
Lawrence Berkeley National Laboratory
Lawrence Berkeley National Laboratory

Title
Goddard rattler-jamming mechanism for quantifying pressure dependence of elastic moduli 
of grain packs

Permalink
https://escholarship.org/uc/item/7vs9k4q2

Author
Pride, Steven R.

Publication Date
2009-05-19
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7vs9k4q2
https://escholarship.org
http://www.cdlib.org/


Acta Mechanica manuscript No.
(will be inserted by the editor)

Steven R. Pride · James G. Berryman

Goddard rattler-jamming mechanism
for quantifying pressure dependence of
elastic moduli of grain packs

January 9, 2009

Abstract An analysis is presented to show how it is possible for unconsol-
idated granular packings to obey overall non-Hertzian pressure dependence
due to the imperfect and random spatial arrangements of the grains in these
packs. With imperfect arrangement, some gaps that remain between grains
can be closed by strains applied to the grain packing. As these gaps are
closed, former rattler grains become jammed and new stress-bearing contacts
are created that increase the elastic stiffness of the packing. By allowing for
such a mechanism, detailed analytical expressions are obtained for increases
in bulk modulus of a random packing of grains with increasing stress and
strain. Only isotropic stress and strain are considered in this analysis. The
model is shown to give a favorable fit to laboratory data on variations in bulk
modulus due to variations in applied pressure for bead packs.
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1 Introduction

Unconsolidated sediments form an important class of earth materials be-
cause their large storage capacity makes them ideal fluid reservoirs. They are
therefore important as repositories for CO2, as oil reservoirs, and as drinking
water aquifers. Seismic monitoring of changes in these reservoirs as fluids
are pumped into or out of them is of importance to society. Furthermore,
unconsolidated ocean-bottom sediments are important for long-range sound
propagation in the ocean, and, therefore, in marine acoustic studies of the
seafloor.

One key to understanding these applications is knowledge of how mod-
uli of the elastic framework change as either the fluid pressure in the pores
changes or the confining pressure acting on the grain pack (e.g., the overbur-
den pressure) changes. It is well established experimentally (e.g., Hardin and
Richart [1], Murphy [2]) that the elastic moduli of grain packs are indepen-
dent of the grain sizes. If all the grains in a pack are uniformly reduced or
expanded in a self-similar fashion, the elastic moduli will not change. Such
scale-invariance means that incremental changes in the elastic moduli will
occur only if the effective-stress increment δP = δPc − αφδPf is non-zero
(Berryman [3], Pride [4]), where Pc is the confining pressure acting on the
pack, Pf is the fluid pressure, and αφ is the porosity effective-stress coeffi-
cient, which is unity if all the grains are made of the same material — as
will be assumed here. Thus, the elastic moduli of grain packs under isotropic
compression only depend on the effective stress combination P = Pc − Pf .

Unconsolidated sediments have distinct properties compared to cemented
sandstones. Perhaps chief among them is that, when stress is applied to
random grain packings, there develops a surprisingly complicated internal
stress distribution that can be described either as “force chains” or “stress
bridges” (e.g., Drescher and de Josselin de Jong [5], Mueth et al. [6] and
Erikson et al. [7]). Such stress distributions can be visualized in photoelastic
experiments using birefringent beads (either plastic or glass). When the beads
become stressed, light passing through them becomes polarized so images can
be made showing which beads in the packing support the greatest stress. In
recent experiments of Majmudar and Behringer [8], it is directly observed
that even in the case of isotropic compression, the internal distribution of
stress is far from uniform and may be considered randomly oriented force
chains, isotropically distributed in all directions.

For random loose packing of grains, as many as 10% of the grains may
be experiencing no stress whatsoever at low strain levels [9]. Such grains are
called “rattlers,” because there remains a certain degree of rattling room
between themselves and their immediate neighbors. As strain is applied to
the packing, the grain-to-grain gap size diminishes until individual rattlers
finally become “jammed” and these new additions to the backbone begin to
accumulate stress. Modeling how the rattlers become jammed with increasing
strain is important for our understanding of the pressure dependence in the
elastic properties of grain packs.

In the present article, we first briefly review the well-know discord be-
tween the Hertzian pressure dependence of the elastic moduli (P 1/3) and
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the pressure dependence often measured in laboratory experiments (closer to
P 1/2). We then follow Goddard [10], and present two mechanisms for how
rattlers become jammed as a function of applied strain and show how to
incorporate such mechanisms of gap closure into an analytical model for the
elastic moduli.

