions, using efficient sampling-based MCS method

with a GP metamodel is also a promising alternative to alleviate the computational

burden associated with UQ drastically.

This paper makes the following main contributions: (1) We develop the analytical

GP metamodel-based method for UQ in structural dynamics of cases whose param-

eters are specified by normal and/or uniform distributions, which are the two most

useful (and commonly-used) distributions to characterize parameter uncertainty in

the engineering community, absent very domain-specific knowledge. (2) We use the

brute-force MCS as a benchmark to verify the feasibility of the proposed method

in terms of computational accuracy and efficiency. (3) We explore the relationship

between the uncertainty magnitude of individual parameter and the induced overall

uncertainty in structural dynamics. Thereby, we can have a good understanding of

relative importance of uncertainty magnitude of individual parameter to the uncer-

tainty in structural dynamics.

The rest of this paper is organized as follows. Section 2 outlines the formulation

of GP metamodel, and then Section 3 describes the proposed analytical uncertainty

quantification using the GP metamodel. The application of the GP approach to UQ

of modal frequencies of two real-world bridges is presented in Section 4. Finally,

Section 5 concludes this work.
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2. Gaussian process metamodel

Gaussian process (GP) (also known as Kriging process in the geostatistical liter-

ature) metamodel is developed based on concepts of Bayesian statistics. The prob-

abilistic, non-parametric GP model is favored here because of its flexibility in rep-

resentation of a complex physical system and its ability to quantify the uncertainty

associated with its prediction. The flexibility enables a GP metamodel not to be

restricted to a certain functional form due to a wide range of covariance functions.

The application of GP metamodel to deterministic computer code simulators dates

back to the work of Sacks et al. (1989). Recently, there has been an increasing appli-

cation of GP metamodel in engineering area (e.g., Jones et al. (1998); Simpson et al.

(2001); Dwight and Han (2009); Lockwood et al. (2011); Khodaparast et al. (2011);

Sankararaman and Mahadevan (2011); Becker et al. (2012); DiazDelaO et al. (2013);

Xia and Tang (2013); Shimoyama et al. (2013); Liu and Görtz (2014); Wan and Ren

(2014)), and the state of the art may be found in the following references: Mackay

(1998), Santner et al. (2003) and Rasmussen and Williams (2006).

2.1. Gaussian process prediction

A process {(x1, f(x1)) , (x2, f(x2)), . . . , (xn, f(xn))} is defined as a Gaussian pro-

cess if any finite number of process members have a joint Gaussian distribution. A

GP specified by mean function µ(x) and covariance function C(x, x′) is written as:

f(x) ∼ GP (µ(x), C(x, x′)) (1)

As can be seen from Eq. (1), the GP is fully characterized by its mean function

and covariance function. Zero mean function is used in this paper due to the fact

that we lack prior knowledge of the overall trend of the underlying function (Neal

(1998)) and also for the sake of brevity. However, zero mean function does not mean
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that the actual function is expected to be close to zero. And the extensively used

squared exponential covariance function given below is chosen based on the concept

that points close together in the input space should have highly correlated outputs

(Bichon et al. (2008)),

C(xi, x
′
j) = σ2 exp

−1

2

d∑
k=1

(
xki − xkj
θk

)2
 (2)

where xki (xkj ) is the k-th component of xi(xj), and d is the dimension of input space.

Θ = (θ1, . . . , θd, σ
2) are the covariance function parameters (usually called hyperpa-

rameters), in which θi is the length scale measuring how relevant an input is, and σ2

captures the overall scale of the local correlations.

Consider a training set D of n cases, D = {(x1, t1), (x2, t2), . . . , (xn, tn)}, in which

xi = (x1i , x
2
i , . . . , x

d
i ) is a d-dimensional input vector for case i and ti is the associated

target. Our task is to predict the target t∗ at a new input x∗. For the sake of

brevity, we rewrite the training data as D = (X,T ), where X = (xT1 , x
T
2 , . . . , x

T
n )T ,

and T = (t1, t2, . . . , tn)T , which follows a joint Gaussian distribution expressed as:

p(T ) ∼ GP (0, C(X,X)) (3)

And the combination of t∗ and training data D, T∗ = (T T , t∗)
T , also have a joint

Gaussian distribution:

p(T∗) ∼ GP

0,

 C(X,X) C(X, x∗)

C(x∗, X) C(x∗, x∗)

 (4)

Within the Bayesian framework, the posterior predictive distribution over t∗ condi-

tioned on the training data can be calculated from:

p(t∗|x∗,D) =
p(T∗)

p(T )
(5)
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Substituting Eq. (3) and Eq. (4) into Eq. (5) yields:

p(t∗|x∗,D) ∼ GP(t̂∗, νt̂∗) (6)

with the mean and the variance given by:

t̂∗ = αTC∗ (7)

νt̂∗ = σ2 − CT
∗ C
−1C∗ (8)

where C∗ = [C (x∗, x1) , C (x∗, x2) , . . . , C (x∗, xn)]T , C = C(X,X), and α = C−1T .

