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ABSTRACT OF THE DISSERTATION
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Professor Amit Sahai, Chair

Can we efficiently compile a computer program P into another one say P̃ , which has the

same functionality as P on every input, but otherwise is as unintelligible as possible? This

question was asked in 1976 by the Turing award winning work of Diffie-Hellman (STOC

1976). Such a compiler is called as Obfuscation. It is not hard to see that such a notion

will find lots of application so much so that today it is one of the most versatile primitives

in cryptography. The work of Barak et. al. (Crypto 2001) and Goldwasser and Rothblum

(TCC 2007) established that in order to construct an obfuscation scheme which provides

best possible unintelligibility guarantees, it suffices to construct what is called as an Indis-

tinguishibility Obfuscation (iO) scheme. An iO scheme is an obfuscation scheme that only

hides implementation differences. Such a scheme guarantees that for every two programs

P0, P1 of the same description size, same running time having the same input output be-

havior, but otherwise having different internal details iO(P0) is indistinguishabile to iO(P1).

Unfortunately, up until now it was not clear if such a primitive can even exist. All the known

constructions were heuristic, based on newly stated assumptions, and most of the times sub-

ject to cycles of attacks and fixes. In this thesis, we present the first feasibility result of an
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obfuscation scheme by constructing an obfuscation scheme from well-studied cryptographic

assumptions. We prove:

Theorem: (Jain-Lin-Sahai STOC 2021, Jain-Lin-Sahai 2021b) Assume sub-exponential se-

curity of the following assumptions:

• the Learning Parity with Noise (LPN) assumption over general prime fields Zp with

polynomially many LPN samples and error rate 1/kδ, where k is the dimension of the

LPN secret, and δ > 0 is any constant;

• the existence of a Boolean Pseudo-Random Generator (PRG) in NC0 with stretch n1+τ ,

where n is the length of the PRG seed, and τ > 0 is any constant;

• the Decision Linear (DLIN) assumption on symmetric bilinear groups of prime order.

Then, (subexponentially secure) indistinguishability obfuscation for all polynomial-size cir-

cuits exists.

All the three assumptions are based on computational problems with a long history of

study, rooted in complexity, coding, and number theory. As a corollary this gives feasibility

results for many of the other cryptographic primitives that had remained elusive and are

known to follow from iO, from the same set of assumptions. Our work also gives rise to

the first construction of a fully-homomorphic encryption scheme that does not rely on the

hardness of a lattice based problem.

This work is a culmination of a line of work spanning multiple years [AJS18, AJL+19,

JLMS19, BHJ+19, GJLS21, JLS21a, JLS21b]. This line introduced many different inter-

mediate building blocks relying on a number of concepts in cryptography. These blocks

were simplified and built upon in subsequent works. In this thesis, we present a self con-

tained, simplified and streamlined construction largely adapted from [JLS21b] but borrowing

elements from some of the works mentioned above.
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CHAPTER 1

Introduction

In this thesis, we consider an extremely fundamental question:

Is it possible to efficiently turn a computer program into an unintelligible version of itself?

To make the question more precise, we want to build an efficient (polynomial time) compiler

O that takes as input a program P (for simplicity, say represented as a Boolean circuit) and

outputs another circuit O(P ) = P̃ . We require that this program has identical functionality

to the original program P , that is on every input x, P (x) = P̃ (x). The size of P̃ is allowed

to be polynomially larger than the size of P . The main punchline however is the security

requirement: the program P̃ should hide as much information as possible about the imple-

mentation details of P , thereby making it as unintelligible as possible. We will call O an

obfuscator and P̃ as an obfuscation of P .

We would also like to stress that we require P̃ to be in the same format as P . That is,

P̃ is described as a Boolean circuit. We stress that, therefore, the implementation of P̃ is

completely public. In other words, there is no secure hardware to assist us with the task.

Indeed, if we assumed that secure hardware existed, then an intuitive idea is to use secure

hardware to solve this problem by wrapping the circuit P inside a secure hardware token.

However, such a token can be evaluated only by the person who has physical access to the

token. In this, there is also an implicit assumption that the token resists all side channel

attacks which is a strong assumption. On the other hand, we are asking for a fully software

solution. In particular, P̃ can be published on a bulletin board for everyone to see and then

used by anyone who wants to use it.
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We are going to delay defining the formal details of what it means to be “as unintelligible

as possible” (we will address this in Section 1.1). Until then, let us discuss why such a notion

might be useful. Indeed it is not hard to come up with applications of such a primitive. In

fact, when this question was posed for the first time by the Turing award-winning work of

Diffie-Hellman [DH76], the motivating application was to construct a public-key encryption

scheme from a secret-key encryption scheme. Back then, public-key encryption was not

known to exist and in their quest for building a public-key encryption scheme Diffie and

Hellman suggested the following high level approach: First choose the secret key K to be

a randomly chosen secret key for a secret-key encryption scheme. To create the public key,

use O to obfuscate a Boolean circuit G that takes as input a message m and a randomness

r, derives randomness appropriately from the message m and r, and then computes and

outputs an encryption CT = Enc(K,m) using the derived randomness, where the secret key

K is hardwired into G. Let us call the obfuscated circuit G̃.

The point of doing this is that G̃ can effectively serve as the public key of the resulting

encryption scheme. Anyone who now wants to encrypt a messagem of their choice can feed in

this message and some randomness to G̃ to generate a ciphertext encrypting m under the key

K. Further, the hope of the security was that a secret-key encryption scheme remains secure

if one is given an access to an oracle computing encryptions of any message m. And since

G̃ is an obfuscation of the encryption function, its security should imply the security of this

scheme. This natural approach was formalized and realized using the notion of obfuscation

that satisfies the property of providing “as much unintelligiblity as possible” in [SW14].

A public-key encryption scheme is an extremely natural application, but today we have

many candidates for public-key encryption schemes whose security rest upon a number of

well-studied assumptions. Therefore, realizing an object as basic as a public-key encryption

scheme using an obfuscation scheme is really like using a sledge-hammer to open a nut. Let

us therefore ask if this primitive might be useful for more advanced applications (without

getting to formal details). We discuss a few of them below:
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• Software protection. The most intuitive application of obfuscation is software pro-

tection. Intuitively, since an obfuscation scheme provides unintelligibility, it makes it

provably hard for an attacker to learn sensitive information from obfuscated software,

while still allowing an honest client to use the software on any inputs of their choice.

Consider the following example. Let us suppose that Alice is a software developer and

she has constructed a really powerful software that she wants to monetize. For doing

that she needs to construct a demo version or evaluation version. Doing this “from

scratch” is not a good idea: naively, one will have to go over the code line by line and

remove fragments that are not supposed to be used in the demo version. This is not an

easy task because one can never be sure that in this process of removal no sensitive in-

formation is leaked out. This task also involves effort and is sensitive to the judgement

of the demo creator. Using obfuscation we can propose an extremely systematic solu-

tion: One can take the software and simply “deactivate” certain branches by forming

an external wrapper, and then obfuscate the resulting program. This notion is called

crippleware. Since the sensitive branches are commented out in the obfuscated code,

it is as if those branches never existed due to the security of the obfuscation scheme.

• Obfuscating Machine Learning. A natural application of obfuscation in the ma-

chine learning world is to obfuscate classifiers. Typically, classifiers are trained using

large datasets, and revealing the parameters of a classifier can give rise to data pri-

vacy issues. Obfuscation is a natural tool to immunize against many such attacks.

Formalizing the appropriate security guarantees for obfuscation schemes useful for this

purpose as well as properties of the classifiers that are compatible with those obfusca-

tion schemes is an interesting open problem.

• Cloud Computing. Another modern cryptographic scenario is that of cloud comput-

ing. Typically, when hosting services on a cloud, the service developer creates software

which has proprietary information and also creates credentials used to authenticate

3



clients. This information is handed in the clear over to the cloud provider which runs

the service for the developer. However, if the cloud provider is itself adversarial (for

example, due to a hack) then this could seriously jeopardize the developer. Using ob-

fuscation, one can hope for a solution of this problem. In fact, using indistinguishability

obfuscation, which is the notion we study in this thesis, and is known to provide the

best possible unintelligibility guarantees, a solution to this problem was formalized in

the work of [BGMS15].

Indistinguishability Obfuscation [BGI+01] (henceforth denoted by iO), is indeed a powerful

object. In fact, in the world of cryptography, today we know that iO can be used to realize

almost all known interesting cryptorgaphic primitives including most of the applications

discussed above. We will now define what iO is and talk about how the definition evolved,

which is an interesting journey in itself.

1.1 Definition and History

Let us now define what iO requires. Let C0, C1 : {0, 1}n → {0, 1} be any two Boolean

circuits that satisfy the following properties:

• C0 and C1 have the same size,

• On every input x ∈ {0, 1}n, C0(x) = C1(x),

Other than satisfying these two properties, however, C0 and C1 may have arbitrary differences

in implementation. Then iO requires that C̃0 = iO(C0) is computationally indistinguishable

to C̃1 = iO(C1).

This requirement guarantees that iO hides implementation differences. As a concrete

example, let C0 be (an appropriately padded version of) the bubble sorting program and

C1 be (an appropriately padded version of) the selection sorting program. Then, iO will
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guarantee that given an obfuscation of either circuit, it is hard for an adversary to guess if it

was actually an obfuscation of bubble sort or selection sort or some other sorting program.

More formally, here is the definition:

Definition 1.1.1 (Indistinguishability Obfuscator (iO) for Circuits). A uniform PPT algo-

rithm iO is called a secure indistinguishability obfuscator for polynomial-sized circuits if the

following holds:

• Completeness: For every λ ∈ N, every circuit C with input length n, every input

x ∈ {0, 1}n, we have that

Pr
[
C̃(x) = C(x) : C̃ ← iO(1λ, C)

]
= 1 .

• Indistinguishability: For every two ensembles {C0,λ} and {C1,λ} of polynomial-sized

circuits that have the same size, input length, and output length, and are functionally

equivalent, that is, ∀λ, C0,λ(x) = C1,λ(x) for every input x, the following distributions

are computationally indistinguishable.

{iO(1λ, C0,λ)} {iO(1λ, C1,λ)}

A reader might wonder, why is this definition the most natural one? Indeed, this question

took a long time to be answered.

History of Definition. Despite being posed as an open question in [DH76] in 1976, the

first systematic analysis of the definitions was done in the beautiful work of Barak et. al.

[BGI+01]. The work mainly looked at what is called virtual-black box obfuscation / ideal

obfuscation (VBB for short). A VBB obfuscation scheme captures the most intuitive require-

ment of being as unintelligible as possible: in a VBB scheme, an obfuscation C̃ of any circuit

C should give no more knowledge about the circuit C to an adversary than a black-box

implementing the circuit C. A black-box implementing C can only respond to input queries

x, to which it responds by answering C(x). Therefore, such an obfuscation scheme converts

a program to a virtual black box.
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The work of [BGI+01] unfortunately proved that a general-purpose VBB obfuscation

scheme cannot exist. This was mostly seen as a huge negative result for obfuscation back

then. At the same time, the same work also gave us a glimmer of hope. They defined iO as a

suggestion for an alternate definition. At the time, it was neither clear that iO security is the

best theoretically achievable guarantee one could hope for, nor was it clear if iO is feasible

to construct, nor was it clear if iO had any usefulness for applications. All these questions

were left open. It also took quite a while for the community to answer these questions.

The answer to the first question came six years later in 2007. The work of Goldwasser

and Rothblum [GR07] rekindled the excitement about iO by proving that iO is in fact the

strongest guarantee that one can hope to achieve. Formally it was proven that iO is at

least as secure as the best possible obfuscation scheme that can ever exist. The insight is

the following: Let us say that there is another hypothetical obfuscation algorithm O, which

achieves the best possible achievable security for whatever purpose. Due to correctness of

this best-possible obfuscation O, we have that C is functionally equivalent to O(C). Because

of that, iO(C) is actually indistinguishable to iO(O(C)), up to issues of padding the sizes

of the circuits. Thus, iO(C) is as “secure” as O(C).

A few years later, the work of [SW14] introduced techniques that helped us understand

how powerful iO is. Over the next several years, there was a lot of work establishing numerous

applications of iO. Using specially designed proof techniques, we can show that iO security

is enough to realize many of the applications written before. We will discuss this progress

in Section 1.2.1.

Unfortunately however, progress on the feasibility front had not been as successful. Even

after years of intense study, the state of feasibility of this question was unclear until recently.

All known constructions, prior to the results contained in this thesis, relied on assumptions

introduced solely for the purpose of proving iO constructions secure. Many of those assump-

tions and constructions were subject to cycles of break and repair. A construction of iO with

a sound basis for security had remained elusive. We discuss the huge body of work on this
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topic in Section 1.4. The main objective of this thesis is therefore to answer the following

question:

Feasibility Question (Diffie-Hellman [DH76], Barak et. al. [BGI+01]):

Can we construct iO which is as hard to break as well-studied hard problems?

We would like to build an iO scheme whose security rests upon cryptographic assumptions

that have stood the test of the time, have a long history of study, and are widely believed to

be true. The main result of this thesis is the construction of an iO scheme from well studied

assumptions thereby answering the above feasibility question. We discuss this in more detail

next.

1.2 Our Results

The results of this thesis are based on joint work with Rachel Lin and Amit Sahai [JLS21a,

JLS21b]. Our main result is a construction of an iO scheme whose security rests upon the

following three well-studied cryptographic assumptions. We prove:

Theorem 1.2.1. (Informal [JLS21a, JLS21b]) Assume sub-exponential security of the fol-

lowing assumptions:

• the Learning Parity with Noise (LPN) assumption over general prime fields Fp with

polynomially many LPN samples and error rate 1/kδ, where k is the dimension of the

LPN secret, and δ > 0 is any constant;

• the existence of a Boolean Pseudo-Random Generator (PRG) in NC0 with stretch n1+τ ,

where n is the length of the PRG seed, and τ > 0 is any constant;

• the Decision Linear (DLIN) assumption on symmetric bilinear groups of prime order.

Then, (subexponentially secure) indistinguishability obfuscation for all polynomial-size cir-

cuits exists. Further, assuming only polynomial security of the assumptions above yields
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polynomially secure functional encryption for all polynomial-size circuits.

All the three assumptions are based on computational problems with a long history of

study, rooted in complexity, coding, and number theory. Further, they were introduced for

building basic cryptographic primitives (such as public key encryption), and have been used

for realizing a variety of cryptographic goals that have nothing to do with iO. We discuss

all the assumptions in detail in Section 1.3.

This result is a culmination of a long line of work [AJS18, AJL+19, JLMS19, BHJ+19,

GJLS21] that led to the result of [JLS21a], which gave a construction of iO from the above

assumptions in addition to the learning with errors assumption [Reg05] which is a well-

studied lattice assumption. This result relied on a number of building blocks which were

developed during the line of work to build what is known as a functional encryption scheme

(which is a primitive known to be simpler than iO itself: see Definition 2.3.1 for details).

The construction of iO follows from the result of [BV15, AJ15] who showed that a functional

encryption scheme can be turned into an iO scheme under subexponential security loss.

In a followup work [JLS21b] to [JLS21a], the construction was improved in two aspects.

First, it was shown that the learning with errors assumption is no longer needed for a

secure construction of iO, and second, that functional encryption can be constructed almost

immediately relying on just two simple building blocks. Thus, this yields a much simpler

and more direct construction. In this thesis we present this simplified view point. We discuss

the exact technical framework in Chapter 2.

Another important aspect of our result is that the construction implies feasibility of many

other applications, which were previously not known to exist, assuming well-studied hard

problems. We discuss this next.
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1.2.1 Applications

The notion of iO occupies an intriguing and influential position in complexity theory and

cryptography. Interestingly, if NP ⊆ BPP, then iO exists for the class of all polynomial-size

circuits, because if NP ⊆ BPP, then it is possible to efficiently compute a canonical form for

any function computable by a polynomial-size circuit. On the other hand, if NP ̸⊆ io-BPP,

then in fact the existence of iO for polynomial-size circuits implies that one-way functions

exist [KMN+14]. A large body of work has shown that iO plus one-way functions imply a

vast array of cryptographic objects, so much so that iO has been conjectured to be a “central

hub” [SW14, KMN+14] for cryptography.

An impressive list of fascinating new cryptographic objects are only known under iO or

related objects such as functional encryption and witness encryption. Hence, our construc-

tion of iO from well-founded assumptions immediately implies these objects from the same

assumptions. Below, we highlight a subset of these implications as corollaries. In all the

applications, by λ we denote the security parameter.

Corollary 1.2.1 (Informal). Assume the subexponential hardness of the three assumptions

in Theorem 1.2.1, we have:

• Multiparty non-interactive key exchange in the plain model (without trusted setup),

e.g., [BZ14, KRS15].

• Adaptively secure succinct garbled RAM, where the size of the garbled program is

poly(λ, log T )|P | depending linearly on the description size of the RAM program P ,

the size of the garbled input is poly(λ)|x| depending linearly on the size of the input x,

and evaluation time is quasilinear in the running time of P on x [BGL+15, CHJV15,

KLW15, CCC+15, CH16, CCHR16, ACC+16, AL18].

• Indistinguishability obfuscation for RAM, where the size of obfuscated program is poly(λ, n, |P |)

where |P | is the description size of the RAM program P and n is its input length [BGL+15,
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CHJV15, KLW15, CCC+15, CH16, CCHR16, ACC+16, AL18].

• Selectively sound and perfectly zero-knowledge Succinct Non-interactive ARGument

(SNARG) for any NP language with statements up to a bounded polynomial size in

the CRS model, where the CRS size is poly(λ)(n +m), n,m are upper bounds on the

lengths of the statements and witnesses, and the proof size is poly(λ) [SW14]1.

• Sender deniable encryption [SW14], and fully deniable interactive encryption [CPP20].

• Constant round concurrent zero-knowledge protocols for any NP language [CLP15].

• (Symmetric or asymmetric) multilinear maps with boudned polynomial multilinear de-

grees, following [AFH+16, FHHL18, AMP19], and self-bilinear map over composite

and unknown order group, assuming additionally the polynomial hardness of factor-

ing [YYHK14].

• Correlation intractable functions for all sparse relations verifiable in bounded poly-

noimal size, assuming additionally the polynomial hardness of input hiding obfusca-

tors for evasive circuits [CCR16], or for all sparse relations, assuming additionally

the exponential optimal hardness of input hiding obfuscators for multibit point func-

tions [KRR17].

• Witness Encryption (WE) for any NP language, following as a special case of iO for

polynomial size circuits.

• Secret sharing for any monotone function in NP [KNY14].

• Fully homomorphic encryption scheme for unbounded-depth polynomial size circuits

(without relying on circular security), assuming slighly superpolynomial hardness of

1This construction does not contradict the lower bound result by [GW11] showing that it is impossible

to base the adaptive soundness of SNARGs on falsifiable assumptions via black-box reductions, since this

construction only achieves selective soundness.
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the assumptions above [CLTV15].

Corollary 1.2.2 (Informal). Assume the polynomial hardness of the three assumptions in

Theorem 1.2.1, we have:

• Attribute Based Encryption (ABE) for unbounded-depth polynomial-size circuits, fol-

lowing as a special case of functional encryption for unbounded-depth polynomial size

circuits.

• Hard instances for finding Nash Equilibrium (more generally for the class PPAD)

[AKV04, BPR15, GPS16, HY17, KS17].

Regarding PPAD hardness, another line of beautiful works [CHK+19a, CHK+19b, CCH+19,

EFKP20, LV20, JKKZ20] showed that the hardness of #SAT reduces to that of PPAD, as-

suming the adaptive soundness of applying Fiat-Shamir to certain protocols. Most recently,

this led to basing the PPAD hardness on that of #SAT and the sub-exponential LWE as-

sumption [JKKZ20]. In comparison, relying on [GPS16], using our Functional Encryption

construction, we can base the PPAD hardness on the polynomial security of the three as-

sumptions we make. Next, we discuss another important aspect of our work. Note that none

of the three assumptions in Theorem 1.2.1 are lattice assumptions. Since iO has wide ap-

plicability, this also gives first constructions of some of these primitives that were previously

known only via lattice based hardness assumptions.

1.2.1.1 Homomorphic Encryption without Lattices

The advent of lattice-based techniques have led to a revolution in cryptography. The most

notable herald of the lattice era came with the pioneering work of Gentry [Gen09] construct-

ing Fully Homomorphic Encryption (FHE) using ideal lattices, followed by the breakthrough

result of Brakerski and Vaikuntanathan [BV11] constructing FHE from the Learning With

Errors (LWE) assumption. To this day, the only known constructions of FHE are based
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on the hardness of lattice-type problems – either directly from problems like LWE or Ring

LWE, or slightly indirectly via problems such as the approximate GCD [vDGHV10]. Beyond

FHE, lattice techniques have also been used in all known proposals for candidate multilinear

maps [GGH13a, CLT13, GGH15]. All surviving proposals for achieving indistinguishability

obfuscation (iO) that we are aware of also use lattice-based problems (see [JLS21a] and the

references therein). The common thread to all problems based on lattices is that they utilize

small noise where the smallness is measured using the standard notion of absolute value over

R. Leveraging the smallness of noise, lattice problems and techniques have been at the heart

of nearly every work over the past decade attempting to achieve advanced cryptographic

feasibility goals.

We observe that none of these assumptions in Theorem 1.2.1 involve any notion of small-

ness related to absolute value over R, and in fact no lattice-based methods are known to

be useful in either manipulating or attacking these assumptions. Furthermore, of the three

assumptions in Theorem 1.2.1, only one of them is known to imply public-key encryption

or key agreement on its own – the DLIN assumption. Even assuming the other two as-

sumptions simultaneously, it is not known how to build key agreement or any other “public

key” primitive. (Recall that known constructions of public-key encryption from LPN require

δ ≥ 1
2
in our language above [Ale03, AAB15].) Thus, to the best of our knowledge, the

other two assumptions appear to be qualitatively weaker than – in the sense of less power-

ful than – DLIN, and indeed weaker than LWE or other such commonly used lattice-based

assumptions.

An immediate consequence of our theorem is that the combination of bilinear pairing,

LPN over Fp, and constant-locality PRG is sufficient for building all the primitives that are

implied by iO or Functional Encryption (FE) (and other assumptions that are implied by

one of the three assumptions). This, somewhat surprisingly, includes Fully Homomorphic

Encryption (FHE) that support homomorphic evaluation of (unbounded) polynomial-size

circuits, through the construction by [CLTV15] that shows FHE can be built from subexpo-
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nentially secure iO and rerandomizable encryption, which is implied by the DLIN assump-

tion. It also includes Attribute Based Encryption (ABE) that support policies represented

by (unbounded) polynomial-size circuits, which is a special case of functional encryption.

To this day, the only known constructions of FHE and ABE for circuits are based on the

hardness of lattice-type problems – either directly from problems like LWE or Ring LWE,

or slightly indirectly via problems such as the approximate GCD problem [vDGHV10]. Our

work hence yields the first alternative pathways towards these remarkable primitives. Thus,

Corollary 1 (Informal). Assume the same assumptions as in the Theorem 1.2.1. Then,

fully homomorphic encryption for all polynomial-sized circuits exist.

We emphasize that our result complements instead of replaces lattice-based constructions.

It also gives rise to several exciting open directions for future work, such as, can we obtain

direct constructions of FHE or ABE (not via iO or FE) from the trio of assumptions? and is

there any formal relationship between these assumptions and lattice assumptions (e.g, BDD,

SVP etc.)?

1.3 Assumptions in More Detail

We now describe each of the assumptions we need in more detail and briefly survey their

history.

The DLIN Assumption: The Decisional Linear assumption (DLIN) is stated as follows:

For an appropriate λ-bit prime p, two groups G and GT are chosen of order p such that

there exists an efficiently computable nontrivial symmetric bilinear map e : G×G→ GT . A

canonical generator g for G is also computed. Then, the DLIN assumption requires that the
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following computational indistinguishability holds:{(
gx, gy, gxr, gys, gr+s

)
| x, y, r, s← Zp

}
≈c {(gx, gy, gxr, gys, gz) | x, y, r, s, z ← Zp}

This assumption was first introduced in the 2004 work of Boneh, Boyen, and Shacham

[BBS04]. Since then DLIN and assumptions implied by DLIN have seen extensive use in

a wide variety of applications throughout cryptography, such as Identity-Based Encryp-

tion, Attribute-Based Encryption, Functional Encryption for degree two polynomials, Non-

Interactive Zero Knowledge, etc. (See, e.g. [GS08, BKKV10, OT10, BJK15, JR13]).

The existence of PRGs in NC0: The assumption of the existence of a Boolean Pseudo-

Random Generator PRG in NC0 states that there exists a Boolean function G : {0, 1}n →

{0, 1}m where m = n1+τ for some constant τ > 0, and where each output bit computed

by G depends on a constant number of input bits, such that the following computational

indistinguishability holds:

{G(σ) | σ ← {0, 1}n} ≈c {y | y← {0, 1}m}

Pseudorandom generators are a fundamental primitive in their own right, and have vast

applications throughout cryptography. PRGs in NC0 are tightly connected to the fundamen-

tal topic of Constraint Satisfaction Problems (CSPs) in complexity theory, and were first

proposed for cryptographic use by Goldreich [Gol00, CM01, IKOS08] 20 years ago. The

complexity theory and cryptography communities have jointly developed a rich body of lit-

erature on the cryptanalysis and theory of constant-locality Boolean PRGs [Gol00, CM01,

MST03, CEMT09, BQ09, ABW10, ABR12, BQ12, App12, App13, OW14, AL16, KMOW17,

CDM+18, AK19].

LPN over prime fields: The Learning Parity with Noise LPN assumption over general

prime fields Fp is a decoding problem. The standard LPN assumption with respect to
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subexponential-size modulus p, dimension ℓ, sample complexity n, and a noise rate r = 1/ℓδ

for some δ ∈ (0, 1), states that the following computational indistinguishability holds:

{A, s ·A+ e mod p | A← Zℓ×n
p , s← Z1×ℓ

p , e← D1×n
r }

≈c {A,u | A← Zℓ×n
p , u← Z1×n

p }.

