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Abstract
Background: Clustering methods are widely used on gene expression data to categorize genes
with similar expression profiles. Finding an appropriate (dis)similarity measure is critical to the
analysis. In our study, we developed a new measure for clustering the genes when the key factor is
the shape of the profile, and when the expression magnitude should also be accounted for in
determining the gene relationship. This is achieved by modeling the shape and magnitude
parameters separately in a gene expression profile, and then using the estimated shape and
magnitude parameters to define a measure in a new feature space.

Results: We explored several different transformation schemes to construct the feature spaces
that include a space whose features are determined by the mutual differences of the original
expression components, a space derived from a parametric covariance matrix, and the principal
component space in traditional PCA analysis. The former two are the newly proposed and the
latter is explored for comparison purposes. The new measures we defined in these feature spaces
were employed in a K-means clustering procedure to perform analyses. Applying these algorithms
to a simulation dataset, a developing mouse retina SAGE dataset, a small yeast sporulation cDNA
dataset, and a maize root affymetrix microarray dataset, we found from the results that the
algorithm associated with the first feature space, named TransChisq, showed clear advantages over
other methods.

Conclusion: The proposed TransChisq is very promising in capturing meaningful gene expression
clusters. This study also demonstrates the importance of data transformations in defining an
efficient distance measure. Our method should provide new insights in analyzing gene expression
data. The clustering algorithms are available upon request.

Background
With the explosion of various 'omic' data, a general ques-

tion facing the biologists and statisticians is how to sum-
marize and organize the observed data into meaningful
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structures. Clustering is one of the methods that have
been widely explored for this purpose [1-3]. In particular,
clustering is being generally applied to gene expression
data to group genes with similar expression profiles into
discrete functional clusters. Many clustering methods are
available, including hierarchical clustering [4], K-means
clustering [5], self-organizing maps [6], and various
model-based methods [7-9].

Recent research in clustering analysis has been focused
largely on two areas: estimating the number of clusters in
data [10-12] and the optimization of the clustering algo-
rithms [13,14]. In this paper we studied a different yet
fundamental issue in clustering analysis: to define an
appropriate measure of similarity for gene expression pat-
terns.

The most commonly used distances or similarity meas-
ures for analyzing gene expression data are the Pearson cor-
relation coefficient and Euclidean distance, which however,
in some situations, could be unsuitable to explore the true
gene relationship. The Pearson correlation coefficient is
overly sensitive to the shape of an expression curve, and
the Euclidean distance mainly considers the magnitude of
the changes of the gene expression. For other model-based
methods [7-9,15], their successes would highly rely on
how well the assumed probability model fits the data and
the clustering purpose.

In recent literature, several advanced measures with
emphasis on the expression profile shape have been
developed in different contexts [16-18]. In particular,
based on the Spearman Rank Correlation, CLARITY was
defined for detecting the local similarity or time-shifted
patterns in expression profiles [18]. However, the rank-
based methods could mistakenly interpret a pattern since
the use of rank causes information loss. As an example, we
consider a profile Y = (104, 95, 88, 92, 88) with all com-
ponents generated from the same Poisson distribution of
mean 100. Clearly, the differences among the compo-
nents in Y are due to the distribution variance and ranking
in this case is meaningless. Briefly, Spearman Rank Correla-
tion cannot distinguish the real differences from random
errors in some situations and thus may provide a wrong
estimate of the pattern.

By separately modeling the shape and the magnitude
parameters in a gene expression profile, we developed a
new measure for clustering the genes when the profile
shape is a key factor, and when the expression magnitude
should also be accounted for in determining the gene rela-
tionship. The approach is to use the estimated shape and
magnitude parameters to define a Chi-square-statistic
based distance measure in a new feature space. An appro-
priate feature space helps summarize the data more effec-

tively, hence improving the identification of gene
relationships. We explored different transformation
schemes to construct the feature spaces, which include a
space with features determined by the mutual differences
of the original expression components, a space derived
from a parametric covariance matrix, and the principal
component space in PCA analysis [19]. The former two
are the newly proposed and the latter is explored for com-
parison purposes.

The new measures associated with different feature spaces
were employed in a K-means clustering procedure to per-
form clustering analyses. We designated the algorithm
using the measure from the first transformed space as
TransChisq, and the one associated with the principal
component space as PCAChisq. The space derived from a
parametric covariance matrix is not included in compari-
son for computational reasons (see Methods). For evalua-
tion purposes we also implemented a set of widely used
measures into the K-means clustering procedure, includ-
ing Pearson correlation coefficient (PearsonC), Euclidian
distance (Eucli), Spearman Rank Correlation (SRC), and a
chi-square based measure for Poisson distributed data
(PoissonC) [20]. All the measures were applied to a simu-
lation dataset, a developing mouse retina SAGE dataset of
153 tags [21], a small yeast sporulation cDNA dataset
[22], and a maize root affymetrix microarray dataset [23].
The results showed that TransChisq outperforms other
methods. Using the gap statistic [24,25], TransChisq was
also found to be advantageous in estimating the number
of clusters. The underlying probability model of our
method was adopted from the model of PoissonC, a
method for analyzing the expression patterns in Serial
Analysis of Gene Expression (SAGE) data [20]. The MAT-
LAB source codes for all these algorithms are available
upon request.

