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Abstract 

Organisms orchestrate cellular functions through transcription factor (TF) 

interactions with their target genes, though these regulatory relationships are unknown 

in most species. Here we report a high-throughput approach for characterizing TF-target 

gene interactions across species, and its application to 354 TFs across 48 bacteria, 

generating 17,000 genome-wide binding maps. This dataset revealed themes of ancient 

conservation and rapid evolution of regulatory modules. We observed rewiring, where 

the TF’s sensing and regulatory role is maintained while the arrangement and identity of 

target genes diverges, in some cases encoding entirely new functions. We further 

integrated phenotypic information to define new functional regulatory modules and 

pathways. Finally, we identified 242 new TF DNA binding motifs, including a 70% 

increase of known Escherichia coli motifs and the first annotation in Pseudomonas 

simiae, revealing deep conservation in bacterial promoter architecture. Our method 

provides a versatile tool for functional characterization of genetic pathways across all 

organisms.  
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Introduction 

 Transcription factors (TFs) are the primary regulators of gene expression. They 

modulate the rate of RNA expression via direct binding at specific genomic sites near their 

target genes, and coordinate genome-wide transcriptional programs that allow cells to adapt to 

dynamic conditions. Understanding the interactions between TFs, their binding sites, and the 

collection of target genes they regulate is key to our ability to model transcriptional programs 

and ultimately engineer them. However, large-scale decoding of these interactions is currently 

limited to a small set of model organisms, in part because of the limitations posed by existing 

technologies. In vivo methods such as ChIP-seq1–4 can capture TF binding in a physiologically 

relevant state, but are difficult to scale up to match the hundreds to thousands of TFs found in a 

single organism. In contrast, in vitro methods such as protein binding microarrays (PBMs)5 and 

systematic evolution of ligands by exponential enrichment (SELEX)6–8 can be leveraged at large 

scales. However, most in vitro methods rely on indirect characterization of binding sites by 

identifying TF binding motifs using synthetic short DNA sequence pools, followed by scanning 

for these motifs in the reference genome to predict TF binding sites. As a result, these in vitro 

assays are unable to capture effects of native genomic context including DNA shape, chemical 

modifications, and conserved local cis-element architecture that can have a large impact on TF 

binding specificity. 

DNA affinity purification sequencing (DAP-seq), the method we developed in 2016,9 

combines advantages of both in vivo and in vitro assays. Like ChIP-seq, DAP-seq directly 

measures TF binding in native local genomic sequence contexts, however DAP-seq can be 

easily scaled up to comprehensively assay all TFs within a species, as demonstrated previously 

with Arabidopsis (see Supplementary Notes). To achieve this, DAP-seq leverages in vitro 

expressed and affinity-purified TFs to capture binding events within fragmented native genomic 

DNA (gDNA), followed by high-throughput sequencing.10 DAP-seq has proven to be an effective 

method to study TF binding sites in a variety of model organisms11–13 and the resulting large-

scale datasets have been central to a variety of approaches for understanding gene 

regulation.14–16  

One limitation to DAP-seq, as well as all other existing TF binding assays, is the 

significant upfront investment required to purify each TF of interest. This is the major bottleneck 

for all high-throughput TF DNA binding techniques, and the primary restriction on the total 

number of TFs that can be assayed. In the original DAP-seq method, TF proteins are expressed 

in vitro from E. coli plasmid templates, which allows fusion of the TF coding sequence with an 

affinity tag that is required for the pulldown of the expressed TF and the DNA sequences it binds 
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to. This hinders widespread application to non-model organisms for which pre-existing TF 

plasmid collections are not available, particularly in microbial studies where short generation 

times and high mutation rates have generated a vast diversity of TFs. In addition, the original 

DAP-seq method only enables mapping gDNA binding properties in a single genome at a time. 

The relationships between TFs, their binding sites, and target genes are known to be conserved 

sometimes over incredibly long periods of time, and have been shown to be a predictor of 

conserved biological functions.17,18 Therefore, a broader understanding of how TF binding sites 

and target genes evolve across phylogenetically relevant sets of species will be of great value to 

reveal the conservation, evolution, and the function of TF-target gene pathways, of which our 

current understanding is very limited. Beyond the specific biological insights gained from this 

dataset, the methods presented here are broadly applicable and will enable future surveys of 

diverse genomes and annotation of intergenic sequences. 

 

Results 

Streamlined protein expression from gDNA or cDNA 

To address the bottleneck imposed by plasmid-based protein expression we developed 

biotin-DAP-seq, a streamlined clone-free workflow where tagged TF proteins are expressed 

from templates that are PCR amplified directly from gDNA or cDNA (Figure 1). First, we 

designed primers flanking the TF of interest. The primers contained a T7 promoter and other 

required components for expression with a commercial in vitro coupled transcription and 

translation mix but did not contain an affinity tag sequence. Instead, a biotin tag was introduced 

directly during translation by spiking in a tRNA loaded with biotinylated lysine.19 This resulted in 

incorporation of biotin tags at a random subset of lysine codons within the protein sequence. 

This biotin-tag allowed for downstream affinity capture of TFs along with bound DNA 

sequences, using streptavidin-coated magnetic beads. 

We tested this new streamlined TF expression approach using a set of 216 known 

Escherichia coli TFs. We detected one or more putative binding sites in at least one of two trials 

for 125 TFs (58%, Table S1, see also Supplementary Notes). We examined the dataset for 

known E. coli TF binding sites represented in RegulonDB20 and found at least one published 

site in our dataset for 113 TFs (90%), at least half of all known sites for 64 TFs (57%), and all 

sites for 40 TFs (32%) (Figure S1). These findings are consistent with other in vitro techniques, 

where a subset of binding sites may not be detectable due to low affinity, requirement for a 

cofactor, or binding limited to specific in vivo conditions.21,22 Despite these limitations, in vitro 

techniques have been successfully applied in recent years to discover many new functional 
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binding sites that were not reflected in E. coli databases.23–26 Our results demonstrate that biotin 

DAP-seq is a high throughput approach that allows detection of known functional TF binding 

sites, as well as discovery of additional putative binding sites. We also demonstrated that this 

method can be applied to study eukaryotic TFs containing intronic sequences, by amplifying the 

complete coding sequences directly from cDNA (Figure S2). By eliminating the need for 

plasmid construction, we reduced the time required to produce a species-wide DAP-seq dataset 

from months to days, and the total reagent cost by more than half. 

 

  

 

Figure 1. Streamlined protein expression directly from PCR products amplified from gDNA or cDNA 

circumvents the need for plasmid construction. Addition of tRNA loaded with biotinylated lysine results in 

incorporation of biotin tags at a random subset of positions that encode a lysine within the TF amino acid 

sequence. With this protocol an experiment can be completed in approximately 5 hours. 

 

 The streamlined biotin-DAP-seq is particularly suited to studying non-model organisms. 