Above e ← Dr is a generalized Bernoulli distribution, i.e. e is sampled randomly from Zp

with probability 1/ℓδ and set to be 0 with probability 1− 1/ℓδ. We consider polynomial

sample complexity n(ℓ), and the modulus p is an arbitrary subexponential function in ℓ.

The origins of the LPN assumption date all the way back to the 1950s: the works of

Gilbert [Gil52] and Varshamov [Var57] showed that random linear codes possessed remark-

ably strong minimum distance properties. However, since then, almost no progress has been

made in efficiently decoding random linear codes under random errors. The LPN over fields

assumption above formalizes this, and was introduced over Z2 for cryptographic uses in 1994

[BFKL94], and formally defined for general finite fields and parameters in 2009 [IPS08],

under the name “Assumption 2”.

While in [IPS08], the assumption was used when the error rate was assumed to be a con-

stant, in fact, polynomially low error (in fact δ = 1/2) has an even longer history in the LPN

literature: it was used by Alekhnovitch in 2003 [Ale03] to construct public-key encryption

with the field Z2, and used to build public-key encryption over Zp in 2015 [AAB15]. The

exact parameter settings that we describe above, with both general fields and inverse poly-

nomial error rate corresponding to an arbitrarily small constant δ > 0 was explicitly posed

by [BCGI18], in the context of building efficient secure two-party and multi-party protocols

for arithmetic computations.

Recently, the LPN assumption has led to a wide variety of applications (see for example,

[IPS08, AAB15, BCGI18, ADI+17, DGN+17, GNN17, BLMZ19, BCG+19]). A comprehen-

sive review of known attacks on LPN over large fields, for the parameter settings we are

interested in, was given in [BCGI18, BCG+20]. For our parameter setting, the running
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time of all known attacks is Ω(2ℓ
1−δ

), for any choice of the constant δ ∈ (0, 1) and for any

polynomial number of samples n(ℓ).

On search vs. decision versions of our assumptions. Except for the DLIN assump-

tion, the other three assumptions that we make can be based on search assumptions.

The LPN over Zp assumption we require are implied by the subexponential hardness

of their corresponding search versions [MM11, BFKL94, MP13, Reg05]. As summarized

in [Vai20], there is a search-to-decision reduction2 whose sample complexity ism = poly(dim(s),m′, 1/ϵ)

(namely, polynomial in the dimension dim(s) of the secret, sample complexity m′ of the de-

cision version, and the inverse of the distinguishing gap ϵ), and runtime poly(dim(s), p,m).

In this work, we need the pseudorandomness of (polynomially many) LPN samples to hold

against polynomial-time adversaries, with a subexponential distinguishing gap. We can fur-

ther set the modulus p to an arbitrarily small subexponential function in dim(s)3. Decisional

LPN with such parameters are implied by the subexponential search LPN assumptions: There

is a constant γ > 0 such that no subexponential-time 2dim(s)γ adversary, given a subexpo-

nential 2dim(s)γ number of samples, can recover s with noticeable probability.

The works of [App13, AK19] showed that the one-wayness of random local functions

implies the existence of PRGs in NC0. More precisely, for a length parameter m = m(n),

a locality parameter d = O(1), and a d-ary predicate Q : {0, 1}d → {0, 1}, a distribution

FQ,m samples a d-local function fG,Q : {0, 1}d → {0, 1} by choosing a random d-uniform

hypergraph G with n nodes andm hyperedges, where each hyperedge is chosen uniformly and

independently at random. The ith output bit of fG,Q is computed by evaluating Q on the d

input bits indexed by nodes in the ith hyperedge. The one-wayness of FQ,m for proper choices

of Q,m has been conjectured and studied in [Gol00, MST03, CEMT09, BQ09, ABW10]. The

2Importantly, this reduction is oblivious to the distribution of the errors and hence applies to both LWE

and LPN.

3In the construction, we set p = Θ(2λ) and dim(s) to a large enough polynomial in λ.
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works of [App13, AK19] showed how to construct a family of PRG in NC0 with polynomial

stretch based on the one-wayness of FQ,m for any Q that is sensitive (i.e., some input bit i of

Q has full influence) and any m = n1+δ with δ > 0. The constructed PRGs have negligible

distinguishing advantage and the reduction incurs a multiplicative polynomial security loss.

Therefore, the subexponential pseudorandomness of PRG in NC0 that we need is implied by

the existence of FQ,m that is hard to invert with noticable probability by adversaries of some

subexponential size.

1.4 Prior Work on Feasibility of iO

There is a rich landscape of research on conjectured constructions of iO. Despite being

posed as a question at least 20 years ago [DH76, BGI+01], the first candidate mathematical

construction came only in 2013, through the work of [GGH+13b]. This construction relied on

a newly constructed primitive called multilinear maps [GGH13a], which is a generalization of

a bilinear maps where one could compute high degree computations in the exponents. Soon

after, several different candidates for multilinear maps were proposed [CLT13, GGH15] and

many other constructions of iO were proposed. This propelled a huge body of constructions

of iO relying on multilinear maps and related ideas (e.g. [GGH13a, GGH+13b, BGK+14,

BR14, PST14, BMSZ16, CLT13, GGH15, CLR15, MF15, MSZ16, DGG+16].) Unfortunately,

all these works suffered from one of the three main problems:

• Most constructions were heuristic in the sense that they were just conjectured to be

secure. There was no simple assumption on the multilinear maps on which you can

base security,

• Sometimes, security was based on some new assumption, but it was a new assumption

proposed solely for the proving the construction secure. Such assumptions lacked a

long history of study,

17



• Most of the time, in both the above cases there were actually cycles of attacks and

fixes on the constructions and/or underlying assumptions (e.g. [CHL+15, HJ15, CLR15,

MF15, MSZ16, BBKK18, LV17, BHJ+19]) which reduced our confidence further.

With this the focus shifted to trying to minimize the degree of the multilinear map needed,

with the goal of eventually reaching degree 2. In a beautiful line of work [Lin16, LV16, AS17,

Lin17, LT17] it was shown that iO can be constructed just from succinct assumptions on

degree-3 multilinear maps. Unfortunately, the candidates for degree-3 multilinear maps were

the same as the candidates for high degree multilinear maps and suffered from the same class

of attacks as before.

Soon after, a line of work [AJS18, Agr19, LM18, AJL+19, JLMS19, AP20, GJLS21]

constructed iO relying on bilinear maps, along with new kinds of pseudorandom generators.

These assumptions were much simpler to state than before. Even though earlier proposals for

some of those pseudorandom generators were attacked [LV17, BBKK18, BHJ+19], exploring

the limits of those attacks helped us design iO based on new but simple-to-state assumptions

[AJL+19, JLMS19, GJLS21] that resisted all known attacks. Unfortunately however, these

assumptions were newly stated and did not have a long history of study.

Therefore, building upon [AJS18, LM18, AJL+19, JLMS19, GJLS21] these works culmi-

nated finally in our recent works [JLS21a, JLS21b], which managed to construct iO from the

three assumptions in Theorem 1.2.1. This eliminated the need for making any new unstudied

hardness assumptions. We now discuss some of the main open problems in the space of iO

constructions.

1.5 Open Problems

Our work places iO on firm foundations with respect to the assumptions it is based on,

thereby answering the main feasibility question for the primitive (until we resolve the P

vs. NP question). However, there are many important open questions that remain to be

18



answered.

• Concrete Efficiency: Our work first builds the notion of functional encryption and

then boosts this object to iO via a complex transformation [AJ15, BV15]. As a result,

the final construction is quite complex. A highly important question that remains open

is: Is it possible to construct iO either by fine tuning our approach, or otherwise (as

in [GJK18, BIJ+20]) in a way that the resulting scheme yields concrete implementable

efficiency? For this question, as a first step, it is even interesting if the construction

rests upon new assumptions as long as the assumptions are rigorously cryptanalyzed.

• Post-Quantum iO: Our work relies on Bilinear maps (in a somewhat crucial way).

As a result of that, our construction is broken in polynomial time using a quantum

computer. Therefore, an important and a natural question to ask here is if we can build

iO on any combination of well-studied post-quantum assumptions such as LWE, LPN,

or PRG in NC0. This is indeed an active area of research.

• iO for Quantum Circuits: All known constructions of iO support only classical

circuits. If quantum computers come one day, an interesting question is to construct

an iO scheme that can be used to actually obfuscate quantum circuits. There are some

results in restricted models [BK20, BM21] but none of the known constructions work

to obfuscate general quantum programs.

• Understanding Assumptions Better: We are still in the early stages of under-

standing the feasibility of iO. An immediate question that arises out of work is to

identify essential and non-essential assumptions out of the three assumptions, and, if

any of the assumptions can be replaced by another one. Identifying if there is any other

substantially different approach that also yields iO from well-studied assumptions will

also shed light on this question.
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1.6 Organization

As described before, the result in [JLS21a, JLS21b] is a culmination of a line of work

[AJS18, LM18, Agr19, AJL+19, JLMS19, BHJ+19, GJLS21]. These results identified several

building blocks required to build iO and constructed each of them from various assumptions.

Many of these building blocks employed concepts from a number of areas in cryptography

and theoretical computer science such as pseudorandomness, lattice based cryptography,

elliptic curve cryptography, privacy amplification, coding theory and even convex optimiza-

tion algorithms. In this thesis, we will present complete technical details of the construction

largely based upon [JLS21b] which is considerably more direct and simpler in comparison

with earlier works and relies on just two simple building blocks. We build one of the building

block from LPN assumption and PRG in NC0 and the other buidling block from the DLIN

assumption. In Chapter 2 we give an overview of the technical framework and define these

two abstractions. Later, in the respective chapters we construct these notions.
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CHAPTER 2

Technical Roadmap

In this chapter, we will describe our high-level approach to build iO. This approach will

require us to consider several intermediate blocks. We will also motivate and formally define

each of those notions. We will also discuss a bit of history behind these objects, and finally

in the respective future chapters we will see their constructions. Before we proceed further

we set up some preliminaries to be used in the rest of the chapters.

2.1 Preliminaries

We now set up some notations that will be used throughout the thesis. Throughout, we

will denote the security parameter by λ. For any distribution X , we denote by x ← X the

process of sampling a value x from the distribution X . Similarly, for a set X we denote by

x← X the process of sampling x from the uniform distribution over X. For an integer n ∈ N

we denote by [n] the set {1, .., n}. Throughout, when we refer to polynomials in security

parameter, we mean constant degree polynomials that take positive value on non-negative

inputs. We denote by poly(λ) an arbitrary polynomial in λ satisfying the above requirements

of non-negativity.

We use standard Landau notations. We will also use Õ, where for any function a(n, λ),

b(n, λ), we say that a = Õ(b) if a(n, λ) = O(b(n, λ) poly(λ, log2 n)) for some polynomial poly.

A function negl : N→ R is negligible if negl(λ) = λ−ω(1). Further, the negl is subexponentially

small if negl(λ) = 2−λ
Ω(1)

.

21



We denote vectors by bold-faced letters such as b and u. Matrices will be denoted by

capitalized bold-faced letters for such as A and M. For any k ∈ N, we denote by the

notation v⊗k = v ⊗ · · · ⊗ v︸ ︷︷ ︸
k

the standard tensor product. This contains all the monomials

in the variables inside v of degree exactly k.

Multilinear Representation of Polynomials and Representation over Zp. A straight-

forward fact from analysis of boolean functions is that every NC0 function F : {0, 1}n →

{0, 1} can be represented by a unique constant degree multilinear polynomial f ∈ Z[x =

(x1, . . . , xn)], mapping {0, 1}n to {0, 1}. At times, we consider a mapping of such polynomial

f ∈ Z[x] into a polynomial g over Zp[x] for some prime p. This is simply obtained by reduc-

ing the coefficients of f modulo p and then evaluating the polynomial over Zp. Observe that

g(x) = f(x) mod p for every x ∈ {0, 1}n as f(x) ∈ {0, 1} for every such x. Furthermore,

given any NC0 function F , finding these representations take polynomial time.

Computational Indistinguishability. We now describe how computational indistin-

guishability is formalized.

Definition 2.1.1 (ϵ-indistinguishability). We say that two ensembles X = {Xλ}λ∈N and

Y = {Yλ}λ∈N are ϵ-indistinguishable where ϵ : N→ [0, 1] if for every probabilistic polynomial

time adversary A it holds that: For every sufficiently large λ ∈ N,∣∣∣∣ Pr
x←Xλ

[A(1λ, x) = 1]− Pr
y←Yλ

[A(1λ, y) = 1]

∣∣∣∣ ≤ ϵ(λ).

We say that two ensembles are computationally indistinguishable if they are ϵ-indistinguishable

for ϵ(λ) = negl(λ) for some negligible negl, and that two ensembles are sub-exponentially in-

distinguishable if they are ϵ-indistinguishable for ϵ(λ) = 2−λ
c
for some positive real number

c.
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2.2 High-Level Approach

There have been many candidate constructions of iO from a number of different assump-

tions. Typically these constructions fall into two categories: i) Direct Constructions where

a circuit is directly obfuscated relying on suitable cryptographic gadgets such as multilin-

ear maps, and, ii) Bootstrapping from simpler primitives, where a seeming simpler object

is constructed which is then bootstrapped to iO. Although the approach of constructing

obfuscating programs directly may seem more intuitive, arguing security has proven to be

really tough. As of now all known direct constructions only give heuristic security.

The second approach, although seemingly more indirect, has been more successful in

constructing iO from simple to state assumptions, since the goal is to construct something

simpler. All the works culminating into thesis [AJL+19, JLMS19, GJLS21, JLS21a, JLS21b]

follow the second approach.

Perhaps a really important point in our search for Indistinguishability Obfuscation was

the beautiful insight produced in [AJ15, BV15]. Both the works concurrently showed that in

order to build Indistinguishability Obfuscation it suffices to build something seemingly much

simpler - “Sublinear Functional Encryption” (denoted by FE for short). Our contribution is

in fact, to construct such an FE using only well-studied hard problems.

Sublinear Functional Encryption. Let us now focus on the key object that suffices

to build iO. Intuitively speaking, a functional encryption scheme is a generalization of an

encryption scheme. In a traditional encryption scheme, given a ciphertext CT(x) encrypting

a plaintext x, the encryption provides all or nothing access to x. This is because if one has

the secret key SK, one can learn x in its entirety, otherwise nothing at all. In a functional

encryption scheme, one can be given fine grained access to the data. One can be issued

“functional keys” SKf that are associated with functions f ∈ F in some function class.

Then, given CT(x) and SKf one can learn f(x), but only that. More formally, the scheme
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ensures the following basic property: let x0, x1 be two plain-texts such that f(x0) = f(x1),

then even given SKf , CT(x0) is computationally indistinguishable to CT(x1). This object is

called functional encryption. If such a functional encryption scheme satisfies a few additional

properties, then it can be used to realize iO. To construct iO, the functional encryption

scheme needs to satisfy three additional conditions below:

• The scheme should allow issuing just one functional key from a sufficiently expressive

function class, say NC1 circuits 1,

• (Sublinear Encryption Time): The size of the circuit encrypting a plain-text x should

be bounded by (s1−ϵF + |x|) poly(λ) for some constant ϵ > 0, where s is the maximum

size of the circuit in the function class and λ is the security parameter,

• (Subexponential Security): The maximum probability with which a polynomial time

adversary can distinguish between an encryption of x0 from an encryption of x1 should

be bounded by 2−λ
c
for some constant c > 0.

In this thesis, we denote by a sublinear functional encryption scheme, a functional encryption

scheme satisfying all the properties above. The word “Sublinear” in “Sublinear Functional

Encryption” is used to stress the second requirement. The formal definition of this primitive

can be found in Section 2.3.

Constructing Sublinear Functional Encryption. In order to build sublinear func-

tional encryption for circuits, our high-level approach is the following: We use a functional

encryption scheme FEsimple for a simple class of functions Csimple and bootstrap it to a sublin-

ear functional encryption scheme for all circuits. In order to do so, a very natural approach

in the past has been to rely on what is called as a sublinear Randomized Encoding Scheme

1We consider a related function class, which is also sufficient.
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(which we will denote by RE). Recall that in an RE scheme, given an input x and a ran-

domness r say in {0, 1}n and letting x′ = (x, r), for any circuit C of size say n1+ϵ for some

ϵ > 0, one can compute Encode(C,x′)→ Ĉ(x). This encoding has the following properties:

• The length of Ĉ(x) is Õ(|C|+ |x|),

• Given Ĉ(x), one can decode C(x) in polynomial time,

• Ĉ(x) is simulatable knowng just C,C(x), and,

• Encode(C, ·) is usually a low depth circuit. In particular, assuming PRG ∈ NC0 it can

even be in NC0 (for example, [AIK04]).

The word “sublinear” is used to emphasize that the length of the randomness r is sublinear

in the size of the circuit.

This gives us a natural approach. If we have a functional encryption scheme FEsimple for

the circuit class containing NC0 circuits and satisfying certain sublinearity properties, then

we can already construct full fledged sublinear functional encryption scheme. The idea is

that in order to compute encryption of x, we will simply encrypt x′ = (x, r) using FEsimple,

and to generate keys for a circuit C, we will generate keys for NC0 functions Encode(C, ·).

To ensure that the resulting FE scheme satisfies sublinear encryption time, we need that the

running time to compute FEsimple encryption of x′ is sublinear in the size of the circuit C.

NC0 circuits are extremely simple functions. When written as a polynomial over Z, every

output can be computed by a polynomial of constant degree (say d).

Using Degree-2 FE. Before our works, the best known functional encryption schemes

supported evaluation of degree two polynomials over the encrypted input. Such schemes (for

example, the scheme in [Lin17]) can be constructed assuming well-studied assumption on

bilinear maps. These schemes support an unbounded number of function keys and are also

known to satisfy strong form of encryption efficiency: the encryption time can be linear in
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|x′|. One could have solved the problem already if one could construct a sublinear randomized

encoding scheme with degree d = 2. As one could use a degree two FE to isntantiate our

FEsimple, and use it along with the degree two randomized encoding.

Unfortunately, such sublinear randomized encodings RE are typically constructed by

first constructing a ”vanilla” randomized encoding scheme in NC0, where the length of the

randomness can be linear in the size of the circuit, and then composing it with a PRG in NC0

with polynomial stretch. Such ”vanilla” randomized encoding schemes can be constructed

in multiple ways (for example [AIK06, Yao86]). The idea now is that the PRG can expand

a shorter random string r ∈ {0, 1}n into a longer pseudorandom string r′, which can then

used along with a ”vanilla” randomized encoding scheme.

As a result of this, in all current approaches, the complexity of RE is tied innately to

constructions of Boolean PRGs with polynomial stretch. Therefore, their degree is at least

the degree of the Boolean PRG they rely on. More so, for degree d = 2, PRG’s with

polynomial stretch cannot exist. To see this, observe that any Boolean function that has

a multilinear degree d, can depend on at most d · 2d−1 variables [NS92]. Thus, for d = 2

each output is a function of at most four variables. The work of [MST03] showed that any

PRG where each output bit depends on four variables cannot satisfy m ≥ 24n+ 1. Because

of this a construction of RE with degree 2 is unlikely to exist. In the past, to escape such

implausibility various models have been proposed. One such approach is discussed next.

Allowing Preprocessing. A natural suggestion to bypass this hurdle is to allow prepro-

cessing. Namely, we are asking for an algorithm PreProc that takes as input (x, r) and

outputs a preprocessing x̃, such that:

• Time to compute PreProc(x, r) is sublinear in the size of the circuit C,

• Given Encode(C, x̃) = Ĉ(x), one can decode C(x) in polynomial time,

• Ĉ(x) is simulatable knowing just C,C(x), and,
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• Encode(C, ·) is computable by degree d = 2 polynomials over x̃.

The reason for suggesting this is that with added relaxation one could possibly preprocess

x′ = (x, r) appropriately, it might be possible to reduce the degree of the computation. We

can also readily see that such a notion would be helpful because now one can first preprocess

x, r into x̃ and then encrypt FEsimple(x̃) to compute the encryptions. The sublinearity

property of the resulting scheme holds because the time to preprocess x, r is sublinear in

the size of the circuit C, and then in the known quadratic functional encryption scheme, the

time to encrypt a message is just linear in the length of the message x̃. Therefore, this will

result in a sublinear FE scheme.

However, the issue with this approach is that the first requirement proves to be really

difficult to match. Indeed, if there is no restriction the time of preprocessing, there is a

trivial way to preprocess: precompute all monomials in x, r of degree d/2. Such a model will

not be useful to us.

More formally, this notion has been studied in the special case of a Boolean PRG. The

works of [BBKK18, LV17], showed that popular variants of degree-2 preprocessing PRG’s

(Block-local PRG’s [LT17]) are implausible.

Fortunately, [AJS18, AJL+19, JLMS19, GJLS21, JLS21a] suggested a different prepro-

cessing model that bypasses this implausibility. In this work, we will consider this model.

We consider a very simple improvement to the function class of degree two computations -

handling constant degree public computations in addition to the degree two private compu-

tations. We first describe the properties of corresponding FEsimple, and then come back to

the model of preprcoessing for the randomized encoding scheme. This FEsimple is called as

a Partially Hiding Functional Encryption scheme, and can be constructed from well-studied

assumptions over Bilinear maps [JLMS19, Wee20, GJLS21]. The corresponding randomized

encoding which is the one of the main contribution of this work is called as a preprocessed

randomized encoding scheme PRE. We construct it from LPN and PRG in NC0 assumptions.
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Partially-Hiding FE. A PHFE scheme is a generalization of a functional encryption

scheme generalizing the class of functions slightly beyond quadratic functions while being

still constructible using bilinear maps. In particular, now the message could be of the form

(P, S) ∈ Zn
p × Zn

p where p is the order of bilinear map (think of it as a λ bit prime). The

functions that can be handled are of the form:

f(P, S) =
∑
j,k

fj,k(P) · Sj · Sk,

where each fj,k : Zn
p → Zp is a constant degree polynomial over Zp. The decryption produces

v = f(P, S) mod p as long as the value v when interpreted as an integer is bounded by

some polynomial in n in absolute value. This might seem as general as constant degree

polynomials but the main difference here is that P is just revealed in the clear and is not

required be hidden by the encryption. Thus a PHFE scheme allows encrypting plain-texts

that has two components: A public input P, and a private input S, and it supports key queries

for functions f that are constant degree polynomials over Zp with a restriction that their

degree in the private input S is bounded by two. This requirement of having degree two in

the secret component is what enables a construction from standard assumptions on bilinear

maps. To be useful to our goal, the scheme will also satisfy some efficiency requirements:

• It will support an arbitrary polynomial number of key queries,

• The size of the encryption circuit is of size Õ(n) where the input length is n,

These two properties are essential properties that enable the resulting functional encryption

scheme to satisfy the sublinearity property. We provide the formal definition of this primitive

in Section 2.4.

It was shown in [AJS18, LM18, AJL+19, JLMS19, GJLS21, Wee20] that such a scheme

can be constructed using well-studied assumptions on bilinear maps (in particular, [Wee20]

showed that it can be constructed using DLIN assumption over symmetric bilinear groups).

We recall this construction in Chapter 6. For the rest of the thesis and the section below,
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we call the function class supported by PHFE scheme as degree-(O(1), 2) polynomials over

Zp indicating its degree in the public and the secret input.

Preprocessed Randomized Encoding Once we have defined a PHFE scheme, the cor-

responding PRE scheme is straightforward to define.

• The PreProc algorithm on input x, r should output two vectors P, S over Zp in time

sublinear in the size of the circuit C,

• For any circuit C, Ĉ(x) = Encode(C, (P, S)) should be computable by degree (O(1), 2)

polynomials, and,

• P, Ĉ(x) should be computationally simulatable knowing C,C(x).

Our idea is therefore to observe that this modest looking change to the preprocessing

model (allowing for a public input in the preprocessing model) allows us to bypass the

implausibility arguments.

Looking ahead, we will take a degree d randomized encoding for any constant d > 0 and

somehow transfer the complexity to the public input P, so that the resulting computation

by degree (O(d), 2) polynomial. For this, we will additionally use LPN assumption.

2.2.1 How to Construct Preprocessed Randomized Encoding

Let us now discuss how to construct a preprocessed randomized encoding scheme, but before

we proceed further we want to discuss what such a PRE scheme imply:

Time succinctness vs size succinctness: A reader could ask what if we relax the re-

quirement of the running time to compute the preprocessed input (P, S) to be sublinear in

the size of C to requiring only its size be sublinear (where computing time can grow linearly

in the size of circuit C). Note that this is actually enough for us, but additionally relying on
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LWE: it was shown in [LPST16, GKP+13] that relying on LWE one can build randomized

encoding schemes for Turing machines where the time of encoding only grows with the size

of the output of the computation, rather than its running time. Thus one can simply encode

the computation PHFE.Enc(P, S) using the LWE based scheme and be done. In fact this was

done in the work [JLS21a].

More so, up until now, this is the only way we know how to convert output size succinct

computations into time succinct encodings. On the other hand, what we are after will also

imply such a notion generically using the same transformation [LPST16]. Since we do not

rely on LWE, this will actually give us a mechanism to do this task without LWE. Therefore,

in this work we go back to basics and tackle this question directly.

High-level approach for PRE: Our high level approach is to actually boost a sublinear

randomized encoding in NC0. We take such an RE scheme, where Encode is a degree d

computation for some constant d, and compile it to a PRE scheme where the encoding can

be computed by degree (O(d), 2) polynomials. Here is the approach:

• Since the public input P is supposed to hide x, r, we will set P as an encryption of x

using a special purpose homomorphic encryption scheme, and,

• We set S to contain the secret key of this homomorphic encryption and some other “pre-

processed information” about the encryption, so that PRE.Encode(C, (P, S)) follows the

following template: it first computes P̂C by performing ”homomorphic evaluation” on

P, where P̂C is an encryption of RE.Encode(C,x, r). We will ensure that this homomor-

phic evaluation is a degree d operation (since RE.Encode is degree d). Finally, using S

we can perform “decryption” of P̂C to derive RE.Encode(C,x, r), where this decryption

is a degree 1 polynomial in P̂C and degree two in S.

