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Populations of neurons represent sensory, motor, and cognitive variables via patterns
of activity distributed across the population. The size of the population used to
encode a variable is typically much greater than the dimension of the variable itself,
and thus, the corresponding neural population activity occupies lower-dimensional
subsets of the full set of possible activity states. Given population activity data with
such lower-dimensional structure, a fundamental question asks how close the low-
dimensional data lie to a linear subspace. The linearity or nonlinearity of the low-
dimensional structure reflects important computational features of the encoding, such
as robustness and generalizability. Moreover, identifying such linear structure underlies
common data analysis methods such as Principal Component Analysis (PCA). Here,
we show that for data drawn from many common population codes the resulting
point clouds and manifolds are exceedingly nonlinear, with the dimension of the best-
fitting linear subspace growing at least exponentially with the true dimension of the
data. Consequently, linear methods like PCA fail dramatically at identifying the true
underlying structure, even in the limit of arbitrarily many data points and no noise.

computational neuroscience | population coding | neural manifolds

Neural coding is distributed and redundant, with large populations of neurons collectively
encoding relevant variables . Geometric frameworks provide a natural setting within
which to formulate and test theories of population coding, along with tools that allow
population structure to be extracted from data (1–10). In one particularly fruitful
approach, data from a population of N neurons can be embedded in an N -dimensional
space, with each axis corresponding to the activity of 1 neuron. The state of the population
at each moment in time corresponds to a point in this N -dimensional space. Shared
structure in the neural population code then corresponds to lower-dimensional shapes or,
in the case of smooth responses, “manifolds” on which the data lie (11–19). Computation
can be understood in terms of trajectories on these low-dimensional manifolds (20–28).

Given some population data with such lower-dimensional structure, a fundamental
question asks how close the data lie to a low-dimensional linear subspace or hyperplane
(i.e., is the lower-dimensional structure near-linear?). This question is of theoretical
interest because the linearity or nonlinearity of the population data provides insight into
the structure, robustness, and generalizability of the encoding (9, 11, 29). The linearity
of data is also of great practical importance because methods that seek to fit a linear
subspace to data, such as Principal Component Analysis (PCA) and Factor Analysis, are
extremely widely used, whether to reveal structure in an unsupervised manner or as an
initial data processing step before using regression and other supervised methods (1, 30).

Linear dimensionality reduction methods have a number of appealing features,
including ease of interpretation, computational tractability, theoretical guarantees, and
robustness. Moreover, linear methods are the foundation of a number of more advanced
methods. For example, if a manifold is not well-fit by a linear subspace, a natural
generalization seeks a set of linear subspaces that combine to describe the manifold
(31, 32). On the other hand, using linear tools on highly nonlinear manifolds will be
misleading. Thus, understanding when a manifold is linear or near-linear provides insight
both into the coding strategy used by the corresponding brain region and determines the
appropriate data analysis tools to be used.

In this study, we examine the linearity of the manifolds generated by common
population codes. We show that the resulting manifolds are exceptionally nonlinear.
For example, consider a population of neurons with Gaussian tuning to a stimulus with
D features—each neuron shows maximum response at some preferred stimulus value
and the response decreases as a Gaussian function of the distance between the current
stimulus and the maximally preferred stimulus value. Since there are D independent
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dimensions of variation, the neural population responses at any
moment in time can be represented by a D-dimensional vector
and the data are contained within a D-dimensional manifold.
We prove, however, that a linear subspace that contains 80% (or
any other fixed fraction) of the variance in these data must have
dimension that grows exponentially with D. This dimension can
be in the many thousands even for small values of D. Thus,
methods that seek to fit a linear subspace to data will greatly
overestimate the dimension of the true manifold, even in the
limit of arbitrarily many data points and neurons.

Results

Setup.
Low-dimensional population structure and neural manifolds.
Given activity data from a population of N neurons over time,
consider the population activity vector y(t), whose n-th entry
yn(t) is the activity (e.g., number of spikes fired or fluorescence
signal) of neuron n in a time window of size �t centered at
time t. This activity vector can be seen as a point in an N -
dimensional space, with each dimension corresponding to the
activity of one of the recorded neurons (see schematic in Fig. 1).
If the population activity is measured atT time points t1, · · · , tT ,
then the recording yields T such activity vectors. The population
activity vectors together form the N × T data matrix A, where
Ans is the activity of neuron n in time bin ts.

The geometric picture corresponding to this collection of
population activity vectors is a cloud of points in N -dimensional
space, with each point corresponding to a moment in time (Fig.
1B). If the population of neurons shows structured activity, then
the points will cluster around particular locations or trace out
particular shapes. These shapes provide ways to explore and
to reason about the nature of the underlying representation or
computation.

In particular, assume that the population responses are
driven by some time-varying D-dimensional latent variable
x(t), meaning that y(t) = F (x(t)) + �(t) for some function
F : RD

→ RN , and where �(t) is residual variance (e.g., noise).
Here x(t) could be an external stimulus, attentional or arousal or
satiety state, motor plan, decision variable, internal estimate of
location, or any combination of such and other variables. In what
follows, we will adopt the terminology of Jazayeri and Ostojic
(9) and refer to this stimulus or other population variable as the
“latent variable.”

Note that, ignoring noise, the location of any population
activity vector in the N -dimensional space can be specified by at

most D coordinates (i.e., the values of the latent variable x(t)),
and thus, the data point cloud lies in a D-dimensional space. We
will refer to D as the “intrinsic” dimension of the data, following
previous work (9). Under some mild smoothness conditions on
F and x, the data lie on a D-dimensional manifold, and we will
thus refer to data “manifolds,” following common practice in the
field (but the results do not require continuity and smoothness).
Populations with shared tuning curves. In the setting above,
the response of the nth neuron is determined by Fn, the nth
component of F . Fn thus captures the tuning of the nth neuron
to the latent variable x. In many neural populations, these tuning
curves take a similar shape or functional form across neurons but
differ in their preferred stimulus, width of selectivity, or other
parameters (examples in Figs. 2A, 3A, and 4A). Such shared
tuning curve structure is common in topographically organized
sensory regions (33–38) and in populations that show spatial
tuning, such as place, grid, and head direction cells (39–41); it
has also been found for more abstract quantities, such as among
neurons tuned to numbers (42, 43) and to decision variables such
as accumulated evidence (18, 44).