We demonstrated this by mapping TF binding sites in Pseudomonas simiae,27 an emerging 

model for plant-commensal microbes that currently has no available TF binding site 

annotations.28,29 We compiled a comprehensive set of 567 putative P. simiae TFs by combining 

three different predicted gene annotations from GenBank30, RefSeq31, and IMG,32 of which 138 

(24%) were successful in two replicate experiments. The lower overall success rate compared 

to well characterized E. coli TFs is not surprising, as we screened any gene with predicted DNA-

binding activity, many of which may not be functional TFs. 

 

Multiplexed TF mapping: multiDAP 

 In parallel, we developed multiDAP, a method that allows mapping TF binding sites in 

multiple genomes simultaneously. By using a pool of gDNA samples from different species we 

were able to directly map TF binding sites across a diverse array of organisms. For our TF set 

we used a total of 354 TFs (Table S2), including the 138 P. simiae TFs from the preceding 

screen, and all 216 E. coli TFs regardless of previous success or failure. (Figure 2a). Next, we 

prepared gDNA fragment libraries from 48 bacterial genomes (Table S3), each marked with a 
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unique molecular barcode (Figure 2b). We selected the set of 48 bacterial species to cover a 

large evolutionary distance, with a larger proportion of close relatives of E. coli and P. simiae for 

higher resolution of local conservation and variation. We pooled all 48 barcoded gDNA fragment 

libraries and distributed this pool equally to each well of a microtiter plate containing bead-

immobilized TF proteins. After several washing steps, the bound gDNA fraction was eluted and 

amplified by PCR using a set of uniquely barcoded primers to mark the identity of each well and 

the corresponding TF. At this point samples were pooled together for sequencing. 

 

Figure 2. Overview of multiDAP 
experimental setup and example of 
resulting data. (a) TFs were PCR 
amplified directly from E. coli or P. 
simiae genomic DNA and used as 
templates for in vitro protein 
expression, with biotin tags 
incorporated. (b) Genomic DNA 
fragment libraries were prepared 
from 48 bacterial species, each with 
a unique molecular i5 barcode. All 
48 libraries were pooled and 
distributed to TF protein plates. TFs 
bound to target DNA fragments and 
streptavidin-coated magnetic beads. 
After washing, remaining bound 
DNA fragments were PCR amplified 
using a unique i7 barcoded primer 
for each well before pooling and 
sequencing. (c) After demultiplexing 
of sequence reads, alignment to 
genome revealed TF binding sites in 
each species evident as peaks in 
coverage plots. Coverage plots for a 
P. simiae TF Ps356 are shown in 
black across a 10,000 base pair 
window. Genes predicted to be 
regulated by Ps356 in each species 
are colored by predicted gene 
function and percentages indicate 
BLAST amino acid identity to P. 
simiae orthologs. 

 

Based on the combination of molecular barcodes from each sequencing read, the 

dataset was computationally de-multiplexed to yield the equivalent of one DAP-seq dataset per 

TF per organism. After alignment to the corresponding genomes, regions that contain TF 

binding sites were apparent as peaks, resulting from the pileup of DNA fragments that are 

bound by the TF. By mapping the binding of the 354 TFs from E. coli and P. simiae across the 

set of 48 bacterial genomes, we produced a combinatorial dataset equivalent to 17,000 DAP-
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seq experiments. This dataset allowed direct comparison across divergent bacterial species to 

reveal conserved patterns of TF binding at orthologous genes (Figure 2c). We recovered 

binding information for 113 of the 138 (82%) P. simiae TFs, and 107 of 216 (50%) of the E. coli 

TFs in a single pass experiment. 

We next investigated reproducibility and data quality produced by multiDAP, for which 

we selected 92 E. coli TFs for further benchmarking. PCR primers targeting these 92 TFs, along 

with 4 negative control samples, were arrayed into a 96 well plate and then tested in three 

independent multiDAP experiments using the set of 48 genomes. Comparisons between these 

triplicate experiments demonstrate that multiDAP yields a unique binding signature for each TF, 

which is highly reproducible across independent experiments (median correlation of 94% 

between replicates, Figure S3). We observed that most TFs show strong affinity to a few 

genomic sites, and some also reproducibly bind weakly to many additional sites (Figure S4 and 

Table S4). For some TFs, only the strongest binding sites have known biological functions, 

however for other TFs even the weakest detected binding sites correspond to known annotated 

sites (Figure S4). Recent studies in E. coli have revealed that the true number of regulatory 

targets for some TFs has been historically underestimated,21 suggesting that some of the 

weaker binding sites we observed also represent real unknown regulatory interactions. One 

approach towards identifying functionally important binding sites is to assess the degree to 

which these sites have been conserved across evolutionary distances. 

Evolutionary conservation of TF targets 

Using the multiDAP dataset, we quantified TF target conservation across the 48 

bacterial strains and species. Since transcription factors often bind in the promoter region 

directly upstream of genes,33 we assigned each peak to the adjacent downstream predicted 

operon(s) to a set of genes that we predict may be regulated by each TF in each of the 

organisms. We then calculated a target gene similarity score by comparing the sets of target 

genes across organisms. We first grouped all protein-coding genes from all 48 species into 

groups of putative orthologs (orthogroups).34 Next, we quantified TF target conservation by 

comparing the set of orthogroups targeted in the species from where the TF itself originated 

(either E. coli or P. simiae) with those targeted in each of the remaining 47 organisms. To limit 

the number of spurious matches based on weak binding sites, we only considered the top ten 

target operons for each species. The results of this analysis give a global view of TF target gene 

similarity in divergent bacteria for both TFs from E. coli (Figure 3) and TFs from P. simiae 

(Figure S5). Weak matches do not necessarily imply lack of functional conservation and could 

be the result of divergent TF motif-specificities between species. However, strong matches 
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suggest conserved gene regulation by the corresponding TF ortholog and may serve as 

attractive choices for future studies and in vivo characterization. 

 

Figure 3. Quantification of TF target gene 

conservation across species reveals global 

patterns of conservation and evolution. Gray-

shaded vertical bars mark phylogenetic 

clades (top to bottom): Gammaproteobacteria, 

Betaproteobacteria, Alphaproteobacteria, 

Bacteroidetes, Gram-positive. For each E. coli 

TF (rows), the set of target genes in E. coli 

was compared to the set of target genes in 

each of the other 47 species (columns, 

labeled 1-48). The two species used in this 

study as a source of TFs (E. coli and P. 

simiae) are indicated in the phylogenetic tree 

as colored dots (blue and green, 

respectively). TFs marked with colored stars 

are discussed in text. Target gene similarity 

was quantified as the number of matching 

orthologs appearing in pairs of target gene 

sets. P-values were determined by comparing 

to a mock set of target genes randomly 

selected from each genome for 10,000 

iterations. Blue-to-red shades correspond to 

significance, with darkest red representing the 

most significant degree of conservation (p-

value <= 1e-4). See also Figure S5 for the 

corresponding analysis results using P. 

