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Protein crystallization is a central activity in the pharmaceutical industry which is cur-

rently estimated to be over a $1 trillion per year industry. Despite extensive experimental

and theoretical work on understanding protein structure and function, there is a lack of

a systematic framework that relies on fundamental understanding of the nucleation and

growth mechanisms of protein crystals at the microscopic level and utilizes such informa-

tion to model and operate protein batch crystallization processes at the macroscopic level.

Motivated by these considerations, this dissertation is focused on developing a hierarchi-

cal and computationally tractable approach to: (a) elucidate the equilibrium fluid-fluid and

fluid-solid phase diagrams of globular proteins via coarse-graining techniques, equilibrium

Monte Carlo (MC) simulations, and finite-size scaling theory, (b) model crystal growth and

morphology via kinetic Monte Carlo (kMC) simulations in order to deduce microscopically
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consistent rate laws, and (c) use these microscopic rate laws on the macroscale in order to

model and control batch crystallization processes.
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Chapter 1

Introduction

The pharmaceutical industry is a $1 trillion industry and has been a major contributor to

both scientific advancement and economic growth. Proteins themselves play a key role as

therapeutics in a number of diseases and protein crystallization is a central activity in the

pharmaceutical industry. Specifically, the production of highly-ordered, high-quality pro-

tein crystals through batch crystallization processes is vital in devising proteins for thera-

peutic purposes. In order to gain a strong understanding of the biochemical role of proteins,

the three-dimensional structure must be determined. Two experimental techniques used to

determine protein structure are nuclear magnetic resonance and X-ray crystallography. For

cases of small molar mass (less than 30,000), nuclear magnetic resonance can be used. On

the other hand X-ray crystallography can be used for cases of large molar mass as long as

the protein crystals are of desired shape and high quality.

Despite extensive experimental and theoretical work on understanding protein structure
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and function, there is lack of systematic framework that relies on a fundamental understand-

ing of the nucleation and growth mechanisms of protein crystals at the microscopic level,

and utilizes such information to model and operate protein batch crystallization processes

at the macroscopic level. Motivated by these considerations, this dissertation does the

following: First (1), equilibrium phase diagrams are determined via coarse-graining tech-

niques, Monte Carlo simulations, and finite-size scaling theory. Next (2), crystal growth

and morphology is investigated through kinetic Monte Carlo (kMC) simulations which will

deduce microscopically consistent rate laws. After that (3), these rate laws are used at the

macroscopic level in conjunction with available nucleation rate data to model a batch crys-

tallizer. The results of the batch crystallizer will be connected back to the microscopic

kinetic Monte Carlo simulations via model predictive control (MPC), thus optimizing the

overall process. These steps are explained in more detail below.

1.1 Equilibrium Monte Carlo Simulation

Based on the McMillan-Mayer description of solutions, coarse graining techniques will be

applied to replace the multi-component globular protein solution with a one-component

system of particles (proteins) with effective interactions. Specifically, the solvent and salt

degrees of freedom will be eliminated and a family of effective pair potentials will be ob-

tained. These effective protein-protein pair potentials will be decomposed and converted

into a parametric form that consists of a superposition of simpler short- as well as long-

range parts. The phase diagrams will be determined by Monte Carlo simulations of a
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reformulated version of the generalized cell model of the Hoover-Ree [55] and the results

will be analyzed through finite-size scaling techniques [99]. Specifically, the freezing tran-

sition is investigated for systems of hard-spheres and Lennard-Jones particles via Monte

Carlo simulations using cell models, thermodynamic integration, and finite size scaling

theory. After that, these simulations are then used to elucidate phase boundaries through

cell model simulation, including finding triple point coexistence.

1.2 Crystal Growth Rate Models

Since crystal growth is a non-equilibrium process, it will be simulated using kinetic Monte

Carlo methods [48]. As is common practice in simulations of crystal growth, the solid-

on-solid (SOS) model will be adopted [27]. In the solid-on-solid approximation, particles

are deposited on the growing crystal without voids or overhangs and the resulting crystal is

highly compacted. The implementation of the kinetic Monte Carlo methodology requires

knowledge of the binding energies, the impingement rate, and the crystallization driving

force. In previous simulations [27] as well as simulations in this dissertation, a range of

values is assigned to the previous parameters until satisfactory agreement with experiments

is obtained for the system under consideration. The calculated crystal growth rates will be

tested against available experimental data and will be used to deduce molecularly correct

microscopic/mesoscopic rate laws.
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1.3 Batch Crystallization and MPC of Crystal Shape and

Size

The crystal growth rate model is then used along with nucleation rate data to model batch

crystallizers through population balance models and conservation equations. These models

are used in conjunction with model predictive control methodologies that account for model

uncertainty to achieve desired crystal shape and size distributions at the end of the batch

crystallization process. The population balance model contains a Gaussian white noise term

that describes the stochastic nature of the process owing to the discrete nature of the crystal

size distribution and accounts for model uncertainty. The design of the feedback control

system to regulate the crystal size distribution employs a novel stochastic model predictive

control (MPC) approach [116]. Specifically, due to the infinite dimensional nature of the

batch crystallization model, the method of weighted residuals with global basis functions

will be first used to derive reduced-order ordinary differential equation models that will be

used for controller design.

1.4 Outline of the Dissertation

Chapter 2 focuses on the precise simulation of freezing transitions. Thermodynamic inte-

gration techniques are the simplest methods to study fluid-solid coexistence. These meth-

ods are based on the calculation of the free energy of the fluid and of the solid phase,
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starting from a state of known free energy which is usually an ideal-gas state. Despite their

simplicity, the main drawback of thermodynamic integration techniques is the large num-

ber of states that must be simulated. In this chapter, the fluid-solid transition is analyzed

for a system of hard spheres, in addition to Lennard-Jones particles on both supercritical

and subcritical isotherms. The analysis is implemented via a simulation method which is

based on a modification of the constrained cell model of Hoover and Ree, which greatly re-

duces the number of simulated states needed in thermodynamic integration. In the context

of hard-sphere freezing, Hoover and Ree simulated the solid phase using a constrained cell

model in which each particle is confined within its own Wigner-Seitz cell. Hoover and Ree

also proposed a modified cell model by considering the effect of an external field of variable

strength. High-field values favor configurations with a single particle per Wigner-Seitz cell

and thus stabilize the solid phase. As in the case of hard spheres, constant-pressure simula-

tions of the fully occupied constrained cell model of a system of Lennard-Jones particles at

a reduced temperature of two indicate a point of mechanical instability at a density which

is approximately 70% of the density at close packing. Furthermore, constant-pressure sim-

ulations of the modified cell model indicate that as the strength of the field is reduced,

the transition from the solid to the fluid is continuous below the mechanical instability

point and discontinuous above. The fluid-solid transition of these systems is obtained by

analyzing the field-induced fluid-solid transition of the modified cell model in the high-

pressure, zero-field limit. The simulations are implemented under constant pressure using

tempering and histogram reweighting techniques. The coexistence pressure and densities

5



are determined through finite-size scaling techniques for first-order phase transitions which

are based on analyzing the size-dependent behavior of susceptibilities and dimensionless

moment ratios of the order parameter.

Chapter 3 focuses on phase transitions, criticality, and three phase coexistence using

constrained cell models. In simulation studies of fluid-solid transitions, the solid phase

is usually modeled as a constrained system in which each particle is confined to move

in a single Wigner-Seitz cell. The constrained cell model has been used in the determi-

nation of fluid-solid coexistence via thermodynamic integration and other techniques. In

this chapter, the phase diagram of such a constrained system of Lennard-Jones particles

is determined from constant-pressure simulations. The pressure-density isotherms exhibit

inflection points which are interpreted as the mechanical stability limit of the solid phase.

The phase diagram of the constrained system contains a critical and a triple point. The

temperature and pressure at the critical and the triple point are both higher than those of the

unconstrained system due to the reduction in the entropy caused by the single occupancy

constraint.

Chapter 4 focuses on direct determination of triple-point coexistence through cell model

simulation. In this chapter, the phase diagram of the generalized model is investigated

through multicanonical simulations at constant pressure and histogram reweighting tech-

niques for a system of 256 Lennard-Jones particles. The simulation data is used to obtain

an estimate of the triple point of the Lennard-Jones system.

Chapter 5 focuses on simulations of phase boundaries using constrained cell models.
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More specifically, this chapter focuses on the determination of the phase diagram of a sys-

tem of particles that interact through a pair potential, ϕ (r), which is of the form ϕ (r) =

4ε
[
(σ/r)2n − (σ/r)n

]
with n = 12. The vapor-liquid phase diagram of this model is es-

tablished from constant-pressure simulations and flat-histogram techniques. The properties

of the solid phase are obtained from constant-pressure simulations using constrained cell

models. Fluid-solid coexistence at a reduced temperature of 2 is established from constant-

pressure simulations of the generalized cell model. The previous fluid-solid coexistence

point is used as a reference point in the determination of the fluid-solid phase boundary

through a thermodynamic integration type of technique based on histogram reweighting.

Since the attractive interaction is of short range, the vapor-liquid transition is metastable

against crystallization. In this chapter, the phase diagram of the corresponding constrained

cell model is also determined. The latter is found to contain a stable vapor-liquid critical

point and a triple point.

Chapter 6 focuses on protein crystal shape modeling and control in batch crystal growth

processes. Proteins play a key role as therapeutics in a number of diseases and protein

crystallization is a central activity in the pharmaceutical industry. Protein crystals, usu-

ally produced through a batch crystallization process, are desired to be of high quality, of

desired shape, and within a narrow size and shape distribution range. Motivated by the

above considerations, this chapter focuses on the modeling and control of protein crystal

shape. The model protein used for this chapter is tetragonal hen egg white lysozyme. The

growth of an individual lysozyme crystal is modeled via kinetic Monte Carlo (kMC) sim-
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ulations comprising adsorption, desorption, and migration events on the (110) and (101)

faces, which are assumed to be independent. The expressions for the rate equations for

each event type are similar to those of Durbin and Feher [27]. Extensive testing of the sys-

tem parameters indicates crossover behavior between the growth rates of the two faces [i.e.,

(110) and (101)], a fact that has also been observed experimentally. A nonlinear algebraic

equation that relates the steady-state growth rate ratios between the (110) and (101) faces,

the temperature and concentration, is derived from the kMC simulation data. This nonlin-

ear equation is then utilized by a model predictive controller which regulates the protein

crystal to desired shapes subject to manipulated input constraints. The proposed method

is shown to successfully regulate protein crystal shape, ranging from equidimensional to

more elongated type of structures, in the presence of arbitrary variations of the protein con-

centration. Furthermore, nucleation and population balance models will be added in order

to account for the macroscopic phenomena of a batch crystallization process.

Chapter 7 focuses on modeling and control of ibuprofen crystal growth and size dis-

tribution. More specifically, this chapter focuses on multiscale modeling and control of a

seeded batch crystallization process used to produce ibuprofen crystals. For the modeling

of the crystal growth process, we consider kinetic Monte Carlo (kMC) simulations com-

prising of molecule adsorption, desorption, and migration type microscopic surface events,

similar to the previous chapter. To account for growth rate variability, a model for growth

rate dispersion (GRD) is proposed, based on available experimental data, which will be

applied at the individual crystal growth level in the kMC simulations. Lastly, a model
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predictive controller (MPC) is developed in order to control the crystal size distribution

of ibuprofen in the batch crystallization process and the MPC closed-loop performance is

compared against constant temperature control (CTC) and constant supersaturation con-

trol (CSC) policies. The proposed MPC is able to deal with the constraints of the control

problem, in addition to minimizing the spread of the crystal size distribution in a superior

fashion compared to the other control methodologies, which improves the crystal product

quality at the end of the batch.

Finally, Chapter 8 summarizes the contributions of this dissertation.
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Chapter 2

Precise Simulation of Freezing

Transitions

2.1 Introduction

Despite its importance in many systems such as protein solutions and colloidal sus-

pensions [35, 93], precise simulation of freezing transitions still remains a challenging

task. Early attempts to determine fluid-solid coexistence comprised a separate calculation

of the free energies of the two phases via thermodynamic integration types of techniques

[55, 56, 52, 57, 36]. In these simulations, the solid phase was modeled as a constrained

cell system or as an Einstein crystal. The constrained cell model method of Hoover and

Ree [55, 56], in which each particle is confined to move in its own Wigner-Seitz cell, is

used less often since it is believed that the integration path encounters anomalies associated
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with phase transitions [36]. Direct simulation techniques comprise constrained fluid λ -

integration [51, 28] and phase switch methods [127]. In the constrained fluid λ -integration

method [51, 28], the solid phase is transformed to the fluid phase through a series of steps

that are associated with: (a) switching on and off particle interactions, and (b) activation

and deactivation of Gaussian potential wells centered at the sites of the solid phase under

consideration. In the phase switch Monte Carlo method [127], the passage from the fluid

to the solid phase is obtained through a series of “smart” moves that facilitates the forma-

tion of “gateway” states in each phase from which the transition to the other phase can be

achieved. This method has been applied to hard-sphere [127] and Lennard-Jones systems

[29, 78].

In their original work associated with the determination of the hard-sphere freezing

transition via thermodynamic integration techniques [55, 56], Hoover and Ree modeled the

solid phase as a constrained system in which each particle is confined to move in its own

Wigner-Seitz cell. Constant-volume simulations of the constrained cell model detected

a point of mechanical instability at a density which is approximately 64% of the density

at close packing [56]. This mechanical instability point appeared in the form of a cusp

or a kink in the pressure–density curve. For densities that are lower than the densities

associated with the cusp, the solid phase cannot survive without the presence of the cell

walls. It should be noted that one usually extends the simulations from the high-density,

nearly-incompressible limit to the low-density, ideal-gas region for which the free energy

can be obtained analytically when using thermodynamic integration techniques based on
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constrained cell models. In the same work, Hoover and Ree proposed a more general

cell model [55] in order to reduce the number of simulations needed in thermodynamic

integration by adding a homogenous external field that controls the relative stability of

the solid versus the fluid phase. High field values force single occupancy configurations

with one particle per Wigner-Seitz cell and thus favor the solid phase. Normal (uncon-

strained) system behavior is restored in the limit of vanishing field. Hence, the constrained

cell model is a special case of the more general or modified cell model. Hoover and Ree

thought that the modified cell model could be used to link the fluid with the solid phase

on a constant-density (or pressure) path by gradually increasing the strength of the field,

thus reducing the number of simulated states in thermodynamic integration techniques. It

is important to emphasize that Hoover and Ree did not exclude the possibility of a terminal

(i.e., critical/Curie) type of point separating continuous from discontinuous behavior. In

their original work associated with hard-sphere freezing, Hoover and Ree investigated the

properties of this model at low densities through cluster expansion techniques. This model

has received very little attention in simulations of freezing transitions.

2.2 The constrained and modified cell models

Consider the determination of the fluid-solid transition of a model system at temperature

T or inverse temperature β = 1/(kBT ), where kB is Boltzmann’s constant. For a system

of N particles, simulations in the constrained cell model are implemented by dividing the

simulation volume, V , into N Wigner-Seitz cells representative of the solid phase under
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consideration. For the case for which the solid phase is of the face-centered cubic (fcc) type,

these N cells are dodecahedra with rhombic faces and N = 4n3 (n = 2,3, . . .) for a cubic

simulation box with periodic boundary conditions. Each particle is assigned and confined to

move in a single cell and particle displacements violating the single occupancy constraint

are rejected by the Metropolis acceptance criteria. For the fluid phase, no such single

occupancy constraint exists and the particles are free to move within the entire simulation

volume V . For N particles at temperature T and pressure p, the isothermal-isobaric partition

functions of the fluid and the solid, ∆ f and ∆s, are given by

∆ f (N, p,T ) = e−µ̃ f N = ∑
i

e−βEi−p̃Vi, (2.1)

∆s(N, p,T ) = e−µ̃sN = ∑
i

∗ e−βEi−p̃Vi, (2.2)

where index i enumerates the states and Ei and Vi are the energy and volume in state i. In

Eqs. (2.1) and (2.2), p̃ = β p, µ̃ f = β µ f , and µ̃s = β µs, where µ f and µs are the chemical

potentials of the fluid and the solid phase at T and p. The star (∗) in Eq. (2.2) signifies the

presence of the single occupancy constraint. In Monte Carlo simulations for both cases, the

elementary updates comprise particle displacements and volume changes that are accepted

with standard Metropolis acceptance criteria [37].

Furthermore, in isothermal-isobaric simulations the volume, V , varies and thus the den-

sity, ρ = N/V , and the volume per particle, v = 1/ρ =V/N, fluctuate about mean values,

⟨ρ⟩ and ⟨v⟩ respectively. Reduced variables are defined as ⟨ρ∗⟩= ⟨ρ⟩σ3 (average reduced

density), ⟨v∗⟩= ⟨v⟩/σ3 (average reduced volume per particle), T ∗ = kBT/ε (reduced tem-

perature), and p∗ = p̃σ3 = β pσ3 = pσ3/kBT (reduced pressure). The definition of the
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reduced pressure used in this work (p∗ = pσ3/kBT ) is different from that used in previ-

ous work (p∗ = pσ3/ε) for similar systems [57, 52, 59]. As stated previously, in order to

reduce the number of simulated states in thermodynamic integration techniques, Hoover

and Ree considered a generalized (or modified) cell model. Specifically, they introduced

a homogenous external field variable that interacts with each of the N Wigner-Seitz cells.

The magnitude of the interaction depends on the specific value of the field and on the num-

ber of particles in a given cell. High values of the field variable favor single occupancy

configurations and thus stabilize the solid phase. Hence, the constrained cell model is a

limiting case of the generalized cell model. The unconstrained system, for which there is

no restriction as to the occupancy of a given Wigner-Seitz cell, is recovered in the limit of

vanishing field. Recently, Nayhouse et al. [98, 85, 86, 84, 87, 89, 88, 54] formulated this

model in the isothermal-isobaric ensemble and investigated its behavior via Monte Carlo

simulations. The results of these simulations are found in this, as well as the next three

chapters.

Consider arbitrary assignments of the N particles into the N Wigner-Seitz cells. The

variable s j is used to describe the occupation status (number of particles) of cell j ( j =

1,2, . . . ,N). Variable s j only takes two values: −1 if cell j contains one particle and zero

otherwise. The number of singly occupied cells of a configuration is given by the variable

|M|, where M = ∑ j s j. Consider the external field variable B, and suppose that the interac-

tion of the field with cell j is Bs j. If b = βB, the isothermal-isobaric partition function, ∆m,
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for N particles at p and T , is

∆m(N, p,T,b) = e−µ̃mN = ∑
i

e−βEi−p̃Vi−bMi . (2.3)

In Eq. (2.3), |Mi| is the number of singly occupied cells in state i and µ̃m = β µm, where

µm is the chemical potential at p, T , and b. In Monte Carlo simulations of a system with

partition function given by Eq. (2.3), the elementary steps comprise particle displacements

and volume changes that are accepted with standard Metropolis acceptance criteria [37].

For particle displacements, the acceptance probability from state i to state j, αi j, must

account for changes in the variable M when the center of a particle moves out of its current

cell and enters a neighboring one. In such a case

αi j = min
[
1,exp

(
−β∆E −b∆M

)]
, (2.4)

where ∆E = E j −Ei and ∆M = M j −Mi.

2.3 Hard spheres

Nayhouse et al. [98, 85] investigated the properties of the modified and the constrained cell

model via constant-pressure simulations for a system of hard spheres. As anticipated, we

found that the constrained cell model (i.e., b = ∞) contains a point of mechanical instability

(see e.g., Fig. 2.1 for the case of hard spheres). The mechanical instability appeared in the

form of an inflection point in the pressure-density isotherms.

The effect of the external field, b, for a system of hard spheres is shown in Fig. 2.2. In

that figure, the variation of the external field, b, with the average fraction of singly occupied
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Figure 2.1: Reduced pressure, β pσ3, vs reduced density, ρσ3, for N = 256 hard-spheres.

(a): fluid (b): constrained cell model. The inset shows the distribution of the reduced

volume for the constrained cell model at β pσ3 = 8.4358. This point corresponds to the

open circle, (◦), on the curve (b) in the main figure.
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cells, −⟨M⟩/N, is investigated for N = 256 hard spheres for four isobars that correspond

to reduced pressures β pσ3 = 7, 9, 10, and 11 respectively. The notation ⟨x⟩ stands for the

ensemble average of the fluctuating variable x under constant pressure. The behavior shown

in Fig. 2.2 is reminiscent to that of a system undergoing a phase transition. As b is reduced

at constant pressure, the passage from the solid to the fluid phase is continuous at low and

intermediate pressures, see, e.g., isobar (a) in Fig 2.2. However, for pressures β pσ3 & 8.5

there is a range of values of the external field b, for which the distribution of volume V , and

of the number of singly occupied cells |M|, both exhibit a two-peak structure separated by a

minimum. The inset of Fig. 2.2 shows such a bimodal volume distribution for β pσ3 = 10

and b = 0.626. The particular value of b has been selected through histogram reweighting

[31, 32] to yield an average fraction of singly occupied cells of 95%. The low-volume peak,

centered at v∗ ∼= 1, corresponds to a solid phase for which the fraction of singly occupied

cells is unity. The high-volume peak, centered at v∗ ∼= 1.1, corresponds to a fluid-like

phase for which the fraction of singly occupied cells is ∼ 82%. Hence, at high pressures

(β pσ3 & 8.5), the passage from the solid to the fluid phase as the field decreases occurs via

a phase transition.

From the previous considerations it follows that the behavior of the isobars shown in

Fig. 2.2 seems to be consistent with the existence of a Curie type of point at 8 . β pσ3 . 9

in which the high-pressure, field-induced fluid-solid transition appears to terminate. The

field-induced fluid-solid transition for hard spheres has been studied for system sizes N =

108 to 1372 and the resulting coexisting densities are shown in Fig. 2.3 together with the
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Figure 2.2: External field variable b, vs average fraction of singly occupied cells −⟨M⟩/N,

for N = 256 hard spheres. The curves correspond to reduced pressures (a) β pσ3 = 7, (b):

β pσ3 = 9, (c): β pσ3 = 10, and (d): β pσ3 = 11. The inset shows the volume distribution

at β pσ3 = 10 and b = 0.626. For this state, the average fraction of singly occupied cells is

95%. This state corresponds to the open circle, (◦), on the curve (c) of the main figure.
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p–ρ curves of the fluid and the solid phase of the hard-sphere system from Fig. 2.1. Phase

coexistence for a given b was determined by locating the value of the pressure for which

the resulting volume distribution (histogram) comprised two peaks of equal area. This type

of calculation is known as the equal weight criterion [12]. The results shown in Fig. 2.3

indicate that this field-induced fluid-solid coexistence lies in between the two p–ρ curves

of the fluid and solid phases. In addition, as the pressure increases, the corresponding

value of the field, b, decreases. Furthermore, as b → 0, the coexisting fluid and solid

densities of the modified cell model approach those of the fluid and the constrained cell

model respectively. This fact will be used in the next subsection to determine fluid-solid

coexistence of the hard-sphere model.

Referring to Fig. 2.3, the location of the terminal point and the resulting type of critical-

ity could be determined by finite-size scaling techniques for second-order phase transitions

[97] for off-lattice, continuum model systems. Such an analysis was not implemented in the

present work since the modified cell model is an artificial one and the thermodynamic states

associated with intermediate values of b are not real, physical states. The sole purpose of

this model is to facilitate transitions from a fluid to a solid phase and thus provide a direct

simulation approach to equilibrium freezing transition of the system under study. Fig. 2.3

suggests that the implied terminal point associated with the the field-induced phase tran-

sition of the modified cell model lies very close to the mechanical instability point of the

constrained cell model which appears as an inflection point in p–ρ curve at β pσ3 ∼= 8.5,

see Fig. 2.1. This issue merits separate investigation however. In this context, it is im-
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Figure 2.3: Phase diagram of the modified cell model for hard spheres in the pressure-

density phase. The solid lines correspond to the fluid and the constrained solid phases [i.e.,

curves (a) and (b) in Fig. 2.1]. The coexisting solid and fluid phases for finite values of b

are shown as points and they correspond to system sizes, N of (◦): 1372, (N): 864, (�):

500, and (•): 256 particles. For reasons of clarity, the results for N = 108 have been omitted

from the figure. The dashed horizontal lines are the tie-lines and they are drawn for clarity.
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portant to emphasize that the underlying mechanism for the field-induced phase transition

of the modified cell model might be related to the mechanical stability of the constrained

cell model. In other words, a solid that is mechanically stable (i.e., it can exist without the

confinement imposed by artificial cell walls) will always be transformed discontinuously

(i.e., through a first-order phase transition) to a fluid phase.

2.3.1 Simulation of Freezing Transitions

In the present subsection, the freezing transition of a system of hard spheres is analyzed

from simulations of the modified cell model. The simplest way to implement such a task

is via thermodynamic integration. As already commented, one calculates the free energy

of both the fluid and the solid phase for a series of states starting from a state of known

free energy which is usually an ideal-gas state. The main drawback of thermodynamic

integration is the large number of states that must be simulated. Since there is no path that

can link the two phases, the simulations must be extended towards a region in which the

two free energies can be determined independently by some other means, e.g., analytically

in the ideal-gas region. However, as Hoover and Ree pointed out [55], the modified cell

model can provide a path of constant pressure (or density) that links the fluid and the solid

phase, thus reducing the number of states that must be simulated. Hence, calculation of

the complete p–ρ isotherms of the two phases is unnecessary. In the present section, the

freezing transition of the hard sphere system is studied by analyzing the field-induced phase

transition of the modified cell model in the limit of vanishing external field via tempering
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[77, 76] and histogram reweighting techniques [31, 32].

According to simulated tempering [77, 76], several replicas of the system are combined

to form an expanded ensemble. In the content of this work, replica m corresponds to a

system of N(= 4n3 with n = 3, 4, 5, and 6) particles at temperature T , pressure pm, and

external field bm. If ∆m = ∆(N, pm,T,bm) is the isothermal-isobaric partition function of

the m-th replica, the partition function of the expanded ensemble that consists of K replicas

is defined as follows:

Φ =
K

∑
m=1

∆m eηm, (2.5)

where ηm is a weighting factor associated with the m-th replica.

Inspection of the partition function Φ in Eq. (2.5) indicates that three types of elemen-

tary updates are possible: particle displacements and volume changes that are accepted with

standard Metropolis acceptance criteria [37] and transitions between the K replicas. The

switches between different replicas are accepted via a heat-bath type of algorithm [96, 92].

