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Abstract of the Dissertation

Microstructural Feature-based Processing and

Analysis of Diffusion Tensor MRI

by

Jin Kyu Gahm

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2014

Professor Daniel B. Ennis, Co-chair

Professor Demetri Terzopoulos, Co-chair

Tensors increasingly arise in a variety of medical imaging and image process-

ing contexts. Diffusion tensor magnetic resonance imaging (DT-MRI) measures

the self-diffusion rate of water molecules within small volumes of biological tis-

sues to characterize their microstructural features. The diffusion tensor can be

decomposed into shape and orientation components, and the shape components

are intuitively and saliently characterized by tensor invariants. Hence the invari-

ant and orientation information implies the microstructural features of tissues.

The mathematical framework that freely builds tensors from tensor invariants has

been recently established, and allowed for developing novel approaches for pro-

cessing and analysis of diffusion tensor fields. New tensor interpolation methods

are devised that linearly interpolate each of tensor invariants and orientations

to preserve cardiac microstructural features. The uniform tensor invariant set

is proposed that linearly characterizes tensor shape, and provides more accurate

tensor field interpolation and analysis of cardiac diffusion tensor fields. A mi-

crostructural feature-based tensor distance is also defined by a linear combination

of tensor invariant and orientation distances, and applied to graph-based segmen-

tation of cardiac diffusion tensor fields. Finally, the effects of noise in DT-MRI
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are evaluated on tensor invariants characterizing tensor shape over the complete

space of tensor shape. In addition, a new framework is developed for determin-

ing the distribution of the likely true values of tensor invariants given their noisy

measures.
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CHAPTER 1

Introduction

Tensors increasingly arise in a variety of medical imaging and image processing

contexts. Second-order tensors in three-dimensional space, in particular, are useful

quantities because they describe linear transformations between vectors in the

space. The central focus of the work described herein is the processing and analysis

of diffusion tensor magnetic resonance imaging (DT-MRI) data, which measures

the self-diffusion tensor of water molecules within small volumes of soft biological

tissues [Basser et al., 1994a]. Attributes of DT-MRI are now widely used to

characterize the local microstructural environment including diffusive shape and

microstructural orientation within the brain [Basser and Pierpaoli, 1996], heart

[Scollan et al., 1998, Hsu et al., 1998, Kung et al., 2011], and other tissues.

Diffusion tensors are represented as 3 × 3 symmetric positive definite matri-

ces that can be decomposed into a system of three eigenvectors and three positive

eigenvalues. More generally, diffusion tensors can be decomposed into independent

shape and orientation components. The shape components describe the overall

and relative sizes of the principal axes (rates of diffusion) and are, in general, in-

dependent of the chosen coordinate system. The orientation components describe

the relationship between the principal axes and a local coordinate system. Most

commonly, the shape components are characterized by the eigenvalues and the

orientation components are described by the eigenvectors.

The individual eigenvalues, however, fail to isolate the salient geometric fea-

tures of tensor shape. Tensor invariants are the preferred means for characterizing
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tensor shape and are considered to report important, if not intuitive, properties

of the underlying diffusive process [Basser et al., 1994b]. Tensor invariants can be

used to categorize tensor shape attributes into three independent components:

the magnitude-of-isotropy (tensor trace, determinant or norm), magnitude-of-

anisotropy (fractional or relative anisotropy) and kind-of-anisotropy (tensor mode

or skewness) [Ennis and Kindlmann, 2006, Kindlmann et al., 2007a]. DT-MRI

data have been used extensively to evaluate microstructural organization and re-

modeling in health and disease by investigating the magnitudes or changes in

tensor invariants including tensor trace, fractional anisotropy (FA) and mode [So-

tak, 2002, Thomalla et al., 2004, Jolapara et al., 2009].

Tensor orientation is commonly represented by a rotation matrix consisting

of the three eigenvectors. Other representations include a unit quaternion and

Euler angles – common alternatives to the rotation matrix in computer graphics

[Shoemake, 1985]. In cardiac applications the primary eigenvector corresponds

to the direction of fastest diffusion, which has been shown to align with the long

axis of the myocytes that comprise the heart [Scollan et al., 1998, Hsu et al.,

1998, Kung et al., 2011]. The secondary and tertiary eigenvectors correspond to

the crossfiber-within-sheet direction and the sheet normal direction, respectively

[Kung et al., 2011].

1.1 Motivation

The diffusion tensor shape and orientation information are important components

of computational models of cardiac mechanics and electrophysiology (EP) [Krish-

namoorthi et al., 2013]. EP models require millions of closely spaced nodes that

do not necessarily lie at lattice points. DT-MRI measurements, however, are on

a lattice and typically number � 1e6 so interpolation of the diffusion tensors is

needed. The conventional methods of tensor interpolation are mostly based on

2



the Riemannian space formed by symmetric positive definite tensors [Batchelor

et al., 2005, Fletcher and Joshi, 2007, Lenglet et al., 2006, Pennec et al., 2006, Ar-

signy et al., 2006]. The tensor-based Riemannian approaches maintain the tensor

determinant but underestimate tensor trace and FA [Kindlmann et al., 2007b].

The Riemannian space-based methods are mathematically convenient but, as will

be shown, do not preserve microstructural features.

The research in this dissertation is motivated by the problem of the most

widely used Riemannian approaches that were developed on the tensor level with-

out specific regard for tissue microstructure. We suggest an approach for tensor

field processing on the level of the shape and orientation components of the ten-

sor that characterize microstructural features. The microstructural feature-based

interpolation is accomplished by directly interpolating each component of tensor

shape (tensor invariants) and orientation (eigenvectors). To do so, we devel-

oped the mathematics for converting tensor invariants into eigenvalues [Gahm

et al., 2014]. This allows for the separate interpolation of tensor invariants and

eigenvectors and subsequent recapitulation of the tensor from the interpolated

components.

The mathematical framework that freely converts between tensor invariants

and eigenvalues are also used to develop novel approaches for the analysis of dif-

fusion tensor fields. The noise immunity of tensor invariants has previously been

investigated, by simulation, mostly under an assumption of cylindrically symmet-

ric anisotropy [Pierpaoli and Basser, 1996, Jones, 2004, Kingsley and Monahan,

2005]. This assumption is convenient, but not acceptable for all applications. The

mathematical conversion between tensor invariants and eigenvalues, therefore, en-

ables tensor invariant-based evaluation of the effects of noise over the complete

space of tensor shape.

These microstructural feature-based tensor processing and analysis tasks re-

quire an appropriate tensor invariant set that characterizes features of microstruc-

3



tural shape. One may spontaneously choose a set including FA and mode because

they are widely used in the literature. We observe, however, that FA and mode

do not characterize their tensor components in a linear manner, that is, their

equally spaced values produce non-equal distances between the eigenvalues. Mo-

tivated by this observation, we develop a new tensor invariant set that linearly

characterizes tensor shape. Such a tensor invariant set that logically quantifies

a change in tensor shape allows for more accurate microstructural feature-based

tensor processing and analysis.

1.2 Overview

The overall objective of this dissertation was to develop mathematically unam-

biguous and computationally efficient methods for processing, interpolating and

analyzing diffusion tensor fields that preserve features of microstructural shape

and orientation. This was achieved by tensor field processing directly on each

component of tensor shape and orientation (tensor invariants and eigenvectors),

and subsequent recapitulation of the tensor from the tensor components for further

tensor-based processing and analysis.

Chapter 2 provides a mathematical introduction to establish terminology com-

monly used throughout the dissertation including the basic mathematics of diffu-

sion tensors and descriptions of tensor shape and orientation. This chapter also

introduces the mathematics for conversion between the tensor shape descriptions

(eigenvalues and invariants) that is important because work throughout the dis-

sertation is based on the mathematical framework for tensor decomposition and

reconstruction using tensor invariants.

Chapter 3 describes a tensor shape interpolation method that linearly interpo-

lates components of tensor shape (tensor invariants). The tensor invariant-based

method is compared to the conventional tensor-based methods including the Rie-

4



mannian approaches using experimentally measured cardiac DT-RMI data. Our

method is shown to better recover the features of cardiac microstructural shape

at substantially reduced computational cost.

Chapter 4 describes a tensor orientation interpolation method that interpolates

between the dyadic tensors of eigenvectors. The dyadic tensor-based method that

sidesteps the eigenvector sign ambiguity problem is compared to the conventional

tensor-based methods for recovery of the cardiac microstructural orientation. Our

method has significantly less bias for recovery of the secondary and tertiary eigen-

vector, which is especially important for interpolating myolaminar sheet orienta-

tion in the heart.

Chapter 5 defines a new weighted component-based tensor distance that lin-

early combines tensor shape (three tensor invariants) and orientation distances.

Moreover the weighted component-based tensor distance allows users to easily

adjust relative contributions of the distance components toward an optimal sin-

gle distance for a particular application. It is applied to graph-based multi-label

segmentation of DT-MRI data from infarcted hearts, and compared to other con-

ventional metrics. The segmentation results using each metric are presented to

show that the weighted component-based tensor distance is both simple and more

accurate.

Chapter 6 describes the fundamental work that evaluates by simulation the

effects of noise on characterizing tensor shape over the complete space of tensor

shape for different DT-MRI encoding schemes. Previous work has only examined

the impact of noise over a narrow range of tensor shape. A new framework is also

defined that determines the distribution of the true values of the observed tensor

invariants given their noisy measures, which provides guidance about the confi-

dence the observer should have in the measured tensor invariants. The statistics of

tensor invariant estimates over the complete space of tensor shape are presented to

demonstrate how the noise sensitivity of tensor invariants varies across the space
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of tensor shape as well as how the DT-MRI acquisition protocol impacts measures

of tensor invariants.

Chapter 7 presents a new tensor invariant set consisting of trace, relative

anisotropy (RA) and angular mode (the arccos of mode), termed uniform tensor

invariant set, that more logically (linearly) characterizes the complete space of

tensor shape. Linearity is mathematically proven by showing that evenly spaced

values of each tensor invariant in the set produce uniform distances between the

eigenvalues for each step exclusively. FA and mode fail to produce equal distances

between the eigenvalues for each step. The logical property of the uniform tensor

invariant set is demonstrated by comparison of the uniform tensor invariants to FA

and mode for tensor field interpolation and analysis of experimentally measured

cardiac diffusion tensor fields.

Finally Chapter 8 concludes the dissertation by summarizing the important

aspects of the work and discussing potential future work.

1.3 Contributions

The primary contributions of this dissertation are summarized:

• Development of tensor invariant-based interpolation of tensor shape (Chap-

ters 3 and 7) [Gahm et al., 2012, Gahm and Ennis, 2014b]. Previous tensor-

based interpolation methods were mathematically convenient, but did not

preserve important microstructural features.

• Development of dyadic tensor-based interpolation of tensor orientation (Chap-

ter 4) [Gahm and Ennis, 2014a]. This is the first use of the dyadic tensors

of eigenvectors to resolve the eigenvector sign ambiguity problem.

• Development of a microstructural feature-based measurement of tensor dis-

tance with different weights (Chapter 5) [Gahm et al., 2013]. Previous

6



tensor-based metrics provided a single overall tensor distance with unknown,

fixed contributions of the microstructural features.

• Evaluation of the effects of noise on characterizing tensor shape over the

complete space of tensor shape (Chapter 6) [Gahm et al., 2014]. The effects

of noise were previously investigated only over a narrow range of tensor

shape.

• Development of a new tensor invariant set that linearly characterizes tensor

shape (Chapter 7) [Gahm and Ennis, 2014b]. Though widely used evenly

spaced values of FA and mode failed to produce equal distances between the

eigenvalues for each step.
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CHAPTER 2

Background

This chapter describes mathematical background commonly used for the research

in this dissertation. Each subsequent chapter has its own introduction and theory

sections that provide considerably more background that is specific to the research

described within the chapter.

2.1 Mathematical Background

2.1.1 Tensor Algebra Basics

Tensors, in general, are geometrical objects that describe linear transformations

between scalars, vectors, and other tensors. A second-order tensor represents a

linear transformation between vector spaces, where the vector space in this work

is the three-dimensional Euclidean space R3. That is, a second-order tensor D

maps an input vector u to another vector v = Du. This mapping is linear in the

sense that:

D(u + v) = Du + Dv, ∀u,v ∈ R3 , (2.1)

D(αu) = αDu, ∀α ∈ R,u ∈ R3 .

Examples of such second-order tensors include projections, rotations, and reflec-

tions. All tensors in this work will be second-order.

A tensor D is called symmetric if D = DT , or skew-symmetric if D = −DT . A

non-invertible tensor is called singular. A tensor D is said to be positive definite
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if v · Dv is positive, or positive semi-definite if v · Dv is non-negative, for any

non-zero vector v ∈ R3.

The dyadic product (tensor product) of two vectors u and v is the second-order,

rank-one tensor u⊗ v, termed a dyad, and defined by:

(u⊗ v)w = (v ·w)u, ∀w ∈ R3 . (2.2)

2.1.2 Matrix Representations

A vector or tensor has a unique matrix representation in an ordered basis. Or-

thonormal bases consist of vectors that are mutually orthogonal with unit length.

Tensors represented in orthonormal bases are called Cartesian, and only Cartesian

tensors are used in this work.

Given a ordered orthonormal basis B = {b1,b2,b3} for R3, a vector v can be

represented in a matrix form:

[v]B =


v1

v2

v3

 , vi = bi · v . (2.3)

Then any vector v can be uniquely expressed as a linear combination:

v =
3∑
i=1

vibi =
3∑
i=1

(bi · v)bi , (2.4)

A tensor can be represented in a matrix form:

[D]B =


D11 D12 D13

D21 D22 D23

D31 D32 D33

 , Dij = bi ·Dbj . (2.5)

We call [D] the matrix representation in an arbitrary basis. The matrix represen-

tation of a dyadic product u⊗v is the outer product of the matrix representations
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of u and v:

[u⊗ v]B = [u]B[v]TB =


u1v1 u1v2 u1v3

u2v1 u2v2 u2v3

u3v1 u3v3 u3v3

 . (2.6)

In particular, the nine dyadic products of the basis vectors, {bi ⊗ bj}, form a

basis for the set of all second-order tensors on R3. Any tensor D can be uniquely

represented as a linear combination:

D =
3∑
j=1

3∑
i=1

Dijbi ⊗ bj =
3∑
j=1

3∑
i=1

(bi ·Dbj)bi ⊗ bj . (2.7)

In the DT-MRI literature, a diffusion tensor is commonly represented by a sym-

metric positive-definite matrix in the coordinate frame made by the MRI scanner.

This coordinate frame is called the laboratory frame, which will be denoted by L:

[D]L =


Dxx Dxy Dxz

Dxy Dyy Dyz

Dxz Dyz Dzz

 . (2.8)

There are six degrees of freedom for such symmetric tensors.