• We will ensure that P, S can be computed by a circuit of size sublinear in size of C.
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To make things simpler and modular, let us recall the necessary structure we of the RE

scheme we need for the rest of the overview. In an RE scheme, we can encode any input

x and circuit C as Encode(C,x, r) = y. The circuit C : {0, 1}n → {0, 1}∗ that the scheme

handles are of size m = n1+ϵ for some ϵ > 0. Further, the length of the encoding y is

ℓRE = O(m poly(λ)). Since each output bit of y is computable by an NC0 circuit, this means

that each output bit is computable by a linear combination of t = O(ℓRE) different monomials

of degree at most d that may potentially depend on the description of C. We now introduce

a new tool, which will assist us with converting such an RE scheme into a PRE scheme. This

new tool will only deal with evaluating polynomials.

New Tool: Preprocessed Polynomial Encoding. Thus to advance towards the goal,

we focus on the following simpler task of polynomial evaluation. Let us say that we have

degree at most d monomials denoted by sets Q1, . . . , QmPPE
for mPPE = n1+ϵ

PPE for some ϵ > 0

where each Qi is a set of size d and defines a monomial MonQi
(xPPE) = Πj∈Qi

xPPE,j. Such

monomials, for example, could be the monomials involved in the RE.Encode(C, ·) operation.

Is it possible for one to compute a preprocessing of an input xPPE ∈ {0, 1}nPPE in time

sublinear in mPPE, a preprocessing (P, S) such that each MonQi
(xPPE) can be computed by a

degree (O(d), 2) polynomial in (P, S). Further we would like to maintain that P hides xPPE

as before?

This notion is referred to as a preprocessed polynomial encoding scheme PPE. Clearly

such a notion seems useful here to bootstrap an RE scheme as an RE scheme also involves

computing t degree d monomials. However, note that even if we can realize such a notion,

we are still not done because in the RE scheme above the monomials Q1, . . . , QmPPE
used by

Encode(C, ·) can depend on C and doesn’t allow computing encodings for all circuits C. We

handle this later, by constructing an RE scheme where the monomial set does not depend

on C.
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Constructing Preprocessed Polynomial Encoding. Let us now go back the question

of constructing PPE (which is in turn useful to build PRE). As stated before, our approach

is to simply encrypt xPPE ∈ {0, 1}nPPE using a suitable homomorphic encryption scheme. We

actually encrypt it using LPN, thereby setting P as:

P = A,b = sA+ e+ xPPE mod p

where A← Zdim×nPPE
p , s← Z1×dim

p and the dimension dim is set to be nρ
PPE for some constant

ρ≪ ϵ. The errors e is chosen so that each coordinate is non-zero with probability dim−δ for

δ > 0 associated with the LPN assumption.

Observe that P can be computed in time Õ(nPPE · dim2) which is sublinear in mPPE as

dim≪ nϵ
PPE. Thus the remaining goal is to come up with S in time sublinear in the number

of monomials mPPE such that S can be used to evaluate MonQi
(xPPE) for all i ∈ [mPPE].

PPE: First Attempt. A first attempt is to set S = (s||1)⊗⌈ d2 ⌉. Note that this fine

time-wise because it can be done in time Õ(dim⌈
d
2
⌉) which is allowed. The reason of this

choice is because the following equation holds:

MonQi
(b−As) = MonQi

(xPPE + e).

Our main observations are the following: i) the above quantity can be computed by a

polynomial that is degree d in (A,b) and degree two in S = (s||1)⊗⌈ d2 ⌉ and, ii) since the error

e is sparse, and Qi depends on only a constant number d variables, and thus with probability

1−O(dim−δ), MonQi
(xPPE + e) = MonQi

(xPPE).

This is nice because the number of monomialsQi such thatMonQi
(xPPE+e) ̸= MonQi

(xPPE)

in expectation is O(mPPE · dim−δ) which is sublinear in mPPE! This suggests the natural

strategy: we will come up with another component S1 that is computable in sublinear time

such that it compresses the sparse correction vector Corr = {MonQi
(xPPE) −MonQi

(xPPE +

e)}i∈[mPPE]. The compression should be such that decompression should be possible using
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a quadratic polynomial in S1. To be precise we will make sure that for every i ∈ [mPPE],

gi(S1) = Corr[i] using a degree two polynomial gi. This can now be added withMonQi
(b−sA)

to get the required output. We will go over the details of this idea in a little while, but before

we do that we must point out an important issue with this approach.

Unfortunately, this approach will run into the following counting argument: The LPN

samples A, sA + e + xPPE losses information of about Ω(nPPE dim
−δ) entries of xPPE even

given s. Since the set of monomials Q = {Q1, . . . , QmPPE
} are arbitrary, the circuit computing

the preprocessing must at least store the description of Q in order to compute and compress

the monomials that need correction. This suggests that the size of the circuit preprcessing

must grow linearly with mPPE. This is not just a hurdle just for this particular strategy of

setting S, in fact, must apply to any strategy that sets P as (A,b). In order to get around

this hurdle, our main idea is to solve this using amortization.

Amortization. To get around the hurdle pointed above, we ask a somewhat simpler ques-

tion: the question is if we can “batch-preprocess” in sublinear time? To make it precise,

say we have kPPE input vectors x1 . . . ,xkPPE each of dimension nPPE, and we are interested

in learning linear combinations of {MonQi
(xj)}i∈[mPPE],j∈[kPPE] where Q = {Q1, . . . , QmPPE

} are

degree d monomials of interest. Then the question is, can we process {x1, . . . ,xkPPE} into

a public and a secret input (P, S) in time sublinear in mPPE · kPPE (which is the number

of monomials of interest), such that each MonQi
(xj) = gi,j(P, S) for some degree (O(d), 2)

polynomial gi,j?

The hope is that even if we can’t win when kPPE = 1, we may be able to win overall when

kPPE is large. What does sublinear in mPPE · kPPE mean? Precisely, it means that the time

to compute grows as TPPE = Õ(mPPE · k1−c1
PPE + (m1−c2

PPE + nPPE)k
c2
PPE). This is because when

mPPE = n1+ϵ
PPE, then we can choose kPPE = n

Ω(1)
PPE such that TPPE = Õ((mPPEkPPE)

1−γ) for some

constant γ > 0. This gives rise to two question:

• Can we construct PPE?
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• Is this amortization useful to construct PRE?

We answer the second question first.

Constructing PRE using (amortized) PPE. Recall that in order to construct PRE

scheme, we need a randomized encoding scheme that is compatible with our PPE scheme.

We observe that relying on decomposability properties of Yao’s garbling scheme [Yao86]

based on PRG’s in NC0, and inspired from prior work [Lin16, LV16, Lin17, AS17, LT17] we

can exactly construct such a scheme. We will call such a scheme an amortized randomized

encoding scheme or ARE. The basic idea behind this is the following. Consider the circuits

C : {0, 1}nARE → {0, 1}mAREkARE where every output bit is computable by a circuit of fixed

size say λ. We first observe that, constructing a PRE scheme for this class is also enough to

construct iO for all circuits. Therefore we will construct an ARE scheme for the same class.

Now consider our candidate ARE scheme where the encoding operation is defined as:

ARE.Encode(C,x, r1, . . . , rkARE) = Yao.Gb(C1,x, r1), . . . ,Yao.Gb(Ck′ ,x, rkARE),

where C1, . . . , CkARE are sub-circuits such that Ci computes ith block of outputs of circuit C of

size mARE and Yao.Gb expands r ∈ {0, 1}nARE using a PRG in NC0 and uses that randomness

to garble the circuit using the Yao’s garbling scheme. Observe that in this case, the output

length of each block Yao.Gb(Ci,x, ri) is Õ(nARE+mARE). Since the garbling is computed by an

NC0 circuit, the number of the monomials involved to compute Yao.Gb(Ci,x, ri) are Õ(nARE+

mARE). This almost solves the problem, except the monomials used to compute Yao.Gb(Ci, ·)

for each block depends on circuits Ci. We would like each block to be computable using same

set of monomials irrespective of the circuit Ci. We present a simple solution.

ARE.Encode(C,x, r1, . . . , rkARE) = Yao.Gb(U, (C1,x), r1), . . . ,Yao.Gb(U(CkARE ,x), rkARE),

where U is a universal circuit that takes as input Ci,x and outputs Ci(x). Universal

circuits for emulating such computations are known be of size Õ(nARE+mARE) [Val76]. This
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indeed gives rise to a set of tARE = Õ(nARE +mARE) monomials Q1, . . . , QtARE such that each

Yao.Gb(U, (Ci,x), ri) when seen as a polynomial is a linear combination of {MonQj
(x, ri)}j∈[tARE].

This is shown by closely inspecting the construction of garbled circuits. We show this in

Section 3.1.2.

Constructing PPE. Coming back to the construction of PPE, we now want to batch

preprocess x1, . . . ,xkPPE each in {0, 1}nPPE into a preprocessed input (P, S) such that we can

compute {MonQi
(xj)}i∈[mPPE],j∈[kPPE] using degree (O(d), 2) polynomials in (P, S). Further it

is requied that P hides x = (x1, . . . ,xkPPE) and the time to compute (P, S) is sublinear in

mPPE · kPPE. Our approach is same as before. We set:

P = {Aj,bj = sAj + ej + xj}j∈[kPPE],

where Aj ← ZnPPE×kPPE
p , s ← Z1×kPPE

p and ej ∈ ZkPPE
p where each coordinate is zero with

probability k−δPPE. Notice that the dimension is set to be kPPE. This is okay because kPPE is

polynomially related to nPPE.

Now we focus on how to compute S. Our high level strategy is to compute S =

(S0, S1, . . . , SmPPE
) where each Si for i ∈ [mPPE] compresses corrections for the computations

corresponding to set Qi: {MonQi
(xj)}j∈[kPPE]. We will show that each Si can be computed

in (amortized) time roughly Õ(k
1−Ω(1)
PPE ). Finally, we will set S0 as before to (1||s)⊗ d

2 . We

now describe how each Si is formed, and then describe the intuition why it can be computed

efficiently. This will complete the overview because P can be computed in time Õ(nPPEk
2
PPE)

and S0 in time Õ(k
d/2
PPE).

Computing Si. As a first step, we compute Corri as an array of size kPPE, where Corri[j] =

MonQi
(xj)−MonQi

(xj+ej) for j ∈ [kPPE]. Now observe that as before Corri is a sparse array

with O(k1−δ
PPE) non-zero elements with overwhelming probability. We exploit this, to compute

Si.
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We form t1 = k1−δ
PPE matrices {Mi,γ}γ∈[t1] of size T × T such that the parameters satisy

T 2 ·t1 = kPPE. We will then simply arrange Corri bijectively into kPPE spots inside t1 matrices.

To do so, let ϕ be an arbitrary bijective map that maps [kPPE] into these matrices. This can

be done by sampling ϕ = (ϕbkt, ϕind) where ϕbkt : [kPPE]→ [t1] assigns every element into the

corresponding matrix, and ϕind : [kPPE] → [T ] × [T ] gives the location in the corrsponding

matrix. Such a function can be arbitrarily chosen2.

Once we have such a function ϕ, one can set: Corri[j] = Mi,j1 [j2, j3] where ϕbkt(j) = j1

and ϕind(j) = (j2, j3). The point of doing this is that since the number non-zero entries in

Corri is O(t1), in expectation, each matrix Mi,γ has a constant number of non-zero elements.

Using concentration bounds, we can in fact show that with overwhelming probability in λ

each matrix has at most λ non-zero entries. Thus, its rank is less than or equal to λ and we

can compute Ui,γ,Vi,γ ∈ ZT×λ
p such that Mi,γ = Ui,γ ·V⊤i,γ. We set Si = {Ui,γ,Vi,γ}γ∈[t1].

Observe that the size Si is Õ(k1−δ
PPET ) = Õ(k

1− δ
2

PPE ) as T = k
δ
2
PPE, which is what we wanted. We

now check that for this setting of Si, we can compute each MonQi
(xj) using a degree (d, 2)

polynomial in P, S:

MonQi
(bj − sAj) +Ui,j1 ·V⊤i,j1 [j2, j3],

=MonQi
(bj − sAj) +Mi,j1 [j2, j3],

=MonQi
(xj + ej) + Corri[j],

=MonQi
(xj + ej) +MonQi

(xj)−MonQi
(xj + ej),

=MonQi
(xj),

where ϕ(j) = (j1, j2, j3).

2One such function ϕ can be computed by dividing j by t1 first and setting the remainder to ϕbkt(j) = j1.

Then the remainder of this division is further divided by T . The quotient and remainder of this division can

be set to ϕind(j) = (j2, j3).
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Computability of Si in sublinear time. Above, we showed that the size of Si is

Õ(k
1−δ/2
PPE ). However, this does not mean that it can be computed by a circuit of small size.

We now argue why S1, . . . , SmPPE
can actually be computed by a circuit of size Õ(nPPEk

2
PPE+

mPPEk
1−δ/2
PPE ). We break down the task of computing S1, . . . , SmPPE

in two steps.

1. Clearly, to compute each Si in amortized sublinear time in kPPE, we cannot afford to

compute the entire row Corri which has dimension kPPE. Instead, we compute the

list NZCorri of non-zero entries in Corri only, which has size O(k1−δ
PPE). More precisely,

NZCorri consists of tuples of the form

NZCorri = {(j, ϕ(j) = (j1, j2, j3), Corr[i, j]) | j ∈ [kPPE], Corri[j] ̸= 0} .

That is, it contains the index j of the non-zero entries in Corri, the matrix location

they are assigned to Mi,j1 [j2, j2], and the value of the error Corr[i, j]. Moreover, the

list is sorted in ascending order with respect to coordinate j1, so that tuples with the

same value j1 appear contiguously.

2. In the second step, we use these special lists {NZCorri} to compute Si.

Let’s see how to do each step in amortized sublinear time, starting with the easier second

step.

The second step: Given NZCorri, we can compute Si in time poly(λ)(k
1−δ/2
PPE ). This is done

by making a single pass on NZCorri and generating rows and columns of {Ui,γ,Vi,γ}γ∈[T “on

the fly”. We can start by initializing these matrices with zero entries. Then for the ℓ’th tuple

(j, ϕ(j) = (j1, j2, j3),Corr[i, j]) in NZCorri, we set Ui,j1 [j2, ℓ] = Corr[i, j] and Vi,j1 [j3, ℓ] = 1.

Since each matrix Mi,γ gets assigned at most λ non-zero entries, the index ℓ ranges from 1

up to λ, fitting the dimension of U’s, and V’s. Hence, this way of generating Ui,γ and Vi,γ

guarantees that Mi,γ = Ui,γV
⊤
i,γ.

The first step: Next, we first illustrate how to generate all lists {NZCorri}i∈[mPPE] in

sublinear time in mPPEkPPE, in the Random Access Memory (RAM) model. The first sub-
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step is collecting information related to all the non-zero elements in the LPN errors {ej}j∈[kPPE]

used to encrypt the inputs {xj}j∈[kPPE]. More precisely, for every coordinate l ∈ [n] in an

input, form the list

NZInpl = {(j, xj,l, ej,l) | ej,l ̸= 0}j∈[kPPE] .

That is, NZInpl contains the index j of each input xj, such that, the l’th element xj,l is

blinded by a non-zero error ej,l ̸= 0, as well as the values xj,l, ej,l of the input and error

elements. Tuples in this list are sorted in ascending order with respect to coordinate j. Note

that these lists can be computed in time O(nPPEkPPE).

Now, think of a database that contains all {NZInpl}l and inputs {xj}j, which can be

randomly accessed. The second sub-step makes a pass over all monomials Q1, . . . QmPPE
.

Each monomial Qi depends on at most d variables (out of nPPE variables), say Qi depends

on variables at coordinates {l1, . . . , ld}. For every monomial Qi, with random access to the

database, make a single pass on lists NZInpl1 , . . . ,NZInpld and generate NZCorri on the fly.

The fact that every list NZInpl is sorted according to j ensures that the time spent for each

Qi is O(k1−δ
PPE). Thus, in the RAM model {NZCorri}i can be constructed in sublinear time

O(mPPEk
1−δ
PPE). All we need to do now is coming up with a circuit to do the same.

Circuit Conversion: To obtain such a circuit, we examine each and every step inside the

above RAM program and then replace them by suitable (sub)circuits, while preserving the

overall running-time. Since the conversion is very technical, we refer the reader to Chapter 4

for details, and only highlight some of the tools used in the conversion. We make extensive

use of sorting circuits of almost linear size [AKS83] and Turing machine to circuit conversions.

For example, at some point we have to replace RAM memory lookups by circuits. To do

so, we prove the following simple lemma about RAM look up programs. A RAM lookup

program P lookup
q,N indexed with a number N ∈ N and a number q ∈ N is a program with the

following structure: It takes as input q indices {i1, . . . , iq} and a database DB ∈ {0, 1}N

and it outputs {DB[i1], . . . ,DB[iq]}. We show that this can be implemented efficiently by a

circuit:
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Lemma 2.2.1. Let q,N ∈ N. A RAM lookup program PRAM
q,N (that looks up q indices from

a database of size N) can be implemented by an efficiently uniformly generatable boolean

circuit of size O((q +N) poly(log2(q ·N))) for some polynomial poly.

Please see Section 4 for how we use the above lemma and other technical details.

2.2.1.1 Outline

This completes are technical overview. In the rest of the chapter, we formally define Func-

tional Encryption in Section 2.3. In Section 2.4 we define the notion of a Partially Hiding

Functional Encryption scheme. In Section 2.5 we define the notion of our PRE scheme. Fi-

nally in Section 2.6 we show how to construct a sublinear functional encryption and iO from

these two primitives. We discuss the constructions of PHFE and PRE in later chapters.

2.3 Functional Encryption Definition

We denote by FFE = {FFE,nFE,mFE,λ}nFE∈poly,mFE∈poly,λ∈N an abstract function class, which is

parameterized by security parameter λ ∈ N and polynomials nFE(·), mFE(·). This class

consists of all boolean circuits with nFE = nFE(λ) input bits, mFE = mFE(λ) output bits, and

where every output bit can be computed by a circuit of size λ. This is the class of circuit

for which we will construct a functional encryption.

We now define the syntax of the functional encryption scheme.

Definition 2.3.1. (Syntax of a FE Scheme.) A functional encryption scheme FE for the

function class FFE,nFE,mFE,λ consists of the following PPT algorithms:

• Setup(1λ, 1nFE , 1mFE): On input the security parameter λ, parameters nFE(λ) andmFE(λ),

it outputs a public key and a master secret key pair (PK,MSK).

• Enc(PK,x): Given as input the public key PK and a message x ∈ {0, 1}nFE(λ), it outputs
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a ciphertext CT.

• KeyGen(MSK, f): Given as input the master secret key MSK and a function f ∈

FFE,λ,nFE,mFE
, it outputs a functional decryption key SKf .

• Dec(SKf ,CT): Given a functional decryption key SKf and a ciphertext CT, it deter-

ministically outputs a value y in {0, 1}mFE(λ), or ⊥ if it fails.

Remark 2.3.1 (On secret-key schemes). One can also consider a secret key functional

encryption scheme, where the encryption algorithm must use MSK to encrypt a message.

Such FE schemes also imply iO [BNPW16, KNT18]. However since we directly build a

public key encryption scheme, we do not discuss about secret-key schemes in this thesis.

We now define the correctness of decryption property.

Definition 2.3.2. (Correctness.) An FE scheme FE for the functionality FFE,λ,nFE,mFE
is

correct if for any polynomials nFE,mFE : N → N any security parameter λ ∈ N, any x ∈

{0, 1}nFE(λ), and every function f ∈ FFE,nFE,mFE,λ we have:

Pr


(PK,MSK)← Setup(1λ, 1nFE(λ), 1mFE(λ))

CT← Enc(PK,x)

SKf ← KeyGen(SK, f)

Dec(SKf ,CT)) = f(x)

 = 1.

We now give the security definition for such a functional encryption scheme.

Definition 2.3.3 (IND security). We say an FE scheme FE for functionality FFE,λ,nFE(·),mFE(·)

is IND secure if for all stateful PPT adversaries A, there exists a negligible function negl

such that , we have:

AdvINDFE,A(λ) := 2 · |1/2− Pr[1← INDFE
A (1λ)]| < negl(λ),

where the experiment INDFE
A (1λ) is defined below.
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INDFE
A (1λ):

(1nFE , 1mFE)← A(1λ)

{xi ∈ {0, 1}nFE}i∈{0,1} , {fj ∈ FFE,λ,nFE,mFE
}j∈QSK

← A

(PK,MSK)← Setup(1λ, 1nFE , 1mFE), b← {0, 1}

CT← FE.Enc(PK,xb), ∀j ∈ [QSK] : SKj ← KeyGen(MSK, fj)

b′ ← A(PK,CT, {SKj}j∈QSK
)

Return 1 if b = b′ and ∀ j ∈ [QSK], fj(x0) = fj(x1), 0 otherwise.

Further, we say that FE satisfies subexponential security if negl(λ) = 2−λ
Ω(1)

.

Remark 2.3.2 (On number of key queries). For this work we concern with the case when

the number of function key queries QSK = 1. This is because, as shown in [AJ15, BV15], such

an FE scheme, additionally satisfying sublinear encryption time implies iO under subexpo-

nential security loss. Under polynomial security loss, such an FE scheme also implies an FE

scheme where QSK is arbitrary polynomial. This was shown in the works of [GS16, LM16].

We finally describe the property of sublinear encryption time. This property will be

referred to as “sublinearity”.

Definition 2.3.4 (Sublinearity). Let FE be an FE scheme for the functionality FFE,λ,nFE,mFE
.

We say that FE satisfies sublinear encryption time property (or simply sublinearity), if there

exists a constant ϵ ∈ (0, 1) and a polynomial poly such that for any polynomials nFE,mFE

and any security parameter λ, all PK in the support of Setup(1λ, nFE(λ),mFE) the size of the

circuit computing FE.Enc(PK, ·) is O((nFE +m1−ϵ
FE ) poly(λ)).

Remark 2.3.3 (Sublinear Functional Encryption for Polynomial Sized Circuits). We could

have defined the above notion for a circuit class FP,λ,nFE,mFE
consisting of all circuits with input

length nFE(λ) and size mFE(λ) (as opposed to the number of outputs) without having any

restriction about the size of the circuit computing each output bit. A functional encryption

scheme for this class will be referred to as a functional encryption scheme for all circuits.
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The notion of sublinearity is then defined by requiring the size of the encryption circuit to be

O((nFE+m1−ϵ
FE ) poly(λ)) for some ϵ > 0. It was shown in [AJS15] that using a straightforward

application of decomposable Randomized Encoding (such as Yao’s garbled circuits [Yao86]),

any sublinear functional encryption scheme for FFE,λ,nFE,mFE
can be converted to a sublinear

functional encryption for all circuits. We choose to work with the class FFE,λ,nFE,mFE
because

this class is better compatible with the notion of PRE.

2.3.1 Bootstrapping Theorems for Functional Encryption to iO

In this section, we briefly survey theorems from the literature that prove that a sublinear

functional encryption implies iO. We rely on these results for a construction of an iO scheme.

The first result in this line showed:

Theorem 2.3.1 ([AJ15, BV15]). If there exists a subexponentially secure public key sublinear

functional encryption for all polynomial size circuits, then there exists an indistinguishability

obfuscation scheme.

Further, the result above is constructive and gives an actual construction of iO starting

from such a functional encryption scheme. Building upon these works, there have been

several other results (such as [BNPW16, KNT18]) studying equivalence from various other

kinds of functional encryption such as secret key functional encryption to iO. We construct

a public key sublinear functional encryption scheme for FFE,nFE(λ),mFE(λ),λ, where nFE and mFE

are arbitrary polynomials, which consists of all circuits with nFE(λ) input bits and mFE(λ)

output bits where every output bit is computed by a circuit of size λ. It was shown in [AJS15]

that, a sublinear functional encryption for this class implies sublinear functional encryption

for circuits. Namely:

Theorem 2.3.2 ([AJS15]). Assuming there exists a public key sublinear functional encryp-

tion for {FFE,nFE,n
1+ϵ
FE ,λ}nFE∈poly,λ∈N for some constant ϵ > 0, there exists a public key sublinear

functional encryption scheme for all circuits.
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Thus, from the results above we get:

Theorem 2.3.3 ([AJ15, BV15, AJS15]). If there exists a constant ϵ > 0 such that there exists

a subexponentially secure public key sublinear functional encryption for FFE = {FFE,λ,nFE,mFE=n1+ϵ
FE
},

then there exists an indistinguishability obfuscation scheme for all circuits.

2.4 Ingredient 1: Partially Hiding Functional Encryption

We now give the formal definition of a PHFE scheme. In a nutshell, syntactically, it is a

generalization of a functional encryption. As the name suggests a PHFE scheme has the

ability to hide the input “partially”. The input has two components. A public input P

and a secret input S. Any decryptor that has a function key for a function f , can learn P

along with the value f(P, S). Therefore a PHFE scheme for general circuits also implies a

functional encryption scheme for circuits by simply setting P to ⊥. We consider PHFE for

the following function class:

Function class FPHFE: The function class FPHFE = {FPHFE,d,p,nPHFE
}d∈N, p∈PRIMES,nPHFE∈N is

indexed by a degree d ∈ N, a modulus p which is a prime, and a parameter nPHFE ∈ N. The

class consists of all polynomials f that takes as input two vectors P, S ∈ ZnPHFE
p and has the

following form:

f(P, S) =
∑
j,k

fj,k(P) · Sj · Sk mod p,

where every fj,k(P) is at most degree d polynomial over Zp.

Definition 2.4.1. (Syntax of a PHFE Scheme.) A public key partially hiding functional

encryption scheme, PHFE, for the functionality FPHFE consists of the following polynomial

time algorithms:

• PPGen(1λ) : The public parameter generation algorithm is a randomized algorithm that
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takes as input a security parameter λ and outputs a string PP = (crs, p) which consists

of a modulus p.