In such a case, the transition probability, Pmn, from replica m to replica n is given by

Pmn =
e−βPnV−bnM+ηn

K

∑
r=1

e−βPrV−brM+ηr

. (2.6)

The weighting factor ηm controls the frequency with which replica m occurs in the

course of a simulation. From Eq. (2.5), it follows that the probability, πm, of observing

replica m, irrespective of the particular microscopic configuration is

πm =
1
Φ

∆m eηm. (2.7)
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The weighting factor ηm must be selected such that the probabilities πm are of the same

order of magnitude (i.e., roughly equal). If Gm = −kBT ln∆m is the Gibbs free energy at

T , Pm, and bm, the choice ηm = βGm ensures that each replica is visited with the same

frequency. Since the free energies, Gm, are unknown, an iterative procedure is required

during which the weights are adjusted and refined until all the πm are roughly equal. After

a suitable set of ηm has been so obtained, a long simulation is executed to collect good-

quality statistics. The main outcome of these simulations are histograms of the fluctuating

variables (i.e., V and M) that are manipulated and analyzed through histogram reweighting

[31, 32].

In order to study the field-induced phase transition of the modified cell model [cf. Fig.

2.3], a locus of points must be constructed that approximates the phase boundary in the p–b

plane and from which a set of K replicas can be selected. A simple choice comprises a line

on which the corresponding volume distribution consists of two peaks of equal height. Such

a line may be established from simulations of small systems. As data for larger systems

become available, this line may be adjusted and refined through histogram reweighting.

The choice of this locus is not unique and other possibilities also exist; see, e.g., Ref. [97]

and discussion therein.

The previous methodology was used on a system of hard spheres of N = 108, 256, 500,

864 particles. A set of k = 30–60 replicas (depending on N) was selected for pressures

in the range 8.5 . β pσ3 . 11.6, cf. Fig. 2.3. Although Fig. 2.3 contains results for

N = 1372 particles, these simulations were not extended towards b → 0 since such a task
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would require a large number of replicas with a substantial increase of the computational

time. The weights ηm were estimated from simulations of small systems (N = 108–256)

and used as initial estimates for larger systems (N ≥ 500) via rescaling. Once a satisfactory

set of weights was determined for a given N, a long simulation was executed to obtain good-

quality statistics. Each simulation was executed in sweeps, where one sweep corresponds to

N = 4n3 elementary updates: (40% displacements, 40% volume changes, and 20% replica

switches). The total length of each simulation in terms of sweeps depends on the number of

simulated replicas and the number of entries required to obtain histograms free of spurious

structure in order to implement a reliable analysis via histogram reweighting. Typically, a

single histogram requires (5–20)×106 entries, depending on system size (i.e., N). Errors

were estimated by dividing each simulation into 10 blocks. The reported uncertainties

correspond to two standard deviations of the respective block averages.

For solid-like configurations associated with low values of the external field (i.e., b <

0.1) and low volumes (i.e., v∗ < 1.02), the particles may drift away from their respective

Wigner-Seitz cells. This happens because the low value of the field cannot stabilize the

particles in their Wigner-Seitz cells. In previous simulations of solid phases, either through

the constrained cell model or the Einstein crystal, the previous problem was alleviated by

maintaining the center of mass of the crystal fixed and applying appropriate corrections

to recover the properties of the unconstrained system [36, 102, 57]. In the present work,

instead of maintaining a fixed center of mass, a different type of constraint is applied in the

simulations. Specifically, for low values of the external field (b < 0.1) and for low volumes
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(v∗ < 1.02), configurations other than those associated with single occupancy are prohib-

ited. Transitions that violate this constraint are automatically rejected by the acceptance

criteria and the current state is counted again. For higher values of b (b & 0.1) and for low

volumes, such a constraint is unnecessary since the magnitude of the field is sufficient to

prevent drifting.

2.3.2 Data Analysis and Phase Coexistence

As already commented, the freezing transition of the system under consideration can be

studied by analyzing the field-induced phase transition of the modified cell model in the

limit of vanishing field. The volume distributions at fluid-solid (fcc) coexistence for a sys-

tem of hard spheres, obtained using the procedure outlined in the previous section, are

shown in Fig. 2.4 for N = 256, 500, and 864 particles. The distribution for N = 108 is

not shown for clarity. In the context of this work, phase coexistence is determined by find-

ing (through histogram reweighting) the value of the pressure for which the corresponding

volume distribution consists of two peaks of equal area [12]. This procedure yields N-

dependent pressures that can be extrapolated towards N → ∞ using finite-size scaling tech-

niques for first-order phase transitions [9, 8, 6, 7]. In the following paragraphs, additional

estimators for the pressure at coexistence are developed in order to achieve better precision.

The variation of the reduced volume per particle, v∗, with reduced pressure, β pσ3, at

the transition, is shown in Fig. 2.5. The rounding effects associated with phase transitions

in the finite systems are clearly visible in this figure. Whereas in the thermodynamic limit
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Figure 2.4: Distribution of reduced volume per particle, v∗, for the hard sphere system at

fluid-solid (fcc) coexistence (b = 0). (�): N = 256, β pσ3 = 11.3063±0.0070; (N): N =

500, β pσ3 = 11.4075±0.0078; (◦): N = 864, β pσ3 = 11.4630±0.0085; The distribution

for N = 108 (not shown in the figure for clarity) corresponds to β pσ3 = 11.0851±0.0030.
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Figure 2.5: Variation of the reduced volume per particle, v∗, with reduced pressure, β pσ3,

at fluid-solid (fcc) coexistence for the hard sphere system. From left to right, the curves

correspond to number of particles (•): N = 108, (�): N = 256, (N): N = 500, and (◦):

N = 864.

(N → ∞) the volume is discontinuous at the transition, for finite systems it varies gradu-

ally and continuously from the low–p fluid phase to the high–p solid phase. This gradual

variation becomes sharper and sharper as the system size, N, increases. The same rounding

effects are also observed in the variation of the fraction of singly occupied cells, −⟨M⟩/N,

with pressure, shown in Fig. 2.6. In that case, the fraction of singly occupied cells rises

smoothly from ∼72% (fluid) to complete single-cell occupancy (solid).

In addition to the N-dependent coexistence pressure determined through the equal area
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Figure 2.6: Variation of the fraction of singly occupied cells, −⟨M⟩/N, with reduced pres-

sure, β pσ3, at fluid-solid (fcc) coexistence for the hard sphere model. The labeling of the

curves is the same as that of Fig. 2.5.
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criterion [cf. Fig. 2.4], other estimators can also be determined by considering second- and

higher-order derivatives of the Gibbs free energy. The susceptibility, χ2, is defined as

χ2 =
1
N

∂ 2 ln∆
∂ (β p)2 =−∂ ⟨v⟩

∂β p
=

1
N
⟨(δV )2⟩, (2.8)

where δV = V −⟨V ⟩. This function, which is essentially the slope of the v–p curves in

Fig. 2.5, is plotted in Fig. 2.7 in terms of the pressure. In the limit of infinite size, the v–p

curve is discontinuous at the transition, and hence χ2 is a δ -function. For finite systems,

χ2 is a “rounded” δ -function as it is evident in Fig. 2.7. Finite-size scaling theory for

first-order phase transitions [9, 8, 6, 7] asserts that the maximum, χ(max)
2 , and the pressure

that corresponds to the maximum, p(max), have the following scaling behavior

χ(max)
2 ∼ N, (2.9)

p(max)− p(∞) ∼ 1
N
, (2.10)

in the limit of large N. In Eq. (2.10), p(∞) is the coexistence pressure in the N → ∞ limit.

The scaling behavior of the susceptibility maximum, χ(max)
2 , is shown in the inset of Fig.

2.7. It is observed that χ(max)
2 is linear in N in accord with the scaling ansatz, Eq. (2.9). The

N-dependent pressures, p(max), that correspond to the maxima are nearly indistinguishable

from those obtained through the equal area criterion. Consideration of the behavior of the

slopes of the curves in Fig. 2.6 leads to similar conclusions.

To this end, consider the third-order susceptibility, χ3, defined as

χ3 =
∂ χ2

∂β p
=

1
N

∂ 3 ln∆
∂ (β p)3 =− 1

N
⟨(δV )3⟩. (2.11)
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Figure 2.7: Variation of the susceptibility, χ2, with reduced pressure, β pσ3, at the fluid-

solid coexistence for the hard sphere system. The labeling of the curves is the same as that

of Fig. 2.5. The inset shows the behavior of the susceptibility maxima with system size, N.
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Figure 2.8: Variation of the 3rd-order susceptibility, χ3, with reduced pressure, β pσ3, at

the fluid-solid coexistence for the hard sphere system. The curves correspond to number

of particles (�): N = 256, (N): N = 500, and (◦): N = 864. The curve that corresponds to

N = 108 is not shown for clarity.
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In the limit of infinite size, χ2 is a δ -function and hence χ3 diverges to +∞ (−∞) as the

coexistence pressure is approached from below (above). For finite systems, these singular-

ities are rounded. The behavior of χ3 with pressure is shown in Fig. 2.8. This function is a

continuous function of the pressure with two extrema points, a maximum and a minimum

respectively. The pressures associated with these two extrema can be used to obtain an

estimate of the coexistence pressure in the N → ∞ limit according to the scaling ansatz,

Eq. (2.10). Higher-order susceptibilities can also be considered to provide additional esti-

mators. However, these high-order susceptibilities are calculated by evaluating high-order

moments of the volume distribution function [see, e.g., Eq. (2.11)], which are not as accu-

rate as low-order moments.

The value of the coexisting pressure in the thermodynamic limit can be obtained by ex-

trapolating the N-dependent estimates towards N → ∞. The revelent scaling plot is shown

in Fig. 2.9. Since the fluid-solid transition of hard spheres is a first-order transition, the rev-

elent scaling variable is X = N−1. The data shown in Fig. 2.9 correspond to N-dependent

pressures obtained from the equal area construction (see Fig. 2.4) and those associated

with the two extrema of the third-order susceptibility χ3 (see Fig. 2.8). The results so ob-

tained conform to a linear fit with satisfactory precision and yield β pσ3 = 11.502±0.019

in the limit of infinite size, which compares well with previous estimates for the same sys-

tem [56, 17, 127, 29]. The three estimates shown in Fig. 2.9 approach the infinite system

value from below, i.e., from lower pressures. This situation is different than that observed

in second-order transitions for which one can define estimators that approach the infinite
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system value from both directions; see, e.g., Fig. 5 of Ref. [97].

The volumes of the coexisting fluid and solid phases can be determined by a simi-

lar scaling procedure such as the one used for the pressure in Fig. 2.9. The uncertainty

in the N-dependent value of the pressure, however, causes considerable scatter in the N-

dependent values of the volumes. A similar situation has also been observed in the deter-

mination of the critical density in second-order phase transitions, see, e.g., Fig. 6 of Ref.

[97]. Nonetheless, estimates for the coexisting volumes can be obtained by implementing

constant-pressure simulations for the fluid and the solid phase at the best estimate of the

coexisting pressure (β pσ3 = 11.502) for large systems (N = 1372 to 4000). Accounting

for the calculated uncertainty in the pressure, these computations yielded the following es-

timates: v∗fluid = 1.0659± 0.0010 and v∗fcc = 0.9651± 0.0009. These values are in good

accord with previous estimates for the same system [56, 17, 127, 29].

2.4 Supercritical Lennard-Jones

Since the behavior of supercritical Lennard-Jones is analogous to that of the hard-sphere

model, the previous methodology has been applied to a system of Lennard-Jones particles

at a reduced temperature T ∗ = 2. Since the critical temperature of the Lennard-Jones sys-

tem is T ∗ ∼= 1.3 [126], the isotherm at T ∗ = 2 is supercritical. First consider now a system

of N particles of diameter σ that interact according to a pair-wise additive potential, ϕ ,
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Figure 2.9: Determination of the fluid-solid coexistence pressure for the hard sphere sys-

tem. The N-dependent coexistence pressures are plotted vs the scaling variable X = N−1.

The open circles, (◦) correspond to the coexistence pressures obtained from the equal-area

criterion (see Fig. 2.4). The filled triangles, (N), and open squares, (�), correspond to the

pressures at the extrema of the 3rd-order susceptibility (see Fig. 2.8). The solid lines are

linear fits.
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which is of the Lennard-Jones form, i.e.,

ϕ(r) = 4ε
[(σ

r

)2n
−
(σ

r

)n
]
, (2.12)

with n = 6. Also, in Eq. (2.12), r is the distance between two particles and ε > 0 is

the depth of the potential in units of energy. As is common practice in simulations under

periodic boundaries, the potential energy of a configuration is calculated by explicitly enu-

merating all pair terms for distances up to one-half of the length of the simulation box and

adding a tail correction for all interactions associated with distances greater than one-half

the box length [37]. The long-range correction term is approximate since it assumes that

the radial distribution function is unity for distances greater than one-half of the length of

the simulation box, which is not necessarily true for small systems or for the solid phase.

However, since the long-range part of ϕ(r) decays rapidly to zero at large r (i.e., ∼ r−6),

the effects associated with long-range interactions become progressively smaller as the size

of the simulated system increases. For cases for which the long-range part of the pair po-

tential decays slowly to zero at large r (such as ionic systems, for instance), the previous

assertion is not true and special summation techniques (e.g., Ewald sums) are required.

As in the case of hard spheres (i.e., Section 2.3), there is a region of pressures, 5 . p∗ .

6, for which the volume distribution of the solid phase has a bimodal structure, see inset

of Fig. 2.10, for instance. The shape of the volume distribution resembles that of a system

undergoing some type of phase transition. The pressure–density isotherm of the solid phase

exhibits an inflection point at pressure p∗ ∼= 5.64, which corresponds to a density ρ ∼=

0.70ρ0, where ρ0σ3 =
√

2 is the value of the reduced density at close packing. As in
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Figure 2.10: Reduced pressure, p∗, vs average reduced density, ⟨ρ∗⟩, for N = 256 Lennard-

Jones particles at T ∗ = 2. (a): fluid; (b): constrained cell model. The inset shows the

distribution of the reduced volume for the constrained cell model at p∗ = 5.644. The state

shown in the inset corresponds to the open circle, (◦), on curve (b) in the main figure.

the case of hard spheres, a solid phase at densities ρ < 0.7ρ0, cannot survive without the

confinement imposed by the walls of the Wigner-Seitz cells and it thus rapidly melts to a

disordered, fluid-like phase.

The effect of the external field b, at constant pressure for N = 256 Lennard-Jones par-

ticles is shown in Fig. 2.11. Specifically, the variation of the field variable, b, in terms

of the average fraction of singly occupied Wigner-Seitz cells, −⟨M⟩/N, is plotted in Fig.
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2.11 for five isobars at pressures p∗ = 5, 6, 7, 8, and 9. Once again we see similar be-

havior to the system of hard-spheres. That is, as b is reduced at fixed pressure from high

values (b ∼ 4) towards zero, the transformation of the solid to the fluid phase is continu-

ous at low and intermediate pressures, see, e.g., isobar p∗ = 5 in Fig. 2.11. Additionally,

at high-field values, only single occupancy (i.e., |M| = N) configurations survive and the

system is in the solid phase. At higher pressures, p∗ & 6, the shape of the isobars is similar

to that of a system undergoing a first-order phase transition. The simulations indicate that

there is a range of values of the field b, for which the distribution of volume V , and of the

number of singly occupied cells |M|, both consist of two maxima (peaks) separated by a

minimum. The inset of Fig. 2.11 shows the shape of the volume distribution for b = 0.218

and p∗ = 9. For the state shown in the inset of Fig. 2.11, the average fraction of singly

occupied cells is 90%. The specific value of b (b = 0.218) was found through histogram

reweighting. The low-volume peak of the distribution shown in the inset of Fig. 2.11 is

centered at v∗ ∼= 0.905 and it corresponds to a phase with one particle per Wigner-Seitz

cell, i.e., solid. The high-volume peak, centered at v∗ ∼= 0.965 corresponds to a disordered

phase with an average fraction of singly occupied cells ∼ 76%. Fig. 2.11 thus indicates that

at high pressures, p∗ & 6, the transformation of the high-b, ordered, solid-like phase to the

low-b, disordered, fluid-like phase occurs via a first-order phase transition. Furthermore,

as the pressure increases, the order-disorder phase transition occurs at lower field values.

This point is reinforced by Fig. 2.12 which shows the results for the coexisting densities of

the ordered (solid-like) and the disordered (fluid-like) phase. This figure also includes the
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relevant portion of the p–ρ isotherms of the fluid and the solid phase of the Lennard-Jones

model at T ∗ = 2. Phase coexistence for a given b was defined by the equal-weight criterion,

as said earlier.

The coexisting densities shown in Fig. 2.12, once again appear to be converging to-

wards a terminal point in the neighborhood of the mechanical stability point of the p–ρ

isotherm of the solid phase which is shown as a bullet, (•), in Fig. 2.12.

Before analyzing the fluid-solid transition of the Lennard-Jones model in the high-p,

b → 0 limit of the field-induced, order-disorder transition of the modified cell model, it is

instructive to comment on the usefulness of this model in thermodynamic integration tech-

niques. In the context of constant-pressure simulations, one typically calculates free energy

(e.g., chemical potential) differences in terms of pressure, using histogram reweighting, for

both the fluid and the solid phase, for a series of states starting from a reference state of

known free energy. The reference state is often a p → 0, ρ → 0 ideal-gas state. As already

commented, the main drawback of these techniques is the large number of simulated states.

Since there is no direct path that can link the two phases at a finite pressure (or density),

thermodynamic integration requires the complete calculation of the fluid- and solid-phase

isotherms from the low-p ideal-gas region, to the high-p nearly incompressible region, see,

e.g., Fig. 2.10. Hoover and Ree [55] introduced the modified cell model as a means to pro-

vide a constant-p (or a constant-ρ) path that can connect the solid and the fluid phase, thus

reducing the number of simulated states in thermodynamic integration techniques. Refer-

ring to Fig. 2.12 for instance, one can independently simulate the fluid and the solid phase
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Figure 2.11: External field variable b, vs average fraction of singly occupied cells −⟨M⟩/N,

for N = 256 Lennard-Jones particles at T ∗ = 2. The curves from top to bottom correspond

to reduced pressures p∗ = 5, 6, 7, 8, and 9, respectively. The inset shows the volume

distribution at p∗ = 9 and b = 0.218. For this state, the average fraction of singly occupied

cells is 90%. This state corresponds to the open circle, (◦), on the p∗ = 9 isobar of the main

figure.
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Figure 2.12: Phase diagram of the modified cell model for the Lennard-Jones system at

T ∗ = 2 in the pressure-density plane. The solid lines correspond to the fluid and the con-

strained solid phases [i.e., curves (a) and (b) in Fig. 2.10]. The coexisting solid and fluid

phases for finite values of b are shown as points and they correspond to system sizes, N, of

(◦): 2048, (N): 1372, and (�): 864. The dashed horizontal lines are tie-lines and they are

drawn for clarity. The point shown as bullet, (•), corresponds to the inflection point of the

T ∗ = 2 isotherm of the constrained cell model.
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for pressures p∗ > 5 and connect the chemical potentials of both phases at p∗ = 5 through

simulations of the modified cell model. In fact, the previous task can be performed at a

pressure which is higher than p∗ = 5, provided that the averaging is done over the appro-

priate bimodal distributions (such as that shown in the inset of Fig. 2.11, for instance).

2.4.1 Analysis of the freezing transition of supercritical Lennard-Jones

In the present subsection, the high-p, b → 0 limit of the field-induced order-disorder transi-

tion of the modified cell model (see Fig. 2.12) is used to analyze the freezing transition of

the Lennard-Jones model system on the T ∗ = 2 isotherm. The volume distributions at fluid-

solid (fcc) coexistence, obtained through the equal-weight criterion [12], are shown in Fig.

2.13 for N = 864 and 2048 particles. To avoid clutter, the distributions for the other systems

are not shown. In the context of the equal-weight criterion, size-dependent phase coexis-

tence may be defined by locating (through histogram reweighting) the pressure for which

the resulting volume distribution consists of two peaks of equal area. The N-dependent

pressures and densities so obtained, can be extrapolated towards the thermodynamic limit

(N → ∞) using finite-size scaling techniques for first-order phase transitions [9, 8, 6, 7].

Similar to the previous case of hard-spheres, additional estimators for the pressure and the

densities based on second- and higher-order derivatives of the partition function (or the

Gibbs free energy), will be investigated to attain satisfactory precision.

The behavior of the first-order derivatives of the partition function ∆m [cf. Eq. (2.3)],
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Figure 2.13: Distribution of reduced volume per particle, v∗, for the Lennard-Jones system

at fluid-solid (fcc) coexistence at T ∗ = 2, determined through the equal-weight criterion.

The distributions correspond to (◦): N = 2048, and (�): N = 864.
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the average volume per particle and the average fraction of singly occupied cells,

⟨v⟩=− 1
N

∂ ln∆
∂β p

and − ⟨M⟩
N

=
1
N

∂ ln∆
∂b

, (2.13)

is shown in Figs. 2.14 and 2.15 in terms of the reduced pressure, p∗. In the thermodynamic

limit (N → ∞), both ⟨v⟩ and ⟨M⟩/N are discontinuous at the transition. For finite systems,

however, they vary continuously at the transition and this gradual variation gets progres-

sively sharper as N increases. The fraction of singly occupied cells, shown in Fig. 2.15,

increases continuously from ∼ 73% in the low-p fluid phase to 100% in the high-p solid

phase. The behavior of the functions shown in Figs. 2.14 and 2.15 is generally referred to

as the rounding and shifting effect [9, 8, 6, 7] associated with phase transitions for finite

systems.

In the context of hard-sphere freezing, the second- and third-order derivatives (suscepti-

bilities) of the partition function are given by 2.8 and 2.11. The second-order susceptibility,

χ2, which is the negative slope of the v–p isotherms in Fig. 2.14, is shown in Fig. 2.16 in

terms of pressure, p∗. In the limit of infinite size (N → ∞), the v–p isotherm has a jump

discontinuity at the transition and hence χ2 is a δ -function. For finite N however, χ2 is a

rounded and shifted δ -function as is evident in Fig. 2.16. The third-order susceptibility,

χ3, shown in Fig. 2.17, is the slope of χ2 [cf. Eq. (2.11)]. Since χ2 is a δ -function in

the thermodynamic limit, χ3 diverges to +∞ (−∞) as the transition is approached from

below (above). For finite systems, these ±∞ singularities are rounded and shifted, as Fig.

2.17 indicates. Specifically, χ3 is a continuous function with two extrema points, a low-p

maximum and a high-p minimum, respectively. The location of the extrema points can
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Figure 2.14: Variation of the average reduced volume per particle, ⟨v∗⟩, with reduced pres-

sure, p∗, at fluid-solid (fcc) coexistence for the Lennard-Jones system at T ∗ = 2. From left

to right, the curves correspond to number of particles (•): N = 500, (�): N = 864, (N):

N = 1372, and (◦): N = 2048.
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Figure 2.15: Variation of the average fraction of singly occupied cells, −⟨M⟩/N, with

reduced pressure, p∗, at fluid-solid (fcc) coexistence for the Lennard-Jones system at T ∗ =

2. The labeling of the curves is the same as that of Fig. 2.14.
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be used to obtain estimates of the transition pressure through finite-size scaling techniques

for first-order phase transitions [9, 8, 6, 7]. Additional susceptibilities may be defined by

evaluating the corresponding derivatives of the partition function with respect to the field,

b. The resulting extrema points however, are nearly indistinguishable from those shown

in Figs. 2.16 and 2.17. Furthermore, fourth- and higher-order derivatives of the partition

function may be defined to provide additional extrema points. However, these high-order

derivatives are evaluated through high-order moments of the distribution of states [see, e.g.,

Eq. (2.11) for χ3] which are not as accurate as low-order moments.

Finite-size scaling theory [9, 8, 6, 7] is a phenomenological approach that describes the

rounding and shifting effects associated with phase transitions for finite systems (see, e.g.,

Figs. 2.14–2.17) in terms of universal scaling laws. It can be used to obtain estimates of the

coexisting properties from data obtained on finite systems through extrapolation towards

the limit of infinite size. Finite-size scaling theory for first-order phase transitions, assumes

that the distribution of the order parameter (e.g., volume, density) is a superposition of two

gaussian distributions centered at the two coexisting phases, see, e.g., Fig. 2.13. Based

on the double-gaussian approximation for the distribution of the order parameter, it can be

readily demonstrated that the extremum (maximum, say) of a susceptibility, χ(max), and the

pressure at the extremum, p(max), have the following scaling behavior: In Eq. (2.10), p(∞)

is the coexistence pressure in the N → ∞ limit. The scaling laws, Eqs. (2.9) and (2.10), are

strictly valid for large N, since terms associated with corrections to scaling are neglected.

These corrections to scaling terms are important for small/moderate values of N and they
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Figure 2.16: Variation of the susceptibility, χ2, with reduced pressure, p∗, at fluid-solid

coexistence for the Lennard-Jones system at T ∗ = 2. The labeling of the curves is the same

as that of Fig. 2.14. The inset shows the behavior of the susceptibility maxima with system

size, N.
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Figure 2.17: Variation of the 3rd-order susceptibility, χ3, with reduced pressure, p∗, at

fluid-solid coexistence for the Lennard-Jones system at T ∗ = 2. The curves correspond to

number of particles (�): N = 864, (N): N = 1372, and (◦): N = 2048.
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originate primarily from mixed-phase configurations that are intermediate (e.g., between

the two peaks, see Fig. 2.13) to those of the two bulk coexisting phases.

The scaling behavior of the maximum of χ2 is shown in the inset of Fig. 2.16 for

N = 108 to 2048. The maximum of χ2 obeys the scaling ansatz, Eq. (2.9), with satisfactory

accuracy. As already emphasized, the coexistence pressure in the thermodynamic limit,

p(∞), can be estimated by extrapolating the N-dependent values, p(max), to N →∞ according

to Eq. (2.10). The relevant scaling plot is found in Fig. 2.18. In that figure, three pressure

estimators are shown: the one obtained through the equal-weight criterion and the positions

of the two extrema of χ3 (see Fig. 2.17). The pressure associated with the maximum of

χ2 is nearly indistinguishable from that obtained through the equal-weight criterion. The

anticipated linearity of p(max) vs 1/N [cf. Eq. (2.10)] is observed for N > 256. This

behavior is distinctly different from that seen for hard spheres for which linearity could be

seen for N as low as 108.

The main contributing factor for the peculiar behavior of the pressure estimators in

Fig. 2.18 for small N is the approximate nature of accounting for tail (e.g., long range)

corrections in the evaluation of the energy. A similar behavior was also seen by Errington

[29] in simulations of the freezing transition of the same system for N = 108, 256, and

500, via the phase switch method. Errington accounted for tail corrections via the standard

way (as was done in this work) and via a lattice-based type of correction for solid-like

configurations. The two results are different but the difference gets progressively smaller

as N increases. For example, for N = 500 the two results differ by ∼ 0.2%. Hence, in
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Figure 2.18: Determination of the fluid-solid coexistence pressure for the Lennard-Jones

system at T ∗= 2. The N-dependent coexistence pressures are plotted vs the scaling variable

X = N−1. The filled circles, (•), correspond to the coexistence pressures obtained from the

equal-area criterion (see Fig. 2.13). The open circles, (◦), and squares, (�), correspond to

the pressures at the extrema of the 3rd-order susceptibility (see Fig. 2.17). The solid lines

are linear fits. The points that correspond to N = 108 and 256 particles are excluded from

the fit. Dotted lines are drawn for visual clarity. Statistical uncertainties do not exceed the

size of the symbols. The points shown as open triangles, (△), are the results of the phase

switch method [29] for the same system.
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order to obtain the coexistence pressure, one must consider sizes N & 500, a point that

was also emphasized by Errington [29]. Consequently, only the results for N = 500, 864,

1372, and 2048 are fitted in terms of the scaling variable X = N−1. As it can be seen in

Fig. 2.18, the data for N > 500 conform to a linear fit with satisfactory precision and yield

p∗ = 10.366±0.004 in the limit of infinite size.

