Lawrence Berkeley National Laboratory Recent Work

Title

LOW-ENERGY PION-PION S-WAVE PHASE SHIFTS
Permalink
https://escholarship.org/uc/item/7vq7632d
Author
Desai, Bipin R.

Publication Date

1961-01-18

UNIVERSITY OF CALIFORNIA

Ernest O. Laurence

TWO -WEEK LOAN COPY
This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Division, Ext. 5545

BERKELEY, CALIFORNIA

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

UNIVERSITY OF CALIFORNLA

Lawrence Radiation Laboratory Berkeley. Califoraia

Contract No. W-7405-eng-48

LOW-ENERGY PION-PION S-WAVE PHASESHIFTS
 ,
 Bipin R. Desai

January 18, 1961

LOW-ENERGY PION-FION S-WAVE RHASESSHIFTS*
 Lawrence Radiation Laboratory
 Universty of California
 Berkeley, California

Bipin R. Desai

January 18. 1961
Crosming ymmetry gives relations between the derivatives of the 8- and P-wave amplitudes of the pion-pion syatem at the symmetry point; ${ }^{1,2}$ these relations are exact if we consider all higher partial waves to be small. At this symmetry point, we have $v=v_{0}=-2 / 3$ (v being the square of the $c . m$. momentum of a pion), ${ }^{3}$ the two s amplitudes are given in terme of the pionpion coupling constant λ_{0} and the firat derivatives of the \mathbf{S} amplitudes are given by the value of the P amplitude. In addition, there is a aingle relation connecting the second derivatives of the $\$$ waves to the firat P-wave derivative. We assume a reconance in the P wave. Atwo parameter form for this resonance has been given by Frazer and Fulco, the parameters being $v_{R^{\prime}}$ the position, and r. the width of the resonance. Such a two-parameter form should be sufficient, we believe, to give a rough firat approximation to the P amplitude and ita firet derivative at v_{0} if v_{R} is amall and the contribution from the left cut no larger than entimated by Chew and Mandelatam. ${ }^{2}$ Recently Ball and Wong have given a four-parameter remonance form which includes a. long-range repulsion in the P wave. ${ }^{5}$ The otrength of this repulaion is, however, an order of magnitude bigger than the estimates given by Chew and Mandelstam. ${ }^{2}$ We therefore, coneider at present oaly the two-parameter form and hence calculate at v_{0} the P amplitude and ite firat derivative in terms of v_{R} and Γ. The above crosing relations then largely determine the S-wave amplitudes at low energies in terms of the three parameters, $\lambda_{f} v_{R}$ and Γ. We wish to emphasize, however, that the method dencribed here

[^0]is general, whatever form the P wave may ultimately ansume. It is also free from uncertainties auch as the arbitrary cutoffif that had to be introduced in the previous P-dominant solutions. ${ }^{2}$

The crossing relations at v_{0} are as followa: ${ }^{2}$

$$
\begin{align*}
& \frac{1}{5} a_{0}=\frac{1}{2} a_{2}=-\lambda_{1} \tag{1}\\
& \frac{1}{2} a_{0}^{\prime}=-a_{2}^{\prime}=3 a_{1} \tag{2}
\end{align*}
$$

and

$$
\begin{equation*}
a_{0}^{\prime \prime}-\frac{5}{2} a_{2}^{\prime \prime}=-12 a_{1}^{\prime} \tag{3}
\end{equation*}
$$

where a_{0} and a_{2} are the S amplitudes at v_{0} for the isotopic spin 0 and 2. respectively, and a_{1} is the P amplitude. The primes indicate derivativee at v_{0}.

If we indicate by $A_{0}^{1}(v)$ the 8 amplitudes at an energy v for agiven isotopic epin I ($=0$ or 2), we can write it in the familiar form ${ }^{1}$

$$
\begin{equation*}
A_{0}^{I}(v)=\frac{N_{0}^{I}(v)}{D_{0}^{I}(v)} . \tag{4}
\end{equation*}
$$

where $N_{0}^{I}(v)$ and $D_{0}^{I}(v)$ are the numerator and the denominator functions, respectively. In the usual effective-range approximation in which we replace the left-hand cut by a pole, ${ }^{2}$ we obtain

$$
\begin{equation*}
N_{0}^{I}(v)=a_{1}+\left(v-v_{0}\right) \frac{\omega_{S I}^{+} v_{0}}{\omega_{S I}+v} B_{I} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
D_{0}^{I}(v)=1-\left(v-v_{0}\right)\left[K\left(-v_{1}-v_{0}\right) a_{1}+\left(\omega_{S I}+v_{0}\right) K\left(\omega_{S I^{\prime}}-v\right) B_{1}\right] \tag{6}
\end{equation*}
$$

where $\omega_{S L}$ gives the position of the pols. B_{1} is proportional to the residue. and K is a known function defined in raference 1.

