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BROKEN CHIRAL SYMMETRY. III. SW(3) 3479

the vacuum state is a scalar under the ordinary SU(3),
the chimeral SU(3) subgroup of SW(3) will be realized
as a Goldstone symmetry, in contrast to the ordinary
SU(3) subgroup, and our theory presented here would
go through unchanged. These points will be discussed
in greater detail elsewhere.

Lastly, we may make the following remark: We
showed that b as a function of a is discontinuous at
g= —1 and a=2. From this, we concluded that we
may have essential singularities at these points, pro-

vided that b is an analytic function of a except for a
few isolated points in the complex plane of the variable
a. However, there is another possibility that b may
have branch cuts, instead of the essential singularities,
passing through points a= —1 and 2, since these will
also give the desired discontinuity. An interesting
possibility is the conjecture that the Kuo transforma-
tion a —& (2—a)(1+4a) ', es-+ —s(1+4a)es may trans-
form physical quantities on the first Riemann sheet in
this cut plane into those on the unphysical second sheet.
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Inclusion of Toiler-Angle Dependence in the Multi-Regge Integral Eiluation*
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The nonforward multiperipheral integral equation for the Reggeon-particle absorptive amplitude is
generalized to include complete dependence on the Toiler-angle variable.

I. INTRODUCTION

'UCH progress has been made in formulating the
- ~ multiperipheral bootstrap equation using a multi-

Regge production model. '' In a recent publication, s

Goldberger, Tan, and Wang have constructed a simpli-

fied. integral equation for the Reggeon-particle absorp-
tive amplitude S(p,ps, Q) in a formulation of the multi-

Regge model. Their construction seemed to depend on
the assumption that the double Regge coupling is
independent of the Toiler angle co, and an approximate

justification for this assumption was suggested by Tan
and Wang. 4 It is our purpose to show that an integral
equation which includes the complete dependence on the
Toiler angle can be written for the absorptive amplitude
Q, . This establishes the full generality of the integral-
equation approach through the 8 amplitude.

In the process of formulating this equation, we

elaborate the relation between the co angle and the other
invariants. We then express the integration of the loop
momentum in terms of a particular set of invariants

* Research sponsored by the U. S. Air Force Ofhce of Scienti6c
Research under Contract No. AF 49 (638)-1545.

~ G. F. Chew, M. L. Goldberger, and F. E. Low, Phys. Rev.
Letters 22, 208 (1969).

2 G. F. Chew and C. DeTar, Phys. Rev. 180, 1577 (1969);I. G.
Halliday and L. M. Saunders, Nuovo Cimento 60, 494 (1969);
A. H. Mueller and I. Muzinich, Ann. Phys. (N. Y.) (to be pub-
lished); M. Ciafaloni, C. DeTar, and M. Misheloff, Phys. Rev.
188, 2522 (1969);A. H. Mueller and I. J. Muzinich, Brookhaven
Report No. BNL-13836 (unpublished).

3 M. L. Goldberger, C.-I Tan, and J. M. Wang, Phys. Rev. 184,
1920 (1969). We use a slightly different notation, 0', (p,pp,. Q), for
the absorptive amplitude of the reaction Reggeon(p+-, 'Q)+parti-
cle (pp —

2 Q) ~Reggeon (p ——',Q) +particle (pp+ & Q), while reserving
A (p,pp, Q) for the physical on-shell absorptive amplitude.

4 C.-I Tan and J. M. Wang, Phys. Rev. 185, 1899 (1969).

which manifestly cover the entire phase space. These
variables also allow us to explicitly continue the integral
equation to the forward case t=o.

p

by

A(ppo Q)= -~'((P —P') '-I ')
(2s.)'

Xg(I,t '; t, t ')B(P,P',P,; Q). (1)

We use the CGL equation for 8 with a double
Regge coupling and propagator function G(t+', co~', t~")
=P*(t ', td ',I ")P(t+',a+', I+"), which is now assumed to
depend on the Toiler angles te~'

t in contrast to Eq. (2)
of Ref. 3j:
~(p,p', p. ; Q) =~.(p, p', p. ; Q)

g4 II

+ 8+((p —p')' —p')G(t~', (og', t~")
(2s.)'

/(g/p&)~(&+')+a(t —')2I(p~ p«p .
Q) (2)

5 M. I.. Goldberger, Erice Summer School, 1969 (unpublished),
is a thorough and stimulating presentation of the integral-equation
approach to multiperipheral dynamics.