Results
First, we will illustrate the property of the proposed new
transformations by applying them to a maize gene expres-
sion dataset. Then we will present the applications of
TransChisq, PCAChisq and other methods to a simulation
dataset, a yeast sporulation microarray dataset, and a
mouse retinal SAGE dataset.

Experimental maize gene expression data
The maize dataset, consisting of nine Affymetrix microar-
rays, was generated to investigate the gene transcription
activity in three maize root tissues with three replicates for
each tissue: the proximal meristem (PM), the quiescent
center (QC) and the root cap (RC) [23]. 2092 significantly
differentially expressed genes have been identified and
categorized into 6 classes of expression patterns [23]. Here
we used these genes to illustrate the property of the pro-
Page 2 of 14
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posed transformations with comparison to the traditional
PCA.

Firstly, we applied the transformation employed in Tran-
sChisq to the data. Figures 1(a)–(c) plot the expression
profiles of the genes in this new space. The blue and red
genes are from the two dominant classes (RC up- or
down-regulated genes account for 94% of all genes) and
the other four colors (orange, green, pink, light blue) cor-

respond to the other four small classes (up- or down-reg-
ulated genes in QC or PM account for 6% of all genes).
The three plots show that the six classes can be recognized
explicitly in any of the three subspaces of dimension 2.

We then applied the transformation suggested by a para-
metric covariance matrix to the same data (see Methods).
Figures 1(d)–(f) plot the expression profiles of the genes

Plots of 2092 maize genes on to the three different feature spacesFigure 1
Plots of 2092 maize genes on to the three different feature spaces. From top to bottom, the genes are plotted on to 
the subspaces of dimension 2 of the new spaces. Figures 1(a-c) correspond to the space used in TransChisq, Figures 1(d-f) cor-
respond to the space determined by the parametric covariance matrix and Figures 1(g-i) correspond to the principal compo-
nent space associated with the PCAChisq. PC1, PC2 and PC3 specify the subspaces. Blue/red dots represent RC up-/down-
regulated genes, cyanide/pink dots represent PM up-/down-regulated genes, green/orange dots represent QC up-/down-regu-
lated genes. The dotted lines in (e) are the centers of the six class separating regions determined by the second and third com-
ponent from the parametric covariance matrix.
Page 3 of 14
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in this new space. We can see that the second and the third
component separate all six classes in Figure 1(e) correctly.
The description of the six class separating regions, whose
centers are the dotted lines in Figure 1(e), is in Table 1

(e.g., the genes around the line PC2 = ·PC3 < 0 are

expected to be PM up-regulated). A convenient common
property of this transformation, and the one in Tran-
sChisq, is that the information carried by each component
is explicit, and hence the region in the new space corre-
sponding to each class can be clearly determined.

For comparison, we performed a traditional PCA analysis
to the same data. Figures 1(g)–(i) plot the expression pro-
files of the genes in the principal component space. We
can see that the direct application of the PCA can separate
the two dominating expression patterns. But it fails to rec-
ognize the other patterns, even when exhausting all prin-
cipal components. The poor performance of PCA could be
attributed to the use of empirical sample covariance
matrix in determining the principal components. In the
maize dataset, about 94% genes are RC up- or down-reg-
ulated genes, which cause most of the variance. The prin-
cipal components, determined by this sample covariance
matrix thus largely capture the two dominating clusters,
yet miss the meaningful class information for the other
four small groups.

This example demonstrates the advantage of the proposed
new data transformations over the traditional PCA in
keeping class information intact.

Simulation study
We applied TransChisq to a simulation dataset to evaluate
its performance. For comparison purposes, other modi-
fied K-means algorithms, i.e. PCAChisq, PoissonC, Pear-
sonC, and Eucli were also applied to the same dataset.

The simulation dataset consists of 46 vectors of dimen-
sion 5 and the components are independently generated
from different Normal distributions. The mean (μ) and

variance (σ2) of the Normal distributions are constrained
by σ2 = 3μ and described in Table 2. Based on the Normal
distributions they are generated from, the 46 vectors are
put into six groups, i.e., A, B, C, D, E, and F, whose sizes
are 3, 6, 6, 9, 7, and 15 respectively. The motivation and
guideline on choosing the various parameters related to
this simulation datasets are presented in Additional file 1.
Genes with a similar expression shape are considered to
be in the same group. Although the expression magnitude
in the dataset is not a critical factor for determining the
gene clusters, its information is useful and should be
taken into account when comparing the profile shapes.