simiae TFs. 
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While some TFs and their targets appear to be confined to a small subset of species, 

others are highly conserved across large evolutionary distances. As expected, there is a general 

trend where many TF-target relationships from E. coli are well conserved within the closely 

related Enterobacteria clade. This also holds true for TFs from P. simiae within the 

Pseudomonas clade. One striking feature is the high degree of conservation of some TF targets 

across clades that diverged long ago. The most highly conserved TF targets are those of the 

MraZ transcriptional repressor from E. coli, which regulates its own expression as well as genes 

involved in cell division and cell wall synthesis (Figure 3, top row black star), This is consistent 

with previous studies that have shown MraZ to be a highly conserved regulator in bacteria.35,36 

Remarkably, our results indicate that the underlying DNA binding sequence is so well conserved 

that the E. coli MraZ protein is able to bind specifically to the promoter of the mraZ ortholog in 

Bacillus subtilis, a Gram-positive bacterium which diverged approximately 2 billion years ago.37 

We found several additional TFs with apparent conservation far beyond the E. coli clade, many 

of which are known to be involved in processes central to bacterial survival and replication, 

including PhoB (inorganic phosphate metabolism), LexA (response to DNA damage), AcrR 

(multidrug resistance), and GlnG/NtrC (nitrogen metabolism). 

In contrast to these highly conserved features, we also observed evidence of regulatory 

changes at the sub-species level. To test the ability to accurately discriminate small genetic 

differences in gene regulation, we included two very closely related strains of E. coli (Figure 3, 

species #1 and #2). As expected, we found that the target genes of almost all E. coli TFs are 

conserved between the two strains, with a single notable exception for the LacI repressor 

protein (Figure 3, orange star). This is consistent with the deletion of the LacI binding site 

upstream of the lacZ gene, which is among the small set of documented genetic differences 

between these two strains of E. coli.38  

Other features appear to be selectively conserved even in closely related species yet are 

scattered across larger evolutionary distances. For example, the E. coli MqsA regulator of the 

mqsA/mqsR toxin/antitoxin system is found sporadically throughout the phylum Proteobacteria 

(Figure 3, green star). Similarly, in the case of the E. coli TF PaaX, binding sites upstream of 

genes involved in phenylacetic acid utilization are conserved in seven of the ten Enterobacteria, 

but also in a subset of the more distantly related Pseudomonas and Marinobacter genuses 

(Figure 3, gray star). 
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Operon shuffling and genetic rewiring 

While this global analysis gives general insights into conserved binding features, closer 

inspection of individual TF target operons offers specific examples of genetic rearrangements 

and TF target evolution. We examined the dataset for TFs that target orthologous multi-gene 

operons in at least two species and found 100 conserved E. coli TFs and 95 from P. simiae. The 

apparent rates of TF target evolution span a large spectrum, ranging from highly stable features 

to those that have diverged rapidly. For example, the strongly conserved E. coli autoregulator 

MraZ shows a rigid operon structure, with only small differences in gene content and operon 

arrangement in even the most distantly related species (Figure 4a). In contrast, an example of 

strong divergence is seen in the E. coli arsenic resistance regulator, ArsR (Figure 4b). In E. 

coli, ArsR acts as an arsenic sensor and regulates a set of genes that detoxify arsenic through 

the combined action of an arsenic exporter (ArsB) and a reductase (ArsC).39 However in four 

species of Shewanella the ArsR target operon does not contain any orthologs of these genes, 

except ArsR itself. Instead they encode distinct arsenic resistance proteins and a predicted 

glyceraldehyde-3-phosphate dehydrogenase, which is known to be involved in alternative 

pathways for arsenic detoxification.40 

We next examined the dataset for evidence of TFs that may have diverged to take on 

entirely new functions. We found that an ancestor of the E. coli TF AscG may have evolved to 

become PtxS in Pseudomonas aeruginosa, acquiring distinct ligand binding functions while 

maintaining nearly identical DNA binding motifs (Figure S6). We identified 13 additional E. coli 

TFs that may have been similarly repurposed (Figure S7). 

We also demonstrate how multiDAP can be used to discover evidence of conserved 

metabolic functions within groups of non-model organisms. TF Ps293 from P. simiae targets 

operons predicted to be involved in sugar and dipetide transport and metabolism (Figure 4c). 

The presence of conserved TF binding features in 12 species spread across the phylum 

Proteobacteria implies that these sites are under strong positive selection, and that all these 

species likely encode a version of this TF, regulon, and the associated metabolic functions.  
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Figure 4. Selected TF target operons compared across species, exemplifying degrees of conversation 

and instances of rewiring. Predicted orthologs are color coded, with functional predictions from RefSeq 

annotations. Solid colored genes are present in species from where TF originated (E. coli or P. simiae), 

outlined colored genes are absent. Numbers within colored squares indicate multi-copy genes. For each 

panel, three examples of conserved target operons are shown in more detail, with multiDAP genome 

coverage signal tracks in black shown below each. (a) The TF MraZ from E. coli regulates genes involved 

in cell division and cell wall synthesis and has highly conserved binding sites and operon structure across 

divergent clades spanning 2B years. (b) The TF ArsR from E. coli is an arsenic sensor that regulates 

genes for arsenic resistance and is conserved in 16 species from the class Gammaproteobacteria, 

although the number of copies per genome varies. The ArsR TF is conserved as the first gene in the 

operon in all cases. In some Shewanella species the regulons appear to have been re-wired to control a 

distinct arsenic resistance pathway, while other species mix-and-match elements from both pathways. (b) 

A TF from P. simiae (nicknamed Ps293) involved in sugar and dipeptide transport and metabolism is 

conserved in several species across the phylum Proteobacteria. In P. simiae and close relatives it targets 

multiple distinct operons, different subsets of which are conserved across larger genetic distances. 

 

Functional annotation of TFs and regulons 

While multiDAP allows for identification of putative conserved regulons and their 

functions, additional experimental evidence is required to validate these predictions. One high-

throughput approach was described in a study designed to measure the fitness costs of gene 

knockouts on a range of conditional challenges, including a set of carbon and nitrogen 

sources.29 This approach was applied to diverse bacterial species, many of which overlap with 

our set of 48 species. To investigate how these datasets can complement each other we initially 

identified a simple and well-characterized example from E. coli, FucR. In response to 

environmental sources of fucose, E. coli FucR activates genes involved in fucose import and 

degradation, as well as the expression of FucR itself.41 Disruption of fucR or other genes in the 

fuc operon resulted in a growth deficit in E. coli when grown on fucose. Similarly, in Klebsiella 

oxytoca when the ortholog of fucR or genes in its operon were knocked out, a fucose-dependent 
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growth defect was observed. In both E. coli and K. oxytoca the binding sites predicted by the E. 

coli FucR multiDAP experiment correctly identified the TF and target genes for fucose sensing 

and metabolism (Figure 5a). 