2.2. hyperparameters estimation

The standard conjugate gradient optimization routine is employed to estimate the

hyperparameters Θ from training data by maximizing the marginal likelihood, i.e.,

minimizing negative log marginal likelihood (NLML). It is implemented efficiently

due to the fact that both the likelihood and its partial derivatives with respect to

the hyperparameters may be calculated analytically. The expression of NLML L(Θ)

is stated as Eq. (9), and its partial derivatives with respect to each hyperparameter

Θi is given by Eq. (10) (Rasmussen and Williams (2006)),

L(Θ) = − log p(T |X,Θ) =
1

2
T TC−1T+

1

2
log |C|+ n

2
log(2π) (9)

∂L(Θ)

∂Θi

=
1

2
tr

(
C−1

∂C

∂Θi

)
− 1

2
T TC−1

∂C

∂Θi

C−1T (10)

where | · | and tr(·) denote the determinant and trace operator, respectively.

It should be noted that inferring the optimal values of the hyperparameters using

a conjugate gradient algorithm may be susceptible to local minima. This means that

the obtained hyperparameters Θ are dependent on the chosen initial points. In order

to avoid suffering from multiple local optima, the multi-starting point strategy is
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utilized in the optimization routine to search the optimal set of hyperparameters.

More specifically, first we generate 100 random starting points and compute the

NLML values for each case. Then 10 sets of starting points having the smallest

NLML values are selected as starting values to carry out conjugate gradient routine.

The final optimal set of hyperparameters is the one with the smallest NLML values

among these 10 pre-selected cases.

2.3. Model validation

Before the constructed GP model is used as the surrogate model, model accuracy

evaluation should be performed to check whether the adopted GP metamodel has

enough accuracy. If not, the hyperparameters should be adjusted until the updated

GP model has good performance. Considering that GP model has exact predictions

over training data for the noise-free condition (i.e., deterministic computer simu-

lation), the residuals can only be obtained using cross-validation technique or an

independent data set (Bastos and O’Hagan (2009)). The method of Leave-One-Out

Cross-Validation (LOOCV) is implemented in this study for model diagnosis (Jones

et al. (1998)).

The i-th cross-validated residual is given by the deviation between predictions at

i-th case before and after removing it from training data, i.e., (t(xi)− t−i(xi)). The

standardized cross-validated residual for this observation

Ri =
(t(xi)− t−i(xi))√

ν−i (xi)
(11)

is considered as a diagnostic metric. The normal quantile-quantile (Q-Q) plot is used

as the graphic diagnostic for normality test of the residuals (R1, R2, . . . , Rn). If the

residual points on normal Q-Q plot are well approximated by a straight line, the

normal hypothesis of the residuals is plausible, implying the established GP model

is of high quality.
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3. Parameter uncertainty quantification

3.1. Methodology

As described previously in Section 1, uncertainty quantification provides a mea-

sure of variability in model outputs given uncertainty-involved system inputs. The

mean and variance are the two most important order statistics used to quantify the

variability. According to probability theory, the mean and variance of output with

input probability distribution p(x∗) can be defined as:

m(t∗) =

∫
t∗p(t∗)dt∗

=

∫
t∗

(∫
p(t∗|x∗,D)p(x∗)dx∗

)
dt∗

=

∫ (∫
t∗p(t∗|x∗,D)dt∗

)
p(x∗) dx∗

(12)

v(t∗) =

∫
t2∗p(t∗)dt∗ −m2(t∗)

=

∫
t2∗

(∫
p(t∗|x∗,D)p(x∗)dx∗

)
dt∗ −m2(t∗)

=

∫ (∫
t2∗p(t∗|x∗,D)dt∗

)
p(x∗)dx∗ −m2(t∗)

(13)

Since ∫
t∗ p (t∗|x∗,D) dt∗ = t̂∗ (14)∫
t2∗ p (t∗|x∗,D) dt∗ = νt̂∗ + t̂2∗ (15)

and combining the rearrangement of Eq. (7) and Eq. (8) to get

t̂∗ =
n∑

i=1

αiC∗i (16)

νt̂∗ = σ2 −
n∑

j=1

n∑
i=1

C∗iC∗jC
−1
ij , (17)
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where C∗i = C (x∗, xi), C∗j = C (x∗, xj), Cij = C (xi, xj), and αi is the i-th element

of α, we then have mean term given by:

m(t∗) =

∫
t̂∗ p(x∗) dx∗

=
n∑

i=1

αi

∫
C∗i p(x∗) dx∗

=
n∑

i=1

αiγi

(18)

and variance term given by:

v(t∗) =

∫ (
νt̂∗ + t̂2∗

)
p(x∗) dx∗ −m2(t∗)

= σ2 +

∫ ( n∑
i=1

αiC∗i

)2

−
n∑

j=1

n∑
i=1

C∗iC∗jC
−1
ij

 p(x∗) dx∗ −m2(t∗)

