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Abstract

Background

Pneumothorax can precipitate a life-threatening emergency due to lung collapse and respi-

ratory or circulatory distress. Pneumothorax is typically detected on chest X-ray; however,

treatment is reliant on timely review of radiographs. Since current imaging volumes may

result in long worklists of radiographs awaiting review, an automated method of prioritizing

X-rays with pneumothorax may reduce time to treatment. Our objective was to create a

large human-annotated dataset of chest X-rays containing pneumothorax and to train deep

convolutional networks to screen for potentially emergent moderate or large pneumothorax

at the time of image acquisition.

Methods and findings

In all, 13,292 frontal chest X-rays (3,107 with pneumothorax) were visually annotated by

radiologists. This dataset was used to train and evaluate multiple network architectures.

Images showing large- or moderate-sized pneumothorax were considered positive, and

those with trace or no pneumothorax were considered negative. Images showing small

pneumothorax were excluded from training. Using an internal validation set (n = 1,993), we

selected the 2 top-performing models; these models were then evaluated on a held-out

internal test set based on area under the receiver operating characteristic curve (AUC), sen-

sitivity, specificity, and positive predictive value (PPV). The final internal test was performed

initially on a subset with small pneumothorax excluded (as in training; n = 1,701), then on

the full test set (n = 1,990), with small pneumothorax included as positive. External evalua-

tion was performed using the National Institutes of Health (NIH) ChestX-ray14 set, a public

dataset labeled for chest pathology based on text reports. All images labeled with pneumo-

thorax were considered positive, because the NIH set does not classify pneumothorax by

size. In internal testing, our “high sensitivity model” produced a sensitivity of 0.84 (95% CI

0.78–0.90), specificity of 0.90 (95% CI 0.89–0.92), and AUC of 0.94 for the test subset with
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small pneumothorax excluded. Our “high specificity model” showed sensitivity of 0.80 (95%

CI 0.72–0.86), specificity of 0.97 (95% CI 0.96–0.98), and AUC of 0.96 for this set. PPVs

were 0.45 (95% CI 0.39–0.51) and 0.71 (95% CI 0.63–0.77), respectively. Internal testing

on the full set showed expected decreased performance (sensitivity 0.55, specificity 0.90,

and AUC 0.82 for high sensitivity model and sensitivity 0.45, specificity 0.97, and AUC 0.86

for high specificity model). External testing using the NIH dataset showed some further per-

formance decline (sensitivity 0.28–0.49, specificity 0.85–0.97, and AUC 0.75 for both). Due

to labeling differences between internal and external datasets, these findings represent a

preliminary step towards external validation.

Conclusions

We trained automated classifiers to detect moderate and large pneumothorax in frontal

chest X-rays at high levels of performance on held-out test data. These models may provide

a high specificity screening solution to detect moderate or large pneumothorax on images

collected when human review might be delayed, such as overnight. They are not intended

for unsupervised diagnosis of all pneumothoraces, as many small pneumothoraces (and

some larger ones) are not detected by the algorithm. Implementation studies are warranted

to develop appropriate, effective clinician alerts for the potentially critical finding of pneumo-

thorax, and to assess their impact on reducing time to treatment.

Author summary

Why was this study done?

• Pneumothorax (collapse of the lung due to air in the chest) can be a life-threatening

emergency.

• Delays in identifying and treating serious pneumothorax can result in severe harm to

patients, including death.

• Pneumothorax is often detected by chest X-ray, but delays in review of these images

(particularly at hours of lower staffing, such as overnight) can lead to delay in diagnosis

and treatment.

• Prioritization of images that are suspected to show a pneumothorax for rapid review

may result in earlier treatment of pneumothorax.

What did the researchers do and find?

• We developed computer algorithms that scan chest X-rays and flag images that are sus-

picious for containing a moderate or large pneumothorax.

• These algorithms “learned” to identify moderate- and large-sized pneumothorax by

training on a large set of both positive and negative chest X-rays.

Pneumothorax detection using deep learning
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• We created the training set of images by asking board-certified radiologists to label each

image for the presence or absence of pneumothorax, as well as their estimate of pneu-

mothorax size.

• After training, we tested the performance of the algorithms on a similar collection of

labeled X-rays that had never been seen by the algorithms and analyzed their success at

detecting images showing pneumothorax, without any human guidance.

