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EFFECT OF MECHANICAL DISCONTINUITIES ON THE STRENGTH 
OF POLYCRYSTALLINE ALUMINUM OXIDE 

S. Wallace 

of California 
, California 94720 

ABSTRACT 

This examines the effect of 

voids on the bend of a 

the results to traditional and 

introduced spherical 

brittle solid and compares 

strength No correlat.ion is found between these relation-

ships and the data. 

The statistical Weibull is examined particularly with 

regard to the to microstructural features. A direct test 

of Weibull statistics showed deviations from theory, perhaps due to 

the very small stressed volumes employed. Microstructural evidence 

may restrict its use in this and other Based on the 

between McClintock~s Statistical model and the observed 

microstructural features a failure criterion for with randomly 

distributed flaws is 





1. INTRODUCTION 

In order for materials to be utilized to their fullest extent 

and greatest efficiency, corr-elations between microstructur-e and proper-~ 

ties must be developed. Several microstructur-al features have been 

noted which affect the mechanical , such as, str-ength and 

fractur-e toughness, of br-ittle materials. These features include, 

but are by no means limited to, size, sur-face finish, microcracking 

and second To date little wor-k has been performed 

relating these microstr-uctural features to mechanical ; most 

relationships have been , based on bulk such as 

average grain size, mean surface finish and total second contenL 

This study is concerned with the effect of mechanical discontinuities 

on the fracture of a brittle solid. If it is assumed that 

the body fails from one of these introduced mechanical discontinuities, 

we must accurately describe the most severe flaw if we are to determine 

it's effect on the A 

flaw necessarily involves its location, 

of the most severe 

, orientation and stress 

field. Because the scope of this work does not allot'J the time to 

accurately descr-ibe all of these 

it is necessar-y to exer-cise caution when 

for- this reason we have chosen to 

intr-oduced, r-andomly distr-ibuted, 

for- the most gener-al case, 

a for study; 

the effects of ar-tificially 

voids on the fractur-e 

str-ength of aluminum oxide (almnina). The variables 

for this system are then reduced to size~distribution and number of 

discontinuities. 



Alumina was chosen as the matrix material for a variety of reasons. 

First, it is one of the most important commercial industrial ceramic 

materials. Second, a wealth of data exists on porosity~fracture strength 

relationships of commercial purity alumina. Finally, previous work 

in this laboratory has shown that it is possible to consistently sinter 

high purity alumina powder to 99.+% of theoretical density. 

The areas in which this study differ from most previous work 

are in the production of voids (porosity) and purity (particularly 

glass phase content) of the material. Other studies have varied porosity 

content, as well as other microstructural features, by varying the 

sintering conditions. Because variations in sintering conditions 

change pore size- and shape-distribution as well as grain and impurity 

size distribution and shape, it is difficult to make an accurate evaluation 

of the effect of void content. Also, much of the previous materials 

studied had a large content (l-5%) of glassy~phase distributed along 

the grain boundaries. This is particularly damaging to the results 

since the fracture path is often intergranular rather than transgranular. 

In this study the starting powder and processing conditions were 

identical for each specimen. Spherical voids were produced by mixing 

a size-separated spherical organic powder with an MgO-doped alumina 

starting powder, pressing, then heating the resulting green compact 

to burn out the organic spheres. All green compacts were then fired 

under identical conditions. 

Four hypotheses will be proposed in section 3 to describe the 

fracture strength data of these specimens. The data will be presented 

in section 4 and compared to the hypotheses. 



2 . PROCEDURE 

An organic material was used to produce the voids in the green 

compact. The following requirements were placed on the organic powder 

to be used in this study: 

1. spherical particles 
2. appreciable size fraction between 25 ~m and 125 ~m 
3. decomposes or vaporizes below ll00°C in air 
4. very low residue upon heating. 

On the basis of these requirements a readily available mounting 

powder, Koldmount, was chosen. Thermogravimetric analysis showed 

that the powder burned out of a green compact at 600°C and had a 0.025% 

residue after heating to 900°C for 8 hours. 

The organic powder was size separated in a sonic sifter using 

37, 44, 63, 74, 105 and 125 ~screens. Due to electrostatic charge 

build-up and screen clogging all powder was screened three times before 

use. 

The alumina powder was prepared (Fig. 2.1) by mixing 0.1 w/o 

MgO (as Mg(N0
3

)
2

·6H
2
0, Mallinckrodt lot XRX) and 2. w/o PVA binder 

(Polysciences, lot 257-8) with an isopropyl alcohol slurry of Linde A 

alumina powder (lot 511) in a blender for five minutes. The resulting 

slurry was stirred and gently heated until a mushy consistency was 

reached. Final drying was completed in a drying oven at 50°C. After 

drying,all powder was screened through a 44 ~ (325 mesh) screen to 

break up large aggregates and to aid homogenization. A weighed amount 

of size separated organic was then added to the prepared alumina powder 

and thoroughly mixed by vigorous shaking. 



Early results showed that uniform filling of the uniaxial die 

was necessary to prevent density gradients in the uniaxially compacted 

specimens that would lead to warpage upon isostatic pressing. To 

minimize density gradients, the uniaxial die was and evenly 

filled when loading powder. A minimum vibration time was used to 

prevent segregation of alumina powder and spheres. Specimens 

were uniaxially pressed at 15 MPa then by the 

wet bag method at 175 MPa. The resulting green compacts had a green 

density of -48% of theoretical density. 

The compacts were calcined at 900°C for 8 hours to burn off the 

to MgO. 

