UC Berkeley
SEMM Reports Series

Title
The influence of material microstructure on the mechanical response of microfabricated beams (MEMS)

Permalink
bttgs:ggescholarshiQ.orgéucgitem47vt696k\=/|
Authors

Mirfendereski, Dariush
Der Kiureghian, Armen
Ferrari, Mauro

Publication Date
1992-06-01

eScholarship.org Powered by the California Diqgital Library

University of California


https://escholarship.org/uc/item/7vt696kv
https://escholarship.org
http://www.cdlib.org/

LOAN COPY
PLEASE RETURN TO
NISEE/Computer Applications

REPORT NO.
UCB/SEMM-92/16

STRUCTURAL ENGINEERING
MECHANICS AND MATERIALS

4044 Davis Hall
Univ. of California, Berkeley 84720

THE INFLUENCE OF

MATERIAL MICROSTRUCTURE
ON THE MECHANICAL RESPONSE
OF MICROFABRICATED BEAMS

BY

DARIUSH MIRFENDERESKI
ARMEN DER KIUREGHIAN
MAURO FERRARI

JUNE 1992

DEPARTMENT OF CIVIL ENGINEERING
UNIVERSITY OF CALIFORNIA
BERKELEY, CALIFORNIA



THE INFLUENCE OF MATERIAL MICROSTRUCTURE ON THE
MECHANICAL RESPONSE OF MICROFABRICATED BEAMS

Dariush Mirfendereski, Armen Der Kiureghian and Mauro Ferrari’
Dept. of Civil Engineering, University of California, Berkeley CA 94720.
*also, Department of Materials Science and Mineral Engineering.

Corresponding author: Mauro Ferrari

Address: Dept. Of Civil Engineering

. 721 Davis Hall ‘
University of California at Berkeley
Berkeley CA 94720

Phone: (510) 643-7035
FAX: (510) 643-5792"

E-mail: ferrari@Bigbird.CE.Berkeley.EDU

Abstract—There is a need for an improved understanding of the behavior
of materials and structural elements employed in the manufacture of micro-
electro-mechanical systems (MEMS), on the basis of the microstructure
exhibited by the materials. Toward this end, stochastic and deterministic
approaches to the modelling and analysis of multicrystalline microfabricated
beams are contrasted in the context of MEMS. Homogenization-based
deterministic approaches such as the Voigt-Reuss bounding techniques and
the Hill averages as applied to random and textured polycrystalline materials
are analyzed and their validity with respect to the single grain degree of
anisotropy is discussed. Multicrystalline beams with stochastically generated
grain morphologies, sizes, and orientations are then simulated and
subsequently analyzed using the finite element method. The simulation
studies are used to assess microstructural properties on overall beam
characteristics, such as stiffness. Results of these studies are then compared
with the homogenization approaches. The influence of size effects and
texture are shown to point to different appropriate deterministic and
probabilistic modelling and analysis techniques for the various classes of
multicrystalline to polycrystalline MEMS.



INTRODUCTION

Motivation

The uses to which micro-electro-mechanical systems (MEMS) are put
requires a knowledge about their mechanical response in addition to their
electrical performance. The vast majority of studies on the mechanical
response of MEMS, however, have been experimental. While many novel and
exciting advances are taking place on the processing front in the manufacture
of micromotors, resonant structures, mechanical and structural elements, and
sensors, little quantitative knowledge regarding the sensitivity of material
behavior to the process-controlled microstructure is available.

Application of analytical and numerical methods often enables one to
obtain valuable prior information on the mechanical behavior of materials
and structures, interpret empirical data, extrapolate the accumulated
experience on new designs, and, in this context, helps delineate the frontiers
of miniaturization. Such studies may lead to substantial savings of time and
expense in development of optimum and reliable designs—hence the
motivation for the present study.