2.1.3 Eigenvalues and Eigenvectors

A unit vector e is an eigenvector of a tensor D satisfying the linear equation:

De = λe ⇔ (λI−D)e = 0 , (2.9)

where a scalar λ is called the eigenvalue corresponding to e. Since the tensor

λI − D is singular, the eigenvalues are the roots of the characteristic (cubic)

polynomial :

p(λ) = det(λI−D) . (2.10)

The eigenvectors e associated with each eigenvalue λi are obtained by solving Eq.

2.9.
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When D is symmetric, all three eigenvalues are real (positive if D is positive

definite), and all the associated eigenvectors are also real and mutually orthogonal.

Then there exists a right-handed, orthonormal basis consisting solely of eigenvec-

tors of D, E = {e1, e2, e3}, called the principal frame. The matrix representation

of D in the principal frame is represented as a diagonal matrix of eigenvalues from

Eq. 2.5:

([D]E)ij = ei ·Dej = ei · λjej ,

which yields

[D]E = Λ =


λ1 0 0

0 λ2 0

0 0 λ3

 , (2.11)

where the eigenvalues are typically sorted in decreasing order (λ1 ≥ λ2 ≥ λ3).

From Eq. 2.12, the spectral decomposition (dyadic representation) of D is:

D =
3∑
i=1

λiei ⊗ ei . (2.12)

A diffusion tensor represented in the laboratory frame [D]L in Eq. 2.8 can be

factorized as:

[D]L = RΛRT (2.13)

R =
[
[e1]L [e2]L [e3]L

]
,

where R is a rotation matrix in which each column is an eigenvector represented

in the laboratory frame.

2.2 Tensor Shape

A diffusion tensor D can be decomposed into independent tensor shape and ori-

entation components. The shape components are commonly characterized by the

three eigenvalues λi, and the orientation components by the three eigenvectors ei
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Figure 2.1: An ellipsoid that visually represents a diffusion tensor. The axes are

aligned with the eigenvectors and scaled by the eigenvalues.

of D. Therefore, the shape components have three degrees of freedom of D (six

degrees of freedom), spanned by changes of λi with fixed ei, and the orientation

components have another three degrees of freedom of D, spanned by changes of

ei with fixed λi. The shape and orientation components characterized by the

eigenvalues and eigenvectors can be graphically represented as an ellipsoid in the

principal frame of D, where its axes are aligned with the eigenvectors and scaled

by the eigenvalues (Fig. 2.1).

2.2.1 Tensor Invariants

Each eigenvalue characterizes the length of the corresponding principal axis (eigen-

vector). However, individual eigenvalues fail to isolate more salient geometric

shape properties such as the overall size and relative sizes of the principal axes.

Tensor invariants are the preferred means to characterize such salient properties

of the underlying diffusive process in DT-MRI [Basser et al., 1994b, Ennis and

Kindlmann, 2006, Kindlmann et al., 2007a]. The term “invariant” implies that

their value is unchanged by a change to the choice of basis (coordinate system)

for the matrix representation of the tensor.

Tensor invariants are categorized into three independent components of tensor

shape: the magnitude of isotropy, magnitude of anisotropy and kind of anisotropy.

The magnitude of isotropy describes some aspect of the overall size and is char-
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acterized, for example, by tensor trace (three times mean diffusivity), norm or

determinant. The magnitude of anisotropy quantifies the extent to which the dif-

fusion rates are directionally dependent, and can be characterized by fractional

anisotropy (FA) or relative anisotropy (RA) [Basser, 1995]. The kind of anisotropy

describes another property of tensor anisotropy from planar anisotropy, to or-

thotropy, to linear anisotropy, and can be characterized by tensor mode [Criscione

et al., 2000] or skewness.

2.2.2 Orthogonal Tensor Invariant Sets

The two sets of orthogonal tensor invariants have been described previously by

[Ennis and Kindlmann, 2006]. The term “orthogonal tensor invariant set” in-

dicates that all permutations of tensorial contraction of the gradients of each

invariant Ji within a set are zero:

∂Ji
∂D

:
∂Jj
∂D

= 0, (i 6= j) . (2.14)

Each orthogonal tensor invariant includes a measure characterizing one of the

three degrees of freedom of tensor shape, the magnitude of isotropy (K1 or R1),

the magnitude of anisotropy (K2 or R2), and the mode of anisotropy (K3 = R3).

The Ji = Ki set of orthogonal tensor invariants includes the tensor trace (K1),

RA(K2), mode (K3), and are defined for a tensor D as follows:

K1 = trD (2.15)

K2 = normD̃

K3 = modeD̃ =
3
√

6 det D̃(
normD̃

)3 ,
where tr is the tensor trace, norm is the tensor Frobenius norm, det is the tensor

determinant, and deviatoric D̃ = D− 1
3
trD.

The Ji = Ri set of orthogonal tensor invariants includes the tensor norm (R1),
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FA (R2), and mode(R3 = K3), and are defined as follows:

R1 = normD (2.16)

R2 =

√
3

2

normD̃

normD

R3 = K3 .

One advantage of orthogonal tensor invariants is that they characterize indepen-

dent components of tensor shape. Orthogonality eliminates the mathematical

correlation between the invariants, which implies statistical independence.

2.2.3 Non-orthogonal Invariant Set

Despite the advantage of using sets of orthogonal invariants (Ki or Ri), there

is a tremendous volume of literature that analyzes DT-MRI data by evaluating

the tensor trace (K1) and FA (R2), which has given rise to a body of knowledge

and expectation about the values of these invariants and how they are altered by

disease [Sotak, 2002, Thomalla et al., 2004, Jolapara et al., 2009]. Note, however,

that K1 is not orthogonal to R2 (see [Ennis and Kindlmann, 2006]). Furthermore,

these two degrees of freedom are not sufficient to completely describe tensor shape,

and therefore tensor mode (K3 = R3) is also needed. Such a non-orthogonal, but

popular invariant set {K1, R2, R3} is also used to fully characterize tensor shape

in this work.

Note that the non-orthogonal invariant set including R2 and R3 is chosen due

to their widespread use in the literature, but R2 and R3 are inappropriate for

characterizing their components of tensor shape in a linear manner. It is desirable

that tensor invariants and their corresponding tensor components have a linear

relationship. This topic is more completely addressed in Chapter 7.
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Figure 2.2: Four different descriptions of tensor orientation by changing the sign

of each eigenvector preserving the right hand rule.

2.3 Tensor Orientation

Tensor orientation describes a rotation between the principal frame and the lab-

oratory frame. Hence tensor orientation is commonly represented by the rotation

matrix R ∈ SO(3) consisting of three eigenvectors in the laboratory frame (Eq.

2.13). Tensor orientation can also be represented by a unit quaternion or Euler

angles.

The sign of an eigenvector ei is not unique, in general, because both ei and −ei

satisfy the eigenvalue equation given in Eq. 2.9. The eigenvector sign ambiguity

implies that tensor orientation cannot be uniquely described. There are four

possibilities for a rotation matrix R preserving the SO(3) group (det R = +1):

Ri = RPi , (2.17)

where Pi is a diagonal matrix of pj such that pj = ±1 and p1p2p3 = 1. These

can be considered as different bases preserving the right hand rule in the principal

frame from Eq. 2.11 (Fig. 2.2).

2.4 Tensor Shape from Invariant Sets

We recently developed the mathematics that permits a tensor to be recapitulated

from its shape and orientation components. In particular, if the eigenvalues (λi)

and column eigenvectors (ei) are known, then the matrix expression for tensor D in

the laboratory frame ([D]L) can be obtained from Eq. 2.8. In order to recapitulate
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a tensor from its tensor invariants and orientation information, a transformation

between the tensor invariants and the eigenvalues must be formulated.

The eigenvalues of tensor D are found by solving the characteristic equation

p(λ) = 0 in Eq. 2.10, which yields a simple cubic polynomial equation:

λ3 + aλ2 + bλ+ c = 0 . (2.18)

A closed-form solution for the eigenvalues can be formulated [Press, 2002]:

λ1 =
a

3
+ 2
√
Q cos

(
Θ

3

)
(2.19)

λ2 =
a

3
+ 2
√
Q cos

(
Θ− 2π

3

)
λ3 =

a

3
+ 2
√
Q cos

(
Θ + 2π

3

)
,

where

P =
2a3 − 9ab+ 27c

54
(2.20)

Q =
a2 − 3b

9

Θ = arccos

(
P√
Q3

)
.

By identifying the relationship between {P,Q,Θ} (or {a, b, c}) and the orthogonal

tensor invariant set {Ki}, the expressions for the eigenvalues from the invariants

were derived as [Gahm et al., 2014]:

λ1 = 1
3
K1 +

√
2
3
K2 cos

(
arccos (K3)

3

)
(2.21)

λ2 = 1
3
K1 +

√
2
3
K2 cos

(
arccos (K3)− 2π

3

)
λ3 = 1

3
K1 +

√
2
3
K2 cos

(
arccos (K3) + 2π

3

)
.

A similar result was first shown by [Criscione et al., 2000] and [Hasan et al., 2001].

Alternately, the expressions for the eigenvalues from the orthogonal invariant
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set {Ri} were given as [Gahm et al., 2014]:

λ1 = 1
3
R1

√
3− 2R2

2 + 2
3
R1R2 cos

(
arccos (R3)

3

)
(2.22)

λ2 = 1
3
R1

√
3− 2R2

2 + 2
3
R1R2 cos

(
arccos (R3)− 2π

3

)
λ3 = 1

3
R1

√
3− 2R2

2 + 2
3
R1R2 cos

(
arccos (R3) + 2π

3

)
.

Finally, the expression for the eigenvalues from the non-orthogonal tensor invariant

set {K1, R2, R3} were also given as [Gahm et al., 2014]:

λ1 = 1
3
K1 +

2K1R2

3
√

3− 2R2
2

cos

(
arccos (R3)

3

)
(2.23)

λ2 = 1
3
K1 +

2K1R2

3
√

3− 2R2
2

cos

(
arccos (R3)− 2π

3

)
λ3 = 1

3
K1 +

2K1R2

3
√

3− 2R2
2

cos

(
arccos (R3) + 2π

3

)
.
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CHAPTER 3

Tensor Shape Interpolation

3.1 Introduction and Related Work

Diffusion tensor shape and orientation properties are important components of

computational models of cardiac mechanics and electrophysiology that require

closely spaced nodes that do not necessarily lie at lattice points. DT-MRI data are,

however, acquired at lattice points within a three-dimensional imaging volume,

therefore tensor interpolation methods are needed.

The simplest tensor interpolation method is the Euclidean (EU) method, but

it suffers from the swelling effects due to non-monotonic interpolation of tensor

determinant (DET), and does not preserve the positive definiteness of diffusiv-

ity. The Riemannian approaches [Batchelor et al., 2005, Fletcher and Joshi, 2007,

Lenglet et al., 2006, Pennec et al., 2006] overcome this problem, and more re-

cently the log-Euclidean (LE) method [Arsigny et al., 2006] has been shown to

be a computationally efficient approximation to the affine-invariant (AI) Rieman-

nian approach [Pennec et al., 2006]. Kindlmann et al. [Kindlmann et al., 2007b]

proposed a geodesic-loxodrome (GL) approach that guarantees monotonic inter-

polation of orthogonal tensor invariants, and demonstrated that the EU, AI and

LE approaches fail to monotonically interpolate all the tensor invariants includ-

ing tensor trace (TR), fractional anisotropy (FA) and tensor mode (MODE). The

geodesic-loxodrome approach, however, is computationally expensive, and mono-

tonic interpolation of the tensor invariants needs to be evaluated using experimen-
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tally measured DT-MRI data. A Recent study has examined different methods

to interpolate separately tensor shape and orientation. Yang et al. [Yang et al.,

2012] proposed a method to resolve the sign ambiguity problem by finding the

minimum rotation path between tensor orientations, but the minimum rotation

path may not be the best way to resolve the sign ambiguity problem.

Firstly, we propose a new linear invariant (LI) tensor interpolation method,

which linearly interpolates components of tensor shape (tensor invariants). We use

the mathematics for converting the tensor invariants to eigenvalues to recapitulate

the interpolated tensor from the linearly interpolated tensor invariants and the

eigenvectors of a linearly interpolated tensor. The LI tensor interpolation method

is simple to implement, fast, and perfectly commutative. Secondly, we determine

which tensor interpolation scheme introduces the least microstructural bias to

the shape and orientation of the interpolated tensors. To do so the LI tensor

interpolation method is compared to the EU, AI, LE and GL methods of tensor

interpolation using both a synthetic tensor field that reflects important myocardial

tensor field attributes, and three experimentally measured DT-MRI datasets from

rabbit, pig and human hearts.

3.2 Theory

A tensor invariant set composed of TR (K1, magnitude-of-isotropy), FA (R2,

magnitude-of-anisotropy) and MODE (R3, kind-of-anisotropy) fully decompose

the shape of a tensor D defined in Eqs. 2.15 and 2.16.

Linear invariant (LI) interpolation of tensor CLI from tensors A and B with

weighting coefficient t ∈ [0, 1] starts by linearly interpolating the tensor invariants

Jj = {K1, R2, R3}:
Jj(CLI) = (1− t)Jj(A) + tJj(B) , (3.1)

for j = 1, 2, 3. Then the mathematics for converting the tensor invariants into the
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eigenvalues in Eq. 2.23 permits converting the tensor invariants Jj(CLI) into the

eigenvalues λi(CLI).

To define the eigenvectors for CLI, we use linear (EU) tensor interpolation:

CEU = (1− t)A + tB , (3.2)

then decompose CEU into the eigenvector and eigenvalue matrices REU and ΛEU

where:

CEU = REUΛEURT
EU . (3.3)

We can use AI, LE or GL tensor interpolation, but EU is the simplest and fastest,

and introduces a similar bias in tensor orientation recovery, as will be shown later

in Section 3.4.

Finally the interpolated tensor CLI is constructed using the eigenvalue matrix:

ΛLI = diag (λi(CLI)) (3.4)

from the linearly interpolated tensor invariants, and the eigenvector matrix REU

from the linearly interpolated tensor :

CLI = REUΛLIR
T
EU . (3.5)

3.3 Methods

3.3.1 Synthetic Tensor Field

Using the EU, LE, GL and LI tensor interpolation methods, bilinear interpolation

was performed between tensors that approximate the sheet shape of (K1, R2, R3) =

(7, 0.6, 0.5) and fiber shape of (6, 0.7, 1) observed in cardiac DT-MRI data, and

range of tensor orientations.
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3.3.2 Real Cardiac DT-MRI Acquisition

The rabbit heart DT-MRI data was acquired in a formalin fixed rabbit heart using

a 7T Bruker Biospin scanner and a 3D fast spin echo sequence. Five non-diffusion

weighted and twenty-five diffusion weighted (b-value = 1000 s/mm2) imaging vol-

umes were used to estimate the local D without zero padding and with linear

regression. The imaging parameters were TE/TR = 29.1/550 ms, RARE fac-

tor two, FOV = 35 × 35 × 35 mm, and a 96 × 96 × 72 encoding matrix – re-

sulting in 365 × 365 × 528µm spatial resolution. The porcine heart DT-MRI

data was acquired using 2D multislice readout segmented EPI, similar encod-

ing directions and reconstruction method with the following imaging parameters:

TE/TR = 80/6800 ms, FOV = 150×150×129 mm, and an 150×150×43 encoding

matrix – resulting in 1× 1× 3 mm spatial resolution. The high-resolution human

heart DT-MRI data was downloaded from Johns Hopkins University [Helm et al.].