After furnace cooling, the compacts were placed on a molybdenum 

~6 
pedestal and transferred to a high vacuum (10 torr) tantalum resistance 

Brew furnace. 15 The firing schedule was based on previous work performed 

in this laboratory which showed that very (99. ) could 

be obtained. The firing schedule was: 

L heat @ 
~1 

20°C min to 1200°C 
2. heat @ 2°C min~l to l750°C 
3. hold @ 1750°C for l hour 
4. cool @ l0°C to room 

All specimens were fired to this schedule. After firing, 

the density of all specimens was measured the Archimedes 

method using distilled water. Void fractions were calculated from 

the measured density differences between without and with 

introduced voids. 



Fired specimens were mounted on alumina base plates and were 

sawn to a 1.2 mm thickness and a width of three (3) mm using a resinoid 

bonded 220 grit diamond blade turning at a rim speed of -27 m/s. The 

specimens were fed in the direction of blade rotation with a constant 

-4 
feed rate of -10 m/s. Flowing kerosene was used as the coolant. 

Strength measurements were performed on a four point bend tester 

-1 
(Fig. 2.2) at an average loading rate of 4.5 MPa·sec • The overall 

span of the four point tester (_Q,l + £
2

) was 19.05 mm and the inner 

17 
Since previous work had shown that polishing 

the tensile surface yielded no improvement in fracture strength over 

the as~cut surfaces, all testing was performed with the tensile surface 

in the as~cut condition. 

After testing, representative samples were prepared for microscopic 

examination. Fracture surfaces were sputtered with a 200A gold coating 

to prevent charging in the SEM. Polished surfaces were prepared by 

polishing on 30 ~m, 15 ~m then 6 ~m diamond bonded wheels before being 

lapped on 6 ~m, 1 ~m and finally 1/4 ~m diamond impregnated nylon 

cloths in Syntron polishers. Since no suitable chemical etch was 

found, the specimens were removed from the polishing mounts and thermally 

etched @ 1400°C in air for four hours. The polished and etched surfaces 

were then sputtered with a 20M gold coating. 

Grain size was measured as the mean linear intercept of approximately 

400 grains. 
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3. DEVELOPMENT 

It is intended that this section presents in some coherent manner 

several hypotheses which could explain the strength data generated 

in this study. Comparison of model predictions to actual data will 

be deferred until section four. However, brief discussion of the 

implications of each hypothesis will be presented with its development. 

In order to place Weibull's general statistical approach, which 

is based on weakest link theory, into historical perspective, it is 

interesting to note that Weibull first published his theory in 1939, 

nineteen years after Griffith's paper and ten years after development 

of extreme value theory. For sake of comparison, standardized methods 

of valuating fracture toughness were not published until 1965. 11 

Although the Weibull approach contains some fundamental limitations, 9 

it has provided fit for data up to the present day. 

Only with the recent need to develop structural materials with 

better reliability in high temperature and corrosive environments, 

such as gas turbines, nuclear reactors and coal gasifiers, has work 

on fracture statistics received more complete attention. Much of 

the recent work on fracture statistics is based on extreme value 

statistics with little to the microstructure of the material. 

. 3 h 9,12 However, recent work by McCl2ntock and ot ers develop fracture 

statistics from not only statistical theory but also with consideration 

of the microstructural parameters which can influence the physical 

properties. Efforts in correlating observed material flaws with strength 

measurements have been aided with recent tabulations of elasticity 



solutions of complex flaw 
13,14 

In the development of this section Weibull's analysis is given 

the first and the most detailed treatment because of its widespread 

use and because the approach and methods used by Weibull are extended 

and used as a basis for the other After development of 

the Weibull approach possible extensions based on assumptions concerning 

fracture mechanics (LEFM) solutions are utilized. These extensions 

of the Weibull approach are in forms so that trends 

may be Prediction of a~bsolute values of strength would 

require much further refinement. 

The Weibull Analysis 

The most universally used method of the variations 

in strength of "identical" was by Weibull. He 

reasoned that since strength of a body is dependent upon the severity 

of the flaw failure as was shown some years earlier by Griffith, 

and that since seemingly identical bodies show significant variations 

in strength, there must be flaws of within the body. 

By assuming that a single severe flaw to final material 

failure without with other flaws, he was able to utilize 

weakest link 

It can be shown by weakest link 

survival, P of a body which fails from a s 

given by: 

that the probability of 

volumetric flaw is 

""" exp g ) dV] (3.1) 



where g(S), the volumetric strength function, is a function of the 

density and severity distributions (size, shape and orientation) of 

flaws in the volume. Weibull chose a function of the form 

g(S) ""' (S/S )m 
0 

(3.2) 

to describe the volumetric strength distribution and termed the integral 

over the volume the Risk of Rupture, B: 

B ~ f l g(S) dV ~ f l (S/S )m dV 
VO VO 0 

(3.3) 

The probability of survival can then be related to the stress on the 

sample (S), characteristic st.rength {S ) and spread about the 
0 

characteristic strength (m, the Weibull modulus) . With this equation 

Weibull was :not only able to accurately describe the spread of strengths 

about a characteristic value for "identical" specimens but could also 

predict reduction i:n median strength when of increased volume 

were tested. 