2 Hertzian Contact Mechanics Versus Measured Pressure

Dependence of Actual Grain Packs

Walton [11] derives compact analytical expressions for the drained moduli of
grain packs based on Hertzian contact mechanics [12] between spheres. The
theory assumes that each sphere in the pack has a center that is displac-
ing according to the macroscopic strain field applied to the entire packing.
Furthermore, the coordination number of stress-contributing contacts is not
assumed to evolve with the changing applied strain. For isotropic applied
strain ε (defined positive in compression and such that 3ε corresponds to
overall volumetric strain), the Walton theory [11] predicts that the relation
between the overall pressure in the pack P and strain ε is

P =
(1 − φ0)nw

3π2Bw
ε3/2, (1)

where nw is the coordination number (average number of stress-bearing con-
tacts per sphere), φ0 is the porosity of the random packing at P = 0, and
Bw is a compliance parameter, defined by

Bw =
1

4π

(

1

Gs
+

1

Ks + Gs/3

)

, (2)

where Gs and Ks are the shear and bulk moduli, respectively, of the grain
material. Equation (1) yields a bulk modulus K given by

K ≡ dP

3dε
=

1

2

[

(1 − φ0)nw

3π2Bw

]2/3

P 1/3. (3)

The factor of three in the definition of the bulk modulus follows because of
Walton defining ε to be three times smaller (in 3D) than the total volumetric
strain. Walton’s theory [11] thus predicts a P 1/3 (or “Hertzian”) pressure
dependence for the bulk modulus of the drained frame.

The shear modulus in the Walton [11] model is given as

G = RK, (4)

where the parameter R takes on a value somewhere in the range

3

5
≤ R ≤ 18

5

(

Ks + Gs

3Ks + 2Gs

)

. (5)

The lower limit corresponds to grains so smooth that frictionless tangential
slip always occurs, which prevents shear force from being transmitted at the
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contact. Similarly, the upper limit corresponds to grains so rough that no
slip occurs, resulting in the maximum transmitted shear at a contact.

Acoustic data collected on unconsolidated sand and glass bead packs as
presented in numerous investigations [1,2,13–17] demonstrate that over the
approximate stress range of 10−3 to 10 MPa (corresponding to sediment
overburden depths ranging from 10−1 to 103 m), elastic moduli of the dry
frame vary more rapidly than the Hertzian prediction of P 1/3. At lower levels
of applied pressure (< 10 MPa), power-law pressure-dependence is generally
observed to have an exponent larger than the Hertzian 1/3. However, at
higher ranges of pressure, the pressure dependence in many of these studies
does tend to transition to the idealized Hertzian result.

Hardin and Richart [1] and Domenico [13] obtain an approximate P 1/2

pressure-dependence of the moduli up to their maximum pressures which
were not high enough to see a transition to Hertzian dependence. Makse et

al. [14] also observe a P 1/2 pressure dependence; however, their experiments
are confined to the extremely high pressure range of 50 to 140 MPa. Typically,
glass beads begin to break at pressures in this range, and therefore a different
mechanism – possibly right at the grain-to-grain contact interfaces – may be
necessary to explain their observed pressure dependence.

Focusing only on studies of glass bead samples under isotropic compres-
sion, Kuwano and Jardine [15] measure a steeper pressure dependence of
roughly P 0.6 over the relatively low pressure range from 0.05 to 0.4 MPa.
Murphy [2] also measures a pressure dependence of P 0.6 over 0.2 MPa to 2
MPa of applied pressure before the data trend over to the Hertzian depen-
dence near P = 20 MPa. Zimmer et al. [17] measure an even steeper pressure
dependence of roughly P 0.8 on their glass-bead samples at pressures from
0.1 to 0.4 MPa before the data trend off to the Hertzian dependence when
P > 1 MPa. However, Jia and Mills [16] measure a pressure dependence for
their glass-bead packs that is very close to the Hertzian prediction over the
pressure range from 0.07 to 0.8 MPa.

Clearly, one single universal pressure exponent does not emerge from all
of these experimental studies, even when only glass beads under isotropic
compression are compared. The main differences among these various studies
probably lies in details of how the bead samples were prepared; i.e., in the
nature of the disordered state where each grain pack starts at zero stress and
strain, and the grain surfaces themselves. In the present model, the nature
of the randomness in the pack at zero stress will emerge as a key factor to
explain various pressure dependencies that have been observed.

