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Get more from less: Differential neural decoding for effective reconstruction of
perceived naturalistic stimuli from noisy and scarce neural data

Thirza Dado1 (thirza.dado@donders.ru.nl) Umut Güçlü1 (u.guclu@donders.ru.nl)

1 Neural Coding Lab,
Donders Institute for Brain, Cognition and Behaviour,

Radboud University, Nijmegen, Netherlands

Abstract

Decoding naturalistic stimuli from neural recordings is a
significant challenge in systems neuroscience, primarily
due to the high-dimensional and nonlinear nature of
stimulus-response interactions, and is further exacerbated by
the limited availability and noisiness of neural data. While
contemporary approaches that incorporate generative models,
such as Generative Adversarial Networks (GANs), attempt to
address these issues by mapping neural responses to latent
representations, they do not fully overcome these obstacles. In
this work, we present a novel paradigm of differential neural
decoding (dicoding) that focuses on the relative changes
in response patterns, which not only expands the neural
training data quadratically but also inherently denoises it. To
determine the corresponding stimulus changes, this method
leverages the Euclidean and feature-disentangled properties of
the underlying latents through vector arithmetic. As such,
we not only effectively exploit the latent space but also
achieve semantically meaningful latent offsets in the context
of the stimuli, resulting in improved sample efficiency. We
trained a decoder to predict changes in latent vectors based
on the corresponding changes in neural responses. The
absolute latent vector itself was derived by vector addition
of the predicted latent change (indicative of stimulus shift)
to a reference latent, which was fed to the generator for the
reconstruction of the perceived stimulus. Our results show
that this geometrically principled approach facilitates more
effective reconstruction of naturalistic stimuli from noisy and
limited neural data.
Keywords: generative adversarial networks; neural decoding;
latent space geometry; reconstruction

Introduction
Understanding the representation of sensory stimuli in neural
activity patterns is a crucial yet challenging aspect of neural
decoding — a framework of computational methods that
seek to extract meaningful information from recorded neural
responses (Naselaris, Kay, Nishimoto, & Gallant, 2011;
M. A. van Gerven, Seeliger, Güçlü, & Güçlütürk, 2019).
These methods include classification (Kamitani & Tong,
2005; Horikawa & Kamitani, 2017), identification (Mitchell
et al., 2008; Kay, Naselaris, Prenger, & Gallant, 2008)
and reconstruction (Thirion et al., 2006; Miyawaki et al.,
2008; Naselaris, Prenger, Kay, Oliver, & Gallant, 2009;
M. van Gerven, de Lange, & Heskes, 2010; Nishimoto et
al., 2011; Schoenmakers, Barth, Heskes, & Van Gerven,
2013; Cowen, Chun, & Kuhl, 2014; Du, Du, & He, 2017;
Güçlütürk et al., 2017; Shen, Horikawa, Majima, & Kamitani,
2019; VanRullen & Reddy, 2019; Dado et al., 2022) of
perceived stimuli. While these methods establish direct

mappings from neural recordings to stimulus features, their
practical application encounters significant obstacles. First,
these approaches rely on extensive paired datasets of stimuli
and their corresponding neural responses. Such datasets
are scarce and expensive to obtain at scale. The intrinsic
limitation of neural recordings stems from the complex
challenge of interfacing with the brain in a manner that is both
safe and stable. As such, collecting sufficient labeled samples
to train high-dimensional decoders is infeasible in most
experimental settings. Second, biological sensory processing
consists of complex and non-linear transformations which
makes it difficult to learn robust decoding functions that
can reliably interpret neural signals. Third, substantial
trial-to-trial variability and noise in neural responses to
identical stimuli confound learning consistent mappings.

A prevalent method to mitigate these issues is to leverage
the latent space of high-dimensional generative models which
have been pretrained on huge amounts of data (Seeliger,
Güçlü, Ambrogioni, Güçlütürk, & van Gerven, 2018; Han
et al., 2019; VanRullen & Reddy, 2019; Mozafari, Reddy, &
VanRullen, 2020; Dado et al., 2022, 2024). Specifically, a
decoder embeds neural responses as points in the Euclidean
and feature-disentangled latent space such that the responses
are aligned with the latents of the stimuli. Subsequently,
photorealistic images are synthesized by passing these
decoded latent codes through the pretrained generator (Figure
1). The inductive biases captured in the latent space
provide useful regularization of the decoding process, but
this strategy does not fully overcome the aforementioned
obstacles because latents and responses do not perfectly
align. As such, learning a consistent one-to-one mapping
from noisy (potentially low-dimensional) neural responses
to complex, high-dimensional stimuli remains fundamentally
challenging.