The FOV was 110× 110× 110 mm, the encoding matrix size was 256× 256× 134,

and the spatial resolution was 0.430× 0.430× 1.0 mm.

3.3.3 Interpolation Evaluation

Each DT-MRI volume was segmented to identify the myocardium using thresh-

olding and morphologic operations on the non-diffusion weighted image volume.

To evaluate each interpolation method the measured (“truth”) tensor volume was

first downsampled in each direction by a factor of 2 for the rabbit and porcine heart

data, and by a factor of 4 for the high-resolution human heart data. Subsequently

tensors were trilinearly interpolated at the positions of the removed tensors using

the remaining data. This permits a direct, paired comparison of the interpolated

tensors to the “truth” tensors using data de-correlation and bootstrap statistics

(see below). This comparison was made for six tensor scalar measures (TR, FA,

MODE, DET, angle difference between primary eigenvectors, and log-Eugclidean
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tensor distance [Arsigny et al., 2006]) computed at each location of the interpo-

lated tensors using each of the tensor interpolation methods.

3.3.4 Tensor Statistics

The distributions of the six tensor scalar measures contain correlated data, are

non-Gaussian, and have non-uniform variances. The use of ANOVA and t-test

statistics, however, requires that the data in each population are not correlated,

are Gaussian distributed (negligible skewness, kurtosis, etc.), and have similar

variances; hence de-correlation and bootstrap methods are required.

3.3.5 De-correlation

The population of each tensor scalar measure was spatially decorrelated by com-

puting the autocorrelation (AC) length for every dimension using the fully sampled

data and the mask. For each of the x−, y− and z−directions, all lines having

at least four continuous myocardial points were found within the mask. For each

line, the data values of the line were subtracted from their average, and then

the AC sequence was computed. The AC length, which is the lag value at the

first zero-crossing of the AC curve, was computed. The interpolated and original

tensor data were conservatively decimated by the minimum integer value greater

than or equal to all the median AC lengths for the tensor scalar measures in every

dimension in order to spatially de-correlate the data.

3.3.6 Bootstrap Statistics

A paired comparison of each scalar tensor measure between the de-correlated

interpolated tensors and the de-correlated original “truth” tensors was made us-

ing bootstrap methods. The population of paired differences between the scalar

tensor measures (interpolated minus “truth” values) was computed, and 1000 ran-
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domly resampled populations with replacement were constructed from the paired

difference dataset. From each randomly resampled population the median was

calculated. The 1000 median measures were sorted, and the asymmetric 95%

confidence interval (CI) about the median was computed from the distribution

for each tensor scalar measure. When this method is applied to paired angle

differences between the primary eigenvectors or log-Euclidean tensor distances,

only unsigned differences or distances can be computed. The median of the scalar

tensor measure differences and the bootstrapped 95% CI of the median were com-

pared to the zero-bias line (null hypothesis). If the paired differences are not

significant, then the 95% Cl will overlap with the zero-bias line. When the paired

difference CI does not overlap with the zero-bias line, then the respective tensor

interpolation method introduces a significant bias to the tensor field.

3.4 Results

3.4.1 Synthetic Example

Figure 3.1 shows an example of bilinear interpolation between the four myocar-

dial tensors at the vertices using the EU, LE, GL and LI methods. The tensors

are visualized using superquadric glyphs [Ennis et al., 2005]. Each edge repre-

sents a microstructural transformation that can be observed both histologically

and with DT-MRI. EU only monotonically interpolates TR. EU negatively biases

FA and positively biases DET (i.e. the so-called tensor swelling effect [Arsigny

et al., 2006]). LE negatively biases TR and FA, and only monotonically inter-

polates DET. Both EU and LE heterogeneously bias MODE. GL monotonically

and LI linearly interpolate all the tensor invariants including DET. In order to

establish that monotonic or linear interpolation of the tensor invariants is the best

interpolation method, we evaluated each tensor interpolation method using the

experimentally measured DT-MRI datasets as follows.
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(a) EU interpolation (b) LE interpolation

(c) GL interpolation (d) LI interpolation
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(h) DET

Figure 3.1: Superquadric glyph rendering of the tensor field obtained from Eu-

clidean (a), log-Euclidean (b), geodesic-loxodrome (c), and linear invariant (d)

bilinear interpolation between the four myocardial tensors at the vertices. Maps

of tensor trace (e), FA (f), tensor mode (g), and tensor determinant (h) from the

resultant interpolated tensor fields are shown for each interpolation method. The

front left edge in the tensor glyph images corresponds to the bottom of the tensor

invariant images.
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3.4.2 Autocorrelation

The AC procedure resulted in AC lengths of 3 in all the directions for the rabbit

heart data; 4 in the x− and y−directions, and 2 in the z−direction for the porcine

heart data; and 8 in the x− and y−directions, and 6 in the z−direction for the

human heart data. To ensure that the data was de-correlated, the data was

decimated by the AC length in each dimension.

3.4.3 Bootstrap Statistics

Figure 3.2 shows that EU does not introduce a significant bias to TR nor DET,

but it does negatively bias FA and positively bias MODE. AI and LE are nearly

identical and show a negative bias for TR, FA, and DET; and a positive bias

for MODE. GL shows no significant bias for TR, FA, MODE, nor DET. LI does

not introduce a significant bias for TR, FA, nor DET, but it does negatively

bias MODE. All of the tensor interpolation methods produce an equivalent and

positive bias for the primary eigenvector and the log-Euclidean tensor distance

metric.

3.5 Discussion

The bootstrap comparison results demonstrate that GL and LI outperform EU,

LE and AI in terms of tensor shape recovery. The bias introduced by AI and LE

for recovery of TR and DET is a small (≈ 2%) change relative to the absolute

measures. Furthermore, current models do not make use of the TR information

from the DT-MRI data because the conductivity tensor’s eigenvalues have to be

rescaled, hence this bias is not likely to be significant. The bias in FA introduced

by EU, AI and LE is larger (≈ 8%), and may significantly impact simulations when

this data is incorporated into the computational model to rescale the conductivity
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Figure 3.2: Continued on the next page.
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Figure 3.2: Bootstrap statistics for tensor measures. The upper row corresponds

to the rabbit heart data, the middle row to the porcine heart data, and the lower

row to the human heart data. Results of the paired comparison for tensor trace

(a), FA (b), tensor mode (c), tensor determinant (d), angle difference between

primary eigenvectors (e), and log-Euclidean tensor distance (f) are shown for each

interpolation method. Each black horizontal line represents the median of each

measure, and each box represents the bootstrapped 95% confidence interval of the

median. The light gray horizontal lines at zero represent the zero bias.
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tensor in regions of fibrosis and scar. Hence, accurate recovery of FA is important.

The magnitude of the bias in MODE by EU, AI, LE, and LI is similar (≈
4%). Only GL shows a distinct advantage as it interpolates MODE with no bias.

Both electrophysiologic activation and mechanical tissue properties are known to

be orthotropic, therefore accurate interpolation of MODE (lower bias) is likely

beneficial.

For computational electrophysiology and mechanical modeling of the heart,

orientation recovery is very important because the primary eigenvector (myofiber

direction) strongly governs the direction of electrical activation and active con-

traction. All of the tested tensor interpolation methods introduce a ≈ 5◦ − 8◦

bias, which may introduce notable fiber “disarray” into computational models. A

tensor interpolation method that better recovers tensor orientation is still needed.

The path interpolated by LI (respectively, GL) between two tensors lies in the

6-dimensional nonlinear manifold of tensors; this path has a projection onto the

3-manifold of tensor invariants (losing the directionality information). Here we

interpolate on the 3-manifold, to linearly (respectively, monotonically) preserve

the tensor shape attributes. The use of direct linear interpolation does not imply,

nor is it motivated by, assumptions about global linearity, but naturally follows

by considering the small neighborhood around a point to be homeomorphic to Eu-

clidean space (valid for short distances), as given by the manifold structure. The

paths are demonstrably close approximations of each other, and our fundamental

ignorance of the true physical path on the tensor manifold makes it difficult to de-

scribe either LI or GL as “more meaningful.” We therefore tested all the methods

on real data.

In conclusion, if MODE recovery is important then GL should be used despite

the computational cost. If MODE recovery is not critical then LI interpolation is

an otherwise equivalent tensor interpolation method with reduced computational

cost, which is important when interpolating tensors to the coordinates of 5 to 25
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million computational nodes found in whole heart electrophysiology models. EU,

AI, and LE tensor interpolation have no distinct advantage for the interpolation

of tensor shape and orientation information based on the comparisons presented

herein.
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CHAPTER 4

Tensor Orientation Interpolation

4.1 Introduction

The second-order symmetric positive definite diffusion tensor (D) can be decom-

posed into eigenvalues (λi, shape) and eigenvectors (ei, orientation). In cardiac

applications, the three eigenvectors correspond to the myofiber long-axis (e1),

the cross-fiber direction within the myolaminar sheet (e2) and the normal-sheet

direction (e3) [Kung et al., 2011]. To build computational models of cardiac me-

chanics and electrophysiology (EP), both myofiber and myolaminae orientation

information is required at millions of closely spaced nodes. DT-MRI measure-

ments, however, are on a lattice and typically number < 1e6 for ex vivo studies

< 1e4 for in vivo studies [Tseng et al., 1999], so interpolation of tensor orientation

is needed.

The orientation (SO(3)) interpolation problem has been widely studied in the

computer graphics literature. However the tensor orientation interpolation prob-

lem in DT-MRI is more challenging because eigenvectors have an arbitrary sign

(physiologically and mathematically) so tensor orientation cannot be uniquely

described.

Most of the conventional approaches have been tensor-based and amongst

the simplest is the Euclidean (EU) method, but it suffers from the tensor shape

swelling effect [Pennec et al., 2006, Arsigny et al., 2006]. The affine-invariant

Riemannian (AI) and log-Euclidean (LE) tensor interpolation methods [Pennec
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et al., 2006, Arsigny et al., 2006] were proposed to solve the tensor shape (tensor

swelling) problem, but they underestimate other tensor invariants including ten-

sor trace and FA [Gahm et al., 2012, Yang et al., 2012]. The geodesic-loxodrome

(GL) method [Kindlmann et al., 2007b] guarantees monotonic interpolation of or-

thogonal tensor invariants [Ennis and Kindlmann, 2006], but is computationally

expensive. The linear invariant (LI) method [Gahm et al., 2012] linearly interpo-

lates tensor invariants (shape) at significantly reduced computational cost, but no

new method for tensor orientation interpolation was presented. The tensor-based

methods mostly focus on tensor shape interpolation, and no distinct advantage

of the methods in tensor orientation has been reported [Gahm et al., 2012]. Re-

cently a separate tensor interpolation method [Yang et al., 2012] was proposed

that interpolates Euler angles or quaternions along the minimum rotation path

between tensor orientations, but it was not quantitatively validated using cardiac

DT-MRI data.

We propose a new dyadic-tensor based (DY) tensor orientation interpolation

method that sidesteps the eigenvector sign ambiguity problem by interpolating

between the dyadic tensors of eigenvectors with subsequent reduction to rank-1

dyadics and orthogonal matrices. We also revise and simplify the quaternion-

based (QT) method [Yang et al., 2012], and evaluate it using cardiac DT-MRI

data. The QT and DY tensor-based methods are compared to the tensor-based

interpolation methods including EU, AI, LE and GL for accurate recovery of

cardiac microstructural orientation using four experimentally measured DT-MRI

datasets from rabbit and pig hearts.
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4.2 Theory

4.2.1 Quaternion-based Interpolation

One approach to resolve the sign ambiguity problem of eigenvectors is to directly

tackle it by choosing the minimum rotation path between tensor orientations.

Tensor orientation is commonly represented by a rotation matrix R in Eq. 2.13,

but can also be represented by a unit quaternion:

q = a+ bi+ cj + dk = [a, b, c, d] (4.1)

where

a2 + b2 + c2 + d2 = 1 . (4.2)

Tensor orientation has four different descriptions intuitively represented by rota-

tion matrices Ri defined in Eq. 2.17, which can be converted into unit quaternions

qi:

qi = [a, b, c, d], [b,−a, d,−c], [c,−d,−a, b], [d, c,−b,−a] . (4.3)

Then the minimum rotation path between two tensor orientations RA and RB can

be determined by the maximum magnitude of inner products between fixed qA and

four different qB (or between fixed qB and four different qA). If the maximum

value has a negative sign, the corresponding quaternion qB (or qA) should be

negated. Once the unit quaternions are uniquely determined, normalized linear

interpolation (nlerp) is used:

qC = ((1− t)qA + tqB) /‖(1− t)qA + tqB‖ , (4.4)

which is computationally less expensive than spherical linear interpolation (slerp)

[Blow, 2004]. The interpolated quaternion qC is easily converted to a rotation

matrix RC.
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4.2.2 Dyadic Tensor-based Interpolation

Another approach is to sidestep the sign ambiguity problem by using dyadic ten-

sors [Basser and Pajevic, 2000]. From Eq. 2.12, dyadic tensors of eigenvectors ei

are defined by:

Ei = ei ⊗ ei = eie
T
i . (4.5)

Note:

ei ⊗ ei = −ei ⊗−ei . (4.6)

Dyadic tensors have rank 1, only one non-zero eigenvalue whose value is 1, and the

corresponding eigenvector is exactly ei or −ei. Interpolation between RA = [eAi]

and RB = [eBi] starts with linear interpolation between their dyadic tensors:

Fi = (1− t)EAi + tEBi . (4.7)

Since Fi do not generally have rank 1, the nearest rank-1 dyadic tensor (x ⊗ x)

can be obtained by minimizing:

J(x) = ‖Fi − x⊗ x‖2F
= tr

{
(Fi − xxT )T (Fi − xxT )

}
= tr

{
F2
i − 2FixxT + (xxT )2

}
= ‖Fi‖2F − 2tr(xTFix) + ‖x‖4 , (4.8)

where ‖ · ‖F denotes the Frobenius norm, and the derivative is:

J ′(x) = −4Fix + 4‖x‖2x . (4.9)

By setting the derivative equal to zero, the eigenvalue equation:

Fix = ‖x‖2x (4.10)

is obtained, therefore the eigenvector mi corresponding to the largest eigenvalue of

Fi minimizes Eq. 4.8. Since the interpolation between dyadic tensors is separately
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performed on each pair of eigenvectors, however, the matrix M = [mi] is not

generally orthogonal. The orthogonal matrix closest to M can be obtained by

minimizing:

w1‖x1 −m1‖2 + w2‖x2 −m2‖2 + w3‖x3 −m3‖2 , (4.11)

where [xi] is an orthogonal matrix, and wi are the eigenvalues computed by the

LI method described in Section 3.2, which assigns different weights to each eigen-

vector term according to the interpolated tensor shape. Equation 4.11 can be

rewritten in a matrix form:

‖(M−X)W‖2F = tr
{

(MW −XW)(MW −XW)T
}

= tr
{

(MW)(MW)T
}

+ tr
(
XWWTXT

)
− 2tr

(
MW2XT

)
= ‖MW‖2F + ‖W‖2F − 2tr

(
MW2XT

)
, (4.12)

where X ∈ O(3) and W2 = diag(wi). Minimizing Eq. 4.12 is achieved by maxi-

mizing:

tr
(
MW2XT

)
= tr

(
UΣVTXT

)
= tr

(
VTXTUΣ

)
≤ tr (Σ) , (4.13)

where U, Σ and V are obtained from the singular value decomposition (SVD) of:

MW2 = UΣVT , (4.14)

implying that Eq. 4.13 is maximized when:

VTXTU = I ⇔ X = UVT . (4.15)

Therefore the interpolated tensor orientation RC = [eCi] can be obtained by

replacing the singular values with ones from the SVD of MW2. If the determinant

of RC is −1, RC should be negated to be a right-handed rotation matrix.
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4.3 Methods

4.3.1 Synthetic Tensors

Using the EU, LE, GL, quaternion-based (QT) and dyadic tensor-based (DY)

methods, interpolation was performed between two tensors of the same shape

({K1, R2, R3} = {1, 0.5, 0.8}), and different orientations whose angles between

each pair of eigenvectors are 82◦, 45◦ and 64◦. LI described in Section 3.2 was

used for tensor shape interpolation and combined with QT and DY for complete

tensor interpolation.