3 Goddard mechanism for creating force-bearing contacts

To account for the observed non-Hertzian pressure dependence of the moduli
at lower pressures, we follow Goddard [10] and allow for new force-bearing
contacts to be created as strain is applied to the grain packs. Although God-
dard’s ideas [10] have certainly received some attention [18,19,14,17,9,20,
21] in the granular packing literature, the present authors feel more attention
to the details is appropriate, and this is the main contribution that is being
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made here. Goddard [10] was motivated to demonstrate that the elastic mod-
uli increase with pressure as P 1/2, instead of P 1/3 (which is again the result
due to Hertz). Our goal is to explain the range of experimentally observed
exponents on the pressure power law which will require the introduction of
several new ideas and assumptions not made specifically by Goddard [10]. In
the following discussion, we point out when Goddard’s ideas [10] are being
used.

We imagine starting with a diffuse collection of grains occupying random
positions in a region bounded by a surface that can either be expanded
or shrunken. We compress the region isotropically until grain contacts first
percolate across the system. Starting from this point, which corresponds to
a random loose pack in a state of zero strain, any additional compression of
the region will require work to be performed and stress to accumulate.

When the grain-to-grain contacts first percolate, additional compression
will create force at contacts on the backbone only if the grains along this
incipient force chain have no rattling room left to them; i.e., the grains along
the backbone must all be jammed in order for force to build. If there is a gap
between a grain on the backbone and a lateral nearest neighbor, compression
in the direction of the particle chain can result in a local grain rotation until
the gap is closed and contact with the stabilizing lateral neighbor is made.
This idea is the fundamental one presented by Goddard [10]. Alternatively,
the gaps may close, not by grain rotation, but by simple linear strain accu-
mulation. Both mechanisms may be present simultaneously, and both will be
considered here.

Although we use the term “grain rotation” to be consistent with Goddard
[10], it should nevertheless be noted that, when slippage is possible between
grains (due to low grain-to-grain friction, as is allowed in the Walton model),
the final result of the particle movement can be indistinguishable from a
grain rotation, as noted in Figure 1.

To begin quantifying these notions, we define 1
2nN as the number of

force bearing contacts throughout the pack of N grains at any given instant
in strain history. Note that the coordination number n defined in this way
necessarily satisfies 0 ≤ n ≤ 12 in 3D and represents the average number
of force-bearing contacts on each sphere in the pack. A first goal is to de-
termine the increment in the number of force-bearing contacts 1

2Ndn, when
the isotropic strain acting on the pack (defined as positive in compression)
is increased from ε to ε + dε. At ε = 0, we assume that there is a total of
1
2n0N contacts along a percolating backbone capable of bearing force. There
are also a total of Nr unjammed (or “rattler”) grains throughout the pack.
We will assume that after all Nr of the rattlers have made contact with their
lateral neighbors (and thus become jammed), the number of force-bearing
contacts is 1

2n∞N , and it does not continue to increase thereafter with in-
creasing strain.

On average, 1
2 (n∞ − n0)N/Nr force-bearing contacts are created each

time a rattler makes contact with a neighbor. At any point in strain history,
the number of rattlers that have already made contact with a neighbor is
then the total number of force-bearing contacts created by the jamming of
rattlers 1

2 (n−n0)N divided by the number of force-bearing contacts created



6 Pride and Berryman

each time a gap is closed 1
2 (n∞ − n0)N/Nr. So the probability that a given

rattler has not yet made contact with a neighbor is 1− (n− n0)/(n∞ − n0).
We then find that

Ndn = Nr

(

1 − n − n0

n∞ − n0

)

p(u)du
(n∞ − n0)N

Nr
, (6)

or, equivalently,

d(n − n0)/(n∞ − n0)

1 − (n − n0)/(n∞ − n0)
= p(u) du. (7)

Here, p(u)du is the probability that a neighbor was positioned within a dis-
tance u + du of a rattler grain, where u is the amount of displacement un-
dergone by a rattler when the strain level is ε.

The probability density p(u) of gaps to nearest neighbors is unfortunately
not usually measured in numerical studies of random grain packs. We there-
fore assume for the sake of argument that it is a power law given by

p(u) =
mum−1

hm
; 0 < u < h, (8)

where the exponent m must be positive and where h is the initial maximum
gap size to a nearest neighbor. The length h must necessarily be a small
fraction of the grain diameter D if the initial random state has percolating
contacts at ε = 0. The value of the power-law exponent m becomes an ad-
justable parameter that can be used to fit the observed pressure dependence
of the moduli. Physically reasonable values for the m parameter in (8) lie in
the range 0+ < m ≤ 1. Values of m greater than one correspond to larger
gaps being more probable than smaller gaps which we assume is never the
situation in naturally prepared grain packs.

