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Abstract 

In two experiments we examined which cognitive proc-
esses people use in a non-linear multiple cue judgment task, 
proposing that people are not able to use explicit cue ab-
straction when judging objects with a non-linear structure 
between the cues of the objects and the criterion and there-
fore they are forced to use exemplar-based processes. Con-
sistent with the results reveal strong exemplar effects in the 
non-linear condition. 
 

Introduction 
How do we judge if there seems to be no underlying structure 
or pattern in the things or events we have to judge? What 
knowledge representations do we use in these situations? Our 
ability to categorize the environment is important to us and 
different environmental categorization situations involve 
different processes, either in the form of analytic or intuitive 
thought. Multiple cue judgment tasks typically involve a 
probe defined by a number of binary or continuous cues and 
require a continuous judgment. Previous research suggests 
that by manipulating the task environment we can induce a 
shift between distinct cognitive processes (Juslin, Olsson, & 
Olsson, 2003). Two cognitive models of general concern in 
cognitive science, are the explicit, rule-based and analytic 
knowledge versus implicit, silent knowledge based on per-
sonal experience (Hahn & Chater, 1998; Hammond, 1996; 
Sloman, 1996; E. E. Smith, Patalano, & Jonides, 1998). Re-
search on multiple cue judgment has primarily stressed con-
trolled integration of cues that have been abstracted in train-
ing (Einhorn, Kleinmuntz, & Kleinmuntz, 1979) while ex-
emplar models are emphasized by research on categorization 
(Nosofsky & Johansen, 2000; Nosofsky & Palmeri, 1997). In 
this article we address the following question: what structure 
of a categorization task triggers analytic thinking and what 
structure triggers intuition? We hypothesize that participants 
are not able to use cue abstraction in a non-linear task, be-
cause the mind is constrained to linear additive integration of 
abstracted cue-criterion relations (Juslin, Karlsson, & Olsson, 
2004).  

  

Cognitive models and processes 
In general, multiple cue judgments are well captured by 

multiple linear regression models (Brehmer, 1994, Cooksey, 
1996). These regression models are statistical descriptions 
rather than process models, but implicitly this research is 
often committed to the idea that people use controlled proc-
esses in working memory to mentally integrate cues accord-
ing to a linear additive rule. In contrast, exemplar models 
assume that people make judgments by retrieving similar 
stored exemplars from memory (Medin & Schaffer, 1978; 
Nosofsky & Johansen, 2000). The exemplar representations 
in memory are the holistic concrete experienced instances 
often emphasized in categorization.  

The generalized judgment model Σ implicates a sequential 
adjustment process, compatible both with a linear, additive 
cue-integration rule, and the additive combination of exem-
plars in exemplar models (Juslin et al., 2004), capturing the 
additive character of a judgment. By considering the struc-
tural properties of a task environment, we are able to predict 
representational shifts in the process that support multiple 
cue judgment. In additive environments cue abstraction 
dominate, while exemplar memory dominates in multiplica-
tive environments (Juslin et al., 2004).    

In the Σ model the previous estimate is adjusted every time 
a new piece of evidence is presented. If no new evidence is 
presented cues correspond to an a priori estimate. In Σ, cue 
abstraction involves sequential adjustment based on single 
cues, where the cue weight is relative to the cues presented so 
far. In contrast, the weight assigned to an exemplar is given 
by its similarity relative to the similarity to all exemplars 
retrieved so far. Because of the integration of stored criterion 
values instead of cue-criterion relations, Σ is not confined to 
any particular task structure. Therefore, the model can repre-
sent any task structure as long as similar exemplars have 
similar criteria, which allows judgments also in non-linear 
and multiplicative environments (Juslin et al., 2004). 