= σ2 +

∫ [ n∑
i=1

αiC∗i

n∑
j=1

αjC∗j −
n∑

j=1

n∑
i=1

C∗iC∗jC
−1
ij

]
p(x∗) dx∗ −m2(t∗)

= σ2 +
n∑

j=1

n∑
i=1

∫ (
αiαj − C−1ij

)
C∗iC∗j p(x∗) dx∗ −m2(t∗)

= σ2 +
n∑

j=1

n∑
i=1

(
αiαj − C−1ij

) ∫
C∗iC∗j p(x∗) dx∗ −m2(t∗)

= σ2 +
n∑

j=1

n∑
i=1

(
αiαj − C−1ij

)
Γij −

(
n∑

i=1

αiγi

)2

(19)
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In Eq. (18) and Eq. (19), the quantities of γi and Γij are derived as follows:

γi =

∫
C∗i p(x∗) dx∗

= σ2

d∏
k=1

∫
exp

(
−
(
xk∗ − xki

)2
2θ2k

)
p
(
xk∗
)
dxk∗

= σ2

d∏
k=1

√
2π θk

∫
Nxk

∗

(
xki , θ

2
k

)
p
(
xk∗
)
dxk∗

= σ2 (2π)
d
2

d∏
k=1

θk

∫
Nxk

∗

(
xki , θ

2
k

)
p
(
xk∗
)
dxk∗

= σ2 (2π)
d
2

d∏
k=1

θkI
k
i

(20)

Γij =

∫
C∗iC∗j p(x∗) dx∗

= σ4

d∏
k=1

∫
exp

(
−
(
xk∗ − xki

)2
2θ2k

)
exp

(
−
(
xk∗ − xkj

)2
2θ2k

)
p
(
xk∗
)
dxk∗

= σ4

d∏
k=1

2π θ2k

∫
Nxk

∗

(
xki , θ

2
k

)
Nxk

∗

(
xkj , θ

2
k

)
p
(
xk∗
)
dxk∗

= σ4(2π)d
d∏

k=1

θ2k

∫
Nxk

i

(
xkj , 2θ

2
k

)
Nxk

∗

(
xki + xkj

2
,
θ2k
2

)
p
(
xk∗
)
dxk∗

= σ4 (2π)d
d∏

k=1

θ2kNxk
i

(
xkj , 2θ

2
k

) ∫
Nxk

∗

(
xki + xkj

2
,
θ2k
2

)
p
(
xk∗
)
dxk∗

= σ4 (2π)d
d∏

k=1

θ2k φ

(
xki − xkj√

2 θk

)
Ikij

(21)
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with

Iki =

∫
Nxk

∗

(
xki , θ

2
k

)
p
(
xk∗
)
dxk∗

=


∫
Nxk

∗

(
xki , θ

2
k

)
Nxk

∗

(
µk, σ

2
k

)
dxk∗ ifxk∗ ∼ N (µk, σ

2
k) ,

1

(uk − lk)

∫
Nxk

∗

(
xki , θ

2
k

)
dxk∗ ifxk∗ ∼ U(uk, lk).

=


φ

(
µk − xki√
θ2k + σ2

k

)/√
θ2k + σ2

k ifxk ∼ N (µk, σ
2
k) ,

1

(uk − lk)

[
Φ

(
uk − xki
θk

)
− Φ

(
lk − xki
θk

)]
ifxk ∼ U(uk, lk).

Ikij =

∫
Nxk

∗

(
xki + xkj

2
,
θ2k
2

)
p
(
xk∗
)
dxk∗

=



∫
Nxk

∗

(
xki + xkj

2
,
θ2k
2

)
Nxk

∗

(
µk, σ

2
k

)
dxk∗ ifxk∗ ∼ N (µk, σ

2
k) ,

1

(uk − lk)

∫
Nxk

∗

(
xki + xkj

2
,
θ2k
2

)
dxk∗ ifxk∗ ∼ U(lk, uk).

=


φ

(
2µk − (xki + xkj )√

2θ2k + 4σ2
k

)/√
2θ2k + 4σ2

k ifxk ∼ N (µk, σ
2
k) ,

1

(uk − lk)

[
Φ

(
2uk −

(
xki + xki

)
√

2 θk

)
− Φ

(
2lk −

(
xki + xki

)
√

2 θk

)]
ifxk ∼ U(lk, uk).

where φ(·) and Φ(·) denote probability density function (PDF) and cumulative dis-

tribution function (CDF) of the standard normal distribution, respectively.

The above derivations of quantities of Γij, Ii and Iij make use of the identity of

Gaussian multiplication, that is, the multiplication of two Gaussian distributions is

another Gaussian distribution (but no longer normalized), which is expressed as:

Nx (a,A) Nx (b, B) = zNx (c, C)
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where

C =
(
A−1 +B−1

)−1
c = C

(
A−1a+B−1b

)
.

z = Na (b, A+B)

3.2. Implementation procedure

The present metamodel-based methodology is to analytically evaluate the statis-

tics of the target response of interest with computational time substantially reduced.