Integrating Eq. (7) using the probability density of Eq. (8) yields

ln

(

1 − n − n0

n∞ − n0

)

= ln

(

n∞ − n

n∞ − n0

)

= −
(u

h

)m

. (9)

To proceed, we need models relating the displacement u to the applied strain
ε.

We consider first the rotation mechanism proposed by Goddard [10] and
depicted in Fig. 1. If D is the grain diameter (assumed the same for all
grains), the local strain ε` = ∆/D along the line segment initially joining the
two sphere centers can be accommodated by a force-free rotation ω if there
are no lateral neighbors to inhibit the rotation, and/or slippage. As the Figure
clearly shows, cosω = (D − ∆)/D = 1 − ε`. For small rotations this yields
ε` = ω2/2 or ω =

√
2ε`. The lateral displacement u created by such rotation

is u = D sin ω = D
√

2ε`. It will be assumed here that the line segments
connecting neighboring sphere centers are isotropically oriented throughout
the pack so that the local strain ε` being accommodated by the rotation is
the overall isotropic strain being applied to the system as a whole; i.e., ε` = ε.

Alternatively, and more simply, one may assume that the gaps are closed
by linear strain accumulation u = Dε. Goddard [10] stated that for this
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ω

∆

before rotation after rotation

u

Fig. 1 Illustrating Goddard’s [10] concept that a rattler grain (shown in grey) may
rotate a lateral distance u in order to accommodate strain ∆/D (where D is grain
diameter) imposed in the direction of the initial line segment connecting adjacent
grain centers unless it is prevented from doing so by the presence of a sphere (not
shown) in the lateral direction. Note that the final configuration could have also
been achieved through particle-particle slippage, assuming the friction between the
grains is very small.

mechanism to explain the observed pressure dependence of the elastic moduli,
special distribution functions must be assumed for the gap sizes. He thus
dismissed the closing of the gaps by linear strain accumulation out of hand.
We will come to somewhat different conclusions on this issue.

Both mechanisms of gap closure can be expressed in the unified expression

u = D(χε)1/χ, (10)

where χ is the closure index and takes the value χ = 1 for linear strain
accumulation, and χ = 2 for grain rotation. Substituting u = D(χε)1/χ into
Eq. (9), we find the desired expression for how the coordination number n(ε)
of force-bearing contacts varies with isotropic strain:

n(ε) = n∞ − (n∞ − n0)e
−αmεm/χ

, (11)

where the parameter αm is defined by

αm =

(

Dχ1/χ

h

)m

. (12)

As required, this expression for n(ε) reduces to n0 at zero strain and n∞ at
very large strain. A transition strain value εt can be identified by

εt = α−χ/m
m , (13)

thereby separating low-strain power-law increases in coordination number

n ∼ n0 + (n∞ − n0)

(

ε

εt

)m/χ

, for
ε

εt
� 1, (14)
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from the high-strain limit

n ∼ n∞, for
ε

εt
� 1, (15)

where coordination number remains constant.
In the next section, we need to know how many new force-bearing contacts

are created in each strain increment, which is

dn

dε
=

(n∞ − n0)mαm

χ
εm/χ−1e−αmεm/χ

. (16)

Note that so long as m/χ < 1, the greatest increase in force-bearing contacts
occurs at small strain ε = 0+, and then progressively decreases as ε increases.
In the following discussion, all explicit dependence on m and χ will appear
in the ratio m/χ. The only term that depends on the separate values of both
m and χ is the parameter αm defined in Eq. (12).

4 Stress and Strain Dependence of Elastic Moduli

The theory of Walton [11] assumes that all force-bearing contacts are already
in place and start accumulating force from ε = 0+. We now show how to
generalize the Walton [11] model to allow for force-bearing contacts that
arrive at various points along the strain history.

We begin by estimating the amount of Hertzian contact force that accu-
mulates with strain at a contact between jammed spheres. Under the assump-
tion that the local strain is given by the overall applied strain, the Walton
[11] result for the Hertzian force at contact c can be written as

Fc =
D2

3πBw
(ε − s)3/2Ic, (17)

where Bw is Walton’s compliance parameter given herein by Eq. (2), D is the
grain diameter, s is the isotropic strain level at which contact c first begins to
accumulate force, and Ic is the unit vector along the line segment connecting
the two sphere centers. Upon putting s = 0, Eq. (17) above is just Eq. (3.7)
from Walton [11]. The assumption that local strain is uniform throughout
the pack is of course not formally correct once stress starts to accumulate
in patches. The main error incurred in making this assumption is that the
distribution function for the local contact forces in the present model will
not be correct, as will be discussed later.