In all known theoretical studies (e.g. [1] and [2]), classical theories of
engineering mechanics and structures are employed. Computational analysis
of MEMS structural response has thus far been limited to fairly standard beam
and plate theories employing the usual assumptions of isotropy and
homogeneity and have neglected microstructural effects. These methods of
analysis may be acceptable for some classes of MEMS, yet there are a number of
microstructural effects that are important at the length scales associated with

other MEMS which are unimportant at larger length scales. For example, axial



tension may generate considerable transverse deflections in a polycrystalline
beam for large ratios of the typical grain-to-cross sectional dimension—size-
scale effects [3] (hence the “multicrystalline” case). Other MEMS-related micro-
structural features that require incorporation in the structural modelling
include through-thickness variations in grain size and shape, and the align-
ment of the grains (texture) leading to macroscopic anisotropy of response.
Therefor, homogeneity and isotropy cannot generally be assumed for the
materials of MEMS and microstructural effects need to be taken into account.
Furthermore, the variability inherent in the microstructure may require a
probabilistic description of the material behavior and structural response
evaluation aimed at assessing the performance reliability of MEMS, even for
problems with deterministic applied excitations. Consequently, a direct
application of classical theories for structural elements is precluded, thus
necessitating the development of novel numerical and analytical techniques
for determining an appropriate characterization of the material properties

and for evaluating the structural responses of MEMS.

Scope

Polycrystalline materials in general show a macroscopic elastic anisotropy
due to the anisotropy of single crystals and texture. For a correct deterministic
characterization of polycrystalline material properties, the overall, or
effective, elastic properties need to be predicted, leading to the estimation of
design-relevant macroscopic quantities (e.g. average displacements under
applied stresses). For certain classes of MEMS, homogenization could be
adopted as an appropriate method for representing these effective material

elastic properties. These may be estimated from single-crystal data and from



information about the texture, usually given as the orientation distribution
function (ODF) [4].

The variation of the Voigt, Reuss, and Hill (VRH) averages [5]-[7] of the
effective elastic moduli are studied here with respect to the degree of
anisotropy and the mean and coefficient of variation (C.0.V.) of the preferred
orientation direction. The results are analyzed, keeping in mind the
application of the averaging techniques to the characterization of the
materials used in MEMS, for example, polysilicon. The VRH averages are later
used to find bounds on the response of an example structure.

A probabilistic model is then presented which is used as a basis for
studying the phenomenological characteristics of the response of
multicrystalline structures used in MEMS, i.e. where the size-scale effects
greatly influence the structural response. This model allows an investigation
of the effects of stochastic grain morphologies, sizes, and orientations. First, a
versatile theoretical method for the generation of random crystals is
presented and then, the finite element discretization of the problem is
outlined. Results are generated for an example structure through Monte-
Carlo simulation. These results are then compared with those obtained using

the VRH averages, i.e. based on the deterministic model.
HOMOGENIZATION METHOD
Theory
Due to texture, the materials are not macroisotropic, therefore generally,

the elements of the fourth-ranked elasticity tensor have to be averaged in

order to completely describe the effective elastic properties. Here, VRH bounds



are calculated for the averaged elastic moduli of textured polycrystals with
cubic crystal symmetry.

The texture-weighted orientational average of any given tensorial field,
F(g), with components expressed in a crystal-fixed frame is symbolically

expressed as

<F(2)>==5["[7[ n(F ¢))f (6,y.4)sinpd0dydo
8n Yo 0 0 )

where f()) is the orientation distribution function, ¢,6, are the Euler angles [3],
and 11(.) is the frame-change operator defined in terms of sines and cosines of
the Euler angles [8].

The tensorial fields of interest here are the fourth-ranked stiffness and
compliance tensors. For a single crystal, these are easily defined in the crystal-
fixed coordinate system. The averaging of the crystal compliances, performed
via (1), yields a rigorous lower bound (the Reuss bound) on the effective
polycrystal elastic moduli. Dually, averaging the crystal stiffness tensor gives
an upper bound (the Voigt bound) on the effective moduli. The arithmetic
average of the bounds is Hill’s estimate.

Here we limit our studies to plane problems such that 6 = y = 0, thus
greatly simplifying the integrations involved in (1). This means that only a 3
by 3 submatrix of the 6 by 6 stiffness and compliance matrices would be
affected, i.e., the submatrix defining the plane problem. Also, we concentrate
on materials with cubic crystal symmetries, which have only three
independent parameters defining the stiffness properties in the crystal-fixed

frame: C11, Cp9, and Cyq4.