The core of this methodology is that a GP metamodel is used as the surrogate model

of the computationally-expensive finite element simulator. To illustrate this work p-

resented above, a general flowchart for the framework of UQ using a GP metamodel

is shown in Fig. 1. This framework involves three main phases as follows:

Phase 1: Prepare training data

The Sobol sequence sampling, a space-filling experimental design, is adopted to pre-

pare training data for establishing the GP metamodel since it has desirable low-

discrepancy property (Paskov (1994); Cheng and Druzdzel (2000)). Note that these

Sobol points uniformly fall in the d-dimensional unit hypercube [0, 1]d, while the

physical parameters of structures follow specific distributions, e.g., normal distri-

bution and uniform distribution. Consequently, before entering inputs into a finite

element analysis (FEA) package to obtain the corresponding targets, distribution

transformation from sample space to physical space is performed based on the cu-

mulative probability equality principle. Then, to avoid biasing preference to certain

variables resulted from different magnitudes among training data, data standardiza-

tion is carried out before using them to train the GP metamodel. An appropriate

way is to normalize inputs/targets to the range [0, 1], or to normalize inputs/targets

with zero mean and unit variance. In this paper, for the case that the inputs follow
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uniform distribution, we scale inputs to the range [0, 1] and for the case that inputs

have normal distribution, we normalize inputs with zero mean and unit variance.

For the targets, we make no standardization because we construct GP metamodel

for each modal frequency, and thus there is no biasing preference to targets.

Phase 2: Construct Gaussian process metamodel

The conjugate gradient optimization combined with the multi-starting point tech-

nique, which attempts to prevent the process from getting trapped in local minima,

is adopted to search the most optimal set of hyperparameters. The normal Q-Q

graphic diagnostic is launched to verify whether the constructed GP metamodel has

acceptably good fitting quality. If not, we repeat the procedure of estimating the

hyperparameters until the quality assessment criterion is satisfied.

Phase 3: Uncertainty quantification of model outputs

Two order statistics, mean and variance, can be computed from Eq. (18) and E-

q. (19) respectively, within the established GP metamodel. According to the results,

we can gain insight into the uncertainty of model outputs of interest propagated from

uncertain parameters.

[ Fig. 1 about here. ]

4. Application

4.1. Case I: Fenghe Bridge

4.1.1. Bridge description

The Fenghe Bridge is a new five-span continuous truss bridge across Baima River

in China (Fig. 2). As shown in Fig. 3, the pedestrian bridge is 3.5 m wide and 115 m

long, with a center span of 25 m and side spans of 20 m. The superstructures of the

pedestrian bridge are mainly made up of four main chords, struts between top and
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bottom chords, horizontal and lateral bracings connecting the main chords, wooden

deck, and rails. All components of the superstructures, except the deck system and

the railing posts, are made of hollow steel tubes. The dimensions of the main chords,

struts, horizontal and lateral bracings are Φ273 × 16 mm, Φ140 × 12 mm, Φ114 ×
10 mm, respectively. The deck system is composed of hardwoods of dimensions of

3.5 m (length) ×0.2 m (width) ×0.15 m (thickness) uniformly placed at an interval

of 0.02 m. The railing posts are welds on the main chords at a distance of 2.2 m.

[ Fig. 2 about here. ]

[ Fig. 3 about here. ]

4.1.2. Finite element modeling

The three-dimensional linear elastic FEM for the pedestrian bridge is developed

based on the design drawings using FEA package ANSYS. The model has a total of

3035 nodes and 4962 elements, including 4832 beam elements (BEAM44) and 130

mass elements (MASS21). The main modeling aspects are summarized as follows:

• Considering that the wooden deck bolted on the main chords is commonly regarded

as a non-structural component, mass elements (MASS21) are used to model the

wooden deck.

• The railings, which are usually considered as non-structural components, are suf-

ficiently strong and large that they do contribute to the stiffness, as seen in Fig. 2.

Consequently, they are simulated as beam elements (BEAM44) rather than mass

elements (MASS21). This concept is verified by the subsequent study.

• The remaining members of the superstructures are all modeled as beam elements

(BEAM44).
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The resulting FEM and the first four mode shapes are shown in Fig. 4.

[ Fig. 4 about here. ]

4.1.3. Uncertainty quantification of modal frequencies

In this finite element model, the elastic moduli E of 6 substructures (classified

in Tab. 1) are treated as random parameters, although a 210 GPa nominal value is

claimed. We assume all parameters are normally distributed, with nominal values

as their means and 3% as the coefficient of variation (COV) (ratio of the standard

deviation to the mean). Then we will characterize the uncertainty of the first four

modal frequencies resulted from pre-characterized random parameters.