For a mono-disperse packing of spheres, Walton [11] shows that the volume-
averaged stress tensor 〈σij〉 acting throughout a pack of volume V is exactly
related to the contact forces as

〈σij〉 = − D

2V

∑

c

(

Ic
i F c

j + Ic
j F c

i

)

, (18)
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where the sum is over all contacts in the volume. Putting Eq. (17) into Eq.
(18), and replacing the sum over contacts by a number density integral over
contacts, yields

〈σij〉 = − ND3

12πBwV

[

n0ε
3/2〈IiIj + IjIi〉o

+

∫ ε

0

ds (ε − s)3/2 dn

ds
〈IiIj + IjIi〉s

]

. (19)

The brackets 〈 〉s indicate an average over all contacts created in the strain
interval s → s + ds, while 1

2N(dn/ds)ds is the number of new force-bearing
contacts created in the interval s → s + ds with dn/ds given by Eq. (16).

For randomly oriented unit vectors I, one has 〈I2
x〉s = 〈I2

y 〉s = 〈I2
z 〉s =

〈I · I〉s/3 = 1/3, while 〈IxIy〉s = 0, etc., which leads to

〈IiIj + IjIi〉s =
2

3
δij . (20)

Furthermore, at zero strain, the volume occupied by N grains in volume V
is NπD3/6, which allows the zero strain porosity φ0 of the packing to be
defined by

1− φ0 =
NπD3

6V
. (21)

Introducing the overall pressure P as 〈σij〉 = −Pδij , and using Eq. (16) for
dn/ds yields

P =
(1 − φ0)

3π2Bw

[

n0ε
3/2 + (n∞ − n0)

mαm

χ
Jε

]

, (22)

where the strain integral Jε is defined by

Jε =

∫ ε

0

(ε − s)3/2sm/χ−1e−αmsm/χ

ds. (23)

Upon making the substitution of variables x =
√

s, dx = ds/(2
√

s) and
ξ ≡ √

ε, the strain integral Jε becomes

Jε = 2

∫ ξ

0

(ξ2 − x2)3/2x2(m/χ−1)e−αmx2m/χ

dx (24)

= 2

∞
∑

k=0

(−αm)k

k!

∫ ξ

0

(ξ2 − x2)3/2x2(k+1)m/χ−1 dx, (25)

which is a tabulated form (e.g., Gradshteyn and Ryzhik [22]) giving

Jε =

∞
∑

k=0

(−αm)k

k!
B

(

(k + 1)m

χ
,
5

2

)

ε(1+k)m/χ+3/2. (26)

The convention 0! = 1 is being employed, while B(a, b) is the so-called beta
function which is related to the gamma function as B(a, b) = Γ (a)Γ (b)/Γ (a+
b).
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The resulting relationship between pressure and strain is therefore

P =
(1 − φ0)

3π2Bw

{

n0ε
3/2 + (n∞ − n0)

mαm

χ
B

(

m

χ
,
5

2

)

ε3/2+m/χ

×
[

1 +

∞
∑

k=1

(−αm)k

k!
βkεkm/χ

]}

, (27)

where

βk =
B ((k + 1)m/χ, 5/2)

B(m/χ, 5/2)
. (28)

The bulk modulus K ≡ (dP/dε)/3 is finally given by

K =
(1 − φ)κmαmn∞

6π2Bw

(

1 − n0

n∞

)

ε1/2+m/χ

×
[

1 +
n0/n∞

(1 − n0/n∞)

ε−m/χ

κmαm
+

∞
∑

k=1

(

1 +
2km/χ

3 + 2m/χ

)

(−αm)k

k!
βkεkm/χ

]

,(29)

where

κm =
(3 + 2m/χ)

3

m

χ
B

(

m

χ
,
5

2

)

. (30)

Applying the ratio test [23] to the series in both Eqs. (27) and (29), we find
they are convergent since limk→∞ αmεm/χ/k < 1. In numerical practice, how-
ever, when working with a finite number kmax of terms in the series, we find
that the results of the summation are valid only if αmεm/χ/kmax < 1. With
both αm and ε sufficiently large, and kmax sufficiently small, convergence
problems may be encountered; however, for most conditions experimentally
explored, the series produces well-behaved results using just a few terms in
this expansion. Phenomenological approximations that avoid having to work
directly with the series in Eqs. (27) and (29) will be provided later in this
section.