The calculation of the Risk of Rupture in tested in 

four~point bending, Fig. 3.la, is complicated by the fact that the 

stress in the specimen is not constant with position in the specimen 

(Figs. 3.1b, 3.lc). The combination of flaw severity and applied 

stress at the flaw determines whether the flaw will propagate. Assuming 

that only the flaws in the tensile regions of the specimen can cause 

failure, the Risk of Rupture in four~point bending may be written: 

wh 
B=-~-

2 (m+l) 
(Derivation: Appendix 1) (3 .4) 



For a finite number of specimens, N, which are ranked in order 

of increasing strength, l ... j ... N, the 

be approximated: 

1 ~ 0.3 
N + OA 

Substituting these for B and into 

obtain 

wh 
2 (m+l 

Taking the natural logari thrn of both sides twice: 

of survival can 

(3.5) 

(3.1) we 

( 3 0 6) 

~m 

s 
0 

(3.7) 

Since this is of the for~ y ~ ax+b, when the experimental 

values of strength and rank (j) are , the slope of the 

least squares fit of the data is the Weibull modulus, m. The characteris-

tic strength can be 

For the median 

s 
0 

from the 

( 3. 8) 

1/m 

(3.9) 
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The Weibull approach places restrictions on the homogeneity of 

the material. It is evident that, if there are flaws of varying severity 

randomly distributed within the volume, the material is not homogeneous 

on a microscale. However, in order to meet Weibull's criterion for 

homogeneity, the material must be homogeneous on a macroscale; the 

flaw severity distribution must be random within the material. This 

leads to an interesting contradiction of Weibull's assumption of no 

flaw~flaw interaction: if flaws are distributed randomly within the 

body, there is a finite probability of a flaw existing within the 

stress field of another flaw. Correcting for this stress field overlap 

in the Risk of Rupture calculation would be difficult because correction 

would require expressions for density, size distribution, shape distribution 

and orientation distribution of the flaws in addition to accurate 

elasticity solutions describing the stress fields. It must be assumed 

that interacting flaws are considered as one large flaw. 

Introduced 

When large numbers of mechanical discontinuities are introduced 

into the material, modifications must be made to the Risk of Rupture 

calculation in the Weibull because mechanical discontinuities 

change the stress distribution in the surrounding material. 

1 
Vardar et al. considered the state of stress around a spherical 

' d . d b d' 2 d d h R' k f R t 1 1 vo~d, as er~ve y Goo ~er, an correcte t e ~s o up ure ca cu a-

tion for the superimposed stress distribution. Their approach also 

took into account an increase in the nominal stress due to reduction 

of cross-sectional area of the matrix. The Vardar approach assumes 



that the material is and that the introduced voids do 

not change the failure mechanism or the intrinsic flaws; a reduction 

in strength is due only to the increased stress level in the small 

volume near the voids. It must be emphasized, however, that, due 

to the statistical nature of flaw size and spatial distribution, the 

flaw causing failure need not be within the stress field of a void. 

For this reason the Risk of calculation also includes a term 

for the volume of material which sees the nominal stress. Also, 

Vardar estimates that complications from void stress field 

overlap, limit his analysis to a void fraction of approximately 0.10. 

Due to the complexity of the , only the results are 

quoted here: 

( 1 +V ) -m 
v 

V H(m) 
v 

H(m) and depend upon the choice of limits over which the stress 

(3.10) 

field of the void is Because an analytic solution 

was not possible, the numerical results for the median strength 

(P = 0.5 orB = 0.693) are 
s 

(Fig. 3.2). 

in form for ~ = 0.20 

Several conclusions can be drawn from Vardar's 

analysis. First, voids are not the cause of failure, per se, but 

rather it is the stress field of these voids which interacts with 

intrinsic flaws causing the intrinsic flaws to to final 

failure. Second, the reduction in is a function of the volume 

fraction of voids but is independent of void size. Finally, since 
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the flaw population does not with the introduction of voids, 

it is expected that the derivative of the of failure stress would 

be continuous to zero volume fraction of voids; i.e., the fracture 

stress should not 

first void. 

discontinuously with the introduction of the 

Void~Grain Boundary Interactions 

A possible modification of the Weibull is to assume 

the nature of the flaws failure or more whether 

the flaws which cause final failure are associated with any specific 

microstructural feature. Weibull assurned that flaws were a volume 

effect and did not directly on their nature. This approach, 

while useful, would be more infm::mative if it would indicate something 

about the flaw itself, either in a or sense, so 

that "materials " could be That is, if flaws 

are associated with, say, boundaries, ·then a compromise of the 

number of grain boundaries (statistical nature of flaw size) and the 

length of grain boundaries (size of flaws) be As 

another example, Vardar's , if correct, indicates that if 

we model the pores in a ceramic 

strength distribution and median 

as 

of porosity and no·t on pore size. From a 

voids, then the 

are dependent on volume fraction 

standpoint, processing 

might then be so that pores which are detectable by standard 

nondestrictive examination are 

When associating flaws with microstructural features a logical 

starting point is to assume that flaws are associated with grain 



boundaries. As a precedent McClintock
3 

assumed that cracks are random 

aggregations of unbonded grain boundaries. Although the condition 

that grain boundaries are unbonded may be a bit extreme, the large 

fraction of intergranular fracture in many cerMnic materials indicates 

that grain boundaries tend to be weaker than the grains themselves. 

The first approach could be an extension of Vardar's analysis 

by assuming that the Risk of is proportional to the number 

of grain boundaries within the stress field of the void, much as 

Weibull assumes that the Risk of Rupture is proportional to the volume 

of stressed material. This would result in equations similar to 

Vardar's (Eq. 3.9) with a size term. For specimens with equal 

grain size the resulting equation would be identical to Vardar's 

equation in form and in the prediction that there would be no void 

size dependence. 