If tuning curves take a similar functional form, the activity
of the nth neuron at time t can be modeled by yn(t) =
f (x(t),�n), with n = 1, . . . , N . Here f is a tuning curve
function representing the shared shape of the tuning curve, �n
is a vector of tuning curve parameters (e.g., preferred stimulus or
tuning curve center of a sensory neuron, phase and period of a grid
cell, preferred value of a decision variable, etc.), and, as before, x
is the time-varying D-dimensional latent variable that underlies
the population responses. Note that while such tuning curves
were historically applied to describe the relationship between
neural activity and an external variable, the latent variable can
also be an internal cognitive variable (18, 44–49) or even an
abstract statistical construct (13, 16, 50) that captures network
interactions. For example, in a ring attractor network that encodes
heading direction, the latent variable is the network’s estimate
of heading direction, and the tuning of each neuron emerges
from recurrent network interactions (40, 51, 52). Thus the
model is quite flexible and captures a variety of population
codes.
Linearity of point clouds and manifolds. The most natural struc-
ture to seek in population data is linearity, corresponding to
finding a lower-dimensional subspace (hyperplane) that contains
the data (see schematic in Fig. 1C ). If the dimension of this
subspace is L, linear structure corresponds to finding L vectors
v1, · · · , vL whose weighted sums account for the data. That is,
any data point y(t) =

∑L
l=1 al (t)vl , where al (t) is the time-

A B C

Fig. 1. Schematic of low-dimensional structure in neural population data. (A) Spiking activity of 3 neurons over time. Shaded regions show three sample time
bins, each used to compute an activity vector. (B) Activity represented as a collection of points in three-dimensional space. Colored points correspond to shaded
regions in A. (C) Lower-dimensional linear structure in data, shown as a two-dimensional plane chosen to capture as much variance in the data as possible.
Scatter of points (e.g., pink and green points) off of plane reflects variance that is not captured.
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A B

C D E

Fig. 2. Translation-symmetric tuning to a one-dimensional variable and the inverse relationship between linear dimension and sparsity. (A) Gaussian tuning
curves of 3 neurons encoding a circular (Top) or noncircular (Bottom) scalar stimulus variable. The noncircular variable example includes tuning to time, as in an
epoch code. (B) Black line: Manifold formed by population activity of 3 neurons with Gaussian tuning to a 1-dimensional circular variable. Each axis shows the
activity of 1 neuron. Gray: Best fitting 2D linear subspace (i.e., plane spanned by first two PCs). Left and Right show an example of narrow (� = 0.075) and broad
(� = 0.2) tuning respectively. For (C)–(E), results shown are for Gaussian tuning to a circular variable, with uniformly spaced tuning curve centers. Circles show
numerical simulations and lines show theoretical predictions. (C) Fraction of variance explained by each PC (equivalently, eigenvalues of covariance matrix) for
a population of N = 50 neurons. Different curves show different tuning curve widths. (D) Linear dimension of neural data against tuning curve widths, showing
that linear dimension grows as 1/�. (E) Linear dimension against number of neurons in a population for each tuning curve width, showing initial linear growth
before saturation at the predicted values shown in D.

varying contribution of the l-th vector. Equivalently, the rank of
the data matrix A is L.

In the presence of noise, data points will not lie exactly
in a lower-dimensional linear subspace. Even in the absence
of noise, a set of data points may not lie exactly in a linear
subspace but might be close enough to be approximated by
a linear subspace for practical purposes. Thus, it is typical to
look for a linear subspace that captures most of the spread in
the data while allowing for some scatter in the data around the
subspace (Fig. 1C ). Equivalently, one looks for L basis patterns
that can approximately sum to any population activity vector(
y(t) ≈

∑L
l=1 alvl (t)

)
or for a rank L matrix AL such that

||A−AL|| is small in some appropriate norm (usually 2-norm or
Frobenius norm).

More precisely, we define the (1 − �)-linear dimension L1−�
of a matrix A to be the smallest R such that there exists a rank
R matrix AR for which ||A − AR||2F < �||A||2F (this quantity is
related to the �-rank of A (53)).

This definition of linear dimension corresponds to common
practice in neural data analysis, where it is typical to perform
PCA and estimate the dimension of data as the number of
principal components (PCs) required to explain some high
fraction (i.e., 1 − � in our notation) of the variance (1, 9, 54).
Thus, for example, what we call the 0.8-linear dimension is the
number of PCs required to account for 80% of the variance in
the data.

The best rank R approximation to the data matrix A is∑R
k=1 �kukv

T
k , where �k is the k-th singular value of A, and

uk, vk are the kth left and right singular vectors respectively. The
remaining variance ||A− AR||2F =

∑N
k=R+1 �

2
k . In other words,

the matrix A has (1− �)-linear-dimension L1−� if

L�∑
k=1

�2
k/

N∑
k=1

�2
k ≥ 1− � but

L�−1∑
k=1

�2
k/

N∑
k=1

�2
k < 1−�. [1]

The singular values of A can also be calculated from the
eigenvalues of the (non-mean-subtracted) covariance matrix
AAT , which is the matrix of covariances between neurons
averaged over time, or ATA, which is the matrix of covariances
between data points averaged over neurons. The k-th eigenvalue
of each of these matrices is �k = �2

k (for k ≤ N , assuming more
time points than neurons).

Constructing such a low rank approximation to the data
matrix (or, equivalently, fitting a linear subspace to the data
point cloud) is the foundation of commonly used dimensionality
reduction methods such as PCA and Factor Analysis. Moreover,
a number of nonlinear dimensionality reduction techniques
rely on approximating the data point cloud or manifold by a
family of linear subspaces (31, 32, 55). Such methods will be
expected to perform well when the data point cloud or manifold
is near-linear and poorly when the data manifold is highly
nonlinear.
Overview of approach. In this study, we consider a population
of N neurons whose activity is driven by a D-dimensional
real-valued latent variable x, with firing rates given by tuning
curve functions f (x,�n). Thus, the intrinsic dimension of neural
activity isD. For several choices of tuning curve function we lower
bound the (1− �)-linear dimension of the activity (equivalently
the number of PCs required to explain a (1− �) fraction of the
data variance) and show that it is very large, growing at least
exponentially with D.