 
Judgment task and Model Predictions 

The participants used four binary cues to infer a continuous 
criterion in either a linear or a non-linear multiple-cue judg-
ment task. The exotic (but fictitious) Death bug is the cover 
story in the task that involves judgments of the toxicity of 
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subspecies of the bug, which can be inferred from four cues 
of the subspecies (leg length, nose length, spots or no spots 
on the fore back and different patterns on the buttock). The 
concentration of poison varies from 50 to 60 ppm in each 
subspecies (Jones et al., 2000; Juslin et al., 2003; Juslin et al., 
2004).  The task structure is summarized in Table 1.  
 
Table 1: Structure of the judgment task with the constrained training set for 
the linear and non-linear conditions. 

Exemplar   Cues     Criteria   Role 

       Constr. 

# C1 C2 C3 C4 Linear 
Non-
linear Tr. set 

1 1 1 1 1 60 50 E 
2 1 1 1 0 59 53,6 T 
3 1 1 0 1 58 56,4 T 
4 1 1 0 0 57 58,4 O 
5 1 0 1 1 57 58,4 N 
6 1 0 1 0 56 59,6 N 
7 1 0 0 1 55 60 N 
8 1 0 0 0 54 59,6 T 
9 0 1 1 1 56 59,6 O 
10 0 1 1 0 55 60 O 
11 0 1 0 1 54 59,6 T 
12 0 1 0 0 53 58,4 T 
13 0 0 1 1 53 58,4 T 
14 0 0 1 0 52 56,4 T 
15 0 0 0 1 51 53,6 T 
16 0 0 0 0 50 50 E 

Note: T= training exemplar; O= training exemplar that serves as old 
exemplar in the interpolation comparison; E= new exemplar that only 
occurs in the test phase for measuring extrapolation; N= new exemplar 
that only occur in the test phase for interpolation comparison. 

 
 

The values of the binary cues take on 1 or 0. The function of 
the cue values to judge the toxicity cL of a subspecies is linear 
and additive in the linear judgment task: 

4321L C1C2C3C450c ⋅+⋅+⋅+⋅+=                  (1) 
A quadratic function of the criteria in the linear condition 
was made as the function in the non-linear judgment task 
with the same range (50 to 60 ppm) and maximum value (60 
ppm) with a non-linear relationship between the cues and the 
criterion instead of the linear function. 

115044²/52 −⋅+⋅−= LLNL ccc                       (2) 
The functions c is the level of poison in the bug and C1…C4 
are weighted binary features of the bug. For example a bug 
with features [1101] has a toxicity level of 58 in the linear 
condition and a toxicity level of 56.4 in the non-linear condi-
tion, see Table 1. The criterion c is computed by assigning 
the most important cue, C1, and has the largest weight with 
the least important cue that has the smallest weight, C4. If the 
binary cue has value 1, it suggests high toxicity level, and if 
the cue has value 0, it suggests low toxicity level, see Table 
1. In Experiment 1 a normally and independently random 
error was added. The variance of the random error would 
produce a .9 correlation (see Juslin et al, 2003). Figure 1 
illustrates the relationship between the two functions in a 
plotted diagram. The non-linear function is a more complex 
environment than the linear function. The increase of com-
plexity in a function or environment is when a function goes 

from an additive linear function to be a multiplicative non-
linear one. When a participant can not use a simple additive 
rule to calculate what correct criterion is in a judgment. The 
non-linear function can also be plotted against the criterion 
values for the non-linear function on the x-axis (Figure 2), 
where the function only has six criterion values and two or 
four examples matching each criterion (see Table 1). 
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Figure 1. The additive linear function and the non-linear function plotted 
against the criteria in the linear condition. Both functions have the same 
range on the x-axis (criterion) and the same range on the y-axis (judgment).  
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Figure 2. The non-linear function plotted against the criterion values for the 
non-linear function on the x-axis, with only six criterion values, where two or 
four examples matching each criteria. 
 