• Setup(d, 1nPHFE ,PP): The setup algorithm is a randomized algorithm that takes as input

a degree d ∈ N, length parameter nPHFE, and the public parameter PP = (crs, p). These

parameters define the function class for PHFE, FPHFE,d,p,nPHFE
. It outputs a public key

PK and a master secret key MSK.

• Enc(PK, (P, S) ∈ ZnPHFE
p ×ZnPHFE

p ): The encryption algorithm is a randomized algorithm

that takes in the public key PK and a message (P, S) and returns the ciphertext CT. P

is considered as the public input and S as the secret input. CT is implicitly assumed to

have P in the clear.

• KeyGen(MSK, f ∈ FPHFE,d,p,nPHFE
): The key generation algorithm is a randomized al-

gorithms that takes as input a degree (d, 2)-polynomial f ∈ FPHFE,d,p,nPHFE
over Zp and

returns SKf , a decryption key for f .

• Dec(SKf ,CT): The decryption algorithm is a deterministic algorithm that returns a

value out, which is either ⊥ or an integer.

Definition 2.4.2. (Correctness.) A PHFE scheme PHFE for the functionality FPHFE is

correct if for any d ∈ N, and polynomial nPHFE, any security parameter λ ∈ N, any (crs, p)←

PPGen(1λ), any (P, S) ∈ ZnPHFE
p × ZnPHFE

p , and every function f ∈ FPHFE,d,p,nPHFE
such that

f(P, S) ∈ {0, 1} we have:

Pr


(PK,MSK)← Setup(d, 1nPHFE ,PP)

CT← Enc(PK, (P, S))

SKf ← KeyGen(SK, f)

Dec(SKf ,CT)) = f(P, S)

 = 1.

Observe that the correctness of decryption is only guaranteed to hold if the value f(P, S)

is in {0, 1}.
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Definition 2.4.3 (Linear Efficiency). We say that PHFE satisfies linear efficiency if the

following holds. Let d > 0 be any constant integer. Then, there exists a polynomial poly

such that: For any polynomial nPHFE(·) and any parameter λ ∈ N, for any PPGen(1λ) →

(crs,PP) and Setup(d, 1nPHFE(λ),PP) → (PK,MSK), the size of the circuit Enc(PK, (·, ·)) is

O(nPHFE(λ) · poly(λ)).

We now discuss the security requirement. Very roughly we want that the ciphertext

should reveal only the public input P along with the outputs fj(P, S) for every queried

function fj. This is accomplished by requiring that an encryption of (P, S) and keys for

functions {fj}j∈QSK
can be simulated knowing only P along with fj(P, S) for all j ∈ QSK.

Definition 2.4.4 (Simulation security). A public-key partially hiding functional encryption

scheme PHFE for functionality FPHFE is (selective) SIM secure, if for every constant integer

d > 0 and every polynomial nPHFE : N → N and QSK : N → N, with probability 1 −

negl(λ) over the choice of PPGen(1λ) → PP = (crs, p), any message (P, S) ∈ ZnPHFE(λ)
p ×

ZnPHFE(λ)
p and any choices of functions {fj}j∈QSK

in FPHFE,d,p,nPHFE
, the following distributions

are computationally indistinguishable by any ppt algorithm with an advantage bounded by

negl2 for some negligible.
(
PP, PK, CT, {SKj}j∈[QSK]

) ∣∣∣∣∣
(PK,MSK)← Setup(d, 1nPHFE ,PP)

CT← Enc(PK, (P, S))

∀j ∈ [QSK], SKj ← KeyGen(MSK, fj)


(
PP, P̃K, C̃T, {S̃Kj}j∈[QSK]

) ∣∣∣∣∣
(P̃K, M̃SK)← S̃etup(d, 1nPHFE ,PP)

C̃T← Ẽnc(M̃SK,P)

∀j ∈ [QSK], S̃Kj ← K̃eyGen(M̃SK, fj, fj(P, S))


Where S̃etup, Ẽnc, K̃eyGen are additional polynomial time algorithms provided by the scheme.

Further the scheme is said to be subexponentially SIM secure if negl1 and negl2 are O(exp(−λΩ(1))).
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2.5 Ingredient 2: Preproceseed Randomized Encoding

In this section, we define a Preprocessed Randomized Encoding scheme. We define and build

it for the following function class:

Function Class: The function class FPRE = {FPRE,nPRE,mPRE,kPRE,λ}nPRE,mPRE,kPRE∈Poly,λ∈N is

indexed with three polynomials nPRE,mPRE, kPRE : N→ N and a parameter λ ∈ N. We define

this function class to be exactly FFE,nPRE,mPRE·kPRE,λ, consisting of all circuits with nPRE(λ) input

bits and mPRE(λ) · kPRE(λ) output bits where every output bit is computed by a circuit of

size λ.

Definition 2.5.1 (Syntax of Preprocessed Randomized Encoding). A preprocessed random-

ized encoding scheme PRE for the function class FPRE contains the following polynomial time

algorithms:

• PRE.PreProc(1λ, 1nPRE , 1mPRE , 1kPRE , p,x ∈ {0, 1}nPRE) → (PI, SI). The preprocessing al-

gorithm takes as inputs the security parameter λ, input length 1nPRE, output block length

1mPRE, number of output blocks parameter 1kPRE a prime p and an input x ∈ {0, 1}n.

It outputs preprocessed input (PI, SI) ∈ ZℓPRE
p , where PI is the public part and SI is the

private part of the input.

• PRE.Encode(C, (PI, SI)) = y. The encoding algorithm takes inputs a circuit C ∈

FPRE,nPRE,mPRE,kPRE,λ, and preprocessed input (PI, SI). It outputs a binary encoding y.

• PRE.Decode(y) = out. The decoding algorithm takes as input an encoding y and

outputs a binary output out.

Remark 2.5.1. Note that we could have defined the primitive without a parameter kPRE

by considering circuits with output length mPRE as described in the high-level overview

earlier. This is only done because this notation will align well with rest of the primitives

that we use and build in this thesis. Instead of requiring the size of the circuit computing
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the preprocessing to be proportional to mPRE
1−ϵ for some constant ϵ > 0, we will require it to

be proportional to mPRE · kPRE1−ϵ. By setting kPRE to be sufficiently large function of mPRE,

this will ensure the size of the circuit computing the preprocessing is sublinear in mPRE ·kPRE

In this thesis, we care about constructions where for the function class above, nPRE,mPRE

and kPRE are all polynomially related with λ, that is, of maginitude λΘ(1). Further, the

output block length is super-linear in the input length, that is, mPRE = nPRE
1+ϵ for some

constant ϵ > 0.

Correctness and Security Requirements

Definition 2.5.2 (Correctness). We say that PRE is correct if the following holds: For every

λ ∈ N, nPRE,mPRE, kPRE = Θ(λΘ(1)), p a prime, x ∈ {0, 1}nPRE, and C ∈ FPRE,nPRE,mPRE,kPRE,λ.

Pr[Decode(Encode(C,PreProc(1λ, 1nPRE , 1mPRE , 1kPRE , p,x))) = C(x)] ≥ 1− exp(−λΩ(1)).

Definition 2.5.3 (Indistinguishability Security). We say that PRE scheme is secure if the

following holds: Let β, c1, c2, c3 > 0 be arbitrary constants, and p : N → N be any function

that takes as input any integer r and outputs a rβ bit prime and nPRE(r) = rc1, mPRE(r) = rc2

and kPRE = rc3 be three polynomials. Let {C,x0,x1}λ∈N be any ensemble where x0,x1 ∈

{0, 1}nPRE(λ) and C ∈ FPRE,nPRE(λ),mPRE(λ),kPRE(λ),λ with y = C(x0) = C(x1). Then it holds that

for any λ ∈ N, and letting p = p(λ), nPRE = nPRE(λ), mPRE = mPRE(λ) and kPRE = kPRE(λ)

it holds that the following distributions are computationally indistinguishable

{
(PI,y) | (PI, SI)← PRE.PreProc(1λ, 1nPRE , 1mPRE , 1kPRE , p,x0), y← PRE.Encode(C,PI, SI)

}
{
(PI,y) | (PI, SI)← PRE.PreProc(1λ, 1nPRE , 1mPRE , 1kPRE , p,x1), y← PRE.Encode(C,PI, SI)

}
Further, we say that PRE is subexponentially secure the above distributions are subexponen-

tially indistinguishable.
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The Efficiency and Complexity Requirements

Definition 2.5.4 (Sublinear Efficiency of PRE). We require that there exists a polynomial

poly and constants c1, c2, c3 > 0 such that for every polynomials nPRE,mPRE and kPRE and

every security parameter λ ∈ N, every prime p, the (randomized) circuit D(·) that on input

x ∈ {0, 1}nPRE computes PRE.PreProc(1λ, 1nPRE , 1mPRE , 1kPRE , p,x) has size bounded by ((nPRE+

mPRE
1−c1)kPRE

c2 +mPREkPRE
1−c3) poly(λ, log p).

In particular, this implies that when mPRE = mPRE(λ) = Θ(λΘ(1)), nPRE = O(mPRE
1−ϵ)

for some constant ϵ ∈ (0, 1), then, there exists some constant c > 0, γ(c1, c2, c3, c) > 0 such

that when kPRE = nPRE
c, then the size of D is bounded by (mPRE · kPRE)1−γ · poly(λ, log p)).

Definition 2.5.5 (Complexity of Encoding). We require that for every polynomials nPRE,mPRE, kPRE,

every security parameter λ ∈ N, every C ∈ FPRE,nPRE,mPRE,kPRE,λ, and every prime p, there ex-

ists a polynomial mapping f satisfying the following:

• For every input x ∈ {0, 1}nPRE, and every (PI, SI)← PreProc(1λ, 1nPRE , 1mPRE , 1kPRE , p, x),

f(PI, SI) mod p = PRE.Encode(C, (PI, SI)) .

• There is a universal constant d ∈ N independent of all parameters, s.t., f has degree d

in PI and degree 2 in SI.

• f can be uniformly and efficiently generated from λ, nPRE,mPRE, kPRE, p, C.

2.6 Bootstrapping to Functional Encryption

In this section, we show how construct a public-key IND-secure sublinear functional encryp-

tion scheme FE for the function class FFE,nFE,mFE,λ where mFE = n1+ϵ
FE for some constant ϵ > 0

(described later) and nFE = λΩ(1) is an arbitrary polynomial in the security parameter. This

class consists of all circuits with nFE input bits, mFE output bits, where each output bit is

computed by a circuit of size λ.
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Ingredients: We make use of two ingredients:

1. A PRE scheme. Let d > 0 be the constant degree associated with the scheme. Let

ϵ′ > 0 be an arbitrary constant. We set:

• nPRE = nFE,

• mPRE = nPRE
1+ϵ′ ,

• kPRE = nPRE
c = nc

FE where c, γ > 0 are constants such that the size of the encoding

circuit is bounded by (mPREkPRE)
1−γ poly(λ, log2 p). Set mFE = mPRE · kPRE =

n1+ϵ′+c
FE . Thus, ϵ = ϵ′ + c,

2. A PHFE scheme:

• That supports degree (d, 2)-polynomials,

• Set nPHFE = ℓPRE where ℓPRE is the length of PRE encoding. Observe that due to

sublinear efficiency of PRE, ℓPRE = O((mPRE · kPRE)1−γ poly(λ, log2 p)) .

We now describe our construction in Figure 2.1:

We now argue various properties associated with the scheme.

Parameters. Observe how the parameters for PHFE and PRE schemes are chosen. The

prime p is sampled by PHFE.PPGen on input the security parameter 1λ. It is a poly(λ) bit

prime modulus. We set PRE parameters so that it can evaluate circuits in FFE,nFE,mFE,λ where

mFE = n1+ϵ
FE while ensuring that the circuit running the preprocessing algorithm is sublinear

in mFE. This means that nPRE = nFE and mFE = mPRE ·kPRE. The degree of the PHFE scheme

is set to be d where PRE.Encode is computable by degree (d, 2)-polynomials. The parameter

nPHFE is set to be equal to ℓPRE, which is the length of the preprocessing computed by PRE.
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The FE scheme

Parameter Generation FE.Setup(1λ, 1nFE , 1mFE): Run the following steps:

• PHFE.PPGen(1λ)→ PHFE.PP = (crs, p),

• Run PHFE.Setup(d, 1nPHFE ,PP)→ (PHFE.PK,PHFE.MSK),

• Output PK = (PHFE.PK, crs, p) and MSK = PHFE.MSK.

Encrypt FE.Enc(PK,x ∈ {0, 1}nFE): Run the following steps:

• Parse PK = (PHFE.PK, crs, p).

• Preprocess x using the PRE scheme, PRE.PreProc(1λ, 1nPRE , 1mPRE , 1kPRE , p,x) →

(PI,SI).

• Encrypt PHFE.Enc(PHFE.PK, (PI,SI))→ CT. Output CT.

Keygen FE.KeyGen(MSK, C): Run the following steps:

• Let f1, . . . , fT be degree (d, 2) polynomials that compute PRE.Encode(C, (·, ·)).

• Compute PHFE.KeyGen(PHFE.MSK, fi)→ SKi for i ∈ [T ].

• Output SKC = (SK1, . . . ,SKT ).

Decrypt FE.Dec(SKC ,CT): Run the following steps:

• Parse SKC = (SK1, . . . ,SKT ). For every i ∈ [T ], compute PHFE.Dec(SKi,CT) = yi.

• Let y = (y1, . . . , yT ) and output PRE.Dec(y).

Figure 2.1: Description of the FE scheme
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Correctness. Correctness follows from the correctness of PHFE and PRE scheme. The

encryption algorithm encrypting x produces PHFE.Enc(PHFE.PK, (PI, SI)) where (PI, SI) is

a preprocessing of input x using the PRE scheme. The key for a circuit C, SKC consists of

{SKi}i∈[T ], where each SKi is a PHFE key for the degree (d, 2)-polynomial fi that computes

the ith bit yi of Encode(C, (PI, SI)). Therefore, during the decryption one produces y =

Encode(C, (PI, SI)). Finally, the decryption outputs PRE.Decode(y), which is equal to C(x)

if the PRE scheme is correct.

Sublinearity. We now bound the size of the circuit computing the encryption of an input

x ∈ {0, 1}nFE . The size of the circuit is:

sizePRE + sizePHFE,

where sizePRE is the size of the circuit computing (PI, SI), and sizePHFE is the size of the circuit

encrypting (PI, SI). Observe that due to sublinear efficiency of PRE:

sizePRE ≤ (mPRE · kPRE)1−γ poly1(λ, log2 p)

= O((mPRE · kPRE)1−γ poly2(λ))

for some other polynomial poly2 since the bit length of p is a polynomial in λ. Also observe

that due to linear efficiency of PHFE:

sizePHFE ≤ ℓPRE · poly3(λ, log2 p)

= O(ℓPRE · poly4(λ))

for some other polynomial poly4 since the bit length of p is a polynomial in λ. Since ℓPRE =

O(sizePRE) it holds that:

sizePRE + sizePHFE = O((mPRE · kPRE)1−γ · poly5(λ)).

Finally, since mFE = mPRE · kPRE, we have:

sizePRE + sizePHFE = O(m1−γ
FE · poly5(λ)).

This concludes the proof.
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Security. We now prove security. Infuitively the security holds due to the security of the

underlying PHFE scheme and the security of the PRE scheme. The simulation security of the

PHFE ensures that the adversary only learns the encoding y along with the public input PI.

Finally, the security of the PRE scheme ensures that (PI, y) is indistinguishable in the case

when x0 is encrypted versus the case when x1 is encrypted where C(x0) = C(x1). To prove

this formally, we list three hybrids, where the first hybrid is an encryption of xb for a random

bit b← {0, 1} and the final hybrid is independent of b. Then, we argue indistinguishability

between them. If PRE and PHFE are both subexponentially secure then so is the constructed

FE.

Hybrid0: Let C be the circuit query and x0,x1 ∈ {0, 1}nFE be the two challenge messages

such that C(x0) = C(x1). Generate (PI, SI) using PRE.PreProc algorithm, while preprocess-

ing xb for a randomly chosen bit b ← {0, 1}. Generate CT = PHFE.Enc(PHFE.PK, (PI, SI)).

For the keys, compute {SKi ← PHFE.KeyGen(PHFE.MSK, fi)}i∈[T ]. Give to the adversary

(PK, SKC = (SK1, . . . , SKT ),CT).

Hybrid1: In this hybrid, invoke the simulator of the PHFE scheme. Simulate the public

key, the secret keys and the ciphertext. Note that this can be done by knowing PI (gener-

ated as in the previous hybrid) along with y = PRE.Encode(C, (PI, SI)).

Observe that Hybrid0 is indistinguishable to Hybrid1 due to the security of the PHFE

scheme. The only difference between the two hybrids is how (PHFE.PK,CT, SK1, . . . , SKT )

is generated. In Hybrid0 they are generated using the honest algorithms, where as in

Hybrid1, they are simulated using
{
PI, {fi, yi = fi(PI, SI)}i∈[T ]

}
.

Hybrid2: In this hybrid, generate (PI,y) by first computing (PI, SI) to preprocess x0, and

then computing y = PRE.Encode(C, (PI, SI)). This hybrid is independent of b. Hybrid1 is

indistinguishable to Hybrid2 due to the security of the PRE scheme. The only difference

between these hybrids is how (PI,y) are generated. In Hybrid1, they are generated by using

52



xb, where as in Hybrid2 they are generated using x0. Note that C(xb) = C(x0), and thus

the indistinguishability follows from the security of the PRE scheme.

This proves the following result:

Lemma 2.6.1. Assuming the existence of a PHFE scheme as in Definition 2.4.1 and a

PRE scheme as in Definition 2.5.1, there exists a sublinear FE scheme for FFE,λ,nFE,n
1+ϵ
FE

for

some constant ϵ > 0. If the underlying primitives are subexponentially secure then so is the

resulting FE scheme.

Using Thereom 2.3.3 and the lemma above we have the following Lemma:

Lemma 2.6.2. Assuming the existence of a PHFE scheme as in Definition 2.4.1 and a PRE

scheme as in Definition 2.5.1, there exists a sublinear FE scheme for FFE,λ,nFE,n
1+ϵ
FE

for some

constant ϵ > 0. If the underlying primitives are subexponentially secure then there exists a

secure indistinguishability obfuscation for all circuits.

In Theorem 6.2.2, it is shown that PHFE can be constructed using DLIN assumption

over prime order symmetric bilinear groups (Definition 6.1.2). In Theorem 3.1.2, it is shown

that a PRE scheme can be constructed assuming PRG in NC0 (Definition 5.2.1) and δ-LPN

assumption for any constant δ > 0 (Definition 4.1.1). As a consequence, we have the following

Theorem:

Theorem 2.6.1. If there exists constants δ, τ > 0 such that:

• δ-LPN assumption holds (Definition 4.1.1),

• There exists a PRG in NC0 with a stretch of n1+τ where n is length of the input (Defi-

nition 5.2.1),

• The DLIN assumption over prime order symmetric bilinear groups (Definition 6.1.2)

holds.
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Then, there exists a sublinear functional encryption scheme for FFE,λ,nFE,n
1+ϵ
FE

for some con-

stant ϵ > 0. Further if the underlying assumptions are subexponentially secure, then there

exists a secure indistinguishability obfuscation for all circuits.

2.7 Outline

The outline of rest of the sections can be summarized in Figure 2.2. In Chapter 6, we show

the construction of the PHFE scheme assuming the DLIN assumption. In order to build a

PRE scheme, we introduce two abstractions to achieve a modular presentation with respect to

where exactly our assumptions are used. Our first abstraction is a Preprocessed Polynomial

Encoding scheme (PPE) and our second abstraction is an Amortized Randomized Encoding

scheme (ARE). In Chapter 3, we motivate and formally define an ARE and a PPE scheme

and construct our PRE scheme from these two abstractions. In Chapter 4 we construct our

PPE scheme relying on the LPN assumption. Finally, in Chapter 5 we construct our ARE

scheme relying on the PRG in NC0 assumption. This concludes our overall outline.
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Figure 2.2: Flowchart depicting the technical outline.
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CHAPTER 3

Preprocessed Randomized Encoding

In this chapter we discuss how to construct a Preprocessed Randomized Encoding scheme

PRE. We will describe (at an intuition level) two building blocks that will suffice to build

a PRE scheme and show how exactly this transformation works. In future chapters we will

describe in formal details how to construct those two building blocks.

3.1 Technical Outline: Preprocessed Randomized Encoding

Recall the goal of a PRE scheme. In a PRE scheme we care about the following function

class FPRE = FPRE,nPRE,mPRE,kPRE,λ which consists of all circuits C with nPRE inputs, mPRE ·kPRE

output bits where the size of circuit computing each output bit is λ. It satisfies the following

syntactical and structural requirements:

1. PRE.PreProc(x, p) : The preprocessing algorithm takes as input x ∈ {0, 1}nPRE and it

outputs two vectors (PI, SI) over ZℓPRE
p . The size of the circuit computing this should

be Õ((nPRE +mPRE
1−c1)kPRE

c2 +mPREkPRE
1−c3) where Õ hides polynomial factors in λ

and log2 p and c1, c2, c3 > 0 are constants.

2. PRE.Encode(C, (PI, SI)) : The encoding algorithm takes as input (PI, SI) and a circuit

C in the function class FPRE. It outputs a string y ∈ {0, 1}TPRE . Further, each output

bit yi is computable by an efficiently computable degree (d, 2)-polynomial in (PI, SI)

over Zp.
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3. PRE.Decode(y) : The decoding algorithm takes as input a string y, and it outputs

C(x).

4. For any x0,x1 such that C(x0) = C(x1), it holds that (PI0,y0) is computationally

indistinguishable to (PI1,y1) where for b ∈ {0, 1}, PIb and yb is computed by using

input xb.

As described before, the requirements of PRE are extremely similar to a randomized

encoding in NC0 scheme. The main difference is that PRE has the following additional

relaxations:

• (Preprocessing model and a public input): It is allowed to preprocess the input x into

an efficiently computable preprocessing (PI, SI) which now has an additional public

component PI along with the secret component SI. Here, PI should computationally

hide x, and,

• (Complexity transferred to the public component): For any circuit C, the degree of the

polynomial computing the encoding y over SI is now just two, whereas its degree over

PI could be an arbitrary constant.

As a result of this connection with an RE scheme we take the following approach: we

devise a “secure polynomial evaluation mechanism” which we call a Preprocessed Polynomial

Encoding PPE. This mechanism takes as input an RE scheme in NC0 which is computable by

degree d polynomials (and more generally, description of some wide family of constant degree

d polynomials FPPE). It compiles any input x ∈ {0, 1}nPPE and preprocesses it efficiently using

a sublinear sized circuit into two vectors (P, S) over Zp such that: i) P computationally hides

information about x; ii) For any f ∈ FPPE, there exists a degree (d, 2)-polynomial gf such

that gf (P, S) = f(x).

Thus, in order to build a PRE scheme we first build a PPE scheme for a large class of

polynomials FPPE and then build a randomized encoding scheme RE where the encoding
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functions are computable in FPPE. It turns out that an arbitrary randomized encoding in

NC0 does not work for us, but a simple adaption of Yao’s garbled circuits [Yao86] does. We

call such a randomized encoding scheme an amortized randomized encoding scheme. We

formalize the notion of PPE along with the exact function class FPPE in Section 3.1.1 and

amortized randomized encoding in Section 3.1.2. In Section 3.1.3 we describe how to use

both these objects to construct a PRE scheme. To build a PPE scheme, we require the LPN

assumption over Zp, and in order to build an amortized RE scheme, we will use PRGs in NC0.

Thus, a PRE can be built using these two assumptions. We show formally how to construct

PPE in Chapter 4 and an amortized RE in Chapter 5.

3.1.1 Preprocessed Polynomial Encoding

In this section, we formally define a PPE scheme. Before we formally define the notion we

introduce the function class FPPE. We first define the notion of a degree d monomial pattern

Q over n variables which is just a collection of monomials of degree at most d.

Definition 3.1.1 (d-monomial pattern and monomials). For an integer d > 0, and an integer

n > d ∈ N, we say Q is a d-monomial pattern over n variables, if Q = {Q1, . . . , Qm}, where

for every i ∈ [m], we have that 0 < |Qi| ≤ d, and each Qi is a distinct subset of [n]. For

any input x ∈ {0, 1}n and a set Q ⊆ [n], define MonQ(x) =
∏

i∈Q xi to be the monomial in x

corresponding to the set Q. Thus, for any input x, a d-monomial pattern Q = {Q1, . . . , Qm}

over n variables defines m monomials of degree at most d.

We denote by Γd,n the set of all d-monomial patterns over n variables.

Definition 3.1.2 (Polynomial Class FPPE). For a constant d ∈ N, the family of classes of

polynomials FPPE,d = {FPPE,d,nPPE,Q,kPPE}d≤nPPE∈N,Q∈Γd,nPPE
,kPPE∈[N] consists of polynomials f ∈

FPPE,d,nPPE,Q,kPPE of the following kind: f is defined by a sequence of integers (ζ
(j)
i )j∈[kPPE],i∈[mPPE].

It takes as input x consisting of kPPE blocks x = (x(1), . . . ,x(kPPE)) each of nPPE variables,
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and has form:

f(x) :=
∑

j∈[kPPE], Qi∈Q

ζ
(j)
i MonQi

(x(j)),

where Q is a d-monomial pattern with |Q| = mPPE.

In a nutshell, FPPE consists of polynomials that take as input a kPPE blocks of inputs of

size nPPE, and computes all polynomials that are linear combination of some fixed constant

degree d monomials on those inputs governed by a set Q. Looking ahead, for the PPE scheme

we will require that the size of the circuit computing (P, S) will be sublinear in |Q| · kPPE.