The determination of the densities of the two coexisting phases can be done by an

analogous procedure as that of the pressure shown in Fig. 2.18. The simplest density

estimator is associated with the N-dependent values of the first-moments of the two peaks

of the volume distribution at coexistence, determined through the equal-weight criterion,

see Fig. 2.13. Additional estimators may be formulated by considering dimensionless

moment ratios of the order parameter. These ratios were introduced in phase transition

studies of magnetic models [112, 11, 24, 10] (such as Ising, for instance) and were used

by Fisher and coworkers [64, 63] to develop scaling algorithms for precise simulation of

criticality in asymmetric fluids. The most common of these ratios is the 4-th order ratio,

Q4, which, in the context of this work, may be defined as follows:

Q4 =
⟨y2⟩2

⟨y4⟩
with y = v−⟨v⟩. (2.14)

For single-phase states, Q4 → 1/3 as N →∞ [112, 11, 24, 10, 64, 63]. For two-phase states,

analysis based on the double-gaussian approximation indicates that this ratio has a singular

behavior [112, 11, 24, 10, 64, 63]. Specifically, as the transition is approached from the

single-phase region, Q4 jumps discontinuously from 1/3 to zero. Furthermore, for two-

phase states, Q4 varies between 0 and 1. The maximum value of unity corresponds to an
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average density, ⟨ρ⟩, which is the arithmetic mean of the densities for the two coexisting

phases. For finite systems, however, the behavior of Q4 around the discontinuities and the

maximum is rounded and shifted.

The behavior of Q4 is shown in Fig. 2.19 in terms of the average reduced density ⟨ρ∗⟩=

1/⟨v∗⟩ for several values of N. While at the thermodynamic limit the jump discontinuities

from Q4 = 1/3 to Q4 = 0 occur at the respective coexisting densities, they are rounded

and shifted for finite systems, as is evident in Fig. 2.19. The same is also true for the

maximum of Q4. The locations of the two minima in Fig. 2.19 serve as an estimator for the

densities of the two coexisting phases. In addition to Q4, other types of ratios can also be

constructed. In the present work, the following 6-th order ratio has also been considered:

Q6 =
⟨y2⟩3

⟨y6⟩
with y = v−⟨v⟩. (2.15)

The behavior of Q6 is analogous to that of Q4 shown in Fig. 2.19. Specifically, it consists

of two rounded and shifted minima separated by a maximum. The densities associated with

the two minima yield another estimator for the densities of the two coexisting phases. All

these estimators can be extrapolated towards N → ∞ according to the scaling ansatz, Eq.

(2.10).

The scaling plots of densities of the coexisting phases are shown in Fig. 2.20 (fluid) and

Fig. 2.21 (solid). The three estimators shown in these two figures correspond to densities

obtained through the equal-weight criterion (cf. Fig. 2.13) and to those associated with

the minima of Q4 (cf. Fig. 2.19) and Q6. As in the case of the pressure in Fig. 2.18, the

peculiar behavior of the data in Figs. 2.20 and 2.21 for small N is due to the approximate
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Figure 2.19: Dimensionless moment ratio, Q4, vs average reduced density, ⟨ρ∗⟩, for the

Lennard-Jones system at T ∗ = 2. The curves correspond to number of particles (•): N =

500, (�): N = 864, (N): N = 1372, and (◦): N = 2048.
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nature of accounting for tail corrections in the energy evaluations. The points associated

with N = 108 and 256 are thus excluded from further analysis. The N ≥ 500 data for

the densities appear to obey the anticipated linearity with respect to the scaling variable

X = N−1. A close look at the ordinates in Figs. 2.20 and 2.21, however, indicates that the

densities associated with the minima of Q4 and Q6 extrapolate to a value that is slightly

different than that of the density obtained through the equal-weight criterion. The reason

for this behavior is related to the way with which these estimators are calculated. Recall

that the calculation of Q4 and Q6 entails high-order moments [cf. Eqs. (2.14) and (2.15)]

which are not as accurate as low-order moments. The densities associated with the squares

in Figs. 2.20 and 2.21 are the first moments of the peaks of the distributions shown in Fig.

2.13. Thus, the best estimate of the coexisting densities can be obtained by considering

data associated with low-order moments, e.g., equal-weight data. The difference between

the estimate originating from the equal-weight data and that associated with Q4 and Q6,

is indicative of the precision (or the resolution) achieved with the present level of analysis

and it also serves as an error estimate of the respective values. The equal-weight data thus

yield: ρ∗
fluid = 1.0638±0.0004 and ρ∗

fcc = 1.1330±0.0005. Better precision would require

much longer simulations for system sizes much larger than N = 2048.

In Figs. 2.18, 2.20 and 2.21, the results of this work are compared to those of the phase

switch method [29]. As already commented, previous work via the phase switch method

considered systems of N 6 500 particles and only used the equal-weight construction to

obtain N-dependent estimates of the coexisting pressures and densities. The system sizes
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Figure 2.20: Determination of the coexistence density of the fluid phase for the Lennard-

Jones system at T ∗ = 2. The N-dependent densities are plotted vs the scaling variable

X = N−1. The squares, (�), correspond to densities obtained from the equal-weight cri-

terion. The filled, (•), and open, (◦), circles correspond to densities obtained from the

dimensionless ratios Q4 and Q6. The solid lines are linear fits. The points associated with

N = 108 and 256 particles are excluded from the fit. Dotted lines are drawn for visual

clarity. Statistical uncertainties do not exceed the size of the symbols. The points shown as

open triangles, (△), are the results of the phase switch method [29] for the same system.
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Figure 2.21: Determination of the coexistence density of the solid (fcc) phase for the

Lennard-Jones system at T ∗ = 2. The labeling is the same as that of Fig. 2.20.
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considered in previous work [29, 78] do not scale with X = N−1. Hence, a satisfactory

estimate of the pressure and of the densities in the limit of infinite size with which the

present results can be compared against, could not be obtained. The size-dependent results

for N = 500 are in good accord to each other as is evident in Figs. 2.18, 2.20 and 2.21.

Note that since the reduced pressures are defined differently, the pressures obtained from

the phase switch method [29] must be divided by 2 to ensure consistency. Regarding the

data associated with small systems (i.e., N 6 256), larger discrepancies are expected due

to effects associated with long-range corrections and, more importantly, due to the fact that

the volume distribution does not comprise two well-separated peaks. In such cases, the

effects of intermediate, mixed-phase configurations render determination of the coexisting

pressures and densities via the equal-weight construction ambiguous. Nonetheless, a rough

estimate of phase coexistence in the limit of infinite size for the phase switch method may

be obtained by connecting the points that correspond to N = 256 and N = 500 particles

with a straight line. Such a construction is shown with a dashed line in Figs. 2.18, 2.20

and 2.21. The intersection of the dashed line with the ordinate provides a rough estimate of

phase coexistence in the thermodynamic limit. As is evident in Figs. 2.18, 2.20 and 2.21,

the values so obtained are in reasonable accord with the results of this work.

2.5 Subcritical Lennard-Jones

As is well-known [91, 118, 100, 126, 18], the Lennard-Jones fluid undergoes a first-order,

gas-liquid phase transition that terminates at a second-order Ising critical point at T ∗ ∼=
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1.3 and ρ∗ ∼= 0.3. The values of the critical parameters are somewhat sensitive [118] to

the details of the truncation of the Lennard-Jones potential. In the present section, it is

shown that the corresponding constrained cell model of a system of Lennard-Jones particles

exhibits a similar type of phase transition between a dilute, gas-like and a dense, liquid-like

phase. The resulting phase diagram of the constrained model in the temperature-density

plane is shown in Fig. 2.22 and it is compared against that of the unconstrained system. For

both cases, the phase envelopes have been obtained from constant-pressure simulations for

N = 256 particles using tempering techniques [77, 76] and histogram reweighting [31, 32].

For a given temperature, the densities of the coexisting gas and liquid phases, ρgas and ρliq,

were obtained through the equal-area criterion [12]. Since the simulated system size is not

large, the data does not extend sufficiently close to the critical point. Nonetheless, a rough

estimate for the critical temperature, Tc, and density, ρc, may be obtained by fitting [37] the

coexistence data to the leading power law for the order parameter (density difference) and

the law of the rectilinear diameters, i.e.,

ρliq −ρgas ∼ (Tc −T )β , (2.16)

1
2
(

ρliq +ρgas
)
−ρc ∼ Tc −T, (2.17)

where it has been assumed that β = 0.326, appropriate for the Ising universality class

[73]. Application of this approach gives: T ∗
c
∼= 1.70, ρ∗

c
∼= 0.287 (constrained model)

and T ∗
c
∼= 1.295, ρ∗

c
∼= 0.316 (unconstrained system). As shown in Fig. 2.22, the results

for the unconstrained system are in good accord with those obtained by Chen et al. [18]

using grand canonical simulations and histogram reweighting. Better resolution for the
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critical parameters requires data collection for a series of progressively increasing values

of the system size and extrapolation towards the limit of infinite size according to finite-size

scaling techniques for second-order Ising criticality [97, 64]. As evident in Fig. 2.22, the

phase envelope of the unconstrained system lies “inside” that of the constrained system. In

other words, the single occupancy constraint causes the gas-liquid transition to persist at

higher temperatures and pressures than the unconstrained system. The primary reason for

this behavior is the reduction of the entropy of the system caused by the single occupancy

constraint.

The pressure-density isotherms of the fluid (unconstrained) and the solid (constrained)

phase at T ∗ = 1 are shown in Fig. 2.23. These isotherms have been obtained from constant-

pressure simulations of a system of N = 256 particles using histogram reweighting [31, 32].

At very low densities and pressures both systems behave as an ideal gas and, hence, the cor-

responding p–ρ isotherms are nearly-straight and lie very close to each other. As the pres-

sure increases, both systems undergo a first-order, gas-liquid transition and both isotherms

are thus nearly horizontal. The region that corresponds to the phase transition has been

constructed from the tempering simulations used to obtain the phase diagrams shown in

Fig. 2.22. At higher pressures, both systems are nearly-incompressible and, hence, the

p–ρ isotherms are nearly vertical. As was also seen previously for hard- and soft-sphere

models, the p–ρ isotherm of the solid (constrained) phase exhibits an inflection point at

pressure p∗ ∼= 1.096, which corresponds to a density ρ ∼= 0.61ρo, where ρoσ3 =
√

2 is the

value of the reduced density at close packing. Specifically, there is a range of pressures,
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Figure 2.22: Gas-liquid phase diagram for the Lennard-Jones model in the temperature-

density plane. The open circles, (◦), correspond to the coexisting densities of the con-

strained cell model. The coexisting densities of the unconstrained system are shown as

filled squares, (�). For both cases, the critical points are shown as filled circles, (•). The

solid lines are fits to the scaling laws for the order parameter and the coexistence curve

diameter, see Eqs. (2.16) and (2.17). The open triangles, (△), are the results of Chen et al.

[18] for the unconstrained Lennard-Jones system.

60



1.0 . p∗ . 1.25, for which the volume distribution of the constrained system has a double-

peak structure. Such a distribution is shown in the inset of Fig. 2.23. The maxima of

this distribution have equal height and the corresponding value of the pressure, obtained

through histogram reweighting, is marked with the open circle in the p–ρ isotherm of the

solid (constrained) phase in the main figure. As explained in previously, the inflection point

is the limit of mechanical stability of the solid. At densities ρ < 0.61ρo, the solid cannot

survive without the confinement imposed by the cell walls and it will quickly disintegrate

to a disordered fluid phase. A behavior similar to that shown in Fig. 2.23 was also seen

by Hansen and Verlet [52] for the Lennard-Jones model at T ∗ = 1.15. Since they, how-

ever, used constant-volume simulations, the p-ρ isotherms of both phases exhibited van

der Waals type of loops around the gas-liquid transition region. Furthermore, the inflection

point associated with the mechanical stability of the solid phase appeared as an angular

point (or kink) in the work of Hansen and Verlet.

In the present work, the modified cell model with partition function given by Eq. (2.3)

has been simulated at T ∗ = 1 for pressures p∗ > 1. The effect of the external field, b, for a

system of N = 256 Lennard-Jones particles at T ∗ = 1 is shown in Fig. 2.24. In that figure,

the variation of the field, b, is plotted against the fraction of singly occupied cells, −⟨M⟩/N,

for five isobars that correspond to pressures p∗ = 1.0, 1.5, 2.0, 2.5, and 3.0, respectively.

These five isobars shown in Fig. 2.24 were obtained by analyzing the histograms obtained

from standard constant-pressure simulations through histogram reweighting [31, 32]. As

seen previously, the behavior of these five isobars is reminiscent to that of a system un-
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Figure 2.23: Reduced pressure, p∗, vs average reduced density, ⟨ρ∗⟩, for N = 256 Lennard-

Jones particles at T ∗ = 1. (f): fluid (unconstrained model); (s): solid (constrained cell

model). The inset shows the distribution of the reduced volume for the constrained cell

model at p∗ = 1.096. The state shown in the inset corresponds to the open circle, (◦), on

the p–ρ isotherm of the solid phase in the main figure.
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dergoing a first-order phase transition that terminates at a second-order critical point. As

already commented, at low and intermediate values of the pressure, the transformation of

the solid to the fluid phase is continuous, see, e.g., isobar p∗ = 1.0 in Fig. 2.24. At higher

pressures, p∗ & 2.0, the simulations indicate that there is a range of values of the field, b,

for which the distribution of the volume, V , and of the number of singly occupied cells,

|M|, has a double-peak structure. The inset of Fig. 2.24 shows the volume distribution at

p∗ = 2.5 and b = 0.508. The specific value of b was found through the equal-area con-

struction [12]. Hence, the volume distribution shown in the inset of Fig. 2.24 corresponds

to finite-system coexistence between a solid phase with one particle per Wigner-Seitz cell

and a fluid phase for which the fraction of cells that contain one particle is ∼ 82%.

The phase transition implied in Fig. 2.24 has been studied by standard flat-histogram

techniques, namely tempering [77, 76], for systems of N = 864, 1372, and 2048 particles.

The results for the coexisting densities are shown in Fig. 2.25 together with the relevant

part of the p–ρ isotherm of the solid (constrained) and the fluid (unconstrained) phase of

the Lennard-Jones model at T ∗ = 1. The coexisting densities of the fluid-like and the solid-

like phase of the modified cell model, obtained using the equal-area construction [12], lie

in between the isotherms of the unconstrained and the constrained system. As p increases,

the value of b at coexistence decreases and as b → 0, the coexisting densities approach

those of the fluid (unconstrained) and solid (constrained) phase, respectively.

As already commented, fluid-solid coexistence of a system of interest can be obtained

by analyzing the field-induced phase transition of the corresponding modified cell model
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Figure 2.24: External field variable b, vs average fraction of singly occupied cells −⟨M⟩/N,

for N = 256 Lennard-Jones particles at T ∗ = 1. The curves from top to bottom correspond

to reduced pressures p∗ = 1.0, 1.5, 2.0, 2.5, and 3.0, respectively. The inset shows the

volume distribution at p∗ = 2.5 and b = 0.508. The specific value of b was found through

the equal-area construction [12]. This state corresponds to the open circle, (◦), on the

p∗ = 2.5 isobar of the main figure.
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(cf. Fig. 2.25) in the high-p, b → 0 limit. Alternatively, one may implement a procedure

that is similar to thermodynamic integration. Specifically, the fluid (unconstrained) and

the solid (constrained) phase are both simulated for a range of pressures, starting from a

reference pressure, po. Analysis of the simulation data via histogram reweighting, leads to

the following expressions for the chemical potentials of the two phases

µ̃ f (p)− µ̃ f (po) =− 1
N

ln
[

∆ f (p)
∆ f (po)

]
, (2.18)

µ̃s(p)− µ̃s(po) =− 1
N

ln
[

∆s(p)
∆s(po)

]
. (2.19)

The partition functions in Eqs. (2.18) and (2.19) are evaluated thought the density of states,

obtained from histogram reweighting. In the absence of a direct thermodynamic path that

connects the fluid with the solid phase, the simulations must be extended in the low-density,

ideal-gas region for which the chemical potentials of the reference states, µ̃ f (po) and

µ̃s (po), can be evaluated analytically. The modified cell model can be used to provide

the desired thermodynamic path that connects the two phases, thus eliminating the need

to extend the simulations all the way to the ideal-gas region. Specifically, the modified

cell model is simulated on the constant-pressure path p = po for a series of progressively

increasing values of the field, 0 ≤ b ≤ b∞ (= 10, say). Analysis of the simulation data via

histogram reweighting, leads to the following expression for the chemical potential differ-

ences

µ̃m (po,b∞)− µ̃m (po,0) =− 1
N

ln
[

∆m (po,b∞)

∆m (po,0)

]
. (2.20)

The value b = 0 corresponds to an unconstrained system and thus µ̃m (po,0) = µ̃ f (po).

Since at large fields, b∞, only single occupancy configurations are possible, inspection
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of Eq. (2.3) indicates that the partition function of the modified cell model, ∆m, may be

written as ∆m (po,b∞) = ∆s (po)exp(b∞N), which allows the chemical potential of the solid

at pressure p, µ̃s (p), to be written in a form that contains the same reference point as that

of the fluid, µ̃ f (p):

µ̃s(p)− µ̃ f (po) = b∞ − 1
N

ln
[

∆m(po,b∞)

∆m(po,0)
· ∆s(p)

∆s(po)

]
. (2.21)

Again, the partition functions that appear in Eq. (2.21) are evaluated through histogram

reweighting. The chemical potentials of the fluid and the solid, given by Eqs. (2.18) and

(2.21), can now be used to define fluid-solid coexistence at temperature T by locating the

common intersection of the two µ–p curves. In the present work, the previous thermody-

namic integration technique has been used to determine fluid-solid coexistence for N = 108,

256, and 500 Lennard-Jones particles at T ∗ = 1. The reference pressure was taken to be

p∗o = 1. For N = 864, 1372, and 2048 particles, fluid-solid coexistence was determined by

simulating the field-induced phase transition of the modified cell model using tempering

techniques.

2.5.1 Finite-size scaling analysis of fluid-solid transitions

In the present section, the fluid-solid coexistence data for finite systems of Lennard-Jones

particles at T ∗ = 1, obtained according to the procedures described in the previous section,

are analyzed according to finite-size scaling techniques for first-order phase transitions.

The methodology used here closely follows that of the previous section which is based on

analyzing the size-dependent behavior of second- and higher-order derivatives (suscepti-
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Figure 2.25: Phase diagram of the modified cell model for the Lennard-Jones system at

T ∗ = 1 in the pressure-density plane. The solid lines correspond to the fluid and the con-

strained solid phases [i.e., curves (f) and (s) in Fig. 2.23]. The coexisting solid and fluid

phases for finite values of b are shown as points and they correspond to system sizes, N, of

(◦): 2048, (N): 1372, and (�): 864. The dashed horizontal lines are tie-lines and they are

drawn for clarity. The point shown as bullet, (•), corresponds to the inflection point of the

T ∗ = 1 isotherm of the constrained cell model.
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bilities) of the Gibbs free energy as well as of dimensionless moment ratios. As previously

defined, the second- and third-order susceptibilities are defined by Eqs. 2.8 and 2.11. As

the transition pressure is approached either from high- or low-p, χ2 diverges to +∞. For

finite systems, however, χ2 only attains an N-dependent maximum. The size-dependent

value of the pressure associated with that maximum, provides a coexistence pressure esti-

mator. The third-order susceptibility, χ3, which is the slope of χ2, diverges to +∞ (−∞)

as the transition pressure is approached from low (high) values. The size-dependent shape

of χ3 thus contains two extrema points, a low-p maximum and a high-p minimum, re-

spectively. The size-dependent values of the pressures associated with the extrema of χ3

provide two additional coexistence pressure estimators. Higher-order susceptibilities have

not been considered since, as the order increases, the precision with which the correspond-

ing pressures can be located, decreases.

According to finite-size scaling theory for first-order phase transitions [9, 8, 6, 7], the

pressure, p(N), associated with an extremum point, has the following scaling behavior in

terms of N

p(N)− p(∞) ∼ 1
N
, (2.22)

where p(∞) is the coexistence pressure in the limit of infinite size. The previous scaling

form, obtained by assuming the probability distribution of the order parameter is a super-

position of two gaussian distributions, ignores corrections-to-scaling terms and the effects

of intermediate, mixed-phase configurations. The relevant scaling plot for the coexistence

pressure is shown in Fig. 2.26. The three pressure estimators shown in Fig. 2.26 corre-
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spond to N-dependent pressures obtained through the equal-area criterion (which is almost

indistinguishable from the pressures associated with the maximum of χ2) as well as the

pressures associated with the two extrema of χ3. As is evident in Fig. 2.26, linearity with

respect to the scaling variable X = 1/N is only observed for N ≥ 500. The irregular be-

havior for small N (= 108 and 256) is due to the effect of tail (i.e., long-range) corrections

in the energy calculation. Since the effect of tail corrections becomes progressively less

important as the system size increases, only data associated with moderate and large sys-

tems (e.g., N ≥ 500) should be considered in the analysis. As Fig. 2.26 indicates, the

N-dependent pressures for N ≥ 500 conform to the linear fit with satisfactory precision and

yield p∗ = 3.937±0.005 in the limit of infinite size.

In the context of the determination of the coexisting densities, we will once again con-

sider the use of dimensionless moment ratios [112, 11, 24, 10] of the order parameter. These

ratios have been remarkably successful in simulation studies of second-order criticality in

asymmetric fluids [64]. The most widely used ratio, is the so-called 4th-order ratio, Q4,

which, in the context of the present work is defined by Eq. 2.14. As a first-order transition

is approached from both sides at fixed T , Q4 jumps discontinuously from 1/3 to zero [64].

In the two-phase region, Q4 varies between zero and one and attains the maximum value of

unity at a density which is the arithmetic mean of the densities of the two coexisting phases

[64]. The relevant plot for Q4 is found in Fig. 2.27. As Fig. 2.27 indicates, for finite sys-

tems, Q4 develops two size-dependent minima separated by a size-dependent maximum.

As before the following 6th-order ratio is considered by Eq. 2.15 which exhibits a similar
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Figure 2.26: Determination of the fluid-solid coexistence pressure for the Lennard-Jones

system at T ∗= 1. The N-dependent coexistence pressures are plotted vs the scaling variable

X = N−1. The filled circles, (•), correspond to the coexistence pressures obtained from the

equal-area criterion. The open circles, (◦), and squares, (�), correspond to the pressures at

the extrema of the 3rd-order susceptibility. The solid lines are linear fits. The points that

correspond to N = 108 and 256 particles are excluded from the fit. Dotted lines are drawn

for visual clarity.
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Figure 2.27: Dimensionless moment ratio, Q4, vs average reduced density, ⟨ρ∗⟩, for the

Lennard-Jones system at T ∗ = 1. The curves correspond to number of particles (•): N =

500, (�): N = 864, (N): N = 1372, and (◦): N = 2048.

size-dependent behavior as that of Q4. The coexisting densities of the bulk system can be

obtained by extrapolating the N-dependent densities associated with the minima of Q4 and

Q6 towards N → ∞ according to the scaling ansatz, Eq. (2.22).

The scaling plots for the coexisting densities are shown in Figs. 2.28 (fluid) and 2.29

(solid). The open symbols correspond to the densities associated with the minima of Q4

and Q6. The filled circles correspond to densities obtained from the first-moments of the

volume distributions of the fluid and the solid phase at a pressure obtained through the
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equal-area construction (or the maximum of χ2). The behavior of the densities in Figs.

2.28 and 2.29 is analogous to that of the pressures in Fig. 2.26. As in the case of the

pressure estimation, only the points associated with N ≥ 500 are considered in the scaling

analysis. However, the densities associated with the minima of Q4 and Q6 extrapolate to a

density that is slightly different than that obtained from the first-moments of the distribution

function. As also explained in previously, this happens because Q4 and Q6 require the

evaluation of higher-order moments, see Eqs. (2.14) and (2.15), which are not as accurate

as low-order moments. The best estimators for the coexisting densities can thus be obtained

from the first-moments of the distribution function, i.e., the filled circles in Figs. 2.28 and

2.29. The difference between this estimate and that obtained from the minima of Q4 and Q6

is indicative of the precision that can be attained by this analysis and can also be considered

as providing a measure of the uncertainty of the estimate. The data associated with the first

moments thus give ρ∗
fluid = 0.9201± 0.0007 and ρ∗

fcc = 1.0072± 0.0008. As emphasized

by previously, better precision requires simulations of systems much larger than N = 2048.

The freezing transition of the Lennard-Jones model has been investigated via thermo-

dynamic [52, 120] and Gibbs-Duhem [1] type of integration techniques as well as with the

phase switch method [29, 78] . Hansen and Verlet [64] obtained fluid-solid coexistence

of a system of N = 864 Lennard-Jones particles at T ∗ = 2.74, 1.15, and 0.75, using ther-

modynamic integration. Since both the fluid and the solid are nearly incompressible, linear

interpolation between their reported densities at T ∗= 0.75 and 1.15 gives ρ∗
fluid

∼= 0.913 and

ρ∗
fcc

∼= 1.005 at T ∗ = 1. Agrawal and Kofke [1] used Gibbs-Duhem integration to obtain
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Figure 2.28: Determination of the coexistence density of the fluid phase for the Lennard-

Jones system at T ∗ = 1. The N-dependent densities are plotted vs the scaling variable

X = N−1. The squares, (�), correspond to densities obtained from the equal-weight cri-

terion. The filled, (•), and open, (◦), circles correspond to densities obtained from the

dimensionless ratios Q4 and Q6. The solid lines are linear fits. The points associated with

N = 108 and 256 particles are excluded from the fit. Dotted lines are drawn for visual

clarity.
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Figure 2.29: Determination of the coexistence density of the solid phase for the Lennard-

Jones system at T ∗ = 1. The labeling is the same as that of Fig. 2.28.
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the fluid-solid transition of N = 500 Lennard-Jones particles for a range of temperatures.