II. CHEW-GOLDBERGER-LOW EQUATION

Our starting point will be the Chew-Goldberger-Low
(CGL) equation' ' for Regge multiperipheral dynamics
where now arbitrary Toiler angle dependence is assumed
for the double Regge coupling P(t', ce', I")'. The 8 ampli-
tude introduced by CGL is related to the elastic two-
body absorptive part A(p, p„.Q) for
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p-Q/2

t

p+ Q/2

Q

S'

Q pa+ Q/2

~2

p2

po Q/2 ~.(p', p. ; e) =
d4 //

-b"((p' —p")'—~')
(2')'

XG(1.',1.",1)~(p',p",p. ; e), V)

Because of the presence of co~', which are functions
of p, p', p", po, and Q, this quantity pro will in general
depend on all vectors p, p', po, and Q. We will show in
Sec. IV that under the same conditions leading to Eq.
(4) the Toiler angles oi~' can be expressed as functions
of only t+', t ', 3+", t ", and t. Because of this, co~' will
not depend on p and this will also be true of the func-
tions f(t~', co~', t~") and G(t~', oi+', t~") He.nce we can
rewrite Eq. (6) as

FIG. 1. Kinematic notation for nonforward
multiperipheral diagram.

where

G(4',4",i) =—G(4',~+',4:")

&o(p,p', po, Q) =~g(& ',u', &-',y')

X(/ ').'""'"-'b'((p'+po)' —'). (3)

We use the invariants (see Fig. I) t=es, 1~= (P&~Q)', —
1~'= (p'a-,'Q)', t~"= (p"a-',—Q)', s=—(p+po)', s'=—(p'
+p )' s"=(p"+p )' and Z=—(p —p")s. Toiler angles
co+', co

' are spatial angles between planes formed by
(p+-', Q, p —p') and (po&sQ, p"+po) in the rest frame
of the 4-vector (p' —p").

III. INTEGRAL EQUATION FOR NONFORWARD
REGGEON-PARTICLE ABSORPTIVE

AMPLITUDE

The basic approximations leading from the CGL equa-
tion to the simplified equation for the Reggeon-particle
absorptive amplitude are the kinematic relations

XLf(1.', .',«.")].&"'&Lf(~, ,1 ")]-i-i. (8)

This will now allow us to derive an integral equation for
the nonforward Reggeon-particle absorptive amplitude
with general double Regge coupling P(t', oi', t").Defining
the single-particle intermediate-state contribution,
a,i(p, po, Q) =erg(t+, p'; t,p')b+(s —p,'), the general inte-
gral equation for the 0', amplitude is

~(p', po; Q) = 0: (p', po; Q)+
d4 "

-b'((p' —p")'—~')
(2or)'

XG(4' 4" 1)(&'/&") "+"'+ " "'0'(p" po' Q) (9)

where

8(p' po Q)—= ~ (p'.p Q)+@o(p',po; Q) (&0)

where

Zs'/s = f(ti', re+', 1i")

Zs'/s= f(t ',oi ', t "),
The loop integration will be expressed in terms of
invariant variables after our discussion of the Toiler
angle.

f(t' ',t")=
A(t', 1",Ii )

ps —1 —1 +2(tV ) i cosoo
(4) IV. RELATION OF TOLLER ANGLES TO

KINEMATIC INVARIANTS

A(x,y,z) =x'+y'+z' —2xy —2yz —2zx.

Equation (4) is valid in the multi-Regge region of
interest where s, s', and Z are large compared to masses
and t's, and where by strong ordering' s', Z&&s. Substi-
tuting these relations into the CGL equation, one finds

&(p»', po Q) =~o(p,p', po;e)+(/") i"" i'-'i&o, (5)

where

o
—— -3+((p' —p")' —p, ')G(4.",oig', t~")

(2or)'

XLf(1—',o~-', 1 ")] "-'(f(t+',o~+', t+")] ""'
X&(p',p",po; Q). (6)

' F. Zachariasen and G. Zweig, Phys. Rev. 160, 1322 (1967).

We now show that the angles co~' depend only on t~',
t~", and t, in the kinematic region in which Eq. (4) is
valid. Because the angles co~' may be found from Eq. (4)
in terms of t+', 1+", and Zs'/s, we need another relation
between Zs'/s and 1+', t+", 1. The proof of our assertion
depends crucially on the fact that i =Q'% 0. In this case,
there are five momentum vectors in our problem: p, , p,
p', p", and Q. Since they are 4-vectors, they cannot all
be linearly independent. This may be expressed by the
vanishing of the determinant of the 5)&5 matrix of their
scalar products. In the regions of interest where s, s',
and Z are large compared with masses and 3's, the
vanishing of the determinant to leading order gives us
the relation for Zs'/s:

(Zs'/s)'+2b(Zs'/s)+c =0,
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where coefficients b and c are functions of 3+', t ', 3+",
t ", and t. Equa, tion (11) yields two solutions:

Z$'/$ =/t' 2(—t+'+t '
2t)——-', (t+"+t "—2t)

+(t„'—t ')(t+"—t ")/t
&LA(t+', t ', t)A(t+.",t ",t)/4t2]'/2. (12)

Equation (12), together with Eq. (4), allows us to solve
for co+' and co

' in terms of t~', t~", and 3 and this
completes our proof. The existence of two solutions
indicates that special care has to be taken in trans-
forming the loop-momentum integration in Eqs. (2) or
(9) to invariant variables. 2

the branch with the minus sign, and allowing n' and n"
to take negative as well as positive values.