4.3.2 Real DT-MRI Data

The rabbit heart DT-MRI data was acquired using a 7T Bruker Biospin scanner,

and a 3D fast spin echo sequence with the following imaging parameters: TE/TR

= 30/500 ms, b-value = 1000 s/mm2, 24 diffusion gradient encoding directions, 6

nulls, and RARE factor two. The in-plane imaging resolution was 0.5×0.5×0.80

mm obtained by using a 96×96 encoding matrix, 72–96 slices and a 48×48×54–72

mm imaging volume. The pig heart DT-MRI data was acquired using a Siemens

1.5T Avanto and a 3T Trio scanner, and a 2D readout-segmented echo-planar pulse

sequence with the following imaging parameters: TE/TR = 80/6800 ms, b-value

= 1000 s/mm2, 30 diffusion gradient encoding directions, one null, 15 readout

segments, and 8-10 averages. The in-plane imaging resolution was 1×1×3 mm

obtained by using an 150×150 encoding matrix, 43–44 slices and a 150×150×129–

132 mm imaging volume. Diffusion tensors were estimated without zero padding

and with linear regression.
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4.3.3 Evaluation Procedure

The same tensor orientation evaluation procedure described in Section 3.3 was

applied to the two rabbit and two pig heart DT-MRI datasets. The median

autocorrelation (AC) length for every dimension was computed in each tensor in-

variant (Ji) map of the segmented myocardium. The myocardial tensor volume

was downsampled in each dimension by a factor of the smallest integer not less

than the median AC length for each tensor invariant map, and trilinear tensor

orientation interpolation was performed with the EU, AI, LE, GL, QT and DY

methods at the removed voxels using the remaining data. Then the interpolated

tensor orientations by each method were compared to the originally measured

data by computing the angle difference between each pair of eigenvectors. Subse-

quently the population of the angle difference data was spatially decorrelated by

decimating the data in every dimension by the smallest integer not less than the

AC lengths, and the decorrelated data was bootstrapped 1000 times by random

sampling with replacement to compute the 95% confidence interval (CI) about

the median.

4.4 Results

4.4.1 Synthetic Example

Figure 5.1 shows an example of interpolation between two synthetic tensors with

the same shape and different orientations using the EU, LE, GL, LI+QT and

LI+DY methods. Tensors are visualized as superquadric glyphs [Ennis et al.,

2005], and plots of each eigenvector’s angle relative to the leftmost tensor’s orien-

tation are shown along the interpolation paths. EU and LE fail to preserve the

tensor shape during rotation, but GL, LI+QT and LI+DY maintain the tensor

shape. With respect to tensor orientation, QT and DY monotonically interpolates
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the angle of every eigenvector. The tensor-based methods (EU, LE and GL), how-

ever, fail to monotonically interpolate the angle of the secondary eigenvector.

DY’s monotonic interpolation of each eigenvector needs to be more carefully

investigated. Each method has a distinct interpolation path between tensor ori-

entations, and QT’s path is explicitly the minimum rotation path. Monotonic

interpolation of eigenvectors and/or the minimum rotation path does not imply

interpolation of tensor orientation with the least error. Therefore, we experimen-

tally evaluated each method using real DT-MRI data.

4.4.2 Evaluation Statistics

The smallest integers not less than the median AC lengths were 2, 2 and 3 for

the rabbit heart data and 3, 3 and 2 for the pig heart data in the x–, y– and

z–directions, respectively. Figure 4.2 shows the bootstrap statistics of angle dif-

ferences between each eigenvector pair of the original and interpolated tensor

orientations. Each dot represents the median angle difference, and each error bar

represents the bootstrapped 95% CI of the median. The (black, dark gray, and

light gray) dashed lines represent the (lower, upper, and upper) limits of the CIs

associated with the (primary, secondary, and tertiary) eigenvectors for the (QT,

DY, and DY, respectively) methods, which help to determine whether or not the

CIs of QT or DY overlap with others.

Comparison of the relative orientation errors between methods reveals that

each method performs constsistently across the various data sets (e.g. errors

decrease from GL to QT to DY). QT’s tensor orientation median error, however,

is significantly higher than all other methods (95% CI does not overlap) for the

rabbit data, but not for the pig data. DY performs similarly to conventional

tensor interpolation methods for recovering e1 in both rabbit and pig DT-MRI

data.
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Figure 4.1: Interpolation between two synthetic tensors of equal shape and dif-

ferent orientation. The angle between every pair of the primary, secondary and

tertiary eigenvectors is monotonically interpolated only in (d) and (e). All the

tensor-based methods (a), (b) and (c) fail to monotonically interpolate the angle

between the secondary eigenvectors.

DY has the lowest median error for recovery of both e2 and e3 compared to

all other methods. Notably, DY has a significantly lower median recovery error

for e2 and e3 compared either EU or GL for all four datasets.
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Figure 4.2: Bootstrap statistics for eigenvector orientation errors (angle differ-

ences) relative to real DT-MRI data. Each dot represents the median angle differ-

ence, and each error bar represents the bootstrapped 95% CI of the median. The

(black, dark gray, and light gray) dashed lines represent the upper limits of DY’s

CIs associated with the (primary, secondary, and tertiary) eigenvectors, which

define whether or not DY’s CIs overlap with the others’. DY introduces the least

error to the secondary and tertiary eigenvector orientations, and similar errors to

the primary eigenvector orientation compared to the tensor-based methods (EU,

AI, LE and GL).
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4.5 Discussion

Accurate interpolation of myofiber and myolaminar sheet orientations is essential

for computational modeling of cardiac mechanics and electrophysiology (EP). Car-

diac mechanics and EP modeling requires accurate tensor orientation information

at every computational node in order to assign correctly the axes of anisotropic

electrical activation.

The comparison results show that DY performs significantly better than the

tensor based methods, especially EU and GL, for recovery of each component of

cardiac microstructural orientation. In particular, the improvement in recovery of

the secondary and tertiary eigenvectors is important for recovery of myolaminar

sheet orientation. Note that QT’s minimum rotation path has significantly larger

median errors for recovery of the primary eigenvector than DY’s interpolation

path.

LI+DY is a commutative, computationally efficient (compared to GL’s nu-

merical solution), and mathematically unambiguous tensor interpolation method

that most accurately interpolates both cardiac microstructural shape [Gahm et al.,

2012] and orientation. Further investigations using brain DT-MRI data and the

same evaluation process may be needed to evaluate if the most accurate inter-

polation is dependent on the underlying tissue characteristics. Furthermore, the

required tensor interpolation accuracy for cardiac mechanics and EP simulations

remains incompletely understood.
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CHAPTER 5

Weighted Component-based Tensor Distance

5.1 Introduction and Related Work

The examination of tissue microstructure using DT-MRI typically requires several

post-processing tasks such as segmentation, registration, interpolation, analysis,

and visualization that require appropriate tensor distance measurement [Wang

and Vemuri, 2005, Pennec et al., 2006, Arsigny et al., 2006, Kindlmann et al.,

2007b, Gahm et al., 2012]. The problem of tensor distance measurement was first

approached using differences only in single scalar measures computed from diffu-

sion tensors, ignoring differences in other tensor shape or orientation components.

Amongst the simplest tensor distance metrics to measure both shape and orienta-

tion differences is the Euclidean metric, but it has been criticized for the swelling

effect and lack of positive definiteness [Pennec et al., 2006, Arsigny et al., 2006].

To solve these problems, the Riemannian metrics [Pennec et al., 2006] were pro-

posed based on sophisticated mathematics followed by the log-Euclidean metric

[Arsigny et al., 2006], which is a computationally efficient approximation to the

affine-invariant Riemannian metric. Another affine-invariant metric was proposed

based on the J-divergence between two covariance matrices (tensors) [Wang and

Vemuri, 2005].

These metrics only provide a single overall tensor distance with unknown, fixed

contributions of shape and orientation distances between two tensors. Recently

a new tensor interpolation path, termed geodesic-loxodrome, was proposed that
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monotonically interpolates orthogonal tensor invariants, and separately measures

distances in tensor shape and orientation [Kindlmann et al., 2007b]. The geodesic-

loxodrome metric, however, is not practical when applied to large-scale processing

jobs due to its expensive computational cost. More recently a computationally

efficient approximate method described in Section 3.2 was proposed that linearly

interpolates tensor invariants [Gahm et al., 2012]. The linearity of tensor invari-

ants is not limited to tensor interpolation, and can be extended to tensor distance

measurement.

We propose a new weighted component-based tensor distance that linearly

combines tensor invariant (tensor trace, FA, and tensor mode) and orientation

distances. This is accomplished, in part, by computing differences in each tensor

invariant, and finding the minimum rotation between tensor orientations. More-

over the weighted component-based tensor distance allows users to adjust rela-

tive contributions of the invariant and orientation distance components toward

an optimal single distance for a particular application. We apply the weighted

component-based tensor distance to graph-based multi-label segmentation of DT-

MRI of infarcted hearts with comparisons to the Euclidean, log-Euclidean [Arsigny

et al., 2006], and J-divergence [Wang and Vemuri, 2005] metrics using a synthetic

tensor field that reflects important myocardial tensor field attributes, and three

experimentally measured DT-MRI datasets from post-infarct porcine hearts.

5.2 Theory

5.2.1 Tensor Invariant Distance

Tensor shape can be fully decomposed by a tensor invariant set Ji = {K1, R2, R3}
composed of tensor trace (K1), FA (R2), and tensor mode (R3) defined in Eqs. 2.15

and 2.16. Tensor invariant distances between two tensors A and B are achieved

by simply computing the difference in each tensor invariant: |Ji(A) − Ji(B)| for
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i = 1, 2, 3. Under the assumption of normal distribution with zero mean for each

invariant distance (signed), the invariant distance is normalized by:

di(A,B) = |Ji(A)− Ji(B)|/σi (i = 1, 2, 3) , (5.1)

where σi is the standard deviation of the invariant distance population.

5.2.2 Tensor Orientation Distance

Tensor orientation R describes a rotation between the principal axes and a local

coordinate system. Two arbitrary tensor orientations are also related by a rotation

that can be used to define a distance between them. Since eigenvectors in DT-MRI

may have an arbitrary sign, however, tensor orientation does not have a unique

description; there may be four different rotations between the two orientations.

Therefore, an orientation-specific tensor distance between A and B is achieved

by finding the minimum rotation between their orientations RA and RB, and

normalizing it:

d4(A,B) = min
P

arccos {(tr(RAB)− 1) /2} /σ4 , (5.2)

where

RAB = RAPRB
T , P = diag([pi]) (5.3)

such that pi = ±1 and p1p2p3 = 1, and σ4 is the standard deviation of the

orientation distance population.

5.2.3 Graph-based Segmentation

The weighted component-based tensor distance is applied to graph-based multi-

label segmentation of DT-MRI. Graph-based segmentation allows users to easily

improve the segmentation results using their own expert knowledge without rely-

ing solely on the computational results. Given l user-defined seed voxels: l labeled

{(x1, y1), · · · , (xl, yl)} and u unlabeled {xl+1, · · · ,xn} voxels, where x represents
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voxel’s position vector and y is a label running from 1 to the number of classes

(C), we construct an undirected weighted graph G =< V,E,w > whose vertices

V = {1, 2, · · · , n} correspond to all the voxels, and edges E represent similarities

only between any pair of adjacent vertices p and q such that ‖xp − xq‖ ≤ ε with

edge weights wp,q defined by the Gaussian kernel with width σ:

wp,q = exp
{
−d(Dp,Dq)

2/(2σ2)
}
, (5.4)

where d(Dp,Dq) is a distance based on any tensor distance metric between two

tensors Dp and Dq. Herein we define the weighted component-based tensor dis-

tance by a linear combination of the tensor invariant and orientation distances in

Eqs. 5.1 and 5.2 with the weights α:

d(Dp,Dq) =
4∑
i=1

αidi(Dp,Dq) , (5.5)

and the kernel width σ can be easily computed by:

σ2 =
4∑
i=1

α2
i . (5.6)

Each σi in Eqs. 5.1 and 5.2 was adaptively set during the graph construction as:

σ2
i =

∑
(p,q)∈N

di(Dp,Dq)
2/|N | , (5.7)

where N represents the set of all the ε-neighborhoods.

Once the graph G has been built, the harmonic function, a popular graph-

based multi-label segmentation algorithm, is used to estimate the undefined labels

[Zhu et al., 2003]. Let W be the n×n graph weight matrix whose element is wp,q,

and ∆ be the n×n weighted degree matrix having only diagonal entries:

∆p,p =
n∑
q=1

wp,q . (5.8)

Then the Laplacian matrix L is defined as:

L = ∆−W , (5.9)
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and the u×C soft label matrix fu for the unlabeled vertices is estimated by:

fu = −L−1uuLulYl , (5.10)

where Luu and Lul are the submatrices of L with the last u rows and columns

and with the last u rows and first l columns, respectively, and Yl is the l×C label

indicator matrix whose ith row vector indicates the user-defined label yi.