Another assumption that could be made is that the Risk of Rupture 

is proportional to the ntunber of boundaries intersecting the 

void surface. The number of boundary~void intersections, NGB' 

can be written: 

NGB "" J "" J N dV 
voids v v 

(3.11) 

Substituting for N and we obtain: v 

6V 

NGB v v 
"" 

dG
2 

(3.12) 



Physically, Weibull associated flaws with the volume of the 

specimen. Wheh associating flaws with a microstructural 

feature, ie, the grain boundary~void intersections, we replace the 

volume in the Weibull 

in the sample: 

Vwh 
B "" 

Solving for the median 

s 
med 

V wh 
v 

(m+ 1) 

by the number of these features 

+ 2 ') 
m+l 

we obtain: 

1 
+ 

2 
m+l 

) -1/m 
s 

0 

We must digress here to consider the meaning of the 

characteristic Weibull in his formulation of the Risk 

of Rupture did not attach a direct to the characteristic 

(3.13) 

(3.14) 

strength other than that as a scale factor for the of different 

materials. However, when we use the Weibull formulation to predict 

the strength of specimens of volumes or under varying 

loading conditions (three , four point bending, uniaxial 

tension) we have assumed that the characteristic strength is a property 

of the material. In addition, Vardar's derivation assumes that the 

material fails from inherent flaws; therefore the characteristic 

strength must be a material of the void diameter 

and volume fraction. Because similar may be used with 

the Weibull Modulus we shall also consider m a material property, 

thus constant. 
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Returning to our previous reasoning, if we assume G, S and 
0 

m constant in all specimens, then: 

and 

£n S d me 
1 
m 

(3.15) 

(3.16) 

When £n S d is plotted against £n(d/V ) for each of the void me v 

size/void volume fraction sets t.hen a straight line should result 

with a slope of l , if the failure occurs at the "weakest" grain 
m 

boundary-void intersection. 

We can make two predictions from this hypothesis. First, the 

median strength should decrease as the volume fraction of voids 

increases. Second, for equal volume fractions of voids the large 

voids should be less detrimental to strength than the small voids. 

Note, it would not be expected that this model would be valid 

when a poor statistical sampling of grain boundary-void intersections 

occurs (Vv + 0) or when void-void interactions occur (Vv 0.10). 

Voids as Flaws 

Linear elastic fracture mechanics (LEFM) has been used to predict 

flaw size at fracture from the strength data and fracture toughness 

values. However, due to the difficulty of producing accurate flaw 

sizes and tip sharpness and the difficulty in measuring these quantities, 

the prediction of strength from measured flaws is perfo:rmed infrequently. 

For blunt mechanical discontinuities, such as spherical voids, 

LEFM solutions are not expected to apply as sharp crack tips are 



necessary. However, in a 

on the surface of the void, 

with many grains 

is expected to 

occur due to the differences in surface energy of the grain~grain 

interface and the 

that the groove is 

interface. 

to atomic dimensions 

expected to apply to even the "blunt" 

therefore, LEFM is 

voids if the voids 

have several boundaries on t.he surface sintering. 

by McClintock, Note that flawed or cracked boundaries, as 

are not necessary. 

If the gross 

solution for the 

case of the 

made that the 2~dimensional LEFM 

flaw the 3~dimensional 

void, then: 

Cd (3.17) 

Variations in fracture then must be related to the variation 

in the void sizes and the of a void in 

a region of high nonLinal stress. 

When the void densities (statistical and volumes of 

specimens are then the median fracture of groups 

of samples should be rela.t.ed 

(3.18) 

when 



-19-

or: 

Substituting equation (3.19) into equation (3.13) we obtain: 

s 
rned 1 

s rned 2 

In addition, the ratio of the strongest to weakest speci~ens in a 

group would necessarily be less than or equal to the square root 

of the ratio of the smallest to largest void sizes: 

(

d . )1/2 
~ rn~n """--d 

max 

(3 .19) 

(3. 20) 

(3.21) 

This hypothesis predicts a definite strength dependence on the 

void diameter but predicts very slight influence of changes in void 

fraction. 

Flaw-Flaw Interaction 

As first noted by Weibull, statistical strength theories place 

restrictions on the homogeneity of the material; flaw-flaw interactions 

are assumed to not occur. Due to the statistical nature of flaw 

size, shape, orientation and distribution and the complexity of stress 

distribution around complex flaw shapes there is little hope of accurately 

predicting the effect of flaw-flaw interaction on the strength of 

brittle solids. 



the case of flaw·~flaw interaction is one of 

spherical voids distributed in a matrix. For this case 

the stress distribution around isolated voids is known, as are, obviously, 

size, shape and distribution of voids. If the voids are 

distributed 

in the stress field. Now, even in this least difficult solution 

we must determine the 

L Probabilities of 1,2,3, ... n voids 
2. Probability of , ie, void~void orientations 
3. Probability of cluster orientations 
4. Stress fields around clusters of 1 2,3, ... n voids. 

Since each of these four calculations is formidable and beyond 

the scope of this work, a more vJill be taken. 

It can be shown that the of a cluster of n voids 

depends on the void 

equal void densities have 

(nwnber per unit volume, N ) and that 
v 

for a cluster of n 

voids. void densities occur \vhen the relation 

( (3.19) 

is satisfied. Furthermore, the dimension which describes 

the flaw size, a, is to the diameter of the voids occurring 

in the cluster. From LEFM the fracture stress can then be given: 

c (3.17) 

where Y is a flaw and orientation factor. If we compare median 

strengths and combine ( 3. and (3.17), we obtain: 
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(3.20) 

Note that this is the same relationship as obtained when discussing 

voids as flaws. 



i i 
(a) 

) 

Fig. 3.1 

(a) Loading of test 

(b) Moment distribution. longitudinal direction. 