We assume that x takes on all possible values in a compact
subset of RD and that f is continuous and one-to-one, so that in
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Fig. 3. Translation-symmetric tuning to a multidimensional variable and exponential growth of linear dimension with intrinsic dimension. (A) Examples of 2D
tuning curves, showing schematics of 3 different place cells with different tuning centers in a square arena (Left) and 3 grid cells with the same spacing but
different phases (Right). (B) For Gaussian tuning curves, eigenvalues of the covariance matrix (variance along each PC) are values of a D-dimensional Gaussian at
the lattice points of D-dimensional Fourier space. Each lattice point corresponds to one eigenvalue, and the colormap shows its value. Left: Decay of eigenvalues
with distance from origin in Fourier space. Right: Number of eigenvalues contained in concentric shells of different radii. Circular shells on the plot highlight two
sets of eigenvalues, with the corresponding magnitude and volume of shell shown as the shaded region in insets. For a shell close to the origin, the eigenvalues
have a large magnitude but there are fewer eigenvalues as a consequence of the smaller volume. Away from the origin, the value of the eigenvalue is lower
but there are more such eigenvalues. This tradeoff between eigenvalue magnitude and the number of eigenvalues of that magnitude explains the shape of the
variance explained vs PC number curve. (C) Fraction of variance explained by each PC (or eigenvalues of covariance matrix) for D-dimensional Gaussian tuning
curves and periodic boundary conditions along each dimension. Circles show numerical simulations, thin line represents prediction from Fourier transform
of covariance matrix rows, and thicker lines represent theoretically predicted smooth interpolation. (D) Total probability mass at radius r for a D-dimensional
Gaussian (i.e., density function of chi distribution), shown for three different values of D. Circular insets show concentric shells colored by total probability mass
at that radius. The bulk of the probability mass lies in a shell of radius ∼

√
D/�. Thus, accounting for most of the variance requires considering all eigenvalues

within a sphere of radius at least∼
√
D/�. (E) Semilog plot of linear dimension (� = 0.05) vs. intrinsic dimension for Gaussian tuning curves with different widths.

Circles show numerical results, solid lines show theoretical lower bound from median of chi distribution (applies whenever � ≤ 0.5), and dashed lines show
semianalytic fit using chi distribution. (F ) Semilog plot of linear dimension vs. tuning curve width. Circles and lines as in E.

the absence of noise population responses lie on a D-dimensional
manifold. However, the approach can be naturally generalized to
finding a linear subspace that contains point cloud data instead,
and thus extends to cases like noncontinuous values of the latent
variable.

We consider firing rates and ignore noise so that the response
of the nth neuron is given exactly by the mean firing rate, yn(t) =
f (x,�n), and thus, the time window around t in which the rate
is measured does not affect the results (as long as it is small on the
timescale at which x changes). In the absence of noise, PCA and
Factor Analysis are equivalent and our results thus apply to both
methods (as well as to methods like Probabilistic PCA). Given
that our results lower bound the linear dimension, including noise
would simply strengthen our results by making neural activity
more high-dimensional. Thus, results reflect fundamental lower
bounds on the dimensionality of neural activity rather than a lack
of data and would not change if neural responses were averaged
over multiple stimulus presentations.

We consider tuning curve functions f (x,�n) with certain
symmetries and use these symmetries to exactly or approximately
calculate the eigenvalues of the neuron-neuron covariance matrix
(which are also the squared singular values of the data matrix
and, when normalized, the fractions of variance explained by the
different PCs). We then count the number of eigenvalues needed
to account for a (1 − �) fraction of the variance in activity, for

some small �. Our results are not sensitive to the choice of � and
in general apply when � < 0.5.

To define the covariance matrix and calculate its eigenvalues,
it will be convenient to first define the correlation profile
function c between neurons with tuning parameters �m and
�n to be c(�m,�n) = Ex [f (x(t),�m)f (x(t),�n)], where the
expectation is taken over the values of the latent variable x.
This is simply the (non-mean-subtracted) covariance between the
neurons. For a population of N neurons, the N ×N covariance
matrix, C , has (m, n)th entry Cmn = c(�m,�n).

Note that we primarily consider the non-mean-subtracted
covariance matrix. Methods such as PCA often first subtract the
mean from data. In SI Appendix, section 1 and Fig. S2 we show
that if L1−� is the linear dimension of the non-mean-subtracted
data, then L1−� − 1 is a lower bound on the linear dimension
of the mean-subtracted data (this is a consequence of the Weyl
inequalities relating the eigenvalues of perturbed matrices). Thus,
our lower bounds on linear dimension apply to mean-subtracted
data, and in particular scaling arguments hold.

Translation-Symmetric Population Codes. In many brain re-
gions, responses to the latent variable are given by tuning curves
whose shape is approximately the same across neurons but with
the tuning curve shifted or centered around a different region
of latent variable space for each neuron (33–41). Examples
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Fig. 4. Multiplicative tuning and exponential growth of linear dimension with intrinsic dimension. (A) Schematics of common examples of multiplicative
tuning. Left: Gain modulation of tuning to a sensory stimulus by attention. Center: Multiplicative modulation of epoch code by task variables. Right: Separable
spatiotemporal receptive field of retinal ganglion cell as product of spatial (horizontal) and temporal tuning (vertical). Panels (B)–(D) show results from a
multiplicative tuning model where tuning along each dimension is sigmoidal. (B) Sample tuning along each dimension. Tuning curves are sigmoidal with slopes
chosen uniformly in range [−5,5] and centers evenly distributed in [0,1]. (C) Fraction of variance explained vs. PC number for the model shown in B for different
values of intrinsic dimension (D). Circles show numerical simulations and lines show the result from the tensor product of 1D tuning curves. The inset shows
the eigenvalues in the 1D case. (D) Linear dimension against intrinsic dimension for the data in C. Circles show simulations, and the solid line shows theoretical
lower bound of 2D(H−0.05), where H is the entropy of the eigenvalue distribution shown in the Inset of panel (C). Panels (E)–(G) show results from a multiplicative
tuning model where tuning along each dimension is Gaussian. The Gaussians are not translation-symmetric and the width of the Gaussian depends on position,
with tuning sharpest at the center of the stimulus space (as in visual receptive fields). (E) Sample tuning along each dimension. (F ), (G) As in (C), (D) but for the
model shown in E. Panels (H)–(J) show results from a multiplicative tuning model where factors are an equal mixture of sigmoidal and Gaussian (i.e., a hybrid
of the models shown on the previous 2 rows). (H) Sample tuning curve of one neuron tuned to a 2D latent variable, with sigmoidal tuning along one dimension
(horizontal) and Gaussian tuning along the other (vertical). (I), (J) As in (C), (D) but for the model shown in (H).

of approximate translation-symmetric tuning range from early
sensory systems, such as orientation tuning in area V1 (35, 56),
to cognitive systems, such as spatial tuning in hippocampal place

cells and entorhinal grid cells (39, 41, 45, 46), epoch codes and
hippocampal time cells (57), and tuning to abstract variables such
as number (42, 43).
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In this setting, the response of neuron n at time t is determined
by the difference between the current value of the latent
variable, x(t), and the neuron’s preferred value �n (note that
for convenience we refer to the “center” or “preferred stimulus”
of the tuning curve but the parameter �n more generally can
simply index the shift of the tuning curve from an arbitrarily
chosen reference tuning curve function as, for example, with the
phase of a grid cell). If x ∈ RD is the latent D-dimensional
variable, then the tuning curve parameter � is also in RD, and
the tuning curve function f (x,�) = g(x−�) for some function
g [equivalently, given some � ∈ RD, f (x,�) = f (x+�,�+�)].
Different neurons have different preferred values, together tiling
the space of possible values.
One-dimensional translation-symmetric populations and the
sparsity-linear dimension uncertainty relation. First, consider a
translation-symmetric population of N neurons where the
encoded variable x and the tuning parameter for each neuron
�n are drawn from a one-dimensional (1D) circular space (i.e.,
S1), with points in the space parameterized by [0, 1), Fig. 2
A, Top. For example, x could be the angle of orientation of a
bar, the direction of motion of a stimulus, or the head direction
of a moving animal; correspondingly, �n could be the center
of the tuning curve of the nth neuron. If x evenly samples the
space, then the correlation profile c for two neurons depends
only on the difference �m − �n between tuning parameters. We
slightly overload notation and write the correlation profile as
c(�m, �n) = c(�) where � = �m − �n and the function c is
periodic with period 1.