5.3 Methods

5.3.1 Synthetic Tensor Field

The weighted component-based tensor distance was evaluated over the Euclidean

(Eucl), log-Euclidean (Log-Eucl), and J-divergence (J-div) distances on a four-

label segmentation of a 90×90 synthetic tensor field that mimics a variety of

diffusion tensors observed in cardiac DT-MRI data [Kindlmann et al., 2007a].

As observed from Fig. 5.1, the noise-free tensor field consists of four distinct

materials: isotropic with low diffusivity (IsoLow, Ji = {0.4, 0, n/a}), isotropic with

high diffusivity (IsoHigh, Ji = {1, 0, n/a}), linear anisotropic (Linear, Ji = {1, 0.7,

1}), and planar anisotropic (Planar, Ji = {1, 0.7, −1}) between which interfaces

exist. Tensor orientation smoothly changes across the anisotropic regions, and

does not change significantly around the boundaries. Therefore the ratio 2:1:1:0

was chosen as the weights α in Eq. 5.5. The parameter ε for the ε-neighborhood

graph was set to 3 in all the experiments. Different levels of DT-MRI noise were

simulated by corrupting the noise-free diffusion weighted images with Rician noise

as described in Section 6.2.1 [Chang et al., 2007].

For the quantitative evaluation of the segmentation, the overall Dice coefficient

(DC) was computed between two overlapping regions A and B as:

DCoverall =
2
∑

i βi|Ai ∩Bi|∑
i βi (|Ai|+ |Bi|)

(5.11)
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(a) Glyph rendering (b) Invariant maps

Figure 5.1: Synthetic tensor field. Superquadric glyph rendering (a) of the noise-

free tensor field downsampled by a factor of 3 shows a range of tensor shape

and orientation. Maps (b) of tensor trace (top), FA (middle), and tensor mode

(bottom) for the noise-free (left) and noisy (SNR = 10, right) tensor fields show

four distinct tensor shapes.

at each noise level with 512 independent instantiations of noise. βi was chosen

as the inverse of the average area of Ai and Bi so that all the labels equally

contributed to the overall overlap.

5.3.2 Real Cardiac DT-MRI

DT-MRI data of the post-infarct porcine heart was acquired using a Siemens

1.5T Avanto or 3T Trio scanner, and a 2D readout-segmented echo-planar pulse

sequence with the following imaging parameters: TE/TR = 80/6800 ms, b-value

= 1000 s/mm2, 30 diffusion gradient encoding directions, one null, 15 readout seg-

ments, BW = 439 Hz/pixel, and 8–10 averages. The in-plane imaging resolution

was 1×1×3 mm obtained by using an 150×150 encoding matrix, 43–44 slices and
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(a) Seed (b) Weighted (c) Eucl (d) Log-Eucl (e) J-div

Figure 5.2: Segmentation results for the noise-free (upper row) and noisy (SNR

= 10, lower row) synthetic tensor fields. IsoLow (blue), IsoHigh (cyan), Linear

(green), and Planar (red) regions were segmented using the seeds provided in the

tensor mode images (a). Only the weighted component-based tensor distance (b)

was successful for both the tensor fields.

an 150×150×129–132 mm imaging volume.

Segmentation of remote, border zone (BZ) and infarct regions in the pre-

segmented myocardium was performed using the different tensor distance metrics.

A recent study [Kung et al., 2012] showed that there was significant remodeling in

BZ characterized by a large increase in tensor trace, an intermediate decrease in FA

and a small decrease in tensor mode relative to normal and remote myocardium.

The microstructural changes were largest in the infarct, which led us to choose

the weights α = 8:4:1:1 in Eq. 5.5.

5.4 Results

Figure 5.2 shows the four-label segmentation results for the noise-free and noisy

(SNR = 10) synthetic tensor fields. The weighted component-based tensor dis-
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tance was successful even for the noisy tensor field, but the Euclidean, log-

Euclidean and J-divergence distances all produced significant errors around bound-

aries between the three different parts within the high diffusivity regions of the

noisy tensor field, and slight errors even for the noise-free tensor field.

Figure 5.3 shows statistics of the segmentation results using the same seeds over

a different level of noise for the synthetic tensor field. The weighted component-

based tensor distance produced the best accuracy with small variations for SNR

≥ 5, and the Euclidean distance also showed good accuracy for intermediate to

high SNR. However, the log-Euclidean and J-divergence distances produced poor

accuracy with highly significant variations in the high diffusivity regions even for

high SNR, and accuracy and robustness were even worse for the planar anisotropic

part within the high diffusivity regions.

Figure 5.4 shows segmentation of remote, BZ and infarct regions in the pre-

segmented myocardium on a slice from each of the three different DT-MRI datasets

of post-infarct porcine hearts. Tensor trace images are shown for reference and

highlight the scar. BZ regions wherein viable myocardium and fibrotic scar are

mixed are expected as a thin layer between remote and infarct regions. The

weighted component-based tensor distance yielded the best segmentation results

corresponding to our expectation for all the experiments, and the Euclidean metric

produced good accuracy only for infarct regions. However, the log-Euclidean and

J-divergence metrics significantly overestimated BZ and infarct regions, and would

require much more time and effort in seed selection to obtain a similar result.

5.5 Discussion

The log-Euclidean and J-divergence metrics are based on solid mathematics, but

have no distinct advantage for tensor-based segmentation based on the results

presented herein. The weighted component-based tensor distance is simple, but
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Figure 5.3: Statistics of segmentation

results over different levels of noise

for the synthetic tensor field. Each

central mark and error bar indicates

the median and the 2.5 and 97.5 per-

centiles of the Dice coefficient popu-

lation for 512 independent noisy ex-

periments. The weighted component-

based distance produced the highest

accuracy with small variations for all

the labels.
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Figure 5.4: Segmentation results for the three real DT-MRI datasets different in

row. Remote (blue), BZ (green), and infarct (red) regions were segmented from

the pre-identified myocardium using the seeds provided in tensor trace images

(a). The weighted component-based distance (b) identified BZ and infarct regions

closest to the expected size and shape.

more powerful because contributions from tensor invariant and orientation dis-

tance components can be adjusted according to a particular application.

The weights used to determine the relative impacts on the overall distance can

be chosen by investigating the contrast in each tensor invariant and orientation

map, and empirically adapted to the optimal values. Once the optimal weights

are found for one dataset in a particular study, we expect that the same weights

will also work for different datasets from within the same study as shown in our

experiments with the different DT-MRI datasets of post-infarct porcine hearts.

Future work includes providing the weights for other applications based on statis-
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tical grounds to avoid the process of manual selection of the parameters that may

bias further statistical studies.

Lack of data and the difficulty of finding the ground truth segmentation do

not allow statistical evaluation of the weighted component-based tensor distance

on segmentation of BZ and infarct regions. Microstructural remodeling in BZ

and infarct regions has been of great interest as it may clarify microstructural

requirements that lead to ventricular arrhythmogenesis. Importantly, to build

computational models of electrophysiology a microstructural based segmentation

is required. The weighted component-based tensor distance is not limited to this

graph-based segmentation of infarct myocardium, and can be applied to other

DT-MRI applications or segmentation techniques.
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CHAPTER 6

The Effects of Noise Over the Complete Space of

Diffusion Tensor Shape

6.1 Introduction and Related Work

In the field of DT-MRI tensor invariants are the preferred means for characterizing

tensor shape and are considered to report salient, if not intuitive, properties of

the underlying diffusive process (magnitude of isotropy, magnitude of anisotropy,

kind of anisotropy)[Basser et al., 1994b, Ennis and Kindlmann, 2006]. In fact,

our understanding of, for example, FA has become so essential to the interpre-

tation of DT-MRI data that the field must examine how the imaging protocol

(b-value, number of gradient directions, k-space encoding scheme etc.) and the

image signal-to-noise ratio (SNR) impact measures of FA. This has, of course, been

performed but under a relatively narrow and constrained range of tensor shape,

wherein an assumption of cylindrically symmetric anisotropy was used [Pierpaoli

and Basser, 1996, Jones, 2004]. This assumption, though convenient, is not nec-

essary and limits the range of tensor shape that has been investigated. Previous

studies have evaluated the impact of noise on specific asymmetric tensors [Basser

and Pajevic, 2000] and specific diffusion tensors representative of the brain [Chang

et al., 2007], but the effects of noise over a wide range of tensor shapes has not

previously been considered.

Furthermore, previous analyses of the impact of noise on diffusion tensor in-

variants have only considered how the invariants become statistically distributed
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in the presence of complex noise added to the image domain - a framework that

we term the “Forward Problem.” This stands in distinction to the situation we

encounter experimentally wherein we are presented with a measured tensor invari-

ant and we are concerned with the true value of the tensor invariant given that

we know it is corrupted by a level of noise that is measurable in the non-diffusion

weighted image(s). We term this framework the “Inverse Problem.”

We evaluate by simulation the effects of noise on characterizing tensor shape

over the complete space of tensor shape for three encoding schemes with differ-

ent SNR and gradient directions. We also define the new framework “Inverse

Problem” for determining the distribution of the true values of tensor invariants

given their measures, which provides guidance about the confidence the observer

should have in the measures. Finally, we present the statistics of tensor invariant

estimates over the complete space of tensor shape to demonstrate how the noise

sensitivity of tensor invariants varies across the space of tensor shape as well as

how the imaging protocol impacts measures of tensor invariants.

6.2 Methods

6.2.1 DT-MRI Noise Simulations

DT-MRI noise simulations similar to those described in [Pierpaoli and Basser,

1996, Jones, 2004, Chang et al., 2007] were performed to evaluate the effects of

noise on tensor shape over the complete space of diffusion tensor shape. Because

of the prevalence in the literature that reports tensor trace and FA, we first con-

structed a single diffusion tensor D from a tensor invariant set {K1, R2, R3} using

Eq. 2.23 over the complete range of tensor trace (K1), FA (R2), and tensor mode

(R3) (see Sections 6.2.3 and 6.2.4). The laboratory frame in which the diffusion

tensor is represented was assumed to coincide with the principal frame for sim-

plicity (R = I in Eq. 2.13). This initial, noise-free tensor is termed the “truth”
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tensor (DT) because it serves as ground truth for quantifying variability subject

to the addition of noise.

Next we generated the noise-free diffusion weighted (DW) signal intensities

(Sj) through the Stejskal-Tanner equation [Stejskal and Tanner, 1965]:

Sj = S0e
−bjgj ·Dgj , (6.1)

where Sj is the jth measured real-valued signal with diffusion weighting, S0 is the

non-diffusion weighted real-valued signal (chosen as a constant for all simulations),

bj is the b-value, and gj is the gradient sampling direction unit vector. We used

the Jones 6-direction (NDir=6) scheme plus one null (NNull=1), and the Jones

30-direction (NDir=30) scheme plus five nulls (NNull=5) with b-value=[0,1000]

s/mm2[Jones et al., 1999, Skare et al., 2000]. The diffusion encoding gradient

directions were not repeated.

To simulate noisy Sj we added a complex random number whose real and

imaginary parts were independent and Gaussian distributed with mean zero and

standard deviation σ [Henkelman, 1985]:

σ =
S0√

SNR2 − 1
. (6.2)

The magnitude of the noisy signals was then used to reconstruct noisy diffusion

tensor estimates DN using linear least squares regression from Eq. 6.1.

Simulations were performed with SNR=10 and SNR=25. We refer to each ex-

perimental combination as an SNR–NDir+NNull encoding scheme (e.g. 10–30+5 for

SNR=10, NDir=30, and NNull=5). Simulations were performed for three encoding

schemes: 10–30+5, 25–30+5, and 25–6+1.

6.2.2 Data Representation

The multivariate nature of the simulation (SNR, encoding schemes, and invariant

ranges) necessitates a careful reduction of this space to salient representations.
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Note that the three-dimensional space of symmetric positive definite tensors in

the principal coordinate frame span a planar isosurface when trD is constant (Fig.

6.1A). Furthermore, the sorted eigenvalues (λ1 ≥ λ2 ≥ λ3) form a barycentric

space that occupies 1/6th of this space. We use this eigenvalue subspace to depict

the results of the noise perturbation simulations at intersections of the iso-R2 arcs

and iso-R3 rays (Figs. 6.1B and 6.1C). These values were chosen because they

represent uniform steps in the eigenvalue coordinates, but note that the R2 and

R3 steps are non-uniform.

6.2.3 Forward Problem

The Forward Problem defines the statistical distribution of the noisy tensor invari-

ants for a “truth” tensor (DT) when complex Gaussian noise is added to Sj and

S0 using the procedure in Section 6.2.1. This results in the forward propagation

of noise Ni producing the noise-corrupted tensor DN,i:

DN,i = DT + Ni . (6.3)

1282 noisy tensors were generated for each DT and used to define a distribution

of noisy R2 and R3 invariants using Eq. 2.16 for one SNR–NDir+NNull encoding

scheme. Figure 6.1B demonstrates this process for DT with {K1, R2, R3} = {2.1

µm2/ms, 0.47, 0} and the 10–30+5 encoding scheme, where each instance of the

noisy invariants is represented as a dark gray dot. Three examples of the noisy

invariants that generate DN,i, DN,i+1 and DN,i+2 demonstrate the possible effects

of the forward propagation of noise on an individual tensor as in Eq. 6.3. The

curved arrows represent the noise propagation. The bias of the noisy invariant

distribution is represented as a straight arrow pointing from the invariant coordi-

nates used to generate DT to the median of the noisy invariant distribution that

generates D̄N. Noisy tensors with negative eigenvalues, which can arise, for ex-

ample, when noise levels are high relative to the smallest eigenvalue were included
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Figure 6.1: (A) Triangular isosurface (light gray) of constant (c) tensor trace over

the three-dimensional space of symmetric positive definite tensors in the principal

coordinate frame. The eigenvalues form a barycentric space (dark triangle). (B,

C) Barycentric space highlighted with iso-FA arcs and iso-mode rays. (B) depicts

the forward propagation of noise Ni from a truth tensor DT producing the noise-

corrupted tensor DN,i. (C) depicts the inverse propagation of noise Ni from a

noisy tensor DN producing the noise-free tensor DT,i.

to define completely the statistical distributions of invariants.

This process was repeated to discretely span the complete space of R2 and

R3 by calculating DT from Eq. 2.23 such that K1 was fixed at one value in
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[0.6, 2.1, 7.2] µm2/ms, which represents the low trace of lymphoma [Barajas et al.,

2010], nominal trace in the brain parenchyma [Maier et al., 1998], and the high

trace of free water, respectively. R2 and R3 were chosen to fall at the intersection

of the iso-R2 arcs and iso-R3 rays in Fig. 6.1B.