• We found that our algorithms were able to detect the majority (80%–84%) of images

showing a moderate or large pneumothorax, while correctly categorizing 90% or more

of images without pneumothorax as “negative.” When we included small pneumothora-

ces in our test set, performance declined, as expected because the algorithms had not

been trained on images with small pneumothoraces.

• When testing our algorithms using images acquired outside our hospital, performance

declined compared with our internal testing. However, the tests of the external dataset

were not exactly comparable to our internal tests: small pneumothoraces could not be

excluded from the evaluation because labels in the external dataset did not include size,

and labels were assigned by computer interpretation of clinical reports rather than radi-

ologists reevaluating the images, limiting the accuracy of the labels.

What do these findings mean?

• Computer algorithms, given enough high-quality training data, are capable of detecting

pneumothorax on a chest X-ray with sufficient accuracy to help prioritize images for

rapid review by physicians.

• Algorithms like these could potentially be used by radiologists as a tool to increase the

speed with which a serious pneumothorax is detected, even at times of lower staffing,

when turnaround times are typically longer.

• Rapid detection and communication with treating physicians may result in faster treat-

ment of pneumothorax, potentially reducing the harm of a serious medical problem.

• The transferability of our models to clinical settings outside the institution where the

training images were acquired needs further validation. Although we evaluated the

models against an external dataset, differences in the composition, curation, and label-

ing between the external data and our own make it difficult to interpret these external

dataset results.

Introduction

Pneumothorax can constitute a medical emergency since the presence of air within the pleural

space outside the lung produces collapse of the lung and subsequent respiratory distress, espe-

cially in critically ill patients [1]. While the incidence of spontaneous pneumothorax in the

United States is relatively low [2], pneumothorax is often associated with trauma [3], mechani-

cal ventilation [4], and iatrogenic injury from procedures such as thoracentesis [5]. The use of

adjunctive imaging has reduced this risk somewhat, but even with ultrasound guidance a

Pneumothorax detection using deep learning
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recent meta-analysis estimated the rate of pneumothorax after thoracentesis to be approxi-

mately 4% [6]. Pneumothorax of a clinically significant size is often diagnosed with standard

frontal plain film radiography; however, the accuracy of diagnosis is dependent on a number

of factors including pneumothorax size, patient positioning, image quality, and variation in

radiologist threshold for diagnosis, resulting in a mean sensitivity in the range of 83%–86% in

studies assessing this [7–9]. Further, treatment is reliant on timely review of acquired images,

both by the radiologist and the referring physician. A study of patients with pneumothorax in

the intensive care unit (ICU) found that length of stay in intensive care was longer and the risk

of progression to tension pneumothorax (a large pneumothorax that causes obstruction or

restriction of blood flow to the heart, producing circulatory collapse) was higher for patients

whose pneumothoraces were initially misdiagnosed; further, a significant risk factor for delay

in diagnosis and misdiagnosis was development of pneumothorax outside of peak physician

staffing hours [10].

Since current hospital practices may result in long worklists of radiology images to be read,

particularly those acquired overnight or without accompanying clinical suspicion of a signifi-

cant problem, an automated method of screening chest X-rays and prioritizing studies with

positive findings for rapid review may reduce the delay in diagnosing and treating

pneumothorax.

Deep convolutional neural networks—a class of machine learning models that has found

widespread application in computer vision and image classification tasks [11]—are increas-

ingly being utilized in radiology and medical image analysis [12,13]. While these models can

produce highly accurate results, they require large and well-curated training datasets in order

to achieve acceptable performance on tasks where there is significant visual heterogeneity, as

one might expect in a sample of chest X-rays obtained in clinical settings varying from outpa-

tient clinics to inpatient ICUs, and with patients suffering from myriad illnesses.

Our objective was to create a large, human-annotated dataset of chest X-rays, relatively

enriched in moderate and large pneumothoraces, and to use this set to train a deep convolu-

tional neural network to identify these larger, potentially emergent pneumothoraces with per-

formance suitable for prioritizing studies for rapid review under circumstances where

turnaround times might be longer than usual, such as overnight or on weekends. We felt that a

system for prioritization would require different target performance characteristics than

would a system designed to be relied upon as a sole mechanism for diagnosis. In the latter, sen-

sitivity would likely be the highest priority in order to avoid missing a potentially important

finding, and specificity would likely decline as a result, increasing the false-positive rate. We

felt that since a prioritization algorithm benefits from the “backup” of human radiologist

review for all images, emphasis might be better placed on specificity so as to keep the false-pos-

itive rate low. This would reduce alert fatigue for the radiologist who is receiving these images

flagged for priority review, and who might ignore the results of the algorithm if the detection

of 1 true-positive study required review of dozens of false-positive cases.