As a consistency check on the above expressions, we investigate the limit
as the exponent m → 0. From Eq. (8) for the probability distribution of
gap sizes, this limit corresponds to lateral gaps being concentrated at u = 0,
which means that starting at zero strain, all force-bearing contacts are in
place. We should therefore expect to recover the Walton [11] results in this
limit. To check satisfaction of this constraint, note that as m → 0, αm ∼ 1
and Γ (m) ∼ 1/m so that B(m/χ, 5/2) ∼ χ/m and βk ∼ 1/(k + 1). Using
these facts in Eq. (27) gives

P =
(1 − φ0)

3π2Bw
ε3/2

[

n0 + (n∞ − n0)

(

1 −
∞
∑

k=1

(−1)(k+1)

(k + 1)!

)]

. (31)

But now, we also have

e−1 =

∞
∑

k=0

(−1)k

k!
=

∞
∑

k=1

(−1)k+1

(k + 1)!
, (32)
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since the first two terms of the expansion for e−1 are 1 and −1, which obvi-
ously cancel each other, so that

P =
(1 − φ0)

[

n∞(1 − e−1) + n0e
−1
]

3π2Bw
ε3/2. (33)

This is the same as Eq. (1) from Walton’s theory [11] if nw = n∞(1− e−1) +
n0e

−1 is specified as the coordination number. Note that the coordination
number given by Eq. (11) when m → 0 is also n∞(1 − e−1) + n0e

−1 which
demonstrates internal consistency of the expressions. The bulk modulus as
m → 0 is thus given by the usual Walton [11] result of Eq. (3) with nw =
n∞(1 − e−1) + n0e

−1.
In the limit that the strain ε → 0, Eq. (23) for the strain integral becomes

Jε ∼ B

(

m

χ
,
5

2

)

ε3/2+m/χ. (34)

From this fact, we obtain the low-strain limit of the functions P (ε) and K(ε)

P ∼ (1 − φ0)n∞ε3/2

3π2Bw

[

(

1 − n0

n∞

)

3κm

3 + 2m/χ

(

ε

εt

)m/χ

+
n0

n∞

]

, (35)

K ∼ (1 − φ0)n∞ε1/2

6π2Bw

[

(

1 − n0

n∞

)

κm

(

ε

εt

)m/χ

+
n0

n∞

]

, (36)

where we have used the definition of the transition strain εt = α
−m/χ
m as

given in Eq. (13). For close packs, one has n0/n∞ → 1 and a classic Hertzian
dependence K ∝ ε1/2 emerges at low strain, which corresponds to a pressure
dependence of K ∝ P 1/3. This dependence was observed in the low-strain ex-
periments of Jia and Mills [16], who carefully compacted their random bead
packs so that n0/n∞ → 1 prior to their measurement of wave speeds. For ran-
dom loose packs (or random very loose packs), we have n0/n∞ → 0 at zero
stress, which results in the non-Hertzian strain dependence K ∝ ε(1+2m/χ)/2,
corresponding to a pressure dependence of K ∝ P (1+2m/χ)/(3+2m/χ). As pre-
sented earlier, several experimental investigations on random loose packs have
found low-strain bulk moduli increasing faster than the Hertzian dependence
and Eq. (36) may help to explain these observations. In particular, note that
when χ = 2 (rotation) and m = 1 in a loose pack or when χ = 1 (linear strain
accumulation) and m = 1/2, we recover the sometimes observed dependence
of K ∝ ε, which is equivalent to K ∝ P 1/2.

In the opposite limit where the strain ε becomes large, Eq. (23) for the
strain integral becomes

Jε ∼ ε3/2

∫ ε

0

sm/χ−1e−αmsm/χ

ds =
χε3/2

mαm

∫ αmεm/χ

0

e−u du ∼ χε3/2

mαm
. (37)

From Eq. (22), we then obtain, for large ε, the results:

P ∼ (1 − φ0)n∞

3π2Bw
ε3/2, (38)

K ∼ (1 − φ0)n∞

6π2Bw
ε1/2, (39)
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which are just Walton’s [11] formulas in Eqs. (1) and (3) with nw = n∞. At
large enough strain, all grains are jammed and the pressure dependence is
ultimately Hertzian, as expected.