Spanning the complete space of tensor shape was sufficiently achieved by dis-

cretely varying K1 between very low, nominal and very high values. The effects

of noise on K1 were less complex and relatively independent of R2 and R3 (see

Sections 6.3.1 and 6.3.2). It is inherently difficult to produce figures that display

information over more than two degrees-of-freedom. Therefore we projected them

onto a 2D space of constant K1 to elucidate the more complex effects of noise on

R2 and R3 (Fig. 6.1).

6.2.4 Inverse Problem

Experimentally we always measure noisy data. Therefore, it is useful to define the

statistical distribution of possible DT that could have given rise to the measured

(i.e. observed) invariants for a particular and known encoding scheme (SNR–

NDir+NNull). We use the term “Inverse Problem” to describe this scenario. Stated

another way, when observing a particular tensor invariant value in our measured

data the statistical results of the Inverse Problem provide guidance about the con-

fidence the observer should have in the data, provided that the SNR–NDir+NNull

is known.

The Inverse Problem was formulated by generating DT from Eq. 2.23 for all

combination of densely sampled K1, R2 and R3 values. K1 was densely sampled

around each value in [0.6, 2.1, 7.2] µm2/ms with the interval of 1/100 µm2/ms, that

is, K1 = [0.1, 0.11, . . . , 1.1] ∪ [1.6, 1.61, . . . , 2.6] ∪ [6.7, 6.71, . . . , 9.3] µm2/ms, and

the individual complete ranges of R2 and R3 were then divided into 400 intervals

equally spaced in the eigenvalue coordinates, resulting in 7.45e7 different DT.
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Then, 1,024 noisy tensors were generated at each of the 7.45e7 {K1,R2,R3}
coordinates using the procedure in Section 6.2.1. This resulted in the generation

of 7.62e10 noisy tensors that densely span the complete space of K1, R2 and R3

with uniform steps of each invariant in the eigenvalue coordinates. This procedure

avoids skewing the distribution as may occur with undersampling or non-uniform

sampling. The K1, R2 and R3 invariants were then computed for the noisy tensors.

Next, we found noisy tensors with K1, R2 and R3 values within a small rect-

angular box with dimensions equals to two times the sampling intervals centered

at the intersection of the iso-R2 arcs and iso-R3 rays and with K1 fixed at one

value in [0.6, 2.1, 7.2] µm2/ms. This population of the noisy tensors were grouped

to form DN, and inversely mapped to the original “truth” tensors DT. Stated

another way, each DN maps to an underlying tensor DT,i by eliminating the noise

Ni:

DT,i = DN −Ni , (6.4)

which can be done with a look-up table. Figure 6.1C demonstrates this process

for DN with {K1, R2, R3} = {2.1 µm2/ms, 0.47, 0} and the 10–30+5 encoding

scheme, where each instance of the truth invariants is represented as a dark gray

dot. Three examples of the truth invariants that generate DT,i, DT,i+1 and DT,i+2

demonstrate the possible effects of the inverse propagation of noise on an individ-

ual tensor as in Eq. 6.4.

The bias of the truth invariant distribution is represented as a straight arrow

pointing from the invariant coordinates used to generate DN to the median of the

truth invariant distribution that generates D̄T.

6.2.5 Confidence Interval

In order to evaluate the effects of the forward and inverse propagation of noise

on characterizing tensor shape, we statistically compared: 1) the population of
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noisy tensor invariants obtained from DN to the known tensor invariant of the

respective DT tensor; and 2) the population of tensor invariants obtained from

DT that gave rise to the noisy DN tensor. This was done for each of the three

encoding schemes over the complete space of tensor shape. The statistical analysis

compares the bias and 95% confidence interval (95%-CI) of the population to DT

(Forward Problem) or DN (Inverse Problem).

The resultant distribution of invariants is represented as a bias and a sur-

rounding 95%-CI contour projected onto an iso-K1 plane. The bias represents the

median offset of the distribution and the 95%-CI represents the band of confidence

in the estimate of the bias. When two 95%-CI contours overlap there is a signif-

icant likelihood that the two DT (Forward Problem) or DN (Inverse Problem)

tensors can not be distinguished. The median of the invariant distribution was

achieved by computing the median value of each invariant, converting the median

invariants to eigenvalues using Eq. 2.23, and projecting them onto a plane of

constant K1 equivalent to the barycentric space in Fig. 6.1.

The noisy R2 and R3 distribution generated in Section 6.2.3 and the truth

R2 and R3 distribution generated in Section 6.2.4 are not bivariate Gaussian,

therefore we cannot compute 95%-CI contours as simple ellipses. Consequently,

the R2 and R3 samples were converted to samples of eigenvalues using Eq. 2.23.

These eigenvalues were projected onto a plane of constant K1 equivalent to the

barycentric space in Fig. 6.1. Then, for each of 100 rays in the barycentric space

at uniform angular intervals passing through the median of the samples, we found

all of the samples falling within a narrow band (±1% of the K1 used for the

respective simulation) around the ray. These values were projected onto the ray

and used to calculate the 95%-CI by sorting these 1-D values and truncating the

lowest and highest 2.5th, thereby retaining 95% of the estimates.

We finally approximated the 95%-CI contour by fitting a periodic b-spline

to the 200 (2 points for 100 rays) 95%-CI points with 10 control points. These
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splines permit smooth approximation of the 95%-CI contours, and are shown as

black closed splines in Figs. 6.1B (Forward Problem) and 6.1C (Inverse Problem).

6.3 Results

Two important theoretical results arise in this work. First, Eq. 2.23 provides a

principled and analytic method to establish tensor shape attributes by using the

tensor invariants to define the tensor’s eigenvalues. This development precludes

the need to assume cylindrically symmetric anisotropy as has been done previously

[Pierpaoli and Basser, 1996, Jones, 2004, Chang et al., 2007], or the use of ad hoc

methods to define eigenvalues that happen to have the desired tensor invariants.

Secondly, the defining of the Inverse Problem and the subsequent result provides

a new perspective on interpreting measured diffusion tensor invariant data. The

application of these theoretical developments permits a description of the bias and

95%-CI that noise introduces in both the Forward and Inverse Problems over the

complete space of tensor shape.

6.3.1 Effect of Noise in the Forward Problem

Effect of SNR. The effect of noise alone in the Forward Problem is demon-

strated in Figs. 6.2A and 6.2B. For SNR=10 (10–30+5) the magnitude of the bias

is increased and the 95%-CIs are substantially larger when compared to SNR=25

(25–30+5). In particular, note that the bias for SNR=10 (10–30+5) points to-

ward increased FA and less extreme tensor mode. The bias toward higher FA is

highest for DT with low FA and diminishes in magnitude almost entirely as the

FA of DT increases. Note that the step-size of FA along the FA-axis decreases

in the eigenvalue space, therefore moderate changes in eigenvalues result in very

small increases in FA as FA→ 1. The bias in FA is relatively uniform across the

complete range of mode. The magnitude of the mode bias component, however,
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decreases as FA increases. As a function of mode itself the mode bias component

decreases as the mode of DT approaches the middle of the mode scale (zero). In

summary, tensors with low to intermediate values of FA (<0.70) and high extreme

values of mode (>0.80 or <−0.80) tend to exhibit a bias toward higher FA values

and less extreme mode values.

It is important to note that the 95%-CI contours in Fig. 6.2A demonstrate

substantial overlap. This indicates that there is a low probability that two over-

lapping distributions are significantly different from one another. Note also, that

for low FA the forward propagation of noise results in nearly any tensor mode

value and even at high FA (=0.70) nearly half the range of mode is statistically

likely. The 95%-CIs are increasingly elongated along the increasing FA-axis, which

indicates a broader possible range of eigenvalues, but because of the non-linear

scaling to FA this maps to a diminishingly small range of FA.

Importantly, for the 25–30+5 encoding scheme (Fig. 6.2B) the biases are quite

small and the sampled 95%-CI contours are non-overlapping across the complete

space of FA and mode for the selected DT. This indicates that for this encoding

scheme FA can be statistically distinguished in the presence of noise in increments

of 0.15. However, it is difficult to distinguish mode at low FA (=0.17), but mode

can be distinguished in increments of 0.3 at higher FA (=0.70).

Effect of NDir. The effect of NDir alone in the Forward Problem is demonstrated

in Figs. 6.2B and 6.2C. In summary, the effect of decreasing NDir while keeping

SNR=25 is very similar to the effect of decreasing the SNR, whilst keeping the

NDir constant. This is clear when comparing Figs. 6.2A and 6.2C.

Effect of K1. The effect of different tensor trace values while keeping the 25–

30+5 encoding scheme in the Forward Problem is demonstrated in Fig. 6.3. The

effect of decreasing tensor trace from 2.1 to 0.6 µm2/ms (Figs. 6.3A and 6.3B)
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Figure 6.2: Statistics of FA and tensor mode in the Forward Problem for different

encoding schemes. The biases and 95% confidence intervals of noisy FA and

tensor mode over a range of FA and tensor mode with tensor trace (K1) fixed at

2.1 µm2/ms are shown for different encoding schemes: (A) 10–30+5, (B) 25–30+5,

and (C) 25–6+1.

is similar to the effect of decreasing SNR while keeping NDir=30 (Figs. 6.2A and

6.2B), or the effect of decreasing NDir while keeping SNR=25 (Figs. 6.2B and

6.2C). When increasing tensor trace from 2.1 to 7.2 µm2/ms (Figs. 6.3B and

6.3C), the magnitude of the bias is significantly increased, especially for DT with

high FA, and the bias at FA points toward much lower FA.
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Figure 6.3: Statistics of FA and tensor mode in the Forward Problem for different

tensor trace values. The biases and 95% confidence intervals of noisy FA and

tensor mode over a range of FA and tensor mode with tensor trace fixed at one

value (A) K1 = 0.6, (B) K1 = 2.1, and (C) K1 = 7.2 µm2/ms are shown for the

same 25–30+5 encoding scheme.

Effect on K1. The effect of SNR, encoding schemes, and FA and mode ranges

on tensor trace alone in the Forward Problem is demonstrated in Table 6.1. The

biases are quite small and the 95%-CIs are similar across the complete range of

FA and mode for any encoding scheme. Decreasing SNR while keeping NDir, or

reducing NDir while keeping SNR similarly increases the 95%-CIs.

The effect of different tensor trace values on tensor trace itself while keeping
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FA Mode

Encoding scheme (K1 = 2.1)

NDir=30 NDir=30 NDir=6

SNR=10 SNR=25 SNR=25

0.17 0.00 2.10± 0.35 2.10± 0.14 2.10± 0.31

0.32 0.00 2.10± 0.36 2.10± 0.14 2.10± 0.32

0.47 0.00 2.10± 0.36 2.10± 0.14 2.10± 0.31

0.70 0.87 2.10± 0.37 2.10± 0.15 2.10± 0.33

0.70 0.00 2.10± 0.37 2.10± 0.14 2.10± 0.33

0.70 -0.87 2.10± 0.37 2.10± 0.15 2.10± 0.33

0.85 0.87 2.09± 0.39 2.10± 0.15 2.10± 0.35

Table 6.1: Statistics of tensor trace in the Forward Problem for different encoding

schemes. The means ± two times standard deviations (95% confidence intervals)

of noisy tensor trace over a range of FA and tensor mode with tensor trace (K1)

fixed at 2.1 µm2/ms are shown for different encoding schemes: (A) 10–30+5, (B)

25–30+5, and (C) 25–6+1.

the 25–30+5 encoding scheme is demonstrated in Table 6.2. There are small biases

and similar 95%-CIs across the complete range of FA and mode for a very low

tensor trace value. However, there are significant biases toward lower tensor trace

and larger 95%-CIs for a very high tensor trace value.

6.3.2 Effect of Noise in the Inverse Problem

The results of the Inverse Problem are novel and especially important because

they provide guidance for the interpretation of measured invariants obtained from

DT-MRI experiments.
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FA Mode

Tensor trace

K1 = 0.6 K1 = 2.1 K1 = 7.2

0.17 0.00 0.60± 0.12 2.10± 0.14 7.14± 0.52

0.32 0.00 0.60± 0.12 2.10± 0.14 7.07± 0.52

0.47 0.00 0.60± 0.12 2.10± 0.14 6.94± 0.51

0.70 0.87 0.60± 0.12 2.10± 0.15 6.50± 0.49

0.70 0.00 0.60± 0.12 2.10± 0.14 6.57± 0.51

0.70 -0.87 0.60± 0.12 2.10± 0.15 6.65± 0.54

0.85 0.87 0.60± 0.12 2.10± 0.15 6.06± 0.48

Table 6.2: Statistics of tensor trace in the Forward Problem for different tensor

trace values. The means ± two times standard deviations (95% confidence inter-

vals) of noisy tensor trace over a range of FA and tensor mode with tensor trace

(K1) fixed at one value in [0.6, 2.1, 7.2] µm2/ms are shown for the same 25–30+5

encoding scheme.

Effect of SNR. The effect of noise alone in the Inverse Problem is demonstrated

in Figs. 6.4A and 6.4B. For the 10–30+5 encoding scheme, the magnitude of the

bias is substantially larger than for the 25–30+5 encoding scheme. Note that noise

in the Inverse Problem results in a bias toward lower FA independent of FA and

mode. Therefore, when observing noisy data there is a statistical bias that the

observed results arose from a DT with a lower FA than the measured data reports.

This bias, however, is essentially negligible for the 25–30+5 encoding scheme (Fig.

6.4B).

The effect of noise on tensor mode at low FA or extreme mode values near

the FA and mode boundaries is very similar to the Forward Problem. At non-

boundary FA and mode values, however, the bias points toward more extreme

mode independent of FA and mode. Therefore, there is a statistical bias that
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Figure 6.4: Statistics of FA and tensor mode in the Inverse Problem for different

encoding schemes. The biases and 95% confidence intervals of true FA and tensor

mode over a range of FA and tensor mode with tensor trace (K1) fixed at 2.1

µm2/ms are shown for different encoding schemes: (A) 10–30+5, (B) 25–30+5,

and (C) 25–6+1.

the observed noisy tensor invariants came from a DT with a more extreme mode

than the measured data reports. This bias is negligible for the 25–30+5 encoding

scheme (Fig. 6.4B), but the 95%-CIs in mode at low FA (≤0.47) are non-negligible

and are approximately ±0.5.
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Figure 6.5: Statistics of FA and tensor mode in the Inverse Problem for different

tensor trace values. The biases and 95% confidence intervals of true FA and tensor

mode with tensor trace fixed at one value (A) K1 = 0.6, (B) K1 = 2.1, and (C)

K1 = 7.2 µm2/ms are shown for the same 25–30+5 encoding scheme.

Effect of NDir. The effect of NDir alone in the Inverse Problem is demonstrated

in Figs. 6.4B and 6.4C. In summary, the effect of decreasing NDir while keeping

SNR=25 is very similar to the effect of decreasing the SNR, whilst keeping the

NDir constant. This is clear when comparing Figs. 6.4A and 6.4C.

