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Abstract 

Silicon Microelectromechanical (MEMS) resonators are being developed for a wide variety of 

applications including frequency reference applications, positioning systems (gyroscopes) force sensors 

(AFM) and energy harvesters.  In these applications, energy dissipation greatly influences device 

performance.  For example, in a frequency filter the dissipation will determine the bandwidth of the filter.  

Many applications require dissipation to be minimized and all applications require accurate 

characterization of dissipation.  In recent years, advanced modeling techniques for some energy loss 

mechanisms (e.g., thermoelastic dissipation) have been introduced to predict resonator performance based 

on fundamental physics.  The resonator can lose energy through a variety of energy pathways including 

air damping, losses through the anchor, surface dissipation, resistive damping and thermoelastic 

dissipation (TED).  As modeling techniques improve more and more, dissipation mechanisms can be 

predicted a proiri, saving significant cost in fabrication trial and error. TED, air damping and resistive 

damping have accurate models, however, significant work remains to develop accurate general models for 

anchor loss and surface dissipation.   

This work provides a dual approach to MEMS resonator design. For resonators limited by TED, or 

any loss mechanism that can currently be modeled, this work leverages a new bio-inspired design 

optimization approach called binary particle swarm optimization (BPSO) used to optimize energy 

dissipation in MEMS resonators. BPSO produces mask ready designs that minimize damping.  This 

approach was used to optimize low TED resonators and resulted in a measured 33% improvement over 

the previous intuitive design approach.  Secondly, in order to address the lack of an accurate general 

model for anchor loss, this work introduces a novel anchor loss modeling approach independent of 

resonator frequency and shown to be accurate across 2 orders of magnitude in frequency.  The main goal 

of this work is to encourage the MEMS community to move away from a trial and error fabrication 

approach and leverage modern modeling and optimization techniques to design high performance 

resonators. 
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Chapter 1 Introduction 

 

 

Energy Dissipation in Resonators 

 

Nano- and micro-electromechanical Systems (N/MEMS) resonators have a broad set of commercial and 

scientific uses. For commercial applications, these miniaturized resonators are used as gyroscopes in 

automotive safety systems [1, 2] and as timing references and frequency filters in cell phones, computers, 

and video games [3-11]. In research, resonators have been used as highly sensitive chemical and 

biological sensors [12-17] and have been investigated as future low-power replacements of CMOS 

switches [18, 19]. As measurement tools, resonators can detect mass with zeptogram resolution [12, 20, 

and 21], a single electron spin [22], and quantum ground state [23, 24].  Despite their wide range of uses, 

these resonator-based systems all share a common limitation in that their performance is inherently 

limited by the amount of energy lost in the resonator.  To gain an understanding of energy dissipation on 

the dynamics of a resonator, one can imagine a resonator that is driven into steady-state resonance by a 

sinusoidal driving force.  If the force driving the resonator is removed, the amplitude will decay (i.e., 

energy will be dissipated) as shown in Figure 1. 

 

 
Figure 1: Damped oscillation, described by x(t) = cos(ωt)e-δt, where x(t) is the displacement, ω is the angular 

frequency of oscillation, and δ is the damping factor. 

 

 



2 

For systems with minimal damping (δ<<ω), it can be assumed that ω is very close to the undamped 

resonant frequency, ωo. The quality factor, Q, is frequently used to describe the energy loss in the system 

and is defined as  






2
2 o

Lost

Stored

W

W
Q 

                                                                                                                              

(1)

                                                                                                                                  

 

Where WStored is the total energy stored in the resonator, and WLost is the energy lost in one cycle of 

vibration. The vibration amplitude peaks at resonance, and a measure of the width of the peak at half 

maximum amplitude (see Figure 2) is related to the quality factor as follow   







 o

Lost

Stored

W

W
Q 2                                                                                                                                              (2)   

 

Figure 2: Bode diagram of a damped resonator.  Bandwidth (Δω) is the full width at half maximum due to 

damping. 

There are many mechanisms by which a resonator can dissipate energy during vibration. The most 

common are summarized in table 1.  The Q can also be determined by measuring the bandwidth (∆ω) 

from the phase (defined as the frequency range between -45 and -135 degrees.   
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Table 1: Energy dissipation mechanisms in N/MEMS resonators. 

Energy Loss 

Mechanism 

Description 

Thermoelastic Coupled thermomechanics in a resonator causes energy dissipation. Dynamic strain 

gradient generates a temperature gradient. Energy is dissipated when heat flows to 

equilibrate temperature. 
Surface General term describing surface-dependent energy loss. More prevalent in 

nanoscale structures, where surface area to volume ratio is large. 

Landau-Rumer Phonon-phonon coupling that occurs when phonon populations are disturbed from 

equilibrium. Valid when acoustic wavelength is less than phonon mean free path. 

Akhieser Phonon-phonon coupling that occurs when phonon populations are disturbed from 

equilibrium. Valid when acoustic wavelength is greater than phonon mean free 

path. 

Clamping 

/Support 

Acoustic waves travel through the resonator anchor and do not return. 

Fluid Vibrating resonator transfers mechanical energy to surrounding air or liquid 

molecules. 

Resistive Energy lost when resonator is used to drive signal across resistive load. 

 

 

Assuming these energy losses add linearly, which is true for small losses, an equation can be derived 

relating the loss from a single mechanism, described by iQ ,
 
to the overall system loss 

...
surfaceclampingticthermoelasfluid

i
iSystem QQQQQQ

111111
                                                                        (3) 

At atmospheric pressures, fluidic damping is generally the dominant dissipation mechanism. However, 

other dissipation mechanisms will dominate when the resonator is operated in a vacuum or at high 

frequencies.  The focus of this thesis is the theory and current advances in the application of thermoelastic 

dissipation (TED) and anchor loss.  
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Current Knowledge 

Currently, many dissipation mechanisms are well understood and accurate predictive models have 

been developed.  These include thermoelastic, Akhieser, Landau Rumer, fluid and resistive dissipation. 

However a fully general 3D model for clamping and surface dissipation remains an area of significant 

study (Figure 3).  Currently device Q performance is typically analyzed with a trial and error approach. 

This approach is very costly due to steep fabrication costs.  This thesis presents a modern bio-inspired 

design method to minimize TED and presents a novel fully general 3D model for anchor loss. The aim of 

this work is to move beyond trial and error and use advanced design techniques in an effort to alleviate 

pressures on fabrication technologies. 

Chapter 2 discusses theory of thermoelastic dissipation from a fully coupled and weakly coupled 

perspective. Chapter 3 provides background on anchor losses. Chapter 4 focuses on the Particle swarm 

optimization algorithm. Chapter 5 provides an overview of the epi-seal fabrication process. Chapter 6 

outlines the experimental study approach. Chapter 7 discusses experimental results from resonators 

 

Figure 3: Current knowledge of common dissipation mechanisms.  A goal in the MEMS community is to 

move away from the expensive trial and error approach by creating a predictive Q model to model design 

performance. 
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designed to specifically study anchor damping and thermoelastic dissipation.  Chapter 8 includes 

additional studies on both TED and anchor loss and Chapter 9 finishes with conclusions of this work. 

 

Chapter 2 Thermoelastic Dissipation Theory 

Introduction 

Thermoelastic dissipation (TED) describes the process where the mechanical energy of a vibrating 

resonator is irreversibly converted to thermal energy.  A derivation is presented that describes the fully-

coupled thermal-mechanical physics that lead to TED.  An alternative approach, the weakly-coupled 

approach, is also presented in order to illustrate the coupling of a mechanical eigenmode with multiple 

thermal eigenmodes.  In the last section, both the fully-coupled and weakly-coupled modeling approaches 

are utilized to design resonators with low TED.   

Theory 

Clarence Zener contributed much of the early, defining work on thermoelastic dissipation (TED) [25, 

26], which arises from the coupling between mechanical and thermal domains.  The following sentences 

describe the thermal-mechanical coupling process that causes TED.  Thermal expansion, a well-known 

phenomenon, occurs when a change in temperature produces a change in the dimensions of a solid. This 

interaction between mechanical and thermal domains also works in the other direction. That is, a solid 

that is strained will experience a change in temperature. For most materials, including silicon, 

compressive strain will cause the material temperature to increase, while tensile strain will cause 

temperature to decrease. The strain gradient that occurs across a flexing beam gives rise to a temperature 

gradient across the beam. If heat flows to relax the temperature gradient as shown in Figure 4, 

thermoelastic dissipation occurs as the vibration energy is irreversibly converted to heat. Another way to 

state this is that mechanical energy is used to create a temperature gradient, causing an exchange between 

system energy and entropy.  Heat flows to equilibrate the temperature gradient, and the energy stored in 

entropy is irrecoverably lost. 
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Figure 4: Thermal gradients within a flexing beam produce irreversible heat transfer leading to thermoelastic 

dissipation. 

 

 

Numerical Solutions to the Fully-Coupled TED equations 

The full derivations of the coupled equations that govern thermoelastic vibrations in a solid are 

available in other literature [27]. Here, the fundamental principles of this derivation are presented for 3-D 

resonators.  These equations can be numerically solved in 2-D and 3-D by finite-element solvers that are 

capable of solving partial differential equations.  The finite element method is especially useful for 

complex geometries, which are very difficult to model analytically.  