If the tuning parameters evenly tile the space, then the entries
of the covariance matrix are

Cmn = c(�m − �n) = c((m− n)/N ). [2]

The matrix C is circulant, meaning that each row is a shifted
copy of the row above. It is well known (and easy to show, see SI
Appendix, section 2.1) that the eigenvalues of C are given by the
Fourier transform of c, the function used to generate each row
(4, 29, 58–60). Thus, the pth eigenvalue is

�p =
N−1∑
l=0

c(l/N )e−2�ipl/N
≈ N

∫ 1

0
c(x)e−2�ipxdx, [3]

where i =
√
−1 and the approximate equality improves as N

gets larger*.
If tuning curve centers are not evenly spaced, the corre-

sponding matrix is no longer circulant, but the eigenvalues
are still approximately given by the Fourier transform of c. If
tuning curve centers are randomly sampled, this approximation
converges rapidly as the number of neurons increases. Similarly,
consider a stimulus space that is 1D but not circular, Fig.
2 A, Bottom. A natural example of this setting is tuning
to time, as in an epoch code or the responses in a synfire
chain. The corresponding matrix is Toeplitz and the same
eigenvalue relationship approximately holds (58, 61–64). Thus,
quite generally, the profile of eigenvalues is given by the Fourier
transform of the correlation profile (see SI Appendix, Fig. S3 for
numerical confirmation of the approximate relationships).

As a specific example, consider translation-symmetric Gaussian
tuning, which is a common approximate model for tuning curves
across multiple systems like orientation selective neurons in

* i =
√
−1 throughout this study and is not used as a matrix index.

visual cortex V1 (65) and place cells in the hippocampus (39).
Note that Gaussian tuning is technically defined on an infinite
interval and thus for periodic boundary conditions is only a good
approximation if tuning curves are not too wide, so that the
periodicity can be ignored (but Gaussians could be replaced by
von Mises functions to model wider tuning).

For Gaussian tuning the nth neuron’s response is

yn(t) = K1 exp
(
−

(x(t)− �n)2

2�2

)
, [4]

where K1 is the maximum firing rate and � is the width of
the tuning curve. The corresponding manifolds for a population
of 3 neurons are shown in Fig. 2B. The covariance between
the mth and nth neurons is Cmn = K2 exp

(
−

�2
mn

4�2

)
. Here K2

is a constant and �mn is the difference between the tuning
curve centers (calculated accounting for the circular boundary
conditions). The eigenvalues of the covariance matrix for large
N are given by

�p = K3e−4�2�2p2
, [5]

where K3 is a constant, as shown in Fig. 2C (see SI Appendix,
sections 2.3 and 2.4 for the calculation). Thus, the eigenvalue
profile is Gaussian with variance inversely proportional to the
width of the tuning curve.

The (1 − �)-linear dimension is the smallest L1−� such that∑L1−�
p=0 �p ≥ (1− �)

∑N
p=0 �p. If N is not too small, these sums

can be approximated by Gaussian integrals yielding the condition

L1−� =
1
�

erf−1 (1− �)
�

. [6]

Thus, to explain a constant fraction of the variance, the linear
dimension generically grows as 1/�, where � is the tuning curve
width, as shown in Fig. 2D. In particular, L0.95 corresponds to a
95% CI for a Gaussian distribution and is thus 1.96

√
2 ��

. Note that
in practice, if N (the number of sampled neurons) is small then
linear dimension will be bounded by N but will increase toward
the true linear dimension as N increases, as shown in Fig. 2E.

More generally, so-called uncertainty principles relate the
spread, sparsity, entropy, or concentration of a function to that
of its Fourier transform (66–69). These principles imply that if
the tuning curves (and hence the correlation profile) are sparse,
fall off rapidly around their preferred values, or are concentrated
on relatively small subsets of latent variable space, then � will
decay slowly with increasing p and have many significant nonzero
entries. If � decays slowly, then the number of eigenvalues needed
to capture most of the variance will be high. Consequently, the
linear dimension will be large and the manifold will be highly
nonlinear.

Gaussian functions are lower bounds for several uncertainty
principles, and thus, the 1/� scaling will be a lower bound across
a wide class of tuning curve shapes, in particular those with
firing localized to some region of latent space (or the manifold).
However, translation-symmetry and the uncertainty principles
do not require tuning curves to be unimodal or localized, and
highly nonlinear manifolds are expected whenever the tuning
curves (and hence the covariance profile) are concentrated on
comparatively small subsets even if these tuning curves are not
localized to a single interval or region.
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We highlight two useful uncertainty principles that apply in
this more general setting. First, if the covariance profile c has K
nonzero entries (i.e., is K -sparse), then the eigenvalue profile has
at least N/K nonzero entries (67). Consequently, if K is small
then there are many nonzero eigenvalues. Second, if a fraction
1 − �̂ of the covariance profile is concentrated on a set S of size
K (meaning that

∑
�∈S |c(�)| > (1 − �̂)

∑
�∈Ω |c(�)|, where

Ω is the domain of the covariance profile), then the smallest
set that contains 1 − � of the eigenvalue mass has size at least
N (1−�̂)(1−�)/K (67, 69). The size of this set is just the (1−�)-
linear dimension and consequently linear dimension again grows
inversely with K . Sparse coding thus generically implies high
linear dimension.