Effect of K1. The effect of different tensor trace values while keeping the 25–

30+5 encoding scheme in the Inverse Problem is demonstrated in Fig. 6.5. The
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FA Mode

Encoding scheme (K1 = 2.1)

NDir=30 NDir=30 NDir=6

SNR=10 SNR=25 SNR=25

0.17 0.00 2.09± 0.35 2.10± 0.14 2.10± 0.31

0.32 0.00 2.11± 0.35 2.10± 0.14 2.10± 0.31

0.47 0.00 2.11± 0.35 2.10± 0.14 2.11± 0.31

0.70 0.87 2.11± 0.36 2.10± 0.15 2.11± 0.33

0.70 0.00 2.11± 0.36 2.10± 0.15 2.11± 0.32

0.70 -0.87 2.12± 0.36 2.10± 0.15 2.12± 0.32

0.85 0.87 2.11± 0.38 2.10± 0.15 2.10± 0.34

Table 6.3: Statistics of tensor trace in the Inverse Problem for different encoding

schemes. The means ± two times standard deviations (95% confidence intervals)

of true tensor trace over a range of FA and tensor mode with tensor trace (K1)

fixed at 2.1 µm2/ms are shown for different encoding schemes: (A) 10–30+5, (B)

25–30+5, and (C) 25–6+1.

effect of decreasing tensor trace from 2.1 to 0.6 µm2/ms (Figs. 6.5A and 6.5B)

is similar to the effect of decreasing SNR while keeping NDir=30 (Figs. 6.4A

and 6.4B), or the effect of decreasing NDir while keeping SNR=25 (Figs. 6.4B

and 6.4C). When increasing tensor trace from 2.1 to 7.2 µm2/ms (Figs. 6.5B

and 6.5C), note that the magnitude of the bias is significantly increased, and the

bias at FA>0.32 points toward much higher FA. Therefore, there is a significant

statistical likelihood that true FA will be much higher than observed FA.

Effect on K1. The effect of SNR, encoding schemes, and FA and mode ranges

on tensor trace alone in the Inverse Problem is demonstrated in Table 6.3. The

biases are quite small and the 95%-CIs are similar across the complete range of
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FA Mode

Tensor trace

K1 = 0.6 K1 = 2.1 K1 = 7.2

0.17 0.00 0.59± 0.12 2.10± 0.14 7.39± 0.65

0.32 0.00 0.60± 0.12 2.10± 0.14 7.63± 1.00

0.47 0.00 0.60± 0.12 2.10± 0.14 8.01± 1.27

0.70 0.87 0.60± 0.12 2.10± 0.14 8.27± 1.35

0.70 0.00 0.60± 0.12 2.10± 0.14 8.37± 1.32

0.70 -0.87 0.60± 0.12 2.10± 0.14 8.59± 1.14

0.85 0.87 0.60± 0.12 2.10± 0.16 8.62± 1.05

Table 6.4: Statistics of tensor trace in the Inverse Problem for different tensor trace

values. The means ± two times standard deviations (95% confidence intervals) of

true tensor trace over a range of FA and tensor mode with tensor trace (K1) fixed

at one value in [0.6, 2.1, 7.2] µm2/ms are shown for the same 25–30+5 encoding

scheme.

FA and mode for any encoding scheme. Decreasing SNR while keeping NDir, or

reducing NDir while keeping SNR similarly increases the 95%-CIs.

The effect of different tensor trace values on tensor trace itself while keeping

the 25–30+5 encoding scheme is demonstrated in Table 6.4. There are small

biases and similar 95%-CIs across the complete range of FA and mode for a very

low tensor trace value. However, there are significant biases toward higher tensor

trace and large 95%-CIs for a very high tensor trace value.

6.4 Forward Problem Versus Inverse Problem

The paired results of the Forward Problem and the Inverse Problem over the

complete space of tensor shape are shown in Figs. 6.2 and 6.4, Figs. 6.3 and 6.5,
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Tables 6.1 and 6.3, and Tables 6.2 and 6.4. The bias in FA for the two problems

has a naturally inverse relationship. For example, the bias points toward higher

FA in Fig. 6.2A while the bias points toward lower FA in Fig. 6.4A.

The mode bias also has an inverse relationship between the Forward and In-

verse Problems especially in non-boundary regions of FA and mode. At FA=0.47

and mode=−0.50, for example, the bias points toward higher mode in Fig. 6.2A

while the bias points toward lower mode in Fig. 6.4A. However, the bias points

toward less extreme mode in boundary regions for both problems.

6.5 Discussion

This analysis method and the mathematics developed herein define a useful frame-

work for comparing different DT-MRI encoding schemes. Under the constraint of

short exam duration and a required resolution [Zhan et al., 2013], this framework

can be used to define the encoding scheme that provides the best sensitivity for

measuring a tensor with any tensor shape, not limited to cylindrically symmetric

anisotropic shapes. Furthermore, the Inverse Problem framework provides direct

guidance about the confidence the observer should have in the observed measures

for the encoding scheme and noise level.

This paper addresses, for example, the likelihood that a particular observa-

tion (measurement) of FA has come from underlying tissue with a lower FA. For

the best encoding scheme (25–30+5), this FA bias is negligible and FA can be

moderately distinguished, in increments of about 0.15. Therefore, if you want to

detect a 0.15 change in FA, then this framework lets you design the appropriate

experiment (e.g. 25-30+5).

If tensor mode is measured in non-boundary regions of FA, then mode is more

likely to have come from underlying tissue with a more extreme mode. Strict lower

and upper boundaries of 1 and 1 for mode do not allow a diffusion tensor to fall out
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of the boundaries even, for example, in the presence of noise. Instead the tensor

is “mirrored” to the same diffusion tensor within the boundaries by resorting the

eigenvalues in descending order. Consequently, a tensor mode measured near the

boundaries is more likely to arise from a less extreme mode.

For the best encoding scheme (25–30+5), this tensor mode bias is negligible

if FA is sufficiently large (>0.17). Tensor mode, however, is poorly distinguished

in increments of about 0.5 at FA=0.47. Therefore, we should be careful in inter-

preting different observations of tensor mode.

Tensor trace has no bias and a small variance for the best encoding scheme

(25–30+5), and the errors are uniform across the complete space of FA and tensor

mode. For both decreased and increased tensor trace values, however, the noise

sensitivity is relatively higher. We performed all the simulations with the fixed

b-value of 1000 s/mm2, which attenuates the simulated DW signals by 18%, 50%,

and 91%, for example, when using isotropic tensors with the apparent diffusion

coefficient (ADC) values of 0.2, 0.7, and 2.4 µm2/ms, respectively. Slow diffusion

with an ADC value of 0.2 µm2/ms does not significantly attenuate the DW signals,

and therefore hampers accurate estimation of the diffusion coefficients.

The signal for fast diffusion, for example, with an ADC value of 2.4 µm2/ms is

excessively attenuated for the b-value of 1000 s/mm2. Therefore, for an anisotropic

tensor when the gradient directions are closely aligned with the primary direc-

tion of the tensor, the tensor estimation is especially sensitive to noise, which

overwhelms the inherent anisotropy and the bias points towards much lower FA

(Fig. 6.3C). Similarly, for highly anisotropic structures with high ADC the diffu-

sion measurements demonstrate a bias towards decreased ADC, which also arises

from an underestimate of the fast diffusion components due to noise and has a

larger impact, for example, on mode=0.87 structures than mode=−0.87 structures

at FA=0.7 (Table 6.2). Therefore, the optimal b-value, alternately the optimal

b×ADC value, should be carefully chosen according to the range of ADC values
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of the target tissues [Jones et al., 1999].

Note that our results can also provide quantitative estimates of variance. A

careful comparison of our results (Figs. 6.2A and 6.2B, and Table 6.1) to the

results of Chang et al. [Chang et al., 2007] (Figs. 1a and 1d) demonstrates very

good agreement. For example, our estimates of the standard deviation of tensor

trace and the coefficient of variation of FA for similar tensor shapes are very similar

to those reported. Our results also expand on their work for tensors with mode=1

by highlighting the different response for tensors with, for example, mode=1. It

is clear that the biases and 95%-CIs of trace and FA are similar for both tensor

shapes, but the tensor mode bias is oppositely directed.

Note that the number of gradient directions is not necessarily the same as

the number of acquisitions. Figures 6.2A and 6.2C, for example, compare a large

number of gradient directions (NDir=30) with moderate SNR=10 to a low num-

ber of gradient directions (NDir=6) and high SNR=25. If the imaging system

is fixed, and it takes 1 minute to acquire a single non-diffusion weighted image

with SNR=10, then it will require 6.25-minute per image to achieve SNR=25 by

averaging. Hence, 30 1-minute acquisitions have a roughly equivalent acquisition

time compared to a 37.5 (6×6.25)-minute acquisition and we may expect similar

impacts on the distribution of noisy tensors. Also note that while noise is an

important source of variability that impacts tensor estimation, physiologic and

patient motion, eddy currents, B1-inhomogeneity, multi-coil acquisitions and the

partial volume effects of fat should also be considered.
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CHAPTER 7

Uniform Tensor Invariant Set

7.1 Introduction

Diffusion tensor MRI (DT-MRI) characterizes the microstructural features of soft

biological tissues by measuring the self-diffusion rate of water molecules within

the tissues [Basser et al., 1994a]. Tensor invariants have been commonly used to

characterize the salient and geometric features of the microstructural shape. Ten-

sor invariants can be categorized into the three components of tensor shape: the

magnitude-of-isotropy (trace, norm, determinant), magnitude-of-anisotropy (frac-

tional anisotropy, relative anisotropy) and kind-of-anisotropy (skewness, mode).

Trace (three times mean diffusivity) and fractional anisotropy (FA) are amongst

the most widely used for the clinical analysis of diffusion tensor fields [Sotak,

2002, Thomalla et al., 2004]. Mode is an emerging tensor invariant that charac-

terizes another component of tensor shape (planar-orthotropic-linear anisotropy)

and completes the description of tensor shape [Jolapara et al., 2009].

Though mathematically convenient, however, It is not fully studied if these

invariants are truly logical and reliable to characterize tensor shape and quantify

a change in tensor shape. Tensor shapes and their changes are intuitively inves-

tigated by visualizing tensors with ellipsoidal or superqardric glyphs whose axial

lengths are usually set the eigenvalues [Ennis et al., 2005]. Hence it is desirable

that evenly spaced values of an invariant produce uniform changes of visualized

shapes which are equivalent to uniform distances between the eigenvalues for each
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step.

Comparative studies between FA and other anisotropy measures including rel-

ative anisotropy (RA) mostly consider the contrast-to-noise ratio (CNR) or signal-

to-noise ratio (SNR) [Papadakis et al., 1999, Sorensen et al., 1999, Alexander et al.,

2000, Hasan et al., 2004]. FA is widely accepted to have better noise immunity

and preferred in the literature for characterizing tensor anisotropy. A more recent

study, on the other hand, showed that FA has been preferred due to the popular-

ity and has no remarkable advantage in the CNRs [Kingsley and Monahan, 2005,

Kingsley, 2006]. The authors also claimed that RA is more logical because evenly

spaced values of RA accord to evenly spaced largest eigenvalues for cylindrically

symmetric tensors (mode of +1, the smaller eigenvalues are the same). Exten-

sive studies over a wide range of tensor shape, however, are needed to bolster the

claim.

This paper proposes the uniform invariant set consisting of trace, RA and

angular mode (the arccos of mode, AM) that more logically (linearly) character-

izes the complete space of tensor shape. It is mathematically shown that evenly

spaced values of each invariant in the set produce uniform distances between the

eigenvalues for each step exclusively (other invariants are fixed arbitrary values).

The logical property of the uniform invariant set is demonstrated by compari-

son to FA and mode for tensor field interpolation and analysis of experimentally

measured cardiac diffusion tensor fields.
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7.2 Theory

Our uniform tensor invariant set (Ui) consists of tensor trace (U1), scaled RA (U2)

and scaled AM (U3) and is defined for a tensor D:

U1 = trD (7.1)

U2 =

√
3

2

normD̃

trD

U3 = 1− 2

π
arccosR3(D) ,

where D̃ = D−(trD) I/3, R3(D) = modeD = 3
√

6detD̃/(normD̃)3, and tr, norm

and det are the tensor trace, Frobenius norm and determinant, respectively. The

original RA [Basser, 1995] was scaled to range from 0 (isotropic) to 1 (anisotropic)

[Kingsley and Monahan, 2005]. Scaled RA (U2) can be expressed as a function of

FA (R2):

U2 =
R2√

3− 2R2
2

, (7.2)

and their relationship is plotted in Fig. 7.1a. Whereas R2 increases from 0 to 1

at a constant rate, U2 starts slowly, monotonically increases at an increasing rate

and ends rapidly. AM is the arccos of mode (R3) [Bahn, 1999], and also scaled

to be between −1 (planar), 0 (orthotropic) and +1 (linear) as mode, which will

be named scaled AM (U3). The relationship between R3 and U3 is plotted in

Fig. 7.1b. They meet at −1, 0 and +1, and when R3 increases from 0 to +1

or decreases from 0 to −1 at a constant rate, U3 starts slowly, the magnitude

increases at an increasing rate and U3 approaches +1 or −1 rapidly.

We prove in the following that uniformly spaced values of each Ui produce

uniform distances between the eigenvalues for each step when other invariants are

arbitrarily fixed.
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Figure 7.1: Relationship between a) FA (R2) and scaled RA (U2) and b) mode

(R3) and scaled angular mode (U3).

7.2.1 Uniformity of RA

The mathematics that defines how eigenvalues (λi, sorted in decreasing order)

can be computed from the tensor invariant set composed of trace, FA and mode

was recently established as shown in Eq. 2.23. This can be rewritten using the

uniform invariant set Ui defined in Eq. 7.1:

λ1 = 1
3
U1 − 2

3
U1U2 sin(π

6
U3 − 2π

3
) (7.3)

λ2 = 1
3
U1 − 2

3
U1U2 sin(π

6
U3)

λ3 = 1
3
U1 − 2

3
U1U2 sin(π

6
U3 + 2π

3
) .

Suppose two arbitrary tensors A and B have different values only in U2 (U1 and

U3 are fixed). Then the distance between the eigenvalues (λ = [λ1, λ2, λ3]) for A

and B can be expressed in terms of Ui using Eq. 7.3:

‖λ(A)− λ(B)‖ = 2
3
U1|U2(A)− U2(B)|

[∑
i

sin2
(
π
6
U3 + Pi

) ]1/2
=
√
6
3
U1|U2(A)− U2(B)| , (7.4)

where the reduction is easily done using trigonometric identities. The distance

between the eigenvalues is proportional to the U2 difference with the coefficient
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determined by U1 (independent of U3). Therefore if the U2 differences between

any pair of tensors are the same then the distances of eigenvalues are also the

same. This implies that evenly spaced U2 values also produce uniform distances

between the eigenvalues for each step.