[ Tab. 1 about here. ]

Considering that metamodels will generally fail in their predictive power beyond

the range of the training data, it is significant that the training data covers the

range of the input space as full as possible. Therefore, a large number of training

points are recommended here since this computer-aided experimental method is not

restricted by time, place and several limited input values unlike the real-world in-

dustrial experiment. In this study, the number of training points generated by Sobol

sequence method is set to 300. We found that 300-sample training data hardly in-

creases the computational burden and has good performance as well. Based on the

theory stated in Section 3, the resulting mean and standard deviation of the first

four modal frequencies are listed in Tab. 2. To investigate the accuracy of the GP

method, the MCS approach is utilized to approximate the true values of statistics of

modal frequencies. From Fig. 5, we can see that the mean and standard deviation of

all four modal frequencies converge at 7.5× 104 samples. The corresponding results

are also listed in Tab. 2. Compared results obtained by GP method and true values
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given by MCS method, the largest relative errors of mean and standard deviation

are 0.00095% and 0.99132%, respectively. The nearly negligible relative errors verify

that the GP method performs as accurate as conventional MCS. However, in terms

of computational cost, the analytical GP methodology presents overwhelming supe-

riority over the brute-force MCS. Using the desktop platform of DELL Dimension

E520 with Pentium (R) D CPU 2.80 GHz, the former takes 63 minutes (including

the time spent in preparing the training data from FEA) whereas the time of the

latter is 1667 minutes. Based on the results, we can have a clear picture of how much

these uncertain parameters have impact on the first four modal frequencies.

[ Tab. 2 about here. ]

[ Fig. 5 about here. ]

Following UQ of modal frequencies, we explore how the uncertainty of modal fre-

quencies is influenced by uncertainty of an individual parameter. The COV of each

parameter is taken to be, respectively, 3%, 5%, 10%, 15%, 20%, 25% and 30%, one

parameter at a time, and all the rest is fixed to be 3%. The results are shown in

Fig. 6. The following observations can be made:

• There is overall trend that with an increase in variation of COV of parameter

uncertainty, the uncertainty of modal frequency increases.

• Substructure 2 (four main chords) influences the first four modal frequencies most.

This is due to the fact that the four main chords (also called the main truss)

constitute the main skeleton of the truss bridge.

• The uncertainty of substructure 6 (railing) also have critical impact on the un-

certainty of modal frequencies, especially on the first three ones. It verifies that
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railing cannot be treated as non-structural component any more for this truss

bridge. The variation in uncertainty of substructure 3 (struts) also leads to the

obvious changes in modal frequencies. This can be illustrated by the fact that

struts between top and bottom chords improve the overall strength of the bridge.

• The changes of modal frequencies is insensitive to uncertainty change of parameters

of the remaining substructures except that the fourth modal frequency exhibits

sensitivity to the substructure 1 (supporting tubes). Only when the parameters

of these substructures have high degree of uncertainty (COV = 30%) does the

magnitude of uncertainty in modal frequencies slightly increase.

[ Fig. 6 about here. ]

4.2. Case II: Beichuan River Bridge

4.2.1. Bridge description

Another test-bed to validate the GP UQ model is a full-scale half-through concrete-

filled steel tubular arch bridge crossing over Beichuan River, as shown in Fig. 7. This

90 m span arch bridge was constructed over the existing old bridge at Xining, China.

Fig. 8 shows the elevation and plan of the arch bridge. The superstructure of the

arch bridge is composed of a vertical load bearing system, a lateral bracing config-

uration, and a floor system. Each main rib consists of 4 concrete-filled tubes of the

dimensions of Φ650× 10 mm and the depth of main arch rib is 3 m. The main arch

ribs and the floor system are vertically connected by 32 suspenders. The floor system

comprises the 0.25 m thick concrete slab supported by cross girders at an interval

of 5 m. The dimensions of the cross-girder are 21.6 m (length) × 0.36 m (width)

× 1.361 m (height). The main arch ribs are fixed at two abutments, and connected

through 4 pre-stressed strands in the longitudinal direction on each side.
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[ Fig. 7 about here. ]

[ Fig. 8 about here. ]

4.2.2. Finite element modeling

The arch bridge is modeled in ANSYS environment as a three-dimensional linear

elastic model. The arch member, cross girder, and bracing members are modeled

by two-node beam elements (BEAM4). Truss elements (LINK10) are used to model

all suspenders and pre-stressed tie bars. The arch bridge deck is modeled as shel-

l elements (SHELL63). Solid elements (SOLID45) are employed to simulate the

abutments of arch. The connection between the cross-girders and bridge deck is

established by using spring element (COMBINE14) with nominal spring stiffness of

5 × 105 N/m in the transverse direction. This FEM consists of 3120 nodes, 1434

beam elements, 564 solid elements, 68 link elements, 1092 shell elements and 288

spring elements. A 3-D sketch of the FEM and the first four mode shapes are giv-

en in Fig. 9. For a detailed introduction about this arch bridge and the dynamic

analysis, refer to Zong et al. (2005).

[ Fig. 9 about here. ]

4.2.3. Uncertainty quantification of modal frequencies

For this full-scale engineering structure, a total of 15 parameters (Tab. 3) in-

cluding material and geometric properties of different components are assumed to

be uniformly falling within specified range. Brownjohn and Xia (2000) set the pri-

or parameter uncertainty bounds ±20% to thickness of deck and modulus of steel.