The clustering results from different methods are shown
in Figure 2. The horizontal axis represents the index of the
46 genes that belong to six groups (designated A, B, C, D,
E and F, and marked at the top of the figure). The vertical
axis represents the index of the cluster to which each gene
has been assigned by a particular algorithm. Only Tran-
sChisq correctly categorized the genes into six groups.
PCAChisq, PoissonC, and PearsonC mixed up group A and
group B. Eucli clustered genes mainly by the magnitude of
the gene expression values rather than the changes of the
profile shapes. To reduce the effects from the magnitude,
we further applied Eucli to the rescaled data. The rescaling
was performed in a way so that the sum of the compo-
nents within each vector was set the same. The clustering
result of Eucli on the rescaled data (Figure 2(f)) is better,
but not perfect.

We performed an additional 100 replications of the above
simulation. TransChisq, PCAChisq and PoissonC correctly
clustered 75, 37 and 43 of the 100 replicate simulation
datasets, while PearsonC, Eucli and Eucli on rescaled data
cannot generate correct clusters. We also tried PCAChisq
on different combinations of principal components to
optimize the clustering results. These different combina-
tions, however, are not helpful to identify all the six
groups.

This study evaluates the performance of TransChisq on the
normally distributed data with Poisson-like property: var-

3

Table 1: The six expression patterns and their separating regions described by PC2 and PC3

Class index Expression patterns Center of separating regions described by PC2 and PC3

1 PM > (QC ≈ RC)
PC2 = ·PC3 < 0

2 PM < (QC ≈ RC)
PC2 = ·PC3 > 0

3 QC > (PM ≈ RC)
PC2 = - ·PC3 > 0

4 QC < (PM ≈ RC)
PC2 = - ·PC3 < 0

5 RC > (PM ≈ QC) PC2 = 0; PC3 > 0
6 RC < (PM ≈ QC) PC2 = 0; PC3 < 0

3

3

3

3
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iance increases with mean. The success of this application
sheds a light on applying TransChisq to a microarray data-
set in addition to the SAGE data.

Experimental mouse retinal SAGE data
For further validation we applied TransChisq, PCAChisq,
PoissonC, PearsonC, Eucli and SRC (the K-means algorithm
using Spearman Rank correlation as the similarity meas-
ure) to a set of mouse retinal SAGE libraries. The raw
mouse retinal data consists of 10 SAGE libraries (38818
unique tags with tag counts ≥ 2) from developing retina
taken at 2-day intervals. The samples range from embry-
onic, to postnatal, to adult [21]. Among the 38818 tags,
1467 tags that have counts greater than or equal to 20 in
at least one of the 10 libraries were selected. The purpose
of this selection is to exclude the genes with uniform low
expression. To be more effective in comparing the cluster-
ing algorithms, a subset of 153 SAGE tags with known
biological functions were selected. These 153 tags fall into
5 functional groups: 125 of these genes are developmental
genes that can be further categorized into four classes by
their activities at different developmental stages; the other
28 genes are not relevant to the mouse retina develop-
ment (see Table 3). The average expression profile for each
of the five clusters is shown in Figure 3.

TransChisq, PCAChisq, PoissonC, PearsonC, Eucli and SRC
were applied to group these 153 SAGE tags into five clus-
ters. Here we assumed that the number of the clusters, K,
is known. A study to evaluate the performance of different
measures in determining K when it is unknown can be
found in a later section of this paper. The clustering results
showed that TransChisq and PCAChisq outperform others
(Table 4): 12, 12, 22, 26 and 38 of the 153 tags are incor-
rectly clustered by TransChisq, PCAChisq, PoissonC, Pear-
sonC and Eucli on rescaled data respectively. For the results
from Eucli on original data, as the correspondence

between the predicted clusters and the true clusters is
unclear, we cannot report the number of incorrectly clus-
tered tags. We also evaluated the quality of the clustering
results against an external criterion, the adjusted Rand
Index [26]. The adjusted Rand Index assesses the degree of
agreement between two partitions of the same set of
objects. We compared the clustering results from each
algorithm with the true categorizations, and calculated
the adjusted Rand Index accordingly. The adjusted Rand
Index varies between 1 (when the two partitions are iden-
tical) and 0 (when the partitions or the resulted clusters
are random). A higher adjusted Rand Index represents the
higher correspondence between the two partitions. From
Table 4, we can see that the adjusted Rand Index results
confirm that TransChisq and PCAChisq perform similarly
and have clear advantages over other methods.