Methods

This study, compliant with the Health Insurance Portability and Accountability Act of 1996,

was approved by the institutional review board of our institution. The study was granted a con-

sent waiver due to its retrospective design and minimal risk categorization.

Image extraction, anonymization, and annotation

Candidate images for analysis were identified by searching our clinical report database for

chest X-rays with a clinical report finding of pneumothorax using mPower (Nuance

Pneumothorax detection using deep learning
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Communications, Burlington, MA). Candidate chest X-rays of adult patients were obtained

from 1 January 2006 to 31 December 2016. Candidate images for inclusion in the positive

group were identified by using the search terms “small pneumothorax,” “trace pneumotho-

rax,” “moderate pneumothorax,” and “large pneumothorax” with mPower’s standard filters in

place to minimize negative occurrences. Candidate images for inclusion in the negative group

were identified both by searching for negative phrases such as “no pneumothorax” and by

including X-rays from the same time period that did not meet the criteria for inclusion in the

positive group. This dual approach was used to ensure that the negative class did not only con-

tain images where the report specifically stated “no pneumothorax.” No exclusion criteria

were applied to the candidate negative images other than absence of pneumothorax; this

ensured that these images would include the range of techniques, patient classes, and non-

pneumothorax imaging classes expected to be encountered in clinical practice. The candidate

images were then retrieved in preparation for visual reannotation of pneumothorax presence

and size. Candidate studies were bulk extracted in DICOM format from the clinical PACS

(picture archiving and communication system) using a custom-built automated image

retrieval system, and metadata were stored in a SQL database.

Resolution downsampling

The full resolution DICOM files were initially converted to 8-bit JPEG grayscale images using

the dcmj2pnm utility of DCMTK (https://www.dcmtk.org, version 3.6.1). LUT transformation

was performed using the software’s default min-max algorithm, discarding extreme values.

These JPEG images were then downsampled with the ImageMagick convert utility (http://

www.imagemagick.org, version 6.8.9.9-7ubuntu5.9) for use in the neural network. Images

were downsampled to 512 × 512, because we found it was difficult for the annotating radiolo-

gists to see the pneumothoraces at the 256 × 256 or 224 × 224 resolutions commonly used with

image-recognition convolutional neural networks. All images were downsized using the

default (Lanczos) resize filter and were squashed to achieve a square aspect ratio.

Annotation

All studies in the dataset were annotated after visual inspection by 2 board-certified and 4

board-eligible radiologists, all with a minimum of 4 years’ experience. Annotation was per-

formed using custom-built visualization and annotation software, with each study receiving 2

annotations (right and left lung) across the following categories of pneumothorax size: none,

trace, small, moderate, and large. Annotators were given a rubric describing the definitions for

each of these classifications (see S1 Text and S1 Fig for additional information). Resulting

annotations were stored in the SQL database. All images that were initially annotated as posi-

tive for pneumothorax, and all images in the separate held-out test set were then reannotated

by multiple annotators in a blinded fashion, and majority consensus was then used to arrive at

a single pneumothorax size classification for each lung. For each image, a single global annota-

tion was then determined by selecting the largest pneumothorax size annotated for either lung.

All training and model performance evaluation was based on a single pneumothorax annota-

tion per image.

Frontal image selection

Many studies within our database contained multiple images (e.g., posteroanterior and lateral).

In many cases, information indicating the body part or view was not present in the DICOM

header. Therefore, we used our previously developed chest radiograph orientation model [14]

Pneumothorax detection using deep learning
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to classify images as either frontal, lateral, or other. For each annotated study used, we selected

the image with the highest frontal chest score, above a minimum threshold of 0.8 probability.

Dataset assembly

The dataset comprised 13,292 annotated studies, which were then shuffled and separated into

a 70%/15%/15% training/validation/test set split. In this nomenclature, the validation set was

used to evaluate model performance at the end of each epoch during training and for hyper-

parameter optimization, and the test set was a held-out set of images used for evaluation of the

trained models, never seen by the algorithm during training or validation. Because images

were treated individually, the datasets were kept disjoint by study, but not by patient. These

sets were kept static so that all training experiments used the same sets of images for training

and evaluation.