 

 Governing Equations in 3-D 

Mechanics Equation 

To obtain the coupled thermal-mechanical dynamics, the constitutive relation (eq. 7) will be applied 

to the force balance constraints and Fourier’s law of heat transfer, as described in the following section. 

The force (F) on a unit cube of length dx, dy, dz can be related to stress (σ) by 
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dxdydz
zyx

F iii
i 






















 321 

                                                                                                                                (4)  

Here, σij is the stress in the i direction acting on a plane perpendicular to the j axis (where σ11=σxx etc.).  

Thus, cases where i≠j represent shear stress. Eq. 4 can be related to the equation of motion (eq. 5), where 

ρ is the density of the resonator material and ui is the displacement in the i direction. 

dxdydz
zyx

dxdydz
t

u iiii



























 321

2

2 
                                                                                                       (5)  

The stiffness matrices are symmetric assuming there is no rotational acceleration, and a reduced tensor 

notation can be used (sometimes referred to as Voight notation). 

yxxyzxxz

zyyzzzyyxx









2112631135

32234333222111

;

;;;;
                    (6)

  

The constitutive equation describes the impact of temperature on stress in the material and is given by

          ijjiji Tc  )( 23                                                                                                                                       (7)  

Where c is the stiffness matrix, ε is strain, µ and λ are lamè parameters, α is the coefficient of thermal 

expansion, T is temperature, and δij is the Kronecker delta function, which is equal to one when i = j and 

is zero otherwise. In matrix form, equation 7 becomes 
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The force balance equation in the x-direction is  
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The equations for stress (eq. 8) are substituted into the force balance equation (eq. 9) to give 

   
x

T
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                                        (10)  

The strain displacement relationships are represented using reduced tensor notation 
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Substituting displacement for strain and simplifying, the equation of motion in the x-direction (eq. 10) 

becomes 
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                               (12)  

The expressions for the y and z directions are similar and can be found in Table 2.  

Heat Equation 

The last equation to derive is the coupled heat equation.  Fourier’s law in terms of entropy is used to 

derive the heat equation.  

 

TST
2                                                                                                                                                                               (13)  

T is again temperature, S is entropy and κ is thermal conductivity (isotropic). 

The constitutive relation for entropy is  
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T
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v                                                                                                                                                                    (14)  

Tinit is the ambient temperature, and Cv is the heat capacity per unit volume. 

The constitutive relation for entropy in matrix form is 
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The matrix of equation 15 is reduced to 

   T
T

C
S

init

V 32123                                                                                                                         (16)  

Substituting this constitutive relation into Fourier’s Law (eq. 13) gives 

   TT
T

C
T

init

V 2
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




                                                                                                (17)  

Linearizing at the equilibrium temperature Tinit yields 

    023 321

2 
  


termSource

initv TTCT                                                                                    (18)  

This equation is combined with the three mechanics equations and completes the set of coupled equations. 

These equations are shown in Table 2. 
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Table 2: Coupled equations for calculating thermoelastic dissipation. 

Heat equation     023 321
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These four, coupled equations can be solved as an eigenvalue problem to determine the resonant 

frequency and damping of a structure. Finite element software can be used to solve these equations for a 

complex geometry. The generalized eigenvalues, ωi, of these equations are complex.  The imaginary 

components represent the mechanical vibration frequency while the real part provides the rate of decay, δ, 

for an unforced vibration due to thermal coupling.  The quality factor of the resonator is given by dividing 

the real and imaginary components of the eigenvalues as follows: 

 
 
 i

i
iQ





Re

Im

2
                                                                                                                                          (19)  

Plane Stress Approximation 

It can be beneficial to use a plane stress approximation, which allows the coupled equations to be 

solved in two dimensions instead of three.  A summary of the plane stress approximation may be found in 
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supporting literature [28]. The plane stress approximation can be used when the geometry of the device is 

very thin in one dimension relative to the others. 

yxz LLL ,                                                                                                                                                           (20) 

For thin plates, σ3 ,σ4 ,σ5 can be approximated as zero, and the remaining stress terms, σ1 ,σ2 ,σ6, may be 

assumed to have no z dependence. 

0
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

zzz


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                                                                                                                                         (21) 

With these assumptions, similar to the derivation shown above for the 3D case, the coupled equations in 2 

dimensions can be derived.  These equations can be found in supporting literature [29]. 

 

Weakly Coupled Approach 

An alternative to solving the fully coupled equations simultaneously is to solve the mechanical and 

thermal equations separately and use the spatial overlap of the solutions in order to approximate 

thermoelastic coupling. This alternative method utilizes a weakly-coupled approach developed by Zener 

[25,26].  This approach is generalized to apply to an arbitrary geometry.  While Zener’s weakly-coupled 

approach is not as accurate as solving the fully-coupled equations, it offers further insight into 

thermoelastic dynamics, specifically how mechanical modes couple with thermal modes to produce 

damping. The insight gained in the weakly-coupled approach can be used to guide the design of a 

resonator to minimize energy lost from TED. 

Thermal Eigenmodes 

In order to present the weakly-coupled approach to solving thermoelastic dissipation, the concept of 

thermal eigenmodes must be introduced.  Thermal eigenmodes are analogous to mechanical eigenmodes, 
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which are familiar and are commonly studied. Mechanical eigenmodes are derived from the homogeneous 

mechanical equation, which is a form of Newton’s first law. The homogenous mechanical equation is 

given below in equation 22. The 1-D equation is used here for simplicity. 

 



2

2

t

u
                                                                                                                                                         (22)  

The eigenmodes (solutions) of this equation are the familiar mode shapes represented on the left in Figure 

5. These deformations vary as a sinusoid with time.  An analogous approach can be used to solve for 

thermal eigenmodes. Thermal eigenmodes are solved using the homogenous heat equation for conduction. 

t

T
CTk v




2

                                                                                                                                                                      (23)  

Using separation of variables, this can be written as the Helmholtz equation. 

0),,(),,(2  zyxvCzyxvk
ivii

                                                                                      (24)  

  

Where vi is the eigensolution (or eigenmode) and λi is the eigenvalue (also referred to as thermal 

frequency).  These spatially dependent eigensolutions (vi) represent modes for heat transfer across the 

beam.  The modal solutions, vi, are referred to later in this section. Characteristic thermal eigenmodes 

represented in two dimensions are shown on the right in Figure 5. These modes represent a temperature 

distribution that varies as a sinusoid with space. The corresponding material constants used in all 

simulations are shown in Table 3. 
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Figure 5: Uncoupled solutions of the mechanics and heat equations applied to a fixed-fixed beam 400µm by 

12µm and a thickness of 20µm. Left: 2-D eigenmodes of the uncoupled mechanics equation. The color 

represents the axial strain in order to highlight regions of tension and compression. Red indicates 

compression and blue indicates tension. Right: 2-D eigenmodes of the uncoupled heat equation the color 

indicates temperature. The largest temperature gradients are areas that change from red (hot) to blue (cold). 

 

Table 3: Material properties used for all simulations (figures: 4, 6, and 7) 

2D Resonator Units Value 

Material  polysilicon 

Critical Dimensions µm 400x12x20 

Youngs modulus (E) GPa 157 

Density (ρ) Kg/m3 2330 

Specific Heat (Cv) J/m3·K 1.63e6 

Thermal Conductivity (κ) W/m·K 90 

Thermal Expansion Coefficient (α) ppm/K 2.6 

 

 Zener’s Weakly-Coupled Approach 

Zener originally developed general expressions for thermoelastic dissipation in vibrating structures.  

Zener’s early work shows his calculation methods based on fundamental thermodynamic expressions for 
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stored mechanical energy, work, and thermal energy that used coupled thermal-mechanical constitutive 

relations for stress, strain, entropy and temperature [28].  In order to compute these energy expressions for 

a specific resonator, Zener proposed that the strain and temperature solutions from the uncoupled 

dynamical equations (22 and 23) would be accurate. This approach assumes that the thermal-mechanical 

equations are only weakly-coupled.  The thermoelastic quality factor for an isotropic homogenous 

resonator derived by Zener’s technique is 
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 
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                                                                (25)  

Where ωmech is the mechanical resonant frequency and λi is the eigenfrequency of a given thermal mode.  

This equation shows how multiple thermal modes may add up to the damping of a single mechanical 

resonance.  The contribution of a given mode, i, is determined by its weighting function fi.  This 

weighting function is determined by the effective coupling of the mechanical modes to the thermal 

domain (Figure 6). 

 

Figure 6: Thermoelastic damping can be calculated by summing the damping contribution of each thermal 

mode υi.  Normalized strain profile is shown in the ωmech resonance, and a temperature distribution is 

shown in the thermal mode resonances and overall QTED eigenvector. The damping contribution from each 

thermal mode is calculated by each mode’s spatial overlap with the strain profile of ωmech (represented by fi 

in eq. 25). 
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Calculating the Weighting Function 

The relative importance of each thermal mode, represented by the weighting function, fi, in equation 

25, depends on the spatial overlap between the mechanical mode and the thermal modes. The full 

derivation is presented in previous work [30], and the fundamental concepts are presented here.  The rate 

of change of the volumetric strain ( e1 + e2 + e3
) drives the source term in the coupled heat equation 18.  