Definition 3.1.3 (Syntax of PPE). For any constant d > 0, a PPE scheme for function

class FPPE,d consists of the following p.p.t. algorithms:

• (P, S)← PreProc(1nPPE , 1kPPE , p, Q,x ∈ ZnPPE·kPPE
p ) : The randomized Pre-processing al-

gorithm takes as input the block length parameter nPPE, the number of blocks parameter

kPPE, a prime p, a d-monomial pattern on nPPE variables Q of size mPPE, and an input

x ∈ ZnPPE·kPPE
p . It processes it to output two strings, a public string P and a private string

S. Both these strings are vectors over Zp. We denote by ℓPPE = ℓPPE(nPPE,mPPE, kPPE)

the combined dimension of (P, S) over Zp.

• y ← Eval(f ∈ FPPE,d,nPPE,Q,kPPE , (P, S)) : The deterministic evaluation algorithm takes

as input the description of a function f ∈ Fd,nPPE,Q,kPPE and a pre-processed input (P, S).

It outputs y ∈ Zp.

The correctness requirement is completely straightforward namely y should be equal to

f(x) with high probability.

Definition 3.1.4 ((Statistical) Correctness of PPE). Let d > 0 be a constant integer, a PPE

scheme for the function class Fd,PPE satisfies correctness if: For every kPPE ∈ N, nPPE =

kΘ(1), and Q ∈ Γd,nPPE
with mPPE ≥ 1 sets, any function f ∈ Fd,PPE,nPPE,Q,kPPE, any prime p
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and any input x ∈ ZnPPE·kPPE
p :

Pr
[
Eval(f, (P, S)) = f(x) mod p (P, S)← PreProc(1nPPE , 1kPPE , p,Q,x)]

]
≥ 1−O(exp(−kPPEΩ(1)))

Note that we require correctness to hold when kPPE is large enough, we will also require

the security to hold for large values of kPPE. The next definition we discuss is that of

security. The security definition roughly requires that for any input x ∈ ZnPPE·kPPE
p , the

public part of the computed pre-processed input while pre-processing x is computationally

indistinguishable to the public part of the pre-processed input when the pre-procssing is

done for the input 0nPPE·kPPE .

Definition 3.1.5 (Security of PPE). Let d > 0 be an integer constant. A PPE scheme is

secure, if the following holds: Let β > 0 be any constant and p : N→ N be any function that

on input an integer r, outputs an rβ bit prime. Let nPPE = k
Θ(1)
PPE be any polynomial in kPPE.

Let p = p(kPPE) and {xkPPE}kPPE∈N be any ensemble of inputs where each xkPPE ∈ ZnPPE·kPPE
p

and {QkPPE}kPPE∈N be ensemble of monomial patterns with QkPPE ∈ Γd,nPPE
with size mPPE ≥ 1.

Then for kPPE ∈ N, it holds that for any probabilistic polynomial time adversary, following

distributions are computationally indistinguishable with the advantage bounded by negl(kPPE).{
P | (P, S)← PreProc(1nPPE , 1kPPE , p, QkPPE , xkPPE)

}
kPPE{

P | (P, S)← PreProc(1nPPE , 1kPPE , p, QkPPE , 0
nPPE·kPPE)

}
kPPE

Further, the scheme is said to be subexponentially secure if negl(kPPE) = exp(−kΩ(1)
PPE ).

Definition 3.1.6 (Sublinear Pre-processing Efficiency). Let d > 0 be a constant integer.

We say that PPE scheme for FPPE,d satisfies sublinear efficiency if there exists a polynomial

poly and constants c1, c2, c3 > 0 such that for nPPE, kPPE ∈ N, Q ∈ Γd,nPPE
with size mPPE ≥ 1

and a prime p the size of the circuit computing PreProc(1nPPE , 1kPPE , p, Q, ·) is tPPE =

O((nPPE · kc1
PPE +mPPE · k1−c2

PPE + kc3
PPE) poly(log2 p)).

The reason we call this requirement as sublinear pre-processing efficiency is that ifmPPE =

n
1+Ω(1)
PPE , then, one can find a small enough kPPE = n

Ω(1)
PPE such that tPPE = Õ((mPPEkPPE)

1−Ω(1))
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where Õ hides polynomial factors in log2 p. Finally we present the requirement that the

evaluation for any function f , can be done by a constant degree polynomial gf that is just

degree two in S.

Definition 3.1.7 (Complexity of Evaluation). Let d ∈ N be any constant. We require

that PPE scheme for FPPE,d satisfies the following. We require that for every kPPE ∈ N,

nPPE = k
Θ(1)
PPE , and Γ ∈ Γd,nPPE

of size mPPE ≥ 1, any prime p, any input x ∈ ZnPPE·kPPE
p , any

pre-processed input (P, S) ← PreProc(1nPPE , 1kPPE , p, Γ, x), and any f ∈ Fd,nPPE,Q,kPPE, the

following relation is satisfied:

Eval(f, (P, S)) = gf,Q(P, S) mod p

where gf,Q(·, ·) is an efficiently computable (multivariate) polynomial over Zp of degree O(d)

in P and degree 2 in S.

3.1.2 Amortized Randomized Encoding

We now formally define the notion of an amortized RE scheme (which we will denote

by ARE). The notion is designed to be exactly compatible with a PPE scheme. The

function class FARE is identical to the class for the PRE scheme FPRE. Namely, FARE =

{FARE,nARE,mARE,kARE,λ}nARE,kARE,mARE,λ∈N consists of all circuits C : {0, 1}nARE → {0, 1}mARE·kARE

where every bit of the output is computed by a circuit of size λ. Such an ARE scheme has

the following syntax:

Definition 3.1.8 (Syntax of ARE). An ARE scheme consists of the following p.p.t. algo-

rithms:

• Encode(C ∈ FARE,nARE,mARE,kARE,λ,x ∈ {0, 1}nARE) → y. The encoding algorithm is a

randomized algorithm that takes as input a circuit C ∈ FARE,nARE,mARE,kARE,λ along with

an input x ∈ {0, 1}nARE. It outputs a string y ∈ {0, 1}∗.
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• Decode(1λ, 1nARE , 1mARE , 1kARE ,y) → z : The deterministic decode algorithm takes as

input a string y. It outputs z ∈ ⊥ ∪ {0, 1}mARE·kARE.

An ARE scheme satisfies the following properties.

Definition 3.1.9 ((Perfect) Correctness of ARE). A ARE scheme for the function class

FARE satisfies correctness if: For every polynomials nARE(·),mARE(·), kARE(·), every λ ∈ N,

let nARE = nARE(λ),mARE = mARE(λ), kARE = kARE(λ). Then, for every x ∈ {0, 1}nARE,

C ∈ FARE,nARE,mARE,kARE,λ:

Pr
[
Decode(1λ, 1nARE , 1mARE , 1kARE ,y) = C(x) y← Encode(C,x)

]
= 1

Definition 3.1.10 (Indistinguishability Security). We say that ARE scheme is secure if

the following holds: Let λ ∈ N be the security parameter, and nARE,mARE, kARE = Θ(λΘ(1))

be polynomials in λ. For every sequence {C,x0,x1}λ where x0,x1 ∈ {0, 1}nARE and C ∈

FARE,nARE,mARE,kARE,λ with C(x0) = C(x1), it holds that for λ ∈ N the following distributions

are computationally indistinguishable

{y | y← ARE.Encode(C,x0)}

{y | y← ARE.Encode(C,x1)}

Further, we say that ARE is subexponentially secure the above distributions are subexponen-

tially indistinguishable.

Efficiency Properties. We require that such an ARE scheme is compatible with a PPE

scheme. Namely, the encoding operation Encode(C, ·) uses a constant degree d-monomial pat-

ternQ of small sizem′ARE = O((nARE+mARE) poly(λ)) over n
′
ARE = O((nARE+m

1−Ω(1)
ARE ) poly(λ))

variables such that every bit is computable using those monomials. Namely:

Definition 3.1.11 (Efficiency). We require that there exists constants d ∈ N, c1, c2 > 0,

such that the following holds. For any λ ∈ N and any nARE, kARE,mARE = λΩ(1), there exists
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an efficiently samplable degree d-monomial pattern Q of size m′ARE = O((nARE +mARE)λ
c1)

such that for any circuit C ∈ FARE,nARE,mARE,kARE,λ and input x ∈ {0, 1}nARE, Encode(C,x; r)→

y ∈ {0, 1}T satisfies the following requirements:

• Parse r = (r1, . . . , rkARE) where each component is of equal size. Let ai = (x, ri). Then

the length of ai ∈ {0, 1}n
′
ARE is n′ARE = O((nARE +m1−c2

ARE )λ
c1).

• For i ∈ [T ], each yi =
∑

Q∈Q,j∈[kARE] µi,Q,j ·MonQ(aj) for efficiently samplable µi,Q,j ∈ Z.

The first property is to ensure that ai for i ∈ [kARE] will be the kARE blocks that will be

preprocessed by the PPE scheme in our construction of PRE. The monomial pattern used

by the PRE will be Q, and it will be used to compute y.

3.1.3 Construction of Preprocessed Randomized Encoding

The construction of a PRE scheme is really straightforward. We simply compose PPE

with ARE. Let’s take a look at it formally. Let the function class we are interested in is

FPRE,nPRE,mPRE,kPRE,λ where λ is the security parameter and nPRE,mPRE, kPRE are polynomials

in the security parameter. Let p denote the prime to be used for the PRE scheme.

Ingredients: We make use of two ingredients:

1. A ARE scheme. Let d > 0 be the constant degree which is the degree of evaluation of

the PRE scheme. We set:

• nARE = nPRE,

• mARE = mPRE,

• kARE = kPRE,

• m′ARE = (nPRE +mPRE) · λc1 ,
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• n′ARE = (nPRE +mPRE
1−c2)λc1 , where c1, c2 > 0 are constants associated with the

efficiency requirements of ARE. Let QARE be the d-monomial pattern of size m′ARE

over n′ARE variables associated with the encoding operation.

2. A PPE scheme, where we set:

• The prime to be used as p,

• nPPE = n′ARE,

• mPPE = m′ARE,

• Set the monomial pattern QPPE = QARE = Q. The degree of the monomial

pattern is d,

• Let d′ = O(d) be the constant degree of the polynomial gf (·) = PPE.Eval(f, ·)

mod p used to evaluate any polynomial f ∈ Fd,PPE,nPPE,Q,kPPE .

We now describe our construction in Figure 3.1:

We now argue various properties associated with the scheme.

Correctness: Correctness follows from the correctness of the ARE and PPE scheme. The

PreProc operation simply runs PPE.PreProc to preprocess a = (a1, . . . , akARE) where ai =

(x, ri) to compute P, S. Then, when one runs PRE.Encode(C, (P, S)), with overwhelming

probability the output consists of yi = fi(a) for i ∈ [T ], due to correctness of PPE scheme.

This is same as ARE.Encode(C,x, r1, . . . , rkARE) by the correctness of the ARE scheme. Finally

PRE.Decode(y) = ARE.Decode(y) which is equal to C(x).

We now argue security,

Security The security of the PRE scheme follows almost immediately from the security of

the ARE scheme. We show this by providing four hybrids and arguing indistinguishability

between them. The first hybrid corresponds to the case when xb is preprocessed for a random
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The PRE scheme

Preprocessing PRE.PreProc(1λ, 1nPRE , 1mPRE , 1kPRE , p,x ∈ {0, 1}nPRE): Run the following

steps:

• Sample uniformly randomness r1, . . . , rkARE ∈ {0, 1}n
′
ARE−nARE used for running

ARE.Encode(·,x, r). Set ai = (x, ri) for i ∈ [kARE]. Here ai ∈ {0, 1}n
′
ARE=nPPE .

• Compute (P, S)← PPE.PreProc(1nPPE , 1kPPE , p,Q,a). Output PI = P and SI = S.

Encoding PRE.Encode(C, (PI, SI)): Run the following steps:

• By the efficiency property of ARE, for any circuit C ∈ FARE,nARE,mARE,kARE,λ,

for i ∈ [T ] where T is the output length of ARE.Encode(C, ·), the ith out-

put bit of ARE.Encode(C, ·) is computable by an efficiently generatable polyno-

mial fi ∈ FPPE,d,nPPE,Q,kPPE . Let gfi be the degree (d′, 2)-polynomial evaluat-

ing PPE.Eval(fi, ·). Compute yi = PPE.Eval(fi,PI,SI) = gfi(PI, SI). Output

y = (y1, . . . , yT ).

Decode PRE.Decode(y): Run and output ARE.Decode(y) = z.

Figure 3.1: The Description of the PRE scheme.
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bit b, where as the last hybrid is independent of b. Let C be a circuit in FPPE and x0,x1 be

inputs such that C(x0) = C(x1).

Hybrid0 : In this hybrid, we compute (P, S) by preprocessing a = (a1, . . . , akPRE). Here each

ai = (xb, ri) where b ← {0, 1}. Let y be the output of PRE.Encode operation on input

C,P, S. Output of the hybrid is (P,y).

Hybrid1 : In this hybrid, we compute (P, S) by preprocessing a generated as in the previous

hybrid. Let y be the output of ARE.Encode(C,x, r), where ai = (xb, ri). Output of the

hybrid is (P,y).

Note that Hybrid0 is statistically close to Hybrid1 due to the correctness of PPE scheme.

In one case y is actually an output of PPE.Eval function performed over (P, S) using function

fi, in the other case, it is generated by computing yi = fi(a). The claim thus follows, due

to the correctness of PPE scheme.

Hybrid2 : In this hybrid, we compute (P, S) by preprocessing the all 0 string. y is computed

as in the previous hybrid. Output of the hybrid is (P,y).

The above two hybrids are indistinguishable due to the security of the PPE scheme. In one

case P is generated by preprocessing a, in the other case it is generated by preprocessing the

all 0 string.

Hybrid3 : In this hybrid, we compute P as in the previous hybrid. The only change is

that y is computed as ARE.Encode(C,x0, r). Output of the hybrid is (P,y).

The above two hybrids are indistinguishable due to the security of the ARE scheme. In both

the hybrids, P is generated by encoding 0 string. In one case y is generated by running

y = ARE.Encode(C,xb; r), and in the other, y = ARE.Encode(C,x0; r). These are indistin-

guishable due to the security of the ARE scheme. Since the last hybrid is independent of b,

the security holds.
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Sublinear Efficiency. Let us now find out the time to run PRE.PreProc(1λ, 1nPRE , 1mPRE , 1kPRE , p,x).

This algorithm runs in two steps.

1. In the first step it arranges x and a random vector r into a,

2. In the second step, it runs PPE.PreProc(1nPPE , 1kPPE , p,Q, a).

The first step can be implemented by a circuit of size O(|a|) = O(nPRE · kPRE) = O(n′ARE ·

kPRE) = O(nPRE · kPRE ·λc1 +mPRE
1−c2 · kPRE ·λc1). Due to the sublinear efficiency of the PPE

scheme, the second step takes:

tPPE = O((nPPE · kϵ1
PPE +mPPE · k1−ϵ2

PPE + kϵ3
PPE) poly(log2 p)).

for some constants ϵ1, ϵ2, ϵ3 > 0 and some polynomial poly. Substituting nPPE = n′ARE =

O(nPRE · λc1 + mPRE
1−c2 · λc1), mPPE = m′ARE = O((nPRE + mPRE)λ

c1) and kPRE = kARE, we

get that:

tPPE = O((nPREkPRE
max{ϵ1,1−ϵ2} +mPRE

1−c2kPRE
ϵ1 +mPRE · kPRE1−ϵ2 + kPRE

ϵ3) poly(log2 p)λ
c1).

Thus adding the two times, we get the total time tPRE = O(tPPE). Thus, PPE satisfies

sublinear efficiency.

Complexity Requirement. Observe that PRE.Encode(C, (PI, SI)) computes y = (gf1(PI, SI)

, . . . , gfT (PI, SI)) where fi(a) computes the ith bit of ARE.Encode(C,x, r). Note that due to

the efficiency property of ARE fi is of the form:

fi(a) =
∑

j∈[kPRE],Q∈Q

µi,Q,jMonQ(aj),

where µi,Q,j ∈ Z. Thus, fi ∈ FPPE,d,nPPE,Q,kPPE . Due to the complexity requirement of PPE,

gfi is degree (d′, 2)-polynomial over (PI, SI). This proves the claim.
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Summing up. We sum up with the following theorem:

Theorem 3.1.1. Assuming the existence of a PPE scheme (Definition 3.1.3) and an ARE

scheme (Definition 3.1.8), then the scheme above is a PRE scheme satisfying Definition 2.5.1.

Further, if both the underlying primitives are subexponentially secure, then so is the resulting

PRE scheme.

In Theorem 4.2.2 it is shown that an ARE scheme satisfying Definition 3.1.8 can be

constructed assuming PRG in NC0 with polynomial stretch (Definition 5.2.1). It is shown in

Theorem 4.2.2 that a PPE scheme satisfying Definition 3.1.3 can be constructed assuming the

δ-LPN assumption (Definition 4.1.1) for any constant δ > 0. Combining these two theorems

we have:

Theorem 3.1.2. Assume that there exists two constant δ, ϵ > 0 such that:

• δ-LPN assumption (Definition 4.1.1) holds,

• There exists a PRG in NC0 with a stretch n1+ϵ where n is the length of the input

(Definition 5.2.1),

Then, there exists a PRE scheme (Definition 2.5.1). Further, assuming the underlying as-

sumptions are subexponentially secure, then so is the resulting PRE scheme.
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CHAPTER 4

Preprocessed Polynomial Encoding

In this chapter, we show how to construct a Preprocessed Polynomial Encoding scheme PPE.

Let us first recall the goal.

Preprocessed Polynomial Encoding Consider the following task. Let us suppose that

there is a parameter kPPE ∈ N, and kPPE inputs x1, . . . ,xkPPE ∈ {0, 1}nPPE collectively denoted

as x. Let us say that we are interested in computing constant degree d > 2 polynomials f(x)

mod p for some prime p where f has the following form:

• There exists a d monomial pattern Q = (Q1, . . . , QmPPE
) over nPPE variables.

• f(x) respects monomial pattern in all variables x1, . . . ,xkPPE . That is,

f(x) =
∑

i∈[kPPE],Q∈Q

µQ,iMonQ(xi)

for integers µQ,i.

The question is then, is it possible to preprocess x into two vectors (P, S) such that for every

such f , there exists efficiently samplable degree (O(d), 2)-polynomials gf (which only depend

on f):

gf (P, S) = f(x) mod p,

with overwhelming probability. Along the way, we must also ensure that P does not reveal

any information about x (computationally). And thus, this gives us a way to transfer
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complexity in the secret input: In the initial model, we compute a degree d polynomial f

on the secret input x, whereas now we compute polynomials gf which is just degree 2 in the

secret input and still constant degree overall.

Now make an important observation: Such a model is trivial to realize if there is no

restriction on the preprocessing model. Indeed, one can set P = ⊥ and S as the precompu-

tation of all degree d
2
monomials over x. Such a PPE will be useless for us. In formulating

a meaningful requirement we should be mindful of the fact that we are only interested in

evaluating polynomials f that take kPPE blocks of input, where every block is evaluated on

a fixed set of monomials Q. Thus, in all the total monomials that can every be evaluated

are O(mPRE · kPRE). Therefore we ask that the computation of (P, S) takes asymptotically

lesser time than mPRE · kPRE as kPPE increases with respect to some efficiency measure. This

is where amortization comes into play. We can ask for two flavours of requirement, where

the second one is stronger than the first one.

• (Sublinear size) Here, we require that the size of (P, S) is sublinear in mPRE · kPRE,

• (Sublinear preprocessing time) Here, we require that the time it takes to compute (P, S)

is sublinear in mPRE · kPRE,

By being sublinear, we really mean that there exist some constant c1, c2 > 0 such that the

size/time is bounded by O((nPPEk
c1
PPE + mPPEk

1−c2
PPE ) poly(log2 p)) for some polynomial poly.

The reason this is called sublinear is that when mPPE = n1+ϵ
PPE for some ϵ > 0, then we can

find a kPPE = n
Ω(1)
PPE such that the value is O((mPPE · kPPE)1−γ poly(log2 p)) for some constant

γ > 0.

In what follows, we show how to construct such a notion. In this thesis, we will construct

the PPE scheme that satisfies the stronger second property. Note that, to construct iO from

well-studied assumptions, it would have actually sufficed to construct the first notion at the

cost of making an additional assumption of Learning with Errors [Reg05]. This was actually

implicitly done in [JLS21a]. We depart from the presentation in [JLS21a] and construct a
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scheme satisfying the second property directly, based on [JLS21b]. Next, we first give an

overview of the construction. In the overview we first argue that the first property is satisfied.

Then, we take a close look and show that the scheme also satisfies the first property.

4.1 Overview of the Construction

A first observation to build such a PPE scheme is that allowing a public input P is really

crucial for building a PPE. If it was not allowed, building a PPE would mean that we

can generically convert polynomials of degree d into degree polynomials of degree 2 (in the

preprocessing model) which is something that we should not expect for general polynomials.

Also intuitively, P computationally hides or “encrypts” x. Thus, as a first attempt, we will

simply encrypt x using the LPN assumption, and set the encryption as P. Let us recall the

LPN assumption:

The LPN Assumption: Let p be any prime modulus. We define the distribution Dr(p)

as the distribution that outputs 0 with probability 1−r and a random element from Zp with

the remaining probability. Below we define δ-LPN Assumption [BFKL94, IPS08, AAB15,

BCGI18].

Definition 4.1.1 (δ-LPN Assumption, [BFKL94, IPS08, AAB15, BCGI18]). Let δ ∈ (0, 1).

We say that the δ-LPN Assumption is true if the following holds: For any constant ηp > 0,

any function p : N→ N s.t., for every ℓ ∈ N, p(ℓ) is a prime of ℓηp bits, any constant ηn > 0,

we set p = p(ℓ), n = n(ℓ) = ℓηn, and r = r(ℓ) = ℓ−δ, and we require that the following two

distributions are computationally indistinguishable:{
(A,b = s ·A+ e) | A← Zℓ×n

p , s← Z1×ℓ
p , e← D1×n

r (p)
}

ℓ∈N{
(A,u) | A← Zℓ×n

p , u← Z1×n
p

}
ℓ∈N

In addition, we say that subexponential δ-LPN holds if the two distributions above are are

subexponentially indistinguishable.
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Encrypting x using LPN assumption. In order to encrypt x = (x1, . . . ,xkPPE) ∈

{0, 1}nPPE·kPPE , we simply generate nPPE · kPPE δ-LPN samples over Zp for the constant δ > 0,

for which the assumption holds.

• Sample coefficient vectors as follows. For i ∈ [kPPE], j ∈ [nPPE], sample ai,j ← ZkPPE
p .

• Sample secret s← ZkPPE
p .

• Sample sparse errors and generate LPN samples as follows. Sample ei,j ← Dk−δ
PPE

(p) for

i ∈ [kPPE], j ∈ [nPPE]. Compute di,j = ⟨ai,j, s⟩+ ei,j mod p.

• Compute encryption of x = (x1, . . . ,xkPPE) as follows. For i ∈ [kPRE], let xi =

(xi,1, . . . , xi,nPRE
). Compute bi,j = di,j + xi,j mod p = ⟨ai,j, s⟩+ ei,j + xi,j mod p.

• Set P = {ai,j, bi,j}i∈[kPRE],j∈[nPRE].

Observe that P contains O(nPPE · k2
PPE) field elements, and so it does not violate the sublin-

earity constraints.

How to Set S? Observe that it suffices to compute MonQj
(xi) for every i ∈ [kPPE], j ∈

[mPPE]. Thus, our initial attempt is to set S0 = (1, s)⊗⌈
d
2
⌉. The reason for this is that it lets

one compute:

MonQj
(bi,1 − ⟨ai,1, s⟩, . . . , bi,nPPE

− ⟨ai,nPPE
, s⟩)

= MonQj
(xi,1 + ei,1, . . . , xi,nPPE

+ ei,nPPE
) mod p,

This polynomial is degree d in P, and degree d in s. Since S0 = (1, s)⊗⌈
d
2
⌉ it is just degree

two in S0. Furthermore, S0 has O(k
⌈ d
2
⌉

PPE) field elements, and thus it does not violate the

sublinearity constraint. But most importantly, observe that:

Pr[MonQj
(xi,1 + ei,1, . . . , xi,nPPE

+ ei,nPPE
) ̸= MonQj

(xi)] ≤
d

kδ
PPE

,
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because the probability of error ei,j ̸= 0 is k−δPPE. Further, for every set Qj ∈ Q, O(k1−δ
PPE)

monomials are not correctly evaluated this way in expectation, but kPPE−O(k1−δ
PPE) are! This

means that setting S as S0 almost solves the problem. However, we still need a way to correct

O(mPPE · k1−δ
PPE) monomials. Our approach is therefore to come up with another component

S1, such that this correction will be done by quadratic polynoials in S1. Further, the size of

S1 will follow the sublinearity rule.

Correcting Monomials. Our next observation is that for each of the mPPE sets Qj ∈ Q,

out of kPPE monomials {MonQj
(xi)}i∈[kPPE], O(k1−δ

PPE) need correction. In fact, since the errors

used in LPN samples corresponding to kPRE monomials are independent, such monomials ex-

hibit tight concentration due to Chernoff bound. With overwhelming probability the number

of such monomials that need to be corrected are O(k1−δ
PPE). Thus, our approach is the follow-

ing. We set S1 = (S1,1, . . . , S1,mPPE
) where S1,j “compress” corrections for {MonQj

(xi)}i∈[kPPE]

such that the decompression is a quadratic function.

The rough idea is that for every Qj we set up matrix Mj of dimension [
√
kPPE]× [

√
kPPE]

(thus having kPPE entries). Define Corrj,i = MonQj
(xi) − MonQj

(xi + ei) for all i ∈ [kPPE]

where ei = (ei,1 . . . , ei,nPPE
). We simply arrange Corrj within the matrix Mj using any public

canonical map. For example, one such map can be dividing an index i ∈ kPPE, by
√
kPPE

and then using its remainder and the quotient as the map into Mj.