Applying the same analysis to the non-model species P. simiae, we found that our 

earlier prediction that P. simiae TF Ps293 functions as a regulator of several distinct metabolic 

pathways (see Figure 4c) is also supported by phenotypic measurements (Figure S8). In 

another case, we predict that the P. simiae TF Ps109 regulates genes at two different promoters 

located at distant sites on the chromosome. While the TF knockout confers a growth advantage 

when 2'-deoxyinosine is the only carbon source, knockouts of genes in both target operons 

show a growth disadvantage. The multiDAP binding information allows bundling of these 

individual knockout phenotypes to establish a functional regulatory model, with TF Ps109 acting 

as a transcriptional repressor at two distant operons involved in 2'-deoxyinosine utilization 

(Figure 5b). 

A third example, TF Ps17, shows a conserved functional regulon involved in succinate 

utilization (Figure 5c). The existing annotations for both the transcription factor (Fis family 

transcriptional regulator) and target gene (C4-dicarboxylate transporter) are likely too generic to 

have informed a clear relationship between these TFs and their targets. This demonstrates the 

value of multiDAP in identifying new regulatory modules, and how some of these predictions 

can be successfully extrapolated to additional species. 
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Figure 5. Combining multiDAP with 

phenotypic measurements enables 

establishment of functional regulons for a 

TF across multiple distant operons and 

multiple species. (a) The E. coli 

autoregulator FucR is a known 

transcriptional activator which acts on an 

operon involved in fucose utilization. 

MultiDAP accurately predicts the target 

genes in E. coli, which is further 

supported by an observed fitness 

disadvantage conferred by gene 

knockouts in the corresponding operons. 

Both multiDAP and phenotypic 

measurement also support conservation 

of the FucR regulon in Klebsiella oxytoca. 

(b) In the non-model organism P. simiae, 

multiDAP allows bundling of TFs and 

targets located in distant regions of the 

genome. TF Ps109 and genes found in 

two distant target operons play a role in 

2’-deoxyinosine utilization, as evidenced 

by phenotypic measurements. The TF 

gene knockout confers a positive growth 

impact while the target gene knockouts 

display a negative impact, suggesting that 

the TF functions as a transcriptional 

repressor at the target promoters. (c) 

MultiDAP results for TF Ps17 reveal a 

conserved TF and distant target gene 

found in 5 of the tested Pseudomonas species. Phenotype data shows a positive correlation between the 

phenotype of the TF and target gene when succinate is supplied as the sole carbon source, suggesting 

that Ps17 functions as a transcriptional activator and is involved in succinate utilization in all 5 species. 

 

Motifs and promoter architecture 

One challenge when studying bacterial transcription factors is that many TFs only bind 

strongly to few sites in an entire genome, which can make it difficult to confidently identify a 

DNA binding motif. However, by assaying 48 microbial genomes in a single multiDAP 

experiment, the total number of examples of binding sequences for each TF is multiplied. 

Importantly, for the purposes of motif discovery, all detected binding sites are useful, including 

those that may not be biologically relevant. We were able to call a motif for 124 TFs from E. coli, 

66 of which are not represented in RegulonDB (Figure S9).20 We used the remaining 58 that 

are in RegulonDB to validate our motif calls, and found good agreement (50 matches of 58 
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motifs (86%), each with p-value < 0.01, Figure S10). For the 8 remaining motifs, some show 

matching subsequences flanked by differing bases. We also found good agreement between 

our motif for the E. coli TF YiaJ and the motif published in a recent study which established this 

TF’s function in plant breakdown product utilization (Figure S11).26 The union between 93 

known motifs and those newly reported here now provides a total of 158 E. coli motifs, a 70% 

increase over what was previously known for this model bacterium. As no published motifs exist 

for P. simiae, all 118 reported here are new motifs. These results demonstrate that multiDAP 

experiments offer an expedient and cost-effective method for generating high quality TF binding 

motifs. 

We then applied these motifs to explore conservation of TF binding site architecture in 

promoters. We mapped motifs back to promoter sequences to identify the precise location and 

orientation of binding. Autoregulating TFs serve as a particularly tractable set, because there is 

less ambiguity in identifying the corresponding promoters to compare from each genome. We 

observed a variety of patterns, some of which are well conserved across divergent species. For 

some TFs such as MraZ, we consistently find closely spaced clusters of motifs, where the motif 

orientation is always the same and spacing between individual motifs within a cluster is always 

exactly 10 base pairs (Figure 6a). Another common pattern is exemplified by TF Ps408, which 

is limited to species in the Pseudomonas clade, and always appears as a doublet with two 

strong motifs and a 21 base pair gap in the middle (Figure 6b). Yet others, such as LysR from 

E. coli have a single strong motif located close to the beginning of the coding sequence (Figure 

6c). Conserved promoter architecture likely reflects attributes of the TF proteins themselves, 

including size and shape, ability to form multimers, and protein-protein interactions with other 

TFs and sigma factors. 

Beyond revealing conserved promoter architecture in known gene targets, TF binding 

sequence motifs can also aid in identifying previously unknown regulatory targets. We 

expanded our analysis beyond the 48 bacterial species by searching for TF orthologs in all 

metagenome assembled genomes in the Integrated Microbial Genomes (IMG) database.32 We 

identified approximately 1.25M possible TF orthologs, of which >170k showed evidence of 

conserved autoregulation where TF motifs are enriched in their respective promoters (Figure 

6d). The presence of motifs in gene promoters may be useful to provide supporting evidence for 

predictions of protein function, even in species beyond those tested directly. 
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Figure 6. Autoregulator TF binding sequence motifs mapped to promoter sequences reveal conserved 

promoter architecture. Logo representation of motifs is shown at top, coverage plots are in black, and 

motif locations are gray bars below. (a) For the E. coli TF MraZ, the location of motifs relative to the gene 

start varies by species, but adjacent motifs are always spaced exactly 10 bases apart even in highly 

divergent species. Detailed view is shown for E. coli, P. simiae, and B. subtilis (left), and heatmap view is 

shown for all species (right). (b) A TF from P. simiae (nicknamed Ps408) is limited to the genus 

Pseudomonas where it is found as a pair of motifs spaced 21 bases apart. (c) The E. coli TF LysR binds 

to a single conserved motif located close to the gene start across various species within the phylum 

Proteobacteria. (d) Autoregulator TF motifs are specifically enriched in the corresponding 100 bp 

promoter sequences of orthologs throughout metagenomic samples in the Integrated Microbial Genomes 

(IMG) database. 

 

Discussion 

In non-model organisms and metagenomes, a genome sequence provides a wealth of 

information about gene content and allows prediction of many gene functions based on 

similarity to known proteins. However, the function of intergenic sequences remains difficult to 

predict. In this work, we used multiDAP to identify TF binding sites in 48 diverse bacterial 

species and identified 242 TF binding motifs, most of which have not been described. The 

resulting dataset illustrates examples of remarkably conserved regulons and promoter 

architecture, but also reveals patterns of genetic divergence including TF rewiring and 

repurposing. We speculate that while some of the abundant weak binding sites that we 

observed for most TFs may not have direct regulatory roles, they could serve as evolutionary 

raw material for building connections to new gene targets. 