For a general time harmonic steady state vibration, the source term, q, can be broken up into a spatial term 

and a temporal harmonic term 

       tzyx
t

TTq initinit  sin,,)(



 2323 321

                                           (26)  

The source term in equation 18 can now be written as 

       
componenttemporalcomponentspatial

init tzyxTq  cos,,(  23                                                                                   (27)  

In order to solve equation 18, the spatial component of the heat source term,   zyxq ,, , is projected on 

the thermal modes (vi) of the system as 
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                                                                                                                              (29)  

 

The magnitude of the overlap integrals, ai, depends on the spatial overlap between strain at the 

resonance of the chosen mechanical mode and the corresponding thermal mode (vi).  A 2-dimensional 
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representation of this overlap is shown in Figure 7. Here the stress induced by mechanical resonance 

provides a heat source to the various thermal modes. The magnitude of heat transferred to each mode is 

dependent on how the stress profile maps to the thermal modes. Equation 29 describes this dependence.  

 

Figure 7: The overlap between the spatial distribution of strain represented by ωmech and each thermal 

eigenmodes determines ai.  The larger the overlap, the larger the amount of heat transfer. In the above 

representation, a1 has a larger value than a2 because υ1 has more spatial overlap with the strain, ε(x,y), than 

υ2.   This is an important factor in determining which thermal mode will contribute most to TED in 

equation 26.  The coloring in the thermal modes represents a temperature gradient and coloring on the 

mechanical modes represents the normalized strain profile. For our beam properties a1≈5e-6 and a2≈9e-4. 

 

 

Using the source term (q) and an equation for temperature variation, an expression for entropy and energy 

lost per radian WLost can be derived (see [30] for the derivation).  
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Now equation 30 can be substituted into equation 1 to obtain an equation for Q. 



17 

 




















i

QforformulasZener

i

i

v

init

i

Stored

Stored

Lost

i

c

ET
a

EW

W

W
Q

  
1

'

22

2

2

2

1

2

23

2







                                                   (31) 

This expression shows how Zener’s formula for the coupling of each thermal mode in equation 26 relates 

to the overlap integrals (as represented by ai) in equation 30.  The energy stored in a resonator made of 

linear elastic material is given by 

EWStored                                                                                                                                                                         (32) 

where 
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Here φ is the proportionality constant that relates the energy stored in a resonator and the elastic modulus.  

The value of this constant is determined by the displacement of the vibration equations and the constraint 

equation [30]. 

Now a simple expression can be written for the weighting coefficients by relating the Lamé parameters 

with Young’s modulus and substituting equation 34 and 32 into equation 31, where ν is Poisson’s ratio. 
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Comparing this result with equation 25, fi can be written explicitly.  
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Using Zener’s approach: Thermomechanical Coupling 

In order to use Zener’s approach, the uncoupled heat (eq. 23) and mechanical (eq. 22) equations are 

solved, and the mechanical mode of interest is chosen.  These equations can be solved by commercially 

available finite element solvers for any arbitrary geometry.  The spatial overlap integrals, ai, are computed 

along with the constant parameter φ (eq. 33).  Equation 25 can then be used to calculate the total Q from 

adding all of the contributions for all significant thermal modes.  Zener’s weakly-coupled approach can 

give resonator designers insight into which thermal modes are the most significant and guidance on how 

to engineer around the thermoelastic damping by decoupling these modes.  Contributions from the first 40 

thermal modes in a 400 µm by 12 µm fixed-fixed thermally insulating beam are calculated by this 

method.  The most significant thermal mode at 0.605MHz has a Q of 11,000 (Figure 8). The dominant 

thermal mode couples very strongly with the first mechanical mode. By placing 60 µm slots that block 

heat transfer in this dominant thermal mode the quality factor can be increased by a factor of 4.   
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Figure 8: Qi values for thermal modes in a fixed-fixed, thermally insulated beam 12 µm wide and 400 µm 

long.  The x-axis is the frequency of each thermal mode λi, and the y-axis is fiQi
-1from equation 25.  The 

contribution from each mode is then summed to give an overall QTED value.  The top plot shows the solid 

beam thermal modes and mechanical resonance.  One thermal mode at 0.63 MHz is the primary contributor 

to energy loss.  The bottom plot shows the same beam with 1 µm x 60 µm slits along the beam length, where 

the energy loss from TED is decreased and distributed among many thermal eigenmodes.  The dominant 

thermal modes are shown as inset plots.  Both plots show the damping contribution from the first 40 thermal 

eigenmodes. Top: y-axis scale is 10-4 Bottom: y-axis scale 10-6. 

 

 

By suppressing the dominant thermal modes, designers are able to greatly improve quality factor.  As 

shown in Figure 8, the slits effectively decouple the mechanical mode from the thermal mode at 0.605 

MHz, and raise the Q from 10,400 to 40,000. It is worth noting that many additional modes are coupled in 

the design with slits, although the coupling is much weaker than the case of the solid beam.  



20 

Summary 

This chapter presented two methods to evaluate and optimize N/MEMS structures for low 

thermoelastic damping.  A derivation was given for the fully-coupled thermal-mechanical equations.  

Additionally, the weakly-coupled approach originally developed by Zener was reviewed, and a 

description of finite element based approaches to solve for TED in resonators with arbitrary geometry has 

been given.  The weakly-coupled approach enables a great deal of insight into the energy loss mechanism.  

The spatial overlap between the strain profile of the mechanical mode and the temperature profile of the 

thermal modes has been shown to be a key factor in calculating thermoelastic dissipation. The technique 

of overlap integrals allows engineers to optimize geometries by decreasing the spatial overlap between the 

thermal and mechanical modes in order to significantly increase the quality factor.  
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Chapter 3 Anchor Loss 

Introduction 

The physical concept describing clamping loss is relatively simple.  Clamping loss is caused by 

acoustic waves propagating in the substrate that carry energy away from the resonator.  These waves are 

generated by the forces at the region of clamping, caused by the resonator’s harmonic motion.  Despite 

the relatively simple concept, clamping loss models in low frequency devices to date lack sufficient 

experimental verification.  Fabrication inconsistencies and fabrication-induced stresses are possibly 

causing the current conflicting experimental results. Our modified anchor loss model identifies intrinsic 

stress as a critical variable that may provide a previously missing link enabling the accuracy of this 

approach. 

In order to gain a fundamental understanding of how anchor loss can be modeled it is useful to review 

how damping can be modeled mathematically.  Generally we use a lumped element model to describe 

damping such as the viscous model (Figure 9).  In the common viscous model damping is described as a 

force that is proportional to velocity.  However damping can equivalently be described using an anelastic 

model which models the loss as a complex spring constant.  The two models are equivalent as we can 

define damping constant c to be proportional to K and inversely proportional to ω.  The anelastic damping 

model is especially useful to describe the phase relationship between x and Fs.  This relationship is 

important so we can accurately describe the phase relationship between v and Fs which will determine our 

anchor loss using this direct modeling approach.   
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Figure 9: Anelastic damping model Vs Viscous damping. Damping in the anelastic model is described by a lag 

between the displacement x, and the restoring force, Fs .Both are mathematically equivalent however the 

anelastic model is useful to show how dissipation can change the phase relationship between Fs, x and v. 

 

Motivation 

Over the past two decades, high performance MEMS gyroscopes have been developed and 

successfully deployed in many military and commercial applications, including aeronautics and ballistics.  

While these MEMS gyroscopes have been very successful, the performance of these gyroscopes is still 

significantly inferior to the larger macroscopic gyroscopes.  Many of these MEMs gyroscopes are 

operated at low frequencies and there is strong experimental evidence that suggests clamping loss is 

causing this performance degradation [31]. 

Current Method 

The current approach to modeling anchor damping involves the use of a perfectly matched layer 

(PML) [32] to make the problem tractable when using the finite element method.  The PML method 

makes the assumption that all energy that reaches the PML is irrecoverably lost (Figure 10).  In order to 
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keep the simulation volume small enough to make finite element simulations tractable, the PML is placed 

within the thickness of a wafer.  The PML assumption is valid at high frequency (100s MHz) devices 

because the acoustic wavelength is small.  For low frequency devices however, the acoustic wavelength 

of the resonator is greater than the thickness of the wafer. As such, the PML may not accurately model the 

energy loss because energy that reaches the PML may not actually be lost.  This inaccurate assumption is 

likely the reason that current clamping models can only capture general trends of Q but are not generally 

accurate. The work proposed here is to create and verify quantitatively accurate Q models for clamping.   

  F=16 MHz	

λ≈500 µm	

F=489.27 MHz	

λ≈16 µm	

  Perfectly	Matched	Layer	

 

Figure 10:  (left) COMSOL simulation showing that perfectly matched layer is sufficient for high frequency 

devices, whereas (right) perfectly matched layer is insufficient for low frequency devices because the 

wavelength is larger than the substrate thickness. 

 

Proposed 3D Method 

In order to model clamping loss, an intuitive modeling approach is adopted that involves calculating 

the stress and velocity fields at the anchor point and calculating the power loss per cycle. From the ratio 

of this power loss to the stored energy in the resonator, the quality factor can be calculated using the 

following equations: 




U
QAnchor


                                                                                                                                     (36) 
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Where QAnchor is the anchor limited quality factor, U is strain energy stored in the resonator, П is the 

average power lost to the substrate, σ is stress, ε is strain and v is the velocity field at the anchor 

attachment point. 