To overcome these issues, we propose a new framework
for DIfferential neural deCODING (dicoding) that focuses
on reconstructing stimuli from relative differences between
pairs of neural responses instead of directly predicting stimuli
or latents from the absolute neural responses themselves1.
This shift to decoding the response comparisons rather than

1Note that by ’absolute’, we do not imply ’only positive values’;
rather, we use the term to indicate that we utilize the data points
themselves, independent of their comparative context or relationship
to other data points.
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Figure 1: Neural reconstruction. A visual stimulus, X , is presented while recording the stimulus-evoked neural response, y,
thereto. Neural decoding then maps the recorded response back to an image in two steps: decoding is the linear transformation
from y to feature representation, z, and synthesis the nonlinear transformation from z to the reconstructed image, X̂ .

absolute values results in a quadratic increase in usable
data points since for each neural response, we compute
its difference with every other response in the dataset,
transitioning from n individal data points to n(n−1) relative
data pairs.

Concretely, we start with a dataset of visual stimuli,
{X}, paired with their corresponding neural responses, {Y}.
For each combination of two neural responses (yi,y j) in
the dataset, we calculate the difference in two directions:
{δyi j = yi − y j} and {δy ji = y j − yi}. Our decoder model is
then trained to associate these differential neural responses
with their respective changes in the latent space, denoted
as δzi j and δz ji that capture the semantic and perceptual
shifts between stimuli. To reconstruct a specific stimulus
xk, we choose a reference point (xi,yi) with known latent
representation zi and compute the response differential yik =
yi − yk. The decoder then predicts the corresponding latent
shift δzik. With this predicted latent offset, we synthesize
the reconstructed stimulus xk by applying the transformation
xk = G(zi −δzik), where G is the pretrained generator.

Importantly, we posit that by translating differences in
neural responses into latent offsets, we achieve three key
advantages: enhanced noise robustness, more effective
utilization of latent spaces, and improved sample efficiency.
This is supported by empirical validation with neural datasets,
confirming its effectiveness, particularly for lower amounts of
training data. As such, our approach presents a meaningful
contribution to the processing and interpretation of limited
biological neural data.

Theoretical motivation
Here, we employ simplifying assumptions about the
statistical properties of neural noise and geometric structure
of the latent space to gain clearer insights into the underlying
mechanics and potential of our method.

1. Noise robustness. We model neural noise as independent,
additive Gaussian noise with a covariance matrix Σ = σ2I.
Consider a fixed decoding mapping f (), and two stimuli xi
and x j with corresponding latent vectors zi and z j. The neural
responses can be expressed as:

yi = f (zi)+ εi

y j = f (z j)+ ε j
(1)

where εi,ε j ∼ N (0,σ2I) represent independent noise
components.

Importantly, the differential response δyi j = yi − y j retains
this additive structure:

δyi j = δzi j +δεi j (2)

where δεi j = εi − ε j has a variance of 2σ2I, doubling the
individual noise variance. However, the quadratic increase
in data pairs — from n to n(n− 1) — leads to a superlinear
improvement of the signal-to-noise ratio. This substantial
increase significantly bolsters the robustness of decoding
under noisy and limited conditions. Essentially, an implicit
denoising mechanism is incorporated into the decoding
process through this asymmetrical scaling: the volume
of data increases quadratically while the associated noise
only grows linearly. We amplify this denoising effect even
further by averaging the latent offset predictions across
all possible pairs in the dataset. Consequently, dicoding
inherently exhibits greater robustness to inter-trial variability
and uncorrelated noise, unlike traditional approaches that
rely on absolute responses.

2. Latent space. We assume that the generator’s latent
space is an isotropic Euclidean metric space, characterized by
orthogonal, feature-disentangled axes, each corresponding
to distinct perceptual features. Feature disentanglement
allows for the independent manipulation of specific features
(e.g., shape or color) without inadvertently affecting other
attributes. Utilizing the Euclidean geometry, we can achieve
relative changes in stimuli — corresponding to the relative
changes in neural responses — through vector arithmetic
applied to their underlying latent representations. In this
idealized setting, the latent difference vector δzi j precisely
captures the stimulus difference δxi j without inter-feature
interactions. As such, dicoding maximizes the utilization
of the latent space’s inherent properties to represent
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Figure 2: DIfferential neural deCODING (dicoding). A. The training set is constructed by taking the relative differences
between pairs of training example. In the left matrix, each entry represents the difference between a neural response to
one stimulus yi and a neural response to every other example y j, capturing all possible combinations. Meanwhile, the right
matrix similarly captures the differences between latent representations of visual stimuli. Note that the diagonal differences
are excluded since the difference between an arbitrary example with itself equals zero. Therefore, our total dataset will have
n(n− 1) training points. B. The test set is constructed by taking the relative difference between a test set example k and an
arbitrary other example. Here, we take the difference between k and n training set examples. C. To reconstruct a training
stimulus, Xi, its corresponding latent representation, zi, can be re-obtained by adding/subtracting the relative difference, δzi j,
from the other latent representation, z j. This latent, zi, is then fed to the generator for reconstruction of the stimulus. D. To
reconstruct a test stimulus, Xk, the latent representation, zk, corresponding to this unobserved stimulus can be obtained by
adding or subtracting the predicted relative difference, δzik, from the observed latent representation, zi, which is then fed to the
generator for image reconstruction.