Cognitive Models 
Cue abstraction model. The application of the cue ab-

straction model to continuous criteria implies that partici-
pants abstract cue weights iω , which specify the importance 
and the sign of the relation of the cue (i=1…4). In training 
participants abstract the cue weights and use those to com-
pute an estimate of the criterion when a new probe is pre-
sented. The estimate of c is adjusted according to the cue 
weight and the final estimate Rĉ  of c is a linear additive 
function of the cue values Ci. For example, after training the 
rule for cue C1 may specify that C1 goes with a large increase 
in toxicity. This corresponds to the standard application of a 
linear additive equation to model multiple cue judgment, 

 

∑
=

⋅+=
4

1
ˆ

i
iiR Ckc ω                     (3) 

where )10(5.50 ∑−⋅+= ik ω . If 1ω =4, 2ω =3, 3ω =2, and 

4ω =1, Equations 1 and 2 are identical and the model pro-
duces perfectly accurate judgments. The intercept k con-
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strains the function relating judgments to criteria to be re-
gressive around the midpoint (55) of the interval [50, 60] 
specified by the task instructions.  

Exemplar model. The application of exemplar model to a 
continuous criteria we assume that judgments are made by 
retrieving similar exemplars from memory and the estimate 
of the criterion c is a weighted average of the criteria cj stored 
for the J exemplars, where the similarities S(p,xj) are the 
weights, 

          

∑

∑

=

=

⋅
= J

j
j
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j
jj

E

xpS
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c
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1

),(
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ˆ

.                 (4) 

Eq. 5 is the context model (Medin & Schaffer, 1978) ap-
plied to a continuum (see Delosh et al., 1997; Juslin & Pers-
son, 2000; E. R. Smith & Zarate, 1992). The application of 
an exemplar model to multiple-cue judgment is illustrated in 
Figure 3. The similarity between probe p and exemplar xj is 
computed according to the multiplicative similarity rule of 
the original context model (Medin & Schaffer, 1978): 

∏
=

=
4

1
),(

i
ij dxpS ,                              (5) 

where di is an index that takes value 1 if the cue values on 
cue dimension i coincide (i.e., both are 0 or both are 1), and si 
if they deviate (i.e., one is 0, the other is 1). si are four 
parameters in the interval [0, 1] that capture the impact of 
deviating cues values (features) on the overall perceived 
similarity S(p,xj). si close to1 implies that a deviating feature 
on this cue dimension has no impact on the perceived 
similarity and is considered irrelevant. si close to 0 means 
that the similarity S(p,xj) is close to 0 if this feature is 
deviating, thus assigning crucial importance to the feature. 
The parameters si capture the similarity relations between 
stimuli and the attention paid to each cue dimension, where a 
low si signifies high attention. In effect, for low si, only 
identical exemplars have a profound effect on the judgments. 
For example, with all si=.001 identical exemplars receive 
weight 1 in Eq. 4, but exemplars with just one deviating 
feature receive weight .001. With si close to 1, on the other 
hand, all exemplars receive the same weight, regardless of 
the number of deviating features. 

 
Predictions by the Models 

Predictions by the cue abstraction and exemplar model 
are summarized in Figure 3. When participants are trained 
with all 16 exemplars it is impossible to discriminate the 
different models from each other, because they predict the 
same accurate judgments (see Figure 3, panel A and B). This 
perfect accuracy depends on correct knowledge of the cue 
weights and error-free integration of this knowledge into a 
judgment in the cue abstraction model while it derives from 
retrieval of stored exemplars, where only identical exemplars 
are allowed to have a strong effect on the judgment in the 
exemplar model. 
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 Figure 3: Predictions for the continuous task. Panel A: Cue abstraction 
models with no noise and noise for the complete training set. Panel B: 
Exemplar model with all similarity parameter s equal to .0001 and .1 for the 
complete set. Panel C: Cue abstraction model with noise for the constrained 
set. Panel D: Exemplar model with similarity parameter s=.1 for the 
constrained set. 
 