With these limits hereby established analytically, we use Eqs. (29) and
(27) in Fig. 2 to plot the bulk modulus of a random loose pack (n0/n∞ = 0),
as a function of pressure. Also displayed in the Figure are the data of Murphy
[2], as well as the Walton prediction [11]. The best fit to the data occurred
using parameter values of χ = 1 (for the linear strain mechanism of gap
closure), m = 1 (a flat distribution for the gaps), and ratio D/h = 300.
These choices correspond to a pressure dependence of K ∝ P 3/5 at low
pressures. The grain diameters in the Murphy [2] experiments were roughly
D = 300 µm, which means that the maximum gap size between rattlers and
their neighbors is on the order of h = 1 µm, which — although small — does
not seem unreasonable. Note that if we had used χ = 2 (for the rotation
mechanism), we would obtain the identical fit to the data so long as m = 2

and, from Eq. (12), D/h =
√

150 ≈ 12.25, corresponding to h ' 24.5 µm. The
difficulty with using m = 2 in Eq. (8) is that this choice corresponds to larger
gaps being more probable than smaller gaps. This does not seem physically
sensible for real grain packs, and therefore leads to the conclusion that the
mechanism of gap closure through simple linear-strain accumulation is more
likely to occur in the grain packs than is the grain-rotation mechanism. More
discussion on this point will be provided with the conclusions.

Finally, we also obtain an approximate version of Eqs. (27) and (29) that
gives both P (ε) and K(ε) without needing to evaluate either series. This
result is obtained by connecting the known low- and high-strain limits found
above with simple smooth (phenomenological) functions of the form:

P (ε)≈ (1 − φ0)n∞ε3/2

3π2Bw

[

n0/n∞

{1 + (ε/εt)a}1/a
+

νP (ε/εt)
m/χ

{

1 + [νP (ε/εt)m/χ]a
}1/a

]

,(40)

K(ε)≈ (1 − φ0)n∞ε1/2

6π2Bw

[

n0/n∞

{1 + (ε/εt)a}1/a
+

νK(ε/εt)
m/χ

{1 + [νK(ε/εt)m/χ]a}1/a

]

,(41)

where

νK = (1 − n0/n∞)κm and νP =
3νK

3 + 2m/χ
. (42)

The parameter a controls the smoothness of the transition from the low-strain
to high-strain limits. Smaller a values correspond to gradual transitions and
larger values to more abrupt transitions. Empirically, we find that using
coefficient a = 3/2 produces a graphical fit to the data in Fig. 2 that is
imperceptibly different from the complete expressions given by Eqs. (27) and
(29).

In the loose-pack limit where n0/n∞ → 0, Eqs. (35) and (36) can be
combined to give a single formula for K(P ) variation at low pressures, while
the Walton [11] result holds for K(P ) (with nw = n∞) at high pressures.
Again, combining these two limits with a simple function of pressure gives:

K(P ) =
(1 − φ0)n∞κmα

−χ/(2m)
m

6π2Bw

(

P

Pt

)1/3
(P/Pt)

γ

{1 + [Ω(P/Pt)γ ]b}1/b
, (43)
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Fig. 2 The bulk modulus of a grain pack as a function of pressure. The dashed
line was obtained using Eqs. (29) and (27) with model parameters χ = 1, m = 1
and D/h = 300, while the solid line is the result of Walton [11] and given by Eq.

(3). These choices correspond to K(P ) ∝ P 3/5 at low pressures. (Note that 1

3
<

1

2
< 3

5
.) Also, see Eqs. (40)–(42), and subsequent discussion. The other parameters

in the model were taken from Murphy [2] to be: Ks = 40.7 GPa, Gs = 29.7 GPa,
φ0 = 0.39, n0 = 0, and n∞ = 12.

where the transition pressure Pt is given by

Pt =
(1 − φ0)n∞

3π2Bw

3κm

3 + 2m/χ
α−3χ/(2m)

m , (44)

the exponent γ is defined

γ =
4m/χ

3(3 + 2m/χ)
, (45)

and the muliplier Ω is defined

Ω =

[

κ2
m(3 + 2m/χ)

3

]1/3

. (46)

Note that 1
3 + γ = 1+2m/χ

3+2m/χ , and then compare to ratios of the exponents in

Eqs. (35) and (36). A transition exponent of b = 2.5 was empirically deter-
mined to give a fit to Murphy’s data [2] in Fig. 2 that is equivalent to Eqs.
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(27) and (29). Equation (43) generalizes and improves upon a result given
by Pride [4], which was based on grain-rotation alone having an exponent of
m = 1 in the probability distribution of gap sizes.