Beyond serving as a starting point for future characterization, these results also provide 

a blueprint for further multiDAP experiments. We showcase specific examples of how these new 
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methods enable discovery and annotation of gene regulatory modules and demonstrate their 

utility for defining high quality TF binding motifs. These motifs can be valuable in studying 

promoter architecture, functionally annotating metagenomic sequences, and designing novel 

synthetic promoters with desired regulatory properties. The new biotin DAP-seq approach 

facilitates rapid and inexpensive production of tagged TF proteins. MultiDAP allows studying 

many genomes simultaneously, thereby enriching the biological information extracted from each 

experiment. These two new techniques can be applied independently or in conjunction for large-

scale studies, to begin mapping transcriptional regulatory networks and annotating functional 

gene regulatory modules across all kingdoms of life. 

 

Methods 

Fragment library construction 

 Genomic DNA from each organism was first sheared using ultrasonic shearing (Covaris 

LE220-plus) using the following settings: peak power = 450W, duty factor = 30%, cycles/burst = 

200. DNA was sheared to an average size of 75 bp in Tris-HCl buffer (pH=8) and applied in 

multiple cycles of 30 minutes each for a total of 60-90 minutes, allowing time for the water bath 

to cool between cycles such that the maximum temperature of the samples did not exceed 

15°C. Fragment size can be adjusted to meet the desired resolution (see Figure S12). After 

shearing, up to 1 μg of each genomic DNA sample was used to prepare fragment libraries using 

the KAPA HyperPrep kit and standard manufacturer’s protocol. During the adapter ligation step, 

custom annealed Y-adapters were introduced at a concentration of 15pM (5 μL adapters in a 

reaction volume of 110 μL, final adapter concentration = 0.7 pM). These custom adapters were 

prepared by annealing a full-length i5 index adapter with an index-less stub i7 adapter. Ligated 

libraries were amplified for 8-10 cycles using primers P1 and P2stub. Strains used in this work 

and oligonucleotide and barcodes are detailed in the Table S3 and Table S5. 

 For experiments using Arabidopsis thaliana Col-0, the gDNA libraries were constructed 

from gDNA sheared to an average fragment size of 150 bp. 

 

TF PCR amplification 

Primers specific to each transcription factor were designed against the first and last 20-

24 bases of the corresponding coding sequence. All non-standard start codons were switched 

to ATG. In each forward primer, a 5’ constant region was introduced immediately upstream of 

the sequence annealing to the start of the coding sequence, containing a T7 polymerase 

promoter and Kozak sequence. In each reverse primer, a 5’ sequence of 30xT was introduced 
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to mimic a poly-A tail and facilitate protein expression in eukaryotic in vitro systems. Primers 

were arrayed with a single primer pair in each well of a 96-well microtiter plates and used to 

amplify transcription factor coding sequences directly from the genomic DNA using KAPA HiFi 

2x PCR master mix with the following conditions: 10 ng gDNA per well, annealing temperature = 

60 °C, 2 minute extension time at 72 °C, total reaction volume = 50 uL, for 24 cycles. PCR 

products were checked for amplification specificity using an Agilent 2200 TapeStation or Agilent 

Fragment Analyzer instruments. PCR products were purified using Omega Mag-Bind TotalPure 

NGS SPRI beads and eluted in 12 μL Tris-HCl buffer pH=8. PCR products were quantified 

using a fluorescent dye and Synergy plate reader, and then normalized to 100 ng/μL.  

 For experiments using Arabidopsis thaliana Col-0, the gDNA PCR template was 

substituted with cDNA, generated from RNA extracted from 7-day old seedlings using 

SuperScript II reverse transcriptase. 

 

In-vitro protein synthesis 

TF proteins were expressed in vitro in 96-well microtiter plates using Promega TnT T7 

Quick for PCR DNA following the manufacturer’s protocol. For each 50 μL reaction, we used 5 

μL of purified TF PCR product for a total of 500 ng template. We have obtained good results 

across a range of concentrations and recommend using 100-1000 ng of each purified PCR 

product. Also see Supplementary Notes for more information on in vitro protein expression and 

required protein amounts. Negative control wells were included containing mock PCR product, 

where the PCR was performed with water in place of primers. To produce biotin-tagged TF 

proteins that can later be purified using streptavidin-coated beads, we also spiked in 4 μL of 

Promega Transcend tRNA to each 50 μL reaction (see Figures S13 and S14). After combining 

all components at 4°C, the mixture was incubated at 30°C overnight (12-18 hours). 

 

MultiDAP assay 

 ThermoFisher Dynabeads MyOne Streptavidin T1 were pelleted on a magnetic rack, 

washed 4x in PBS pH=7.4 + 0.1% v/v Tween20 and resuspended in an equal volume of this 

buffer. For each reaction, the following were combined in a master mix (volumes given are per 

well/reaction): 15 μL resuspended beads, 1 μg salmon sperm DNA, 1 ng amplified DNA 

fragment library from each organism, and topped off with PBS pH=7.4 + 0.1% v/v Tween20 to a 

final volume of 50 μL. Master mix volume was scaled up for 384 samples. Subsequent steps 

were carried out in 96-well plates using a Hamilton Vantage liquid handler. 
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 The bead + library master mix was aliquoted into each well of a 96-well plate, and then 

transferred into the plates containing the expressed TF proteins. Plates were sealed and 

incubated for 1 hour at room temperature, with gentle agitation on a rotator. 

 After incubation, plates were gently centrifuged and unsealed. Next, beads were pelleted 

on a magnetic rack and washed 4x with PBS pH=7.4 + 0.1% v/v Tween20, with the beads fully 

resuspended in each wash by pipetting. On the last wash, beads were moved to a fresh 96-well 

plate. Beads were once again pelleted and wash buffer removed and discarded, after which 

beads were resuspended in 10 μL i7 index primers (see supplementary table S?) diluted to a 

final concentration of 1 uM each in Tris-HCl pH=8. An additional 10 μL KAPA HiFi 2x PCR 

master mix was added to each well. Plates were sealed, vortexed, centrifuged, and placed 

directly onto a thermocycler running the following program: an initial elution/denaturation step of 

98°C for 10 min, followed by 10 cycles of 98°C for 10 sec, 60°C for 30 sec, and 72°C for 30 sec, 

with a final extension time of 72°C for 1 min then a hold at to 4°C. Finished PCRs were pooled 

across each 96-well plate, using 10 μL from each well and purified using a 1.4x Ampure bead 

ratio, followed by elution in 30 μL Tris-HCl pH=8. We found that including an additional gel 

purification step is critical to remove primer and adapter dimer carry-over, which eliminates 

issues related to index hopping on Illumina sequencers. The gel purification was carried out 

using a 2% agarose gel run at 90V in TBE buffer, followed but cutting out the gel piece between 

approximately 150 bp-300 bp for gel extraction. These gel-cut sizes correspond to 75 bp insert 

sizes and may need to be adjusted for different insert lengths, while ensuring that anything 

smaller than 140 bp is removed entirely as this is the fraction that contains contaminating 

primers, primer dimers, and any un-ligated adapters. 