(c) Stress distribution. thickness direct.ion. 
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4. RESULTS AND DISCUSSION 

Microstructure 

The understanding of all which involve materials 

includes evaluation of the microstructure for possible 

effects. This microstructural evaluation should take place prior 

to evaluation of other data in order that 

are better understood and better utilized. 

Preliminary work on the selection of t.he 

variables 

used in the 

generation of voids indicated t.hat a residue of 0. 025% of the organic 

remained after calcination. It: has been well documented25 that trace 

impurities can concentrate at boundaries and affect the grain 

boundary surface energy and thus the behavior and, if the 

fracture occurs boundaries 

In order to determine if the trace 

, the 

from the 

had a effect it was necessary to analyze the 

microstructure for 

in 

for and 

in grain size. 

with 

energy would 

content. Changes 

the driving force 

This in turn would result in variations 

Lineal of random microstructures yielded a mean grain 

size of 8.8 ~m with no 

amount of organic added. 

size variations with changes in 

of the small regions near voids 

yielded a size similar to that away from voids and in the dense 

specimens (Fig. 4.1 ~ 4.3). 



Fractographic , which will be discussed later, revealed 

no definite differences in the fraction of fracture 

with voids, indicating 

with voids are not signifi-

occurring in dense and in 

that the grain boundaries in the 

cantly stronger or weaker than those in the dense specimens. Because 

no changes occurred in 

that any residue from the 

of the specimens. 

sizes or fracture surfaces it is concluded 

had no effect on the measured properties 

The distribution of extrinsic voids is shown in Figs. 4.4-

4.6. Note that even there are clusters of voids evident in 

the surface, relatively fe\'17 voids are This would indicate 

that the clustering is not due to some attractive force such as electro­

static attraction but, rather, is due to random fluctuations in void 

distribution. A random cut the matrix indicates 

that the extrinsic voids are in shape and exist in a dense 

matrix (Fig. 4.3). 

Typical tensile surfaces are shown in 4.7-4.9. In particular, 

note that the surfaces are in the as-cut condition, as indicated 

by the scratches (Fig. 4.7), and that the scratches are nearly perpendi-

cular to the fracture 

surface reveals few 

of the tensile 

and a limited amount of transgranular 

fracture. Examination of the void . 4.7) indicates that 

some chipping occurs during is to note in 

Fig. 4. 7 that the frac·ture does not the cluster of 

six voids on the tensile surface. This would seem to indicate that 



the stress field from single voids and clusters of voids decays rapidly 

and that there is little interaction between the propagating crack 

and other "flaws" in the materiaL 

The choice of a "typical" fracture surface is a difficult task 

because localized regions are often predominantly intergranular (Fig. 

4.10) or transgranular (Fig. 4.11). Stereological evaluation of 

several representative random fracture surfaces indicates that 60% 

of the cross~section fractured in an mode with the 

remaining 40% in a transgranular mode. A fracture 

surface ( 65% intergranular fracture) is shown in Fig. 4.12. No 

statistically valid differences in the fraction of intergranular 

fracture could be detected between those specimens which contain 

voids and those which did not. 

Rice
18 

noted that in many materials in which the primary fracture 

mode is intergranular there is a to transgranular fracture 

around naturally occurring pores. In material with artificially 

produced voids there also seems to be a similar change as the crack 

front propagates past single voids or clusters of voids (Figs. 4.11, 

4.13 and 4.18). It is believed that this behavior is due to a change 

in the state of stress at the crack because the fracture mode 

changes when the crack front passes the voids rather than as it 

approaches them. It must be noted that the change in fracture mode 

does not always occur when the crack front passes a void (Fig. 4.10). 

If the regions of fracture are examined closely 

it becomes apparent that there are two modes of transgranular fracture: 
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1, Fracture which is independent of crystallographic direction as 

indicated by smooth curved surfaces (Fig. 4.11) and 2, Fracture which 

follows crystallographic directions (cleavage) as indicated by steps 

and notched surfaces on a grain (Fig. 4.15). Very little 

of the transgranular fracture occurs along crystallographic planes 

(the second mode). Although the regions which fracture in the first 

transgranular mode are relatively featureless, thermal etching of 

the grain boundaries (Fig. 4.14) reveals that this transgranular 

region actually encompasses many 

is not due to a single large 

the transgranular fracture 

and does not revert to intergranular 

fracture at the first 

through several grains. 

boundary but, on the average, propagates 

It may be appropriate here to reiterate that the primary fracture 

mode in all samples (with or without voids) is intergranular and 

that voids are not necessary for fracture to occur 

(Fig. 4.15). 

Values 

After reducing the raw data to the calculated values presented 

in Table I, the first task was to compare these data with proposed 

empirical and phenomonological relationships. (see 

reference 20 for a summary) Most of these proposed relationships 

considered only total pore volume and did not consider the effects 

of pore size and The data from this study (Fig. 4.19) indicate 

that there is a definite void size effect; therefore, these proposed 

relationships could be discarded immediately. Unfortunately, the 
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remaining relationships which predicted a pore size dependence were 

not able to accurately predict the data. Only the Weibull approach 

and extensions of the Weibull approach remained as possible "explanations" 

of the data. 

Presented in Table I are the values calculated from the raw 

data. Both mean and median strength values are reported. The consist-

ency in the experimental values is reflected in the small coefficient 

of variation values. 

A few comments about the calculated strength values are appropriate 

here. First, all reported values of the 

to the median values, unless otherwise noted, ie, the 

Characteristic Strength (S ). Second, as shown in the curves (Fig. 4.19) 
0 

and the data (Table I), the strength-void fraction relationships 

are very consistent and reproducible wi t.hin the void fraction range 

studied. Also, as shown in Fig. 4.20, there is a definite relationship 

between the median and Characteristic It is expected 

that this relationship, as well as the , is accurate 

since the least squares fit of the data through the 

origin. 