Interpolation between the entries at 1/T ∗ = 0.943 and 1/T ∗ = 1.057 gives ρ∗
fluid

∼= 0.925

and ρ∗
fcc

∼= 1.011 for the coexisting densities at T ∗ = 1. The coexistence pressure cannot

be determined from such simple interpolation schemes because it varies rapidly with the

temperature. The phase switch method is implemented under constant pressure and uses

multicanonical sampling and a series of “smart” moves to facilitate transitions between the

two coexisting phases. Implementation of the phase switch method in the freezing transi-

tion of the Lennard-Jones model gave [78] p∗ = 3.546, ρ∗
fluid

∼= 0.9098 and ρ∗
fcc

∼= 0.999

for N = 256 particles at T ∗ = 1. All these values, obtained on finite systems are in rea-

sonable accord with the results of this work for N 6 864. Most previous simulations have

not implemented a thorough analysis of system-size effects. Figs. 2.26, 2.28, and 2.29,

however, demonstrate the importance of accounting for size effects in simulation studies of

fluid-solid transitions.

2.6 Conclusions

The main advantage of the modified cell model in simulation studies of fluid-solid transi-

tions is its simplicity. The extra effort (computational as well as programming) associated

with the introduction of the external field variable into the ordinary isothermal-isobaric en-

semble is minor. Unlike other methods that are based on complicated order parameters,

the conjugate variable associated with the external field can be simply and transparently

identified as the number of Wigner-Seitz cells containing a single particle. In the context
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of simulations of fluid-solid equilibria via thermodynamic integration, the modified cell

model provides a path that connects the fluid with the solid phase, thus reducing the num-

ber of simulated states. Alternatively, the fluid-solid transition of the system of interest can

be obtained by analyzing the field-induced phase transition of the corresponding modified

cell model by standard flat-histogram techniques. Furthermore, a crucial element stem-

ming from this section is the importance of accounting for and analyzing size effects in

simulation studies of fluid-solid transitions. No comparable scaling analysis comprising

more than a single pressure and density estimator currently exists in the literature.
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Chapter 3

Phase transitions, criticality, and

three-phase coexistence using

constrained cell models

3.1 Introduction

In Chapter 2, the constrained and generalized cell models were introduced, and then used

to find the coexistence properties for systems of hard spheres and Lennard-Jones particles.

In this chapter, the phase diagram of the constrained cell model for a system of Lennard-

Jones particles is determined from Monte Carlo simulations. Understanding of the phase

diagram of such a system is essential in devising simulation algorithms for direct determi-

nation of sublimation and triple-point coexistence. The simulations are implemented under

77



constant pressure using tempering [77, 76] and histogram reweighting [31, 32] techniques.

The coexisting phases are determined by analyzing the structure of the volume distribution

which was obtained as a histogram of observations from the simulations. The topology of

the phase diagram of the constrained system is similar to that of the unconstrained system.

Specifically, the constrained system is found to contain a critical and a triple point just as

the unconstrained system. The values of the temperature and pressure at the critical point

are higher than those of the unconstrained system.

3.2 Phase diagram of the constrained cell model

Once again we consider a system of Lennard-Jones particles acting according to Eq. 2.12

with n = 6. In Fig. 3.1, four pressure–density isotherms for the solid phase (as mod-

eled through the constrained cell model) for a system of N = 256 Lennard-Jones particles

are shown. These isotherms have been obtained from constant-pressure simulations using

tempering techniques [77, 76]. The main output of these simulations comprises the joint

distribution (histogram) of the volume and energy. These distributions were analyzed ac-

cording to histogram reweighting [31, 32] techniques. The details of these simulations have

been discussed in the previous chapter. As is evident in Fig. 3.1, at very low densities and

pressures, the system behaves as an ideal gas, i.e., p∗ ∼= ρ . At high pressures the system is

nearly incompressible and, hence, the p–ρ isotherms are almost vertical. As the pressure

decreases from high values, the four isotherms shown in Fig. 3.1 develop inflection points,

shown as open circles in the figure, at densities that are 60–70% of the density at close
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packing. The inset of Fig. 3.1 shows the resulting volume distributions at the inflection

points. The two-peak shape of these distributions resembles that of a system undergoing

some type of phase transition. The specific value of the pressure was determined through

histogram reweighting to yield a volume distribution for which the two peaks have the

same height. In constant-volume simulations of hard- and soft-sphere and Lennard-Jones

systems [55, 56, 52, 57], the inflection points shown in Fig. 3.1 appeared in the form of

a kink or cusp or an angular point. As was first emphasized by Hoover and Ree [56], the

kink (or the inflection) can be thought of as the limit of mechanical stability of the solid

phase. At densities that are higher than the density associated with the kink/inflection, the

solid phase can survive for substantial time intervals without the confinement imposed by

the walls of the Wigner-Seitz cells. In contrast, at lower densities the presence of the cell

walls is necessary to prevent the solid phase from rapidly disintegrating to a disordered

fluid phase.

As the pressure is further reduced, the shape of the p–ρ isotherms shown in Fig. 3.1

indicates that at temperatures T ∗< 2 the solid phase (i.e., the constrained cell model) under-

goes a phase transition between an expanded and a compressed phase. This phase transition

is the analogue of the gas-liquid transition of the unconstrained system. In the neighbor-

hood of the transition, the shape of the volume distribution is bimodal (i.e., two maxima

separated by a minimum, see also Fig. 3.2 below) and averaging over this distribution gives

the nearly horizontal segments shown in Fig. 3.1. The coexisting phases are of the same

symmetry and, hence, this transition terminates at a second-order critical point as is evident
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Figure 3.1: Reduced pressure, p∗, vs average reduced density, ⟨ρ∗⟩, for the solid phase

(i.e., the constrained cell model) of a system of N = 256 Lennard-Jones particles. The

four p–ρ isotherms shown in the figure correspond to reduced temperatures (a): T ∗ = 2,

(b): T ∗ = 1.5, (c): T ∗ = 1, and (d): T ∗ = 0.9. The open circles (◦) are estimates of the

limits of mechanical stability. The inset shows the distribution of the reduced volume at

the mechanical stability points, obtained from constant–p simulations. The three volume

distributions shown in the inset correspond to temperatures (�): T ∗ = 2, (•): T ∗ = 1.5,

and (△): T ∗ = 0.9. The volume distribution associated with the T ∗ = 1 p–ρ isotherm [i.e.,

curve (c) in the main figure] has been omitted for clarity.
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in Fig. 3.1. On physical grounds, such a behavior should be expected since the potential

energy function contains repulsive as well as attractive terms. A behavior similar to that

shown in Fig. 3.1 was also detected by Hansen and Verlet [52] for the same system. In

that case, however, the p–ρ isotherms exhibited van der Waals type of loops because the

simulations were implemented under constant volume conditions.

The resulting phase diagram for the constrained cell model for a system of N = 256

Lennard-Jones particles in the T –ρ plane is shown in Fig. 3.2. The phase coexistence

between the expanded and the compressed solid phases (i.e., the nearly-horizontal segments

of the p–ρ isotherms in Fig. 3.1) is shown as open circles in Fig. 3.2. The inset of

Fig. 3.2 shows the resulting volume distribution at such coexistence at T ∗ = 1.62. For a

given temperature, the coexisting pressure and densities were determined by the equal-area

construction [12]. As already emphasized, this first-order phase transition is the analogue

of the gas-liquid transition of the unconstrained system and, since the coexisting densities

are of the same symmetry, it terminates at a second-order critical point which is shown as

a filled square in Fig. 3.2. The critical values of the temperature and density (T ∗
c
∼= 1.70,

ρ∗
c
∼= 0.287) have been estimated by fitting the coexisting densities to the scaling law for

the order parameter and the law of the rectilinear diameters assuming Ising criticality.

As already commented, at the limit of mechanical stability, the shape of the resulting

volume distribution resembles that of a system undergoing a phase transition, see inset

of Fig. 3.1 for instance. Molecular dynamics simulations on hard spheres suggest that

this transition is a weak first-order transition [128]. The relative height of the minima of
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Figure 3.2: Phase diagram of the constrained cell model for a system of N = 256 Lennard-

Jones particles in the temperature-density plane. The filled circles, (•), have been obtained

from the positions of the maxima of the volume distributions at the limit of mechanical

stability (see also inset of Fig. 3.1). The open circles (◦), correspond to coexistence (ob-

tained through the equal area construction) between an expanded and a compressed solid

phase. The inset shows the volume distributions at such coexistence at T ∗ = 1.62. This

coexistence terminates at a critical point shown as a filled square, (�). The solid line is a fit

to scaling laws. The filled and open circles intersect at T ∗ ∼= 0.867. Phase coexistence for

T ∗ < 0.867, shown as open squares (�), resembles sublimation equilibria in unconstrained

systems.
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the volume distributions shown in the inset of Fig. 3.1, compared to the maxima, seem

to support this assertion. Determination of the order of this transition requires scaling

analysis and computational effort that involves system sizes much greater than N = 256.

Assuming that a phase transition does indeed occur at the limit of mechanical stability,

a rough estimate for the coexisting densities at a given T may be obtained by locating

the positions of the maxima of the volume distributions shown in the inset of Fig. 3.1.

The results of this procedure, commonly referred to as the equal-height construction [12],

are shown as filled circles in Fig. 3.2. The form of this coexistence is reminiscent of

liquid-solid coexistence in an unconstrained system. However, there is a crucial difference.

Liquid-solid coexistence is associated with phases of different symmetry (liquid vs solid)

and, hence, there is no critical point. In contrast, the coexistence implied by the filled

circles in Fig. 3.2 involves phases of the same symmetry and, hence, the appearance of

a critical point as the temperature increases cannot be precluded. The existence of such

criticality is related to the behavior of the solid around the mechanical stability point as

seen through the shape of the volume distribution. This question merits its own separate

investigation via scaling analysis for finite systems.

The p–T phase boundary associated with gas-like and liquid-like coexistence (i.e., the

open circles in Fig. 3.2) intersects the p–T stability line (i.e., the filled circles in Fig. 3.2)

at T ∗ ∼= 0.867. The volume distribution in the vicinity of the intersection of the two p–T

curves contains three peaks separated by two minima. Such three-peaked distributions are

shown in Figs. 3.3 and 3.4. This case is associated with three-phase coexistence and the
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Figure 3.3: Volume distribution of the constrained cell model for a system of N = 256

Lennard-Jones particles at T ∗ = 0.87 and p∗ = 0.005.

intersection at T ∗ ∼= 0.867 plays the role of a triple point. For T ∗ < 0.867 the middle phase

becomes metastable (see Fig. 3.4, for instance) and the resulting two-phase coexistence is

reminiscent of sublimation in an unconstrained system.

Despite the fact that the phase diagram of the constrained cell model, shown in Fig.

3.2, resembles that of the unconstrained system, there are a few crucial differences. First,

the critical temperature (T ∗
c
∼= 1.7) and the triple-point temperature (T ∗

tr
∼= 0.867) are about

25-30% higher than those of the unconstrained system [100, 1, 18] (T ∗
c
∼= 1.3, T ∗

tr
∼= 0.69)
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Figure 3.4: Volume distribution of the constrained cell model for a system of N = 256

Lennard-Jones particles at T ∗ = 0.86 and p∗ = 0.0046.
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for the Lennard-Jones model. The main reason for this behavior is the decrease in the en-

tropy of the system caused by the single occupancy constraint. Further, since all coexisting

phases are of the same symmetry it is possible to observe two- and three-phase coexistence

from a single simulation. Such a task is considerably more difficult in the unconstrained

system.

3.3 Conclusion

The constrained cell model is a limiting case of a more general cell model. Such a gen-

eralized or modified cell model, first proposed by Hoover and Ree [55], was used in the

previous chapter to devise simulation techniques appropriate for liquid-solid transitions

under constant pressure. The modification is associated with the introduction of a homoge-

nous external field variable that interacts with the Wigner-Seitz cells. High values of the

external field force single occupancy configurations and thus stabilize the solid phase. We

showed that this modified cell model can be used to link the fluid with the solid phase by

progressively increasing the strength of the field. This technique has hitherto been used for

liquid-solid coexistence studies. Of particular interest is the question of whether the mod-

ified cell model can be used in the direct determination of gas-solid and gas-liquid-solid

coexistence which will be presented in the following two Chapters. Direct determination

of gas-solid and gas-liquid-solid coexistence is considerably more challenging than liquid-

solid coexistence because the volume range that must be covered in a single simulation

is large. Furthermore, an added complication has to do with the range of temperatures
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and pressures for which the phase transitions of the constrained cell model, shown in Figs.

3.2-3.4, occur. The first step in this direction is associated with understanding the phase

diagram of the constrained cell model, which was provided in this work. Further work com-

prises the construction of generalized cell models and appropriate sampling techniques ca-

pable of linking the coexisting phases of the constrained cell model shown in Figs. 3.2-3.4

with those of the unconstrained system.
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Chapter 4

Direct determination of triple-point

coexistence through cell model

simulation

4.1 Introduction

In the previous chapters, a series of simple and efficient direct and indirect simulation tech-

niques for accurate simulation of fluid-solid coexistence is proposed. These approaches are

based on extensions or generalizations of the constrained cell model [55, 56] description of

the solid phase. Specifically, the generalization entails the introduction of a homogeneous,

uniform external field variable that interacts with the Wigner-Seitz cells and thus controls

the relative stability of the solid against the fluid phase. High values of the field variable
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force configurations with one particle per cell and, hence, favor the solid phase. Thus, by

varying the strength of the field at fixed density or pressure, it is possible to devise a path

that connects the solid with the fluid phase.

Specifically, in Chapter 2, these simulation techniques were used to calculate fluid-

solid coexistence points at a fixed temperature, and in Chapter 3, the phase boundary was

determined for the constrained cell model through a thermodynamic integration technique

based on histogram reweighting [31, 32]. For the cases for which the phase diagram of the

system of interest contained a triple point, the corresponding triple-point temperature and

pressure was estimated from the common intersection of the various saturation curves (i.e.,

evaporation and melting). In this chapter, the information from the previous two chapters

are used along the generalized cell model in order to determine coexistence at the triple-

point.

4.2 The generalized cell model

In the present work, the phase diagram of the generalized cell model is investigated through

multicanonical simulations [4] at constant pressure and histogram reweighting techniques

[31, 32] for a system of 256 Lennard-Jones particles. At a given temperature and pres-

sure, the resulting type of coexistence is deduced by analyzing the structure of the volume

distribution (histogram). The phase diagram resembles that of the unconstrained and the

constrained system. The simulation data is used to obtain an estimate of the triple-point
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of the Lennard-Jones system. The triple-point parameters are obtained via a procedure

analogous to the equal-area construction [12] for two-phase coexistence.

In the isothermal-isobaric ensemble, the number of particles N, the pressure p, and

the temperature T [or the reciprocal temperature β = 1/(kBT )], are fixed. The energy

and the volume V , both vary and thus the reduced density ρ = N/V , and the volume per

particle v = 1/ρ =V/N, fluctuate about mean values, ⟨ρ⟩ and ⟨v⟩ respectively. If ε > 0 is

the depth of the attractive part of the pair potential, appropriate reduced variables may be

defined as: T ∗= kBT/ε (reduced temperature), p∗= β pσ3 = pσ3/kBT (reduced pressure),

⟨ρ∗⟩ = ⟨ρ⟩σ3 (average reduced density), and ⟨v∗⟩ = ⟨v⟩/σ3 (average reduced volume per

particle).

In simulations involving solid phases, the constrained cell model is formed [55, 56]

by dividing the volume V , into N Wigner-Seitz cells, each of volume V/N. Simulation

techniques based on cell models cannot find the equilibrium solid phase of the system

under consideration. Hence, the equilibrium solid phase must be known a priori or found

by some other means. In the present work, it is assumed that the stable solid phase is of the

face-centered cubic (fcc) type and, hence, the cells are rhombic dodecahedra. For a cubic

simulation box, the number of particles, N, satisfies N = 4k3 (k > 2). Each cell contains a

single particle and particle displacements that violate the single-occupancy constraint are

not allowed. The fluid phase (vapor and liquid) is modeled as an unconstrained system for

which there is no restriction on the number of particles per cell. The generalized cell model

is defined by introducing a homogenous, uniform external variable, B say, that interacts
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with the N cells. The field variable B should be roughly thought of as the magnetic field

in Ising spin-type of lattice models. Suppose again that the volume is partitioned into N

Wigner-Seitz cells but consider arbitrary assignments of the N particles into the N cells.

The occupation status (i.e., number of particles) of cell j ( j = 1, 2, . . . , N) can be described

in terms of the spin-type of variable s j that only takes two values: −1 if cell j contains

one particle and zero otherwise. By analogy with a magnetic spin-type of system, suppose

that the interaction of the field B with cell j can be described with the term Bs j. An order

parameter M, conjugate to B, can thus be defined as M = ∑ j s j. Note that |M| (or −M) is

simply the number of singly occupied cells of a given N-particle configuration. If b = βB,

the partition function for a system of N particles at T , p, and b is given by

∆m(N, p,T,b) = e−µ̃mN = ∑
i

e−βEi−p̃Vi−bMi , (4.1)

where index i enumerates the states and Ei and Vi are the energy and volume in state i.

Please note that this is also listed as Eq. 2.3, but has been given again for clarity. In Eq.

(4.1), |Mi| is the number of singly occupied cells in state i, p̃ = β p and µ̃m = β µm, where

µm is the chemical potential at p, T , and b. The elementary steps comprise particle dis-

placements and volume changes that are accepted with standard Metropolis type of criteria

[37]. As is evident from Eq. (4.1), the unconstrained system is recovered in the limit in

which b → 0. Furthermore, only single occupancy configurations are possible for large

values of b. Hence, the constrained cell model is recovered in the limit in which b → ∞.

From the previous arguments it thus follows that the generalized cell model can be used to

connect the fluid with the solid phase, since both of these phases, fluid (unconstrained) and
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solid (constrained), are limiting cases of this generalized cell model.

4.3 Phase diagram of the generalized cell model

The generalized cell model has been simulated for a system of N = 256 Lennard-Jones

particles. The potential energy of a configuration for a system of N particles in a periodic

simulation box of volume V = L3, is evaluated by calculating all pair terms for distances

r 6 L/2 and adding a tail correction [37] for r > L/2. The simulations were implemented

according to the multicanonical preweighting scheme [4] and the simulation output com-

prised three-dimensional histograms of energy, volume V , and order parameter M. The

behavior of the Lennard-Jones system in terms of the field b was inferred by analyzing the

structure of the volume distribution (obtained through histogram reweighting) and evaluat-

ing its moments. The length of each simulation was 10–100×106 sweeps (N displacements

and N volume changes) depending on the range covered and the possibility of phase transi-

tion behavior within that range. Statistical uncertainties on the coexistence properties were

calculated as two standard deviations of ten block averages.

The phase behavior of the Lennard-Jones model for b = 0 (unconstrained system) and

b ≫ 0 (constrained cell model) has been discussed in Chapters 2 and 3. In particular, the

phase diagram of the constrained cell model for a system of Lennard-Jones particles is

similar to that of the unconstrained system. Specifically, for b ≫ 0 a critical and a triple-

point is found at temperatures and pressures that are higher than those of the unconstrained
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system (b = 0). The behavior of the system for intermediate values of b is shown in Fig.

4.1. In that figure, the pressure-density isotherm at T ∗ = 1.2 is shown for four values of

b, namely, b = 0, 0.6, 1.5, and 20. Although it is possible to construct p–ρ curves for

any value of b within the simulated range (0 6 b 6 20) using histogram reweighting, only

four p–ρ isotherms are shown in Fig. 4.1 for reasons of clarity. At large values of b (i.e.,

b > 10 to 20) only single occupancy configurations are possible and, hence, the large-b

behavior of the generalized cell model is indistinguishable from that of the constrained

cell model. The nearly horizontal segments of the p–ρ curves indicate that there is an

evaporation / condensation phase transition at moderate densities followed by a melting /

freezing transition at higher densities. In the vicinity of these transitions, the corresponding

volume distribution (histogram) consists of two peaks separated by a minimum, see Fig.

4.2 for instance.

Regarding the phase transitions shown in Fig. 4.1, coexistence at temperature T is

defined by finding (through histogram reweighting) the value of the pressure for which

the resulting volume distribution consists of two peaks of equal areas. The previous task

is commonly referred to as the equal-area construction [12]. The coexisting densities are

defined as the first moments of the two peaks. The volume distribution at gas-liquid and

liquid-solid coexistence for the unconstrained system (b = 0) are shown in Fig. 4.2(a)

and (b). Phase diagrams may be obtained by applying the equal-area rule for a range of

temperatures. The resulting evaporation / condensation phase diagram in the temperature-

density plane is shown in the inset of Fig. 4.1. This phase transition terminates at a critical
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Figure 4.1: Reduced pressure, p∗, vs average reduced density, ⟨ρ∗⟩, for a system of N = 256

Lennard-Jones particles at T ∗ = 1.2. In the main figure, the p–ρ curves correspond to

values of b (from top to bottom) of: 0, 0.6, 1.5, and 20. The nearly-horizontal segments of

the p–ρ curves indicate phase transition behavior. For b = 0 (unconstrained system), phase

coexistence is marked with an open circle (◦) and square (�), respectively, and the resulting

volume distributions are shown in Fig. 4.2. The phase transition at intermediate densities is

an evaporation / condensation type of transition that terminates at a critical point. The inset

shows the resulting gas-liquid type of coexistence in the T –ρ plane for b = 0, 0.6, 1.5, and

20.
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Figure 4.2: Volume distribution at the (a) melting (p∗ = 5.360) and (b) condensation (p∗ =

0.0658) transition for N = 256 Lennard-Jones particles at T ∗ = 1.2, obtained according

to the procedure described in the text. The value of the pressure was calculated through

the equal-area rule using histogram reweighting. These distributions correspond to points

shown as open circle (◦) and open square (�) in the b = 0, p–ρ isotherm in Fig. 4.1.
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point which is marked with a filled circle in the inset of Fig. 4.1. The critical point is found

by fitting the coexistence data (shown as open circles in the inset of Fig. 4.1) to the scaling

law for the order parameter (assuming Ising criticality) and the law of rectilinear diameters.

As the value of the field increases, the corresponding value of the critical temperature

increases as well. The primary reason for the increase in the critical temperature is the

reduction of the entropy caused by the increased strength of the field b that forces particle

localization within the cells.

The high-density melting / freezing transition shown in Fig. 4.1 occurs at higher pres-

sures as the strength of the field is reduced from high values towards zero. In the context

of the constrained cell model (i.e., b ≫ 0), this phase transition may be interpreted as the

mechanical stability limit [56] of the solid phase (as modeled through the constrained cell

model). Specifically, at pressures that are higher than the transition pressure, an ordered,

solid-like configuration can exist for substantial time periods without the confinement im-

posed by the walls of the cells or by the external field. In contrast, at low pressures, a solid

configuration cannot survive without the confining effect of the cell surfaces or of the field

b and it rapidly disintegrates to a disordered fluid phase. As the value of the confining

field b decreases, the magnitude of the confining effect decreases too, and, hence, the me-

chanical stability point (or, alternatively, the melting transition point) must occur at higher

pressures and densities.
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4.4 Three phase coexistence

The simulation data can be used to provide an estimate of the triple point of the Lennard-

Jones system. The location of the triple point is found through a construction that is anal-

ogous to the equal-area rule for two-phase coexistence. Specifically, the simulation data

indicates that for temperatures 0.68 . T ∗ . 0.72, there is a range of pressures for which

the corresponding volume distribution consists of three peaks separated by two minima.

These peaks correspond to the three phases, namely, gas, liquid, and solid. The areas of the

three peaks are calculated for a given T and p and the process is repeated for different T and

p values in order to locate the unique point for which all three areas are equal. This gen-

eralized equal-area procedure gave T ∗
tr = 0.7085± 0.0005, p∗tr = (2.264±0.017)× 10−3

for N = 256 particles. The resulting volume distribution at T ∗
tr and p∗tr is shown in Fig.

4.3. The first moment under each peak defines the density of the corresponding phase at

the triple point. The coexisting densities are found to be ρ∗
gas = (2.298±0.018)× 10−3,

ρ∗
liq = 0.8405±0.0003, and ρ∗

fcc = 0.9587±0.0002.

As anticipated, the gas phase at the triple point is almost ideal since p∗tr
∼= ρ∗

gas. Fur-

thermore, the estimated uncertainty of the pressure and of the gas density (∼ 0.8%) is an

order of magnitude higher than that of the temperature (∼ 0.07%) and of the densities of

the condensed phases (∼ 0.03%). The origin of the discrepancy in these uncertainties may

be understood by considering the µ–p curves of the three phases. The results of the equal-

area construction at T ∗ = 0.7085 (i.e., the best estimate for Ttr) are shown in Fig. 4.4. The

area under each peak of the volume distribution (see, e.g., Fig. 4.3), which is proportional
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Figure 4.3: Volume distribution for a system of N = 256 Lennard-Jones particles at the

triple point (T ∗
tr = 0.7085, p∗tr = 2.264×10−3). The values of T and p were found according

to the equal-area rule as explained in the text.
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to the partition function ∆, has been converted to chemical potential using µ̃ =−N−1 · ln∆,

cf. Eq. (4.1). In order to eliminate the proportionality constant, the chemical potential of

the liquid at p∗ = 2× 10−3 was set to zero. Since both the liquid and the solid phase are

nearly incompressible the corresponding µ–p curves are almost straight lines. Hence, a

small uncertainty in the pressure and the temperature causes a much smaller uncertainty

in the densities of the condensed phases. The µ–p curve of the gas is almost vertical, re-

flecting the very compressible nature of that phase. Consequently, a small uncertainty in

the temperature, causes a larger uncertainty in the common intersection of the three µ–p

curves (which defines the triple-point pressure) and of the gas density.

The estimate for the triple-point temperature is higher than that of previous work (T ∗
tr =

0.67 to 0.69), obtained using thermodynamic and Gibbs-Duhem integration and Gibbs en-

semble techniques [52, 71, 1, 18]. The likely sources for that discrepancy might be related

to different system sizes used and to differences in the energy evaluation. This discrepancy

can be resolved though a finite-size scaling analysis (see, e.g., refs. 1-5) which is, however,

a computationally demanding task. The current estimates of the triple-point pressure and

of the density of the gas phase are both higher by a factor of ∼ 15% to 30% compared to

previous work. The main reasons for the higher values of ptr and ρgas, compared to previ-

ous work, are the higher value of Ttr and the very compressible nature of the dilute phase.

On the other hand, the present estimates for densities of the condensed phases are in rea-

sonable accord with those of previous work (ρ∗
liq = 0.818–0.854 and ρ∗

fcc = 0.955–0.963),

a fact that may be attributed to the nearly incompressible nature of the liquid and the solid
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Figure 4.4: Chemical potential vs pressure for N = 256 Lennard-Jones particles at T ∗ =

0.7085. (�): gas; (△): liquid; (◦): solid. The chemical potential of the liquid at p∗ =

2× 10−3 is assigned a value of zero. The common intersection of the three µ–p curves

defines the triple point.
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phase.