The correaponding one-pole approximation for $\frac{A_{1}(v)}{v}-$-the p amplitude $(\mathbb{I}=1)$ at anenergy $v-$-was written in the two-parameter resonance form by Frazer and Fulco: ${ }^{4}$

$$
\begin{equation*}
\frac{A_{1}^{1}(v)}{v}=\frac{\Gamma}{v_{R}-v[1-\Gamma a(v)]-1 \Gamma\left(\frac{v^{3}}{+\Gamma}\right)^{1 / 2}} \tag{7}
\end{equation*}
$$

where $a(v)$ is a known function. Given I and v_{R}, we obviously can calculate the values of ${ }^{2}$, and a_{1}^{\prime} needed in Eqs. (2) and (3) above. We have five conditions embodied in the croseing relations (1)... (3) and aix parameters to determine in our S-wave effective-range formulas: $a_{0^{\prime}} a_{2^{\prime}} \omega_{g 0^{\prime}} \omega_{s 2^{\prime \prime}} B_{0^{\circ}}$ and $\mathrm{B}_{2^{\prime}}$. To achleve a sixth condition, wo asume that $\omega_{\mathrm{SO}}{ }^{\mathrm{z}} \omega_{\mathrm{S} 2}$ (2β say). Since only second and highex \boldsymbol{S}-wave derivatives are influenced by this assumption, it seems fairly safe. Three different combinations of P-resonance paramaters were investigated. Originally Frazer and Fulco proposed $v_{R}=1.5$ and $\Gamma=0.4$ ae likely values, but recently Bowcock, Cottingham, and Lurie, ${ }^{6}$ and Frautschi ${ }^{7}$ have buggented that the position of the reanance should be much higher to be consiateat with pion-nucloon acattering. Their suggeated values for $\left(v_{R}, \Gamma\right)$ are $(4.6,0.2)$ and $(4.6,0.4)$, respectively. Following Chew and Mandelwtam, we allow only those λ values that do not give rise to zeros $\mathrm{in}_{\mathrm{D}}^{\mathrm{D}}{ }^{\mathrm{L}}(v)$ on the "nearby" portion of the left cut, and that do not have poles in the S wave in the region $-1 \leqslant v \leqslant 0$. The latter requirement eliminates large negative values of λ as corresponding to excesaively atrong attraction, while the former eliminatea almont all positive values of λ if the "nearby" portion of she left cut in taken as $-10 \leqslant v \leqslant-1 .^{1}$ The range of values we get is $-0.25 \leqslant \lambda \leqslant+0.04-$-much narrower than that oxiginally given by Chew and Mandeletam for 8 -dominaat solutione. ${ }^{1}$

The curves for $[v /(v+1)]^{1 / 2} \cot \delta_{0}^{I}\left(6_{0}^{1}\right.$ io the S-quve phade ohift for a givon isotopic opin i) are given in Figo. 1 and 2 for tho throe differont choices of $\left(v_{R}, \Gamma\right)$ and for various valuea of λ within the allowed range. It is evident that a large value of v_{R} giveo omaller S phese ohifto for a given value of λ. Moreover, the fnteraction in the $I=0$ otate is attractive and much otronger than in the $l=2$ otate. For pooitive valuea of $\lambda_{\text {, }}$, we obtain a resonance in the $1=0$ otate as we approach $\lambda=+0.04$.

Knowing the decay into three piona, we can further reotrict the 8 phase shifta. ${ }^{8}$ These evento ohow that even though the apectrum of en outgoing pion deviatea from the parely atatiotical one, there are no poako obcerved. ${ }^{9}$ Lf the $S \pi \pi$ interaction were otrong enough to produce near bound atated or reconances, we believe peako should be observed, ao in the reaction, $p+p \rightarrow n+p+\boldsymbol{n}^{+}$, where ouch a peak in quite otribing and corrooponda to the near bound atate in the singlet (n, p) ayotem. ${ }^{10}$ Therefore very large S amplitudeo acem to be ruled out, and a rough eotinate indicateo that the scattering leagtho ghould not be much larger than unity. Thio entinate hag the same order of magnitude as that given by Thoraad and Holladay, ${ }^{11}$ Khuri and Treiman, 12 and Sawyer and Wali. ${ }^{13}$ However, we do not think that any quantitative concluaiono can be drawn from T decay (as thede authoro have attempted) by considering the problem in terma of two-body interactionc only. We have here a cace in which the range of interaction, the ocattering longtho, and the wavelengths are all of the oame order of magnitude, and to reoolvo ouch a three-body byotem according to two-body conflgurations may be an overoimpliflcation. We are therefore not too concerned over our failure to achiove quantitative accord with the calculations made by the above authoro. 11-13. 11. however, wo uoe + decay to exclude large S-scattering lengths, we oeo that the P reconance, if it exiota, probably doed not occur at a value ao low ab 1.5. Recont experimento oupport euch a conclusion. ${ }^{14}$

It should be noted that if the ω^{0} particle with quantum numbers $J=1$, $1=0$ does exist, ${ }^{15}$ then the reaction $\pi+\pi-\omega^{0}+\pi$ may compete with the elantic P-wave channel in the reaonance region. The form of $\frac{A_{1}^{1}(v)}{v}$ and, therefore, of a_{1} and a_{1} will then have to be modified.