The values of the Weibull and m, reported in 

Table I are calculated from a least squares fit of individual sets 

of data by methods described in section 3. The weighted mean of 

the individual m values is 20.6. Since variations in m values cannot 

be correlated with variations in void densities, it is believed that 



the scatter in individual m values is due to the small number of 

specimens being tested. It can be seen that one or two high 

or low strength values out of ten can significantly affect the slope 

of the Ps-STS curve but have relatively little effect on the median 

value. This viewpoint is further strengthened by noting that there 

is a definite relationship between the coefficient of variation of 

the strength, CV, and m (Fig. 4.21). When a weighted mean of the 

CV values is used in conjunction 'II'Jith the experimentally derived 

CV-m curve, am value of 20.6 is predicted. This prediction compares 

favorably with that of the weight.ed mean of the m values (20.6) and, 

as discussed later, them value of all normalized data (21.7). For 

~'- f . d l . h' 21 
SCU\.e o compar1.son a propose re at1.ons 1.p 

( 4. 4) 

is also presented. Even though the experimental points do not lie 

on the proposed curve, the consistency of the data and the parallel 

nature of the two curves is obvious. 

Finnie
21 

indicated that data from different sizes of specimens 

and different types of tests can be pooled if each observation 

is normalized by the median strength for that set of speclinens. When 

the strength values of the of a set (void fraction-void 

size) were non1alized by the median strength of that set and the 

normalized values for all 198 bend specimens were ranked and plotted, 

the composite curve in Fig. 4.22 resulted. A least squares fit of 

these data yielded an m value (slope) of 21.7, a value nearly equal 

to that of the weighted mean of them values (20.6). Close examination 
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of the curve indicates of different slopes. The 

change in slope, if significant, could indicate the existance of 

two separate flaw populations. Since k l7 . d' d h wor 1n 1cate t at 

surface flaws were not one of the , both populations would 

necessarily exist within the bulk of the material. 

We must here to further consider the meaning of Characteris-

tic Strength and the relationship ·to the material under consideration. 

As discussed in section 3, the o.f for specimens 

of volume differing from that of the test volume assumes that the 

Characteristic Strengths and Weibull Moduli are identical for each 

sample of material. This states that t.he failure mechanisms 

and flaw populations are the same for each for a given loading 

condition (state of stress) the Weibull must be constants 

characterizing the batch of materials. Conversely, for 

similar loading conditions (state of stress) and failure mechanisms 

(flaw populations) the Weibull must be identical for each 

set of specimens of stressed volume. It must be noted, 

19 
as discussed by Pankow, that Weibull are not constant 

when the stressed volume becomes small. The reason for this 

is presumably due to in the failure xnechanism or inhomogeneity 

on a microscale. This of course limits on the minimum size 

of the stressed volumes if valid of Weibull paraxneters 

are to be made. 

In order to compare the stressed volumes of which contain 

introduced discontinuities it is not sufficient to compare bulk volumes. 
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Instead, we must calculate the volume of material which sees the stress 

field of the discontinuity superimposed over the nominal stress field; 

for convenience we shall call this volume the stressed volume. It 

can be shown that the stressed volume of samples which contain voids 

is dependent only on the void fraction (independent of void size). 

Assuming that the specimen fails from a flaw within the stressed volume 

(rather than from a flaw within the nominal stress field) then a plot 

of S -v should yield a single curve for all void sizes. It can be 
0 v 

seen in Fig. 4.23 that all data does not fall on a single curve (cor-

relation coefficient for a straight line is 0.87). Closer examination 

of the data points indicates that there are three independent curves, 

each representing a different void size (Fig. 4.24). Least squares 

fit of the data points indicates an excellent straight line fit for 

the 48 ~m and 80 ~m voids (correlation coefficient 0.96); it becomes 

obvious that the data points are members of distinct families. The 

data for the 28 ~m voids is not so convincing. The reason for the 

greater scatter for the S values of the 28 ~m void size is not obvious 
0 

at this time. 

The fact that distinct curves exist for different void diameter 

indicates that fundamental errors exist in this formulation. One 

of the more satisfying explanations is that the stress field of a 

void does not extend over several grain boundaries for the smaller 

void sizes. This is not a problem in statistical sampling of single 

grain boundaries but, rather, a problem of sampling multiple continuous 

grain boundaries. This might also explain the scatter in the S values 
0 



for the 28 ~m void size. Another is that the 

specimens do not fail from flaws within the stressed volume but from 

flaws within the nominal stress field. '!'his should result 

in very low m values for small void fractions because a few specimens 

would fail from flaws in the stress field of the void thus be very 

weak. However, the correlation between small V and small m does 
v 

not seem to exist (Table I). Existence of values for S with 
0 

in void fraction for the void size (80 ~m) seems to 

indicate that statistical errors may not be the cause of 

the variations but, fundmnental errors in this analysis and, 

, in the Weibull formulation may be the cause. 

Introduced Stress Fields 

Section 3 

to the Weibull 

system under study. The work of Vardar e't to provide 

the most direct test of Weibull Statistics as no modifications were 

made to Weibull's Instead, modifications were made to the 

the stress field 'lfJhich existed within the smnple, 

thus the Risk of 

The data in Vardar' paper his evaluation 

very well. However, the data in this does not support 

the analysis so well. the most critical difference 

on void size noted in this study. The 

Vardar modification of Weibull's that the strength 

of bodies which contain voids is on the void fraction 
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and independent of void size. The data from this study indicates 

that the strength is a function of void size as well as void fraction 

and that the plots of S d-V are nearly linear over the void fraction me v 

ranges .studied as opposed to his prediction. In addition, the median 

strengths at high void fractions are lower than predicted (Fig. 4.25). 