To verify these statements, we look, for example,
in a two-dimensional plane of tr", p"—2(—t)'/'. From
Eq. (4) we find that the values of Icostd+'I =1 occur
along the line through the origin n"/[j9"—2(—t)'/']
=(2'/Lp' —-', (—t)'"], with cos~+' ——+1 for the segment
with sgn((2") =sgn(n') and cos&o~'= —1 when sgn(n")
= —sgn(n'). In this plane, fixed t+" corresponds to a
circle about the origin, and to cover all values of or+'

clearly requires n" to be both positive and negative.
Now we rewrite Eq. (10) in terms of the newly

defined variables:

V. TRANSFORMATION TO INVARIANT
VARIABLES

The two roots of Eq. (12) indicate that a given set of
values for the variables t+", 3 ",s" corresponds to two
values of p" (p, p', Q being fixed). This results in two
possible values of Z—= (p —p")'. We will show how this
nonuniqueness can be removed by making use of our
knowledge that the physical ranges of or+' and ~ ' are
I 0,22r]. An alternative method is to exhibit the com-
ponents of p" in the center-of-mass frame in terms of the
invariants; this is carried out in the Appendix.

We introduce the invariant variables,

8(p', po; Q) =21(p',po Q)

+ dtl
(22r)'

dPI t 2$ '

&&J($',$"; (2",ct"',P',P")G(ct', n",P',P",t)

X('/") '""""")~t(p"Po Q), (16)

where'

g( I II . /2 t/2 pl p't/)

(ntt2)1 2(ntt2$t2 p$t$tt+nt2$tt2) —1

p = (O' 0")'+(~—"+~'")+/ ', (17)
P'Q "+

( t) 1/2 2( t) 1/2

p" Q

( t)1/2 2( t)1/2
(~2 4 t2&tt2) 1/2

a(t, t+', t ')~ '/'
t)tt= ( pt2 pt2)1/2—

4t

where 0.' and o,
" are taken positive. We note immedi-

ately that

Despite the double valuedness of the variables (2", p"
with respect to f+", I, ",one can write the equation with
variables t+", t " because the solution 8(p', P„Q) is a
function of n". This follows from the fact that 8~ and J
depend on n" and the residue has the property

G(~',~",O', P",t) =G( ~', ~",—O', P", t—). (»)
Using the symmetrized residue

(14)
G, ((2 2,n'",P',P",t)

and they are even functions of n', o.".We work in the
region t( (t, t+, t ) (0, t(0, w. hich guarantees in the inte-
gral equation that h(t, t+', t ')(0 and A(t, t+",t ")(0.'
In terms of our new variables, Eq. (12) reads

» /$ =/t'+ ((2'~(2")'+ (O' —0")' (15)

7 We wish to thank Carlton DeTar for emphasizing this point.
This question also arose in the group-theoretical treatment of the
nonforward multi-Regge integral equation. (See the last two
articles of Ref. 2.)

In order to cover the entire physical range in costs+'
with o.

' and n" positive, we must use both branches of
Eq. (15).This is, however, equivalent to choosing, say,

the equation is written in the conventional form' ':
e(t+',. $', t) = o:,(t,', $', t)

+ dt+"dt "0(—A(t, t+",t "))
4(22r)'

dS
G, (t~', t~",t)

s& I 1/2
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where
Ll/2=

I ( tn~~s)1/2/2$~) XJ
The forward integral equation is now rewritten as

(21)
Q(t ' s ) = g],(t s )

n —P—// //2

t ls pls tl1

cosh)+ =cosco:—cosG0
1 1

where costs' is given by

Zs'
=/ '+(n' n") '+—(O' P")'—

g(tl ]If s)
(22)

p' —t' —t"+2(t't")"' cos~'

In terms of the n", P" variables, the Jacobian and
integration limits of the integral equation (16) are not
singular at )=0.