In practice, for systems with relatively broad tuning curves
and for which the latent variable is low-dimensional, such as head
direction cells (52, 70) or ventral hippocampal place cells (71, 72),
the overestimate of intrinsic dimension by linear dimension
may not be too large. However, in many systems, both sensory
and cognitive, neurons respond to a small fraction of possible
values of the latent variable. For example, foveal V1 cells in the
primate cover less than a degree of visual space (35), and rodent
hippocampal place cells can cover under 1% of the area of large
environments (72, 73). Similarly, cells that are tuned to complex
visual stimuli such as faces or other objects tend to show sparse
responses (74, 75), thus covering only a small portion of stimulus
space. In these settings, the manifold is likely to be highly nonlin-
ear and linear dimensionality will greatly overestimate intrinsic
dimensionality.
Multidimensional translation-symmetric tuning and exponential
growth of linear dimension. As with the one-dimensional case,
when a higher-dimensional variable x is encoded with translation-
symmetric tuning curves (schematic in Fig. 3A), the covariance
profile is also translation-symmetric and the eigenvalues of the
covariance matrix are given by the Fourier transform of the
covariance profile. Consequently, as in the 1D case, tuning
curves that are sharper or concentrated on smaller sets will yield
more slowly decaying eigenvalue profiles and hence higher linear
dimension. However, the linear dimension will depend strongly
on D, the intrinsic dimension of the latent variable. We first
examine this interaction in the Gaussian case, before drawing
general conclusions.

Consider a population of N neurons with translation-
symmetric Gaussian tuning to an underlying D-dimensional
latent variable x that takes values within [0, 1] along each
dimension. The tuning curve for the nth neuron is centered
at �n. By an appropriate choice of basis for x, the covariance
matrix of the Gaussian tuning curve can be assumed diagonal.
For simplicity, we assume circular boundary conditions and that x
is scaled so that tuning curves have equal width � in all directions.
Thus, the response of the n-th neuron is

yn(t) = K1 exp
(
−
||x(t)− �n||2

2�2

)
, [7]

where K1 is the maximum firing rate. The corresponding
correlation profile is also Gaussian. If tuning curve centers are
equally spaced, then the covariance matrix has (m, n)th entry
Cmn = K2 exp

(
−
||�mn||

2

4�2

)
, where K2 is a constant and �mn

is the difference between the tuning curve centers �m and �n
(accounting for the circular boundary conditions). For large

N , the eigenvalues are given by (SI Appendix, sections 2.3
and 2.5)

�p = K3 exp

(
−4�2

D∑
d=1

p2
d�

2

)
= K3 exp(−4�2�2

|p|2). [8]

Here K3 is a constant. The eigenvalues are indexed by a D-
dimensional vector p with d th entry pd ∈ [−Nd/2, · · · , Nd/2],
where Nd is the number of tuning curve centers along dimension
d (assumed the same for simplicity). Note that these eigenvalues
are given by a multivariate Gaussian evaluated at the integer
lattice points of a D-dimensional rectangle with side lengths Nd ,
Fig. 3B.

The magnitude of an eigenvalue depends only on the magni-
tude of p, and thus, the eigenvalues can be ordered by smallest to
largest distance from the origin in p-space. There will be multiple
eigenvalues with the same magnitude, corresponding to the same
value of |p|. The number of eigenvalues of a given magnitude
will increase with distance from the origin. Thus, moving away
from the origin, there will be more eigenvalues but of smaller
magnitude (schematic in Fig. 3B).

When ordered by their magnitude, the eigenvalue profile
thus shows a step-like shape, Fig. 3C. A smoothly interpolating
function for the eigenvalue profile can be derived by noting that
the eigenvalue profile is spherically symmetric in p-space, and
thus, the number of eigenvalues of a given magnitude depends
on the number of lattice points at the corresponding radius.
Interpolating this number by the volume of a D-dimensional
ball yields the interpolating function

�p ∼ exp

(
−

2�2(�D(D+1)/2p)2/D

e

)
, [9]

where the scalar p now indexes the eigenvalues from 1 to N (the
total number of neurons) (see SI Appendix, section 2.5 and also see
ref. 4 for a similar argument). The eigenvalues decay first slowly
and then rapidly, showing a transition between a power-law-like
and an exponential regime.

To convert these eigenvalue profiles into linear dimension,
again note that the covariance profile is radially symmetric. Thus,
we first seek the smallest radius r such that a fraction (1−�) of the
total eigenvalue mass lies in a sphere of radius r, and then count
the number of eigenvalues in that sphere. The scaling of this
radius with D can be derived by observing that the probability
mass of a D-dimensional Gaussian concentrates in a shell of
radius

√
D/� around the origin, as shown in Fig. 3D (we provide

further details and calculate the radius more exactly using a �-
distribution in SI Appendix, section 2.5)

Thus, any sphere that captures a significant fraction of the
probability mass must grow as r ∼

√
D/�.† The number of

eigenvalues (or lattice points) in a D-dimensional sphere of
radius r grows as the volume, approximately as 1

√
D�

( 2�e
D
)D/2 rD.

Consequently, as shown in Fig. 3 E and F, the linear dimension

grows as 1
√
D�

(
K4
�

)D
, where K4 is a constant. The solid lines in

Fig. 3 E and F show an exponentially growing theoretical lower
bound that is derived from the median of a chi distribution and is
valid whenever � < 0.5 (i.e., capturing at least 50% of variance).

†Note that this problem is closely related to finding a 95% (or any other percent) CI for a D-
dimensional Gaussian. While an interval of width 2� contains 95% of the probability mass
in 1D, in higher dimensions an interval of any fixed width contains a shrinking fraction of
the total probability mass. Thus the interval must grow with D.
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As long as tuning curves are not too wide, this scaling
of linear dimension is extremely rapid, growing exponentially
with intrinsic dimension. Moreover, for exponential scaling to
break down tuning curves must be very wide—enough that any
individual neuron responds significantly to all possible values of
the latent variable (SI Appendix, sections 2.5 and 4 and Fig. S4).
Thus, exponential scaling will be the default and even relatively
low-dimensional Gaussian manifolds with broad tuning will have
very high linear dimension. For example, as shown in Fig. 3E,
a population of neurons with broad Gaussian tuning to an 8
dimensional latent variable has linear dimension L0.95 > 6×105.

The structure of the argument presented above is quite
general, relying on the interaction between the decay of the
eigenvalue magnitude with distance from the origin and the
growth of volume with radius—while eigenvalues decay rapidly
with distance, the growth of volume means that the radius of a
sphere that captures some significant fraction of the total mass
of eigenvalues must grow with D. The argument thus extends to
other sparse tuning curves even if non-Gaussian.

Exponential or faster scaling for sparse tuning curves can be
more generally derived from uncertainty principles. Analogous
to the 1D setting, the results of ref. 69 can be used to show that
if a fraction 1 − �̂ of the covariance profile is concentrated on a
set S of size K , then the smallest set that contains 1 − � of the
eigenvalue mass (i.e., the (1 − �)-linear dimension) has size at
least ND

D (1 − �̂)(1 − �)/K (where as before ND is the number
of tuning curve centers per dimension, assumed the same for
simplicity). For the case of Gaussian tuning, the size of the set
containing 50% of the covariance profile can be upper bounded
by the number of points in a sphere of radius �

√
D, and this when

combined with the uncertainty principle again yields exponential
scaling.