5 Conclusions

Analytical expressions were obtained for average pressure and bulk modulus
variations with isotropic strain in random packings of grains. One key feature
of the model is to allow the gaps between rattlers and jammed grains to close
with increasing strain, thus creating new force-bearing contacts that act to
stiffen the pack. The main approximation used to arrive at the analytical
results is that strain is everywhere uniform throughout the pack. The situ-
ation in real grain packs differs from this since local strain is non-uniform
with least strain present in regions that become jammed early in the strain
history and greatest strain (when measured from the initial state) present
in regions that jam later in the consolidation process. Maximum local strain
in the pack will necessarily occur in the vicinities of the remaining rattler
grains. Incorporating more realistic non-uniform strain distribution into the
formalism presented here is possible, and will become a subject of future
study.

A consequence of the uniform-strain approximation is that, if the local
stress distribution within the packing is known, the greatest stress will ex-
ist in those regions that become jammed earliest in strain history. Because
the average coordination number throughout the pack is known to increase
most rapidly early in strain history, the present model based on uniform
strain predicts that more contacts will have larger stress than lower stress.
Such predictions differ from what is experimentally observed in real grain
packs [6,7,24] with most studies reporting an exponential fall-off in the num-
ber of contacts as a function of the force they carry. Accurate modeling of
the grain-to-grain force partitioning will ultimately require incorporation of
non-uniform strain distributions into a significantly modified version of the
modeling approach presented here.

With this caveat in mind, we have shown nevertheless that creation of
new force-bearing contacts through closure of gaps between grains provides
a very plausible explanation of the pressure dependence of measured bulk
modulus in grain packs being different from the Hertzian prediction. Fur-
thermore, by allowing explicitly for the randomness in the pack with a prob-
ability distribution for the gap sizes to be closed, we can explain results of
various experimental studies that have measured different power-law pressure
dependencies at low strain levels. We also propose physical mechanisms for
why these different dependencies should be present, and why they produce
different power-law behaviors.

Our theory has been successful in fitting the experimental data of Murphy
[2] using reasonable values of three fitting parameters: (1) the power-law
exponent m for the probability of gap sizes [as given by Eq. (8)], (2) the index
χ having value 1 if the mechanism of gap closure is linear strain accumulation
or the value 2 if the mechanism is grain rotation, and (3) the ratio of grain
diameter to maximum gap size D/h. For the gap-size distribution either
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to be flat (m = 1) or to have more small gaps than large gaps (m < 1), we
found it necessary to choose χ = 1 (corresponding to the strain-accumulation
mechanism of gap closure) in order to fit the data. For the present theory to
fit any data for which the moduli increase faster than P 1/2 (such as the data
of Murphy [2] and Kuwano and Jardine [15]) while requiring that m ≤ 1,
we must necessarily use the strain-accumulation mechanism (χ = 1) and not
the grain-rotation mechanism (χ = 2). However, until non-uniform strain is
successfully incorporated into the present formalism, some doubt remains as
to the relative importance of the various force-chain building mechanisms,
especially in light of the great variety of grain-packing scenarios that are
available. The formalism outlined here permits analytical treatment of several
of the most pertinent scenarios.

The present model is based on Hertzian contact mechanics and is formu-
lated to treat packings of identical spheres under isotropic applied strain. An
actual sand pack within the earth may require further physical considera-
tions not yet discussed. A non-uniform grain-size distribution would require
modifying the local displacements of grain centers in Walton’s theory [11].
This modification should be possible, along with allowing for each grain to
have its own distinct elastic modulus, so long as such fluctuations are random
and given by known distribution functions. The Hertzian contact mechanics
acting at each contact requires that the two surfaces be quadratics prior to
the growth of the contact area. This assumption breaks down when one or
both of the grains have edges that are angular in which case non-Hertzian
contact mechanics based on, for example, wedge geometries must be em-
ployed (e.g., Johnson [25]). At large enough strain levels, plastic yielding
and fracture of the grains must be considered. For grains made of common
minerals like quartz and soda-lime glass that have moduli on the order of
a few tens of GPa, fracture begins to occur at pressures of roughly 30 to
50 MPa. Fortunately, the important applications cited in the introduction
occur at much smaller pressures. Generalizing to non-isotropic applied strain
is relatively straightforward and was allowed for by Walton [11]. We did not
consider anisotropic strain states here in order to keep the expressions and
analysis algebraically simple. No mechanism for (likely) hysteretic effects of
strain cycling was included. Some of the experimentally observed hystere-
sis is due to plastic deformation of small asperities on the grain surfaces and
some is due to irreversible changes (e.g., sliding) in the packing arrangement.
Finally, how porosity decreases as strain increases was not explicitly treated.
This mechanism is fairly straightforward to model and will be included in
future work.
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