In applications of the forward integral equation it is
convenient to integrate over s", 3", and co', so we now
transform to these variables. This is facilitated by the
transformation to polar coordinates in the n", P" plane
with the P' angle given by

/ /1 1 1/

cosQ' =—
(—t') "'(—t")"' (23)

dn"dP" = ,'d( t")dy'. -—
(The definition of p' as a physical angle is given in the
Appendix. ) The forward Reggeon-particle absorptive
part is given by the integral equation

' ds"
R(t'; s') = Oi(t', s')+ — dt"

(2s)' „p dp'
„& 4s'

&&G(t', t"; cosP')(s'/s")' "'Q,(t";s"), (24)

where the Jacobian has been approximated for s"/s'&(1.
This form of the forward equation has been discussed by
Low. ' To transform from dP' to de' we note the recipro-
cal relation of cosP' to costs' from Eq. (22):

I
p' —t' —t"—2 (t't")"' cosP') Q' —t' —t"+2 (t't") '/' cosco')

A(tf tll s)

and
dy' =d(e' f(t' co' t")/A"'(t', t" p')

F. Low, Brookbaven Report No. BNL 50162, 1969
(unpublishedl,

VI. FORWARD INTEGRAL EQUATION

The continuation of the integral equation to the
forward direction, (=0, can be made directly in terms of
the new variables. This is because the variables n", P"
are just components of momenta which do not vanish
at t=0 (see Appendix). In the forward direction the
variables become

+ dt"
(2~)'

&(G(t', t"; cosru')(s'/s")' ""'0,(t"; s") . (26)

This version of the forward integral equation has been
formulated and its properties studied by Pinsky and
Weisberger. '

VII. CONCLUSION

This integral equation for (t(p', ps; Q) may be re-

garded as a simplified multi-Regge model or as a large s
approximation of the CGL equation. The treatment of
the Toiler-angle dependence in the Q, equation is now

equally general as that of the CGL equation. The Q,

equation seems to have all the essential physical content
of the CGL equation and to have the additional ad-
vantage of being easier to work with. Following the
analysis of Refs. 3 and 5, one finds Regge behavior for

S(p,ps, Q). Applications of this equation are discussed
elsewhere ""

)Vote added irt proof After th.e completion of this work
we were informed that the nonforward integral equation
has also been formulated and studied by S. Pinsky and
W. Weisberger, Princeton report (unpublished).
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APPENDIX

Although the negative values of n' and 0,
"have only

been introduced formally, we shall show that they have
well-defined meaning as components of the vectors p'
and p" at high energy.

We shall discuss the problem in the c.m. frame of
p+s~Q and ps ——',Q. Let p= —ps be in the s direction,
and let J denote the projection of a vector on the x-y
plane. It can be shown that

IQ 'I = —t+0(1/s'), Qo=O(1/V' ), Q =0(1/g ),
and

IpI Ipsl ps' p'=-,'v's+0(1/ds). (Ai)

It then follows that in the multi-Regge strong-ordering
limit of 2, s'&&s; s"&s'.

t~"= (p"a-', Q)'= —(p"a-', Q) s+0(Z'/s'),
(A2)t,'= (p'~-', Q)s = —(p'~-;Q),s+0("s/ss).

The treatment of the Toiler angle and the integral equations
at t=0 has been investigated by S. Pinsky and W. Weisberger,
Phys. Rev. D (to be published).

'0 C.-I Tan and J.M. Wang, Phys. Rev. Letters 22, 1152 (1969).
-" D. Silverman and C.-I Tan, Phys. Rev. D (to be published).
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We choose Q, to lie in the z direction so that n", P" Similarly,
are related to the components of p" by o'= p*—' ~'= ps'

~ J ~

( t) 1/2 ( t) 1/2

and, by using Eqs. (13) and (14),
If Il

(A3) We see that it is necessary to take limits of (—~, +~ )
for c/", P" in order to cover the entire phase space.

Since the variables are related to components of
vectors, it is interesting to introduce the angle &t&' in the
c.m. frame defined by

—~""(p+lQ)"(po —lQ) '(p'+-'Q) ~"~.~(p+lQ) "(po—lQ) '(p"+lQ)'
cos/t&+ =

pvpa 2
"

0
—

2
p

2 ep), Th 2 0
—

2 2

(A4)

At large s, Z, s' this becomes

cosy„' = —(//' —t+' —t+")
2(t+'t+") '/' s

-'-"+L/3' ', (-t)—i/ jLP" ,(-t)—i/2j
(AS)

(—t+') "'(—t+")'"

cos&t& '= s'Z
—(//' —t ' —t ")

2(t 't ")"' s
~'~"+Ltt'+2( t)'"—jLP"+k( t) "'—j

(A7)

Using (A1) and (A3),

cos&t&+ = (A6)

By changing Q —+ —Q in (A4), we also define cos&t
' and

at large s, Z, s',

3. g L L 2

We find that &/I&+' are complementary angles to u+' by
using (A5), (A7), and (4):
// t~ t~ —2(t~—'—t~")"' o &t&~'=f(t~', ~~',4")

6(/" &ty &ty )
(AS)

/
'—t~' —t„"+2(t~'t~")'/' cos~~'