The discrimination of the models involves the existence or no 
existence of extrapolation and interpolation, in other words, 
the ability to make accurate judgments of new exemplars. 
When a constrained set of subspecies are omitted in training 
phase (two extreme exemplars, e.g. [1 1 1 1] and [0 0 0 0] 
and three middle exemplars, [1 0 1 1], [10 1 0], [1 0 0 1], see 
Table 1 for new N, and old, O exemplars) and the 
participants are presented with the complete set of subspecies 
in the test phase, the cue abstraction model affords 
extrapolation and interpolation, because the model allows the 
adding function of integrated cue values that produce 
accurate judgments. The participants will figure out that the 
extreme subspecies with all cues presented and all cues 
absent should have the most extreme value, even if they have 
never been presented to these subspecies in the training 
phase, also no old-new differences between the intermediate 
exemplars omitted in training should exist in the cue 
abstraction model. In contrast, the exemplar model is not able 
to extrapolate or interpolate, when the responses for the new 
exemplars are determined by retrieval of identical exemplars 
(Delosh et al., 1997; Erickson & Kruschke, 1998). Because 
the exemplar model involves linear combination of the 
criteria observed in training that range between the toxicity 
levels 51 and 59, it can never produce a judgment outside this 
range, as extrapolation requires. The exemplar model also 
predicts old-new differences with more accurate judgments 
for old exemplars than for new when the toxicity level can be 
retrieved from memory (Juslin et al., 2003). 
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Method 
Participants  
Fifty-four undergraduate students from the university partici-
pated in the two experiments (thirty participants in Experi-
ment 1 and twenty-four participants in Experiment 2). 
Twenty-three males and twenty-seven females. The average 
age was 24.25 years. Each participant received 70 SEK (ap-
proximately 8$) in payment for participation in the study. 
 
Design and procedure 
The design of the two experiments was a between-subjects 
design, where all participants made the judgments in training 
and test with same stimuli presentation format. Each experi-
ment contained two conditions each. In Experiment 1, a 
probabilistic linear judgment task condition and a probabilis-
tic non-linear judgment task condition  

The written instructions informed the participants that 
there were different subspecies of a Death Bug and that the 
task was to estimate the toxicity (poison level) of the sub-
species as a number between 50 and 60. The experiments 
contained two phases, where the first phase was a training 
phase which provided trial-by-trial outcome feedback about 
the continuous criterion (“This bug has toxicity 56.7%”). In 
the training phase 11 training exemplars of the bug were 
presented 20 times each, a total of 220 trials with criterion 
values between 51 and 59 in the linear condition and between 
53.6 and 60 in the non-linear condition. The remaining five 
exemplars were omitted in the training phase and first pre-
sented in the test phase. Participants were trained and tested 
with analogue stimuli in the form of pictures of the bug spe-
cies, presented on the computer screen.  

The subspecies varied with regard in four binary cues; leg 
length (short or long), nose length (short or long), spots or no 
spots on the fore back and two different patterns on the but-
tock and different colors were used for the cue values to 
strengthen their salience. The abstract cues in Table 1 were 
randomly assigned to new visual features for each partici-
pant. The cue values had the weights 4, 3, 2 and 1 which 
determine the portion of toxicity that each cue adds to the 
total amount. The question asked on the computer screen was 
“What is the toxicity of this subspecies”.  

In the test phase, all 16 exemplars were presented, includ-
ing the five exemplars omitted in the training phase. The test 
phase went over 32 trials, where the 16 exemplars were pre-
sented twice in a random order. The participants made same 
judgments as in the training phase but received no outcome 
feedback. The whole experiment took 45 minutes.  

Experiment 2 involved the same stimuli and non-linear 
structure as Experiment 1. However, in contrast to Experi-
ment 1, the cue criterion-relation was changed from a prob-
abilistic task to a deterministic task. The length of the train-
ing phase was also changed from 220 trials to 440 trials. The 
instructions were the same in the first condition (Old-
instructions condition) as in Experiment 1 but was changed 
in the second condition (New instructions condition), and 
encourage the participants to memorize each bug exemplar. 

We expected the determinism and the exemplar-
memorization request to increase the performance and the 
use of exemplar memory.    
 