Now observe that with overwhelming probability, Corrj is sparse with just O(k1−δ
PPE) non-

zero entries. Therefore, the matrix is also sparse with O(k1−δ
PPE) non-zero entries. Thus,

we simply partition Mj into t1 = k1−δ
PPE sub-matrices, Mj,ℓ of dimension [k

δ
2
PPE] × [k

δ
2
PPE] for

ℓ ∈ [t1]. The intention of doing this is that in expectation each sub-matrix will have at

most a constant number of non-zero entries, and therefore each sub-matrix is low rank. In

fact, using a concentration argument, we can prove that with overwhelming probability each

matrix has at most t2 = kρ
PPE non-zero entries for a really small constant ρ ≪ δ. Thus, we

can find Uj,ℓ,Vj,ℓ ∈ Zk
δ
2
PPE×t2

p such that Mj,ℓ = Uj,ℓV
⊤
j,ℓ using low rank matrix decomposition
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methods. We set Sj = {Uj,ℓ,Vj,ℓ}ℓ∈[t1]. Observe that Sj contains 2 · t1 ·k
δ
2
PPE · t2 = O(k

1− δ
2
+ρ

PPE )

field elements, which is under our permitted bound as ρ≪ δ.

Functionality. Once we have set S0 = (1, s)⊗⌈
d
2
⌉ and S1 = (S1,1, . . . , S1,mPPE

), we can

compute MonQj
(xi) using a degree (d, 2)-polynomial as follows. Let us assume that the

correction for this monomial is embedded in Mj,ℓ1 [ℓ2, ℓ3], parse S1,j = {Uj,ℓ,Vj,ℓ}ℓ∈[t1]. Then

compute:

MonQj
(bi,1 − ⟨ai,1, s⟩, . . . , bi,1 − ⟨ai,nPPE

, s⟩) +Uj,ℓ1V
⊤
j,ℓ1

[ℓ2, ℓ3]

= MonQj
(xi + ei) +Uj,ℓ1V

⊤
j,ℓ1

[ℓ2, ℓ3]

= MonQj
(xi + ei) +MonQj

(xi)−MonQj
(xi + ei)

= MonQj
(xi)

Security. Observe that even given x, P is indistinguishable to random field elements over

Zp, due to the LPN security, so security follows almost immediately.

Sublinear Time. In the above discussion, we argued the sublinearity of the size of P, S.

It should not be clear at all, why it should have a sublinear size circuit. Nevertheless, this is

the case and we show this in Section 4.2.1. This argument gives a concrete implementation

of the preprocessing algrorithm.

4.2 PPE Construction Details

In this section, we present our construction of PPE scheme. Before delving into the con-

struction, we describe the list of notations that will be useful:

• Parameters t1 = ⌈k1−δ⌉ and T = ⌈kδ/2⌉. Observe that 2 · kPPE ≥ t1 · T 2 ≥ kPPE.

• t2 is the slack parameter. It is set as k
δ
10
PPE,
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• Map ϕ: We define an injective map ϕ which canonically maps kPPE elements into t1

buckets (equivalently called as a matrices in the text below), each having a size of

T × T . For every j ∈ [kPPE], ϕ(j) = (j1, (j2, j3)) where j1 ∈ [t1], (j2, j3) ∈ [T ] × [T ].

Such a map can be computed in time polynomial in log2 kPPE and can be computed

by first dividing j ∈ [kPPE] by t1 and setting its remainder as j1. Then the quotient of

this division is further divided by T . The quotient and the remainder of this division

are set as (j2, j3).

Construction of PPE

(P, S)← PreProc(1nPPE , 1kPPE , p,Q = (Q1, . . . , QmPPE
),x): Below we describe the pseudo-

code. We show how to construct a circuit for the same when we talk about pre-

processing efficiency property of the scheme. Perform the following steps:

• Parse x = (x1, . . . ,xkPPE) where each xj ∈ ZnPPE
p . Parse xj = (xj,1, . . . , xj,nPPE

).

• The overall outline is the following: We first show how to sample components

P′ = (P1, . . . ,PkPPE), and then how to sample S along with a boolean variable

flag. P will be set as (flag,P′).

• Sampling P′ = (P1, . . . ,PkPPE): Sample s← ZkPPE
p . For every i ∈ [nPPE], and

j ∈ [kPPE]:

1. Sample aj,i ← ZkPPE
p .

2. Sample ej,i ← Ber(k−δPPE) · Zp. Denote ej = (ej,1, . . . , ej,nPPE
).

3. Compute bj,i = ⟨aj,i, s⟩+ ej,i + xj,i mod p.

For j ∈ [kPPE], set Pj = {aj,i, bj,i}i∈[nPPE].

• Sampling S: S has mPPE + 1 components. That is, S = (S0, . . . , SmPPE
). Set

S0 = (1, s)⊗⌈
d
2
⌉. We now show how to compute Sr for r ∈ [mPPE].

1. For j ∈ [kPPE], compute Corrr,j = MonQr(xj)−MonQr(xj + ej).
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2. Initialize for every γ ∈ [t1], matrices Mr,γ in ZT×T
p with zero entries.

3. For j ∈ [kPPE], compute ϕ(j) = (j1, (j2, j3)) and set Mr,j1 [j2, j3] = Corrr,j.

If any matrix Mr,γ for γ ∈ [t1], has more than t2 non-zero entries, then

set flagr = 0. Otherwise, set flagr = 1.

4. If flagr = 1, then, for γ ∈ [t1], compute matrices Ur,γ,V
⊤
r,γ ∈ ZT×t2

p such

that Mr,γ = Ur,γ ·Vr,γ. Otherwise for every γ ∈ [t1], set Ur,γ,Vr,γ to be

matrices with zero-entries.

5. Set Sr = {Ur,γ,Vr,γ}γ∈[t1].

• Sampling flag: For every i ∈ [nPPE], let Seti = {j ∈ [kPPE]|ej,i ̸= 0}. If any

of these sets have size outside the range [k1−δ
PPE − t2k

1−δ
2

PPE, k
1−δ
PPE + t2k

1−δ
2

PPE], set

flag = 0. Otherwise, set flag = min{flagr}r∈[m].

y ← Eval(f, (P, S)) : Parse P = (flag,P1, . . . ,PkPPE) where Pj = {aj,i, bj,i}i∈[nPPE]. Simi-

larly, parse S = (S0, . . . , SmPPE
). Here S0 = (1, s)⊗⌈

d
2
⌉ and Sr = {Ur,γ,Vr,γ}γ∈[t1] for

r ∈ [mPPE]. Parse x = (x1, . . . ,xkPPE) and f(x) =
∑

r∈[mPPE],j∈[kPPE] µr,jMonQr(xj)

for µr,j ∈ Z. Output:

gf,Q(P, S) =
∑

r∈[mPPE],j∈[kPPE]

µr,jwr,j(P, S),

where the polynomial wr,j(P, S) is the following:

wr,j(P, S) = flag · (MonQr(bj,1 − ⟨aj,1, s⟩, . . . , bj,nPPE
− ⟨aj,nPPE

, s⟩) +Ur,j1 ·Vr,j1 [j2, j3]) ,

where ϕ(j) = (j1, (j2, j3)). We remark that the polynomial above is written as a

function of s and not S0, however, since we always mean S0 = (1, s)⊗⌈
d
2
⌉, we treat

this polynomial as some degree-2 polynomial in S0.

Remark 4.2.1. The only difference to the scheme described in the overview is that the

scheme also uses a boolean variable flag. flag will be 1 with overwhelming probability, and

is set to 0 when “certain” low probability events happen. As described earlier, the size of
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the input (P, S) is already sublinear. Later, we describe how even the time to compute it is

sublinear.

We now argue various properties involved.

Complexity of Evaluation: Observe that Eval(f, (P, S)) is already in the required form, in

that, it is computed by a polynomial gf,Q over Zp. The only thing that needs to be proved is

that the polynomial gf,Q is degree 2 in S, and O(d) in P. Since gf,Q is a linear combination of

{wr,j}j∈[kPPE],r∈[mPPE], it suffices to make the claim for the polynomials wr,j. The polynomial

wr,j has two terms. We analyse both the two terms separately.

• Observe that the second term is degree 2 in S as it is degree 2 in matrices {Ur,γ,Vr,γ}γ∈[t1].

The degree of the second term in P is one, as it is degree one in flag.

• The first term is at most degree d + 1 in P as it is degree one in flag and at most

degree d in aj,i and bj,i variables. It is also at most degree d in s, however we interpret

S0 = (1, s)⊗⌈
d
2
⌉. Therefore, when written as a polynomial in S0, its degree is 2.

This proves that the polynomial is at most degree d + 1 in P and degree 2 in S. We now

prove a lemma that will be helpful in arguing the properties below:

Lemma 4.2.1. Let d > 0 be a constant integer, kPPE ∈ N, nPPE = k
O(1)
PPE , Q be a d-monomial

pattern over nPPE variables, p be any prime, then for any x ∈ ZnPPE·kPPE
p , when computing

(P, S)← PreProc(1nPPE , 1kPPE , p,Q,x):

Pr[flag = 1] ≥ 1− exp(−kΩ(1)
PPE ).

Proof. First, we bound the probability flagr = 0 for r ∈ [mPPE], which is done in the third

step in the part where one samples S.

Claim 4.2.1. For every r ∈ [mPPE], Pr[flagr = 0] = O(exp(−kΩ(1)
PPE )).

Proof. Note that flagr = 0, when, Mr,γ for some γ ∈ [t1] has more than t2 non zero entries.

The number of entries in Mr,γ is bounded by T 2. The probability that any given entry is
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non-zero is upper bounded by d
kδPPE

. Since the values Corrr,j for different values of j ∈ [kPPE]

are independent, the probability that Mr,γ for any given γ ∈ [t1] has more than t2 non-zero

entries is at most:

=

(
T 2

t2

)
dt2

kδ·t2
PPE

(Selecting t2 out of T 2 locations)

≤ (d · e)t2 · T 2t2

(kδ
PPEt2)

t2
(by Sterling’s approximation)

≤ O(exp(−kΩ(1)
PPE )) ( t2 = k

δ/10
PPE and δ > 0 is a constant) .

Taking a union bound for γ ∈ [t1], we get Pr[flagr = 0] = O(exp(−kΩ(1)
PPE )).

Another, condition that affects the setting of the flag is when the size of Seti is not within

[k1−δ
PPE − t2 · k

1−δ
2

PPE, k
1−δ
PPE + t2 · k

1−δ
2

PPE].

Claim 4.2.2. For any i ∈ [nPPE], Pr
[
|Seti| /∈ [k1−δ

PPE − t2 · k
1−δ
2

PPE, k
1−δ
PPE + t2 · k

1−δ
2

PPE]
]
= O(exp(−kΩ(1)

PPE )).

Proof. This is a straigtforward application of the Chernoff bound. We now recall the Chernoff

bound which says the following. Let {Xi}i∈N ∈ {0, 1} be iid random variables. Let N ∈ N,

X =
∑

i∈[N ] Xi, η = E[X]. Then for any ρ ∈ (0, 1):

Pr[|X − η| > ρη] ≤ 2 exp

(
−ρ2 · η

3

)
.

We can compute the required probability as follows. For j ∈ [kPPE], define Xj to be 1 with

probability k−δPPE. Here Xj denotes the event that j ∈ Seti. Thus µ = k1−δ
PPE. Setting ρ = t2

k
1−δ
2

PPE

and plugging into the bound gives us the required probability. This comes up to 2 exp(− t22
2
),

which is O(exp(−kΩ(1)
PPE )).

SincemPPE and nPPE are polynomials in kPPE doing a union bound over these probabilities,

we get that Pr[flag = 0] = O(exp(−kΩ(1)
PPE )).

Security: We now argue security.
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Lemma 4.2.2. If δ-LPN holds, then, the PPE scheme described above is secure as per Def-

inition 3.1.3. If the assumption is subexponentially secure then the scheme is also subexpo-

nentially secure.

Proof. We first recall the distribution of the public part of the preprocessed input P. Then,

we show indistinguishable hybrids and argue indistinguishability between them. The first

hybrid corresponds to the case when P is generated by preprocessing x ∈ ZnPPE·kPPE
p , and the

last hybrid is independent of x. Recall,

P = (flag ∈ {0, 1},P1, . . . ,PkPPE) where for every j ∈ [kPPE],

Pj = {aj,i, bj,i = ⟨aj,i, s⟩+ ej,i + xj,i mod p}i∈[nPPE].

Hybrid0 : This hybrid consists of P above, where it is generated honestly while preprocess-

ing input x.

Hybrid1 : This hybrid is the same as above except that instead of sampling flag honestly,

it is always set to 1.

Hybrid2 : This hybrid is the same as above except that for j ∈ [kPPE] and i ∈ [nPPE],

bj,i is sampled uniformly from Zp.

Due to Lemma 4.2.1, Hybrid0 and Hybrid1 are statistically close with statistical distance

bounded by O(exp(−kΩ(1))).

Then, observe that the only difference betweenHybrid1 andHybrid2 is how {aj,i, bj,i}j∈[kPPE],i∈[nPPE]

is generated. In Hybrid1, aj,i is generated as a random vector sampled from ZkPPE
p . {bj,i =

⟨aj,i, s⟩ + ej,i + xj,i mod p}j∈[kPPE],i∈[nPPE], where s is also a random vector and ej,i are cho-

sen according to the LPN distribution (with error-rate k−δPPE). In Hybrid2, bj,i is replaced

with randomly chosen element. The number of samples released is nPPE · kPPE which is a

polynomial in kPPE. Thus, Hybrid1 and Hybrid2 are indistinguishable due to δ-LPN.

79



Correctness: We now argue correctness:

Lemma 4.2.3. Let d > 0 be an interger constant, kPPE ∈ N and nPPE = k
Θ(1)
PPE , p be

any prime, x ∈ ZnPPE·kPPE
p . Let (P, S) ← PreProc(1nPPE , 1kPPE , p,Q,x), then, for any f ∈

FPPE,d,nPPE,Q,kPPE:

Pr[Eval(f, (P, S)) ̸= f(x)] = O(exp(−kΩ(1)
PPE )).

Proof. Let f(x) =
∑

Qr∈Q,j∈[kPPE] µr,j · MonQr(xj) where x = (x1, . . . ,xkPPE). Note that

Eval(f, (P, S)) = gf,Q(P, S). Now observe that:

gf,Q(P, S) =
∑

Qr∈Q,j∈[kPPE]

µr,jwr,j(P, S).

We will now argue that with probability 1−O(exp(−kΩ(1)
PPE )), for any r ∈ [mPPE], j ∈ [kPPE],

wr,j(P, S) = MonQr(xj) which will complete the proof. Recall that:

wr,j(P, S) = flag · (MonQr(bj,1 − ⟨aj,1, s⟩, . . . , bj,nPPE
− ⟨aj,nPPE

, s⟩) +Ur,j1 ·Vr,j1 [j2, j3]) ,

where ϕ(j) = (j1, (j2, j3). As shown in Lemma 4.2.1, flag = 1 with probability 1 −

O(exp(−kΩ(1)
PPE )). Thus, with this probability,

wr,j(P, S) = MonQr(bj,1 − ⟨aj,1, s⟩, . . . , bj,nPPE
− ⟨aj,nPPE

, s⟩) +Ur,j1 ·Vr,j1 [j2, j3].

Also observe that:

MonQr(bj,1 − ⟨aj,1, s⟩, . . . , bj,nPPE
− ⟨aj,nPPE

, s⟩) = MonQr(xj + ej),

by construction. Finally, observe that when flag = 1, flagr = 1, and therefore:

Ur,j1 ·Vr,j1 = Mr,j1 ,

as in the point 4 in the procedure to sample S. Finally, Mr,j1 [j2, j3] = Corrr,j = MonQr(xj)−

MonQr(xj + ej) as in the point 3 in the procedure to sample S. Thus, if flag = 1 then,

wr,j(P, S) = MonQr(xj + ej) + Corrr,j,

= MonQr(xj).

This completes the proof.
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4.2.1 Sublinear Time Preprocessing

In the previous section, we argued all the properties except the sublinear efficiency property

of the PreProc algorithm. We discuss this here. Before we proceed, we prove some lemmas

about circuit implementability of some programs that will be useful for us in the rest of the

section.

4.2.1.1 Useful Lemmas about Circuit Implementability

In this section we recall and prove some results about circuit implementability of certain

kinds of programs that will be useful for the rest of the paper. We first recall a result about

sorting programs [AKS83]:

Lemma 4.2.4 (Sorting Lemma). Consider a program P sort
N,B,ϕ that takes as input N ∈ N

strings of size B ∈ N bits. It is indexed with a comparator circuit ϕ computing a total

ordering defined on two inputs of B bits, that has size Tϕ. The program outputs the sorted

version of the input consisting of N , B bit strings, sorted with respect to ϕ. There exists

a family of circuits {CsortN,B,ϕ}N,B,ϕ, where CsortN,B,ϕ is efficiently uniformly generatable and has

O(N ·B · Tϕ poly(log(N ·B · Tϕ))) gates for some polynomial poly.

We now recall a result from [PF79] which proves that a constant-tape turing machine

can be efficiently simulated by a boolean circuit with only poly-logarithmic multiplicative

overhead.

Lemma 4.2.5. For any turing machine M with O(1) tapes running in time T (n) where n is

the length of its input, there exists an efficiently computable boolean circuit family {Cn}n∈N

where Cn takes n bits of input, produces the same output, and has O(T (n) poly(log2 T (n)))

gates for some polynomial poly.

We now prove a theorem about programs that makes random access lookup to a database.

In order to do so, we first define the notion of a RAM lookup program.
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Definition 4.2.1 (RAM lookup program). A RAM lookup program P lookup
q,N indexed with a

number N ∈ N and a number q ∈ N is a program with the following structure: It takes as

input q indices {i1, . . . , iq} and a database DB ∈ {0, 1}N and it outputs {DB[i1], . . . ,DB[iq]}.

We observe the following a really natural statement about such lookup programs, which

says that the size of the circuit implementing such a program is almost linear (upto multi-

plicative polynomial overhead in log2(q ·N)) in q and N .

Lemma 4.2.6. Let q,N ∈ N. A RAM lookup program PRAM
q,N can be implemented by an

efficiently uniformly generatable boolean circuit of size O((q+N) poly(log2(q ·N))) for some

polynomial poly.

Proof. We prove this by dividing the task into various (sequential) steps below and then

arguing that the steps can be implemented within the required bound.

Step 1: On input DB ∈ {0, 1}N and locations y = (y1, . . . , yq) ∈ [N ]q, compute the following

set z1 = {(1, y1), . . . , (q, yq)} that contains q tuples. Namely, append each query with its

order.

Step 2: Compute z2 which is obtained by sorting the tuples inside z1 in the ascending

order according to the second component of the tuples (indices yi ∈ [N ]). This will produce

a permutation of tuples in z1 where the tuples are arranged in increasing order of the query

locations in [N ].

Step 3: Using z2 and DB, compute z3 where for each tuple (i, yi) in z2, replace it by

(i,DB[yi]) ∈ [q]× {0, 1}. Call this as z3.

Step 4: In this step, we sort z3 according to the first component of the tuples in the

increasing order. Remember z3 had tuples of the form (i,DB[yi]). Sorting will produce the
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output z4 = {(1,DB[y1]), . . . , (q,DB[yq])}.

Step 5: Finally, process z4 and remove the first component of the tuple to produce the

output z5 = (DB[y1], . . . ,DB[yq]). This is the required output.

In the description above, it is immediate by inspection that the program produces the

right output. We argue about the size of the circuits implementing each step.

The first and the fifth step can be implemented by a two tape turing machine, making a single

pass on the inputs y and z4 respectively. Thus from Lemma 4.2.5 they can be implemented

by a boolean circuit with size O(q · poly(log(N · q))) for some fixed polynomial poly.

The second and the fourth step, can be implemented by a sorting network. Therefore

by Lemma 4.2.4, it can be done by a boolean circuit of size O(q poly(log q · N)) for some

polynomial poly.

Finally, the third step can also be implemented by a four tape turing machine making a

single pass on the input DB and z2.

We load on the first tape DB and on the second tape, z2. The third tape will be used

to write the output z3. On the fourth tape, we maintain the counter in [N ] of the location

where the head on the first tape is currently on. The machine makes a forward pass on

the first two tapes while writing on the third tape and updating the counter on the third.

It read tuples from z2, and if the tuple is of the form (i, yi), it advances its head to the

location yi on the DB tape, and writes (i,DB[y]i) on the third tape. The counter tape can

be used to navigate to any location on the first tape. Since the input z2 is sorted with

respect to locations, the heads on the first two tape only move in the forward direction. Due

to arithmetic operations, it will also have additional multiplicative polynomial overhead in

log2(Nq) to assist with the navigation. Thus, this turing machine computes the result in

O((q+N) ·poly(log(q ·N))) time for some polynomial poly. Due to Lemma 4.2.5, this can be

converted to a boolean circuit with size O((q+N) · poly(log(q ·N))) for another polynomial

poly. Thus, combining all these observations, we prove the lemma.
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4.2.1.2 Sublinear Preprocessing Efficiency

Pre-processing Efficiency: We now bound the size of the circuit implementing the PreProc

algorithm.

Theorem 4.2.1. Let d > 0 be an integer constant. nPPE, kPPE ∈ N be a parameters, Q be an

d-monomial pattern on nPPE variables with mPPE monomials, and p be any prime. The size

of the circuit computing PreProc(1nPPE , 1kPPE , p,Q, ·) is Õ(k
⌈ d
2
⌉

PPE + nPPE · k2
PPE +mPPE · k

1− 2δ
5

PPE )

where Õ hides multiplicative polynomial factors in log2(p · nPPE · kPPE ·mPPE).

Proof. We will present an explicit circuit implementing the PreProc algorithm satisfying

the claim. In the analysis below we assume that basic field operations mod p can be

implemented by some fixed polynomial in log2 p. On input x = (x1, . . . ,xkPPE) ∈ ZnPPE·kPPE
p ,

PreProc(1nPPE , 1kPPE , p,Q, ·) produces the following components:

• P = (flag,P1, . . . ,PkPPE).

• S = (S0, S1, . . . , SmPPE
).

The circuit computing the preprocessing is a randomized circuit. It computes the following:

1. Random vectors {aj,i}j∈[kPPE],i∈[nPPE] and the secret s from ZkPPE
p ,

2. Errors {ej,i}j∈[kPPE],i∈[nPPE] from Ber(k−δPPE)Zp, and,

3. ϕ(j) for all j ∈ [kPPE].

The circuit computing all these can be implemented in size size0 = O(nPPE ·k2
PPE poly(log2(p ·

kPPE))) for some polynomial poly.

All these computations are fed as input in parallel into three circuits. The first cir-

cuit computes (P1, . . . ,PkPPE), the second one computes S0, and the third one computes

(flag, S1, . . . , SmPPE
). Below we analyze the size of these three circuits: size1, size2, size3.

The total size of the circuit computing the preprocessing is therefore: size0+size1+size2+size3.
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Size of the circuit computing (P1, . . . ,PkPPE): Observe that Pj is simply {aj,i, ⟨aj,i, s⟩ +

ej,i+xj,i mod p}i∈[nPPE]. This can be done by a circuit of size O(nPPE·kPPE·poly(log2(p·kPPE)).

Thus, size1 = O(nPPE · k2
PPE poly(log2(p · kPPE))) for some polynomial poly.

Size of the circuit computing S0: Note that S0 consists simply of (1, s)⊗⌈
d
2
⌉. This can be

computed by a circuit of size size2 = O(k
⌈ d
2
⌉

PPE poly(log2(p · kPPE))) steps.

The analysis of the third circuit (of size size3) is somewhat involved and we discuss that

next.

Size of the circuit computing (flag, S1, . . . , SmPPE
): In Figure 4.1 we lay down the basic

circuit template for the third circuit. We go over each individual circuit, their inputs, out-

puts and also bound their sizes. The circuit has 4 layers, and each layer has a specific purpose:

Circuit G1:

• The input α0 to this circuit consists of tuples {(i, j, ϕ(j) = (j1, (j2, j3)), ej,i, xj,i)}i∈[nPPE],j∈[kPPE].

• The circuit sorts the input according to the following ordering in the ascending order.

To define the comparison, let the tuples be z = (i, j, (j1, (j2, j3)), ej,i, xj,i) and z′ =

(i′, j′, (j′1, (j
′
2, j
′
3)), ej′,i′ , xj′,i′).

1. If ej,i = 0 and ej′,i′ ̸= 0, output z > z′.

2. If the first rule does not produce a result, check if i > i′. If so output z > z′.

3. If both the above criteria does not produce a result, then compare j1 with j′1. If

j1 > j′1 output z > z′ if j1 > j′1.

• As a result of this we get α1 which is a sorted list, where all the tuples z with non zero

ej,i come first, and they are sorted in ascending order with respect to index i ∈ [nPPE].
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Even within those with same value of i they are sorted with respect to j1.

Size of G1: Due to Lemma 4.2.4, the circuit can be implemented in size sizeG1 = O(nPPE ·

kPPE poly(log2(p · nPPE · kPPE))) for some fixed polynomial poly.

Figure 4.1: Circuit template for the third circuit.

Moving onto the next circuit:

Circuit G2: The circuit G2 does two things:

1. First it sets flagG2
= 0 if for any given i ∈ [nPPE], the number of non-zero ej,i is not

within the range [k1−δ
PPE − t2 · k

1−δ
2

PPE, k
1−δ
PPE + t2 · k

1−δ
2

PPE]. Otherwise it is set as 1.
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2. The output α2 consists of flagG2
along with nPPE components, α2,ℓ for ℓ ∈ [nPPE]. α2,ℓ

consists of at most k1−δ
PPE + t2 · k

1−δ
2

PPE tuples. These are all tuples that occur in α1, and

are of the form z = (i, j, ϕ(j) = (j1, (j2, j3)), ej,i, xj,i) where i = ℓ and ej,i ̸= 0. Further,

they are sorted with respect to the component j1. When flagG2
̸= 0, this can always

be done. We don’t care for its output in the condition when the flag is set to be 0.