Microarray yeast sporulation gene expression data
To further demonstrate how effective TransChisq is in clus-
tering genes with characterized patterns in a microarray
analysis, we applied TransChisq to a microarray yeast
sporulation dataset [22]. Chu et al. measured gene expres-
sions in the budding yeast Saccharomyces cerevisiae at seven
time points during sporulation using spotted microarrays,
and identified seven distinct temporal patterns of induc-
tion [22]. 39 representative genes were used to define the
model expression profile for each pattern. Based on their
properties, the seven patterns are designated as Metabolic,
Early I, Early II, Early-Mid, Middle, Mid-Late and Late. The
average expression profiles for these seven patterns are
presented in Figure 4. The genes in Early I, Early II, Mid-
dle, Mid-Late and Late initiates induction of expression at
0.5 h, 2 h, 5 h, 7 h and 9 h, respectively, and sustains
expression through the rest of the time course. The expres-
sion of metabolic genes is also induced at 0.5 h as in Early
I, but decays afterwards. The expression of genes in Early-
Mid is induced not only at the 0.5 h and 2 h as in Early

Table 2: Five dimensional simulation dataset with Normal distributions (σ2 = 3μ).

Group ID Mean parameters of the Normal distributions (μ)

Group A a1 ~ a3 1 1 1 15 150
Group B b1 ~ b6 15 1 1 1 150
Group C c1 ~ c4 10 30 30 60 10

c5 ~ c6 100 300 300 600 100
Group D d1 ~ d7 200 70 70 10 10

d8 ~ d9 2000 700 700 100 100
Group E e1 ~ e5 210 120 10 10 10

e6 ~ e7 2100 1200 100 100 100
Group F f1 ~ f3 5 50 5 5 5

f4 ~ f6 5 75 5 5 5
F7 ~ f9 5 100 5 5 5
f10 ~ f11 50 500 50 50 50
f12 ~ f13 50 750 50 50 50
f14 ~ f15 50 1000 50 50 50
Page 5 of 14
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genes, but also at 5 h and 7 h, as in the Middle and Mid-
Late genes. This data structure made it difficult to separate
the Early-Mid genes from others. The direct clustering
analyses using PearsonC or Eucli were not successful.

Prior to analyzing the data we substituted the expression
ratios that were below zero with zeros as in Figure 5(a).
This truncation of negative values simplifies the expres-

sion patterns of the 39 representative genes with the key
properties in each pattern being intact. The clustering
results are summarized in Table 5. We can see that Tran-
sChisq outperforms other methods: 3, 7, 8, 13, 14 and 17
of the 39 genes are incorrectly clustered by TransChisq,
PoissonC, Eucli, PearsonC, PCAChisq and Eucli on rescaled
data respectively. TransChisq also shows the best adjusted
Rand Index. It is interesting to see that the performance of

Graphs of clustering results for the simulation dataFigure 2
Graphs of clustering results for the simulation data. Horizontal axis represents the index of the 46 genes which belong 
to six groups (designated A, B, C, D, E and F, and marked at the top of the figure); vertical axis represents the index of the clus-
ter that each gene has been assigned to by each algorithm.

Table 3: Functional categorization of the 153 mouse retinal tags (125 developmental genes; 28 non-developmental genes).

Function Groups

Early I Early II Late I Late II Non-dev. Total

Number of tags 32 34 32 27 28 153
Page 6 of 14
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Eucli on rescaled data is worse than it is on original data.
This suggests that the magnitude information should be
critical and cannot be ignored in determining the seven
classes. As we have discussed, all methods fail to discern
the genes in Early-Mid from the genes in Early I, Early II,
Middle, Mid-Late and Late (Figure 5(b)–(f)). Further-
more, PCAChisq and PoissonC mixed up two different pat-
terns from Metabolic and Early I because of their similar
induction time at 0.5 h (Figure 5(c) and 5(d)). PearsonC
even splits the Metabolic group further into two separate
clusters (Figure 5(e)).

For PCAChisq, we tried different combinations of princi-
pal components (PCs) to optimize the clustering results.
The best result can be reached when the first 5 PCs were
used: 3 out of the 39 genes were incorrectly grouped. This
optimal result is the same as the one from TransChisq.
However, in practice, it is not feasible to exhaust all possi-

ble combinations of PCs to search for the optimal cluster-
ing result.