4.5 Conclusion

The partition function of an unconstrained system (i.e., b = 0) contains all possible con-

figurations, both fluid and solid, at a given T and p. In simulations, however, isothermal

compression of a low-ρ fluid phase often leads to formation of a non-equilibrium glassy

type of structure rather than the equilibrium solid phase. A model for the solid phase (i.e.,

the constrained cell model) may be formed by considering only configurations with one par-

ticle per Wigner-Seitz cell (i.e, b ≫ 0) and excluding all others. Since the relevant portions

of the phase space associated with the disordered, fluid phase and the ordered, solid phase

are distinctly different from each other, it is not obvious as to how one can construct a path

that connects the fluid (unconstrained system, b= 0) with the solid (constrained cell model,

b ≫ 0). The present chapter (as well as previous chapters) in this dissertation demonstrates

that such a connection can be achieved through the generalized cell model which provides

a simple way to simulate liquid-solid (cf. Fig. 4.2), gas-solid, and gas-liquid-solid (cf. Fig.

4.3) coexistence. In the present Chapter, it was shown that this model can be used to provide

direct estimates of triple-point equilibria. In previous work, the triple point was estimated

by indirect methods, i.e., by locating the common intersection of the various p–T curves

(such as condensation and melting) through extrapolations. Despite these advances, there

are still a few crucial questions that must be addressed. One such crucial issue is the size

dependence of the triple-point parameters. As already commented, size-dependence issues
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can formally be resolved through finite-size scaling analysis for first-order phase transi-

tions [98, 85, 86]. This task is, however, computationally demanding due to the substantial

density range (from the low-ρ ideal-gas to the high-ρ incompressible regime) that must be

sampled in a single simulation. Regarding system-size effects, previous work [86, 84, 87]

associated with finite-size scaling analysis of liquid-solid coexistence at fixed T ∗ using cell

models indicates that the estimate of the pressure for N = 256 differs by 4 to 6% from the

N = ∞ value. These differences are expected to be somewhat larger for the triple-point

parameters due to the highly compressible nature of the gas phase.
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Chapter 5

Simulation of phase boundaries using

constrained cell models

5.1 Introduction

In the previous chapter, the triple-point was determined for a system of Lennard-Jones par-

ticles interacting according to Eq. (2.12) with n = 6. The present chapter focuses on the

determination of the phase diagram of a system of particles also interacting according to

Eq. (2.12), however with a value of n = 12. Previous work [53, 125] indicates that the

vapor-liquid transition becomes metastable against solidification for n & 10 to 11. The

vapor-liquid phase diagram is readily established from constant-pressure simulations and

flat-histogram techniques [77, 76]. The fluid-solid phase diagram is also constructed from

constant-pressure simulations utilizing constrained and generalized cell models. Specif-
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ically, fluid-solid coexistence on the isotherm that corresponds to a reduced temperature

of 2 is determined by analyzing the field-induced phase transition of the generalized cell

model. The previous fluid-solid coexistence point is used as the reference point in the de-

termination of the entire fluid-solid phase boundary through a thermodynamic integration

type of technique based on histogram reweighting [31, 32]. As anticipated [53, 125], the

vapor-liquid transition is metastable against crystallization. The phase diagram of the cor-

responding constrained cell model is also determined. The simulation results indicate that

the phase diagram of the constrained cell model contains a stable critical point as well as a

triple point.

5.2 Phase diagram of the constrained cell model

The present section is associated with the behavior of the constrained cell model and, in par-

ticular, with the possibility of phase transitions. In Fig. 5.1, three representative pressure-

density isotherms of this model, obtained through constant-pressure simulations of a sys-

tem of N = 256 particles, are shown. These isotherms correspond to reduced temperatures

T ∗ = 2, 0.75, and 0.70. As is evident in Fig. 5.1, at low densities and pressures the system

is nearly ideal and, hence, p∗ ∼= ρ∗. At high pressures and densities, the system is nearly

incompressible and these p–ρ isotherms are, thus, nearly vertical. Furthermore, these p–

ρ isotherms contain horizontal segments that are indicative of phase transition behavior.

These different types of phase transitions are explained below.
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Figure 5.1: Reduced pressure, p∗, vs average reduced density, ⟨ρ∗⟩, for the solid phase

(i.e., the constrained cell model) of a system of N = 256 particles. The three p–ρ isotherms

shown in the figure correspond to reduced temperatures (a): T ∗ = 2, (b): T ∗ = 0.75, and

(c): T ∗ = 0.70.
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As the pressure is reduced from high values, there is a first-order phase transition be-

tween a compressed and an expanded solid phase. The volume distribution at such coexis-

tence for a system of N = 256 particles at T ∗ = 0.70 is shown in Fig. 5.2(a). The specific

value of the pressure (p∗ = 0.5) in Fig. 5.2(a), found through histogram reweighting, yields

a volume distribution with two peaks of equal area [12]. The coexistence point is marked

with an open circle in the T ∗ = 0.70 p–ρ isotherm in Fig. 5.1. Note that the averaging

is implemented over the whole distribution in Fig. 5.2(a) rather than the individual peaks.

Averaging over the latter would yield a p–ρ isotherm with hysteresis loops. This phase tran-

sition is associated with the limit of mechanical stability of the solid. Such an anomaly was

first detected by Hoover and Ree for the hard-sphere solid [56]. In that case, the anomaly

appeared in the form of a kink or a cusp because the simulations were implemented at con-

stant volume. Molecular dynamics simulations [128] for the hard-sphere solid suggest that

this anomaly or instability is a weak first-order transition. Constant-pressure simulations

for hard- and soft-spheres as well as for Lennard-Jones systems, obtained in the previous

sections, support the weak, first-order transition scenario, although the anomaly appeared

in the form of an inflection rather than a kink. For the present molecular model, the hori-

zontal portions of the p–ρ isotherms in Fig. 5.1 and the shape of the volume distribution

in Fig. 5.2(a) suggest a strong first-order transition. As first explained by Hoover and Ree

[56], for densities that are higher than the densities associated with this transition, the solid

phase (as modeled through the constrained cell model) can exist for substantial time peri-

ods without the presence of the cell walls. In contrast, at lower densities, the solid cannot
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exist without the confinement imposed by the walls of the Wigner-Seitz cells and it rapidly

melts to a disordered, fluid-like phase.

As the pressure is further reduced, the shape of the p–ρ isotherms associated with

low temperatures (T ∗ . 0.75 in Fig. 5.1), indicates that there is another phase transition

between a high- and a low-density solid phase. The volume distribution at coexistence

for a system of N = 256 particles at T ∗ = 0.70, obtained through the equal-area rule [12],

is shown in Fig. 5.2(b). The coexistence point is marked with an open square on the

T ∗ = 0.70 p–ρ isotherm in Fig. 5.1. This phase transition is the analogue of the gas-

liquid transition of the unconstrained system (i.e., the fluid phase) and it is caused by the

attractive interactions of the pair potential, cf. Eq. (2.12). A behavior similar to that shown

in Fig. 5.1 had also been seen by Hansen and Verlet [52] and in the previous sections for

the Lennard-Jones solid. Inspection of the isotherms in Fig. 5.1 indicates that this phase

transition terminates at a critical point at T ∗ ∼= 0.75.

The previous observations regarding the phase transitions of the solid phase (as modeled

through the constrained cell model) are summarized in the form of a T –ρ phase diagram

in Fig. 5.3. The gas-like, liquid-like phase transition is shown as open circles (N = 500)

and filled triangles (N = 256). As already commented, the volume distribution is bimodal;

see Fig. 5.2(b), for instance. For a given temperature, the coexistence pressure was found

via the equal-area rule [12]. The coexisting densities were obtained as the first moments

of each peak. As is evident in Fig. 5.3, this phase transition terminates at a critical point,

shown as a filled square. The critical values of the temperature, Tc, and of the density,
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Figure 5.2: Volume distribution of the solid phase for N = 256 particles at T ∗ = 0.70 and

(a): p∗ = 0.5, (b): p∗ = 0.1135. The value of the pressure has been obtained through the

equal-area criterion. These distributions correspond to points shown as open circle (◦) and

open square (�) of the T ∗ = 0.70 isotherm in Fig. 5.1.
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ρc, were obtained by fitting the coexistence data for N = 500 to the leading power law for

the density difference and the law of the rectilinear diameters, i.e., Eqs. 2.16 and 2.17.

In Eqs. (2.16) and (2.17) it has again been assumed that β = 0.326, appropriate for the

Ising universality class [73]. Application of this approach gives T ∗
c
∼= 0.743 and ρ∗

c
∼=

0.368. In the same figure, the coexisting densities of the phase transition associated with

the mechanical stability region are shown as filled circles. The form of this coexistence

resembles that of fluid-solid coexistence in an ordinary system with one crucial difference,

however. Ordinary liquid-solid coexistence involves phases of different symmetry (liquid

and solid) and, hence, there is no critical point. In contrast, the coexistence associated

with the filled circles in Fig. 5.3 involves phases of the same symmetry (expanded and

compressed fcc structures) and, thus, the appearance of a critical point at a sufficiently

high temperature cannot be excluded. As pointed out previously, this question merits its

own separate investigation. These two phase boundaries intersect at T ∗ ∼= 0.661. Phase

coexistence at temperatures T ∗< 0.661 involves a highly expanded and a highly compacted

solid phase. As is evident in Fig. 5.3, this type of coexistence is reminiscent of sublimation

in an ordinary system and T ∗ = 0.661 is, thus, the triple-point temperature. The phase

diagram of the constrained cell model, shown in Fig. 5.3 is very similar to that of an

ordinary system.
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Figure 5.3: Phase diagram of the constrained cell model in the temperature-density plane.

The filled circles, (•), correspond to the phase transition associated with the loss of me-

chanical stability. The filled triangles, (N), and open circles, (◦), correspond to the phase

transition between a dilute and a dense solid phase. This transition terminates at a critical

point which is shown as a filled square, (�). The solid line is a fit to the scaling laws

for the density difference and the coexistence curve diameter; see Eqs. (2.16) and (2.17).

These two phase transitions intersect at a triple point at T ∗ ∼= 0.661. Phase coexistence for

T ∗< 0.661, shown as open squares (�), is reminiscent of sublimation equilibria in ordinary

systems. The simulations have been performed for N = 256 particles with the exception of

the points shown as open circles, (◦), that have been obtained for N = 500 particles.
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5.3 Determination of fluid-solid coexistence using gener-

alized cell models

The present section is associated with the physical behavior of the generalized (or modified)

cell model and its use in simulations of fluid-solid coexistence. As already emphasized

previously, the partition function of this model, cf. Eq. (2.3), contains an external field, b,

that controls the number of particles per Wigner-Seitz cell and, hence, the relative stability

of the solid against the fluid phase. The unconstrained system, cf. Eq. (2.1), corresponds

to b = 0, whereas the constrained cell model, cf. Eq. (2.2), is recovered in the limit in

which b → ∞. Hence by varying the field, b, from high values towards zero on a constant-

pressure (or density) path, it is possible to link the solid (constrained cell model) with the

fluid (unconstrained system) phase. In the following lines, the behavior of this model is

analyzed on the T ∗ = 2 isotherm.

The effect of the external field variable b, on different constant-pressure paths for

N = 256 particles at T ∗ = 2 is shown in Fig. 5.4. In that figure, the variation of the average

fraction of the cells that contain a single particle, −⟨M⟩/N, is plotted in terms of the field

variable, b, for five isobars that correspond to the pressures p∗ = 6, 6.5, 7, 7.5, and 8, re-

spectively. As is evident in the figure, at high-field values, single occupancy configurations

(i.e., |M| = N) dominate and the system is in the solid phase. As the field decreases from

high values towards zero, the nature of the transformation of the solid to the fluid depends

on the particular value of the pressure. Specifically, at low and moderate values of the pres-
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sure, the passage from the solid to the fluid as b decreases is smooth and continuous, see,

e.g., the p∗ = 6 isobar in Fig. 5.4. At higher pressures (p∗ & 6.5 in Fig. 5.4), the shape

of the isobars resembles that of a system undergoing a phase transition. The simulation

results indicate that for p∗ & 6.5 there is a range of b values for which the distribution of

volume, V , and of the number of singly occupied cells, |M|, both have a two-peak structure

separated by a minimum. The inset of Fig. 5.4 contains the resulting volume distribution at

b = 0.358 and p∗ = 7.5. The specific value of b was found through histogram reweighting

to yield two peaks of the same area. The low-volume peak, centered at v∗ ∼= 0.94, corre-

sponds to an ordered phase with one particle per Wigner-Seitz cell. The high-volume peak,

centered at v∗ ∼= 1.07, corresponds to a disordered phase for which the average fraction of

singly occupied cells is ∼ 78%. Thus, at high pressures the transformation of the high-b,

ordered phase, to the low-b, disordered phase as b decreases occurs discontinuously, i.e.,

through a phase transition. The value of b at this order-disorder transition of the general-

ized cell model depends on the pressure. As is evident from Fig. 5.4, as p∗ increases, the

value of b at this transition decreases.

The field-induced phase transition of the generalized cell model at T ∗ = 2, implied by

the shape of the isobars in Fig. 5.4, has been studied by constant-pressure simulations for

N = 256, 500, and 2048 particles. The simulation results for the coexisting densities are

shown in Fig. 5.5 together with the relevant portion of the p–ρ isotherms of the fluid [un-

constrained system, cf. Eq. (2.1)] and the solid [constrained cell model, cf. Eq. (2.2)]. The

values of the coexisting densities of the ordered and the disordered phase of the generalized
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Figure 5.4: Variation of the external field variable, b with the average fraction of singly

occupied cells, −⟨M⟩/N, for N = 256 particles at T ∗ = 2. The curves from top to bottom

correspond to reduced pressures p∗ = 6, 6.5, 7, 7.5, and 8. The inset shows the volume

distribution at b = 0.358 and p∗ = 7.5. This state corresponds to the open circle, (◦), on

the p∗ = 7.5 isobar in the main figure.
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cell model lie in between the isotherms of the solid and the fluid phase. As the pressure

increases, the value of the field, b at order-disorder coexistence decreases and the coexist-

ing densities approach those of the fluid and the solid phase in the high-p, b → 0 limit, as

is evident in Fig. 5.5. As the pressure decreases, the value of the field, b at coexistence

increases, and the coexisting densities of the ordered and the disordered phase appear to be

merging towards a critical point in the neighborhood of the mechanical stability region of

the solid phase. Detailed elucidation of such criticality requires scaling analysis for finite

systems. Since the generalized cell model is an artificial model used for the sole purpose

of connecting the fluid with the solid phase, such a scaling analysis was not implemented

because it is of no practical value.

The previous findings suggest two equivalent ways to establish fluid-solid coexistence

of the system of interest at temperature T using the generalized cell model. Referring to

Fig. 5.5, fluid-solid coexistence may be established by analyzing the field-induced order-

disorder transition of the generalized cell model in the high-p, b → 0 limit, using standard

flat-histogram techniques. Alternatively, a procedure that resembles thermodynamic inte-

gration may be employed. Specifically, both phases, fluid (unconstrained system) and solid

(constrained cell model), are simulated for a series of pressures, starting from a reference

pressure p0. Then, the generalized cell model is used to link the free energies (i.e., chemical

potentials) of the two phases. This task is achieved by performing a series of simulations

on the constant-pressure path p = p0 for progressively increasing values of the field b.

The details of both methods have been documented in the previous chapters and they will
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Figure 5.5: Phase diagram of the generalized cell model at T ∗ = 2 in the pressure-density

plane. The solid lines correspond to the p–ρ isotherms of the fluid and the solid phase at

T ∗ = 2 and N = 256. (a): fluid (unconstrained system); (b): solid (constrained cell model).

The coexisting densities of the ordered and the disordered phases of the generalized cell

model correspond to system sizes, N, of (◦) 2048, (N) 500, and (�) 256. The dashed

horizontal lines are tie-lines and they are drawn for clarity.
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not be repeated here. The volume distribution at fluid-solid (fcc) coexistence, obtained by

analyzing the field-induced phase transition of the generalized cell model for N = 256 par-

ticles, is shown in Fig. 5.6. The estimate for the coexistence pressure, p∗ = 8.221±0.002,

was obtained through the equal-area rule [12]. The first moments of the peaks of the dis-

tribution shown in Fig. 5.6 gave ρ∗
fcc = 1.0804± 0.0004 and ρ∗

fluid = 0.9535± 0.0003,

respectively. The reported uncertainties correspond to two standard deviations of ten block

averages. Thermodynamic integration using a reference pressure p∗o = 5 gave results within

the quoted uncertainties.

5.4 Tracing fluid-solid phase boundaries

In the previous section, fluid-solid coexistence for a system of particles interacting with

the pair potential given by Eq. (2.12), was established at a single temperature (T ∗ = 2).

For cases for which the determination of the entire fluid-solid phase boundary is desired,

the methodology of the previous section is still applicable provided that one stores the data

in terms of three-dimensional histograms of the volume, the order parameter M, and the

energy. The main drawbacks of such a task are increased memory and storage requirements.

In the present section, a simple thermodynamic integration type of technique [95] is used

to trace the entire fluid-solid phase boundary using the coexistence point at T ∗ = 2 as the

reference point.

The most popular simulation method for tracing phase boundaries is the so-called
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Figure 5.6: Distribution of reduced volume per particle, v∗, at fluid-solid (fcc) coexistence

for N = 256 particles at T ∗ = 2. The value of the coexistence pressure (p∗ = 8.221) was

estimated through the equal-area rule.
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Gibbs-Duhem integration method [66, 65]. According to this method, the two phases (i.e.,

fluid and solid) are simulated separately on a path that coincides with the phase boundary.

Provided that a coexistence point is known by some other means, the method finds another

coexistence point through numerical integration of the Clapeyron equation. The parameters

that are required for numerical integration (such as enthalpies and entropies of the coexist-

ing phases) are obtained from the simulations. The previous process is executed iteratively

to yield the entire phase boundary. In the present section, a different tracing technique [95],

that avoids numerical integration of Clapeyron equations, is used.

Suppose that fluid-solid coexistence of a system of N particles at a reference temper-

ature Tr has been established by a procedure analogous to that described in the previous

section and let pr be the value of coexistence pressure. In order to determine coexistence

at a temperature T ̸= Tr, a series of constant-pressure simulations is performed for both

phases, fluid (unconstrained system) and solid (constrained cell model), covering the range

from Tr to T . The output of the simulations comprises histograms of the volume and the

energy that are analyzed according to histogram reweighting. The net result is the density

of states up to an unknown multiplicative constant which allows for calculation of parti-

tion function ratios and thus free energy (chemical potential) differences. The following

expressions can then be written for the chemical potentials of the fluid [cf. Eq. (2.1)] and

the solid [cf. Eq. (2.2)] at T and p:

µ̃ f (p,T )− µ̃ f (pr,Tr) =− 1
N

ln
[

∆ f (N, p,T )
∆ f (N, pr,Tr)

]
, (5.1)

µ̃s (p,T )− µ̃s (pr,Tr) =− 1
N

ln
[

∆s (N, p,T )
∆s (N, pr,Tr)

]
. (5.2)
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The partition functions that appear in Eqs. (5.1) and (5.2) are evaluated from the density of

states which has been obtained from histogram reweighting. Since µ̃ f (pr,Tr) = µ̃s (pr,Tr),

the chemical potentials of the fluid and the solid in Eqs. (5.1) and (5.2) both contain the

same reference point. The coexistence pressure at temperature T ̸= Tr is found by locat-

ing the common intersection of the two µ–p curves at temperature T . Repetition of this

procedure allows for the determination of the fluid-solid phase boundary for a range of

temperatures.

The resulting phase diagram in the temperature-density plane is reported in Fig. 5.7.

Fluid-solid coexistence was obtained according to the tracing technique described previ-

ously. The vapor-liquid phase diagram was obtained from constant-pressure simulations

of the unconstrained system for N = 256 and 500 particles using tempering and histogram

reweighting. The vapor-liquid critical point (T ∗
c
∼= 0.566, ρ∗

c
∼= 0.401) was estimated by

fitting the coexisting densities for N = 500 to the scaling law for the density difference,

Eq. (2.16), and the law of the rectilinear diameters, Eq. (2.17). As anticipated, the vapor-

liquid demixing transition lies “inside” the fluid-solid coexistence lines. Since the range of

the attractive interactions is short, the liquid phase is not stable, and hence, fluid demix-

ing is metastable against freezing. The phase diagram is very different from that of the

constrained cell model for which there is a stable critical and a triple point, cf. Fig. 5.3.

Furthermore, the critical temperature of the constrained cell model is higher than that of

the unconstrained system. The main reason for the increase in the critical value of the

temperature is the reduction in the entropy caused by the single occupancy constraint.
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Figure 5.7: Phase diagram of the system of particles interacting through the pair potential

given by Eq. (2.12) with n = 12, in the temperature-density plane. The open squares, (�),

are the fluid-solid coexistence points. The open circles, (◦), and the filled triangles, (N),

correspond to the vapor-liquid coexistence points. The filled square, (�), is the estimate

of the vapor-liquid critical point. The solid line is a fit to the scaling laws for the density

difference and the coexistence curve diameter; see Eqs. (2.16) and (2.17). Statistical uncer-

tainties do not exceed the symbol sizes. All calculations have been performed for N = 256

particles, with the exception of the points shown as open circles, (◦), that have been ob-

tained for N = 500 particles. The points shown as crosses, (×), are the estimates of Ref.

[125] for the same system.
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The phase diagram shown in Fig. 5.7 is also compared to that of Vliegenthart et al.

[125] obtained using Gibbs-Duhem integration [66, 65] and Gibbs ensemble Monte Carlo

[101] simulations for the same system. The overall agreement is satisfactory. There are

some disparities in the vapor-liquid critical region and, more importantly, in the fluid branch

of the melting line above the metastable critical point. A likely explanation might be related

to instabilities in the numerical integration algorithm. Note that in the region above the

metastable critical point, the fluid phase is very compressible and, hence, the fluid branch

of the melting curve is nearly horizontal in that region. The present tracing technique

does not require numerical integration since it is based on histogram reweighting. With

the exception of the fluid region above the metastable critical point, few simulations are

required to obtain the fluid-solid phase boundary for wide temperatures ranges.

5.5 Conclusions

Accurate calculation of freezing/melting phase boundaries from numerical simulations still

remains a challenging problem. The main advantage of the techniques used in the present

chapter, compared to the previous direct and indirect approaches (see, e.g. [130] for a re-

view), is their simplicity. The programming/bookkeeping requirements associated with the

division of space into Wigner-Seitz cells is minor. Similar bookkeeping schemes (such as

the Verlet neighbor list [37], for instance), abound in the simulation literature. Further-

more, the computational effort associated with handling the additional field variable, b, is

also minor. The present techniques cannot find the equilibrium solid structure of the system
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under consideration. The prevailing solid phase must be known a priori or found by some

other means. This is also true in all numerical techniques based on cell models.

In the present chapter, these cell models were used to determine the entire phase dia-

gram of a system of particles interacting through the pair potential given by Eq. (2.12) with

n= 12. The vapor-liquid phase diagram was readily established by constant-pressure simu-

lations, tempering, and histogram reweighting techniques. The fluid-solid phase boundary

was established through a simple thermodynamic integration type of technique based on

histogram reweighting. All these thermodynamic integration techniques require a reference

point for which the free energy is either known by some other means or can be evaluated

analytically. Most previous works assumed a reference system of no attractive interactions.

Alternatively, the reference point was taken at β = 0 (i.e., T → ∞). The main drawback of

selecting such a reference point/system is the large number of intermediate states that must

be simulated in order to obtain the phase boundary within the range of interest. In contrast,

in the current chapter the reference fluid-solid coexistence point was determined through

direct simulation of such coexistence using the generalized cell model. These methods uti-

lizing generalized cell modes can be readily extended to cover a range of temperatures in a

single simulation. Such a task was not attempted here, however, due to increased memory

and storage requirements in handling multi-dimensional histograms.

The main reason for which the constrained cell model, in which each particle is con-

fined within a single cell, has not been so popular in simulation studies of fluid-solid tran-

sitions, is the anomalous behavior associated with the appearance of phase transitions. For
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systems with purely repulsive interactions, early simulations studies of the corresponding

constrained cell models found evidence for a weak, first-order transition at densities that

are approximately 60-70% of the density at close packing. As already emphasized above,

this transition is associated with the mechanical stability limit of the solid. The work from

this and previous chapters in this dissertation indicates that for systems with both repulsive

and attractive interactions, the phase diagram of the corresponding cell model is much more

complex than previously thought of. In addition to the previous transition, there is another

phase transition between a highly expanded and a highly compressed solid phase that termi-

nates at a critical point. The resulting phase diagram resembles that of an ordinary system

with a critical and a triple point. The results of the present work as well as of previous work

of the Lennard-Jones model, indicate that the range of attractive interactions has no effect

on the topology of the phase diagram of the constrained cell model. The present (as well

as previous) work indicates that the complexities associated with these phase transitions

induce no complications in cell model-based simulations of fluid-solid phase transitions.
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Chapter 6

Crystal shape modeling and control in

protein crystal growth

6.1 Introduction

In the previous 3 chapters of this dissertation, cell models were introduced and then used

to elucidate phase diagrams for systems interacting via a pair-wise additive potential given

by 2.12. In this chapter, we move to the macroscale considering crystal shape modeling

and control for lysozyme protein crystallization. Protein crystallization is imperative in the

pharmaceutical industry, which is a major contributor to both scientific advancement and

economic growth. It is believed that protein crystallization proceeds in three stages: nu-

cleation, crystal growth, and cessation of growth [62]. The first part of the current chapter

focuses on the second stage of protein crystallization, i.e., crystal growth, which will be
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modeled via kinetic Monte Carlo (kMC) simulations. Several attempts aimed at modeling

protein nucleation [38, 103] and growth [26, 34, 67] have also been made. These efforts

make it possible to manipulate the size distribution and morphology of the protein crystal,

which is a very critical variable for pharmaceutical products. For the tetragonal form of

lysozyme experiments indicate that at low supersaturation growth depends on a lattice de-

fect mechanism, whereas at high supersaturation growth proceeds via two-dimensional nu-

cleation [25, 26, 123]. The present work focuses on crystals that already have been seeded

via two-dimensional nucleation since a large supersaturation is normally required in a batch

crystallization process [3, 124] to achieve reasonable growth rates [34]. It is noted that two-

dimensional nucleation proceeds at supersaturation & 1.6 [122]. Since crystal growth is a

non-equilibrium process, kMC simulation methods are used to model the growth. Kinetic

Monte Carlo algorithms, which form the basis for applying the Monte Carlo method to

simulate dynamic processes [13, 21, 22, 43, 44, 45, 46, 47, 48, 109, 110, 119], are based

on a dynamic interpretation of the Master equation [33, 80]. As is common practice in

simulations of crystal growth, the solid-on-solid model [27] is used in this work to interpret

the growth of protein crystals from supersaturated solutions. In the solid-on-solid approx-

imation, particles are deposited on the growing crystal lattice without voids or overhangs,

resulting in a highly compacted crystal.

The kMC methodology [20] proposed in this chapter uses rate equations originally

developed by Durbin and Feher [27]. Durbin and Feher [27] found that different crystal

faces produce different growth rates depending on the conditions of each independent face
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of the crystal. Their results show a crossover type of behavior between the growth rates of

the (110) and (101) faces, a fact that is consistent with experimental findings [26].