This approach is general and is directly related to a power calculation based on the force and velocity 

at the anchor point.  The resonator dynamics are modeled utilizing a frequency response function, which 

is forced by a harmonic boundary load representing the actuation force (Figure 11).  The high mesh 

density and accurate material parameters are crucial to obtaining accurate results with this approach.  

Intrinsic stress is included in the model as the calculated clamping loss and the resulting quality factor is 

highly dependent on this value.  QAnchor can vary by orders of magnitude with changes in intrinsic stress, 

so knowledge of this parameter is critical to calculate accurate results. The full physics behind this 

modeling result still remains to be determined.  In simulation, this intrinsic stress amplifies the anelastic 

loss term within the stiffness matrix C of the governing equation. 

For our resonators, a value of 0.3 MPa compressive stress was estimated from knowledge of the 

fabrication process. The fabrication process used in this investigation is described in Chapter 5.  In order 

for the solution to converge, a damping term is included.  The damping term is based on TED, the only 

other relevant damping mechanism in the experimental devices used in this work.  TED is also modeled 

using the Comsol multiphysics package. 

In order to experimentally validate this model, ring resonators were fabricated using the Stanford 

vacuum epi-seal process [33].  The anchor structure design parallels the anchor structures of experimental 

gyroscopes, which often utilize a wine glass resonator mode attached to the substrate with a center post.  

Rings were scaled with various diameters in order to validate our modeling approach across a wide 

frequency range (200 kHz – 13 MHz) Figure 11 [34]. 
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Figure 11: A) Scaled wineglass ring resonators. B) Frequency response model utilizing a boundary load and 

quarter symmetry C) Mesh distribution. High density mesh required at anchor point. D) Power loss is 

modeled by calculating the stress and velocity distribution at the anchor point. E) SEM pictures of the top of 

a 226 µm ring and a cross-section of the same device. 

Advanced Theoretical Analysis 

Upon analyzing equation 37, it becomes clear that for an undamped resonator the stress field at the 

anchor point will always be 90 degrees out of phase with the velocity and equation 37 representing anchor 

loss is zero. However, considering the full 3D governing equation with damping included as φ (Equation 

39) the damping present at the anchor surface changes the phase relationship between Fs and v. Equation 

40 shows how the dissipation ϕ is incorporated into the stiffness matrix C it can be seen that damping in 

the anelastic formulation [34] (Figure 9) will cause a phase shift and the stress field and the velocity to no 

longer be out of phase by 90 degrees and equation 37 (i.e. anchor loss) will become nonzero. 
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   The phase lag φ is directly related to the dissipation (QInternal) at that point in the resonator Figure 12. 

This relation is valid at each local element where dissipation is present. 

 

Figure 12: Phase lag φ relation to QInternal This represents the local phase offset between σ and v. This provides 

a theoretical explanation for why anchor loss is nonzero. From equation 37. 

 

Now if we consider a simple harmonic oscillator, we can use the anelastic damping formulation (i.e., 

a complex spring constant). First we define FS, x and v. 
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Now revisiting equation 37,  
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Given these relations an overall expression for Q can be reformulated assuming only anchor, TED 

and Akhieser is present. This simplification is used here as these internal dissipation mechanisms can be 

easily defined at the anchor surface .    

AkhieserTEDAnchorTotal
QQQQ

1111
                                                                                                        (47) 

 InternalQ

AkhieserTED

Internal

oS

Total
QQU

Q
vF

Q

11

1

1



                                                                     (48) 

                                                   











AkhieserTED

Anchor

Total
QQQ

111
                                                                                                        (49) 

  

1
U

vF
os

Anchor


                                            (50)                                                                                                                                                                                                                                                                                                                     

This theoretical analysis presents a plausibility argument for how clamping loss could actually be an 

effect that magnifies other energy dissipation mechanisms, rather than a standalone mechanism itself.  

While this hypothesis is not fully proven, results in Chapter 8 will discuss some experimental evidence 

for this theory exploring the temperature dependence of anchor loss, where prior theories assert no 

temperature dependence for anchor loss. 
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Chapter 4 Optimization 

Introduction 

Historically MEMS device design has been limited primarily by available fabrication technologies, 

such as the achievable layer thickness for a given material stress or the minimum feature sizes that can be 

patterned. However, since MEMS research first began in earnest in 1982 [35] advancements in reliable, 

high aspect ratio [36] fabrication processes has allowed an ever increasing design space. For an increasing 

number of MEMS devices, there are opportunities to leverage design optimization as a low cost 

alternative to improve device performance within current MEMS fabrication processes.  The increasing 

accuracy of modern multiphysics simulations [37,38] allows device performance in many cases can be 

predicted a priori. Through accurate simulation and design optimization, MEMS designers can improve 

device performance while saving time and costs by not relying on trial and error. This savings is 

achievable by decreasing the number of fabrication runs.    

Background 

The rapidly expanding field of design optimization has interesting theoretical implications as well as 

practical relevance in manufacturing and innovative design.  Two distinct approaches to optimization 

have become prevalent, gradient based optimization schemes and non-gradient based optimization 

methods.  The more traditional optimization schemes can be classified as gradient-based optimization.  

These include the density SIMP approach [39], the level set approach [40], and the method of moving 

asymptotes (MMA) [41]. All of these methods rely on calculating the gradient of the objective function 

along different search directions.  In many problems, such as structural topology and heat transfer, these 

techniques are effective and efficient and are the ideal choice for optimization method.  However, these 

methods are not as computationally efficient in non-self-adjoint and non-symmetric systems where 
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significant computational effort is required to calculate gradients in each search direction and when the 

objective function is non-smooth.  For these systems, non-gradient based approaches are often effective.  

Non-gradient-based optimization includes genetic algorithms (GAs) [42], ant colonies [43], simulated 

annealing [44] and particle swarm optimization [45].  These methods have been recently developed and 

have proven effective in many complex multidimensional problems. 

Optimization for Low TED Resonators 

For the specific investigation of optimizing TED, a particle swarm optimization was the method of 

choice.  The particle swarm optimization was chosen for several reasons.  First, the complex coupled 

physics involved in calculating TED form a non-self-adjoint, non-symmetric system where gradient-based 

optimization methods are more difficult to implement because the gradient is not continuous in every 

direction. .  Also, the particle swarm optimization has all candidate designs available at the beginning of 

each iteration, which opens the possibility of parallel computation, a feature recently added to commercial 

multiphysics finite element software.  In addition, particle swarm optimization has the advantage of very 

few tunable parameters when compared to other non-gradient-based approaches (GAs, simulated 

annealing etc), which, simplifies the process of tuning convergence. 
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Intuitive Low TED Design Approach 

A standard intuitive design approach has previously been applied to beams in an effort to minimize 

TED  [46].  This approach used the fully coupled thermoelastic governing equations and FEM to simulate 

thermoelastic dissipation in a beam resonating in the first mechanical mode.  The optimization consisted 

of varying the position of two slits in order to determine the optimal location to reduce thermoelastic 

dissipation (Figure 13).  The governing equations for TED form a coupled PDE.  These coupled PDEs are 

solved as an eigenvalue problem, with the coupled equations shown in Table 2.  The eigensolutions of 

these coupled PDEs result in a complex eigenfrequency where the imaginary part of the eigenfrequency 

determines the damped resonant frequency, and the real part represents the relative thermoelastic loss.  

This coupled-simulation method has been verified with experimental results [46] and is leveraged in this 

work as part of the design optimization process.  The material properties used in simulations can be found 

in Table 3. 

 

 

Figure 13: Previous state of the art intuitive design approach, where open slots are placed in the beam to 

affect TED. The temperature gradient across beam is shown.  Numerical temperature is not shown 

because the magnitude of the temperature depends on the forcing function, which is not included in this 

eigenvalue analysis.  This is a 12 µm by 400 µm clamped-clamped silicon beam.  The position of the 1 μm 

by 40 μm slot was varied along the beam in search of a high quality factor. A Q value of 17,600 was 

achieved with the slot edge 2 µm from the anchor, as compared to a minimum Q of ~10,000 for a solid 

beam. 

 

Particle Swarm Optimization 

A common analogy used to conceptualize the optimization technique is to compare it to a swarm of 

bees (agents) searching a 2D field for the position with the highest concentration of flowers (Figure 14).  

The percent concentration of flowers represents the fitness value (Q limited by thermoelastic dissipation, 

QTED) at each location.  Each bee remembers only the location of its own personal best and the location of 
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the global best concentration of flowers that has been investigated by the swarm.  At each time step, the 

velocity of each bee is altered to steer it toward its own personal best and toward the location of the global 

best of the entire swarm.  The bees should eventually converge on the highest concentration of flowers in 

the field.  A key aspect of this technique is that a very large design space can be efficiently searched, 

resulting in a solution that, while not mathematically guaranteed to be the global optimum, tends to 

approach this optimum. 

 

Figure 14: Swarm of bees (agents) searching a 2D field to find the location of the highest concentration of 

flowers.  Each bee is accelerated to its own personal best and global best of the swarm characterized by the 

highest flower concentration (FLWR).  Adapted from [46].     