Jaishi and Ren (2005) assign ±30% uncertainty bounds to all parameters (e.g., elas-

tic modulus of steel and concrete) except thickness of deck whose uncertainty bounds

are set to ±20%. Ẑivanović et al. (2007) set ±30% to the uncertainty bounds of the
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modulus of steel, ±20%/±20% to the uncertainty bounds of the thickness of partial

deck. Here the ranges of each parameter are set to be ±20% fluctuation with respect

to its nominal value. The identical uncertainty bounds selection for all parameters is

explained in Subsection 4.3. We will characterize the uncertainty of these 15 param-

eters to the four modal frequencies, namely the first vertical, second vertical, first

torsion and first transverse frequencies (Fig. 9).

[ Tab. 3 about here. ]

Like the previous example of the truss bridge, a 300-sample training data set

created by Sobol sequence sampling methodology is adopted. Applying the GP

method to quantify uncertainty of modal frequencies, and the results are tabulated

in Tab. 4. MCS method is also used as the metric for accuracy assessment of the

GP approach. It can be seen from Fig. 10 that both mean and standard deviation of

all four modal frequencies converge at samples of 3.6 × 105. The associated results

are visualized in Tab. 4. The largest magnitude of errors in the mean and standard

deviation compared to the ”true” values approximated by MCS method are 0.12575%

and 4.01186%, respectively. The results obtained by the analytical GP method are

almost the same as the ”true” values, which demonstrates high accuracy of the

analytical GP method. In terms of run time, the GP method takes 194 minutes

(including the time of generating training data from FEA) while the time of carrying

out direct MCS is 64863 minutes.

[ Tab. 4 about here. ]

[ Fig. 10 about here. ]

Next we focus on a parametric study of the variation of frequency prediction

with respect to parameter uncertainty ranges. The level of uncertainty assigned to
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each parameter in turn is: ±20% ,±25% ,±30% ,±35% ,±40% ,±45% and ±50%

respectively, and uncertainty range of the remaining parameters keeps constant (i.e.,

±20%). The results are presented in Fig. 11, from which the observations are re-

ported as follows:

• Uncertainty of modal frequency increases monotonically with increasing level of

uncertainties in most of the parameters. However, sometimes the increase of un-

certainty of parameter 15 leads to a reduction of uncertainty of the second vertical

modal frequency. This phenomenon implies that the second modal frequency be-

comes less spread out over the larger range of parameter 15.

• For the first vertical modal frequency, its uncertainty significantly grows as the

levels of uncertainty of parameters 1, 2, 4, 5, 9 and 10 increase. The increase in

the size of uncertainty of parameters 1, 2, 4, 5, 9, 10, 11 and 12 result in larger

uncertainty in the second vertical modal frequency. As the uncertainty levels of

parameters 1, 2, 4, 5 and 15 become higher, the magnitudes of uncertainty of

the first torsion modal frequency escalate. And for the first transverse modal

frequency, only the increase of uncertainty of parameters 4, 5 and 15 can lead to

the dramatic increasing uncertainty.

• The uncertainty of these four modal frequencies is all sensitive to the variation of

parameters 4 and 5 and is insensitive to parameter 14. Some parameters that have

little impact on the uncertainty of one modal frequency can considerably influence

other modal frequencies. For example, the increasing uncertainty of parameter 15

has negligible effect on the uncertainty of the first vertical modal frequency but

cause the higher uncertainty of the first transverse modal frequency. The higher

the uncertainty of the parameter 9, the higher the uncertainty of the second modal

frequency while that of the first vertical modal frequency has little change.
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[ Fig. 11 about here. ]

4.3. Discussion

This section presents two complex engineering examples, one truss bridge and

one arch bridge, to verify the feasibility of applying GP method to quantify the

uncertainty of the modal frequencies. To cover two scenarios of parameter uncer-

tainty (normal and uniform distributions), the parameters of the truss bridge and

arch bridge are assumed as normally and uniformly distributed, respectively. For the

truss bridge, we assume the uncertain parameters with the same COV, and for the

arch bridge, the bounds of each parameter are set to be the same percentage change

with respect to its nominal value. The assumption of the same type of uncertainty

and the same magnitude of uncertainty in each structure aims at distinguishing the

importance or impact of these uncertain parameters under equal conditions (i.e., the

identical range of uncertainty) in the subsequent sensitivity analysis of magnitude

changes of parameter uncertainty. Fig. 12 is used to explain this selected assumption

of identical uncertainty. Assume the prior uncertainty bounds are 20% for parameter

1 and 10% for parameter 2, and the uncertainty percentage changes are set to 10%,

15%, 20%, and 25%. The sensitivity analysis of parameter uncertainty magnitude

graph is plotted when uncertainty percentage changes are assigned to each parameter

in turn and other parameter uncertainty level keep constant. Therefore the black

line for parameter 1 is corresponding to the dots: (10%, 10%), (15%, 10%), (20%,

10%), (25%, 10%) and the red line for parameter 2 is corresponding to the dots:

(20%, 10%), (20%, 15%), (20%, 20%), (20%, 25%). From the Fig. 12, we can con-

clude that uncertainty of parameter 2 (red line) more affect the overall uncertainty

and then is more important. Yet, this conclusion is very controversial because this

larger variation of standard deviation can result from larger uncertainty bounds of
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both parameters not just from one parameter’s uncertainty level change (see the dots

behind the lines). That is why we adopt identical prior uncertainty bounds for all

parameters.