Estimating the number of clusters using Gap Statistics

An unsolved issue in K-means clustering analysis is how to
estimate K, the number of clusters. In the recent literature
the Gap statistic was found useful [25,26]. The technique
of the Gap statistic uses the output of any clustering algo-
rithm to compare the 'between-to-total variance (R2)' with
that expected under an appropriate reference null distri-
bution. A high R2 value represents high variability
between clusters and high coherence within clusters.
Below we sketch how to calculate the Gap statistic: Let Dk

be the R2 measure for the clustering output when the
number of clusters is k. To derive the reference expected
value of Dk, the elements within each row of original data

are permuted to produce the new matrices with random
profile patterns. Assume B such matrices are obtained.
Then for each matrix, a new R2 is calculated based on the
original clustering output and the pre-selected similarity

measure. The average of these R2's, denoted by , serves

as the expectation of Dk. With Dkand , the Gap func-

tion is defined by

Gap(k)= Dk - .

The value of k with the largest Gap value will be selected
as the optimal number of clusters in that at this k, the
observed between-to-total variance R2 is the most ahead
of expected.

For comparison, we used different measures including
TransChisq, PCAChisq, PoissonC, Pearson, Eucli, and SRC to
calculate the Gap statistics for each of the two experimen-
tal datasets: microarray yeast sporulation data and mouse
retinal SAGE data. For the microarray yeast sporulation
data, the Gap values from different measures over differ-
ent number of clusters are shown in Figure 6. We can see
that TransChisq shows the maximum Gap value at k = 7. In

Dk

Dk

Dk

Average expression profiles for the 153 SAGE tagsFigure 3
Average expression profiles for the 153 SAGE tags. 
These 153 tags fall into 5 clusters: 125 of these genes are 
developmental genes and can be further categorized into 
four groups (Early I, Early II, Late I and Late II) by their 
expressions at different developmental stages; the other 28 
genes are not relevant to the mouse retina development.

Table 4: Comparison of the algorithms on the 153 SAGE tags

Algorithm Number of tags in incorrect 
clusters

% of tags in incorrect clusters Adjusted Rand Index

TransChisq 12 7.8 0.822
PCAChisq 12 7.8 0.825
PoissonC 22 14.4 0.725
PearsonC 26 17.0 0.664

Eucli NA NA 0.003
Eucli on rescaled data 38 24.8 0.675

SRC NA NA 0.347
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other words, TransChisq finds an optimal number of 7
clusters, which agrees with the known functional categori-
zation of the genes. Other measures all produce incorrect
estimates of the number of clusters on the same dataset. In
a similar analysis of the SAGE data, TransChisq, PCAChisq
and PoissonC provide a correct estimate on the number of
clusters, 5. PearsonC, Eucli and SRC give an incorrect esti-
mate of 3, 14 and 2 respectively (the gap function curves
are not shown here). This study shows that when the
number of clusters, K, is unknown, the Gap Statistics can
be used to estimate K, and TransChisq is favorable over
others on estimating the true number of clusters in both
experimental datasets.

Discussions and conclusions
In this study, we proposed a method, TransChisq, to group
genes with similar expression shapes. The expression mag-
nitude was considered when measuring the shape similar-

ity. Results from applications to a variety of datasets
demonstrated TransChisq's clear advantages over other
methods. Furthermore, with the gap statistics, TransChisq
was also found to be effective in estimating the number of
clusters. Regarding the computational efficiency, Tran-
sChisq, PCAChisq and PoissonC have similar costs but usu-
ally run a few times (2 to 5 times) slower than the
PearsonC and Eucli.

We have embedded different measures in the K-means
clustering procedure to reveal the important gene expres-
sion patterns. In addition to K-means, our new measure
can also be implemented in other clustering methods,
e.g., hierarchical clustering [4], to perform the analysis. In
a hierarchical clustering procedure, the distance of any
two gene expression profiles can be defined using meas-
ure (4) by assuming that two genes form a cluster. A study
on the performance of different measures in a hierarchical
clustering procedure is in Additional file 2. Our new
method also outperforms others when implemented in
the hierarchical clustering algorithm.

We view different measures as complementary rather than
competing in that each has its advantages. In general,
TransChisq would be effective when it is necessary to con-
sider the magnitude information in measuring the shape
similarity. In clustering analyses of SAGE and microarray
data, very often the magnitude information should be
taken into account, whereas the shape could be a more
critical factor to determine the gene relationship.

Although the proposed method is very promising, it does
require further study on possible data transformation
schemes when the original data show a more complex
structure, or when the clustering purpose is different. We
suggest our method could provide new insights to the
applications of different data transformations in cluster-
ing analysis of gene expression data.

Methods
The underlying probability model of our new measures
was adopted from the work of Cai et al. [20], where two
Poisson based measures were proposed for clustering

Expression patterns of the 39 representative genes in the yeast sporulation dataFigure 4
Expression patterns of the 39 representative genes in 
the yeast sporulation data. These 39 representative 
genes represent seven expression patterns in the yeast 
sporulation data. The figure shows the average expression 
profile for each pattern.