Dependent Measures 
The dependent measures reported involve: performance, the 
representation index, and model fit. The performance meas-
ures are, Root Mean Square Error (RMSE) of judgments 
(between judgment and criteria), and consistency (correlation 
between the two judgments made for the same exemplar in 
the test phase).  

A Representation index (RI) was calculated to see what 
level of representation that dominates the judgments in the 
two different tasks. The interpolation measure is obtained by 
taking the difference between absolute deviation between 
judgment and criteria for old exemplars and new exemplars 
as computed by the following formula,  

I = ∑  [d(Old)n – d(New)n ]/6                                (6) 

Where n is refers to criterion 55, 56 and 57 in the linear con-
dition and criterion 58.4, 59.6 and 60 in the non-linear condi-
tion denoted either as “Training(Old)” or “Interp.(New)” in 
Table 1. The exemplars in the extrapolation are also consid-
ered. Extrapolation is measured by the deviation from an 
expected linear extrapolation, based on mean judgment of the 
old exemplars in the interpolation range. The difference 
between actual judgment and expected value is the extrapola-
tion measure. A 0 in the extrapolation index implies that the 
judgements for the extreme exemplars are as extreme as the 
expected regression-based extrapolation for the old exem-
plars, and the judgments are correct by all linear transforma-
tions of the correct judgments. This suggests appropriate 
extrapolation. When extreme exemplars do not receive as 
extreme judgments as expected from extrapolation and the 
index is negative. This in turn, supports the exemplar model 
and its inability to extrapolate. In other words, the exemplar 
model does not allow accurate extrapolation while cue ab-
straction does (see Figure1, for a concrete illustration).  

To increase the statistical power in the analysis of the 
data and for ease of exposition of the data the interpolation 
index and extrapolation index are combined which gives us 
the RI. The RI indicates if participants have based their 
judgments on exemplar model or cue abstraction. A RI of 0 
implies the regression-based paradox with the ability to ex-
trapolate while a negative index implies the inability to ex-
trapolate, exactly the same as mentioned before, in the ex-
trapolation index. 

By using the data from the training phase in each task to 
create predictions of the two models was performed in a 
computer simulation. The Model fit measures are the coeffi-
cient of determination (r2) and Root Mean Square Deviation 
(RMSD) between predictions and the computed test phase 
data.   

 
Results Experiment 1 

Performance. The probabilistic linear task was lower 
(0.56) than for the probabilistic non-linear task (0.85)in con-
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sistency, with a significant difference (F(1.28)=4.61; p=0.04; 
MSE=0.137). The errors in the judgment as measured by 
RMSE (Root Mean Square Error) was significant different in 
performance of the two tasks (F(1.28)=37.0; p=0.0000; 
MSE=0.44), where the probabilistic additive linear task 
showed a lower RMSE value ( 1.54) than the probabilistic 
non linear task (3.02). In Figure 4 the test mean judgment 
from the probabilistic additive linear task and the probabilis-
tic non-linear task are plotted against the correct criteria. 

 

 

 

 

 
Figure 4. Test mean judgment and exemplar index for the probabilistic 
additive linear task (Panel A) and the probabilistic non-linear task (Panel B) 
plotted against the correct criteria. The full drawn lines show the correct 
judgment. 
 

Representation. The linear judgment task has a lower RI 
value  (-0.67) than the non-linear judgment task (-1.33), but 
not significant different (F(1, 28)=0.79; p=0.38; MSE=4.08). 
The RI in the non-linear condition is significantly separated 
from zero but not in the linear condition. This suggests that 
EBM is the model in use in the non-linear condition, while 
both CAM and EBM is in use in the linear condition. 

Model fit. The models in Eq. 3 and 4 were fitted to the 
mean judgments computed for the constrained training set 
with 11 subspecies of the bug across the last 110 trials. Cue 
abstraction model allows analytic derivation of the best-
fitting parameters that corresponds to logistic regression. By 
the Quasi-Newton method in the MathCAD software the 
parameters for the exemplar model with the minimal squared 
sum of error were obtained.  