In the more realistic case where tuning curves are truly
localized, meaning that each neuron’s tuning curve decays to
zero within a finite length (rather than, e.g., the small but infinite
tails of a Gaussian function), most of the mass of the covariance
profile is contained within a sphere of fixed radius, independent
of dimension. In this setting, the linear dimension grows as
L1−� ≈

√
D
D
(1− �) (SI Appendix, section 2.6), and thus grows

supraexponentially with dimension.

Multiplicative Tuning. We next consider tuning curve models
where tuning to the latent variable can be written as a product
over 1D or lower-dimensional factors. That is, the tuning curve
function is of the form

yn(t) = f (x(t),�n) =
D∏

d=1

fd (xd (t), �dn ). [10]

Here xd and �dn are the d -th components of the vectors x and
�n, and the fd ’s are scalar functions. For simplicity, we assume
that each factor fd is a function of a scalar variable xd . However
in general the fd ’s could be multivariate functions of disjoint sets
of multiple variables and similar results hold.

As an example of such tuning, common models of attention
involve multiplicative gain modulation (76). Thus the latent
variable includes both the current stimulus value and the value
of the attentional signal, and the response of a neuron can be
written as a product of stimulus tuning and the response to
the attentional signal (Fig. 4 A, Left). Another example is the
multiplicative modulation of an epoch code by task variables
observed in some decision-making tasks (Fig. 4 A, Center) (77,
78). For a third example, the spatiotemporal receptive fields of

early visual cells are often decomposed as a product of the spatial
part and the temporal part (Fig. 4 A, Right) (79). More generally,
multidimensional tuning curves that are not multiplicative may
be able to be approximated by a product of lower-dimensional
factors in a so-called “mean field” or separable approximation.

Let m and n be two neurons with parameter vectors �m and
�n. If the sampling of the latent variable is independent across
dimensions and boundary conditions are rectangular, then the
covariance between these neurons can be written as

c(�m,�n) =
∫

dx p(x)f (x,�m)f (x,�n)

=
D∏

d=1

∫
dxd p(xd )fd (xd , �dm)fd (xd , �dn )

=
D∏

d=1

cd (�dm, �
d
n ), [11]

where p(x) =
∏

d p(x
d ) is the distribution of latent variable

values, �dm and �nd are the d th components of the parameter
vectors �m and �n, and we have defined cd (�dm, �dn ) =∫
dxdp(xd )fd (xd , �dm)fd (xd , �dn ). While the function c yields the

covariance between any two neurons, each function cd yields
the portion of the covariance that comes from the similarity of
responses along the d th dimension.

As in the translation-symmetric case, we assume that the tuning
curve parameters tile the space, forming the points of a lattice
with Nd tuning curve parameters along the d th dimension. Let
the parameters along the d -th dimension be

{
�d1 , . . . , �

d
Nd

}
.

Note that these parameters do not need to be equally spaced
and that Nd and the specific choice of parameters can differ
across dimensions. The d th component of any tuning curve
parameter vector (e.g., �dm) is drawn from

{
�d1 , . . . , �

d
Nd

}
, and

as a population, the parameter vectors span all N =
∏

d Nd
combinations of parameters.

If the tuning curve parameters tile the space in this way, the
N × N covariance matrix of the data can be written in terms
of a set of smaller matrices, Cd that capture the component
of covariance along each dimension. Here, each matrix Cd is
Nd × Nd and has entries Cd

rs = cd (�dr , �ds ). We then have C =
⊗

D
d=1C

d , where⊗ indicates the tensor product (see SI Appendix,
sections 3.1 and 3.2 for more details).

Now let {d1 , 
d
2 , . . . , 

d
Nd
} be the eigenvalues of Cd . The

eigenvalues of C are all possible products of one eigenvalue from
each Cd and so take the form

∏
d 

d
pd , where dpd is the pd th

eigenvalue of Cd and each pd ranges over 1 to Nd .
The linear dimension ofmultiplicativemodels grows exponentially
with intrinsic dimension. Note that the eigenvalues of each com-
ponent Cd (when appropriately normalized) can be interpreted
as the outcome probabilities of a categorical random variable Zd ,
taking values in {1, . . . , Nd } with P(Zd = k) = dk . Moreover,
the eigenvalues of the covariance matrix itself can be interpreted
as the outcome probabilities of the joint random variable Z =
(Z1, . . . , ZD). For simplicity, here, we present the case where
the tuning along each dimension has the same functional form.
Thus each component Cd has the same eigenvalues, which we
denote {1, 2, ..., ND}, and each Zd has the same distribution.
However, the argument extends to the case when tuning to
different dimensions takes different shapes, as shown in SI
Appendix, section 3.3.
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The equivalence between probabilities and eigenvalues means
that finding the smallest set of eigenvalues that sum to 1 − � of
the total is equivalent to finding the smallest set of outcomes that
accounts for 1−� of the total probability mass of Z . This smallest
set of outcomes is sometimes called an �-high-probability set (80).
The (1− �)-linear dimension is the size of this high-probability
set.

The asymptotic equipartition property (80) guarantees that
asymptotically the high-probability set contains 2DH() out-
comes, where H() = −

∑
p p log2 p is the Shannon entropy

of the eigenvalues of each component (normalized to sum to
1). Thus, the linear dimension again grows exponentially with
intrinsic dimension (further details in SI Appendix, section S3).
When tuning along different dimensions has different shapes, the
same form holds but with the entropy replaced by the average
entropy of the individual factors. Moreover, the linear dimension
of data from the multiplicative model grows as the product
of linear dimensions of the individual factors. The scaling is
asymptotic, but in practice convergence is very rapid, as shown
in Fig. 4 D, G, and J and SI Appendix, Fig. S1.

For a nonasymptotic lower bound on the linear dimension,
assume that only two eigenvalues for each factor are nonzero
(and thus, the overestimate of the intrinsic dimension of 1 by
the linear dimension for each multiplicative factor is as small
as possible while still being an overestimate). When normalized
to sum to 1, these eigenvalues can be written as {1 −  , }, for
some  ≤ 0.5. The eigenvalues of C are again tensor products
of {1 −  , } taken D times. In descending order of magnitude,
there is 1 eigenvalue of magnitude (1 − )D,

(D
1
)

eigenvalues
of magnitude (1 − )D−1 , and so on, with

(D
k
)

eigenvalues of
magnitude (1− )D−kk. Due to the normalization, the sum of
the eigenvalues

∑D
k=0

(D
k
)
(1− )D−kk = 1.