Table 5: Comparison of the algorithms on the 39 yeast sporulation genes

Algorithm Number of genes in incorrect 
clusters

% of genes in incorrect clusters Adjusted Rand Index

TransChisq 3 7.7 0.830
PCAChisq 14 35.9 0.527
PoissonC 7 18.0 0.675
PearsonC 13 33.3 0.483

Eucli 8 20.5 0.600
Eucli on rescaled data 17 43.6 0.483

SRC NA NA 0.325
Page 8 of 14
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analysis of SAGE data, or more generally, Poisson distrib-
uted data. A brief review on this work is presented below,
followed by a detailed description of the newly proposed
measures.

PoissonC and PoissonL for clustering analysis of SAGE data
SAGE is one of the effective techniques for comprehensive
gene expression profiling. The result of a SAGE experi-
ment, called a SAGE library, is a list of counts of
sequenced tags isolated from mRNAs that are randomly
sampled from a cell or tissue. As discussed in Man et al.
[27], the sampling process for tag extraction is approxi-
mately equivalent to randomly taking a bag of colored
balls from a big box. This randomness leads to an approx-
imate multinomial distribution for the number of tran-
scripts of different types. Moreover, due to the vast
amount of varied types of transcripts in a cell or tissue, the
selection probability of a particular type of transcript at
each draw should be very small. This suggests that the tag

counts of sampled transcripts of each type are approxi-
mately Poisson distributed. PoissonC and PoissonL were
developed under this context [20]. The method is summa-
rized below.

Let Yi(t) be the count of tag i in library t, and Yi = (Yi(1),...,
Yi(T)) be the vector of counts of tag i over a total of T
libraries. Yi(t) is assumed to be Poisson distributed with
mean γit. To model the magnitude and shape of the
expression profile separately, Cai et al. [20] further param-
eterized the Poisson rate as γit = λi(t)θi, where θi is the
expected sum of counts of tag i over all libraries, and λi (t)
is the contribution of tag i in library t to the sum θi
expressed in percentage. The sum of λi(t) over all libraries
equals to 1. So λi(t)θi redistributes the tag counts accord-
ing to the expression shape parameter (λi(t)'s) but keeps
the sum of counts over libraries constant. The genes with
similar λi(t)'s over t are considered to be in the same clus-
ter.

Clustering results for the yeast sporulation dataFigure 5
Clustering results for the yeast sporulation data. (a) Original expression profiles of the 39 representative genes from 7 
functional groups, (b)-(f) Expression profiles of the 7 clusters produced by different clustering algorithms. The x-axis repre-
sents different time points of 0h, 0.5 h, 2 h, 5 h, 7 h, 9 h, 11.5 h. The y-axis represents the normalized log-ratio expression lev-
els.
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For a cluster consisting of tags 1,2,..., m with the common
shape parameter λ = (λ(1),..., λ(T)), the joint likelihood
function for Y1, Y2,...,Ym is

The maximum likelihood estimates of λ and θ1,..., θm are

Formula (2) forms the basis of the following two meas-
ures for evaluating how well a particular tag fits in a clus-
ter. One natural measure is to use the log-likelihood
function: log f(Yi|λ, θi). The larger the log-likelihood is,
the more likely the observed counts are generated from
the expected Poisson distributions. So for a cluster con-
sisting of tags 1,2,..., m, a likelihood based measure is
defined as

The other measure is based on the Chi-square statistic, a
well known statistic for evaluating the deviation of the
observations from the expected values. It is defined as

Using Chi-square statistic as a similarity measure, the pen-
alty for the deviation from large expected count is smaller
than that for small expected count. It is consistent with the
above likelihood-based measure in that the variance of a
Poisson variable equals to its mean. In general, the
smaller the value of L or D, the more likely the tags belong
to the same cluster. We should also note that the statistics
in measure (3) and measure (4) consider both the shape
and magnitude information when measuring the cluster
dispersion, i.e., the cluster is specified by the shape param-

eter λ, but the relationship of a tag to a certain cluster is

determined by the deviation of observed counts ( i i)

from the expected values ( i λ). Here i is the estimated

profile shape of tag i ( i = ( i (1),..., i (T)) and

). A measure that ignores

magnitude would take the difference between i and 

directly.

Cai et al. [20] have employed the above measures into a
K-means clustering algorithm to perform clustering anal-
ysis. K-means clustering procedure [5] generates clusters
by assigning each object to one of K clusters so as to min-

imize a measure of dispersion within the clusters. The
algorithm is outlined below:

1. All SAGE tags are assigned randomly to K sets. Estimate

initial parameters  and  for

each tag and each cluster by formula (2).