[ Fig. 12 about here. ]

For the quantification of the uncertainty in quantity of interest propagated from

uncertain parameters, it is known that prior parameter uncertainty dominates the

final results. Accordingly, special care must be taken to choose prior parameter

uncertainty that characterized by ranges and/or distributions. As far as authors are

concerned, the strategies of determining prior parameter uncertainty are primarily

composed of following two aspects. (1) Prior parameter uncertainty should represent

the available information from measurement or observations. For example, it may

be reasonable to model prior parameter uncertainty as uniform distribution when

lower and upper bounds of the parameter are known, or as normal distribution when

mean and standard deviation of the parameter are known. (2) Structural parameters

including material and geometric parameters should follow the physical constraint of

positive definiteness and engineering judgment. When normal distribution is used to

specify parameter uncertainty, the value of COV should be small enough to guarantee

that almost all samples spread in the positive range. For the scenario with the largest

COV=30% in the first case, the normalized 99.9% tolerance interval is [1-3.29×0.3,

1+3.29×0.3], which are positive. Engineering judgment refers to engineering common

sense. For example, material parameters usually have higher level of uncertainty than

geometric parameters.

This proposed analytical GP metamodel-based method is suitable for the cases

whose parameters follow normal and/or uniform distributions, both of which are

commonly utilized to characterize the parametric uncertainty in engineering com-
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munity. For the cases whose parameters are specified by other distributions, MCS

in combined with GP metamodel is still an appealing means to deal with these UQ

problems. Alternatively, to accelerate the convergence of MCS, we can adopt the

more efficient sampling methods, e.g., Quasi-Monte Carlo methods and Latin hyper-

cube sampling.

5. Conclusion and summary

This work presents a framework for uncertainty quantification and propagation

using an analytical method by GP metamodel when uncertain inputs follow normal

and/or uniform distributions. Normal and uniform distributions are the two most

useful (and commonly-used) distributions used to characterize parameter uncertain-

ty in engineering community. For real-world structures, models are often complex

and high dimensional. Accordingly, when computing resources are limited, uncer-

tainty evaluation of structural dynamics of these structures using brute-force MCS

approach will suffer from a computational bottleneck. This analytical GP approach

can quantify uncertainty of model outputs efficiently and accurately, thus circum-

venting the problem of severe computational cost. This analytical GP approach is

applied to characterize the uncertainty of modal frequencies of the full-scale truss

and arch bridges propagated from uncertain parameters. And MCS approach is used

as the benchmark to check the accuracy of the GP method. Results show that the

GP methodology is as accurate as conventional methodology, but also offers consid-

erable computational savings. Therefore, the GP metamodel replacing the complex

numerical model is a good alternative to carry out the computationally-intensive

task of UQ of structural dynamics. In this paper, we also investigate the relation-

ship between the uncertainties of modal frequencies and parameters for two bridges
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with different parameter uncertainty characteristics. The following conclusions may

be drawn:

• The notion that increases in input parameter uncertainty will increase the uncer-

tainty of modal frequencies is not always true (see Fig. 11 (b)). That is to say,

the relationship between uncertainties of modal frequencies and input parameter-

s is not necessarily monotonically increasing. If the function f(x), denoting the

relationship between modal frequency and parameters, oscillates sharply at small

range of x and become steady as the range of x increases, the increase in uncer-

tainty of parameters will result in a reduction in uncertainty of modal frequency

instead.

• When the structure is more complex and has huge number of uncertain parameters

(e.g., the arch bridge) and there is no credible expert prior or existing information,

it is hard to determine the uncertainty level of which parameters most significant-

ly affect the uncertainty of modal frequencies. Depicting the relationship plot of

uncertainty of modal frequencies versus that of parameters can enable us to gain

insight into the internal mechanism. For example, the results verify our previous

intuitive judgment that the railing cannot be considered as non-structural compo-

nent for this truss bridge in finite element modeling because its uncertainty has

great impact on the modal frequencies.

• The influences of uncertainty of parameters on uncertainty in different order modal

frequencies, especially the mode of different classes (e.g., vertical, torsion modes),

are sometimes greatly different, such as parameters 9 (density of deck) and 15

(spring stiffness in lateral direction) of the arch bridge. It tells us that we should

pay close attention to those parameters whose uncertainties have little influence

on certain modal frequencies but can affect other modal frequencies more.
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Fig. 2. Overview of the Fenghe Bridge.
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(a)

(b)

Fig. 3. Configuration of the Fenghe Bridge: (a) Elevation and (b) Plan (unit: mm).
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(a)

First vertical mode Second vertical mode

Third vertical mode Fourth vertical mode

(b)

Fig. 4. FEM and mode shapes of the Fenghe Bridge: (a) FEM and (b) Mode shapes.
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Fig. 5. Mean and standard deviation of modal frequencies of the Fenghe Bridge

versus number of samples based on MCS: (a) Mean and (b) Standard deviation.