Binary BPSO 

A binary implementation of PSO is used in this investigation.  Binary Particle Swarm Optimization 

(BPSO) is used because the size of the smallest element in the resonator is tunable, and the nature of 

BPSO permits a wide variety of designs, including non-intuitive ones, to be explored. BPSO formulates 

each design as a binary string that represents the presence or absence of material, where the length of the 

string is equal to the number of elements in the design space. For example a 12 m x 400 m beam shape 

(in 2-D, extruded into the third dimension) with 4 m x 4 m elements would have a total of 300 

elements, where each element could either represent material or absence of material. The design space is 

therefore all possible binary combinations of the string.  Velocity in BPSO becomes the probability that 



32 

an element of the design will be present or absent.  A concise explanation of the BPSO is available in 

previous work [47].  The equations used for updating velocity in binary space are described below. 

The binary matrix Xmn,t-1 contains the variables defining the nth pixel of the mth agent’s design at 

iteration t-1, equation (51). 
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The velocity is updated according to equation (52) 
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 In the above equation, c1 and c2 are tunable weighting coefficients that determine the relative 

importance of the global best and the personal best, respectively.  In this investigation we set c1 and c2 to 

1.  These weightings were experimentally determined to allow for adequate local exploration while also 

ensuring convergence in under 200 iterations.  Convergence was defined in this case as occurring when 

the standard deviation of the objective value of the 20 agents falls within 6% of the current global 

optimum.  This convergence criteria is chosen to provide reasonable convergence time while exploring a 

reasonable design space.  A smaller standard deviation is difficult since inherently there is ~1% variance 

in the calculated QTED, even when the same design is simulated twice.  η1 and η2 are random variables (0-

1) computed at each time step to increase variability.  There are two acceleration terms in this equation: 

one pulls the current bit n toward the global best value, (gmn,t-1), while the other pulls the current bit to the 

personal best (pmn,t-1).  The possible values for each term are 1, 0, -1 as shown in equation 53. 
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In (2), an increase in vmn,t increases the probability of the nth bit becoming 1, while a decrease in vmn,t 

decreases this probability.  Equation 54 converts the real valued vmn,t to a sigmoidal function S(vmn,t) that is 

compared with a random number rmn,t(0-1), generated at each time step for each bit, in order to determine 

the actual value of Xmn,t at each time step. 
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Binary BPSO Applied to Resonator Design 

In order to apply BPSO to resonator design, a binary matrix of specified dimensions is mapped to a 

beam geometry for TED analysis in COMSOL® (Figure 15).  The optimization was computed in Matlab 

and interfaced with the COMSOL® simulation for the fitness value (QTED) calculation.  The beam 

dimensions are set to 12 μm by 400 μm and beam half symmetry is used to reduce the computation time.  

The size of each binary pixel is set to 10 μm by 2 μm in the low-resolution optimization and is set to 2.5 

μm by 1.71 μm in the high-resolution optimization. 

A lower limit of 0.5 MHz was applied in order to restrict the optimization in the frequency domain.  

This limit was introduced because as material is removed the effective width of the resonator is decreased 

and the frequency drops.  It is straightforward to design a high QTED resonator at very low frequency, the 

novelty in this approach is to optimize QTED at an arbitrary frequency.  A fitness value of 0 was assigned 

to any resonator design that fell below this value.  This restriction allows resonator designers to choose a 

desired resonant frequency and optimize QTED at that frequency.  

In addition to these design constraints, checkerboard designs, (two diagonally adjacent solid bits) 

were thrown out by restarting the stochastic design selection when a checkerboard design was 

encountered.  These designs result in singularities, which cause simulation errors.  Additionally, the 

corner connections would be very difficult to fabricate. 
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Figure 15: BPSO binary mapping translated to tuning fork resonator design. 

 

Simulation Results 

Two separate trial were simulated to test the effectiveness of the BPSO algorithm. First, The “BPSO 

Low Res” was performed for three trials, with each trial comprising 150 iterations of 20 agents (Figure 

16).  The “BPSO low Res”  consists of a 400x12x20 µm resonator composed of 10x2 µm  bits.  Random 

starting locations were generated, and the same starting locations were used for each trial.  An optimized 

geometry with a QTED of 43,000 was established (“BPSO Low Res”).  Experimental results will be needed 

to confirm there is no influence from other loss mechanisms that cannot at present be accurately modeled.  

The optimum QTED of 43,000 was only a slight improvement over the best intuitive design.  The best 

intuitive design was also used as a starting location in an additional low-resolution optimization in order 

to explore the possibility of combined intuitive and algorithmic optimization.  This additional 

optimization resulted in a slightly higher QTED of 45,000. 
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Figure 16: Iteration vs. global best quality factor. Three Optimization trials are shown with 20 agents run 

for 150 iterations with resolution of 10 μm by 2 μm. All trials are comparable to the best intuitive design. 

The best geometry achieves Q ≈ 43,000. If we seed this optimization with the best intuitive design this 

optimization achieves Q ≈ 45,000. 

Next, a high-resolution optimization was performed with each bit set to 2.5 μm by 1.71 μm in an attempt 

to further increase QTED.  This resolution was chosen because it is reasonably achievable by standard 

micromachining processes.  The reduced bit size allowed much more freedom in the design.  However 

with an extremely large solution space of 2560, exploration is very computationally intensive.   

The intuitive design was again used as a starting location to narrow the search, enabling intuition and 

design optimization to complement each other.  This high resolution optimization was run for three trials 

with the best design achieving a QTED of 56,000, shown in Figure 17.  The BPSO is able to find optimized 

solutions that achieve significant improvement in QTED with a relatively insignificant change in resonant 

frequency. All optimizations are compared in Figure 18.  In order to increase QTED to 56,000 by scaling 

frequency of a solid beam of fixed width to avoid thermomechanical coupling, the frequency would need 

to be decreased from 0.5 MHz to below 50 KHz or increased to at least 6.5MHz. In order to achieve these 

frequencies with a solid beam, the width would need to be increased or decreased by over a factor of 10 to 

1.2 µm or 120 µm which creates significant fabrication challenges due to either resolution limits or ability 

to release wide devices.   
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Figure 17:  Iteration vs. global best quality factor for the high resolution optimization. Three 

optimization trials are shown, with each trial consisting of 20 agents run for 150 iterations with resolution 

of 2.5 μm by 1.7 μm. The best intuitive design is used as a starting location for one of the agents.  This 

optimization increases QTED by 40% to 56,000. 

 

Figure 18: The simulated QTED using BPSO is 40% higher than the previous best intuitive design.    The 

intuitive design involved parametrically sweeping the location of slots cut into the beam along the beam 

length [24].  The best known intuitive design followed the intuitive optimization by placing slots in regions of 

high thermal-mechanical coupling. Designs from BPSO optimization have decoupled areas with high strain 

from the beams various thermal eigenmodes resulting in a highly non-intuitive design. 
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Analysis of Optimized Thermal Eigenmodes 

While the exact designs discovered by these initial optimizations have not been experimentally verified, 

the method for simulating TED has been confirmed through experiments [46].  The fully-coupled 

simulations provide very accurate QTED, however this method does not provide the same design insight as 

accomplished by a weakly coupled approach introduced in Chapter 2.  Using this approach, the uncoupled 

thermal and mechanical equations are solved separately.   

Reintroducing from chapter 2, the damping of the beam can  be estimated using the overlap integrals 

of each thermal eigenmode and the chosen mechanical eigenmode [29].  Zener derived a general 

expression for how each thermal mode contributes to the overall QTED 
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where ωmech is the mechanical resonant frequency, λi is the eigenfrequency of each thermal mode.  Qi
-1 is 

the damping contribution of each thermal mode in the case of maximum thermomechanical coupling.  

This equation shows how multiple thermal modes add together to the overall QTED.  The relative 

importance of each thermal eigenmode can now be analyzed and our optimization can be compared with 

the intuitive design.  As can be seen in Figure 19, the design optimization algorithm discovered a geometry 

that decouples the mechanical eigenmode and the thermal eigenmodes around 3.36 MHz, which dominate 

energy loss in the intuitive design.  The exact sequence of holes also prevents the coupling between the 

other adjacent thermal modes and spatially decouples the strain gradient from the thermal modes.  All 

thermal mode coupling has been suppressed except for two thermal modes that couple with stress at the 

anchor point. 
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Figure 19: Comparison of the intuitive design approach (top) to the BPSO optimization (bottom) with low- 

and high-resolution optimizations.  Thermal eigenmode stem plots are shown on the left, and resonator 

topologies are shown on the right.  Stem plots show the contribution of each thermal eigenmode to Q, as 

determined by the weighting function in equation 7. Q values are simulated for the first 400 thermal modes in 

a fixed-fixed thermally insulated beam of dimensions 400 µm by 12 μm. Inset plots show dominant thermal 

modes. The top plot shows the design before optimization and the bottom plot shows the same beam after 

BPSO optimization where all thermal mode coupling has been suppressed except for the coupling at the 

anchor point. 