After the split, the training set had 2,214 positive and 7,095 negative images, the validation

set had 456 positive and 1,537 negative images, and the test set had 437 positive and 1,553 neg-

ative images. Due to the low prevalence of pneumothorax expected in a general sample of

chest X-rays, it was necessary to balance the training dataset to provide enough cases of pneu-

mothorax to train the model. Therefore, each training minibatch was created using equal num-

bers of positive and negative images. In order to prioritize the detection of the most potentially

clinically significant pneumothoraces, we defined positive images as only those labeled moder-

ate or large pneumothorax in accordance with the research plan established during a design

session prior to beginning this work (S2 Text). Images labeled as small pneumothorax were

excluded from training. Trace pneumothoraces were considered to be negative cases for both

training and the test set, since our definition of trace was a pneumothorax too small to be

clearly seen. The primary intent of including trace pneumothoraces as negative studies in

training was to increase the number of negative studies in which a chest tube is present. The

goal of this was to avoid training the classifier to make positive predictions based on detecting

a chest tube as a proxy for pneumothorax.

Model implementation and models tested

We used the Keras (version 2.0.3, https://keras.io/) deep learning library on top of TensorFlow

(version 1.2.1, Google) to implement convolutional neural network models. Training and test

were performed on an NVIDIA DGX-1 using up to 8 Tesla P100 GPUs. We based our models

on several standard network architectures implemented within Keras, including VGG16/19,

Xception, Inception, and ResNet [15–18]. The convolutional layers of the architectures were

completely unchanged, and we experimented with average pooling, max pooling, or flattening

to pool the outputs of the final feature maps for each architecture. These were connected to

new fully connected layers (fc1 and fc2), followed by a final output sigmoid that predicts pneu-

mothorax class. We used a binary cross-entropy loss function. The sizes of the fully connected

layers were optimized using random search. Models were tested using initialization from ran-

dom weights as well as using transfer learning with models pretrained on the ImageNet Large

Scale Visual Recognition Challenge datasets.

We used the drop-in streaming image augmentation pipeline within Keras to build and

train all models. This system expands on the base dataset by generating images on the fly dur-

ing training using a variety of elementary transforms. We allowed horizontal (but not vertical)

image flipping, image zooming, shearing, and rotation. The maximum parameter ranges for

all augmentation operations were explored through a hyperparameter search described below.

Pneumothorax detection using deep learning
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Hyperparameter optimization

We used a hyperparameter optimization strategy to train models with a variety of architectures

and training parameters. This was accomplished using the open-source Future Gadget Labora-

tory (https://github.com/Kaixhin/FGLab) framework. Table 1 describes the hyperparameters

and their value ranges that were explored using a random search.

Model evaluation on internal test dataset

During model training, we evaluated model performance on the validation set every 10 train-

ing epochs. We computed the area under the receiver operating characteristic curve (AUC),

sensitivity, specificity, and positive predictive value (PPV) of the entire validation set, and also

log classification accuracies for each annotation class using scikit-learn (version 0.19.1).

Receiver operating characteristic (ROC) curves were plotted using matplotlib (version 2.2.2).

PPVs for lower prevalence scenarios were calculated based on each model’s observed sensitiv-

ity and specificity [19]. Our primary outcome was performance in distinguishing moderate or

large pneumothorax from negative studies (containing no pneumothorax or trace pneumotho-

rax), as this most closely matched our prespecified design requirements for prioritization of

those acute pneumothorax cases most likely to be emergent based on size. We further tested

our models using the full test set of images containing small, moderate, and large pneumotho-

races as positive cases to more accurately approximate real-world clinical use.

Model evaluation on external test dataset

We performed external evaluation of the models by evaluating performance on the National

Institutes of Health (NIH) ChestX-ray14 set (available at https://nihcc.app.box.com/v/

ChestXray-NIHCC), a publically available dataset of over 112,000 frontal chest radiographs

accompanied by labels extracted from accompanying radiology reports using natural language

Table 1. Hyperparameters explored during model development and training.

Parameter Values Description

Arch VGG16, VGG19, ResNet-50,

Xception, Inception

Pretrained architecture on ImageNet

Pooling Global average, global max, flatten Pooling method after final filter layers

fc1 4, 8, 16, 32, 64, 128 Neuron count for first fully connected layer after

pooling

fc2 0, 4, 8, 16, 32, 64, 128 Neuron count for the second fully connected layer

LR 0.001, 0.005, 0.01, 0.02 Learning rate

LR schedule Constant, cyclic, plateau Experiments with dynamic learning rates

Batch size 4, 8, 16, 32, 64, 128 Batch size for the training

Dropout 0, 0.25, 0.5, 0.75 Dropout setting applied to fully connected layers

Augmentation

zoom

0, 0.25, 0.5, 0.75, 1.0 Maximum fractional zoom range for images.