 For experiments using Arabidopsis thaliana Col-0, the following modifications were 

made: (1) to account for the larger genome size, 50 ng gDNA library was used in each reaction, 

and (2) 5 μg salmon sperm DNA was used in each reaction. 

 

Sequencing 

 Pooled sequencing libraries were quantified by qPCR and sequenced on NovaSeq 6000 

S4 Flowcell to target ~1 M paired-end fragments for each of the 36,846 barcode pairs (384 

sampless/wells x 48 genomes). Libraries were de-multiplexed, adapter trimmed, and quality 

filtered using BBTools.42 

 For experiments using Arabidopsis thaliana Col-0, to account for the larger genome size 

each library was sequenced to a depth of 10 M paired-end fragments. 
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MultiDAP primary sequence data analysis 

Analysis scripts are described in brief below. Code is available upon request. Each 

library was subsampled to at most 1 M fragments, aligned against the corresponding reference 

genome using Bowtie243 and quality filtered with samtools.44 Coverage plots were generated 

using deeptools.45 Peaks were called using MACS2.46 Target gene assignment for each peak 

was done using the reference annotation (gff3) and bedtools.47 

 In initial experiments we observed evidence of index hopping, which resulted in cases of 

leak-through of signal between i7 barcodes. We were able filter this noise from existing datasets 

using a custom script to identify and filter out leak-through signal between libraries that had 

been loaded on the same NovaSeq flow cell lane. For subsequent experiments (including all 

benchmarking experiments), the issue was addressed experimentally by including the stringent 

gel size selection step prior to sequencing. 

 

Benchmarking 

 For validation of biotin-DAP-seq, predicted target genes were compared to the 

RegulonDB database. Each relevant peak region was manually inspected in a genome browser 

to verify data quality and confirm accurate peak assignment. 

 For determination of multiDAP reproducibility and TF signal uniqueness in the multiDAP 

benchmarking experiments, mapped reads were used to generate bigWig coverage files with 

deeptools and normalized by reads per genomic content (1x coverage across the genome). 

Pearson correlation of signal across the entire E. coli genome was computed using deeptools 

multiBigwigSummary followed by plotCorrelation with a bin size of 25 bp. 

 

Comparison of gene targets across species 

 Gene orthology and phylogeny was assigned using Orthofinder228. Phylogenetic trees 

were visualized using iTOL.48 For TF target gene comparisons, we used a custom python script: 

We only considered intergenic peaks and limited the analysis to at most the top 10 target 

promoters in each organism. We also filtered for peaks with a fold-change >= 5, p-score >= 60, 

and located < 500 bases from the start codon, where p-score is the value assigned by macs2 

equal to -log10(peak p-value). To avoid excessive matches based on very weak binding sites, 

we filtered out any peaks with a fold-change of less than 5% of the tallest intergenic peak in the 

same library. We also exclude any TFs that did not perform well in the assay, by examining the 

corresponding peaks in the species from which they originate (E. coli or P. simiae). We defined 

good performance as having at least one intergenic peak with a fold-change >= 15 and p-score 

https://www.zotero.org/google-docs/?dYqKPD
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>= 180. For comparison of target gene similarity between species, we only considered matches 

in organisms that have at least one putative ortholog of the TF in their own genome. Since in 

some cases a single organism contributes multiple genes to a single orthogroup, we adjusted 

for the uniqueness of each target gene by weighting each match based on the number of genes 

that the given species contributes to the corresponding orthogroup. For each target gene set we 

then calculated a p-score by running the same comparative analysis on an equal sized set of 

randomly selected genes from each species for 10,000 iterations. 

 

Comparison to phenotype datasets 

We downloaded the phenotype dataset for each relevant species from the Fitness 

Browser website (http://fit.genomics.lbl.gov/). We only considered phenotype measurements 

that were scored as both significant and specific (“specific phenotypes”). From these datasets, 

we identified cases where the same conditional challenge yielded a specific phenotype 

assignment for both the TF itself and the TF target gene(s) that were predicted by multiDAP. 

 

Motif calling and promoter analysis 

 Motifs were called using MEME.49 The input sequences used were those flanking the 

summit position +/- 30 bases. For each TF, we only use the top 30 summits (scored by fold-

change over background) in the dataset. Significant motifs (E-value < 0.05) were manually 

inspected for quality to exclude motifs that were not found enriched near the center of strong 

peaks and those that had low total information content. Motifs were mapped against promoter 

sequences using FIMO50 with default options, and only motifs with scores > 0 were considered. 

We used Tomtom51 to compare the E. coli motifs from this study to the motifs published 

in RegulonDB.20 Motifs were considered to be in agreement if their comparison produced a 

score with p-value < 0.01. 

We used 113,676 annotated metagenomic datasets from the Integrated Microbial 

Genomes (IMG)32 database to extract homologs of E. coli TFs and their corresponding promoter 

sequences. First, for each E. coli TF, we found the corresponding orthologs in 48 selected 

bacterial species based on bidirectional best BLAST hits and tabulated each TF orthogroup with 

conserved Pfam domains found in them. We searched E. coli proteins against predicted genes 

in metagenomes using MMseqs252 with E-value 1e-5 and selected all hits which have a start 

codon (starting with Met) and at least 100bp upstream sequence from gene. Corresponding 

promoters were extracted as regions (-100 to +10) around the start codon. Selected orthologs 

were further filtered to keep only those which have the same Pfam domain(s) and the length 

http://fit.genomics.lbl.gov/
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within the range of protein lengths of the corresponding orthogroup. To remove the redundant 

sequences, for each TF, all of its metagenome homologs were clustered using UCLUST53 at the 

percent identity cutoff of 80%, and only one TF and its corresponding promoter were kept for 

each cluster. Motifs in promoter sequences were predicted using FIMO50 with default options. 