 

Disscussion 

Intuitive Design Approach 

Intuitive knowledge of TED has enabled slotted resonators to significantly decouple the thermal and 

mechanical eigenmodes and increase QTED as much as a factor of four when compared with a solid beam 

[29].  However, if this approach is repeated by manually trying to decouple the dominant thermal 

eigenmodes sequentially, the quality factor does not necessarily increase.  In repeating the intuitive 

optimization, the remaining dominant thermal eigenmode can be effectively decoupled; however, the 

design changes will also affect the coupling of the other thermal eigenmodes.  For example if we take the 

best intuitive design and place a hole directly blocking the heat flow of the dominant mode at 3.36MHz 

(Figure 20) QTED actually decreases slightly to 39,000.  We can analyze this by using Zener’s weakly 

coupled approach.  It can be seen that the added holes effectively decouple the 3.36MHz thermal mode, 
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but new higher and lower frequency modes now contribute significantly to the damping and actually 

lower the overall QTED. 

 

Figure 20: Zener’s weakly coupled approach. The contribution from each thermal mode can be quantified 

and analyzed.  It becomes increasingly complex to try to decouple each dominant thermal modes manually, 

since with each change in geometry the coupling of the other thermal modes to the mechanical mode will 

change as well which may lead to an increase or decrease in QTED. This example shows QTED degrades slightly 

when additional slots are added to “block” heat flow. 

 

Method Evaluation 

This method provides a significant improvement over the previous intuitive design approach and 

actually works best in concert with the intuitive approach by using intuitive designs as starting locations 

for the searches.  While BPSO does not guarantee a global optimum, it does allow for significant 

flexibility in the design space.  This flexibility enables the optimizations to be tuned to match exact 

manufacturing capabilities.  As can be seen from the differences in the low resolution optimization and 

the high resolution optimization, the optimized design and QTED are resolution dependent.  The resolution 

described here is the resolution selected for the BPSO elements, not the mesh density of the finite 

elements; the meshing of these designs is fine enough that QTED is not dependent upon mesh size.  The 

resolution dependence is to be expected since the design space is much larger in the high resolution 
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optimization.  Better exploration of the design space can be accomplished with parallelization or with a 

more efficient alternative method. 

Conclusion 

This work has introduced BPSO optimization of QTED in MEMS resonators, representing the first use of 

topological design optimization to minimize energy dissipation in MEMS.   The complexity involved in 

solving the coupling between the structural and thermal domains makes optimization of QTED an ideal 

candidate for non-gradient based optimization.  Simulations show optimized designs having a TED-

limited Q 40% greater than previous state of the art without significantly affecting the mechanical 

resonant frequency.  Due to the large solution space available, a variety of solutions can be used to 

maximize the quality factor.  The flexibility of topological optimization enables discovery of non-intuitive 

designs and flexibility to dictate manufacturing resolution during the design process.  As such, the BPSO 

technique has the potential to optimize many other N/MEMS devices due to its simplicity and versatility.  

Full experimental results with fabricated devices is presented in Chapter 7.   
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Chapter 5 Fabrication 

Introduction 

Design optimization is an interesting intellectual exercise in its own right.  However, if designs 

cannot be reliably manufactured to meet this optimized performance the commercial application of this 

technique is limited.  In this work we are focused on establishing an optimization technique that is 

flexible and results in fabrication ready design masks. 

Historically, MEMS research has focused on improving the fabrication process for each device. 

Improvements in fabrication often result in an improvement in yield, reliability and performance.  

Different devices often have a unique process flow and unique design constraints.  In this work, we are 

interested in leveraging simulation and optimization as opposed to improved fabrication capabilities to 

boost performance.  We have a dual pursuit. First our goal is to develop a practical design optimization 

technique for high Q, low TED resonators. Secondly we aim to improve fundamental understanding and 

accurate modeling of MEMS resonator dissipation. In order to satisfy these goals we require a stable, high 

yield fabrication process, due to its many strengths the Stanford epi-seal process [48, 49] is used in this 

investigation. 

Stanford Epi-seal MEMS 

The epi-seal encapsulation process is a wafer-level encapsulation for silicon structures released and 

sealed in vacuum, without a surface coating of silicon dioxide, which is inherently present on devices 

exposed to the ambient.  This efficient high yield process is currently being used at SiTime, a company 

focused on commercialization of silicon resonators for timing [50]. 
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Epi-seal Process Flow 

The epi-seal process is shown in Figure 21. The process proceeds as follows A) silicon on oxide (SOI) 

wafer is etched using Deep Reactive Ion Etching (DRIE) to define the device layer.  B) A sacrificial oxide 

is deposited to fill the trenches and to be used as a top spacer layer. C) Contacts are etched in the oxide 

and a silicon layer is deposited in an epitaxial reactor. Epitaxial silicon is grown on any exposed device 

layer and polysilicon is deposited on any oxide surface.  Subsequently vents are etched in this cap D) HF 

vapor is used to etch the oxide around the vents and release the device.  A high temperature bake is used 

to remove native oxide and a second layer of epitaxial silicon is deposited to seal the device.  E) 

Aluminum is then deposited to define the electrical contacts.  The process has design rules as follows. A 

top view SEM of the device layer of a tuning fork resonator after the first DRIE (Step A) is shown in 

Figure 22[51]. 

 

 

 

Figure 21: Epi-seal Fabrication sequence A) silicon on oxide (SOI) wafer is etched using Deep Reactive Ion 

Etching (DRIE) to define the device layer.  B) A sacrificial oxide is deposited to fill the trenches and to be 

used as a top spacer layer. C) Contacts are etched in the oxide and a silicon layer is deposited in an epitaxial 

reactor. Epitaxial silicon is grown on any exposed device layer and polysilicon is deposited on any oxide 

surface.  Subsequently vents are etched in this cap  D) HF vapor is used to etch the oxide around the vents 

and release the device.  A high temperature bake is used to remove native oxide and a second layer of 

epitaxial silicon is deposited to seal the device.  E) Aluminum is then deposited to define the electrical 

contacts. 

 



43 

  

Figure 22 Step A: Top View SEM Optimized tuning fork resonator 
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Epi-seal Design Rules 

The Epi-seal process design rules are shown in Table 4.  

Table 4 Epi-seal Design Rules 

Die space 2000 µm x 2000 µm 

Device Thickness 40 µm 

Device to Substrate 2 µm 

Device to cap 2 µm 

Maximum released area 450 µm x 450 µm 

Trench width  0.7-1.5 µm 

Min trench length 5 µm 

Min dimension between trenches 3 µm 

Max released feature dimension 12 µm 

Min electrode dimension 100 µm 

Min non released structure 40 µm 

In order to incorporate the Epi-seal design rules into the binary particle swarm optimization explored 

in Chapter 4 it is necessary to identify prohibited designs and reject them by stochastically regenerating 

designs until the design meets all requirements.  This is accomplished by the error checking code (shown 

in appendix i). The bit dimensions and prohibited designs shown in Figure 23. 
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Figure 23: Design Restrictions due to Fabrication Process and minimum slot dimensions. Corners result in 

unstable designs. Two vertically adjacent slots result in a trench that is too wide for the design rules and no 

structures which result in unwanted auxiliary resonances. 

Conclusions 

Stanford’s Epi-seal fabrication process provides an ideal MEMS process flow for investigating 

limiting fundamental mechanisms.  The process provides a stable, consistent and clean environment, 

which greatly reduces fabrication induced performance degradation [52].  The process also provides 

vacuum sealed devices that reduce introduction of contaminants and greatly simplifies device testing (a 

vacuum chamber is not required to remove air damping for testing).  The epi-seal design rules are 

incorporated into the optimization scheme described in chapter 4 and the optimization algorithm outputs 

fabrication ready structure design masks.    
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Chapter 6 Experimental Study Design 

Two distinct experimental studies were performed using the epi-seal process. The objective of the 

first study was to investigate the use of a binary particle swarm optimization to optimize resonators with 

low TED.  The objective of the second study was to investigate clamping loss with the goal of developing 

an accurate general 3D anchor loss model.   

Study Design:Thermoelastic Optimization 

With the Epi-seal design rules incorporated into the binary particle swarm optimization, a final 

optimization was performed that prohibited designs in Figure 23 and utilized design rules from Table 4.  

The convergence plot from this optimization is shown in Figure 24. This Plot shows how the BPSO 

algorithm performed when the epi-seal design rules were integrated into the algorithm.  

 

Figure 24: Global best QTED of swarm versus iteration value. Optimization is started at intuitive design and 

over 150 iterations the swarm converges on a design with a 40% improvement in QTED. Unlike the previous 

simulated BPSO optimization trials, this trial has the epi-seal design rules integrated into the algorithm  
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The intuitive design is seeded as a starting point for one of the agents.  This is crucial, as if the intuitive design 

is not seeded the maximum Q simulated was observed to only reach approximately 40,000, which provides no 

improvement over the intuitive design.  However, when knowledge of the intuitive design is leveraged and used as a 

starting location a 40% improvement in TED is simulated by the Binary particle swarm optimization.  For this study 

we focused on three distinct designs. We designed resonators using the intuitive slotted design (simulated QTED of 

~40,000), the Solid design (simulated QTED~10,000) and the BPSO design (simulated QTED of ~56,000). It should be 

noted the TED modeling for these designs was performed in 2D as 3D would have been prohibitively 

computationally expensive, more discussion on the differences in 2D simulations and 3D simulations will be 

explained in chapter 7.  