1.0 = 100% increase in size

Augmentation shear 0, 0.1, 0.3, 0.5 Fractional affine shear for image augmentation

generator

Augmentation

rotation

0, 30, 45, 60, 90 Maximum rotational angle in degrees for image

augmentation

Optimizer sgd, adam, nadam, adadelta,

rmsprop

Optimization algorithm used for training

Batch normalization Yes/no A batch normalization layer was optionally inserted

before the pooling layer

ImgShape 256, 512, 1,024 The size of the downsampled image in pixels

https://doi.org/10.1371/journal.pmed.1002697.t001
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processing. Since the images containing pneumothorax are not further classified by pneumo-

thorax size, any label of “pneumothorax” in this set was considered a positive case. Confidence

intervals for all reported measures were computed using the epiR (version 0.9–96) package in

the R statistical computing environment (version 3.5.0).

Results

Model parameter optimization

While manipulation of some hyperparameters produced significant changes in model perfor-

mance, other parameters produced reasonable models over a variety of settings. The 16 top-

performing models (Table 2), for example, tended to favor a higher maximum zoom setting,

low batch sizes, and low dropout fractions. However, the top models contained wide variation

in the neuron counts of their fully-connected layers (fc1 and fc2), which did not appear to pro-

foundly affect validation performance as assessed by AUC.

Both of our best models (described below) used batch normalization applied before pooling

layers. Stochastic gradient descent was utilized as the optimizer, coupled with an initial learn-

ing rate of 0.02, stepped down in plateau fashion by a factor of 10 every 15 epochs. Training

was stopped if no improvement was seen in the validation loss within 15 epochs following a

decrease in learning rate.

Model performance

We trained 7,475 models (representative model and training script code in S3 and S4 Texts)

using random grid search for hyperparameter optimization. Attempts to initialize these mod-

els from random weights using the training set produced poor performance as evaluated by

training loss. However, transfer learning using models pretrained on the ImageNet dataset was

much more successful. We identified 4 top-performing models based on the AUC obtained

for the validation set images. These 4 models all had a validation AUC of 0.94. Prior to

Table 2. Top 16 models classifying large and moderate pneumothorax, excluding small pneumothoraces in training.

Training Validation Arch Layer neuron

count

Batch size Dropout Pool Augmentation LR

AUC Sens Spec PPV AUC Sens Spec PPV fc1 fc2 Zoom Shear

0.95 0.85 0.90 0.44 0.94 0.79 0.91 0.43 VGG19 16 4 16 0 Flat 1 0.3 0.001

0.96 0.84 0.94 0.55 0.94 0.70 0.93 0.45 VGG16 32 8 16 0.25 Max 0.50 0.3 0.001

0.97 0.87 0.93 0.54 0.94 0.74 0.93 0.47 VGG19 16 16 16 0 Avg 0.50 0.3 0.01

0.98 0.88 0.97 0.71 0.94 0.69 0.97 0.64 Inception 64 32 16 0.25 Avg 0.50 0.5 0.02