 

Data availability 
All raw FASTQ files and peak files are available at: 

https://portal.nersc.gov/cfs/m342/jgi_usa/multidap_datashare/ 
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Supplemental Information 

 
 
Figure S1. The biotin-DAP-seq method, using TF biotin tagging and streptavidin-coated bead capture, 

successfully detects E. coli TF binding sites that are annotated in RegulonDB. We observed that binding 

sites for TFs with smaller numbers of published binding sites (panels a and b) are particularly well 

represented in our dataset. This may indicate that TFs with fewer binding sites have properties that result 

in stronger signal and better performance in the DAP-seq assays, such as stronger binding affinity or 

specificity.
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Figure S2. Demonstration of successful biotin-DAP-seq with eukaryotic transcription factors amplified 

directly from cDNA. The Arabidopsis thaliana TFs AT3G12730, AT1G72010, and AT1G77920 were 

selected to represent three distinct TF protein families: MYB, TCP, and bZIP, respectively. The identified 

binding signal obtained using biotin-tagged proteins matches closely to DAP-seq with Halo-tagged 

proteins as used in the original 2016 DAP-seq publication. 
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Figure S3. MultiDAP with 92 E. coli TFs along with 4 negative control samples, run in three independent 
triplicate 96-well plate experiments demonstrates unique binding signatures for each TF, which are highly 
reproducible. Signal correlation among these 288 samples was assessed by splitting the entire E. coli 
genome into 25 bp bins, each with an assigned signal value determined by the sequence read pileup 
within that bin. Inset shows detail with strong agreement between triplicates, while negative control wells 
with mock TF expression are largely un-correlated. This implies that background signal is primarily 
random noise, while individual TFs specifically enrich for binding site regions. Median correlation between 
replicates is 94%. See also Table S4 for peak numbers and correlations.   
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Figure S4. Triplicate multiDAP experiment with 92 E. coli TFs show that most TFs have strong affinity to 
a few genomic sites, and some also reproducibly bind weakly to many additional sites. Scatterplots depict 
the top 10 peaks ranked by fold-enrichment, as compared to merged negative control samples. (a) LacI is 
known to bind at and repress the promoter upstream of lacZ, along with a weaker accessory binding site 
just inside the lacZ coding sequence. Both of these binding sites were detected as strong peaks, while 
the additional weaker detected peaks do not have known biological functions. (b) LexA is known to have 
multiple binding sites at various promoters. The strongest detected peak corresponds to the known target 
recN, however in this case even the weakest detected peak in the ruvA promoter is a known functional 
regulatory site of LexA. (c) and (d) Top 10 peaks detected in triplicate experiments with 92 E. coli TFs. 
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Figure S5. Quantification of TF target gene 
conservation across species reveals global 
patterns of conservation and evolution. Gray-
shaded vertical bars mark phylogenetic clades 
(top to bottom): Gammaproteobacteria, 
Betaproteobacteria, Alphaproteobacteria, 
Bacteroidetes, Gram-positive. For each P. 
simiae TF (rows), the set of target genes in P. 
simiae was compared to the set of target genes 
in each of the other 47 species (columns, 
labeled 1-48). The two species used in this 
study as a source of TFs (E. coli and P. simiae) 
are indicated in the phylogenetic tree as 
colored dots (blue and green, respectively). 
Target gene similarity was quantified as the 
number of matching orthologs appearing in 
pairs of target gene sets. P-values were 
determined by comparing to a mock set of 
target genes randomly selected from each 
genome for 10,000 iterations. Blue-to-red 
shades correspond to significance, with darkest 
red representing the most significant degree of 
conservation (p-value <= 1e-4). 
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Figure S6. All-vs-all comparison of gene sets targeted by a given TF in each species reveals distinct 

clusters of conservation in different bacterial clades, suggesting TF functional rewiring. An ancestral form 

of the E. coli TF AscG appears to have diverged to regulate new metabolic functions in the Pseudomonas 

clade, while the DNA binding specificity has been maintained. (a) The E. coli TF AscG provides an 

example of two distinct clusters of target genes: one cluster mainly limited to the Enterobacteria, and 

another extending across the genus Pseudomonas and into the class β-Proteobacteria. (b) A closer 

inspection of the AscG target operons in the model organisms E. coli MG1655 and P. aeruginosa PAO1, 

along with predicted orthologs of these genes in other species, suggests that the TF’s function has 

diverged between the two clusters. Genes are colored according to their orthogroup: E. coli genes and 

orthologs in solid colors, and those of P. aeruginosa with stripes. Functional predictions or gene names 

from RefSeq annotations are shown in legend. (c) Comparison of the Pseudomonas aeruginosa PAO1 

PtxS DNA binding sequence motif (top) to that of the Escherichia coli MG1655 TF AscG (bottom) shows 

high similarity (p-value = 2e-7 as calculated by Tomtom).(d) Despite the nearly identical binding motifs, 

alignment of the AscG and PtxS amino acid sequences reveals they only share an average 24% amino 

acid identity across the entire protein sequence (95% coverage). The helix-turn-helix DNA binding domain 

is conserved at a higher 43% identity, while the C-terminal ligand binding domain shows only 21% amino 

acid identity. While AscG is known to be induced by the ligand salicin, PtxS is induced by 2-

ketogluconate.  
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Figure S7. All-vs-all comparison of gene sets targeted by a given TF in each species reveals distinct 

clusters of conservation in different bacterial clades. In addition to AscG (as detailed in Figure 5), multiple 

clusters of conserved gene target sets are apparent for 13 other E. coli TFs. Clusters tend to appear in 

the clades representing Enterobacteria (blue), Shewanella (gray), and Pseudomonas (green). This is 

expected, because within the 48 species, we sampled more densely from within these three clades, while 

other lineages were sampled much more sparsely. In regions of sparse sampling, any existing clusters of 

conservation appear as a single red square, which precludes identification as a true cluster.  
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Figure S8. Functional predictions of P. simiae TF Ps293 regulon based on multiDAP (see Figure 4c) are 

supported by phenotypic measurements. (a) MultiDAP data indicates that TF Ps293 targets three 

distantly located operons, here designated target operons 1, 2, and 3. (b) As evidenced by phenotypic 

measurements of gene knockouts, the genes in each operon are responsible for distinct metabolic 

functions: operon 1 is involved in gly-glu dipeptide metabolism, operon 2 in 2’deoxyinosine metabolism, 

and operon 3 (which contains the TF Ps293 itself) in both of these functions as well as metabolism of 

several additional carbon sources. The TF knockout results in a phenotype in all of these conditions, 

while other genes in the regulon appear to only be important for growth on a subset of these carbon 

sources. This is consistent with the model that TF Ps293 acts as a master regulator for these diverse 

metabolic pathways. Gene knockouts in operon 1 result in strong growth defects when grown in the 

presence of gly-glu as the sole carbon source, while knockouts of the TF itself confers a growth 

advantage under these conditions. In contrast, the knockout phenotypes of genes in operons 2 and 3 do 

not show this opposing relationship. Taken together, this allows us to predict that TF Ps293 acts as a 

repressor of operon 1, and an activator of operons 2 and 3. 

  



 33 

 

 

Figure S9. New E. coli motifs from this work that are not represented in RegulonDB (n = 66). 
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Figure S10. E. coli motifs compared to known motifs in RegulonDB. We found good agreement between 

motifs computed from the multiDAP datasets and RegulonDB: 50 matches (86%) of 58 motifs 

represented in both datasets. Motifs were considered to be matches if the p-value was less than 0.01, as 

scored by Tomtom.  
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Figure S11. The motif for E. coli TF YiaJ was recently described by Shimada et al (top), who established 

the TFs function in plant breakdown product utilization and renamed it to PlaR. The motif compares 

closely to the motif that we identified using multiDAP (bottom). 
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Figure S12. DAP-seq fragment library insert size is a tunable parameter, depending on the desired 

resolution. For this work, libraries were constructed from genomic DNA sheared to an average size of 

75bp, because we found this to offer high resolution while still accurately capturing known binding sites. 