variations in stimuli. This enables efficient exploration of
the stimulus landscape, allowing us to navigate the complex
web of potential stimuli with straightforward mathematical
operations, which naturally aligns with the generator’s
functional design.

3. Sample efficiency. We assume that the latent
space exhibits proportionality, meaning the magnitude of
latent difference vectors δzi j scales linearly with stimulus
differences δxi j. This proportional relationship is key; when
the training set size doubles from n to 2n, we do not only
increase the number of examples but also augment the
semantic diversity captured by the latent differences. This
broader coverage of potential stimulus variations leads to a
more robust and effective training process.

Under these simplified assumptions, dicoding emerges as
a remarkably effective method that demonstrates enhanced
robustness against noise, strategic utilization of latent
space geometry and improved sample efficiency. While
these theoretical insights underscore the method’s potential

benefits, they also set the stage for further empirical
validation, acknowledging that real neural systems may differ
from these idealized models.

Methods
Dataset

We reanalyzed two datasets of visual stimuli (faces
and natural images) and corresponding neural responses
from (Dado et al., 2024). These stimuli were generated using
Generative Adversarial Networks (GANs) (Goodfellow et al.,
2014) which made their underlying w-latent representations
(required for the generation process) directly accessible for
neural decoding. To ensure diversity, each training example
was presented once, while test examples were averaged over
twenty repetitions to enhance the signal-to-noise ratio.

• Face images. StyleGAN3 (Karras et al., 2021) pretrained
on the Flickr-Faces-HQ (FFHQ) dataset (Karras, Laine, &
Aila, 2019) was used to generate 4000 and 100 training and
test set images (10242 pixels), respectively.
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Figure 3: Relative differences in latent space. This sequence of images illustrates the linear interpolation from latent
representations z2 to the relative difference z1 − z2. As we gradually add the relative difference to z2, the images transition
from the starting point z2, through the intermediate representation z1 (since z2 + z1 − z2 = z1), and eventually culminate in the
(inherently meaningless) latent direction corresponding to z1 − z2. As such, it provides intuition about the information encoded
in the relative difference between two latent representations.

• Natural images. StyleGAN-XL (Sauer, Schwarz, &
Geiger, 2022) pretrained on ImageNet (Deng et al., 2009)
was used to generate 4000 and 200 training and test set
images (5122 pixels), respectively. For this, a subset
of categories was used, namely the 200 classes from
Tiny ImageNet (Le & Yang, 2015). Each category was
represented by twenty training images and one test image.

In a passive fixation experiment, the images were resized
to 5002 pixels and presented to a macaque with 15 implanted
multi-unit electrode arrays (64 units each) to record the
multi-unit activity (MUA) (Super & Roelfsema, 2005), with
seven arrays were positioned in primary visual cortex (V1),
four arrays in area V4 and four arrays in inferior temporal
cortex (IT).

Neural decoding
Decoding Neural decoding involves the process of
learning a mapping function, f , that predicts the stimulus
properties from its recorded neural response. The direct
response-stimulus transformation can be divided into two
distinct stages. In the first stage, we train a dense layer to
decode a neural response, yi, into a latent representation, zi,
by minimizing the Euclidean loss function:

L =
1
2

N

∑
i=1

(
zi −wT yi

)2 (3)

where i ranges over the samples.
In the second stage, the latent representations obtained

from the linear model are nonlinearly transformed into
images. This transformation is facilitated by the pretrained
generator of the GAN which maps the 512-dimensional latent
code zi to a photorealistic image xi.