Figure 7.2a demonstrates the uniformity of U2 by visualizing the tensor shape

with superquadric glyphs whose axial lengths are fixed eigenvalues. The evenly

spaced values of U2 and R2 are chosen between U2 = R2 = 0 (isotropic) and

U2 = R2 = 1 (fully anisotropic), and U3 = R3 = +1 (cylindrically symmetric)

with U1 fixed. The U2 values generate uniform steps in the eigenvalue space,

which shows a constant rate of change in the visualized shapes from the isotropic

to linear shape. However, the R2 values do not allow for the constant change.

In particular there exist a slow change between the isotropic and low anisotropic

parts and a rapid change between the high anisotropic and linear parts.

7.2.2 Uniformity of AM

Arbitrary tensors A and B are alternatively assumed to have different values of

U3 (U1 and U3 fixed). Then the distance between the eigenvalues for A and B is

expressed using Eq. 7.3:

‖λ(A)− λ(B)‖

= 2
3
U1U2

[∑
i

[
sin
{
π
6
U3(A) + Pi

}
− sin

{
π
6
U3(B) + Pi

}]2 ]1/2
= 2

√
6

3
U1U2 sin π

12
|U3(A)− U3(B)| , (7.5)

where the reduction is also carried out using trigonometric identities. The distance

between the eigenvalues is the sine function of the U3 difference with the coefficient

proportional U1U2 (constant). Therefore evenly spaced values of U3 also guarantee

uniform distances between the eigenvalues for any pair of the adjacent U3 values.

An example of the U3 uniformity is shown in Fig. 7.2b. The evenly spaced
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values of U3 and R3 are chosen between U3 = R3 = 0 (orthotropic) and U3 = R3 =

+1 (linear), and U2 = 0.57 ⇔ R2 = 0.77 (anisotropic) and U1 are fixed. The U3

values generate uniform steps in the eigenvalue space, which shows a constant rate

of change in the visualized shapes from the orthotropic to linear shape. Figure

7.2b also shows that the R3 values fail to generate uniform distances of eigenvalues

between any consecutive steps. There exist a slow change at low U3 or R3 and a

rapid change at high U3 or R3.

The uniformity of tensor trace (U1) can be similarly proven. The distance

between the eigenvalues is given, when U2 and U3 are fixed:

‖λ(A)− λ(B)‖ =
√

(1 + 2U2
2 ) /3 |U1(A)− U1(B)| . (7.6)

7.3 Methods

The mathematical motivation for Ui was shown above. The uniform invariant set

is more logical for representing tensor shape and characterizing its change than the

conventional invariant set. The uniform invariant set can be used for any tensor

invariant-based processing and analysis of diffusion tensor fields. It will be shown,

in particular, that scaled RA (U2) and scaled AM (U3) are better in practice

for recovering the microstructural features in tensor interpolation and examine

miscrostructural remodeling by disease using cardiac diffusion tensor fields.

7.3.1 Linear Interpolation of Ui

Linear interpolation of trace, FA and mode was recently proposed in order to pre-

serve the microstructural features characterized by the invariants [Gahm et al.,

2012]. The linear invariant (LI) interpolation method resolved the underestima-

tion of FA (R2) inherent to the Riemannian approaches including log-Euclidean

(LE) [Arsigny et al., 2006], but underestimated mode (R3). Geodesic-loxodrome
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(a) U2 (top) vs. R2 (bottom)

(b) U3 (top) vs. R3 (bottom)

Figure 7.2: Visualization of tensors generated by evenly spaced values of a) U2 and

R2 between 0 and 1 and b) U3 and R3 between 0 and +1 (between the same end

tensors for Ui and Ri). Ui shows more plausible (uniform) changes in visualized

tensor shape.

(GL) [Kindlmann et al., 2007b] was reported to most accurately recover all the

invariants including R3, but not practical due to the significant computational

time. Instead linear interpolation of the Ui set is herein proposed, which will be

termed linear uniform-invariant (LU) interpolation. Each invariant in the set is

separately interpolated in a linear manner and then the interpolated invariants are

easily converted into the eigenvalues using Eq. 7.3. LU was evaluated with com-

parison to LE, GL and LU using the three real DT-MRI datasets measured from

rabbit, pig and human hearts same as used in Chapter 3. The data was downsam-

pled and recovered using each interpolation method, and the 95% bootstrapped

confidence interval (CI) of the bias rates (differences normalized by median) was
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computed for each invariant as described in Section 3.3.

7.3.2 Microstructural Remodeling

There are several recent studies of microstructural remodeling in infarcted my-

ocardium using tensor invariants including FA (R2) [Kung et al., 2012, Wu et al.,

2011, Strijkers et al., 2009]. The distinct differences in R2 (and R3) between re-

mote, peri-infarct and infarct regions were reported. Studies that use R2 and R3,

however, may be misleading into wrong interpretation of each distribution and

comparison between the distributions. Instead U2 and U3 more logically quantify

the magnitude-of-anisotropy and kind-of-anisotropy. Therefore their distributions

and comparisons better accord with visual interpretation and the reparameteriza-

tion results in large apparent differences in the histogram, which may infer Ui is

more sensitive to changes in microstructure. U2 and U3 distributions were com-

pared to R2 and R3 distributions for remote, peri-infarct and infarct regions using

a real DT-MRI dataset measured from the post-infarct pig heart.

7.4 Results

Figure 7.3 shows the 95% bootstrapped CIs of the bias rates using each interpo-

lation method for recovery of Ri and Ui using the three experimentally measured

DT-MRI datasets. Both LI and LU have no significant bias (rabbit and pig) or the

least bias (human) for recovery of R2 and U2. LU introduces significantly less bias

for recovery of R3 than LI but still slightly underestimated R3 (pig and human).

For recovery of U3, however LU has no significant bias for all the datasets. Fur-

thermore GL positively biases U3 and LE’s bias is significantly increased (≈ 10%

bias rate) compared to R3.

Figure 7.4 shows the bootstrapped histograms with 95% CIs of Ri and Ui for

remote, peri-infarct and infarct regions in the post-infarct pig heart. There exists

80



LE GL LI LU

−10%

0%

10%

20%

R
a

b
b

it

LE GL LI LU
−10%

0%

10%

P
ig

LE GL LI LU
−10%

0%

10%

H
u

m
a

n

(a) R2

LE GL LI LU

LE GL LI LU

LE GL LI LU

(b) U2

LE GL LI LU

LE GL LI LU

LE GL LI LU

(c) R3

LE GL LI LU

LE GL LI LU

LE GL LI LU

(d) U3

Figure 7.3: Bootstrapped results of tensor interpolation using the real data. Each

bar represents the 95% confidence interval of the bias rates about the median. LU

introduces significantly less bias both in R3 and U3 than LU and no bias in U3.

a distinct decrease both in R2 and U2 from remote to infarct regions, but the

U2 distributions are narrower and less shifted between remote and infarct regions

within the lower half range of U2. The difference between R3 and U3 is more

obvious. Any shift in the R3 distributions is difficult to observe and measure, but

the U3 distributions are more bell-shaped and slightly left-shifted from remote to

infarct regions. The U3 histogram is also more consistent with the qualitative

observation of a median tensor shape that is orthotropic.
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(a) R2 (b) U2

(c) R3 (d) U3

Figure 7.4: Bootstrapped histograms of each invariant for remote, peri-infarct and

infarct regions in the infarct heart. U2 is more narrowly distributed than R2 but

with distinction between regions. Unlike R3, the U3 distributions are bell-shaped

and distinct between regions.

7.5 Discussion

Measurements of tensor anisotropy that accurately quantify a change in tensor

shape are important in tensor invariant-based processing and analysis of tensor

invariants altered by disease. The uniform invariant set including scaled RA and

AM provides a linear relationship between each invariant in the set and tensor

shape (component) characterized by the invariant. FA and mode may overem-

82



phasize a change in tensor shape at the low magnitude and understate at the high

magnitude. The interpolation results show that linear interpolation of the uniform

invariants generates more linear interpolation of tensor shape and introduces no

significant bias for recovery of each component of cardiac microstructural shape.

The comparison results of invariant histograms demonstrate the significant differ-

ence between using the uniform and non-uniform invariants. The histograms of

the uniform invariants allow for more accurately evaluating how broadly each com-

ponent of tensor shape is distributed and how the degree of the shape component

is altered by disease.

Note that each uniform invariant exclusively satisfies the uniformity, but not

simultaneously. Such an invariant set does not seem to exist in the eigenvalue

space. We believe, however, that this does not undermine our claim. Tensor

invariant-based processing or analysis including the examples presented herein

independently deals with each component of tensor shape characterized by each

invariant (by projecting tensors on the iso-other invariants line in the eigenvalue

space). When we investigate a FA or RA map to characterize the magnitude-of-

anisotropy, for example, we do not consider the magnitude-of-isotropy (trace) at

the same time. Only the uniform invariant set provides a logical (linear) map-

ping between the shape component-invariant pair for the independent component

analysis.
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CHAPTER 8

Conclusion

This dissertation presented methods for tensor field processing (interpolation and

segmentation) and analysis of diffusion tensor fields that preserve features of mi-

crostructural shape and orientation, are mathematically unambiguous, and com-

putationally efficient. The microstructural feature-based processing and analysis

methods were accomplished by direct tensor field processing of each component

of tensor shape and orientation, and recapitulation of the tensor from the tensor

components using the mathematics we developed (Section 2.4).

Tensor field processing tasks such as interpolation, segmentation and registra-

tion require an appropriate tensor metric. Various tensor metrics exist and the

Riemannian approaches are amongst the most widely used in the literature. The

Riemannian tensor metrics largely rose to prominence because they preserve both

the tensor determinant and the positive definiteness of diffusion tensors. The LE

and AI approaches were quickly adopted because they closely approximate the

Riemannian metrics and are easier to compute. The Riemannian metrics were,

however, not microstuctural feature-based and failed to preserve important mi-

crostructural features of shape and orientation in tensor field interpolation. The

geodesic-loxodrome approach was developed that preserves microstructural fea-

tures of shape by monotonically interpolating an orthogonal tensor invariant set,

but was not practical due to the significant computational time. Furthermore,

these tensor-based approaches mostly focused on tensor shape, and had no dis-

tinct advantage for tensor orientation interpolation.
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Our microstructural feature-based approach separately processed tensor shape

and orientation. The tensor shape interpolation was accomplished by linearly

interpolating each component of tensor shape, and converting the interpolated

invariants into the eigenvalues, so called linear uniform-invariant (LU) interpola-

tion. The tensor orientation interpolation was done by linearly interpolating the

dyadic tensors of each eigenvector with subsequent reduction to rank-1 dyadics

and orthogonal matrices, so called dyadic tensor-based (DY) interpolation. LU

combined with DY to create a microstructural feature-based interpolation tech-

nique was computationally efficient, commutative, and accurate based on our

experimental results.

The linearity of tensor invariants was also used in tensor shape interpolation

applied to define the weighted tensor distance measurement of shape and orienta-

tion components for segmentation of diffusion tensor fields. The microstructural

feature-based tensor distance measurement was advantageous in segmentation of

anatomical objects that commonly have high contrast between particular shape

and orientation components.

The microstructural feature-based analysis, on the other hand, involved evalu-

ating the effects of noise on characterizing tensor shape. Previous work examined

the effects of noise only over a narrow range of tensor shape, and only considered

the forward propagation of noise. Our work provided the statistical distributions

of tensor invariants over the complete space of tensor shape. In addition, we

developed a new framework termed the “Inverse Problem” for determining the

distribution of the likely true values of tensor invariants given their noisy mea-

sures. This work is important for redefining our expectations for the effects of

noise when we observe and analyze noisy data.

The microstructural feature-based tensor processing and analysis methods

needed to choose an appropriate tensor invariant set that fully characterized ten-

sor shape, and the set of trace, FA and mode was firstly chosen due to their
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widespread use in the literature. FA and mode, however, failed to linearly char-

acterize their shape components, that is, evenly spaced values of FA and mode

did not provide equal distances between the eigenvalues for each step. The non-

uniformity of mode, in particular, adversely affected the tensor shape interpola-

tion and evaluation of microstructural remodeling because it skewed intermediate

kinds-of-anisotropy to relatively high values of tensor mode. We demonstrated

that scaled RA and angular mode linearly reparameterized the same tensor com-

ponents characterized by FA and mode (along the same path in the eigenvalue

space). The uniform tensor invariant set consisting of trace, scaled RA, and scaled

angular mode introduced no bias for recovery of each component of cardiac mi-

crostructural shape and allowed for more accurate evaluation of microstructural

remodeling by cardiac disease.

As a result of this work, we have:

• a tensor field interpolation method that best preserves cardiac microstruc-

tural features (Chapters 3, 4 and 7) [Gahm et al., 2012, Gahm and Ennis,

2014a,b].

• a uniform tensor invariant set that linearly characterizes tensor shape (Chap-

ter 7) [Gahm and Ennis, 2014b].

• an evaluation of the effects of noise on characterizing tensor shape over the

complete space of tensor shape (Chapter 6) [Gahm et al., 2014].

• a microstructural feature-based segmentation of cardiac diffusion tensor

fields (Chapter 5) [Gahm et al., 2013].

8.1 Future Work

The uniform tensor invariant set was most recently developed and the mathe-

matical foundation was firmly established. The uniform tensor invariant set was
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applied only to the linear interpolation of tensor invariants and qualitative eval-

uation of tensor invariant-based microstructural remodeling. The uniform tensor

invariant set can readily be used in many other micro-structural feature-based

processing and analysis tasks including tensor distance measurement for segmen-

tation of tensor fields, and evaluation of the effects of noise on tensor invariants

presented herein. Future work should evaluate these applications, and focus on a

quantitative evaluation of microstructural remodeling.

The tensor shape and orientation interpolation methods were evaluated using

experimentally measured DT-MRI data from ex vivo hearts. Further investiga-

tions using brain DT-MRI data and the same evaluation process may be needed

to evaluate if the most accurate interpolation is dependent on the underlying

tissue characteristics. For tensor orientation interpolation, in particular, all the

tested tensor interpolation methods except the quaternion method introduced a

≈ 5◦ − 8◦ bias for recovery of the primary fiber direction. However, the required

tensor interpolation accuracy for cardiac mechanics and EP simulations remains

incompletely understood. If the bias turns out to introduce notable fiber disar-

ray, a tensor interpolation method that better recovers tensor orientation is still

needed.

The development of the mathematics to freely construct tensors with known

shape attributes was enabling for both the Inverse and Forward Problems in the

evaluation of effects of noise. This technique was also used to devise the ten-

sor interpolation methods and the uniform tensor invariant set. Moving forward,

the mathematical framework could also be used to constrain tensor-field recon-

struction; for tensor-field denoising; and for compressed sensing acquisition and

reconstruction of tensor field data.
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