Results

The symbolic computing program, MACSYMA [9], was used in making all

the computations in the homogenization process outlined

above. Analytical

expressions are derived for various quantities of interest. For transverse

isotropy, with uniform ODF in the ¢ direction, the in-plane 3 by 3 sub-

matrices of the stiffness matrix for the Voigt and Reuss schemes are evaluated

to be:
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respectively, with the degree of anisotropy, «, defined as

a:.l_._.,......gg_—._..
4C 1-C p)

The results for normalized values of the shear modulus, G, are shown in
Fig. 1, plotted against different values of the anisotropy parameter a. The
value for C11 - C12, however, is kept constant, thus Fig. 1 is essentially a ‘slice’
through a 3-dimensional plot of G vs. C11 - C12 and . Fig. 2 shows a similar
plot for Young’s modulus.

Both of these plots indicate that, in contrast with materials with much
higher degree of anisotropy, the Voigt and Reuss bounds on G and E for
polysilicon (a = 1.562) are acceptably close. For materials with high degrees of
anisotropy, higher order homogenization schemes (e.g. [10] and [11]) would be
required in order to accurately evaluate the effective properties.

In order to study the effects of the variations in the mean preferred
direction and its dispersions, i.e. a second-moment analysis of the effects of
texture, a versatile forﬂmulation for the ODF, f(¢), is defined based on the
Normal Distribution. Due to rotational continuity, f(¢) needs to maintain
continuity over all orientation angles considered in the integrations (1).
Using this versatile model, the limiting case of perfectly oriented grains can
be described by setting the standard deviation, o = 0, while the limiting case of
uniform orientation can be described by setting ¢ = . The significance of
texture in the material modelling for the general case, ie,, 0 < o < o, is
addressed below.

By observing the variations of the VRH bounds on the shear modulus of

silicon in Fig. 3, it is clear that three distinct regions of importance exist,
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where the material behavior is fundamentally different. These three regions
can be defined as the nearly perfectly ordered (PO) region, the nearly perfectly
disordered (PD) region, and the intermediate region (IR) in between.

The boundary of the three regions are quite well defined in terms of o. In
the PO region, the VRH averages coincide for given orientation means, g,
regardless of o. Although the VRH averages do not coincide in the PD region,
the Hill average approximates very closely the exact values that can be
obtained for these near-macroisotropic cases. Thus the application of a
homogenization technique would be straightforward. It is only the IR section
that shows any dependence on o (or C.O.V.). This region is also very sensitive
to the value of the mean orientation angle. This implies that for a correct
homogenized model of the material, the mean and standard deviation of the

ODF need to be very accurately measured.
PROBABILISTIC APPROACH
Model Description

The probabilistic approach to the analysis of multicrystalline structures is
now demonstrated in the context of plane problems. A simple, but versatile
method of randomly dividing a two dimensional region into “crystals” is
used. Given some number of generated points in the plane—here based on a
Poisson point process—their Voronoi diagram [12], or tesselation, divides the
plane according to the mnearest-neighbor rule: each generated point is
associated with the region of the plane closest to it as shown in Fig. 4.

This random crystal arrangement is used hereon as the basis of the

simulated structures. Alternatively, given sufficient data describing the real



multicrystalline structure of materials used for MEMS, an empirical model
similar to the tesselation shown in Fig. 4 could be developed and used in the
subsequent analyses. Current areas of research in image analysis of the
microstructure of materials include studies of techniques of interpreting
micrographs of multicrystalline microstructures as a tesselation similar to Fig.
4 [13]. These results could be used in future as the random crystal
arrangement in place of the simulations described here—the subsequent
methodology for the analysis being identical from this point on.

Having established a random “crystal” arrangement, the crystal grains are
individually modelled with oriented anisotropic material properties
(orthotropic for silicon which is widely used in MEMS), reflecting the desired
texture. Given the types of MEMS structures that are being fabricated [14] and
the associated range of imposed force and displacement boundary conditions,
a linear elastic assumption for the material behavior is appropriate.

A finite element model for the multicrystalline structure defined above
would need to satisfy two main requirements: (i) use an easy to generate,
efficient and convergent finite-element discretization mesh that maintains
the integrity of the crystal structure (so that different orientation angles can be
assigned for each); and (ii) use anisotropic linear elastic elements reflecting
the oriented nature of the crystals.