These eigenvalues are the outcome probabilities for a binomial
random variable X distributed as Bin(D, ) (i.e., D trials with
success probability ). Thus, L1−� is the size of the smallest
subset of outcomes of a binomial random variable that account
for (1−�) of the probability. For � ≤ 0.5, standard lower bounds
on sums of binomial coefficients yield

L1−� ≥
1√

8�(1− �)
2(Hb(�)−

log2(D)
2D )D, [12]

where Hb(�) = −� log2 � − (1 − �) log2(1 − �) is the binary
entropy function and � is lower bounded by  − (1 + ln(2))/D
(see SI Appendix, section 3.3 for full argument). Thus, except
when D is small enough that Hb(�) <

log2(D)
2D the lower bound

grows exponentially with D [with the exponent asymptotically
approaching Hb()].

In Fig. 4 B–J, we numerically verify the arguments in this
section for three examples of multiplicative tuning curves. Fig. 4
B–D shows tuning curves that are products of sigmoidal factors,
with sigmoids having a range of slopes and centers. Fig. 4 E–G
shows tuning curves that are products of Gaussian factors with
different widths and centers. And Fig. 4H–J shows tuning curves
that are products of mixtures of sigmoidal and Gaussian factors.
In SI Appendix, Fig. S1, we also show results from a model-
agnostic setting where eigenvalues for the factors are directly
generated using symmetric Dirichlet distributions with different
concentration parameters. In all cases, eigenvalues are the tensor
product of the eigenvalues of the component matrices (Center
column), and linear dimension grows exponentially with intrinsic
dimension (Right column).

To summarize, for multiplicative tuning the linear dimension
grows exponentially with intrinsic dimension, with a scaling
constant that approaches the average entropy of the eigenvalue
distribution for a single factor.

Discussion

The relationship between intrinsic and linear dimension provides
insight into fundamental features of neural information encoding
(such as generalizability and the progress of learning) as well as
constraints on statistical tools that can be used to analyze data
(1, 9, 29). It is widely appreciated that the point clouds and
manifolds that emerge from neural population data are often
nonlinear (9, 15, 18, 81), and previous work has in particular
identified the sparsity of neural population responses as an impor-
tant factor in this nonlinearity (4, 10, 17, 29). The present study
shows that the nonlinearity is likely to be exceedingly high—
for a number of common population codes, linear dimension
grows at least exponentially with the intrinsic dimension of data.
This exponential growth holds even if representations are not
sparse; thus, even quite distributed population codes can have
extremely high linear dimension. Consequently, dimensionality
reduction methods that fit a linear subspace to data, such as
PCA and Factor Analysis, will dramatically overestimate the true
dimension of data drawn from these population codes.

The analytical results here show exponential or faster growth of
linear dimension with intrinsic dimension for both translation-
symmetric and multiplicative population codes. These results
likely apply more generally to populations of neurons with sparse
or localized firing fields on some low-dimensional manifold,
even if these firing fields take different shapes across neurons
(SI Appendix, Fig. S6), as well as to tuning curves that can
be approximated by a product of lower-dimensional factors.
A particularly important case is populations where tuning
curves are approximately translation-symmetric, but there also
exist special locations with higher densities of tuning curves
or where neurons are more sharply tuned. Examples of this
form of approximate translation symmetry include orientation
tuning in V1, where cardinal directions are encoded with higher
density (82), and hippocampal place cells, which cluster around
reward and landmark locations (83). In SI Appendix, Fig. S7
we show that adding neurons concentrated at a set of special
locations to an otherwise homogeneous population serves to
either preserve linear dimension (if the added neurons have the
same tuning width as the homogeneous population) or increase
linear dimension (if the added neurons have sharper tuning).
Thus, the linear dimension of the homogeneous case is a lower
bound for the inhomogeneous case.

High linear dimension reflects the structure of the underlying
manifolds or point clouds and does not reflect a lack of data
or the presence of noise. The results apply in the limit of large
amounts of data and number of sampled neurons and in the
absence of noise. For finite data, the observed linear dimension
may be limited by the number of recorded neurons and the
complexity of the task or experimental setting (54) but grow as
more neurons and task variable values are measured (SI Appendix,
Fig. S5). In the presence of noise, the observed linear dimension
will be even higher than the noise-free calculations, and thus, the
lower bounds will still hold. Finally, while we choose 90 to 95%
variance explained as our criterion to define linear dimension
for the figures, no results depend on this particular threshold,
and exponential growth of linear dimension with intrinsic
dimension is required to capture any nonvanishing fraction of
variance.
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Previous theoretical work measuring linear dimension has fo-
cused on the participation ratio (14, 54, 84–86). If {�1, . . . , �N }
are the eigenvalues of the data covariance matrix, then the
participation ratio (PR) is (

∑
n �n)

2
/
∑

n �
2
n. Thus, if the eigen-

value mass is concentrated on a few large eigenvalues the PR
is low. Notably, Recanatesi et al. show that for 2-dimensional
Gaussian tuning, the PR increases inversely proportional to
tuning curve width, much as we find (29). We instead define
linear dimension as the number of eigenvalues required to
account for a certain fraction (i.e., 1 − �) of total variance, as
this is more easily interpretable in terms of data variance, and
closely matches what is done in practice when using methods
such as PCA (1, 9, 30, 81). Depending on the particular
eigenvalue distribution, the PR typically corresponds to the
number of eigenvalues required to explain about 80 to 95%
of the variance and is thus well-correlated with our definition
of linear dimension (54). Moreover, Wigderson and Wigderson
(69) derive an uncertainty principle for localization as measured
by the PR. In the context of our results, for translation-symmetric
tuning, this principle implies that the PR of the eigenvalue
distribution must grow as the number of neurons divided by
the spread of the covariance profile (similar to the growth of
linear dimension with sparsity), where spread of the covariance
profile is also measured using PR. Consequently, for translation-
symmetric tuning our results will extend to linear dimension
as measured by the PR. Similarly, for multiplicative tuning,
the PR of a product of factors is equal to the product of the
PRs, thus again yielding exponential scaling. More generally,
the PR has a number of nice mathematical properties and for
these reasons was suggested as a more theoretically tractable
alternative to fraction of variance explained when measuring
dimensionality of neural population datasets (54). PR may thus
provide a useful way to extend these results to other population
codes.

The analyses presented here suggest that neural data from
many brain regions should appear high-dimensional when viewed
through linear dimensionality reduction methods, where “high-
dimensional” is to be interpreted as large when compared to
the number of encoded variables but still low-dimensional with
respect to the number of neurons in a brain region. In accordance
with our observations, recent data from large neural population
datasets show high linear dimension (4, 87), and recordings
from a number of low-dimensional systems appear distorted
and significantly higher-dimensional than they actually are
when viewed through linear methods as compared to nonlinear
methods (15, 17, 18, 70).