40



3 5 10 15 20 25 30

0

0.1

0.2

0.3

0.4

0.5

COV (%)

S
ta
n
d
a
rd

d
ev
ia
ti
o
n
(H

z)

E1

E2

E3

E4

E5

E6

(a)

3 5 10 15 20 25 30

0

0.1

0.2

0.3

0.4

0.5

COV (%)

S
ta
n
d
a
rd

d
ev
ia
ti
o
n
(H

z)
(b)

3 5 10 15 20 25 30

0

0.1

0.2

0.3

0.4

0.5

0.6

COV (%)

S
ta
n
d
ar
d
d
ev
ia
ti
on

(H
z)

(c)

3 5 10 15 20 25 30

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

COV (%)

S
ta
n
d
ar
d
d
ev
ia
ti
on

(H
z)

(d)

Fig. 6. Standard deviation of modal frequencies of the Fenghe Bridge versus COV:

(a) f1, (b) f2, (c) f3 and (d) f4.
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Fig. 7. General view of the Beichuan River Bridge.
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(a)

(b)

Fig. 8. Configuration of the Beichuan River Bridge: (a) Elevation and (b) Plan (unit:

cm).
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Overview

(a)

First vertical mode Second vertical mode

First torsion mode First transverse mode

(b)

Fig. 9. FEM and mode shapes of the Beichuan River Bridge: (a) FEM and (b) Mode

shapes.
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Fig. 10. Mean and standard deviation of modal frequencies of the Beichuan Riv-

er Bridge versus number of samples based on MCS: (a) Mean and (b) Standard

deviation.
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Fig. 11. Standard deviation of modal frequencies of the Beichuan River Bridge versus

percentage change in uncertainty: (a) f1, (b) f2, (c) f3 and (d) f4
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Tab. 1. Lists of parameters for substructures of the Henghe bridge.

No. Parameter Substructure description

1 E1 Tubes connecting bridge piers (yellow)

2 E2 Four main chords constituting main truss (cyan)

3 E3 Struts between top and bottom chords (blue)

4 E4 Lateral bracing connecting left and right chords (magenta)

5 E5 Horizontal bracing connecting left and right chords (green)

6 E6 Railings including railing posts and handrails (red)

Note: Colors in parentheses denote that substructures are demarcated with

the associated colors in FEM (Fig. 4).

Tab. 2. Mean and standard deviation of modal frequencies of the Fenghe Bridge

(Hz).

Frequency
GP method MCS Relative error (%)

µ σ µ σ µ σ

f1 4.35140 0.04384 4.35147 0.04408 -0.00161 -0.54446

f2 5.36819 0.05171 5.36814 0.05200 0.00093 -0.55769

f3 6.36327 0.05975 6.36331 0.05916 -0.00063 0.99730

f4 6.71955 0.06298 6.71952 0.06317 0.00045 -0.30078

Note: Relative error=(GP-MCS)/MCS
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Tab. 3. Characteristics of parameters of the Beichuan River Bridge.

No. Parameter Nominal value

1 Elastic modulus of stell used in hollow tube (P1) 2.1× 1011 (Pa)

2 Elastic modulus of concrete filled tubular arch rib (P2) 4.560× 1010 (Pa)

3 Moment of inertia of concrete filled tubular arch rib (P3) 0.0147196 (m4)

4 Density of concrete filled tubular arch rib (P4) 2871.14 (kg/m3)

5 Sectional area of concrete filled tubular arch rib (P5) 0.4311 (m2)

6 Elastic modulus of wall above deck (P6) 2.850× 1010 (Pa)

7 Density of of wall above deck (P7) 2500 (kg/m3)

8 Elastic modulus of deck (P8) 3.0× 1010 (Pa)

9 Density of deck (P9) 2500 (kg/m3)

10 Thickness of deck (P10) 0.25 (m)

11 Elastic modulus of cross girder (P11) 3.450× 1010 (Pa)

12 Moment of inertia of cross girder about major axis (P12) 0.0756 (m4)

13 Sectional area of suspender (P13) 0.002494 (m2)

14 Sectional area of prestressed cable (P14) 0.0044428 (m2)

15 Spring stiffness in lateral direction (P15) 5.0× 105 (N/m)
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Tab. 4. Mean and standard deviation of modal frequencies of the Beichuan River

Bridge (Hz).

Frequency
GP method MCS Relative error(%)

µ σ µ σ µ σ

f1 1.71786 0.08778 1.71826 0.08734 -0.02328 0.50378

f2 2.17624 0.11584 2.17898 0.11476 -0.12575 0.94109

f3 2.33675 0.13591 2.33710 0.13555 -0.01498 0.26558

f4 2.65836 0.11926 2.66109 0.11466 -0.10259 4.01186
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