0.97 0.87 0.95 0.61 0.93 0.70 0.94 0.51 Inception 4 4 16 0.50 Avg 1 0.5 0.001

0.93 0.75 0.93 0.51 0.93 0.68 0.94 0.49 VGG19 64 4 16 0.25 Avg 1 0.1 0.005

0.97 0.83 0.96 0.65 0.92 0.69 0.96 0.60 Inception 4 0 16 0.50 Max 0.75 0.3 0.02

0.97 0.81 0.96 0.64 0.92 0.63 0.96 0.60 Xception 4 0 4 0 Max 0.50 0.1 0.01

0.95 0.78 0.96 0.62 0.92 0.64 0.96 0.56 VGG19 32 8 4 0 Flat 0.50 0.1 0.001

0.95 0.68 0.98 0.75 0.92 0.55 0.97 0.64 ResNet 0 0 8 0.25 Max 0.75 0.1 0.001

0.94 0.79 0.94 0.54 0.92 0.72 0.94 0.52 Xception 16 8 4 0.25 Avg 0.75 0.1 0.02

0.95 0.77 0.96 0.64 0.92 0.64 0.96 0.60 VGG19 32 0 8 0.75 Flat 0.50 0.3 0.001

0.97 0.86 0.93 0.55 0.91 0.69 0.94 0.47 Xception 32 0 8 0 Flat 1 0.1 0.01

0.95 0.81 0.92 0.49 0.91 0.68 0.93 0.44 VGG16 64 8 16 0.25 Flat 1 0.1 0.001

0.94 0.67 0.96 0.61 0.91 0.60 0.96 0.58 ResNet 16 16 16 0.25 Avg 0.75 0.5 0.01

0.95 0.84 0.92 0.50 0.88 0.63 0.92 0.39 VGG19 32 16 16 0 Flat 0.75 0.1 0.005

Arch, architecture; AUC, area under the receiver operating characteristic curve; LR, learning rate; PPV, positive predictive value; Sens, sensitivity; Spec, specificity.

https://doi.org/10.1371/journal.pmed.1002697.t002
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evaluation on the test set (which had been kept completely separate from the training process),

we selected 2 models of the 4 as our “best” models. The first (VGG19-based, hereafter the

“high sensitivity model”) showed the best sensitivity (0.79) on the validation data, and the sec-

ond (Inception-based, hereafter the “high specificity model”) showed the best specificity

(0.97).

Evaluated on the test data, the high sensitivity model showed a sensitivity of 0.84 (95% CI

0.78–0.90), specificity of 0.90 (95% CI 0.89–0.92), and AUC of 0.94 (Fig 1). The high specificity

model showed a sensitivity of 0.80 (95% CI 0.72–0.86), specificity of 0.97 (95% CI 0.96–0.98),

and AUC of 0.96 (Fig 2). The PPVs for these 2 models on the test set were 0.45 (95% CI 0.39–

0.51) and 0.71 (95% CI 0.63–0.77), respectively. Since pneumothorax is a rare event overall but

has a very heterogeneous incidence based on the patient population being evaluated (e.g., it is

rare in the population at large but as high as 15% in mechanically ventilated patients [20]),

PPVs were calculated for the high sensitivity and high specificity models using an expected

prevalence of 1%, yielding values of 7.8% and 21.2%, respectively.

When evaluated on the full internal test set of images containing small, moderate, and large

pneumothoraces as positive cases, the overall sensitivity of our models declined to 0.55 (high

sensitivity model; Table 3) and 0.45 (high specificity model; Table 4), which was expected

since the models had not been trained using small pneumothorax images. However, sensitivity

Fig 1. Diagnostic performance ROC curve and confusion matrix of most sensitive top model evaluated on test set

(small pneumothoraces excluded). Mod, moderate; PTX, pneumothorax; ROC, receiver operating characteristic.

https://doi.org/10.1371/journal.pmed.1002697.g001
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for large pneumothorax remained 1.00 for the high sensitivity model and 0.88 for the high

specificity model, and sensitivity for moderate pneumothorax remained 0.82 for the high sen-

sitivity model and 0.78 for the high specificity model. Specificity overall remained quite high,

at 0.90 (high sensitivity model) and 0.97 (high specificity model). When applied to a theoretical

pneumothorax prevalence of 1%, PPVs were calculated at 5.3% (high sensitivity model) and

12.6% (high specificity model). Using the full test dataset, the high sensitivity model AUC

dropped from 0.94 to 0.82, and the high specificity model AUC dropped from 0.96 to 0.86.

Fig 2. Diagnostic performance ROC curve and confusion matrix of most specific top model evaluated on test set

(small pneumothoraces excluded). Mod, moderate; PTX, pneumothorax; ROC, receiver operating characteristic.

https://doi.org/10.1371/journal.pmed.1002697.g002

Table 3. High sensitivity model test set performance, stratified by pneumothorax size.

Annotation Predicted correctly Predicted incorrectly Percentage correct 95% CI

Negative 1,239 113 92 90–93

Trace PTX 162 39 81 75–85

Small PTX 113 176 39 34–45

Moderate PTX 101 23 81 73–87

Large PTX 24 0 100 86–100

PTX, pneumothorax.

https://doi.org/10.1371/journal.pmed.1002697.t003
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These metrics were calculated to facilitate comparison of performance on our internal test set

against performance on the external NIH dataset, which contains pneumothoraces of all sizes,

not annotated based on size.