The simulations comprise three microscopic events, namely molecular attachment, de-

tachment, and migration events on the (110) and (101) faces. All attachment events made

in this work are implemented using monomer units. Assuming that all surface sites are

available for attachment, the attachment rate is considered independent for each lattice site.

Detachment and migration events, however, are dependent on their local environment. The

local environment of a given lattice site is specified based on the number of nearest neigh-

bors surrounding that site. The nearest neighbors of a lattice site are on the (N, S, E, W)

directions which are of the same height or higher compared to the current lattice site. An-

other nearest neighbor is located directly below each surface particle, however no surface

particle is without a nearest neighbor below itself due to the solid-on-solid model. Thus

we will consider the nearest neighbor below each particle in the pre-exponential factor of

both the desorption and migration rate equations presented in the next section. That being

said, the number of nearest neighbors we explicitly consider will only be on the (N, S, E,

W) directions ranging from zero to four giving a total of five classes. These classes will be

used to lessen the computational cost when calculating the rates for the three microscopic

events, described in the following section. Owing to the dependence of detachment rate on

the surface configuration, kMC simulation is needed to compute the net crystal steady-state

growth rate as a function of temperature and protein concentration in the continuous phase.
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6.2 kMC methodology

As already emphasized, the solid-on-solid model, which is a simple way to look at the

crystallization process, is used to model the growth of lysozyme. As noted by Ke et al.

[61], the system size does not largely affect crystal growth. They report that no finite-size

effects were found on systems of sizes 30×30, 60×60, and 120×120 sites. In the present

work, a periodic square lattice of length and width of N = 50 sites is used. The height

at a given location within the lattice is defined as the number of particles in the growth

direction. Each simulation comprises 4 million events, or approximately 1600 events per

lattice site on average. At the beginning of each simulation, the lattice is initialized to

a flat surface. To ensure that the initial configuration does not have a noticeable impact

on the results, the first 50 thousand events are discarded in order to allow the surface to

roughen. Each event of our kMC simulation is chosen randomly based on the rates of the

three microscopic phenomena, described below.

6.2.1 Surface Kinetics

The following description of the surface kinetics for the present model follows closely that

of Ke et al. [61] which is based on the work by Durbin and Feher [27]. As emphasized

earlier, since each surface site is available for attachment, the attachment rate is independent

of each lattice site and defined as

ra = K+ (∆µ) = K+
0 exp

(
∆µ
kBT

)
, (6.1)
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where K+
0 is the attachment coefficient, kB is the Boltzmann constant, T is the temperature

in Kelvin, and ∆µ = kBT ln(c/s), where c is the concentration and s is the protein solubility

and this term is the crystallization driving force. It is noted that ra ∝ c. Since the total

number of lattice sites is N2, the total rate of adsorption, Wa, is defined as

Wa = N2ra. (6.2)

As already commented, the desorption rate of a surface particle depends on the local

environment. Thus, the desorption rate of a lattice site with i nearest neighbors is given by

K− (Eb) = K−
0 exp

(
− Eb

kBT

)
= K−

0 exp
(
−i

Epb

kBT

)
, (6.3)

where K−
0 is the desorption coefficient, i is the number of bonds, Epb is the average binding

energy per bond, and Eb = iEpb is the total binding energy. The bond-dependent desorption

rate, rd (i), is thus defined as

rd (i) = K− (Eb) = K−
0 exp

(
−i

Epb

kBT

)
. (6.4)

It can be seen that with less nearest neighbors, the desorption rate becomes higher. The

total rate of desorption is computed by

Wd =
4

∑
i=0

Wdi with Wdi = Mird (i) , (6.5)

where Wdi is the total rate of desorption for each class and Mi is the number of lattice sites

with i nearest neighbors. Similar to the desorption rate, Ke et al. [61] defined the migration

rate the following way

rm (i) = K−
0 exp

(
−i

Epb

kBT
+

Epb

2kBT

)
. (6.6)
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The extra term added in Eq. (6.6) will cause migration events to be favored versus desorp-

tion events. The total migration rate is computed as

Wm =
4

∑
i=0

Wmi with Wmi = Mirm (i) . (6.7)

The total rate, Wtot, is computed by summing over all rates of the three microscopic events,

i.e., Wtot =Wa +Wd +Wm.

As was pointed out by Durbin and Feher [27] and Ke et al. [61], K+
0 and K−

0 are not

independent. At equilibrium, ∆µ = 0 and also the attachment and detachment rates are

equal, i.e.,

K+ (∆µ = 0) = K− (ϕ) , (6.8)

where ϕ is the binding energy per molecule of a fully occupied lattice. Thus, thermo-

dynamic equilibrium provides the following connection between the adsorption, K+
0 , and

desorption, K−
0 , coefficients

K+
0 = K−

0 exp
(
− ϕ

kBT

)
, (6.9)

or by rearranging,

K−
0 = K+

0 exp
(

ϕ
kBT

)
. (6.10)

Plugging this result back into the original equations yields the following expressions for

the desorption and migration rates

rd (i) = K+
0 exp

(
ϕ

kBT
− i

Epb

kBT

)
, (6.11)

rm (i) = K+
0 exp

(
ϕ

kBT
− i

Epb

kBT
+

Epb

2kBT

)
. (6.12)
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Since the binding energies cannot be accessed by experiments [27, 30], previous simulation

work assigned a range of values to Epb and ϕ , until satisfactory agreement between the

calculated and the experimental growth rates was achieved [27]. The same approach is

also followed in this work. Additionally we use K+
0 = 0.4704 s−1 following from similar

numbers of Refs. [27] and [50]. Additionally, we use c = 7.8 mg/mL, Epb/kB = 218.99

K and ϕ/kB = 734.78 K for the (110) face, and Epb/kB = 259.34 K and ϕ/kB = 564.77

K for the (101) face. These values can also be found in Table 6.1 and the corresponding

kMC simulation model can be seen in Fig. 6.1 along with the experimental data extracted

from [26]. It is noted that Epb/kBT and ϕ/kBT are required in Eqs. (6.11) and (6.12) and

these quantities must be divided by the temperature in Kelvin. Finally, it is important to

emphasize that the computation of the growth rate for each face requires the use of kMC

simulations owing to dependence of the detachment rate on the surface micro-configuration

and it cannot be computed by simply subtracting the attachment and detachment rates.

Face Epb/kB ϕ/kB

(110) 218.99 734.78

(101) 259.34 564.77

Table 6.1: Parameters for face (110) and (101) at 7.8 mg/mL NaCl and pH= 4.5%. Addi-

tionally, K+
o = 0.4704 seconds−1.
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Figure 6.1: The expected growth rate versus the degree of supersaturation at c = 7.8

mg/mL. The (�) represents the (110) face with Epb/kB = 218.99 K and ϕ/kB = 734.78

K. The (N) represents the (101) face with Epb/kB = 259.34 K and ϕ/kB = 564.77 K. The

error bars represent two standard deviations of the growth rate. The (�) and (△) represent

the (110) and (101) faces respectively, obtained from Ref [26].
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6.2.2 Event execution

In order to execute an event, a uniform random number, ζ1 ∈ [0,1), is generated. If ζ1 ≤

Wa/Wtot, then an adsorption event is executed. If Wa/Wtot < ζ1 ≤ (Wa +Wd)/Wtot, then

a desorption event is executed. Lastly, if ζ1 > (Wa +Wd)/Wtot, then a migration event is

executed. For the case of adsorption, a lattice site is chosen at random for the adsorption

event to take place. For desorption and migration, the specific class needs to be determined.

In the case of a desorption event, the kth class is determined to be an integer from [0,4] such

that,

Wa +
k−1

∑
i=0

Wdi

Wtot
< ζ1 ≤

Wa +
k

∑
i=0

Wdi

Wtot
. (6.13)

Once the class is determined, a second random number, ζ2, is generated to select a random

lattice site within class k to execute the desorption event. Migration events work in an

analogous way to desorption events with a minor modification to Eq. (6.13) as follows,

Wa +Wd +
k−1

∑
i=0

Wmi

Wtot
< ζ1 ≤

Wa +Wd +
k

∑
i=0

Wmi

Wtot
. (6.14)

In Durbin and Feher’s work [27] it was found that only half the lattice sites were avail-

able for adsorption on the (101) face, whereas every lattice site is available on the (110)

face. This is due to the fact that only half the molecules on the (101) face have dangling

bonds (i.e., the points of attachment for incoming molecules), whereas every molecule on

the (110) face has dangling bonds [27]. In the present work, this behavior is modeled by

accepting 50% of adsorption events on the (101) face, compared to 100% on the (110)
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face. In the case of desorption, the events are always accepted for both faces. Similar to

desorption events, migration events are always accepted as long as there exists at least one

available migration site. For this work, an available migration site is a nearest neighboring

site which is lower in height than the current lattice site where the migration event is taking

place. Similar to Gilmer and Brennema [49], each available migration site is given equal

probability to accept the displaced particle.

After each event is executed, a time increment, ∆t, is computed based on the total rate

of the microscopic events as follows

∆t =− ln(1−ζ )/Wtot, (6.15)

where ζ is a uniform random number, ζ ∈ [0,1). Events will continue to take place until

the conclusion of the simulation.

6.3 Linking growth rate ratio with concentration and tem-

perature

The data generated from the kMC simulations was used to construct a nonlinear algebraic

equation (visualized by a 3-D plot). This equation was utilized in the model predictive

control (MPC) formulation to relate the crystal growth rate ratio to the temperature and

protein concentration in the continuous phase. The shape of the crystal is determined by the

two independent faces and their relative growth rates. Therefore, it is possible to control

the evolution of crystal shapes by controlling the ratio between the growth rates of the
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two faces. The growth rate ratio curve (discussed in Section 6.4) and the measurement

of current temperature as well as of the concentration are assumed to be available to the

controller.

6.3.1 Modeling steady-state growth rate ratio dependence on temper-

ature and solution concentration

The three variables (i.e., temperature, growth rate ratio, and protein concentration) used for

the model construction are obtained from the open-loop simulations using the kMC model

in Section 6.2. The protein solution concentration (temperature) is fixed during each open-

loop simulation to observe the dependence of the crystal growth rate ratio on temperature

(protein solution concentration).

A nonlinear algebraic equation relating the relative growth rate ratio versus protein

concentration and temperature is derived to quantify the evolution of the crystal growth

accounting for the effect of protein concentration variations and temperature changes in su-

persaturated protein solutions. The concentration variation results from the mixing problem

of the batch process as well as the technical difficulty in the measurement of protein con-

centration. Therefore, a Gaussian noise with the following mean and covariance is added

to the concentration measurements, c(t), in simulations:

⟨c(t)⟩= cn, ⟨c(t)c(t ′)⟩= σ2
g c2

n, (6.16)

where cn is the nominal concentration of the system and σ2
g shows how far a set of measured
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concentrations deviates from its nominal value. In order to suppress the uncertainty in

the protein concentration, the kMC simulations are repeated to compute expected values

[i.e., averages denoted as ⟨·⟩ see, e.g., Eq. (6.16)]. Also, it is important to note that the

concentration variation results in a change of the attachment rate [cf. Eq. (6.1)].

Different operating conditions strongly affect the crystallization process and, conse-

quently, the behavior of the growth rate ratio profile. Fig. 6.2 shows the ratio data collected

from open-loop simulations. In this work, the temperature, T , is chosen as the manipulated

input, and the pH and NaCl concentration are maintained fixed at 4.6 and 5.0%, respec-

tively. The protein concentration as well as the temperature dependence of the growth rate

ratio is obtained by generating a 3-D plot for a variety of protein concentrations ranging

from 7.2 to 8.4 mg/mL, and temperatures ranging from 4 to 25◦C. It should be noted that

25◦C is the maximum temperature at which tetragonal crystals can be obtained [5]. There

is a maximum in the growth rate ratio located at ∼ 15◦C. Thus the ratio tends to decrease as

the temperature increases or decreases from 15◦C and the protein concentration decreases.

Fig. 6.2 is the 3-D surface plot of r = f (T,C), where f is a nonlinear function of the

growth rate ratio, to better illustrate the effects of changing temperatures and protein con-

centrations. To this end, in Fig. 6.2, the data was interpolated to fit a regularly spaced grid.

It can be clearly seen that the growth rate ratio is a strong function of the temperature and

protein concentration, and this dependence is the basis for using temperature, T , to control

protein crystal shape.
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Figure 6.2: Surface plot of the growth rate ratio data for tetragonal lysozyme at pH 4.6

and 5% NaCl. The data from the open-loop kMC simulation are plotted to demonstrate the

effect of temperature and concentration variations on this ratio. Protein concentration and

temperature range from 7.2 to 8.4 mg/mL and 4 to 25◦C, respectively.
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6.4 Model predictive control of crystal shape

As emphasized previously, in the kMC simulations molecular attachment, detachment, and

migration events are considered. Depending on the relative attachment energy of the crystal

faces and assuming that the independent crystal faces that appear during the crystal growth

are the (110) and (101) faces, kMC simulations reproduce the experimentally observed

crossover behavior in the crystal growth rates between the two faces [cf. Fig. 6.1]. In this

section, a model predictive controller is designed based on the 3-D plot (i.e., the non-linear

growth rate ratio equation), Fig. 6.2, to suppress the concentration variation and achieve

the desired set-point values by manipulating the temperature. A desired set-point value of

the growth rate ratio is included in the cost function in the MPC formulation. Regarding the

choice of MPC for the controller design, it is noted that classical control schemes like pro-

portional (P) control cannot be employed to explicitly account for input/state constraints,

optimality considerations, and the nature of the attachment, detachment, and migration

processes. Also, dynamic open-loop optimization may be used but it does not provide

robustness against model inaccuracies and fluctuation in the protein concentration.

6.4.1 Model predictive control formulation

To this end, consider the control problem of the growth rate ratio by using an MPC design.

The expected value of the growth rate ratio, ⟨α⟩, is chosen as the control objective, where α

is defined as a ratio G110/G101. Here G110 and G101 signify the growth rate on the (110) and
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(101) faces, respectively. The temperature is used as the manipulated input. The pH and

NaCl concentration are fixed during all closed-loop simulations. The proposed modeling

and control methods do not depend on the specific number of the manipulated variables

and can be easily extended to the case of multiple inputs. To account for a number of

practical considerations, several constraints are added to the control problem. First, there

is a constraint on the range of variation of the temperature such that 4 ≤ T ≤ 25◦C. This

constraint ensures validity for the kMC model by imposing a range that will not damage the

protein crystal. Another constraint is imposed on the rate of change of the temperature to

account for actuator limitations. The control action at time t is obtained by solving a finite-

horizon optimal control problem. The cost function in the optimal control problem includes

a penalty on the deviation of ⟨α⟩ from its set-point value which is determined based on the

desired crystal shape. Since the protein crystallization process is a batch process, a desired

minimum thickness (i.e., minimum amount of growth on each face of the crystal) may be

required to ensure that the crystal has the properties necessary for its desired application at

the end of the crystallization process. The thickness may be obtained by adjusting the time

that growth takes place since the growth rates can be estimated. However, in this work to

simplify the development and focus on crystal shape control, imposing a minimal crystal

size of the two surfaces is disregarded in this MPC formulation. The optimal temperature

profile is calculated by solving a finite-dimensional optimization problem in a receding
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horizon fashion. The MPC problem is formulated as follows:

minimize
T1,...,Ti,...,Tp

p

∑
i=1

Fi

subject to Fi = (⟨α⟩−αset)
2

α = f (T,C)

Tmin ≤ Ti ≤ Tmax∣∣∣∣Ti+1 −Ti

∆

∣∣∣∣≤ RT

i = 1,2, . . . , p

(6.17)

where t is the current time, Fi is the cost function expressing the deviation of ⟨α⟩ from

its set-point ratio, αset, ∆ is the sampling time, p is the number of prediction steps, p∆

is the specified prediction horizon, ti, i = 1,2, . . . , p, is the time of the ith prediction step,

ti = t + i∆, respectively, Ti, i = 1,2, . . . , p, is the temperature at the ith step, Ti = T (t + i∆),

respectively, Tmin and Tmax are the lower and upper bounds on the temperature, respec-

tively, and RT is the limit on the rate of change of the temperature. The optimal set of

control actions (T1,T2, . . . ,Tp), is obtained from the solution of the multi-variable opti-

mization problem of Eq. (6.17), and only the first value of the manipulated input trajectory,

T1, is applied to the protein crystallization process from time t until the next sampling time,

when a new measurement of protein concentration in the continuous phase is received from

the kMC simulation and the MPC problem of Eq. (6.17) is re-solved for the computation

of the next optimal input trajectory. The physical properties of the system (i.e., protein

solubility and so on) were obtained from experimental data for the lysozyme protein solu-

tion [14]. In a previous work, empirical expressions were obtained for the growth rates by
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fitting algebraic expressions to the available experimental data [117]. In the present work,

the growth rates are computed following the kMC methodology from Section 6.2. Further-

more, the stochastic nature of the system and the model uncertainty will be accounted for

in the protein concentration variations; see, e.g., Shi et al. [116] and Chiu and Christofides

[19], for results on model predictive control and robust-control of crystallization systems,

respectively.

6.5 Single crystal results

6.5.1 Open-loop simulations

For a given set of the simulation conditions comprised of temperature, pH, salt and pro-

tein solution concentrations, the method described in the Section 6.2 results in averaged

lysozyme face growth rates at various values of supersaturations.

In Fig. 6.1, crystal growth is modeled at supersaturation 0.9 . ln(c/s) . 2.8, where c

(mg/mL) is the solution protein concentration and s (mg/mL) is the solubility. The growth

rates produced are the average growth rate for each set of conditions over 10 independent

kMC runs and are compared against data from Durbin and Feher [26]. For Fig. 6.1, c =

7.8 mg/mL. The solubility is determined by Eq. (6.18) using a third order polynomial of

solubility in terms of temperature T (◦C) at pH = 4.6 and 5%(w/v) NaCl [14, 15].

s(T ) = 3.506×10−4T 3 −9.046×10−3T 2

+1.303×10−1T +7.209×10−2. (6.18)
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The above equation allows for accurate modeling of the solubility in terms of temperature at

the selected pH and salt concentration with an error of 5.4% [15]. As is evident in Fig. 6.1,

crossover behavior between the (110) and (101) faces does, indeed, occur. Specifically,

the crossover value of the growth rate from Fig. 6.1 is ∼ 0.06 µm/min and Durbin and

Feher [26] show ∼ 0.1 µm/min. The same growth rates are shown in terms of temperature

in Fig. 6.3. This figure directly shows the relationship between the growth rates and the

temperature. As shown in Fig. 6.3, as temperature increases, the growth rates on both faces

decrease. The growth rate for the (110) face decreases at a higher rate than the growth

rate for the (101) face. These results follow previous experimental work for pH and salt

concentration near our given values [81, 82].

Furthermore, the kMC simulations were tested over a varying range of protein concen-

trations in the liquid solution. Concentrations were taken at finite values of 6.8, 7.8, 8.8,

and 9.8 mg/mL. As anticipated, higher protein concentrations and lower temperatures yield

higher growth rates. However, as temperature rises, the difference between the growth rate

of the constant concentration curves becomes smaller. Each of the points in Fig. 6.4 and

Fig. 6.5 is taken from averaging over 10 kMC simulations to compute accurate expected

values, where the error bars represent two standard deviations. Since the rates for desorp-

tion and migration change after the execution of each microscopic event, the steady-state

growth rate must be computed by averaging over the individual growth rates obtained from

several kMC processes. Fig. 6.5 displays the 4 finite values of concentration at T = 14◦C

located in the rectangular box from Fig. 6.4. There are minimal fluctuations in Fig. 6.5,
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Figure 6.3: The expected growth rate versus temperature of c = 7.8 mg/mL. The (�) rep-

resents the (110) face with Epb/kB = 218.99 K and ϕ/kB = 734.78 K. The (N) represents

the (101) face with Epb/kB = 259.34 K and ϕ/kB = 564.77 K. The error bars represent two

standard deviations of the growth rate.
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that allow one to deduce reliable estimates for the growth rate.

6.5.2 Closed-loop simulations

In this section, the proposed model predictive controller of Eq. (6.17) is applied to the kMC

model described in Section 6.2. These closed-loop simulations will be performed to test the

ability of the model predictive controller to drive the growth rate ratio to desired set-point

values in the presence of significant variation / disturbance in the operating conditions. At

each sampling time (1 second), the optimal temperature, obtained by solving the optimiza-

tion problem of Eq. (6.17), is applied to the closed-loop system until the next sampling

time. The optimization problem is solved via a local constrained minimization algorithm

using the nonlinear algebraic model described previously to predict the dependence of the

crystal growth rate ratio on temperature and protein concentration.

The desired values (set-points) in the closed-loop simulations are ⟨α⟩= 1.19 and ⟨α⟩=

0.67. The protein concentration randomly varies following the Gaussian distribution of Eq.

(6.16) and the pH and NaCl concentration are fixed at 4.6 and 5.0%, respectively, and

the initial temperature is 15◦C. The nominal concentration is 7.8 mg/mL with σg = 2.5%

(σg × cn = 0.195 mg/mL). We would like to note that no material balance was included

for the solute concentration since the focus of this work is on modeling and control of the

crystal shape of an individual crystal over a time period which has minimal concentration

drop. The maximum rate of change of the temperature is 2◦C/min, and the minimum and

maximum temperature allowed by the controller is 4◦C and 25◦C, respectively. Since the
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Figure 6.4: The expected growth rate on the (101) face of pH 4.6, 5% NaCl, and various

values of lysozyme concentration. The labeling is as follows, (◦): c = 9.8 mg/mL, (•):

c = 8.8 mg/mL, (△): c = 7.8 mg/mL, and (�): c = 6.8 mg/mL. For these simulations,

Epb/kB = 259.34 K and ϕ/kB = 564.77 K. The error bars represent two standard deviations

of the growth rate.
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Figure 6.5: The expected growth rate on the (101) face at pH 4.6, 5% NaCl, T = 14◦C, and

various values of lysozyme concentration. The labeling is as follows, (◦): c = 9.8 mg/mL,

(•): c = 8.8 mg/mL, (△): c = 7.8 mg/mL, and (�): c = 6.8 mg/mL. For these simulations,

Epb/kBT = 0.903 and ϕ/kBT = 1.967. The error bars represent two standard deviations of

the growth rate.
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MPC formulation uses the steady-state growth rates, the number of prediction steps is set

to be p = 1. The time interval between two sampling times is 1 second. The prediction

horizon of each step is fixed at p∆ = 1 second. The concentration varies every 0.333

seconds. The computational time that is used to solve the optimization problem with the

current available computing power is negligible with respect to the sampling time interval.

The closed-loop simulation duration is 3000 seconds.

In the closed-loop simulations associated with controlling the growth rate ratio to the

desired set-point values, the control objective is to separately regulate the expected ratio

to the desired values, ⟨α⟩ = 1.19 and ⟨α⟩ = 0.67 respectively. Thus, the cost function of

this problem contains penalty on the deviation of the expected growth rate ratio from the

set-point value.

The results of the closed-loop simulations are shown in Figs. 6.6-6.9. From Fig. 6.6,

for the low set-point ratio ⟨α⟩ = 0.67, it can be seen that soon after the initial rise, the

growth rate ratio decreases constantly, then fluctuates for the rest of the time towards the

end of the simulation. Although disturbance results in the fluctuation of the concentration,

the MPC can successfully drive the growth rate ratio to the desired set-point. Also, as

is shown in Fig. 6.8 and 6.9, the use of expected values (i.e., averages obtained from

100 independent simulations for the same set of conditions) in the control formulation,

suppresses fluctuations. Again, the error bars displayed are two standard deviations in

Figs. 6.8 and 6.9. The shape of the protein crystal can be estimated from Fig. 6.6 and

it is slightly elongated along the (101) direction for the lower set-point ratio while it is
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more equidimensional to slightly elongated along the (110) direction for the higher set-

point ratio. In Fig. 6.7 and Fig. 6.9, temperature profiles are displayed to show how

the optimal input changes over time. The temperature reaches steady-state with minor

fluctuation once the growth rate ratio settles onto the desired ratio. The expected growth

over 3000 seconds for the set-point ratio ⟨α⟩ = 1.19 on the (110) and (101) faces were

approximately 45.69 and 38.22 µm/min, respectively giving a ratio of 1.195. In contrast,

the expected growth for the set-point ratio ⟨α⟩ = 0.67 on the (110) and (101) faces were

approximately 2.07 and 2.42 µm/min, respectively giving a ratio of 0.855. The reason this

ratio is much further away from the set-point value is due to the starting temperature at

15◦C compared to the steady state value of approximately 25◦C causing the growth rate

at the beginning of the run to be much higher than at the end. If we remove the first 300

seconds from the growth, the expected growth for the set-point ratio ⟨α⟩ = 0.67 on the

(110) and (101) faces were approximately 1.07 and 1.58 µm/min, respectively giving a

ratio of 0.677, which is in good accord with the set-point. This shows the importance of the

starting temperature in the batch process to control the crystal shape. The larger error bars

are due to the higher sensitivity of the crystal growth rate ratio in the presence of solute

concentration disturbance at higher temperatures. We note that the magnitude of the solute

concentration disturbance is independent of the nominal solute concentration value and

thus the disturbance has a more pronounced effect at low solute concentrations resulting in

larger error bars given the gaussian nature of the disturbance.
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Figure 6.6: Profiles of growth rate ratio under closed-loop operation. The growth rate ratio

set-point values are (◦): ⟨α⟩= 1.19 and (�): ⟨α⟩= 0.67, respectively.
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Figure 6.7: Profiles of temperature under closed-loop operation. The growth rate ratio

set-point values are (◦): ⟨α⟩= 1.19 and (�): ⟨α⟩= 0.67, respectively.
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Figure 6.8: Profiles of the expected values of growth rate ratio under closed-loop operation.

The growth rate ratio set-point values are (◦): ⟨α⟩= 1.19 and (�): ⟨α⟩= 0.67, respectively.

The error bars represent two standard deviations of the growth rate ratio.
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Figure 6.9: Profiles of the expected values of temperature under closed-loop operation. The

growth rate ratio set-point values are (◦): ⟨α⟩ = 1.19 and (�): ⟨α⟩ = 0.67, respectively.

The error bars represent two standard deviations of the temperature.
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6.6 Batch Crystallization Process

Up to this point, a microscopic model has been considered for the crystal growth process

of a single lysozyme crystal. In order to consider a batch crystallization process, we must

reformulate our overall setup to allow for nucleation which will then be followed by kMC

simulations for each crystal representing the crystal growth step. Many other additional

considerations must be made in order to account for the population of crystals, and will be

presented in the following sections and subsections.