Study Design: Anchor Loss 

In order to experimentally validate our proposed anchor loss model, ring resonators were fabricated 

using the Stanford vacuum epi-seal process.  The anchor structure design parallels the anchor structures of 

experimental gyroscopes, which often utilize a wine glass resonator mode attached to the substrate with a 

center post.  Rings were scaled with various diameters in order to validate our modeling approach across a 

wide frequency range (~200 kHz – ~13 MHz) Figure 25. 

 

Figure 25: Scaled resonators anchored at the center post all dimensions are held constant except diameter 

which is scaled from 64 µm to 415 µm and the corresponding resonance frequency scales from 200kHz to 13 

MHz.  

Fabrication 

Devices for both the TED optimization study and the scaled ring resonator study were fabricated at 

the Stanford Nanofabrication Facility by lab members of the Microstructures and Sensors laboratory.  The 

SEM of Devices from each run are shown in Figure 26. 
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Figure 26: Left: SEM ring resonator from anchor loss study.  Right: SEM optimized resonator for TED study 
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Chapter 7 Results 

Devices were tested using an HP 4920A Network analyzer (Figure 27). Devices were electrostatically 

actuated and sensed. The force applied to released devices is described by equation 55. 
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The resulting motion causes a sense current that is then received by the Network analyzer (equation 

56). 

dt

dC
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                                                                                                                                           (56) 

The frequency was swept and the resultant magnitude and phase plots were captured Figure 28.  The 

measured Q signal magnitude was fit using a lorentzian function for the magnitude and Qm is defined as 

the resonant frequency over the bandwidth at half maximum (-3dB). The measured Q phase was fit using 

an arc tangent function and Qp is defined as the resonant frequency over bandwidth between -45 and -135 

degrees.   

 

Figure 27: Measurement setup: HP4920A Network Analyzer, SUSS PM5 Probe Station and Agilent 

E3610A DC Power Supply  

 



50 

 

Figure 28: Sample plots for magnitude and phase fit using a lorentzian and an arctan function with Qm and 

Qp calculated from the respective fitted bandwidth 

 

Thermoelastic Optimization 

Using this technique 108 BPSO optimized devices were tested, 101 slotted beams and 27 solid 

beams.  The summarized measured and simulated results are listed in Table 5. In Table 5, 2D reports 2D 

simulation values, 3D reports 3D simulation values, 3D+Anchor reports 3D simulation values where the 

heat transfer within the anchor is also included in the simulation and the measured results are reported 

last.  The measured results and 3D+Anchor simulation results are displayed graphically in Figure 31.  

 

 

 



51 

Table 5 Measured and Simulated results. 2D reports 2D simulation values, 3D reports 3D simulation values, 

3D+Anchor reports 3D simulation values where the heat transfer within the anchor is also included in the 

simulation and the measured results are reported last in all 108 BPSO devices, 101 slot devices and 28 solid 

devices were tested.   

 SOLID SLOT BPSO 

2D 10,000 40,000 56,000 

3D 10,000 32,600 47,700 

3D + Anchor 9,600 27,900 36,300 

Measurement 10,028+2000 26,408 +2000 35,213+3000 

In order to interpret measured results it becomes necessary to account for all potential loss 

mechanisms that could affect measured Q.   

Additional Damping Sources 

In order to ensure that no additional damping mechanisms are present in these devices a thorough 

analysis of potential damping sources is required.  While the epi-seal vacuum should negate air damping 

the three design types were measured in a vacuum chamber where pressure was controlled, in order to 

study and rule out any damping effects Figure 29. 



52 

 

Figure 29: Pressure sweep for three design types, no appreciable air damping contribution is observed at the 

epi-seal pressure of ~10 mTorr. 

 

Once we have ruled out any air damping effects, we must also rule out other potential dissipation 

mechanisms.  Surface losses should be small as the surface area to volume ratio on these µm scale 

devices.  Surface losses are most frequently observed in nanoscale resonators due to their high surface 

area to volume ratios [54]. Also the low frequency range of these devices rules out Akhieser or other local 

phonon dissipation mechanisms. The Qf product at 500 KHz is approximately 2e14 and the Akhieser 

limit is 4e8 [53]. The balanced tuning fork design should reduce clamping losses.  Therefore the primary 

loss mechanism for these devices is most likely thermoelastic dissipation.   

Ruling out other dissipation mechanisms, it is clear from the results in Table 5 that the 2D simulation 

does not capture the full thermoelastic effect and that when dominant thermal modes are suppressed 

(SLOT and BPSO design), heat transfer near the anchor becomes increasingly significant and cannot be 

ignored if accurate results are required. The additional anchor heat transfer effect is illustrated in Figure 

30.   
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Figure 30:  When the anchor is included in the simulation it allows for extra heat transfer lowering QTED and 

provides a more accurate simulation than when the anchor area is not included.   

 

Results showing comparisons between Solid design, Intuitive slotted design and BPSO designs are shown in 

Figure 31. The simulated values shown are 3D simulations with anchor TED included.  BPSO designs consistently 

performed 33% better than previous intuitive designs with minimal changes in resonant frequency.   

 

Figure 31:  QTED using BPSO was measured to be 33% higher than the previous best intuitive design, which 

was measured in this fabrication run.  There were 108 BPSO devices testes, 101 Slotted devices tested and 28 

Solid devices tested. The error bars represent the standard deviation.  The measured devices matched the 

target frequency within 1% of the 500 KHz target frequency with a standard deviation of 4KHz.   

 

Thermoelastic Optimization Conclusions 

The BPSO design method has been validated and has been shown to be an improvement over the 

intuitive design method due to its higher measured QTED and its flexibility in generating fabrication ready 

mask sets.  This optimization scheme forms the foundation of a new best practices for finding practical 

designs with low TED for an arbitrary MEMS resonator.  Through this work it is also concluded that 2D 

TED models are good for order of magnitude QTED prediction and optimization but break down with more 
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advanced designs. In these cases a full 3D model with anchor effects included is significantly more 

accurate.   

 

Clamping Study 

In our clamping study several device designs, with radii 64 µm, 115 µm, 215 µm 315 µm and 415 

µm, were characterized and compared with simulated values (Figure 32).  In order to compare 

experimental results to modeling, it is first necessary to identify the exact dissipation mechanisms for 

these ring resonators.  Air damping was avoided with the vacuum encapsulation of the Stanford epi-seal 

process.  Additionally, surface losses were likely negligible since the device dimensions provide a 

relatively low surface area to volume ratio compared to the nanoscale resonators where surface 

dissipation has been reported [54].  Also, at these lower frequency ranges (200 kHz-13 MHz) Akhieser, 

and Landau-Rumer are negligible as the QF product is approximately 2e14 [53].  Therefore, TED and 

clamping loss were the only two relevant dissipation mechanisms for these resonators. 
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Figure 32: Plot of measured and simulated values of different dissipation mechanisms. Each data point 

represents 5 devices and error bars represent the standard deviation. QTED was solved using COMSOL 

thermal mechanical multiphysics package. The simulated Q is within 12% of the measured Q for all 

resonators. 

 

Clamping Study Conclusions 

This clamping study provides experimental validation of anchor loss models for an extensive range of 

low frequency (~200 kHz – ~13 MHz) devices. All measured designs, covering nearly two orders of 

magnitude in frequency, fell within 12% of the model’s prediction Figure 32.  This experimentally 

validated model provides a framework for designers to modify designs (e.g., stem length anchor design) 

in order to reduce anchor loss for arbitrary 3D geometries and identifies key process parameters (e.g., 

stress) for control of anchor losses.  Continued improvement in the understanding of energy dissipation 

will greatly improve the design of high quality factor resonators for the design of high performance 

MEMS gyroscopes. 
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Chapter 8 Follow Up Studies 

Thermoelastic Anchor Slot Heat Transfer Suppresion 

After BPSO optimization the dominant thermal modes contributing to anchor loss are located at the 

anchor shown below in Figure 33, reposted for reference from Figure 21 in Chapter 4. 

 

Figure 33: Comparison of the intuitive design approach (top) to the BPSO optimization (bottom) with low- 

and high-resolution optimizations.  Thermal eigenmode stem plots are shown on the left, and resonator 

topologies are shown on the right.  Stem plots show the contribution of each thermal eigenmode to Q, as 

determined by the weighting function in equation 7. Q values are simulated for the first 400 thermal modes in 

a fixed-fixed thermally insulated beam of dimensions 400 µm by 12 μm. Inset plots show dominant thermal 

modes. The top plot shows the design before optimization and the bottom plot shows the same beam after 

BPSO optimization where all thermal mode coupling has been suppressed except for the coupling at the 

anchor point. 

In a follow up study devices were fabricated in order to suppress these remaining anchor modes, In 

the original optimization the slot distance to the anchor was set to be 1 µm away from the anchor, this was 

done in order to create a fixed stable anchor area.  However, in simulation, if we extend this slot and cut 

material into the anchor of a BPSO optimized beam, we can further suppress TED within the anchor 

itself. Heat transfer can be blocked within the anchor for a simulated improvement of 6% in QTED. 
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Resonators were then fabricated to test for an improvement with slot lengths into the anchor from 1µm 

away from anchor to 2 µm into the anchor Figure 34. 