When evaluated against the NIH ChestX-ray14 set (Table 5), our models did show some

decline in performance compared to the test done with our internal dataset containing small,

moderate, and large pneumothoraces. The high sensitivity model showed a performance of

0.49 sensitivity and 0.85 specificity on the NIH set as opposed to 0.55 sensitivity and 0.90 speci-

ficity for our internal test set. The high specificity model showed decline in sensitivity to 0.28

on the NIH set as opposed to 0.45 on our internal set, but specificity remained essentially

unchanged at 0.97 on the NIH set compared to 0.97 on the internal set.

Discussion

We created automated models that had high AUC and were sensitive to large and moderate

pneumothoraces while retaining high specificity when evaluated on our internal test set. In

particular, the high specificity model (specificity 0.97) produced a PPV of 12.5% for the sce-

nario in which pneumothorax has a prevalence of 1% (including small, moderate, and large

pneumothoraces). This performance profile matches what is required for prioritization of low-

prevalence findings. While high sensitivity is of course desirable, for our selected use case of

triaging larger, potentially more acutely clinically significant pneumothoraces at times when

review may be delayed (i.e., overnight), we felt it important that PPV remain high enough that

there will not be too many false positives, since this would increase alert fatigue, and clinical

radiologists might ignore the findings of the algorithm. With a PPV of 12.5%, a radiologist

need only review approximately 8 radiographs for every positive case. However, it is important

Table 4. High specificity model test set performance, stratified by pneumothorax size.

Annotation Predicted correctly Predicted incorrectly Percentage correct 95% CI

Negative 1,311 41 97 96–98

Trace PTX 193 8 96 92–98

Small PTX 80 209 28 23–33

Moderate PTX 97 27 78 70–85

Large PTX 21 3 88 69–96

PTX, pneumothorax.

https://doi.org/10.1371/journal.pmed.1002697.t004

Table 5. Performance of the models on the NIH ChestX-ray14 external dataset.

Measure High sensitivity model High specificity model

Positive (any PTX) Negative (no PTX) Positive (any PTX) Negative (no PTX)

Predicted positive 2,602 16,269 1,481 3,737

Predicted negative 2,700 90,549 3,821 103,081

Sensitivity 0.49 0.28

Specificity 0.85 0.97

PPV 0.14 0.28

NPV 0.97 0.96

AUC 0.75 0.75

AUC, area under the receiver operating characteristic curve; NIH, National Institutes of Health; NPV, negative predictive value; PPV, positive predictive value; PTX,

pneumothorax.

https://doi.org/10.1371/journal.pmed.1002697.t005
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to make clear that this algorithm is not intended to be relied upon to detect small pneumotho-

races (based on our experimental design and training method), and that some moderate and

large pneumothoraces may still be missed. In keeping with our research aim, this is meant to

be a prioritization and triaging tool for potential emergencies rather than a substitute for care-

ful image review and diagnosis rendered by a human radiologist.

For human radiologists, detection of pneumothorax has been shown to be affected by both

image resolution and luminance [21]. Currently, significant downsampling of the image is

required for algorithm training on a full X-ray image due to memory and free parameter con-

straints. High-resolution images also require more computational power and memory than

may be available in devices (such as portable X-ray devices) that might benefit from the

deployment of early screening algorithms to the platform. While we hypothesize that the clas-

sifiers’ limited ability to detect small pneumothoraces may be partly due to resolution limita-

tions, it is not fully explained by this. Nevertheless, using downsampled images, the classifiers

perform well in identifying large and moderate pneumothoraces, which we suggest are the

most clinically emergent findings due to the mechanism by which pneumothorax causes respi-

ratory and circulatory collapse.

Automated and semi-automated models have been developed for the detection of pneumo-

thorax previously, using both traditional image-analysis techniques and machine learning and

deep learning approaches. For example, a method using traditional techniques to identify pleu-

ral lines following identification of posterior rib lines yielded a sensitivity for pneumothorax of

77% on a small set of images (22 positive and 28 negative images). However, this method pro-

duced a per-image false-positive rate of 0.44 [22]. More recently, machine learning and deep

learning approaches have been used to address this problem. Several groups have focused on

developing classifiers using the NIH ChestX-ray8 dataset, an earlier subset of the ChestX-

ray14 set, which contains 108,948 frontal chest X-rays labeled with 8 different disease classifiers

on the basis of mining text reports. Using the text-based labeling method, 2,793 images were

deemed positive for pneumothorax, and a classifier developed using the ResNet architecture

achieved an AUC of 0.789 [23]. A deeper network architecture trained on the subsequent

ChestX-ray14 dataset produced an AUC for pneumothorax of 0.889 [24]. Cicero et al. utilized

a pretrained Inception architecture and retrained on a set of approximately 35,000 radiographs

(downsampled to 256 × 256 pixels) from their institution classified into 5 categories including

pneumothorax (1,299 images), labeled by mining the clinical report text [25]. Interestingly,

they excluded images where the report labeled the pneumothorax as “tiny, trace, small,

decreased or improved.” This likely produced a dataset reasonably similar to our training set,

which also excludes small pneumothorax. Of note, Cicero et al. did not explicitly address chest

tubes as a confounding finding in their data, so it is unclear whether their dataset and ours

have similar makeup and distribution with regard to this feature, and unknown what effect

this may have had on model performance.