6.6.1 Nucleation

The following equation for the nucleation rate, J(0,0, t)(σ), at time t (with units [cm−3 ·

sec]), was extracted from Ref. [39] at pH = 4.5 and 4%(w/v) NaCl:

J(0,0, t)(σ) =


0.041σ +0.063 if σ ≥ 3.11

8.0×10−8 exp(4.725σ) if σ < 3.11

(6.19)

where σ is the supersaturation defined as ln(c/s). Since the working range has been

changed to account for available nucleation rate data, the kMC growth model given by

Eqs. (6.1) to (6.15) must be fit to experimental growth rate data again and is described

in the next subsection. Additionally, the protein solubility, which is dependent on temper-

ature (◦C), is redefined for pH = 4.5 and 4%(w/v) NaCl by [14, 15] with the following
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third-order polynomial:

s(T ) = 2.88×10−4T 3 −1.65×10−3T 2

+4.619×10−2T +6.008×10−1. (6.20)

It is reported that Eq. (6.20) gives an error of 6.8% for the selected pH and salt concentra-

tion [15].

6.6.2 Fitting experimental data via open-loop simulations

For a given set of the simulation conditions comprised of temperature, pH, salt, and pro-

tein solute concentrations, the method described earlier in Section 6.2 results in averaged

lysozyme face growth rates at various values of supersaturation.

In Fig. 6.10, crystals have been grown at supersaturation 2.1 . ln(c/s) . 3.95, where

c (mg/mL) is the protein solute concentration and s (mg/mL) is the solubility, and the

estimated growth rate at 4.0% NaCl is compared with the experimentally measured data at

3.5% and 5.0% NaCl from Ref. [25], respectively. The parameters for the kMC simulation

in Figs. 6.10 to Fig. 6.18 are listed in Table 6.2. The original parameters were taken from

[27] and modifications were performed by making small changes to these parameters to

ensure both validity in the crossover behavior of the growth rates of the (110) and (101)

faces, and that the data was in the correct regime for the 4% NaCl to make use of available

nucleation rate data [39] given previously. The growth rates produced are the average

growth rate for each set of conditions over 10 independent kMC runs. For Fig. 6.10,
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c = 45.0 mg/mL. The solubility is determined by Eq. (6.20) in terms of temperature (◦C)

at pH = 4.5 and 4%(w/v) NaCl. As is evident in Figs. 6.10 and 6.11, cross-over behavior

between the (110) and (101) faces does, indeed, occur. It is also apparent in Fig. 6.10 that

the kMC simulation models the experimental result by Ref. [27]. We also note that with a

different set of experimental data, the parameters can be fit again to achieve a satisfactory

agreement between simulation and experiment.

Face ϕ/kB Epb/kB

(110) 1077.26 227.10

(101) 800.66 241.65

Table 6.2: Parameters for face (110) and (101) at 45 mg/mL NaCl and pH= 4.5 at T =

18◦C. Additionally, K+
o = 0.211 seconds−1.

6.7 MPC of crystal size and shape for batch crystallization

In the kMC simulations, crystal nucleation is considered alongside crystal growth via

molecular attachment, detachment, and migration events. Since the nucleation rate de-

pends on the supersaturation, it has been manipulated by changing the temperature for a

given concentration. Parameters of crystal growth have also been appropriately chosen for

kMC simulations to capture the experimentally observed cross-over behavior in the crystal

growth rates between the (110) and (101) faces [26, 27], which are given in Table 6.2. In

this section, a model predictive controller is designed based on the non-linear growth rate
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Figure 6.10: The expected growth rate versus the degree of supersaturation at c = 45

mg/mL and 4% NaCl are shown as the solid (110 face) and the dashed (101 face) lines.

The (�) and (�) represent the measured experimental data for 110 and 101 faces with 5%

NaCl; (•)/(◦) represent the measured experimental data with 3.5% NaCl; extracted from

Ref. [26] at pH= 4.6%.
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Figure 6.11: The expected growth rate versus the degree of the supersaturation at c = 45

mg/mL with Epb/kBT = (0.78/0.83) and ϕ/kBT = (3.7/2.75) for 110 (�) and 101 faces

(N), respectively. Error bars represent two standard deviations of ten simulations for each

point.
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equations (i.e., 3-D plots) for both faces and the growth rate ratio which has been shown in

Figs. 6.12(a), 6.12(b), and 6.12(c) to suppress the uncertainty in the solute concentration,

and achieve the desired set-point values by manipulating the temperature. A desired set-

point value of the growth rate ratio and minimum crystal sizes for the (110) and (101) faces

are included in the cost function in the MPC formulation. MPC resolves the drawbacks of

the classical control schemes like proportional integral (PI) control, which cannot explic-

itly take into account input/state constraints, optimality considerations, and the nature of

the nucleation, attachment, detachment, and migration processes. Furthermore, dynamic

open-loop optimization may be used. However, open-loop optimizations does not provide

robustness against model inaccuracies and stochastic variation in the protein concentration

and the operating environment.

6.7.1 The population balance equation for protein crystallization

The evolution of the particle size and shape distribution in a protein crystallization process

is typically described by a population balance equation (PBE). More specifically, for the

batch crystallizer considered in this work, a population balance model can be used to de-

scribe the evolution of the crystal size distribution (CSD), n(h110,h101, t), which represents

the number of crystals at time t with height h110 and h101 on each face. To describe the

behavior of the CSD in a crystallization process, it is necessary to know the nucleation rate

as well as the growth rate. In Liu’s work [74], they only considered crystal growth from

seeds. However, in the present work we consider the nucleation process as well. We as-
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(c) Growth rate of the (101) face

Figure 6.12: Plots of the growth rate data obtained for the (110) face, the (101) face, and

the growth rate ratio between (110) and (101) faces for tetragonal lysozyme protein crystals

at pH = 4.5. It is noted that the growth rate ratio, G, is equal to G110(t)
G101(t)

and is dimension-

less. The data from the open-loop kMC simulation are plotted to demonstrate the effect

of temperature and concentration variations on growth rates. Protein concentration and

temperature range from 41.5 to 48.5 mg/mL and 4 to 25◦C, respectively.
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sume that the height of nuclei for the (110) and (101) faces, h110 and h101, is negligible, and

the number of nuclei newly formed at time t is denoted as n(0,0, t). We have two reasons

supporting this assumption. First, a nucleus consists of 3 (to 4) HEW lysozyme molecules,

whose size is negligible relative to the final crystal size [83]. In addition to this, nuclei can

not be observed until they reach the resolution limit of the optical microscope, ∼ 0.5µm

[121]. The resulting population balance equation has the following form:

∂n(h110,h101, t)
∂ t

+∂
(
(G110(h110, t)n(h110,h101, t))

∂h110

)
+∂

(
(G101(h101, t)n(h110,h101, t))

∂h101

)
= 0

α = fα(T,C)

G110(h110, t) = f110(T,C, t)

G101(h101, t) = f101(T,C, t)

n(h110,h101, t) =
t−1

∑
k=0

∆
J(0,0,k) ·V

J(0,0, t) = fnucleation(σ(t))
(6.21)

where G110(h110, t) and G101(h101, t) are the growth rates for (110) and (101) faces, ∆

is the sampling time, V is the volume of the crystallizer, α = G110(t)
G101(t)

, is the growth rate

ratio. The nonlinear equations, fα , f110, and f101, show their dependencies on temperature,

solute concentration and time, respectively. The number of crystals nucleated at time, t,

is obtained from Ref. [39], where the homogeneous nucleation rate is determined by the

supersaturation and NaCl concentration, as well as pH level. In this work, we assume that

heterogeneous nucleation, i.e., nucleation on a surface, is negligible. The nucleation rate
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was given previously by Eq. (6.19). Instead of solving Eq. (6.21) directly, we execute

several kMC simulations with nuclei formed at different times. This is considered to be

equivalent to solving Eq. (6.21). Also, for a given supersaturation, the nucleation rate

is obtained from the experimental results by Galkin et al. [39]. In the next subsection,

the controller design method given in Section 6.4 is further generalized to the case with

nucleation of crystals.

6.7.2 Model Predictive Control (MPC) formulation

We consider the control of the crystal size and shape for a crystal population nucleated at

different times as the batch crystallization process proceedes by using a Model Predictive

Control (MPC) design. The expected value of the growth rate ratio, ⟨α⟩, is chosen as the

control objective, where α is defined as the ratio G110/G101. A desired minimum crys-

tal size is also included in the cost function of the MPC formulation and the temperature is

used as the manipulated input. Although there are various factors that affect the protein sol-

ubility and crystal morphology during the crystallization process [2, 79], we assume only

temperature and solute concentration vary, while all other parameters remain constant for

the closed-loop simulations (e.g., pH, NaCl concentration, buffer concentration, etc.). As

stated in Section 6.4, the proposed modeling and control methods can be easily extended to

the case of multiple inputs since they do not depend on the specific number of the manip-

ulated variables. To account for a number of practical considerations, several constraints

are added to the control problem. First, there is a constraint on the range of variation of
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the temperature to ensure validity for the kMC model by imposing a temperature range that

will not damage the protein crystal. Specifically, 4◦C≤ T ≤ 25◦C is the working range

for temperature values. Second, another constraint is imposed on the rate of change of the

temperature to account for actuator limitations. The controller can change temperature at a

maximum of 2◦C/min. The other constraint restricts the number of crystals nucleated dur-

ing, for example, the second half of the batch run, which limits the nucleation of very small

crystal fines. The control action (optimal temperature) at time t is obtained by solving a

finite-dimensional optimization problem in a receding horizon fashion. The cost function

in the optimal control problem includes a penalty on the deviation of ⟨α⟩ from its desired

crystal shape. It also includes penalty costs on the negative deviation of the crystal size

when the crystal size is less than the minimum. This helps to prevent crystal fines at the

end of the crystallization process. For a given solute concentration and temperature, crys-

tal growth during the time interval is estimated by using Fig. 6.12, which was previously

obtained from the open-loop simulations. The MPC problem is formulated as follows:
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minimize
T1,...,Ti,...,Tp

p

∑
i=1

F⟨α⟩,i +Fh110,i +Fh101,i

subject to F⟨α⟩,i = (⟨α⟩−αset)
2

Fh j,i =


h j,min−⟨h j(ti)⟩

h j,min
for ⟨h j(ti)⟩< h j,min

0 for ⟨h j(ti)⟩ ≥ h j,min

αi = fα(T,C, ti)

G j(ti) = f j(T,C, ti)

Tmin ≤ Ti ≤ Tmax∣∣∣∣Ti+1 −Ti

∆

∣∣∣∣≤ RT

n(0,0, t)≤ nlimit ∀t ≥ t f /2

⟨h j(ti)⟩=
⟨h j(ti−1)⟩n(h110,h101, ti−1)

n(h110,h101, ti)
+R j(ti−1)∆

n(h110,h101, ti) = n(h110,h101, ti−1)+n(0,0, ti−1) ∀i

i = 1,2, . . . , p

j ∈ {110,101}

(6.22)

where t is the current time, ti, i = 1,2, . . . , p, is the time of the ith prediction step, ti = t+ i∆,

respectively, t f is the length of the batch simulation, Fi is the cost function expressing the

deviation of ⟨α⟩ from its set-point ratio, αset, Fh110,i and Fh101,i are the cost functions ex-

pressing the penalty on the negative deviation of ⟨h110⟩ and ⟨h101⟩ from its minimum crystal

size, h110,min and h101,min, at time ti, p is the number of prediction steps, p∆ is the speci-
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fied prediction horizon, Ti, i = 1,2, . . . , p, is the temperature at the ith step, Ti = T (t + i∆),

respectively, Tmin and Tmax are the lower and upper bounds on the temperature, respec-

tively, RT is the limit on the rate of change of the temperature, nlimit limits the number of

crystals nucleated during the latter half of the simulation time. The number of crystals,

n(h110,h101, ti), and average height of the crystal face j, ⟨h j(ti)⟩, at time ti are updated at

every sampling time through the recursive equations [cf. Eq. (6.22)], respectively. The

optimal set of control actions (T1,T2, . . . ,Tp), is obtained from the solution of the multi-

variable optimization problem of Eq. (6.22), and only the first value of the manipulated

input trajectory, T1, is applied to the protein crystallization process from time t until the

next sampling time. At this point a new measurement of protein concentration in the con-

tinuous phase is received from the kMC simulation and the MPC problem of Eq. (6.22) is

re-solved for the computation of the next optimal input trajectory. The physical properties

of the system (i.e., protein solubility and so on) were obtained from experimental data for

the lysozyme protein solution [14]. In a previous work [117], empirical expressions were

obtained for the growth rates by fitting algebraic expressions to the available experimental

data. In the present work, the growth rates are computed following the kMC methodol-

ogy described previously. Furthermore, the stochastic nature of the system and the model

uncertainty will be accounted for in the protein concentration variations. For results on

robust-control of crystallization systems and model predictive control see Ref. [116] and

Ref. [19], respectively.
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6.8 Batch crystallization under closed-loop operation

In this section, the proposed model predictive controller of Eq. (6.22) is applied to the kMC

model described previously. At each sampling time (1 second), the optimal temperature,

obtained by solving the optimization problem of Eq. (6.22), is applied to the closed-loop

system until the next sampling time. The optimization problem is solved via a local con-

strained minimization algorithm using the nonlinear algebraic models described previously

(cf. Fig. 6.12) to predict the dependence of the crystal growth rate and growth rate ratio on

temperature and solute concentration, respectively.

The solute concentration randomly varies following the Gaussian distribution of Eq.

(6.16) from Section 6.3. Also, it is important to note that the concentration variation results

in a change of the attachment rate [cf. Eq. (6.1)]. For all closed-loop simulations the nom-

inal concentration is 45 mg/mL with σg = 2.5% of cn. The maximum rate of change of the

temperature is 2◦C/min. The volume of the crystallization batch is 1.0L. The limit on the

number of crystals nucleated during the latter half of the simulation time, nlimit = 500. The

following heuristic is also taken into account: It starts from a high enough supersaturation

region in the beginning that many crystals are nucleated. Then it moves on to a low enough

supersaturation region to keep the rate of nucleation low in order to avoid the nucleation of

the small crystal fines in the end of the batch run. This optimal strategy is taken into con-

sideration in this work as one of the constraints restricting the number of crystals nucleated

during the latter half of the simulation time. See e.g., Figs. 6.13(a) and 6.15(a). Since the

MPC formulation uses steady-state growth rates (cf. Fig. 6.12(a) and 6.12(b)), the number
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of prediction steps is set to be p = 1. The time interval between the two sampling times

is 1 second. The prediction horizon of each step is fixed at p∆ = 1 second. The solute

concentration varies every 1 second. The computational time that is used to solve the opti-

mization problem with the current available computing power is negligible with respect to

the sampling time interval. The closed-loop simulation duration t f = 4000 seconds.

In the closed-loop simulations associated with controlling the growth rate ratio to the

desired set-point values, the control objective is to separately regulate the expected ratio to

the desired values, ⟨α⟩= 0.82 and ⟨α⟩= 1.10, respectively. Thus, the cost function of this

problem contains a penalty on the deviation of the expected growth rate ratio from the set-

point value. Also, the minimum thickness constraints described previously were imposed

on each face to avoid undesirable crystal sizes.

The results of the closed-loop simulations are shown in Figs. 6.13-6.18. Specifically,

Figs. 6.13 and 6.14 show results for six simulated batch runs under the different set-point

growth rate ratios (⟨α⟩ = 0.82 and 1.10) and different starting temperatures (To = 5◦C,

To = 15◦C, and To = 23◦C). We note we chose three starting temperatures, one at both

extremes and one in the middle, in addition to two growth rate ratios at opposite ends to

show a wide range of testing that can help guide practitioners while looking to achieve

a desired shape and size distribution. In Fig. 6.17, the lower desired crystal growth rate

ratio, ⟨α⟩ = 0.82, has shown that final crystal shape distribution is very narrow when the

initial temperature is close to the optimal temperature. Depending on the growth rate ratio

set-point value and the initial temperature of the crystallizer, it takes a different amount of
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time until the temperature reaches the desired set-point value as it is seen in Figs. 6.13 and

6.15. In this case, the optimal temperature is ∼23◦C. Figs. 6.13(a) and 6.15(a) display that

starting from a low initial temperature leads to nucleation of most of the crystals within

the first 600 seconds of the batch simulation and thus a narrow size distribution but, in

Fig. 6.17, a broad shape distribution is achieved. In Figs. 6.13(b) and 6.15(b), since

the initial temperature is closer to the optimal temperature, the system reaches its optimal

temperature faster resulting in a less narrow size distribution and, in Fig. 6.17, a less broad

shape distribution. Lastly, 6.13(c) and 6.15(c) display that the system reaches its optimal

temperature very early and hence the size distribution is broader but, Fig. 6.17, the shape

distribution becomes very narrow.

In contrast to ⟨α⟩= 0.82, the case of the higher desired crystal growth rate ratio, ⟨α⟩=

1.10, has shown that the sensitivity of the system to the initial temperature is much less

and the final crystal shape distribution is extremely narrow when the growth rate ratio set-

point is 1.10 as it is seen in Fig. 6.18. The reason is that the system reaches its optimal

temperature faster, and thus the crystals uniformly nucleated along the batch go through

the optimal temperature from the beginning. As stated earlier, a higher growth rate ratio as

well as a higher nucleation rate is obtained at a low temperature region.

In particular for Figs. 6.14 and 6.16 the optimal temperature is ∼13◦C. The system

reaches its optimal temperature faster, and crystals are uniformly nucleated along the batch

and thus a broad size distribution but, in Fig. 6.18, a narrow shape distribution is achieved.

We note that if the temperature reaches its optimal state earlier in the batch simulation,
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(c) ⟨α⟩= 0.82 To = 23.0◦C

Figure 6.13: The final crystal size distribution at the end of the batch simulation for each

face under closed-loop operation starting from different initial temperature and aiming at

growth rate ratio set-point value, ⟨α⟩ = 0.82. It is noted that the crystal size distribution

is a dimensionless variable and is normalized over the entire crystal population so that

summing over all histogram bars for each face will add up to 1, for each different set of

growth rate ratio and starting temperature.
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(b) ⟨α⟩= 1.10 To = 15.0◦C
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Figure 6.14: The final crystal size distribution at the end of the batch simulation for each

face under closed-loop operation starting from different initial temperature and aiming at

growth rate ratio set-point value, ⟨α⟩ = 1.10. It is noted that the crystal size distribution

is a dimensionless variable and is normalized over the entire crystal population so that

summing over all histogram bars for each face will add up to 1, for each different set of

growth rate ratio and starting temperature.
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(b) ⟨α⟩= 0.82 To = 15.0◦C
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(c) ⟨α⟩= 0.82 To = 23.0◦C

Figure 6.15: Profiles of nucleated crystals and temperature with time during the batch run

under closed-loop operation for varying initial temperature and for the growth rate ratio

set-point value, ⟨α⟩= 0.82. It is noted that the nucleation time distribution is a dimension-

less variable and is normalized over the entire crystal population so that summing over all

histogram bars, for each different set of growth rate ratio and starting temperature, will add

up to 1.
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(b) ⟨α⟩= 1.10 To = 15.0◦C
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(c) ⟨α⟩= 1.10 To = 23.0◦C

Figure 6.16: Profiles of nucleated crystals and temperature with time during the batch run

under closed-loop operation for varying initial temperature and for the growth rate ratio

set-point value, ⟨α⟩= 1.10. It is noted that the nucleation time distribution is a dimension-

less variable and is normalized over the entire crystal population so that summing over all

histogram bars, for each different set of growth rate ratio and starting temperature, will add

up to 1.
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Figure 6.17: The final crystal shape distribution at the end of the batch simulation under

closed-loop operation for varying initial temperature and for the growth rate ratio set-point

value, ⟨α⟩= 0.82. It is noted that the crystal shape distribution is a dimensionless variable

and is normalized over the entire population so that summing over all histograms will add

up to 1 for each starting temperature.
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Figure 6.18: The final crystal shape distribution at the end of the batch simulation under

closed-loop operation for varying initial temperature and for the growth rate ratio set-point

value, ⟨α⟩= 1.10. It is noted that the crystal shape distribution is a dimensionless variable

and is normalized over the entire crystal population so that summing over all histogram

bars for each different starting temperature will add up to 1.
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undesirable effects of the nucleation and growth rates are minimized. In addition to this,

as it is shown in Fig. 6.12, variation in the solute concentration has less effect on the

growth rates as well as the growth rate ratio for ⟨α⟩= 1.10, and thus the system reaches its

steady-state much faster, which is shown in Figs. 6.15 and 6.16.

Therefore, qualitatively speaking, MPC successfully drives the final crystal shape dis-

tribution to the desired set-point value, and a narrow size distribution can be achieved de-

pending on the desired crystal morphology. For instance, for ⟨α⟩ = 1.10, it is much more

likely to obtain a broad crystal size distribution, because the system reaches its optimal

temperature faster regardless of the starting temperature. Although disturbance results in

the fluctuation of the solute concentration, the model predictive controller can successfully

drive the growth rate ratio to the desired set-point. The desired distribution of the pro-

tein crystal shape can be estimated from Fig. 6.17 and it is slightly elongated along the

(101) direction for the lower set-point ratio while it is more equidimensional for the higher

set-point ratio, shown in Fig. 6.18.

6.9 Conclusions

The present work focuses on the application of modeling, simulation, and control to a batch

protein crystallization process in order to first model a single lysozyme protein crystal, and

then model multiple lysozyme protein crystals with the consideration of crystals nucleated

at different times in the batch simulation. Based on the assumption that the two indepen-
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dent crystal faces are the (110) and (101) faces, dependence of the crystal growth of the

two faces on temperature and protein solute concentration, obtained from kMC open-loop

simulations, was observed. The crystal shape of the resulting lysozyme crystals as well

as the nucleation rate was controlled through temperature variations. This was achieved

via a nonlinear steady-state model generated from open-loop kMC simulations. Moreover,

the nucleation rate data was obtained from experiments and is a function of supersaturation.

The nonlinear model captures the protein solute concentration and temperature dependence

of the growth rate ratio, thereby describing the key elements of the protein crystallization

process. The other key achievement of the present work is that it takes nucleation into

account resulting in different crystals nucleated at different times throughout the batch

simulation.

An MPC strategy, which uses the steady-state model, was then designed to drive the

final CSD to the desired set-point value while satisfying constraints on the magnitude and

rate of change of temperature. As mentioned previously, the temperature is chosen as the

manipulated input and this is in accordance with standard batch crystallization practice.

The minimum thickness for each face is also imposed to avoid crystal fines. Simulation

results demonstrated that the proposed controller was able to control the final crystal shape

and size distribution by appropriately manipulating the temperature. The present method-

ology shows that more than 90% of the final crystals can be produced at the desired shape,

either cubic or elongated crystals, as shown in Figs. 6.17 and 6.18. Moreover, in order

to implement this strategy in practice only protein solute concentration and temperature
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measurements are necessary. Once these measurements are available, the controller uses

the algebraic model connecting the protein solute concentration and the temperature to the

crystal growth rate ratio to compute the control action (i.e., temperature change); no crys-

tal size/shape measurements are needed in the controller. These temperature changes are

feasible due to the constraints put onto the controller.

Furthermore, the proposed kMC simulation offers a number of advantages compared

to previous work. In previous simulations, such as Ke et al. [61], they only considered

the crystal seeds to initiate the crystallization. In contrast, in the present simulation, the

nucleation rate was extracted from experiments and an appropriate region was picked and

tested to model the experimental data. In the present work, a controller is designed to drive

existing crystals as well as newly formed nuclei to desired crystal shape and size.
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Chapter 7

Modeling and Control of Ibuprofen

Crystal Growth and Size Distribution

7.1 Introduction

In Chapter 6, crystal shape modeling and control for lysozyme was investigated. Similar

methodology is extended in this chapter to model and control the batch crystallization of

ibuprofen. Once again it is emphasized that crystallization is a key separation process in the

pharmaceutical industry which is estimated to be over a $1 trillion per year industry. It is

used for drug purification, separation, and pre-formulation. A key consideration in crystal-

lization is that in order to achieve desired crystal product quality, the process environment

must be controlled appropriately. Otherwise, the target drug could lose purity, stability, and

bio-availability.
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Simulation techniques are valuable tools that can be used in crystal growth modeling

which usually consist of equilibrium Monte Carlo (MC) and kinetic Monte Carlo (kMC)

simulations, as well as molecular dynamics (MD) simulations [75]. A well-written book

by Frenkel and Smit [37], in addition to a review by Rohl [111], go into detail about the

development of these simulation techniques. In regards to crystallization, MD simula-

tions are quite helpful when looking at how molecules move and how they are incorpo-

rated into the crystal, however, the length and time scales of MD simulations make them

difficult to use for process modeling [75]. On the other hand, kMC simulations allow

for more realistic length and time scales by using rate equations that describe different

microscopic phenomena. To this end, kMC simulation methods have been widely used

to simulate molecular-level phenomena like crystal nucleation, growth, and aggregation

[13, 21, 22, 43, 48, 109, 110, 119, 49, 68, 70, 69]. Furthermore, kMC simulation methods

have been successfully applied to compute the net crystal steady-state growth rate account-

ing for the dependence of the desorption and migration rates on the local surface micro-

configuration. For that reason, we look to investigate the batch crystal growth process of

ibuprofen, one of the most widely used non-steroidal anti-inflammatory drugs (NSAID),

via kMC simulations in this work. Due to the lack of availability of primary nucleation rate

data, we will consider a seeded batch crystallization process and keep the supersaturation at

low enough levels that the impact of nucleation and crystal fines formation will be minimal

compared to the amount of crystals seeded to the system.

RS-ibuprofen (2-(4-isobutyl-phenyl) propionic acid), C13H18O2, is used to treat pain,
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Figure 7.1: Geometry of the ibuprofen crystal. Labels show the (100), (001), and (011)

faces, as well as the interfacial angle, α .

inflammation, cold, and fever. The geometry for an individual ibuprofen crystal is shown

in Fig. 7.1. It works by reducing prostaglandins, which are the hormones causing inflam-

mation and pain in the body. These are usually referred to as local hormones since they

only act close to the location where they are produced. Although they are helpful initially

since swelling will restrict injured areas and increased blood flow will assist in healing,

longer term pain is undesirable. Thus, many different types of painkillers are used, where

ibuprofen is one of the most common and widely available choices. In the US, ibuprofen

brand Advil was the top over the counter (OTC) brand by revenue in 2013 with just over

$490 million according to statista [58].

In this chapter, we first model the ibuprofen crystal growth process. In order to do this,
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we investigate the growth rates of the (001) and (011) faces via a kMC simulation model.

To account for variability in experimental crystal growth rate data, we develop a model for

growth rate dispersion (GRD) since this phenomenon is known to affect ibuprofen crystal

growth rates and this model is applied at the individual crystal level. After that, a seeded

batch crystallizer will be considered, requiring the development of mass and energy bal-

ances for the modeling of the continuous-phase variables and this macroscopic model is

combined with the microscopic crystal growth model. Finally, the crystal size distribution

will be controlled by a model predictive controller (MPC) and compared against classical

control strategies used in industry.