Size of G2: Note that both these steps above can be performed by a two tape Turing machine

that keeps α1 on the first tape. It makes a single pass on the input to compute flagG2
, writes

it on the second tape, and then makes another pass to compute tuples {α2,ℓ}ℓ∈[nPPE]. Since

α1 already consists of tuples that are sorted, each {α2,ℓ} can be written sequentially on the

second tape one after the other for ℓ ∈ [nPPE] while the machine makes a pass over the sorted

input α1. Thus the turing machine takes O(nPPE · kPPE · poly(log(nPPE · kPPE · p)))) time for

some polynomial poly, and therefore by Lemma 4.2.5, it can be converted to a circuit of size

O(nPPE · kPPE · poly(log(nPPE · kPPE · p)))) for some polynomial poly.

For every r ∈ [mPPE], we now describe:

Circuit G3,r: The output of the circuit G3,r consists of (α3,r, flagr ∈ {0, 1}). The circuit

G3,r is described as follows. Let Qr be the rth at most degree d monomial in Q. The input

taken by G3,r is {α2,ℓ}ℓ∈[Qr]. Then the circuit does the following:

1. Combine the tuples {α2,ℓ}ℓ∈Qr and let their union be Ar. Let the tuples be of the form

(i, j, (j1, (j2, j3))), ej,i, xj,i) where ej,i ̸= 0 and i ∈ [Qr]. The tuples are sorted in the

ascending order with respect to the component j1, and then with respect to j2, and

then with respect to j3, and finally with respect to i. Let this rearranged set of tuples

be Br

2. After the step above, we get Br where the tuples are arranged with respect to j1 ∈ [t1]

first, and even with fixed j1 they are sorted with respect to (j2, j3) ∈ [T ]× [T ] and even

within those fixed, with respect to i ∈ Qr. Then, make a pass over the tuples in Br.
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Set flagr = 0 if upon doing a pass on the tuples, we encounter some j1, for which the

number of (j2, j3) for which there are tuples in Br exceed t2. Otherwise set flagr = 1.

3. Compute α3,r which consists of a preprocessing of Br, done as follows. If flagr = 0, set

α3,r = ⊥, otherwise, take a pass over the tuples in Br, and in doing so, if we encounter

upto d tuples with same value of j (and hence same value of j1, (j2, j3), but potentially

different values of i, xj,i and ej,i) replace them with a single tuple (Qr, j, (j1, (j2, j3))).

Further these tuples are sorted with respect to j1 and within the ones with same j1,

they are sorted with respect to j2 and j3.

At the end of this step, it outputs (flagr, α3,r). If flagr = 0, α3,r = ⊥. Otherwise if flagr = 1

(which happens with overwhelming probability), then α3,r consists of upto a O(k1−δ
PPE) sized

list of the form (Qr, j, (j1, (j2, j3))). These corresponds to the corrections that need to be

done for the monomial Qr. In the next step, we will show how to use this information to

compute (S1, . . . , SmPPE
) along with flag. We now argue the run time of this circuit.

Size of G3,r: Note that the first step can be done by a sorting network and hence by Lemma

4.2.4 it can be implemented by a circuit in size O((k1−δ
PPE+t2k

1−δ
2

PPE) ·poly(log2(kPPE ·nPPE ·p))) =

O(k1−δ
PPE poly(log2(nPPEkPPEp))).

The second step can be done by a multi-tape turing machine with a constant number

of tapes which keeps the input Br on one of the tapes and makes a single pass on that

input. It uses the other tape for computing the flagr. Since the tuples are sorted, only a

single pass suffices. This can therefore be computed by a circuit by Lemma 4.2.5 with size

O(k1−δ
PPE poly(log2(nPPE · kPPE · p))).

Finally, the third step can also be done a multi-tape turing machine with a constant

number of tapes that keeps Br on one of its tape, and then makes a pass over that input. It

pre-processes the tuples and write it on the other tape in the format described above, while

making sure that the written tuple is not duplicated. Since Br is always sorted, a single pass

on the input suffices. This can therefore be computed by a circuit by Lemma 4.2.5 with size

88



O(k1−δ
PPE poly(log2(nPPE · kPPE · p))).

Circuit G4: This circuit takes as input the following:

• {flagr}r∈[mPPE] along with flagG2
.

• {ej,i, xj,i}j∈[kPPE],i∈[nPPE].

• {α3,r}r∈[mPPE].

It proceeds by doing the following steps:

• Compute flag = flagG2

∏
r∈[mPPE]

flagr. This is one of the outputs.

• Make a pass on the combined input {α3,r}r∈[mPPE]. For every tuple (Qr, j, (j1, (j2, j3)))

replace it with (Qr, j, (j1, (j2, j3)), {ej,i, xj,i}i∈Qr). This can be done using a RAM

lookup program with input database {ej,i, xj,i}j∈[kPPE],i∈[nPPE]. Let the updated output

containing these tuples be {βr}r∈[mPPE].

• This is the output generating step. For r ∈ [mPPE], one by one, read flagr in parallel

with βr.

1. If flagr = 0, output Sr = {Ur,γ,V
⊤
r,γ}γ∈[t1] where Ur,γ = V⊤r,γ = 0T×t2 .

2. If flagr = 1, do the following. First let βr = {βr,γ}γ∈[t1] where βr,γ consists of all

tuples in βr where j1 = γ (i.e. of the form (Qr, j, j1 = γ, (j2, j3), {ej,i, xj,i}i∈Qr)).

Further, the circuit G3,r ensures that these tuples are sorted with respect to

(j2, j3). Let Dr,γ denote the number of tuples in βr,γ. Note that Dr,γ ≤ t2 (as

ensured by setting flagr = 1). For every γ ∈ [t1]:

(a) For l ∈ [t2], set vectors ur,γ,l = vr,γ,l = 0T .

(b) For l ∈ Dr,γ, parse lth tuple in βr,γ as (Qr, j, γ, (j2, j3), {ej,i, xj,i}i∈Qr). Set

ur,γ,l[j2] = Πi∈Qrxj,i−Πi∈Qr(xj,i+ej,i) (which is equal to Corrr,j) and vr,γ,l[j3] =

1.
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(c) Set Ur,γ as concatenation of vectors {ur,γ,l}l∈[t2] and V⊤r,γ as concatenation of

{vr,γ,l}l∈[t2]. Output Sr = {Ur,γ,V
⊤
r,γ}γ∈[t1].

We first argue about the size of the circuit implementingG4 and then argue its correctness.

Size of G4: The step of computing flag can be implemented by circuit that has a size of

O(mPPE) gates. The second circuit makes a pass on the input consisting of {α3,r}r∈[mPPE],

each consisting of atmost O(k1−δ
PPE) tuples. Then it makes at most q = O(mPPE ·k1−δ

PPE) lookups

of field elements from the database consisting of nPPE · kPPE field elements. This can be

implemented by a circuit that runs in size (nPPE ·kPPE+mPPE ·k1−δ
PPE) poly(log2(p ·nPPE ·kPPE))

for some polynomial poly due to Lemma 4.2.6. The third step can be simulated by a multi-

tape turing machine with a constant number of tapes in O(mPPE · t1 · T · t2 poly(log2 nPPE ·

p · kPPE)) steps. And thus, by Lemma 4.2.5 it can be implemented by a circuit of size

O(mPPE · t1 · T · t2 poly(log2 nPPE · kPPE · p)) for some polynomial poly. Let us elucidate: For

every r ∈ [mPPE], the Turing machine keeps βr on one of its tape. It keeps flagr on another

tape. The heads on both these tapes move in forward direction“processing” sequentially.

• For any r ∈ [mPPE], if flagr = 0 it writes 2 · t1 · t2 · T field elements (which consists

Sr which consists of all 0 matrices) on a third output tape, which takes O(t1 · t2 ·

T poly(log2 nPPE · kPPE · p)) steps.

• In the condition where flagr = 1, the circuit parses the tuples in βr sequentially.

There are at most O(k1−δ
PPE) = O(t1) tuples in all that are divided into {βr,γ}γ∈t1 . These

corresponds to tuples with j1 = γ and they are stored in a sorted fashion with respect to

j1. Thus, the machine makes a pass for every γ ∈ [t1] and process an output Ur,γ,Vr,γ.

This is done by sequentially processing tuples in βr,γ. For every tuple encountered (and

say it is the lth tuple where l ≤ Dr,γ ≤ t2) of the form (Qr, j, γ, (j2, j3), {ej,i, xj,i}i∈Qr),

it writes two vector ur,γ,l and vr,γ,l ∈ ZT
p where ur,γ,l[j2] = MonQr(xj)−MonQr(xj +ej)

and 0 otherwise. Likewise, vr,γ,l[j3] = 1 and 0 otherwise. If the number of tuples is less

than t2, it prints t2 −Dr,γ additional zero vectors {ur,γ,l,vr,γ,l}l∈[t2]\[Dr,γ ]. This can be
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done by making a single forward pass on βr,γ and doing O(T ) arithmetic/comparision

operations on it per tuple. Thus, it takes at most O(t2 · T poly(log2(nPPE · kPPE · p)))

steps to output {Ur,γ,V
⊤
r,γ}. Thus the total time complexity to output Sr is O(t1 · t2 ·

T poly(log2(p · kPPE ·nPPE))) for some polynomial poly. Thus, the complexity to output

(S1, . . . , SmPPE
) is O(mPPE · t1 · t2 ·T poly(log2(nPPE ·kPPE ·p))) for some polynomial poly.

We now argue the correctness of the circuit G4. G3,r outputs an indicator flagr which is 1

(with overwhelming probability). If this flag is set to one, G3,r outputs α3,r which consists

of all the indices j ∈ [kPPE] for which MonQr(xj) ̸= MonQr(xj +ej). This is the list of indices

which need correction for monomial Qr. Then, for every tuple that α3,r contains, we load up

all the inputs and the errors that it needs to do this correction. This updated input is βr.

With overwhelming probability (that is when flagr = 1) the size of βr,γ for every γ ∈ [t1] is less

than or equal to t2. Then, all these corrections are embedded inside the matrices {Ur,γ,V
⊤
r,γ}

where every correction is embedded in one of the t2 distinct T dimensional columns of Ur,γ

and V⊤r,γ. Further, point b) above ensures that for every j ∈ [kPPE] with ϕ(j) = (j1, (j2, j3)) if

the monomial MonQr(xj) was the l∗th monomial for the set Qr corrected in the j1th bucket

then,

Corrr,j =ur,j1,l∗ · v⊤r,j1,l∗ [j2, j3] ,

=
∑
l∈[t2]

ur,j1,l · v⊤r,j1,l[j2, j3] (single monomial corrected in each |Dr,j1| ≤ t2 iterations),

=Ur,j1 ·Vr,j1 [j2, j3] .

Because of this G4 produces the right output.

Overall circuit-size calculation: Hiding the polynomial in logarithmic multiplicative

factors in nPPE, p, kPPE withing Õ(·) we get the following:

• size1 = Õ(nPPE · k2
PPE),

• size2 = Õ(k
⌈ d
2
⌉

PPE),
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• sizeG1 = Õ(nPPE · kPPE)

• sizeG2 = Õ(nPPE · kPPE)

• sizeG3 = Õ(mPPE · k1−δ
PPE) (adding the size of all mPPE sub-circuits)

• sizeG4 = Õ(mPPE · k
1− 2δ

5
PPE ).

Combining these observations, we get our result.

Summing up: From the above theorems, we have the following result:

Theorem 4.2.2. Assuming δ-LPN assumption (Definition 4.1.1) holds for any constant

δ > 0, then there exists a PPE scheme satisfying Definition 3.1.3. Further, if the assumption

is subexponentially secure, then so is the resulting PPE scheme.
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CHAPTER 5

Amortized Randomized Encoding

In this chapter we give an overview of how to construct an ARE scheme (see Definition 3.1.8).

The construction is actually a straightforward adaptation of Yao’s Garbled circuits [Yao86],

to use PRG in NC0 to compute garbled tables (rather than a secret-key encryption scheme).

5.1 Amortized Randomized Encoding

Recall again the task in an ARE scheme (See Definition 3.1.8 for formal details). The scheme

cares about a function class FARE,nARE,mARE,kARE,λ which consists of all boolean circuits that

take nARE(λ) number of inputs, produce mARE(λ) · kARE(λ) number of outputs, where each

output bit is computed by a circuit of size λ. An ARE scheme is just a randomized encoding

scheme in NC0 that is tailor-made to be compatible with a PPE scheme. Namely,

• There exists a constant degree d monomial pattern Q of size m′ARE over n′ARE variables

where m′ARE = Õ(nARE +mARE) and n′ARE = Õ(nARE +m1−ϵ
ARE) for some constant ϵ > 0,

• For any circuit C in the function class, Encode(C, ·) takes as input x and randomness

r. The randomness can be parsed into kARE equal sized partitions x1, . . . ,xkARE . Define

ai := (x, ri). Then, for any bit j, Encode(C, ·)|j can be computed by an efficiently

generatable polynomial of the form:

Encode(C, ·)|j =
∑

Q∈Q,i∈[kARE]

µQ,iMonQ(ai),
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where µQ,i ∈ Z. In other words, the polynomial computing every bit j is in the function

class FPPE,d,n′
ARE,Q,kARE .

The first condition of requiring n′ARE to be sublinear in mARE, and m′ARE = Õ(mARE) is

to ensure that that when we compose ARE with PPE to construct PRE, the PRE satisfies

sublinearity property. The second condition is to ensure that ARE can actually be composed

with the PPE scheme. We now discuss our approach to build an ARE scheme.

5.1.1 Overall Approach

Let C1, . . . CmARE·kARE be the circuits of size λ computing individual output bits of the circuit

C. Let Ci for i ∈ [kARE] denote the circuit computing the ith block of mARE output bits.

Namely Ci = (C(i−1)kARE+1, . . . , C(i−1)kARE+mARE). Our first observation is that decomposability

property of Yao’s Garbled Circuits/Randomized Encoding [Yao86] could be useful.

First Idea. Our first idea to set:

ARE.Encode(C,x, r1, . . . , rkARE) = (YaoGb.Encode(C1,x; r1), . . . ,YaoGb.Encode(CkARE ,x; rkARE)).

Where YaoGb.Encode(Ci,x, ri) is Yao’s garbling of circuit Ci, with input x, computed using

randomness ri. In order to execute this plan we will need to ensure the following things:

• Size of each randomness ri is sublinear in the size of Ci (i.e. O(n′ARE) = O((nARE +

m1−ϵ
ARE) poly(λ)) for some constant ϵ > 0),

• Each garbling can be computed by an NC0 circuit in (x, ri),

• There exists a constant degree d monomial pattern Q of size m′ARE = O((nARE +

mARE) poly(λ)) (independent of Ci) such that YaoGb.Encode(Ci,x, ri) is computable by

linear combinations of only those monomials in x, ri.

In order to ensure all these three properties, let us examine one of the kARE components of

the candidate ARE.Encode algorithm. Without loss of generality, YaoGb.Encode(C1,x, r1).
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Inspecting Yao: Recall how YaoGb.Encode(C1,x, r1) can be computed. We recall the

point and permute formulation[BMR90]:

• Expand r1 to a sufficient length using a PRG to compute strings (σ,b). The string σ

consists of two λ bit labels {σw,0, σw,1}w for every wire w that occurs in the circuit.

Similarly b consists of bits bw ∈ {0, 1} for every wire that occurs in the circuit. Here

PRG is only used to ensure that the length of the randomness is sublinear.

• For every gate g with input wires w1 and w2 and output wire w3, generate the garbled

gate Tg which has four entries:

Enc(σw1,bw1
, Enc(σw2,bw2

, (σw3,g(bw1 ,bw2 )
||g(bw1 , bw2)⊕ bw3))),

Enc(σw1,bw1
, Enc(σw2,b̄w2

, (σw3,g(bw1 ,b̄w2 )
||g(bw1 , b̄w2)⊕ bw3))),

Enc(σw1,b̄w1
, Enc(σw2,bw2

, (σw3,g(b̄w1 ,bw2 )
||g(b̄w1 , bw2)⊕ bw3))),

Enc(σw1,b̄w1
, Enc(σw2,b̄w2

, (σw3,g(b̄w1 ,b̄w2 )
||g(b̄w1 , b̄w2)⊕ bw3))).

where b̄ = 1− b for any bit b ∈ {0, 1}.

• Let winp,1, . . . , winp,nARE
denote the input wires. Let wout,1 . . . , wout,mARE

denote the out-

put wires, and {wg}g∈gate(C1) where gate(·) denote the set of gates function. The output

of garbling consists of:

1. Labels for input wires: {(σwinp,i,xi
||bwinp,i

⊕ xi)}i∈[nARE],

2. Garbled gate tables for each gate {Tg}g∈gate(C1), and,

3. Output gate translation table {(a, σwout,i,a)}a∈{0,1},i∈[mARE].

The evaluation procedure is identical to the one described in [BMR90]. The number of wires

in all are bounded by Õ(nARE+mARE). The total output length is therefore Õ(nARE+mARE)

where Õ hides polynomial factors in λ. We identify one issue at a time and address them

one by one. Once all the issues are addressed the resulting scheme is an ARE scheme.
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Using PRG in NC0. One of the main issue with the scheme above is that the computation

above is not in NC0. Namely, σ,b as well as the double encryptions are not computed by an

NC0 circuit.

We first replace PRG with a PRG in NC0 with polynomial stretch. Note that length of σ,b is

Õ(nARE +mARE). Since the PRG has polynomial stretch, in order to generate σ,b it suffices

to have ri of the length sublinear in nARE + mARE (that is, Õ((nARE + mARE)
1−ϵ) for some

constant ϵ > 0). The second issue is to show that all the components of garbled circuit can

be computed by an NC0 circuit in x, σ,b. We make the following observations.

• Labels for input wires can be computed as {xi·σwinp,i,1+(1−xi)σwinp,i,0||xi⊕bwinp,i
}i∈[nARE]

which is in NC0.

• Output gate translation table is already in NC0.

The missing piece is therefore to ensure that the garbled gate tables are also computable

in NC0. Our solution is to use a PRG in NC0 with constant stretch to generate double

encryptions via one-time pads. To make this formal, let H : {0, 1}λ → {0, 1}2·λ+2 denote a

PRG in NC0. Let H0 denote the function that computes the first half of the output and H1

denote the function that computes the second half of the output. The garbled gate can be

constructed as follows:

Tgate =



H0(σw1,bw1
)⊕ H0(σw2,bw2

)⊕
(
σw3,g(bw1 ,bw2 )

||g(bw1 , bw2)⊕ bw3

)
H1(σw1,bw1

)⊕ H0(σw2,b̄w2
)⊕

(
σw3,g(bw1 ,b̄w2 )

||g(bw1 , b̄w2)⊕ bw3

)
H0(σw1,b̄w1

)⊕ H1(σw2,bw2
)⊕

(
σw3,g(b̄w1 ,bw2 )

||g(b̄w1 , bw2)⊕ bw3

)
H1(σw1,b̄w1

)⊕ H1(σw2,b̄w2
)⊕

(
σw3,g(b̄w1 ,b̄w2 )

||g(b̄w1 , b̄w2)⊕ bw3

)


(5.1)

Note that each entry can be computed by an NC0 circuit as H0,H1 are NC0 circuits, σw,x =

xσw,1 + (1− x)σw,0 for any bit x and any wire w and g(b1, b2) is also in NC0.

Fixing Monomial Pattern Issue. Let us first identify how many monomials are used in

the computation of the YaoGb.Encode(Ci,x, ri) . Note that the computation is in NC0 and
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the length of the garbling is Õ(nARE +mARE). Therefore the total number of monomials is

also Õ(nARE+mARE). Let this monomial set be Qi. However the issue is that Qi depends on

circuit C1. In order to fix this issue, instead of garbling directly, we garble the computation

for U(Ci,x) where U is the universal circuit.

ARE.Encode(C,x, r1, . . . , rkARE) = (YaoGb.Encode(U, (C1,x); r1), . . . ,YaoGb.Encode(U, (CkARE ,x); rkARE)).

Note that the universal circuit U is of size Õ(|Ci|+ |x|) = Õ(mARE+nARE) and has Õ(mARE+

nARE) input bits.

Thus for executing the garbling, we will need n′ARE = Õ(nARE+(mARE+nARE)
1−ϵ) for some

constant ϵ > 0. The number of monomials required is also bounded by Õ((mARE + nARE)).

We now argue that the monomial pattern is independent of the circuit Ci.

The garbling consists of three components: input labels, garbled tables and the transla-

tion table. First, it is easy to observe that the garbled tables and output translation table

is independent of the circuit Ci as they only depend only on the description of universal

circuit. Thus, the monomials involved in those computations are independent of the circuit.

We now show that the input wire labels for circuit C1 can be computed as follows. Let the

wires in the universal circuit for the circuit (say C1) be denoted as wckt,i for i ∈ [ℓC1 ], where

ℓC1 is the size of C1. These labels have the following structure:

{C1,iσwckt,i,1 + (1− C1,i)σwckt,i,0∥C1,i ⊕ bwckt,i}i∈[ℓC1
]

The number of monomials for computing these labels do not depend on the circuit as

they can be computed if one can compute σwckt,i,1, σwckt,i,0 and bwckt,i. The labels for the

inputs also do not depend on the circuit as the labels are given by: {xi · σwinp,i,1 + (1 −

xi)σwinp,i,0∥xi ⊕ bwinp,i
}i∈[nARE].

Security The security of the scheme follows immediately from the security of the garbled

circuit construction [Yao86, BMR90]. Our construction is an instantiation of the construction

of garbling scheme where we have the following:
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• We use PRG in NC0 instead of using any PRG, to bring down the complexity of gener-

ating labels and permutation bits in NC0,

• The double encryptions occurring in the garbled circuit table replaced by one time pad

that are generated using PRG in NC0, and,

• We garble universal computation instead of the computation directly,

As a result, the security directly follows from the security of the garbling scheme and the

security of PRG in NC0.

5.2 Construction Details

Before we proceed further, we give the formal definition of a PRG in NC0.

Definition 5.2.1. (Pseudorandom Generator.) A stretch-m(·) pseudorandom generator is

a Boolean function PRG : {0, 1}∗ → {0, 1}∗ mapping n-bit inputs to m(n)-bit outputs (also

known as the stretch) that is computable by a uniform p.p.t. machine, and for any non-

uniform p.p.t adversary A there exist a negligible function negl such that, for all n ∈ N∣∣∣∣ Pr
r←{0,1}n

[A(PRG(r)) = 1]− Pr
z←{0,1}m

[A(z) = 1]

∣∣∣∣ < negl(n).

Further, a PRG is said to be in NC0 if PRG is implementable by a uniformly efficiently

generatable NC0 circuit. PRG is said to have polynomial stretch if m(n) = n1+Ω(1). Finally,

PRG is said to be subexponentially secure if negl(n) = O(exp(−nΩ(1))).

Remark 5.2.1. In the candidate constructions, typically there is a sampling algorithm that

samples the description of PRG, and this property of computational indistinguishability is

expected to hold with probability 1 − o(1) over the choice of PRG. Such a PRG will give

us an existential result. Constructively, this issue can be addressed by constructing our FE

scheme with multiple instantiations of PRG so that with overwhelming probability, at least

one of the FE schemes we build is secure, and then using an FE combiner [ABJ+19, JMS20].
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In Figure 5.1, we now give the formal construction of the ARE scheme. We establish

some useful notations and recall the tools we need.

Notation: λ ∈ N is the security parameter, nARE,mARE, kARE are parameters associated

with the function class FARE,nARE,mARE,kARE . We set n′ARE = (nARE + m1−ϵ
ARE) poly(λ). Let U =

UmAREλ,nARE,mARE
: {0, 1}mARE·λ × {0, 1}nARE → {0, 1}mARE be the universal circuit for evaluating

circuits with nARE-bit inputs, mARE-bit outputs, and size mARE · λ. In particular, U(Ci,x) =

Ci(x) for circuits Ci and input xi satisfying the requirements.

Tool: A PRG in NC0 (denoted by G) that stretches t1−ϵ bits to t bits. We will set t =

n′ARE − nARE. A PRG in NC0 (denoted by H) that stretches λ bits to 2 · λ + 2 bits. Denote

by H0 the function that computes first half of the output of H and by H1 the function that

computes the other half.

We now briefly discuss why all the properties are satisfied:

Indistinguishability Security: The security holds readily due to the security of the

PRG in NC0, and security of Yao’s garbling scheme [Yao86, BMR90]. Consider two chal-

lenge messages x0,x1 with C(x0) = C(x1). If PRG security holds, then Π computed by

encoding xβ for a random β ∈ {0, 1} is computationally indistinguishable to an honest gar-

bling of the computation (U(C1,xβ), . . . , U(CkARE ,xβ)) using truly generated randomness.

But due to the security of Yao’s garbling scheme, this is indistingusihable to garbling of

(U(C1,x0), . . . , U(CkARE ,x0)) which is independent of β.

Efficiency: The efficiency properties have already been argued in the overview. The

size of randomness ri is n′ARE − nARE = O((nARE + m1−ϵ
ARE) poly(λ)). The computation of

Encode(·, a1, . . . , akARE) is can be computed by polynomials using a d- monomial pattern Q of

size O((nARE +mARE) poly(λ)) over n
′
ARE variables for some constant d > 0. This is because

each Πκ is computed by an NC0 circuit on input aκ of length n′ARE, and has a length of

O((nARE +mARE) poly(λ)). All components of this output are independent of the circuit Cκ,
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The ARE scheme

Encode Encode(C,x, r): Parse C = (C1, . . . , CkARE) such that Ci : {0, 1}nARE → {0, 1}mARE

is the circuit computing the ith chunk of output of C of size mARE. The size of circuit Ci is

mAREλ. Parse r = (r1, . . . , rkARE) where ri ∈ {0, 1}n
′
ARE−nARE . Set ai = (x, ri) ∈ {0, 1}n

′
ARE for

i ∈ [kARE]. For every κ ∈ [kARE], compute Πκ as follows:

• Using G expand rκ into (σ,b) of length (nARE +mARE) poly(λ). Here σ will be used as

labels to produce garbling of U(Cκ,x) and b will be used as permutation bits for every

wire in the circuit U . Precisely, for every wire w in U , we let σw,0, σw,1 ∈ {0, 1}λ be the

two labels for the wire, and bw ∈ {0, 1} the permutation bit for the wire.