Note that at extremely short insert sizes (20bp, bottom track) the signal begins to decay, likely because 

the size is too short to capture the local DNA context of clustered AgaR motifs. 
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Figure S13. Optimization of biotin-lysine-tRNA reagent used in biotin-DAP-seq. (a) Western blot analysis 

of four example E. coli TFs demonstrating the slightly increased pull-down achieved by using 4x the 

amount of biotin-lysine-tRNA in each protein expression reaction. Numbers in parentheses after gene 

names indicate the number of lysine residues in the respective amino acid sequence. (b) Biotin-DAP-seq 

signal of four example P. simiae TFs demonstrating the slightly increased pull-down, and resulting 

increase in signal achieved by using 4x the amount of biotin-lysine-tRNA in each protein expression 

reaction. For each TF, a pair of tracks is shown: a track in gray (above) corresponding to protein 

expressed with 1 µL tRNA reagent, and a track in black (below) corresponding to 4 µL tRNA. 
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Figure S14. The number of lysine residues in a TF amino acid sequence is a poor predictor of 

performance in the biotin-DAP-seq assay. (a) The number of lysine residues in E. coli TF amino acid 

sequences does not predict success in the multiDAP assay (p = 0.35 as calculated by two-sided 

independent t-test), and also does not predict signal strength or peak number. (b) Counts of successful 

and failed DAP-seq experiments for TFs with different numbers of lysine residues. Although a small 

number of TFs having fewer than 6 lysines may suffer increased failure rates, most TFs are not affected. 

In cases where very few lysines are present, additional lysines can be added at either the N or C terminus 

by incorporating these directly in the 5' or 3' PCR primers.  
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Supplementary Notes 

 

Success rate in the biotin-DAP-seq and multiDAP assays 

 The success rate of 125/216 (58%) for the biotin-DAP-seq E. coli screen is relatively 

high compared to other large-scale in vitro screens of full-length TF binding. In the original DAP-

seq paper, the success rate reported was 30% for Arabidopsis (529/1812).9 In large-scale 

SELEX screens published by other labs, reported success rates of full length TFs are 15% 

(151/984) for human,S1 and 30% (100/301) for bacteria.S2 The primary reasons for TF failure for 

all in vitro assays, including DAP-seq, are likely related to limitations inherent to any protein 

expression and purification system applied to a large set of TFs with distinct biochemical and 

binding properties. These include proper protein folding and stability and additional 

requirements such as co-factors. 

 

In vitro expressed protein levels 

 We did not observe any significant drop-off in signal when moving from a single species 

up to 48 multiplexed species. As described in the methods section, we also spiked-in a large 

amount of salmon sperm DNA (1000x the amount of each genomic DNA) to suppress 

background signals caused by non-specific DNA interactions. Based on these results, we infer 

that the relative concentration of genomic DNA is not a major determinant of signal intensity. In 

the Nature Protocols paper describing the DAP-seq method it was shown that the TF yield is a 

limiting factor for the assay.10 If concentrations are lower than optimal, we generally see the loss 

of the weakest binding sites, though the stronger binding sites are maintained even with a 

magnitude lower protein yield. Once an optimal protein amount is reached the assay will 

produce very similar results regardless of additional protein, possibly because binding to the 

ligand limits total bound protein. During optimization of biotin-DAP-seq we tested multiple 

conditions to find reaction conditions that balanced success rate and reagent expense. For 

small experiments and in cases where cost is not a major limiting factor, using a larger amount 

of protein expression mix in the assay may yield improved results for a subset of poorly 

expressed TFs. 

 The Nature Protocols DAP-seq paper also reported tests from multiple cell-free 

expression systems.10 Overall, it was found that the rabbit reticulocyte performed better in terms 

of success rates and signal-to-noise. In initial experiments of the biotin-DAP-seq on bacterial 

TFs, we tested several different in vitro protein expression systems and again found that the 

Promega TnT T7 Quick derived from rabbit reticulocyte yielded the best results. In addition, the 
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use of a non-native expression system may have some desirable properties, in particular 

avoiding confounding factors that could be introduced by the interference of native proteins (e.g. 

hetero-dimerization or indirect binding due to formation of TF protein complexes). 

 

Influence of genome context on TF binding 

 In the original DAP-seq paper9 it was demonstrated that genomic sequence encoded 

properties of cis-element architecture (motif arrangement and spacing), DNA shape, and 

chemical modifications (5-methylcytosine) all have a major impact on the TF binding landscape 

that can be measured by the DAP-seq assay. This previous work demonstrated how cis-

element architecture is critical for TF binding affinity and TF-target gene specificity for the Auxin 

Response Factors (ARF) family of TFs. In this mulitDAP study, we demonstrate that cis-element 

architecture is important for specificity and binding for some prokaryotic TFs and that it can be a 

highly conserved feature (Figure 6). We are using the term DNA shape to specifically refer to 

local DNA sequence features (i.e. sequence flanking the motif) that can impact the major/minor 

groove accessibility and other properties of the DNA double helix that are not captured in DNA 

motif analysis.S3 These can include features such as AT-stretches or other sequence properties 

that are known to impact DNA shape. There is an emerging recognition that DNA shape is an 

important DNA feature impacting TF binding.S3 The capability of the DAP-seq assay to capture 

DNA shape effects on binding has been demonstrated in the original DAP-seq paper.9 As DNA 

bases proximal to the motif are the ones that primarily impact DNA shape and thereby impact 

binding site accessibility, the 75 bp average fragment size is sufficient to capture this property. 

However, this fragment size is also a tunable parameter that can be tailored to fit the 

experimental requirements (Figure S12). Independently, other groups have also observed the 

capability of DAP-seq to directly identify complex biologically-relevant native cis-element 

architectures that impact gene target selectivity and binding affinity,S4,S5 impact of DNA 

methylation,S6 and DNA shape.S7 

 In its original form and as described in this work, the DAP-seq assay allows visualization 

of global TF binding events in a chromatin-free context, and therefore does not capture 

important tissue-specific dynamics that are driven by chromatin state. One way to overcome this 

limitation is to overlay the DAP-seq dataset on tissue- and cell-type specific chromatin 

accessibility (e.g. DNase-seq and ATAC-seq), and long-range chromatin contact information 

(HiC). The complementarity of combining DAP-seq with this in vivo chromatin structural 

information has been highlighted in multiple publications including the original 2016 DAP-seq 

paper.9,S8-S10 In addition, new versions of the DAP-seq assay have been developed by other 
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groups to specifically measure the impact of DNA-nucleosomeS11 and additional protein 

interactorsS4 on TF binding. 
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