7.2 Ibuprofen Crystal Growth

7.2.1 Kinetic Monte Carlo Modeling and Simulation

In the present work, we will use kinetic Monte Carlo (kMC) simulations in order to model

the growth rates of ibuprofen crystal faces since crystal growth is a non-equilibrium pro-

cess. Unlike equilibrium Monte Carlo simulations, kMC simulations add an element of

time by using rate equations representing different microscopic phenomena. Furthermore,

this allows modeling the dependency of the crystal growth rates on the surface micro-

configuration, in addition to the ability to consider individual crystals, thereby allowing

for a more realistic model for growth rate dispersion. Ibuprofen has unit cell parameters

of a = 14.397Å, b = 7.818Å, c = 10.506Å, and β = 99.70◦ with four molecules per unit
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cell [114, 115]. For this work, we will consider an N ×N lattice with one molecule per

lattice site and periodic boundary conditions. The types of microscopic events we consider

in our kMC simulations in order to model the crystal growth are adsorption, desorption and

migration. Nearest neighbor lists will be used to aide the computational efficiency when

calculating the total rates for each of the microscopic phenomena [20]. The rate equations

considered in this work are set up similar to that of Durbin and Feher for lysozyme [27],

however, they have been modified to account for available growth rate data of ibuprofen

on the (001) and (011) faces [90]. Cano et al. [16] reported data for all three faces (i.e.,

(001), (011), and (100)), however they conducted their experiments at very low supersatu-

ration (σ = 0.013). If more data becomes available in the future for the (100) face, then the

dynamics of the (100) face can easily be integrated into the present kMC simulation model.

7.2.2 Rate Equations

The per-site adsorption rate is defined as:

ra = Ka ·σ , (7.1)

where Ka is the adsorption coefficient and σ is the relative supersaturation of the system

defined by Eq. (7.2) below:

σ =
I
E − I∗

E
I∗
E

, (7.2)
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where I is the ibuprofen content, E is the ethanol content, and I∗
E is the solubility. The

solubility will be taken from [106, 107] and is defined as

I∗

E
= 0.497+0.001026 ·T 2, (7.3)

with temperature T defined in degrees Celsius. Since we consider an N ×N lattice model,

the total rate of adsorption is simply

Wa = N2 · ra. (7.4)

Unlike adsorption, the rates of desorption and migration will be dependent on the local

environment at each lattice site (i.e., number of nearest neighbors to this site). When a

particle has a high number of nearest neighbors, a lower desorption/migration rate will be

associated with this site due to the fact that the particle is more stable in its current location.

Likewise, when a particle has very few or no nearest neighbors, that particle will have a

higher desorption/migration rate. Thus, we will use an Arrhenius type equation for the

per-site rate of desorption, rd , which is defined as follows:

rd (i) = Kd · exp
(
−i

Epb

kBT

)
, (7.5)

where Kd is the desorption coefficient, i is the number of nearest neighbors for the current

lattice site ranging from zero to four (N, S, E, W directions), Epb is the binding energy per

bond, kB is the Boltzmann constant, and T is the temperature in Kelvin. In order to find the

total rate of desorption, we sum over the entire lattice. This can be done in a simple way by

taking advantage of the fact that there are five different types of local environments, rather
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than checking each individual lattice site requiring an O
(
N2) calculation. Thus, the total

rate of desorption is

Wd =
4

∑
i=0

Wdi; Wdi = Mi · rd (i) , (7.6)

where Wdi is the total rate of desorption for lattice sites with i nearest neighbors and Mi is

the number of lattice sites with i nearest neighbors. Migration works in an analogous way

and is defined as follows:

rm (i) = Km · exp
(
−i

Epb

kBT

)
, (7.7)

Wm =
4

∑
i=0

Wmi; Wmi = Mi · rm (i) , (7.8)

where rm is the per-site rate of migration, Km is the migration coefficient, Wm is the total rate

of migration, and Wmi is the total rate of migration for lattice sites with i nearest neighbors.

Lastly, the amount of time elapsed when an event occurs is defined in the following way:

∆t =− ln(1−ζ )/Wtot, (7.9)

where ζ is a uniform random number, i.e., ζ = [0,1), and Wtot =Wa +Wd +Wm.

7.2.3 Growth Rate Dispersion

Growth rate dispersion (GRD) is a well-known phenomenon where crystals of the same

type, undergoing seemingly the same conditions, grow at different rates [40, 129, 60, 104,

42, 94]. Previous models that describe this process include the constant crystal growth

(CCG) model [40, 72], the random fluctuation (RF) model [104], and the fast growers, slow

growers (FGSG) model [23, 113, 41]. In the CCG model, a distribution of crystals has a
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distribution of growth rates and individual crystals adhere to a specific growth rate from

that distribution during the entire period of growth [72]. The RF model requires individual

crystal growth rates to fluctuate around an average value. Lastly, the FGSG model states

that small crystals will grow at lower growth rates compared to the larger ones. In the

present work, we account for GRD in a way that is similar to the CCG model by randomly

giving each crystal a uniform random number, ζGRD, at the start of the simulation which

will be used to calculate the GRD factor, GRD f in the following way:

GRD f = 2
CGRD

σ
·ζGRD +

(
1− CGRD

σ

)
, (7.10)

where CGRD is the GRD constant and will be calculated to fit experimental data of ibuprofen

crystal growth rate dispersion. It is noted that GRD f is dependent on σ due to the fact

that error bars became too small at lower supersaturation values and too large at higher

supersaturation values when fitting to experimental data without having this dependence.

The results of this fit is presented in the next subsection. The GRD factor will affect the rate

of adsorption (i.e., each crystal will have a slightly different rate of adsorption depending on

the ζGRD assigned to that crystal at the start of the simulation). This will allow for variation

in the growth rates in a manner consistent with the experimentally computed values and it

will be explicitly defined in the following way in this work:

σGRD = σ ·GRD f . (7.11)

It is noted that in order for this change to take place, σGRD will replace σ in Eq. (7.1) to

give

ra = Ka ·σGRD. (7.12)
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7.2.4 Fitting the kMC Model Parameters to Experimental Results

For a given set of simulation conditions comprised of temperature, ibuprofen content,

ethanol content, and water content, the kMC simulation methodology and GRD model

described earlier in this section result in growth rate values of ibuprofen for the (001) and

(011) faces over a range of supersaturations. In Fig. 7.2, ibuprofen crystal growth rates are

modeled at 95% ethanol, I
E = 2, and a relative supersaturation range of 0.68 . σ . 1.20.

The growth rates at each point in the kMC are produced by averaging 640 independent

crystal runs with the error bars representing the standard deviation. Results are compared

to experimental growth rates at 95% ethanol from [90], as well as a best fit line given by

[108] which has the equation G = kG · s, where kG = 15 and s = I
E − I∗

E .

The model parameters used for the kMC simulations are listed in Table 7.1. Addition-

ally, CGRD was found to be 0.07 resulting in an average coefficient of variation (CV) for

the kMC simulation data to be 0.14, compared to 0.12 given in [90]. Also, the kMC growth

rate data for the (001) and (011) faces were fit using a least squares linear regression model

which will be used later in the model predictive controller. The result of this fit are

G001 = 24.843 ·σ −15.564, (7.13)

and

G011 = 24.412 ·σ −7.2772. (7.14)

It is noted that size effects of the lattice were considered and results from N = 15 and larger

were consistent and showed no change in results. So, for this work N was set to 20 in order
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Figure 7.2: Growth rate versus supersaturation for the (001) and (011) faces for the kMC

model. Additionally, the experimental results from Nguyen et al. [90] and the trendline

from Rashid et al. [108] are shown.
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to ensure consistency without being too large, thereby causing an exponential increase in

required simulation time.

Parameter Value Units

Epb/kB (001) 17.47 K

Epb/kB (011) 125.20 K

Ka 380 sec−1

Kd 270 sec−1

Km 300 sec−1

Table 7.1: Parameters for faces (001) and (011) at I
E = 2.

7.3 Batch Crystallization

7.3.1 Energy and Mass Balance Equations

The energy and mass balance equations which calculate the change in temperature, T , and

ibuprofen content, I, are given by the following ordinary differential equations:

dT
dt

=− ρc∆Hc

ρslurryCpVslurry
· dVc

dt
−

U jA j

ρslurryCpVslurry
·
(
T −Tj

)
, T (0) = T0, (7.15)

dI
dt

=−ρc
dVc

dt
, I (0) = I0, (7.16)

where ρc is the density of the crystal phase, ∆Hc is the enthalpy of crystallization, ρslurry

is the density of the slurry phase, Cp is the specific heat capacity, Vslurry is the volume of
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the slurry phase, Vc is the total volume of all the crystals, t is the time, U j and A j are the

overall heat transfer coefficient and area between the jacket stream and the crystallizer,

respectively, and Tj is the temperature of the jacket stream. Additionally, T0 and I0 are the

starting temperature and ibuprofen content of the batch system, respectively. The values

for these parameters are given in Table 7.2.

Parameter Description Value Units

ρc crystal density 1030 mg/cm3

∆Hc enthalpy of crystallization -112.95 [90] kJ/kg

ρslurry slurry density 485-510 mg/cm3

Cp specific heat capacity 1.85-2.0 J/g·K

A j surface area of crystallizer wall 0.25 [116] m2

U j heat transfer coefficient of crystallizer wall 1800 [116] kJ/m2· h·K

Table 7.2: Parameters for faces (001) and (011) at I
E = 2. Please note that ranges are given

for the slurry density and specific heat capacity since they are calculated by composition of

the slurry throughout the entire simulation.

Volume Calculation

In order to properly calculate the mass and energy balance terms that require volume change

information, we first need to accurately estimate the volume of the ibuprofen crystals. In

order to do this, we need to know the height for all three faces [i.e., (001), (011), and (100)],
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along with the interfacial angle α . Since we explicitly model the growth rates for the (001)

and (011) faces, we can easily determine the heights of the (001) and (011) faces. On the

other hand, for the (100) face, we will use visual approximation from [105] to estimate its

relative height. The results of this approximation show that the (100) face is roughly 4 to 8

times slower growing than the (001) face. Thus, we will assume:

h100 ∼=
h001

6
, (7.17)

where h100 and h001 are the heights of the (100) and (001) faces, respectively. Second,

we will use the images provided in [90] in order to measure the interfacial angle, α , as a

function of supersaturation. Using these images, we found the following relationship:

α =−14.368◦ ·σ +105.41◦. (7.18)

With the use of Eqs. (7.17) and (7.18), the volume of each crystal (see e.g., Fig. 7.1) can

now be calculated in the following way:

Vcrystal =
4h001

sin
(α

2

) (2h011 −h001 · cos
(α

2

))
·h100. (7.19)

7.4 Model Predictive Control

In the seeded batch crystallization process of ibuprofen, kMC simulations are considered

for the crystal growth process via adsorption, desorption, and migration type microscopic

surface events. The growth rates produced by these simulations are directly related to

the supersaturation of the system, which can be modified by changing the temperature of
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the jacket which is in contact with the batch reactor. In this section, a model predictive

controller (MPC) is presented for seeded batch ibuprofen crystallization control. MPC is

used in order to provide optimality, robustness, and constraint handling in the batch crys-

tallization process [116, 117, 70]. In particular, the objective of the MPC will focus on

minimizing the crystal size distribution by computing a set of optimal jacket temperatures

over the length of the prediction horizon. The main reason shape control is not directly

considered in this work is due to the fact that the shape of ibuprofen crystals is more de-

pendent on the solvent choice rather than the batch temperature. Additionally, an actuator

constraint on the rate of change of the jacket temperature is imposed, as well as a constraint

on the temperature and supersaturation of the system so that crystallization will take place

in an appropriate environment to avoid damaging the crystal. Furthermore, the growth rates

will be modeled via Eqs. (7.13) and (7.14) in the MPC. Lastly, the energy and mass bal-

ance equations are considered [i.e., Eqs. (7.15) and (7.16)]. The formulation for the MPC
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developed in this work is as follows:

minimize
Tj,1,...,Tj,i,...,Tj,p

p

∑
i=1

((
Vset −

M1

M0

)
/Vset

)2

subject to
dM1

dt
= Gvol ·M0, M0 = 5 ·106

G001 = 24.843 ·σ −15.564, G011 = 24.412 ·σ −7.2772

G100 =
G001

6

σ =
I
E − I∗

E
I∗
E

,
I∗

E
= 0.497+0.001026 ·T 2

⟨Vcrystal⟩=
4⟨h001⟩
sin

(α
2

) (2⟨h011⟩−⟨h001⟩ · cos
(α

2

))
· ⟨h100⟩

⟨hk⟩= ⟨hk (ti−1)⟩+Gk∆

dT
dt

=− ρc∆Hc

ρslurryCpVslurry
· dM1

dt
−

U jA j

ρslurryCpVslurry
·
(
T −Tj

)
, T (0) = T0

dI
dt

=−ρc
dM1

dt
, I (0) = I0

Tmin ≤ T ≤ Tmax,

∣∣∣∣Tj,i+1 −Tj,i

∆

∣∣∣∣≤ 2.0◦C/min

σmin ≤ σ ≤ σmax

i = 1,2, . . . , p, k ∈ {001,011,100}
(7.20)

where p= 10 is the length of the prediction horizon, ∆= 40 is the sampling time in seconds,

Vset is the desired average volume set point, ⟨Vcrystal⟩ is the average volume of the crystal

distribution, Tj is the jacket temperature, Tj,i is the jacket temperature at the ith prediction

step, ⟨hk⟩ is the average height on face k, and M0 and M1 are the zeroth and first moments of

the crystal size distribution, respectively. M0 represents the total number of crystals and M1

represents the total volume of the crystals. It is noted that since we consider a seeded batch
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crystallizer without nucleation, M0 will be constant for this work. If nucleation data was

available, then it follows that M0 would need to be a variable in the control problem given

by Eq. (7.20) and more considerations would be taken to attempt to minimize the presence

of crystal fines. Additionally, Gvol is the volumetric growth rate and is calculated by finding

the change in average crystal volume. Finally, values of σmin = 0.6, σmax = 1.3, Tmin =

10◦C, and Tmax = 40◦C are used for this work. The set of optimal jacket temperatures along

the prediction horizon is obtained by solving Eq. (7.20) in a receding horizon fashion with

IPOPT, an open source software package for large-scale nonlinear optimization. The first

value, Tj,1, is then applied to the system until the next sampling time when a new set of

optimal jacket temperatures is calculated.

7.5 Closed Loop Simulations

For the seeded batch crystallization simulations, we investigate the crystal size and shape

distributions. The same initial conditions, other than starting temperature, are used in every

simulation to ensure consistency. For this work, the initial conditions of the seeded batch

reactor are Vsolvent = 400mL (95% ethanol), I
E = 2, Istart = 6×105mg, and M0 = 5×106.

Each of the simulations is completed when the average crystal volume reaches the set

point, Vset = (150µm)3 = 3.375×106µm3. Due to the nature of the batch process and the

dependence of the growth rate on the supersaturation and temperature trajectories, the time

to finish each simulation will vary. To deal with this, we will consider a normalized time to

compare the different simulations, i.e., 0 at the start of the simulation and 1 when the batch
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has reached Vset. Also, it is noted that the kMC simulations are run with constant batch

parameters (i.e., temperature, ibuprofen content, and supersaturation) for 0.333 seconds.

At that point, Eqs. (7.15) and (7.16) are calculated, all system parameters are updated, and

this process is repeated until the end of the simulation.

7.5.1 MPC Performance

In this subsection, we investigate the closed-loop performance of the proposed MPC scheme

to regulate the volume and shape distributions of ibuprofen crystals produced from a seeded

batch crystallization process. Specifically, we look at the effect of different initial temper-

atures and growth rate dispersion on the size and shape distributions of ibuprofen crystals.

We consider starting temperatures ranging from 15◦C to 30◦C with a step size of 5◦C. The

crystal volume distribution for each of the cases is shown in Fig. 7.3. What can be noticed

is that the lower starting temperatures lead to a slightly more narrow size distribution. This

is due to the fact that lower temperatures correspond to higher supersaturation values, and

at these higher supersaturation values the relative effect of the GRD is less compared to

the effect of GRD on lower supersaturation values (see e.g., Fig. 7.2). The differences in

each of the starting conditions becomes much more noticeable in Fig. 7.4 which shows the

crystal shape distribution. We define the crystal shape to be the relative average height of

the (011) face to the (001) face since the (100) face is determined by Eq. (7.17). The crystal

shape distribution not only becomes wider as the starting temperature gets higher, but also

it shifts to the right meaning that the crystals become more elongated. Again, when looking
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at Fig. 7.2, it is evident that the ratio between the (011) and (001) faces is greater at lower

values of supersaturation (i.e., higher values of temperature) which results in an elongated

crystal shape for the higher starting temperatures in Fig. 7.4. Looking at Fig. 7.5, we can

infer a more detailed view of the dynamics of the batch crystallizer conditions. What is im-

portant to notice is that MPC is able to successfully deal with the constraints of the system

(e.g., Tstart = 15◦C or 30◦C where the supersaturation starts outside of the supersaturation

constraint region). Furthermore, after the MPC has changed the batch temperature from the

initial starting temperature, each of the different simulations follows a path that resembles

crystallizer cooling. This is done since as the crystallization progresses, ibuprofen content

will go from the slurry phase to the crystal phase causing a decrease in concentration (i.e.,

I
E ). In order to balance this effect and keep the supersaturation from falling to very low

values, the temperature is lowered in order to keep the crystal growth progressing.

7.5.2 Comparison of MPC Performance With Other Control Strate-

gies

In order to compare the performance of the proposed MPC, we performed additional sim-

ulations using constant temperature control (CTC) and constant supersaturation control

(CSC) strategies. For these simulations, we chose the starting temperature Tstart = 20◦C

for CTC, CSC, and MPC which corresponds to a starting supersaturation σ ∼= 1.2. This

starting point was chosen to ensure both CTC and CSC would be in a valid operating re-

gion accounting for the desired supersaturation and temperature ranges since these control
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Figure 7.3: Crystal volume distribution for MPC showing results for starting temperatures

15◦C, 20◦C, 25◦C, and 30◦C.
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Figure 7.4: Crystal shape distribution for MPC showing results for starting temperatures

15◦C, 20◦C, 25◦C, and 30◦C.
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Figure 7.5: Concentration, supersaturation, and temperature versus normalized time for

MPC showing results for starting temperatures 15◦C, 20◦C, 25◦C, and 30◦C. For the tem-

perature plot, the dotted lines represent the jacket temperature, Tj, for each of the runs.
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methods are unable to deal with constraints. The crystal volume distribution can be seen

in Fig. 7.6. It is clear that CTC leads to the most broad crystal size distribution and it can

be seen that MPC gives a slightly more narrow distribution than CSC. Similar behavior

is seen in Fig. 7.7 for the shape distribution where CSC and CTC shift the crystal shape

distribution to the right compared to the MPC. MPC produces the most narrow crystal size

distribution due to the jacket temperature trajectory it chooses and due to its ability to work

within a constrained region. Additionally, the way the MPC goes about minimizing the

volume distribution also happens to produce the most narrow crystal shape distribution.

The differences in each of these policies are highlighted when looking at the dynam-

ics of the batch reactor in Fig. 7.8. As expected, CTC holds the jacket temperature at

20◦C throughout the entire simulation, however, it is noted that the supersaturation drops

significantly below 1.2 in the CSC policy. This is due to the actuator constraint on Tj

thereby limiting the maximum rate of change and causing the supersaturation to drop. It

is also interesting to note that MPC and CSC take nearly identical pathways in terms of

concentration to reach the desired set-point. Overall, MPC is able to outperform the other

techniques since it is able to “plan ahead” and predict what will happen next which is

especially important when there is significant concentration drop in the system.

7.5.3 Computational Performance and Scaling

To close out this section, it is important to note the computational performance and scaling

for this work. In order to make this comparison, we ran the same seeded batch crystalliza-
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Figure 7.6: Crystal volume distribution for CTC, CSC, and MPC at the end of the batch.

tion simulation and initial conditions with different random seeds on the Texas Advanced

Computing Center’s Stampede cluster. The code was optimized using Message Passing

Interface (MPI) over the crystal growth stage since it was determined to be the bottleneck

of this simulation. Specifically, at the start of the simulation, crystals are assigned to one of

the available cores. Next, the the growth process runs while the batch system parameters

remain constant until it is time to update the crystallizer conditions. After these parameters

are updated, the crystals will go back into the growth stage on their assigned core. This

process is repeated until the end of the simulation. The results of these simulations for

varying number of cores are shown in Fig. 7.9 and the data points are given in Table 7.3.

What can be seen from Fig. 7.9 is that there is a significant decrease in time required to

complete the batch simulation as the number of cores are increased. Looking at Table 7.3,

198



1.5 2 2.5 3
crystal shape distribution ( <h

011
> / <h

001
> )

0

0.05

0.1

0.15

0.2

0.25

no
rm

al
iz

ed
 p

op
ul

at
io

n CTC
CSC
MPC

Figure 7.7: Crystal shape distribution for CTC, CSC, and MPC at the end of the batch.

Please note that one bar from CSC has been placed in front of MPC due to the fact that it

was completely covered by the MPC bars.
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Figure 7.8: Concentration, supersaturation, and temperature versus normalized time for

CTC, CSC, and MPC. For the temperature plot, the dotted lines represent the jacket tem-

perature, Tj, for each of the runs. Additionally, it is noted that both CSC and MPC follow

a very similar path in the concentration plot until the very end.
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it is evident that as the number of cores is doubled, the simulation time goes down by about

half. In order to further analyze the scalability of this parallel process, it is useful to analyze

the strong scaling behavior, which is defined as:

Sstrong =
t1

ncores · tn
, (7.21)

where t1 is the time the process takes on 1 core, ncores is the number of cores, and tn is the

time the process takes on n cores. Strong scaling is good for analyzing systems like this one

that are CPU bound, showing how well the process can be parallelized without adding too

much wasted time in overhead costs. From Table 7.3, it can be seen that the strong scaling

stays above 90% when using 16 or fewer cores and drops down afterwards. This is likely

due to the fact that simulations were run on compute nodes which had 16 cores per node

(two 8-core CPUs) and when going over 16 cores, communication must then take place

between multiple nodes, thus adding overhead costs. Overall, it is clear from both Fig. 7.9

and Table 7.3 that the batch crystallization process of ibuprofen is greatly benefiting from

the use of MPI for the kMC process.

7.6 Conclusions

In this chapter, we studied the seeded batch crystallization process of ibuprofen. First

we used kMC simulations to develop a growth rate model which also accounts for GRD.

Next, we proposed an MPC strategy in order to control the crystal size distribution. Lastly,

we compared the proposed MPC strategy to CTC and CSC policies. We found that the
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cores time (h) speedup (%) Strong Scaling (%)

1 35.82 0.0 100.0

2 17.95 49.9 99.8

4 8.98 74.9 99.7

8 4.50 87.4 99.4

16 2.34 93.5 95.6

32 1.30 96.4 86.2

64 0.75 97.9 74.8

Table 7.3: The time to finish each simulation for varying number of cores and the cor-

responding speedup and strong scaling. Please note that the speedup is defined as t1−tn
t1

,

where t1 is the time the process takes on 1 core and tn is the time the process takes on n

cores.

MPC is able to deal with constraints and a wide variety of staring conditions for ibuprofen

crystal growth. Additionally it was found that MPC produced more narrow volume and

shape distributions compared to the other control strategies which is important because

the product quality is directly determined by the final crystal size and shape distributions.

It is important to note that the growth rate dispersion is mainly responsible for the wide

distribution ranges seen in this work. Lastly, we found an extreme benefit in the use of MPI

for this work due to high CPU time requirements.
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Chapter 8

Conclusions

This dissertation presented a practical framework which uses multiscale modeling in or-

der to model, simulate, and control crystallization processes. Following the introduction,

cell models were used to find equilibrium phase diagram properties via coarse-graining

techniques, equilibrium Monte Carlo simulations, and finite-size scaling theory in both

systems of hard spheres and Lennard-Jones particles. Then, kinetic Monte Carlo simula-

tions were used to deduce microscopically consistent rate laws for crystal growth. After

that, these crystal growth rate laws were used in a batch crystallization process to develop

a macroscale model. Finally, model predictive control was used to regulate the crystal size

and shape distributions in the batch crystallizer.

Specifically in Chapter 2, the precise simulation of freezing transitions was presented.

Cell models from Hoover and Ree were introduced and a generalized cell model facilitated

fluid-solid transitions, thus simplifying the overall process of thermodynamic integration
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by greatly reducing the number of simulated states. Additionally, coexistence pressure

and densities were determined through finite-size scaling techniques for first-order phase

transitions which are based on analyzing the size-dependent behavior of susceptibilities

and dimensionless moment ratios of the order parameter.

Subsequently, in Chapter 3, phase transitions, criticality, and three phase coexistence

using constrained cell models were investigated. In particular, the phase diagram of the

constrained cell model was determined for a system of Lennard-Jones particles. It is im-

portant to understand the phase diagram of the constrained cell model in order to fully ex-

plain its behavior in relation to the unconstrained system. The pressure-density isotherms

exhibited inflection points which were interpreted as the mechanical stability limit of the

solid phase. The phase diagram of the constrained system contained a critical and a triple

point. It is believed that entropy was reduced by the single occupancy constraint of the

constrained cell model causing the temperature and pressure at the critical and triple point

to be higher than the corresponding unconstrained system.

Chapter 4 looked at the direct determination of triple-point coexistence through cell

model simulations. Once again, the generalized cell model was used in order to investi-

gate coexistence. However, this time it was used to provide direct estimates of triple-point

equilibria. In previous work, the triple-point was estimated by indirect methods, i.e., by

locating the common intersection of the various p–T curves through extrapolations. Fur-

thermore, we know from the earlier chapters that there will be a size-dependence for the

triple-point parameters which can be resolved through finite-size scaling analysis, however
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this will be a computationally demanding task due to the amount of statistical samples that

are required in a single simulation as system sizes get larger.

In Chapter 5, simulations of phase boundaries using constrained cell models were in-

vestigated for a system of Lennard-Jones type particles that resembles that of protein or

colloidal suspensions. The main advantage of the techniques used in this chapter, com-

pared to the previous direct and indirect approaches, is their simplicity. The results also

indicated that the range of attractive interactions had no effect on the topology of the phase

diagram of the constrained cell model.

Finally, in Chapter 6 and Chapter 7, modeling and control of crystal shape in batch

crystallization processes was explored for both lysozyme and ibuprofen crystals. First, ki-

netic Monte Carlo simulations were developed in order to model the growth rates of each

crystal. The parameters of the growth rate model were assigned a range of values until

satisfactory agreement with experiments was obtained for the system under consideration.

Next, a batch crystallization process was studied which considered many different types

of processes (e.g., nucleation, growth rate dispersion, conservation equations, etc.). The

results of the batch crystallizer were then connected back to the microscopic simulations

via model predictive control (MPC). Additionally, the MPC closed-loop performance for

ibuprofen was compared against constant temperature control (CTC) and constant super-

saturation control (CSC) policies. The proposed MPC was able to deal with the constraints

of the control problem, in addition to minimizing the spread of the crystal shape and size

distributions in a superior fashion compared to the other control methodologies, which im-
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proves the overall crystal product quality at the end of the batch. Finally, extreme benefits

were found in the use of MPI for this work due to heightened CPU time requirements.
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