The question becomes: What are the primary differences in the 

two studies? The fundamental difference seems to be in the choice 

of materials: lead-zirconate-titinate (PZT) versus alumina. A previous 

22 study indicated that there is probably a continuous second phase 

present at grain boundaries in PZT due to the evaporative liquid-phase 

sintering technique used in material fabrication. Because PZT fails 

by a primarily intergranular mode, a grain boundary phase could have 

a significant influence on the strength. The alumina used in this 

study has no detectable second phase. A second difference is the 

grain size/void size ratio. 23 
It has been suggested that the relatively 

small grain size/void size' ratio in this study could account for the 

descrepancies. Indeed, it may be noted that the grain size/void size 

ratio for the largest void size (80 ~m) is within the range studied 

by Vardar and provides the closest fit to his prediction for 

0.02 <v < 0.06. However, a significant deviation exists for V > 0.07. 
v v 

19 
Pankow has indicated that for fracture statistics to be valid 

there should be greater than 100· stressed grain boundaries, perhaps 

several hundred. Examination of Fig. 4.5 seems to indicate that this 

criterion has been fulfilled, at least for the specimens with higher 

void fractions. If the statistical criterion has not been fulfilled 



then one would a rash of which are stronger than 

predicted and thus a decrease in the of the Weibull plot. In 

fact, the Weibull of the normalized values (Fig. 4.22) does show 

a decrease in (if but there appear to be far too 

many in this to to only the small void 

fraction specimens. 

Extension of Weibull Based on Microstructural Parameters 

Comparison of ·the data and the three based on observable 

microstructural features, ie, interaction, voids 

as flaw and flaw-flavJ interactions, are into this sub section 

for one reason: do not correlate well with the data. Does this 

mean that there is no correlation between these microstructural features 

and strength? Based on the volume of evidence that observable micro-

structural features and Based on t.he volume of evidence 

that observable microstructural have an effect on strength, 

ie, size , and between changes 

in fracture mode and size, the answer to this must 

be "NO". 

Before further we should compare the 

results to t.he of thes<:; The boundary 

that a of vs. tn (:) 
r 

interaction 

line for an-void sizes with a slope 

of 
1 
m 

the data in this manner . 4.26) results in three 

curved lines. The voids as flaws and flaw~flaw interaction 

both that a of VS 
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will produce a straight line for all data points. Figure 4.27 indicates 

that three separate curves result (the curves are sketched in for 

clarification). Note that the relative values of STS and Vv are 

referenced to STS = 
2 

235 and V = .038 for the 48 ~ void size. 
v2 

Even 

though this Selection was arbitrary, other selections yielded similar 

results. 



Fig. 4.1. 

Fig. 4. 2. 

Polished and ·thermally etched section 
of a dense specimen. £ = 9.0 

Polished and eteched section of a 
specimen which contains 0.12 void 
fraction (voids not visable) 
£ 8.8 jlm 

X 



Fig. 4.3. Polished and etched section. Not.e 
the symmetry of the void and the large 
number of grain boundaries which 
intersect. it. 

4.4. Polished and etched section. 
(V - 0.02, d "" 28 ]Jm) 

v 



J:'lg. 4. !:>. Polis 'led and etched section. 
(V v - 0. 06, d "' 48 JJ m) void clustering 
apparent. 

Fig. 4.6. Polished and etched section. 
(V - 0.04, d = 80) many voids approach 
eagh other but few actually touch. 



. 4.7. As-cut tensile surface/fracture 
surface. The parallel lines are 

marks on the tensile surface. 

4.8. As-cut tensile surface. 



Fig. 4.9. Detail of as-cut tensile surface. 

Fig. 4.10. Fracture surface. Intergranular 
fracture near artificially produced 
void. 



Fig. 4 .lL Tensile surface/fracture surface. 
Predominant.ly transgranular fracture 
below tensile surface near voids. 

Fig. 4.12. Fracture surface/tensile surface. 
Predominantly intergranular fracture 
below tensile surface near voids. 

10745 



Fig. 4.13. Fracture surface. 'l'hc di.t·ection 
of crack propag·ation is from top 
t.o bottom. Not.e the change in fr·acture 
mode when the crack passed the voids. 

Fig. 4.14. 'l'hermally etched fracture surface. 
The thennal etch delineates the grain 
boundaries in the otherwise featureless 
transgranular fracture 



Fig. 4.15. Fracture surface. The steps are 
indicative of transgranular fracture 
which has followed crystallographic 
directions. 

Fig. 4.16. Polished and etched surface, 
of two voids. 

1 



Fig. 4.17. Tensile surface/fracture surface. 
Large cluster of voids beneath the 
tensile surface. 

Fig. 4.18. Polished and etched surface. 
of three voids. 
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5. DISCUSSION 

We have seen from the preceeding sections that the data of this 

study, while consistent unto itself, does not correlate well with 

any of the proposed empirical or phenomenological relationships, 

extensions of Weibull analysis or microstructural relationships. However, 

the normalized data when pooled together do fit the Weibull plots 

very well. These favorable pooling results seem to indicate that 

all specimens failed from the same flaw populations. The fact that 

Vardar's modified stress field used in conjunction with the Weibull 

analysis did not prove fruitful would seem to refute this contention. 