 

Figure 34:  Cutting an extended slot into the anchor of a BPSO optimized beam can help to decouple the 

thermal heat transfer at the anchor point. Simulated values here are performed in 3D with a very fine mesh 

to ensure accurate results (blue).  The measured resonators include 16 tested at 1 µm,  12 at 0.5 µm, 13 at 

0µm, 13 at  -0.5 µm, 17 at -1 µm, 17 at -1.5 µm and 13 at µm with error bars reporting the standard deviation 

(green) show a ~5% improvement in QTED as predicted by simulation.   

 

Results from this study show that it is indeed possible to block the heat transfer at the anchor point 

with an extended slot into the anchor. This post optimization manual improvement technique shows how 

intuitive knowledge of TED in combination with the stochastic bio inspired optimization technique BPSO 

can be used to achieve the highest possible QTED.  This work provides a new best practices for resonator 

design for low TED.   

Anchor Loss Dissipation Coupling and Temperature Dependence Study 

In Chapter 3 we proposed a new anchor loss theory that suggested anchor loss may have a 

temperature dependence due to coupling between anchor loss and other present dissipation mechanisms 

through the phase delay induced from damping between the reaction force and the velocity at the anchor 

point.  This analysis suggests that anchor loss has the following form for our ring resonators equation 57 

                                                                                                                                                            (57)                                                                                    
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Where the constant ∝Anchor, will depend on anchor geometry but should remain relatively constant 

over temperature. In order to test this theory ring resonators were fabricated with three distinct resonator 

anchor designs shown below in Table 6. The ring resonators were anchored either at the center stem 

(Stem), a single side fixed anchor (SF) or a double side clamped ring where the anchor is positioned at 

nodal points with 180 degree separation.   

 

 

     

These results suggest that the additional damping mechanism in these resonators is in fact 

temperature dependent because the unaccounted for losses (in parenthesis) change dramatically with 

temperature. These unaccounted for losses are calculated by reciprocal subtraction of known dissipation 

from the measured Q equation 58. 

TEDMeasuredOther
QQQ

111
                                                                                                            (58) 

 Further results in Figure 35 show a comparison of a stem anchor design and a doubled fixed ring on 

the same die measured over a temperature range of 80K to 470K.   

Table 6 Three anchor designs were fabricated and tested in a cryo-probe station at room temperature 300K 

and cryogenic temperature 80K to study anchor losses at different temperatures. Additional damping other 

than TED is reported below each measurement in parenthesis.   



59 

 

 

Figure 35:  Dissipation of Stem anchored and Double Fixed ring resonators over temperature.  Even at high 

temperatures anchor loss is not completely masked by TED.  This is additional evidence of coupling.  The 

jumps in data points at low temperatures were due to thermal stability challenges at low temperatures.   

 

When we analyze these results we can assume that the damping in each of these resonators is the 

same except for the difference due to anchor loss for each design.  Due to this, by extracting the QStem 

Measurement from the QDF by reciprocal subtraction, as with parallel resistance, this additional QAnchor 

due to the double fixed anchors can be studied over temperature Figure 36. 
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Figure 36:  QOther reports additional  losses due to the double fixed anchor as compared to the 

stem anchor.  The only difference between these devices is the type of anchor, Resonant 

frequency is within 100 Hz for stem and double fixed anchor devices therefore we suspect this 

additional loss to be due to anchor loss. 

 

These results also suggest that anchor loss does indeed have a temperature dependence like our theory 

suggests. However these results were very difficult to repeat as either the native oxide or surface 

contaminants were shown to be affecting the measurements on other tested devices. The data shown 

above was gathered in one continuous temperature sweep after a low temperature anneal in a constant 

ultra-high vacuum environment which provided stable measurements.  This new anchor theory is still 

preliminary and the temperature dependence of QAnchor will continue to be an active area of research in the 

future.   
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Chapter 9 Conclusions  

This work has reviewed fundamental theory of thermoelastic dissipation and provided a new best 

practices for high QTED design.  Additionally, this work has introduced a novel anchor loss model that is 

general.  Once the anchor surface is selected where the resonator is fixed to the substrate power flow 

through this surface can be used to calculate anchor loss.  With the advancement in these modeling 

techniques and optimization MEMS resonator design should increasingly have less reliance on trial and 

error fabrication.  Greater understanding of integrated Q modeling will identify the strengths and 

weaknesses of each approach can be appropriately analyzed.   

BPSO optimization provides a flexible and efficient way to optimize resonators with low dissipation 

and produce fabrication ready mask sets.  If the physics of dissipation can be accurately modeled then the 

resonator dissipation can be minimized using this approach.  The use of networked agents in the BPSO 

allows us to leverage the power of swarm intelligence to explore potential design solutions.  As is often 

the case with science, our natural world provides inspiration to unlock new and powerful technologies.   

In terms of modeling advancements, new understanding of the significance of modeling the impact of 

resonator anchors on TED will increase the accuracy of TED modeling.  For high QTED resonators the 

anchor must be included in the 3D TED simulations to ensure accurate results.  Additionally, the 

continued advancement in the understanding and accurate modeling of anchor losses will continue to be 

an active area of study for years to come.  The anchor loss model presented here shows promising initial 

results in using a direct calculation of anchor forces at the anchor junction.  The accuracy of this direct 

modeling approach is not frequency dependent, which provides a significant advantage when compared to 

the current perfectly matched layer eigenmode approach to simulate anchor losses.   
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Appendix 

 
 
Swarm Code 
function [gqbest gbbest glambest qbesthist bbesthist bout]=swarm20sym(n, m, b) 
%b is array of starting locations of each particle 

%example: b{1}=[00000110000010101011101101010010101010101011010101010111010100...] 

%n is the number of iterations the loop will run 

%m is the number of particles in the swarm 

i=1; 

lam={};%frequency array 
gqbest=0;%global best fitness value 
qbest=[0];%best fitness value for each individual particle 
qbesthist=[];%array of best global fitness after each iteration 
gbbesthist={};%array of location of each best fitness 
bbest={};%location of personal best fitness 
gbbest=b{1};%location of global best fitness assumes best design is at b{1} 
glambest=0;%frequency of globest fitness 
[row col]=size(b{1});%number of rows and columns in b 
  

reset=0;%reset is one if design has bad corners 
resetb=zeros(1,m);%vector containing information on which particle needs to be reset 
%initialize a random starting velocity for swarm 

for p=1:m 
    v{p}=rand(row,col)-0.5.*ones(row,col); 

end 

  

  

  

%initialize b1 (first fitness value) 

%TEDgeomsym() is function that maps b(x) to beam and solves for QTED 

[qbest(1) lam{1}]=TEDgeomsym(b{1}); 

gqbest=qbest(1); 

gbbest=b{1}; 

bbest{1}=b{1}; 

%initialize rest of particles 
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for p=2:m 
    [qbest(p) lam{p}]=TEDgeomsym(b{p}); 

end 

bbest=b; 

  

  

%loop for iterations 

while (i<n) 
    i=i+1;     

%update posistion for each particle 

for p=1:m 
     

for j=1:col 
    for k=1:row 
        %if particle needs to be reset or this is the first iteration 
        if (resetb(p)==1)||(reset==0) 
        %update particle velocity 
        v{p}(k,j)=v{p}(k,j)+rand()*(bbest{p}(k,j)-b{p}(k, j))+0.75*rand()*(gbbest(k,j)-b{p}(k,j));%edited for more 

local searching 
        %update posistion by comparing sigmoid to random number from -0.5 to 0.5 
        b{p}(k,j)=round(1/(1+exp(-v{p}(k,j)-3))+(rand()-0.5)); 

        end 
    end 
end 

end 

     

reset=0; 

resetb=zeros(1,m); 

         

%check diagonals 

{ 
for p=1:m 
for k=1:row-1%no need to check last row 
    for j=2:col%no need to check first column since will be set to one 
        %check b1 
        if(j~=col)%if j=col then only check left side 
        if (b{p}(k,j)==0)%check first zero 
            if (b{p}(k+1,j)~=0)%if number directly below the current zero is zero then diagonals are okay no need to 

check 
                if (b{p}(k+1,j+1)==0)%check bottom right 
                resetb(p)=1; 

                reset=1; 

                break; 
            else if (b{p}(k+1,j-1)==0)%check bottom left 
                resetb(p)=1; 

                reset=1; 

                break; 
                end 
                end 
            end 
        end 
        else if (j==col)%if you are in last row only check the bottom left 
                 if (b{p}(k+1,j-1)==0) 
                resetb(p)=1; 

                reset=1; 

                break; 
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                 end 
            end 
        end 
                 

         

                

             end 
        end 
end 

if (reset==1) 
    i=i-1;%if something needs to be reset then decrease iteration and restart loop 
    continue; 
end 

  

%check if there is a new q best local and global 

for p=1:m 
[q(p) lam{p}]=TEDgeomsym(b{p}); 

%check/compare local best 

if(q(p)>qbest(p)) 
    qbest(p)=q(p); 

    bbest{p}=b{p}; 

%check/compare global best 

    if(q(p)>gqbest) 
        gqbest=q(p); 

        gbbest=b{p}; 

        glambest=lam{p}; 

    end 
end 

end 

  

%document history 

qbesthist=[qbesthist gqbest]; 

bbesthist{i}=gbbest; 

%output certain variables to check progress 

i 

gbbest 

gqbest 

glambest 

end 

bout=b;%document final particle positions to access convergence 
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