Despite these observations, in many settings linear methods
such as PCA have been successful at extracting structure from
neural population data. What could explain this good perfor-
mance?

One possibility is that the observed linear dimension is
limited by task structure (54). Gao and Ganguli show that
the linear dimension (as measured by PR) of neural data is
upper-bounded by a measure of task complexity that is low
in common neuroscience tasks. In many cases, their measure
of task complexity grows exponentially with the number of
task parameters. Thus, one test of the hypothesis that linear
dimension is indeed limited by task structure is if observed
linear dimension grows very rapidly as more task parameters
are added. Another possible test is if linear dimension is higher
in the case of naturalistic stimuli or during resting state activity
when compared to more controlled task conditions, for which
there is some evidence (88).

A second explanation is that the nonlinearity of neural point
clouds and manifolds differs substantially across brain regions,
reflecting differences in coding strategies, as suggested by recent
work (9, 29). Our results most naturally apply to sensory
coding, to hippocampal circuits that reflect spatial information,
and to sparse combinatorial encoding of information in the
cognitive cortex. By contrast, if linear decodability reflects
generalizability (6) then brain regions that construct generalizable
representations may show comparatively low linear dimension.
Or, if a brain region acts to transform an initial condition
into a particular dynamical pattern of activity, as suggested
for motor cortex (89), then the data will be dominated by
the linear dimension of the underlying dynamical system. This
dynamical system may occupy a low-dimensional linear subspace
because of constraints on learning and connectivity structure
or the need for smoothness, controllability, and avoiding chaos
(3, 9, 12, 22). As a third possibility, confining neural dynamics
to low-dimensional linear subspaces that differ across tasks
might enable efficient continual learning without interference
(90). Thus, as recently proposed the ratio of linear to intrinsic
dimension might be a useful signature of encoding strategies
and task demands across brain regions and over the course of
learning (9, 29). Characterizing this ratio is increasingly tractable
given advances in large-scale recordings and manifold learning
algorithms.

Methods that seek the intrinsic dimension (D) of a nonlinear
data manifold rather than using the dimension of a linear
embedding (L) are an active area of research (15, 17, 29,
32, 55, 81, 86, 87, 91–97). One promising set of approaches
draws on powerful embedding theorems that show that D-
dimensional manifolds can be generically embedded into space
of dimension 2D + 1, potentially much lower than the linear
dimension (98, 99). In particular, the study of Tajima et al. (100)
combines delay embedding with random projections to provide
a potentially robust and scalable way of estimating intrinsic
dimension in neural population data. A second promising
approach uses population dynamics to reconstruct distances
between manifold states and has shown success on manifolds
derived from translation-symmetric tuning (15, 18). These and
other approaches may successfully replace linear methods when
dealing with highly nonlinear data.

This study identifies a natural class of low-dimensional
nonlinear manifolds that should exist in neural data. These
manifolds could be a useful theoretically tractable setting to
evaluate methods that estimate intrinsic dimension. For example,
dimensionality estimation algorithms could be applied to simu-
lated data generated from a population of neurons with Gaussian
tuning to a D-dimensional latent variable, with added noise. The
algorithms could then be compared on whether they successfully
extract these extremely nonlinear manifolds, how efficiently they
do so in terms of computation time and samples, and how robust
they are to noise.

Finally, while these results suggest caution when applying PCA
and other linear methods, they raise the encouraging possibility
that, at least in certain brain regions, low-dimensional population
structure may have been missed by linear analyses.

Materials and Methods

Figure 2. For Fig. 2 C and D, there are N = 50 neurons uniformly spaced in
[0, 1] and N� = 104 values of the latent variable are drawn from a uniform
distribution in [0, 1], so that A is a 50× 104 matrix. All neurons have Gaussian
tuning curves with a fixed width� and periodic boundary conditions. In Fig. 2C,
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circles are eigenvalues of the covariance matrix from simulations and lines
are theoretical predictions from SI Appendix, Eq. 22. In Fig. 2D, circles are
L0.95−1 calculated from simulations, and the line is theoretical prediction in SI
Appendix, Eq. 24. Note that to be conservative with regard to finite size effects,
for all numerical simulations we subtract one when plotting the computed linear
dimension—this, for example, ensures that if 9 principal components account
for 94.9% of the variance then the plotted linear dimension is 9 rather than 10;
it also guarantees that lower bounds apply to both non-mean-subtracted and
mean-subtracted data.

Figure 3. Circles in Fig. 3 C, E, and F are calculated from simulations with data
generated from D dimensional Gaussian tuning curves with periodic boundary
conditions along each dimension with the following parameters: D = 2, 10
neurons per dimension (100 total); D = 3, 10 neurons per dimension (1,000
total); D = 4, 8 neurons per dimension (4,096 total). Simulations used 104

uniformly distributed values of the latent variable. In Fig. 3C, � = 0.15. Thin
lines are eigenvalues from theoretical prediction Eq. 8. Thick lines are smooth
interpolations from Eq. 9. In Fig. 3 E and F, diamonds are linear dimensions
found numerically from tensor product of 1D eigenvalues (used to speed up
computation as D gets larger). Dashed lines are semianalytic approximation
found from the chi-distribution. Solid lines are lower bounds from the median
of a chi distribution and apply to any L1−� provided � < 0.5 and D > 1.

Figure 4. For Fig. 4 B–D, neurons along each dimension have sigmoidal
response functions f(x,�) = 1/(1 + e−s(x−�)). For simulations, there
are 8 neurons along each dimension with uniformly spaced � in [0, 1]. Slopes
s are uniformly spaced in the range [−5, 5]. For Fig. 4 E–G, neurons along

each dimension have Gaussian tuning curves with varying widths, starting
with the minimum value at the center of the range [0, 1] and increasing
toward the ends. There are 8 neurons along each dimension. The minimum
width is 0.05 and increases in steps of 0.05 to the maximum of 0.2. In Fig.
4 C and F, circles are eigenvalues of covariance matrices calculated from D
dimensional data and lines are tensor products of eigenvalues of the 1D
covariance matrix, shown in the Inset. In Fig. 4 D and G, circles are L0.9
calculated from simulations and lines are asymptotic lower bounds 2D(H−0.05)

where H is the entropy of the normalized 1D eigenvalues shown in the Inset
of Fig. 4 C and F. Note that asymptotically 2D(H−�) is a lower bound for any
�, so the choice of 0.05 is for convenience but also shows that exponential
scaling applies for small D. Fig. 4 H–J show a model that has equal numbers
of sigmoidal and Gaussian dimensions (i.e., a hybrid of the models shown in
Fig. 4 B and E).

Data, Materials, and Software Availability. Simulation code is available at
https://github.com/chaudhurilab/manifold-lin-dim (101).
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