2. In the (b+1)th iteration, assign each tag i to the cluster
with minimum deviation from the expected model. The
deviation is measured by either

 or

.

3. Set new cluster centers  by formula (2).

4. Repeat step 2 till convergence.

Let c(i) denote the index of the cluster that tag i is assigned
to. The above algorithm aims to minimize the within-
cluster dispersion ∑iLi,c(i) or ∑iDi,c(i). The algorithm using
measure L is called PoissonL, and the algorithm using
measure D is called PoissonC. PoissonL and PoissonC per-
form similarly in applications. But PoissonC is more prac-
tical in terms of running time. So we use PoissonC for
comparison in this paper.

PoissonC is designed to group the objects by their depar-
ture from the expected Poisson distributions. The success
of PoissonC has been shown in applications [20,21]. How-
ever, if the clustering purpose is slightly different, some
modification on PoissonC may be necessary. For instance,
if the shape difference should be more emphasized in
determining the relationship, the direction of departure of
observed from expected may/should also be considered.
As an example, we consider an expression vector Y = (15,
30, 15) and its relationship with two clusters with shape

specified by λ1 = (1/12,5/6,1/12) and λ2 = (5/12, 1/6, 5/

12) respectively. The expectation of Y in cluster 1 is  =

(5, 50, 5), and in cluster 2, it is  = (25, 10, 25). If more

emphasis should be put on the shape change in determin-
ing the relationship, Y would be expected to be closer to
the first cluster because of the large value observed on the

middle component in both Y and . PoissonC, however,

determines that Y has the same distance to  and 

(by the measure (4), the distance between Y and  is 48,
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so is the distance between Y and ). PoissonC ignores the

direction of departure. To address this omission we propose
to emphasize the profile shape through suitable data
transformations, and to define a distance measure in the
transformed space. The construction of a proper feature
space under a certain clustering purpose is essential to
define an effective distance or similarity measure.

Proposed distance measures (I): TransChisq
A simple yet natural data transformation to emphasize the
expression shape is to consider the mutual differences of
the original vector components. Given a gene with expres-
sion profile Yi = (Yi(1),..., Yi(T)) the transformed vector Zi
is of dimension T(T-1)/2 with components in the form of
Yi(t1)-Yi(t2) for t1 = 1,..., T-1 and t2 = (t1 + 1),..., T.

According to the Poisson model in the previous section,
E(Yi(t1)-Yi(t2)) = (λi(t1)-λi(t2))θi and Var(Yi(t1)-Yi(t2)) =
(λi(t1)+λi(t2))θi. For a cluster consisting of tags l, 2,..., m,
we can define the following statistic to measure the cluster
dispersion:

where (t) and i can be estimated by formula (2). We

call the modified K-means algorithm with this measure
TransChisq. Applying it to the toy example in the previous

section, TransChisq determines that Y is closer to  as we

expected.
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Gap statistic results on the 39 yeast sporulation genesFigure 6
Gap statistic results on the 39 yeast sporulation genes. The x-axis represents the number of clusters and the y-axis 
represents the gap statistics over different number of clusters. In each sub-figure, the x-axis value associated with the largest 
gap statistic is the optimal selection of the number of clusters under the used similarity measure. From the shown gap curves, 
only TransChisq provides a correct estimate on the true number of clusters, 7.
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To better understand the effects of the proposed data
transformation, we performed a simple simulation study
and presented the results in Additional file 3.

Proposed distance measures (II): a parametric-covariance-
matrix-based measure
Now we consider a data transformation determined by a
parametric covariance matrix:

R = cov(X) = (γij)i,j = 1,..., T, with γij = α > 0 if i = j and γij = β
if i ≠ j,

where X is the data matrix with n observations on the rows
and T variables on the columns, and R is the covariance
matrix of the T variables. The matrix R in this form implies
that the variables have identical variances and covariances
with each other. These properties are biologically reason-
able in that normalized arrays have identical distribu-
tions, hence equal variances. Also all pairs of variables
would exhibit equal covariance (or un-correlated when β
= 0) if each component had been equally important (or
independent) to determine a class.

A data transformation can be defined through the
eigenspace of R. One set of column orthonormal eigen-
vectors, denoted by e1,e2,...,eT, is presented in Additional
file 4. Given a gene expression profile Yi = (Yi(1),..., Yi(T)),
a transformation based on R is

Zi = (Zi1,..., ZiT) = Yi (e1 e2...eT).