The author wishes to thank Professor Ceoffrey F. Chew for auggeating this problem and for his advice.

FOOTNOTRS

1. G. F. Chew and S. Mandelatam, Phys. Rev. 119, 467 (1960).
2. C. F. Chew and S. Mandelstam, Lawrence Radiation Laboratory Report UCRL-9126, March 1960 (unpublished) to se published in Nuovo cimento. See also G. F. Chew, Proc. 1960 Annual International Conference on High Energy Physice, Rochestex. 1960 (Interacience Publishing Co.. New York, 1960). It is assumed that the reader is familiar with the principlea discuased here and in reference 1.
3. We employ units with $\hbar=c=\mu=1$ where μ is the pion mass.
4. W. R. Frazer and J. R. Fulco, Phyt. Rev. Letters 2, 364 (1959) and Phye. Rev. 117, 1603 (1960).
5. J. S. Ball and D. X. Wong. Phys. Rev. Lettere 6, 29 (1961).
6. J. Bowcock, W. N. Cottingham, D. Luric, Nuovo cimento 16, 918 (1960) and Phys. Rev. Letters 5, 386 (1960). These authors use the form

$$
\frac{A_{1}^{1}(v)}{v}=\frac{(v+1)^{1 / 2}(v / 4)}{v_{R}-v-v(v+1)^{1 / 2}(v / 4)\left[v^{3 / 6+1)]^{1 / 2}}\right.}
$$

Our C is $\left(v_{R}+1\right)^{1 / 2}(\mathrm{y} / 4)\left[20.2\right.$ with $Y=0.376$ and $\left.v_{R}=4.6\right]$.
7. S. C. Frautachi, Physics Department, Univeraity of California, Berkeley, private communication; aee also S. C. Frautechi, Phym. Rev. Letters 5, 159 (1960).
8. R. Dalitz, Phyw. Rev. 94, 1046 (1954): E. Fabri, Nuovo cimento 11. 479 (1954).
9. 5. McKenna, S. Natall, M. O'Connell, J. Tietge, and N. C. Varshneya, Nuovo cimento 10, 763 (1958).
10. K. M. Watson, 88, 1163 (1952). References to earlier worke are given here.
11. B. S. Thomas and W. C. Holladay, Fhys. Rev. 115, 1329 (1959).
12. N. N. Khuri and S. B. Treiman, Phys. Rev. 119, 1115 (1960).
13. R. F. Sawyer and K. C. Wall. Phya. Rov. 119. 1429 (1960).
14. 1. Derado, Nuovo cimento 15, 853 (1960); F. Selleri, Nuovo cimento 16. 775 (1960); P. Carruthera and K. A. Bethe, Phys. Rev. Lettere 4. 536 (1960); ELF Pickup, F. Ayer, and E. O. Sulant, Phym. Rev. Leters 5. 161 (1960); J. G. Rushbroke and D. Radojicic, Phya. Rev. Lettere 5, 567 (1960): P. G. Burke, talk presented at the 1960 Conference on Strong Interections, Univereity of California, Berkeley, December 1960.
15. A. Abahhian, N. E. Booth, and K. M. Crowe, Phyw. Rev. Lottery 5, 258 (1960) (refereaces to earlier theoretical discussions are given here) and talk presented at the 1960 Conf. on Strong Interactione, University of California, Berkeley, December 1960.

Figure Legends

Fig. 1. Product of the cotangent of δ_{0}^{0} and $-5 \lambda[v(v+1)]^{1 / 2}$ for three different choices of $\left(v_{R^{\prime}}, I\right)$ and for $I=0$ with $(a) \lambda=-0.20,(b) \lambda=-0.10$.
(c) $\lambda=-0.05$, and $(d) \lambda=+0.01$.

Fig. 2. Product of the cotangent of δ_{0}^{2} and $-2 \lambda[v(v+1)]^{1 / 2}$ for three different choice of $\left(v_{R}, F\right)$ and for $I=2$ with (a) $\lambda=-0.20$, (b) $\lambda=-0.10$, $(c) \lambda=-0.05$, and $(d) \lambda=+0.01$.

Fio. 1

Fig. 2

[^0]: *Thie work done under the auopices of the U. S. Atomic Energy Commiasion.