• (Input wire labels for Cκ and x) Generate input labels of (Cκ,x). That is for every input

wire wckt,i for i ∈ [mARE · λ] and winp,j for j ∈ [nARE].

LabCκ,i = σwckt,i,0(1− Cκ,i) + σwckt,i,1(Cκ,i)∥Cκ,i ⊕ bwckt,i,

Labj = σwinp,j ,0(1− xj) + σwinp,j ,1(xj)∥xj ⊕ bwinp,j

Above Cκ,i is i
th bit of the circuit description.

• Compute garbled tables for U . That is, for every gate gate in U with input wires w1, w2

and output wire w3, output the following garbled table.

Tgate =



H0(σw1,bw1
)⊕ H0(σw2,bw2

)⊕
(
σw3,g(bw1 ,bw2 )

||g(bw1 , bw2)⊕ bw3

)
H1(σw1,bw1

)⊕ H0(σw2,b̄w2
)⊕

(
σw3,g(bw1 ,b̄w2 )

||g(bw1 , b̄w2)⊕ bw3

)
H0(σw1,b̄w1

)⊕ H1(σw2,bw2
)⊕

(
σw3,g(b̄w1 ,bw2 )

||g(b̄w1 , bw2)⊕ bw3

)
H1(σw1,b̄w1

)⊕ H1(σw2,b̄w2
)⊕

(
σw3,g(b̄w1 ,b̄w2 )

||g(b̄w1 , b̄w2)⊕ bw3

)


(5.2)

• Let wout,γ for γ ∈ [mARE] denote the wires for output. Generate out-

put translation table OutTab = {(0, σwout,γ ,0), (1, σwout,γ ,1)}γ∈[mARE]. Set Πκ =

{LabCκ,i , Labj , Tgate,OutTab}i∈[mARE·λ], j∈[nARE], gate∈gate(U). The output of the encode op-

eration is Π = {Πκ}κ∈[kARE].

Decode Decode(Π = (Π1, . . . ,ΠkARE)): Compute and output yκ = YaoDecode(Πκ) for κ ∈

[kARE].

Figure 5.1: ARE Scheme Description
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except one i.e. the labels corresponding to the circuit input Cκ. Here too, the labels can be

computed as:

LabCκ,i = σwckt,i,0(1− Cκ,i) + σwckt,i,1(Cκ,i)∥Cκ,i ⊕ bwckt,i

which only require the monomials needed to compute σwckt,i,0, σwckt,i,1 and bwckt,i which is

independent of Cκ. Thus, we have the following theorem:

Theorem 5.2.1. Assuming the existence of a boolean PRG in NC0 with a stretch n1+ϵ for

some constant ϵ > 0 where n is the input length to the PRG (see Definition 5.2.1), then there

exists an ARE scheme satisfying Definition 3.1.8. Further, if the PRG is subexponentially

secure, then so is ARE.
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CHAPTER 6

Partially Hiding Functional Encryption

In this chapter, we discuss the notion of a Partially Hiding Functional Encryption scheme

PHFE (see Definition 2.4.1 for the requirements of a PHFE scheme). This is the only primitive

in the construction that requires an assumption related to bilinear maps, namely the DLIN

assumption. In Section 6.1, we recall some notations as well preliminaries about bilinear

maps. In Section 6.2 we give an overview as well as the construction of such a PHFE scheme.

6.1 Notations and Bilinear Map Preliminaries

By ⊗ we denote the tensor product (Kronecker product) of two matrices. For any matrices

A ∈ Zn1×n2
p denoted as [ai,j]i∈[n1],j∈n2 and a matrix B ∈ Zn3×n4

p , P = A ⊗ B is a matrix in

Zn1·n3×n2·n4
p which looks like the following:

P =


a1,1B a1,2B . . . a1,n2B
...

. . .

an1,1B an1,n2B

 .

We also make use of the mixed product property of tensor product which says that:

(A⊗B) · (C⊗D) = (A ·C⊗B ·D),

for any matrices A, B, C, D with the dimensions compatible with the operations involved.
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6.1.1 Prime Order Bilinear Maps

A bilinear map is a tuple (e,G1,G2,GT , p, g1, g1, gT ) where Gb for b ∈ {1, 2, T} is a group

of order p for some prime, which is generated by gb. It is equipped with an efficiently

computable pairing operation with the following property:

e(gx1 , g
y
2) = gx·yT ,

for all x, y ∈ p. Therefore, the pairing enables quadratic computations in the exponents.

Such bilinear maps have been studied for a long time in cryptography, for a number of

applications (for example [GS08, BKKV10, OT10, BJK15, JR13]) and a number of different

assumptions have been proposed.

Assumptions over Bilinear Maps. Since G1 and G2 are of the same prime order, there

will always exist an isomorphism between the two groups. Depending on whether this iso-

morphism is easy to find, the assumptions can be characterized based on that. For example,

if the isomorphism is hard to find, one can plausibly make the DDH assumption over bilinear

maps [BGdMM05] which says that for any b ∈ {1, 2}:

(gxb , g
y
b , g

x·y
b ) ≈c (g

x
b , g

y
b , g

r
b)

where x, y, r are random elements. This assumption is clearly false if the isomorphism is

efficienctly computable because one can simply compute gx3−b from gxb and then simply pair

it with gyb to compute gxyT .

The main assumption that one makes when there may be an efficiently computable

isomorphism between the groups is called DLIN:{(
gx, gy, gxr, gys, gr+s

)
| x, y, r, s← Zp

}
≈c {(gx, gy, gxr, gys, gz) | x, y, r, s, z ← Zp} ,

where g ∈ {g1, g2}. And thus, DLIN is arguably a weaker assumption to make than DDH since

it may be expected to hold true, even if there is an efficiently computable isomorphism. We
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will make this assumption over symmetric bilinear maps where G1 = G2 and g1 = g2. This

assumption was first introduced in the 2004 work of Boneh, Boyen, and Shacham [BBS04].

Since then DLIN and assumptions implied by DLIN have seen extensive use in a wide variety of

applications throughout cryptography, such as Identity-Based Encryption, Attribute-Based

Encryption, Functional Encryption for degree 2 polynomials, Non-Interactive Zero Knowl-

edge, etc. (See, e.g. [GS08, BKKV10, OT10, BJK15, JR13]). We now formally define the

notions.

Definition 6.1.1 (Syntax of a Bilinear Group Generator). We say that G is a bilinear group

generator if its a polynomial time algorithm that on input the security parameter 1λ outputs

a tuple (e,G1,G2,GT , p, g1, g2, gT ) where p is a Θ(λ) bit prime and is also the order of groups

G1,G2.GT such that:

• The group operation for each of the groups is efficiently computable,

• g1, g2, gT are generators for G1,G2 and GT respectively, and,

• e : G1 × G2 → GT is a non-degenerate, efficiently computable pairing such that gT =

e(g1, g2).

Further, we say that G is a bilinear group generator for symmetric bilinear groups if G1 =

G2 = G and g1 = g2. Note that this can be specified by a shorter tuple of the form

(e,G,GT , p, g, gT ).

We now develop some short hand for denoting vectors of group elements. Consider

a bilinear map PP = (e,G,GT , p, g, gT ). Using such a map, we can encode any matrix

M ∈ Zn1×n2
p in the exponent of the group generator g and denote it as gM, which represents

as the matrix consisting of component wise exponentiation of g to the entries ofM. We define

two shorthands: [M] := gM, and [M]T := gMT . In this notation, for a scalar x ∈ Zp, [x] = gx.

This notation also gives rise to the following shorthand. For any matrices A ∈ Zn1×n2
p and

104



B ∈ Zn2×n3
p denote by e([A], [B]) = [A ·B]T . Next, we define the k-LIN assumption and the

MDDH assumption over the symmetric bilinear maps.

Definition 6.1.2 (k-LIN Assumption). We say that k-LIN holds with respect to G, if for any

polynomial time adversary A, the following advantage is a negligible function:

Advk-LINA (λ) :=
∣∣∣Pr[A(PP, [x1], . . . , [xk], [x1 · r1], . . . , [xk · rk], [r1 + . . .+ rk]) = 1]

− Pr[A(PP,PP, [x1], . . . , [xk], [x1 · r1], . . . , [xk · rk], [z]) = 1]
∣∣∣,

where PP← G(1λ) and x1, . . . , xk, r1, . . . rk, z ← Zp.

The DLIN assumption is the same as k-LIN where k = 2 and the DDH assumption is the

same as k-LIN where k = 1. A related assumption is that of MDDH defined below.

Definition 6.1.3 (MDDHd
k,ℓ Assumption). Let k, ℓ, d ∈ N. We say that MDDHd

k,ℓ holds with

respect to G, if for any polynomial time adversary A, the following advantage is a negligible

function:

Adv
MDDHd

k,ℓ

A (λ) :=
∣∣∣Pr[A(PP, [M], [M · S]) = 1]− Pr[A(PP, [M], [U]) = 1]

∣∣∣,
where PP← G(1λ), M← Zℓ×k

p , S← Zk×d
p and U← Zℓ×d

p .

It was shown in [EHK+13] that for any k ≥ 2

(k − 1)-LIN =⇒ k-LIN =⇒ MDDH1
k,k+1 =⇒ MDDHd

k,ℓ,

for ℓ > k, and d ≥ 1 under a tight security reduction (namely, Adv
MDDHd

k,ℓ

A = Advk−LINA′ ).

Thus, DLIN is the strongest assumption in this family of k-LIN with k ≥ 2. Therefore, we

will show a construction of a PHFE scheme from k-LIN (equivalently MDDH1
k,k+1) for any

k ≥ 2. The construction from DLIN follows as a corollary.
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6.2 Constructing PHFE

The earlier works resulting in the thesis [JLMS19, AJL+19, GJLS21] actually constructed

a PHFE scheme from the DDH assumption over assymetric bilinear maps. Over time, this

result has been refined and simplified. In this thesis, we recall the state of the art scheme

due to Wee [Wee20]. The scheme was actually shown to be secure assuming bilateral k-LIN

however, any symmetric group where k-LIN holds trivially is a group that satisfies bilateral

k-LIN by setting G1 = G2 = G.

6.2.1 Overview

First and foremost, we recall briefly the properties that a PHFE scheme must satisfy.

Recalling the requirement. Recall from Definition 2.4.1 that we would like to construct

a public key PHFE scheme scheme where an encryptor can encrypt vectors of the form (P, S)

where P, S ∈ ZnPHFE
p where p is the prime order of the bilinear group PP. The encryption

time should be linear in nPHFE. Given the keys, we should be able recover [f(P, S)]T where

f is a degree (d, 2)-polynomial where d is any constant. Further, the scheme should satisfy

(selective) single-ciphertext simulation security.

6.2.1.1 Simplified Setting: Constructing Quadratic Functional Encryption

First consider how we can construct a PHFE scheme that supports degree (0, 2)-polynomials

- functions that are independent of P and are quadratic polynomials in S. As a first step,

consider encrypting the message S using k-LIN as:

[v1 ·A1 + S], [v2 ·A2 + S]

where v1,v2 ← Z1×k
p and matrices A1,A2 ← Zk×nPHFE

p . These can be computed publicly

because we will include [A1], [A2] in the public key.
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Let us say that the quadratic function f is of the following form:

f(S) = (S⊗ S) · f⊤

for a vector f ∈ Z1×nPHFE
2

p . Using such a scheme one can compute in the exponent of the

target group:

(v1A1 + S)⊗ (v2A2 + S)f⊤

=f(S) + cross terms

The key point is that the cross terms can then be computed as a linear function on O(k ·nFE)

variables, where the coefficients can be derived from the the function and the public key.

Let us analyze the cross terms in the computation of tensor alone:

(v1A1 + S︸ ︷︷ ︸
:=z1

)⊗ (v2A2 + S︸ ︷︷ ︸
:=z2

)= (v1A1 ⊗ S+ S⊗ v2A2 + v1A1 ⊗ v2A2)︸ ︷︷ ︸
cross terms

+S⊗ S

= v1A1 ⊗ z2 + S⊗ v2A2 + S⊗ S

= (v1 ⊗ z2)(A1 ⊗ InPHFE
) + (S⊗ v2)(InPHFE

⊗A2) + S⊗ S

= (v1 ⊗ z2)||(S⊗ v2) ·M+ S⊗ S

Above,

M =

A1 ⊗ InPHFE

InPHFE
⊗A2

 .

A Useful Tool. Thus, in order to implement the idea we use an Public-Key Inner Product

FE (IPE) with the following properties.

• The security follows from the k-LIN assumption,

• (Canonical Property) The encryption algorithm takes as input vectors [x] encoded

in the exponent, and the key generation takes as input vectors [y] encoded in the

exponent, as opposed to taking them in the clear. The decryption produces [⟨x,y⟩]T .
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• (Selective Single Ciphertext Simulation security). The challenge ciphertext and the

function keys can be simulated knowing
{
[y], [⟨x,y⟩]

}
y
for every y for which keys are

issued.

• (Linear Efficiency) The cipher-text and the keys can generated in time Õ(k ·nIPE) where

Õ hides multiplicative factors in the time it takes to compute group operations.

There are many schemes that can be extended easily to ones satisfying these properties

[ALS16, ABDP15, Lin17]. One such scheme can be found in [Tom19].

Quadratic FE, summing up. With such a tool in hand, the scheme can be described as

follows. The public key consists of:

[A1], [A2], IPE.PK

The master secret key consists of A1,A2, IPE.MSK. The ciphertext encrypting S, consists

of:

[v1A1 + S], [v2A2 + S], IPE.CT = IPE.Enc(PK, [v1 ⊗ z2||S⊗ v2])

The function key for a function f , consists of:

IPE.SKf = IPE.KeyGen(PK, [M] · f)

Finally, in order to decrypt, one can first compute [(v1A1 + S) ⊗ (v2A2 + S)f ]T , and then

compute IPE.Dec(IPE.SKf , IPE.CT) = [(v1A1 + S)⊗ (v2A2 + S)f⊤ − f(S)]T . Using this, one

can unmask [f(S)]T .

Security. Security also follows readily from the k-LIN assumption and simulation security

of IPE (which also follows from k-LIN). Firstly, as such [z1], [z2] hide information about S due

to the security of k-LIN. Secondly, due to the simulation security of IPE scheme, the challenge

ciphertexts and all the function keys can be simulated knowing [M], [z1], [z2] and f(S) for all
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queried functions f because the output of IPE.Dec is [(v1A1+ S)⊗ (v2A2+ S)f⊤− f(S)]T =

[(z1 ⊗ z2)f
⊤ − f(S)]

6.2.2 Construction Details for PHFE

The above intuition can be generalized to a PHFE scheme. The only difference is that now

the coefficient vector f⊤ ∈ ZnPHFE
2

p should be replaced with (f(P))⊤ ∈ ZnPHFE
2

p .

In the previous framework, one can still compute [(v1A1 + S) ⊗ (v2A2 + S)(f(P))⊤]T .

However, to recover [(S ⊗ S)f(P))⊤]T from this we need a way to compute [(v1 ⊗ z2||S ⊗

v2)Mf(P))⊤]T . In order to do that, the idea is that we replace IPE with its partially hid-

ing analogue. Instead of relying on a canonical IPE scheme, we now rely on a canonical

PHFE scheme supporting (d, 1)-polynomials. Assuming k-LIN, we can bootstrap any canon-

ical PHFE scheme supporting (d, 1)-polynomials to one which supports (d, 2)-polynomials,

thereby increasing the degree of the polynomial in the secret component by one. We will

call this scheme as PHFE1. The properties that such a scheme should satisfy are:

• The security should follow from the k-LIN assumption,

• (Canonical Property) The encryption should take as input two vectors: A vector P in

the clear and a vector [S] encoded in the exponent. The setup should take as input

a matrix [M] in the exponent. The function f in the function class should have the

following structure:

f : (P, S)→ S ·M(f(P))⊤

where (f(P))⊤ is a vector, where every component is a degree d polynomial in P. The

decryption must compute [SM(f(P))⊤]T .

• (Selective Single Ciphertext Simulation security). The challenge ciphertext and the

function keys should be simulatable knowing {[M],P, [SM(fi(P))
⊤], fi}i∈[q] where fi’s

are the functions that are queried.
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• (Linear Efficiency) The cipher-text can generated in time Õ(k · nPHFE1) group opera-

tions.

Such a scheme was recently constructed in [AGW20]. We give an overview of this scheme

in Section 6.2.3.

As a result of this, the construction follows the same outline as in the case of quadratic

functions replacing inner product encryption with such a partially hiding functional encryp-

tion. We directly give the formal construction below:

PP ← PPGen(1λ) : Compute (e,G,GT , p, g, gT ) ← G(1λ). Set and output PP =

(e,G,GT , p, g, gT ).

PP← Setup(d, 1nPHFE ,PP) : Sample random matrices A1,A2 ← Zk×nPHFE
p . Generate

M =

A1 ⊗ InPHFE

InPHFE
⊗A2

 .

Then, run PHFE1.Setup(d, 1
2·k·nPHFE ,PP, [M]) → (PHFE1.PK,PHFE1.MSK). Set

PK = (PHFE1.PK, [A1], [A2], [M]) and MSK = (A1,A2,PHFE1.MSK).

CT← Enc(PK, (P, S)) : Sample vectors v1,v2 ← ZnPHFE
p . Compute [z1] = [v1A1+S] and

[z2] = [v2A2 + S]. Compute PHFE1.CT ← PHFE1.Enc(PHFE1.PK,P, [v1 ⊗ S||z1 ⊗

v2]). Output CT = (P, [z1], [z2],PHFE1.CT).

SKf ← KeyGen(MSK, f) : Compute PHFE1.SKf ← PHFE1.KeyGen(PHFE1.MSK, f).

Output SKf = PHFE1.SKf .

out ← Dec(SKf ,CT) : Parse CT = (P, [z1], [z2],PHFE1.CT) and SKf = PHFE1.SKf .

Compute (f(P))⊤ ∈ ZnPHFE
2×1

p , the vector of coefficients, where each coordinate is

a degree d polynomial in P. Compute [α1]T = [(z1 ⊗ z2)(f(P))
⊤]T and [α2]T =

PHFE1.Dec(PHFE1.SKf ,PHFE1.CT). Output [α1 − α2]T .

We now argue correctness:
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Correctness. Observe that:

(v1A1 + S)⊗ (v2A2 + S) = S⊗ S+ v1A1 ⊗ z2 + S⊗ v2A2

= S⊗ S+ (v1 ⊗ z2)(A1 ⊗ InPHFE
) + (S⊗ v2)(InPHFE

⊗A2)

= S⊗ S+ (v1 ⊗ z2||S⊗ v2)M

where the second equality follows from the mixed product property of tensor products.

Multiplying the equation with (f(P))⊤ and rearranging terms we get:

(S⊗ S)(f(P))⊤ = (v1A1 + S)⊗ (v2A2 + S)(f(P))⊤ − (v1 ⊗ z2||S⊗ v2)M(f(P))⊤

Note that due to correctness of the PHFE1 scheme α2 = (v1⊗z2||S⊗v2)M(f(P))⊤. Because

of this, the correctness holds.

Linear Efficiency. Note that the linear effciency holds due to the linear efficiency of

PHFE1. The time to compute [z1], [z2] is Õ(k · nPHFE) where Õ hides polynomial factors in

λ and log2 p. [v1 ⊗ S||z1 ⊗ v2] can also be computed in Õ(k · nPHFE) operations. Finally,

PHFE.CT1 can be computed in Õ(nPHFE · k) operations due to linear efficiency of PHFE1.

This completes the argument.

Security Proof. We prove the following theorem:

Theorem 6.2.1. Assuming k-LIN holds, the PHFE scheme described above is secure. If the

assumption is subexponentially secure, then so is the constructed PHFE scheme.

Proof. We prove this by introducing a number of hybrids. The first hybrid corresponds to

the real security game and the final security game corresponds to the simulator. We then

argue that each hybrid is computationally indistinguishable to each other. Let (P, S) denote

the challenge message output by the adversary and PHFE1.S̃etup,PHFE1.Ẽnc,PHFE1.K̃eyGen

denote the simulation algorithms for PHFE1.
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Hybrid0 : This corresponds to the real game.

Hybrid1 : In this hybrid, we invoke the simulator of PHFE1. Namely,

• Generate (PHFE1.PK,PHFE1.MSK)← PHFE1.S̃etup(d, 1
2·k·nPHFE ,PP, [M]),

• Generate PHFE1.CT← PHFE1.Ẽnc(PHFE1.PK,P), and,

• For any queried functions f generate PHFE1.SKf ← PHFE1.K̃eyGen(PHFE1.MSK, f, [(v1⊗

z2||S⊗ v2)M(f(P))⊤]),

These two hybrids are indistinguishable due to the security of PHFE1 scheme. Since PHFE1

is secure due to k-LIN, these hybrids are indistinguishable to k-LIN.

Hybrid2 : In this hybrid, we generate the keys differently. For any queried functions f

generate PHFE1.SKf ← PHFE1.K̃eyGen(PHFE1.MSK, f, [(z1 ⊗ z2)(f(P))
⊤ − (S⊗ S)(f(P))⊤]).

The above two hybrids are identical as [(z1 ⊗ z2)(f(P))
⊤ − (S⊗ S)(f(P))⊤] = [(v1 ⊗ z2||S⊗

v2)M(f(P))⊤].

Hybrid3 : In this hybrid, we replace [z1] with random as opposed to generating it as [v1A1+

S]. These hybrids are indistinguishable due to k-LIN. Note that to generate keys we need z1

exponentiated as [z1] and z2 in the clear. The reduction receives ([A1], [u]) where u is either

v1A1 or random. The reduction generates [z1] = [u+ S] and samples v2,A2 externally. The

rest of the game is simulated as in the previous hybrid. It outputs whatever the adversary

outputs. If u is v1A1, then the view of adversary is identical to the view in Hybrid2.

Otherwise, the view is identical to the view in Hybrid3. The distinguishing advantage of

the adversary distinguishing these hybrids is the advantage of the reduction in the k-LPN

security game.

Hybrid4 : In this hybrid, we replace [z2] with random as opposed to generating it as [v2A2+

S]. Note that Hybrid3 is also indistinguishable to Hybrid4 due to k-LPN assumption. The

reduction proceeds similarly to the argument made in the last hybrid.

Summing up. As a consequence, we have the following theorem:
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Theorem 6.2.2. Assuming there exists a constant k ∈ N for which k-LIN holds over prime

order symmetric bilinear groups (Definition 6.1.2), then there exists a PHFE scheme satis-

fying Definition 2.4.1.

6.2.3 Constructing PHFE1

In this section, we describe on a high-level how to construct PHFE1. We give an overview

of the scheme that appeared in [AGW20]. Very informally speaking, the work upgrades a

canonical IPE scheme to a PHFE1 scheme using a special object:

A Useful Tool: Partial Garbling Scheme [IW14]. A partial garbling scheme is asso-

ciated for the function class Fpg, that consists of functions f of the form:

f(P, S) = S · f(P)⊤,

where f(P) is a vector whose components are constant degree d polynomials in P.

Such a scheme takes as input f ∈ Fpg, and outputs in polynomial time an affine function

pf (P, S, t) = (S − t||t(L1(P ⊗ Im) + L0)), where L0 ∈ Zt×mn
p , L1 ∈ Zt×m

p depend on the

function f , t ← Z1×t
p is randomly chosen and t are last n cordinates of t. This scheme has

the following properties:

• (Security) pf (P, S, t) when t← Zt
p can be simulated statistically just from f,P, f(P, S),

and,

• (Linear Decoding) One can efficiently form a vector df,P given f,P such that ⟨pf (P, S, t),df,P⟩ =

f(P, S).

Using IPE. Thus, in order to construct PHFE1, a natural approach is to use IPE scheme

to evaluate pf (P, S, t). The construction is extremely simple except that we have a minor

issue: The issue is that we need to generate “random looking” ti for a given ciphertext for

113



every function key for function fi. However, this much randomness can’t be hardcorded in

either the ciphertext or the key. The idea is therefore to rely on k − LIN to derive fresh

randomness. The ciphertext with encode a vector [vA] of small dimension whereas the key

will encode a random matrix [Ti]. The decryption will produce [pfi(P, S,vATi)]T . Since the

randomness is always in the exponent, it is pseudorandom due to k-LIN. The details can be

found in [AGW20, Wee20].

A note on the function class. In the discussion above for PHFE, PHFE1 as well as the

partial garbling scheme we only describe the schemes handling constant degree computations

in the public component. However the construction of the partial garbling scheme [IW14]

actually supports a much wider class of functions in the public input (namely Arithmetic

Branching Programs). As a consequence, the resulting PHFE1 and PHFE described above (as

well as in [Wee20, GJLS21]) can handle a much wider class of functions in the public input.

For us even constant degree computations are enough therefore we omit this specification.
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Rotella. On the concrete security of Goldreich’s pseudorandom generator. In
Thomas Peyrin and Steven Galbraith, editors, ASIACRYPT 2018, Part II,
volume 11273 of LNCS, pages 96–124. Springer, Heidelberg, December 2018.

[CEMT09] James Cook, Omid Etesami, Rachel Miller, and Luca Trevisan. Goldreich’s
one-way function candidate and myopic backtracking algorithms. In Omer
Reingold, editor, TCC 2009, volume 5444 of LNCS, pages 521–538. Springer,
Heidelberg, March 2009.

[CH16] Ran Canetti and Justin Holmgren. Fully succinct garbled RAM. In Madhu
Sudan, editor, ITCS 2016, pages 169–178. ACM, January 2016.

[CHJV15] Ran Canetti, Justin Holmgren, Abhishek Jain, and Vinod Vaikuntanathan.
Succinct garbling and indistinguishability obfuscation for RAM programs. In
Rocco A. Servedio and Ronitt Rubinfeld, editors, 47th ACM STOC, pages
429–437. ACM Press, June 2015.

[CHK+19a] Arka Rai Choudhuri, Pavel Hubácek, Chethan Kamath, Krzysztof Pietrzak,
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