The model fits (see Figure 5) show that in the 
probabilistic additive linear condition both EBM and CAM 
have high correlation indices and about the same RMSD 
values (EBM; r2= .92 and RMSD=0.55 and CAM; r2= .96 
and RMSD= 0.54). In the non linear condition EBM and 
CAM presents approximately the same RMSD (EBM; 
RMSD= 0.51 and CAM; RMSD = 0.59) as in the linear 
condition, while the correlation is very low (EBM; r2= .49 
and CAM; r2= .24), with some advantage for EBM.  

When looking at the training data we see that the curve of 
learning was very flat, which imply that the participants may 
not have learned to asymptote in the training phase. This 
could has effected the results and therefore Experiment 2 was 
constructed to provide a better setting for testing the 
hypothesis that participants are not able to use cue abstraction 
in a non-linear task. 
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Figure 5. Model fits of exemplar model and cue abstraction model in the linear 
additive task and the non-linear task. 
  

Results Experiment 2 
Performance. The consistency for the two conditions was 
nearly the same (.17 for the regular instruction condition and 
.18 for the exemplar instruction condition). The RMSE showed 
a lower value for the exemplar instruction condition (1.93) than 
the regular instruction condition (2.50), with significant 
difference (F(1.10)=9.28; p=0.002; MSE=6.70). In Figure 6 the 
mean test judgment from the regular instruction condition and 
the exemplar instruction condition are plotted against the 
criteria. 
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Figure 4. Test mean judgment and exemplar index for the regular instruction 
condition (Panel A) and the exemplar instruction condition (Panel B) plotted 
against the correct criteria. The full drawn lines show the correct judgment. 
 
Representation.The RI shows that the regular instruction 
condition has a higher RI value (-2.68) than the exemplar 
instruction condition (-2.79), but the difference is not 
significant (F(1.10)=0.30; p=0.86; MSE=2.40). The RI is 
separated from zero which suggests that EBM is used in both 
conditions.  
Model fit. The same procedure for model fit was used as in 
Experiment 1. The model fits (see Figure 6) show that EBM 
has high correlation in both regular instruction condition 
(EBM; r2=.68 and RMSD=1.03) and exemplar instruction 
condition (EBM; r2=.87 and RMSD=0.7) compared to CAM 
in the conditions (regular instruction condition, CAM; r2=.46 
and RMSD=1.09 and exemplar instruction condition; CAM; 
r2=.39 and RMSD=1.27) which suggests a dominated use of 
EBM in both condition, but strongest in the exemplar 
instruction condition. 
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 Figure 7. Model fits of exemplar model and cue abstraction model in the old 
instruction condition and the exemplar instruction condition. 
 

Discussion 
The question addressed in this article is what structure of 

a categorization task triggers analytic thinking and what 
structure triggers intuition? We hypothesized that participants 
are not able to use the cue abstraction model, because it is too 
difficult to induce the equation that underlies the criterion. 
Overall, the results in Experiment 1 the non-linear condition 
shows little fit to the rule-based model CAM. The higher RI, 
the poor results on old and new exemplars in the interpola-
tion and extrapolation range, all support EBM. The results of 
the RMSD that is almost identical to the linear condition can 
not suggest which model that is used, if any of the models 
was. One possible explanation of the low RMSD and the 
poor consistency correlation is that the judgment curve has a 
flack inclination, and the task is thus to complex to learn. 
Because of the lack of learning for the participants in Ex-
periment 1, we investigated in Experiment 2 if longer train-
ing phase and a change from a probabilistic to a deterministic 
non-linear task could allow the participants to use any of the 
processes. The results clearly showed the use of EBM in both 
conditions suggesting that determinism and more training 
make it possible to adopt exemplar-based process   and use it 
more effectively. The use of cue abstraction seems to be non-
existent in the experiments which support the hypotheses that 
the non-linear judgment task is too complex for judgments 
based on mental integrated cues and the idea that exemplar-
based processes will serve as a back-up system when cue 
abstraction is impossible.  
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