One of the basic assumptions on which the Weibull approach is 

founded is that there is no flaw~flaw interaction. This was assumed 

because, as noted in section 3.5, correcting for any flaw~flaw interactions 

is nearly impossible. However, photomicrographs of random polished 

surfaces and fracture surfaces clearly show evidence of void pairs 

(Figs. 4.6 and 4.16), void triplets (Figs. 4.12 and 4.17) and void 

clusters {Figs. 4.5 and 4.18). Since the theory of failure of brittle 

solids is based on the well founded assumption that the most severe 

flaw (weakest link) is responsible for the failure strength of the 

specimen, how can the Weibull plot of the normalized data yield a 

curve if it ignores void~void interaction? There seem to be 

only two possible conclusions which may be drawn: 

1. Void~void interaction is unimportant and in no way affects 

the strength of a specimen. 

2. Weibull's analysis works, but for the wrong reasons. 



The deviation of these data from Vardar's rigorous extension of 

Weibull's analysis seems to indicate that Weibull's analysis, at least 

in classical terms, may be incorrect. This contention is further 

strengthened by the fact that several investigators, including Batdorf,
9 

have found limitations in Weibull's analysis. Furthermore, it would seem 

improbable that a flaw of such dimensions as a cluster of two or more 

voids would cause less reduction in strength (be a stronger link in the 

chain) than some intrinsic flaw which cannot be detected at present. 

This line of reasoning leads to the belief that conclusion 1 is not 

correct. What then is the explanation of the fact that Weibull's 

analysis has successfully predicted data for nearly forty years and has 

predicted the normalized data of this study so well? We have previously 

noted that Weibull Statistics are based on extreme value theory. Weibull 

assumed the statistical variation in the size of single flaws composed 

the change in flaw severity. McClintock took a different approach. He 

assumed that all single flaws were of approximately the same size (the 

length of one grain) and that the extreme value of these local single 

flaw densities leads to the most severe flaw. That is, the most severe 

flaw consists of l,2,3, ••. n single flaws randomly combined to form a 

large flaw. In the case of externally produced voids a similar situation 

exists; local variation in void densities produce clusters of voids 

19 which may be considered as the large flaw. As noted by Pankow, 

Weibull and McClintock are compatible within the normal range of experi~ 

mental data (volumes), thus it is not unreasonable for our normalized 

data to fit Weibull Statistics. It is the author's opinion that 



McClintock 0 s "simple and inexact model" of randomly combined single 

defects provides a sound explanation of the strength behavior of 

polycrystalline brittle solids. The fact that the McClintock model 

predicts forty years of data as well as does Weibull 1 s analysis lends 

some credence to this opinion. 
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6. CONCLUSIONS 

In this study we have examined the effect of artificially 

introduced voids on the strength of a polycrystalline brittle solid. 

Traditional empirical and phenomenological strength-porosity relation­

ships were found to correlate poorly with the data. 

The most possible direct test of Weibull Statistics using Vardar's 

analysis of the stress field produced by spherical voids indicated that 

these data did not follow Weibull Statistics. Based on microstructural 

examination, Weibull's basic assumption of no flaw-flaw interaction 

was shown to be unacceptable in a system of randomly distributed flaws. 

However, the composite Weibull plot of the normalized strength values 

indicated that the same flaw populations caused failure in most samples. 

Based on McClintock's model of randomly distributed cracked grain 

boundaries, the weakest link theory and microstructural evidence of 

clusters of voids, we propose that fluctuations in the local void 

densities produce clusters of voids which are the most critical flaws 

in the sample and are thus responsible for the noted reductions in 

strength with increasing void fractions. 
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Table I 

Mean Volume Mean Coefficient Median Characteristic Weibull Number 
void Fraction of variation - strength modulus of 

diameter voids, STS' MPa cv ) STS' MPa m specimens 
d, m 

-

0 300 0.061 310 230 16.3 11 

.012 270 0.073 275 195 12.7 9 
28 .022 255 0.037 260 210 26.6 12 

.034 230 0.067 225 175 15.1 12 

.018 240 0.034 240 200 28.6 12 

.037 235 0.043 240 190 23.3 13 

.039 235 0.029 230 195 34.2 11 I 
V1 

48 .059 205 0.052 205 160 20.0 12 00 
I 

.072 210 0.047 210 165 20.2 9 

.111 185 0.042 185 145 24.4 13 

.116 175 0.043 175 140 22.7 12 

.017 225 0.040 225 180 24.2 10 

.036 215 0.053 220 170 19.7 13 

.038 210 0.058 205 160 16.5 12 
80 .064 190 0.037 190 155 26.8 12 

.071 195 0.059 195 150 17.6 13 

.ll5 155 0.050 155 120 18.6 12 

-
x=0.048 x=20.6 E=l98 
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NOMENCLATURE 

Half crack length 

Risk of Rupture 

constants 

coefficient of variation 

void diameter 

grain size 

volumetric strength Function 

thickness of specimen 

results of an integration (Vardar et al.) 

Rank of a specimen (j=l indicates weakest) 

critical stress intensity factor, mode I 

Distance between inner pivots in 4-point tester 

Twice the distance between the inner and outer pivots in 

4-point tester 

Weibull modulus 

Number of specimens tested 

Number 

Nmnber of grain boundaries interesting voids per unit volume 

Nurnber of voids per unit volume 

Probability of survival 

Correlation coefficient 

applied stress 

Characteristic strength 

Stress an the tensile surface for the median strength specimen 



\) 

v 

v 
v 

y 

stress at the tensile surface 

s d for V :::::Q me v 

Poisson's ratio 

Total stressed volume of a specimen 

Volume fraction of voids (void fraction) 

width of specimen 

constant dependent on flaw geometry and loading conditions 