A convenient property of this transformation is that each

component has a clear meaning: with e1 = [1/ ,...,1/

]T, e2 = [1/ , -1/ ,0,...,0]T and e3 = [1/ ,1/

,-2/ ,0,...,0]T, for a profile Y = (Y1,..., YT), the com-

ponent associated with e1 is Ye1 = (Y1 + Y2+...+YT)/ ,

which reflects the general expression level; the component

associated with e2 is Ye2 = (Y1-Y2)/ , which reflects the

difference between Y1 and Y2; the component associated

with e3 is Ye3 = (Y1+Y2-2Y3)/ , which reflects the rela-

tionship among Y1, Y2 and Y3.

According to the Poisson model, E(Zit) = E(Yi)et =

(λi(1)θi,..., λi(T)θi)et, Var(Zit) = (λi(1)θi,..., λi(T)θi)  and

Cov(Zit, Zik) = 0 when t ≠ k. Then for a cluster consisting of

tags 1, 2,..., m, we can measure the cluster dispersion by:

We should note the connection between this measure and
the Strans in formula (5). As we discussed above, the com-

ponent associated with e2 is (Y1-Y2)/ . Thus the new

space associated with Strans is equivalent to the space deter-

mined by e2 and all its row-switching transformations. We

can also define a measure similarly through e3 or other

eigenvectors. Strans seems to have the potential of losing

the information carried by e3 and other eigenvectors.

However, applications of TransChisq to a variety of data-
sets suggested that this potential information loss is
minor and can be ignored in most cases in practice. In
fact, the row-switching transformations of e2 make up

most of the information included in e3 and other eigen-

vectors.

A potential shortcoming of Strans_N comes from the fact
that it is defined based on only one set of eigenvectors.
The orthonormal eigenspace of a covariance matrix is not
unique (e.g., the row switching operation can result in a
different set of eigenvectors) and different eigenspaces
may result in different values of Strans_N . Although one can
consider all possible eigenspaces to overcome the limita-
tion of Strans_N, it is not computationally feasible.

Applying Strans_N to several different datasets, we observed
that i) using the eigenvectors e1,e2,...,eT in Additional file
4, Strans_N performs very similarly to Strans and ii) when a
different set of eigenvectors used, the clustering results can
be different, though the difference is not obvious. These
results are not presented in this paper.

Proposed distance measures (III): PCAChisq
For comparison purposes, we applied PCA to transform
the data [19]. PCA is useful to simplify the analysis of a
high dimensional dataset. Recently, PCA has been
explored as a method for clustering gene expression data
[28-33]. But a blind application of PCA in clustering anal-
ysis is dangerous in that PCA chooses principal compo-
nent axes based on the empirical covariance matrix rather
than the class information, and thus it does not necessar-
ily give good clustering results [29,34,35].

In some theoretical [35] and empirical [29] studies, there
have been observations that the first few principal compo-
nents (PCs) in PCA are not always helpful to extract mean-
ingful signals from data. Thus, we considered all PCs in
this study. By substituting the e1 e2...eT in measure (6) by
the eigenvectors from the sample covariance matrix, we
defined a new measure and implemented it in the PCA-
Chisq. The Results section gives examples showing the
positive and negative effects of the PCA transformation. In
general, PCAChisq is difficult to use. Firstly, it is unclear
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what types of variances the principal components are cap-
turing (if it is the within-cluster variance, the principal
components would lead to wrong clustering results).
Next, it is unclear how many principal components
should be used. The optimal number of PCs is unavailable
before we compare the results to the ground truth. To be
brief, PCAChisq is only efficient when the principal com-
ponents happen to match the key features that determine
a cluster.

Clustering analysis of microarray data

We explored the potential application of the proposed
measures to a clustering analysis of microarray data. We
proposed the following restricted normal model for this
purpose. The parameter notations in the Poisson model
were adopted. Given a microarray dataset of expressions
of n genes in T experiments, the expression of gene i in
experiment t, Xi(t), is assumed to be normally distributed

with mean μi(t) = λi(t)θi and variance (t) = kλi(t)θi,

where k is an unknown constant. The derivation of the

maximum likelihood estimates (MLEs) of λi(t) and θi

under the normal model is rather involved. So we bor-
rowed the estimators in formula (2). It can be shown that

i in formula (2) is unbiased and t in formula (2) is

consistent under the restricted normal model [see Addi-

tional file 5]. With i and t available under the normal

model, TransChisq, PCAChisq and PoissonC can be applied.

For both oligonucleotide and cDNA microarray data, it is
widely observed that there is strong dependence of the
variance on the mean: variance increases with mean
[36,37]. So it is reasonable to expect that our restricted
normal model is applicable to many microarray datasets.
One example of this application on the yeast sporulation
dataset has been presented to demonstrate the power of
TransChisq in analyzing microarray data (see the Results
section). We should also note that TransChisq would
deliver less promising results if the assumption on the
relationship between the variance and the mean is seri-
ously violated.
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