Dicoding Given a dataset of neural responses Y = {yi} and
latent representations Z = {zi}, we first compute all pairwise
differences in both directions for each pair of data examples:

δyi j = yi − y j, δy ji = y j − yi, ∀i, j with i ̸= j

and similarly for the latent representations:

δzi j = zi − z j, δz ji = z j − zi, ∀i, j with i ̸= j

where i and j range over all indices in the datasets.
Next, as with regular decoding (described above), we

perform neural decoding in two stages. In the first stage,
we decode a response difference, δyi j, into latent difference,
δzi j, by optimization of a dense layer using the following loss
function:

L =
1
4

N

∑
i=1

N

∑
j=1, j ̸=i

((
zi j−wT yi j

)2
+
(
z ji−wT y ji

)2
)

(4)

where i ranges over the samples.
The second stage remains the same as for regular decoding

and thus requires the absolute latent representation. For this,
it is important that the unobserved latent, zk, is paired with an
observed reference latent, zi, so that after predicting the latent
difference δzik = f (δyik), we can obtain the reconstructed
stimulus x̂k = G(zi − δzik) where G represents the pretrained
generator of the GAN. Finally, averaging predictions across
multiple reference pairs can provide greater robustness.

Implementation details
Analyses were performed on a cloud VM with Python 3.8,
Intel Xeon CPU, NVIDIA Tesla T4 GPU, and Linux OS.

Results
To validate the effectiveness of our dicoding approach
compared to conventional decoding using absolute values,
we trained a series of dicoders and regular decoders on
increasingly larger subsets of data. Specifically, we utilized
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Figure 4: Decoding performance (Y) as a function of number of training examples (X).

training sets ranging from as few as 5 examples up to a
maximum of 1500 examples, with increments of 5, resulting
in a total of 300 dicoders and 300 decoders. For the natural
images dataset, we ensured exposure to a wide variety of
image categories. That is, when the training set size, N,
equaled 200, the model was trained using the first image from
each of the 200 categories. As the size of the training set
increased to N = 400, the model was also trained on each
second image from each category. So, as the training set
expanded, the model was progressively exposed to a more
diverse array of stimuli.

We evaluated decoding performance by measuring the
cosine similarity between the predicted and target latent
vectors on a held-out test set, which comprised 100 images
for the faces dataset and 200 images for the natural images
dataset. We then averaged the evaluation metrics across
these five permutations to enhance the robustness of our
performance assessment. Our results indicated that dicoding
outperformed conventional decoding for lower amounts of
training data but their performances converged as the training
dataset size increased (Figure 4A). Subsequently, we selected
the four dicoder and decoder models that were trained on
200, 400, 600, and 800 training faces and images and fed
their predicted latents to the generator for the reconstruction

of the corresponding images (Figure 5). Visual inspection
revealed that dicoding already produced reconstructions that
closely resembled the original stimuli for lower amounts of
training data. We quantitatively evaluated the predictions
of the models trained on 200, 400, 600, 800, 1000 and
1500 training examples based on perceptual similarity using
five activations of VGG16 for face recognition (Parkhi,
Vedaldi, & Zisserman, 2015) for faces and VGG16 for
object recognition (Simonyan & Zisserman, 2014) for
natural images. This analysis also confirmed the superior
performance of dicoding for lower sample sizes (Figure 4B).

Discussion
In this work, we introduced dicoding - a novel approach in
differential neural decoding that integrates relative sensory
processing with generative modeling. By shifting its focus
from absolute to relative neural responses, this approach
significantly enhanced the reconstruction of perceptual
stimuli through quadratic data expansion from limited neural
data. We posited that this method would not only demonstrate
enhanced robustness against noise but also maximize the
exploitation of the latent space’s geometric properties and
leverage the inherent semantically meaningful directional
information thereof. Subsequent empirical analyses validated
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Figure 5: Stimuli and reconstructions from brain activity using decoders and dicoders trained on different subset amounts.

advantages in practice for lower amounts of training data,
confirming its effectiveness in scenarios where neural data is
noisy and scarce — a common challenge due to the difficulty
and expense of data collection.

It is important to note that as the size of the training
dataset increased, the performances of differential and regular
decoding converged. This suggests that when substantial
neural data is available, relying on absolute values may
be more advantageous as they contribute uniquely to the
learning process without the computational overhead of
generating differential pairs and managing the expanded
dataset. Nevertheless, the benefits of our approach are
clear. Future research should concentrate on developing
robust inversion techniques that enable the conversion of
photographs to their corresponding latent representations,

extending its applicability to a broader range of real-world
data. By doing so, differential decoding could help enable
the next generation of neural interfaces and prosthetic devices
through more effective utilization of limited biological data.

To contextualize dicoding within the broader spectrum
of sensory processing, we note that it employs principles
that resonate with some aspects of how the brain
processes sensory information relative to a baseline or
context, such as sensory adaptation and contrast effects.
However, as a computational strategy, differential decoding
is fundamentally different. It serves specific objectives
and operates within a distinct context, separate from the
ongoing, adaptive processes observed in biological systems
that directly respond to sensory inputs as they occur, without
artificially expanding data.
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