Using the ChestX-ray14 dataset for external testing of our models, we observed some

decline in performance of our high sensitivity model compared to testing performed on our

own held-out test set (with small pneumothoraces included), with an AUC of 0.82 (internal)

versus an AUC of 0.75 (NIH). Our high specificity model exhibited a decrease in AUC from

0.86 (internal) to 0.75 (NIH); however, specificity remained high and unchanged (0.97 internal

versus 0.97 NIH). Some decline in performance seen on this task may also be related to the

fact that the NIH set does not attempt to stratify pneumothorax on the basis of size, and so

may contain larger numbers of small and trace pneumothoraces. Further, while it is a very

valuable resource to have such a large dataset publicly available, questions have been raised as

to the accuracy of the annotations obtained through text mining reports in this set; in the case

of pneumothorax, agreement between the NIH label and radiologist review has been reported
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to be only approximately 60% [26]. Errors in these annotations may artificially decrease the

apparent performance of algorithms on this dataset.

Our work expands and improves upon prior work by producing a very high level of perfor-

mance (AUC of 0.94 for detection of moderate and large pneumothoraces, 0.86 for detection of

pneumothoraces overall when our internal test set included small pneumothoraces) while gen-

erating acceptably low levels of false positives when applied to a low-prevalence finding such as

pneumothorax. Further, our work is based on a new dataset of over 13,000 images (of which

3,107 are positive for pneumothorax) created by direct visual reannotation of each image by

trained radiologists, further refined through consensus labeling for the positive cases. While fur-

ther performance improvements are likely to be gained through model refinement and the use

of new model architectures, our experiments in the development of these models agree with

others’ assertions [27] that dataset size and quality remain a key factor in the production of clin-

ically useful classifiers that generalize well to chest X-rays obtained in a variety of clinical scenar-

ios and on a range of patients, from healthy outpatients to the sickest patients in an ICU setting.

Our work has several limitations. First, it is important to restate that our intent is to create a

prioritization tool for potentially emergent pneumothorax. In the current state that exists at

our institution and many others, no automated analysis of these images means that no images

are flagged for priority review. With the use of this algorithm, we expect that the majority of

moderate and large pneumothoraces would be prioritized for expedited review, but since the

model sensitivity is not 100%, some moderate and large pneumothoraces would likely go

undetected by the algorithm, in addition to the majority of small pneumothoraces, which were

not represented in the model training set. Second, although we intentionally included frontal

chest X-rays from as many different clinical settings as possible (e.g., outpatient clinic, emer-

gency department, and ICU), the training and test data, and the highest performing scores

described above, are based on data from a single institution. Further, “ground truth” for this

study relies on the consensus opinion of the radiologists performing annotation of the images;

no clinical follow-up or additional testing was performed to confirm diagnoses. Finally,

although our results suggest that our classifiers may be valuable tools for triage and prioritiza-

tion of studies with a critical finding such as pneumothorax, they have not yet been prospec-

tively tested in a clinical environment, and since the composition and structure of the external

NIH dataset used for external testing does not exactly match that of our internal data, it is diffi-

cult to predict exactly how well the algorithms would transfer to other institutions.

In summary, we have developed automated image classifiers that detect clinically significant

pneumothorax (moderate and large in size as determined by radiologist consensus read) at

high levels of performance within a single site, while maintaining a reasonable false-positive

rate. These classifiers may have practical value as triage tools for identifying and prioritizing

studies for expedited review, while minimizing the number of negative studies that must be

reviewed as urgent in order to identify the true positives. These classifiers were developed

using a training dataset of over 13,000 images where ground truth was established by direct

visual reannotation of each study by trained radiologists. We hope that this work represents

first steps into the development and deployment of truly useful artificial intelligence tools in

the medical imaging space, and that implementation of such algorithms can improve the speed

and quality of care delivered across a variety of healthcare settings.
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