For the finite element modelling, 9-node quadrilateral isoparametric
elements are used. For linearly distorted quadrilateral elements, 9-noded
elements represent better cartesian polynomials and are generally preferable
to 8-noded elements [15]. Each polygon that defines the crystal boundaries is
divided into a number of quadrilaterals. The subdivisions shown in Fig. 5
meet the above requirements and are used in this study. Fig. 5(b) represents a

mesh refinement of the subdivision shown in Fig. 5(a). Both of these meshes



are represent by bilinearly mapped quadrilateral elements, thus minimizing
the finite-element discretization errors [15].

Material homogeneity is assumed within each crystal, thus the material
coefficients can be taken out of the integrations involving the shape
functions, simplifying the finite element analysis. The general purpose,
research-oriented finite element code FEAP is used in this study [15].

For each simulation, the grain structure is different, resulting from a
different realization of a homogeneous Poisson point process. The material
parameters (which are three for the case of silicon crystals) and the
orientations of the crystals are taken to be stochastic quantities and

appropriate distribution functions are used to model them.

Results

The example structure is an end-loaded cantilevered beam, shown in Fig.
6, made up of a small number of crystals arranged randomly, corresponding
to a Voronoi tesselation of Poisson points in two-dimensional space. The
mean number of crystals for the simulated results was 30.

Bounds are established on the tip displacement, corresponding to
homogeneous orientations of the crystals in the weakest and strongest
directions respectively. These bounds correspond to Oth order bounds of
homogenization techniques, where the Voigt and Reuss bounds would be 1st
order bounds. Results of the response of beams made up of different materials
are studied by varying a.

The simulated results correspond to a uniformly random distribution of
orientation angles (i.e. no texture) associated with a different realization of

the Voronoi tesselation forming the overall (10d by d) beam geometry shown
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in Fig. 6. The results are plotted as mean + 2 standard deviations (i.e. approx.
95% of the simulated results) together with the theoretical (Oth order) upper
| and lower bounds, corresponding to homogeneous orientations of 45 and 0
degrees respectively, in addition to the results based on the previously
derived Voigt, Reuss, and Hill estimates.

The results shown in Fig. 7 have been normalized such that the
displacement is equal to 1 for the isotropic case of a = 1. The left set of
simulated results corresponds to a value of 1.562 for q, i.e. the value for
silicon. Noting that the structure and loading used here result in an
approximately unidirectional stress field, these results show measurable
variability, even for this particular case where the microstructural effects of
texture with uncertain orientation as well as residual stresses and grain
boundary regions have been neglected. For other stress fields the variability in
the results may be larger. It is clear from Fig. 7 that the variability in the
results also increases for materials made up of crystals having a high degree of

anisotropy, for example, with a = 5.
CONCLUSIONS

The homogenization results presented indicate that the Voigt and Reuss
bounds on the elastic moduli of transversely macroisotropic polysilicon are
sufficiently close for use in the material modelling and subsequent structural
analysis for structures where the size-scale effects are small and the problem
can be treated deterministically.

For in-plane variations in texture—resulting in macroanisotropy, three
regions of distinct material behavior have been distinguished in terms of the

standard deviation of the orientation distribution function (ODF). The
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perfectly ordered (PO) region and the perfectly disordered (PD) region are very
suitable for the homogenization schemes outlined here. The intermediate
region is very sensitive to the exact description of the ODF and would require
more careful modelling.

Homogenization techniques, however, generally apply for cases where a
very large number of crystals are averaged—i.e. the “polycrystalline” case. The
importance of grain size in relation to the smallest dimension of the
structure, would therefore increase for examples with a small total number of
cystals—i.e. for “multicrystalline” structures. The simulation results (Fig. 7)
for the example “multicrystalline” structure (Fig. 6) show that the rigorous
Voigt and Reuss bounds are violated. This is as a results of violating the
assumptions for those bounds—i.e. not having enough grains and size-scale
effects becoming significant. Thus, the significance of the microstuctural
effects of random crystal size and shape for multicrystalline beams is clearly
demonstrated.

Neglecting microstructural effects of texture as well as residual stresses and
grain boundary regions, the simulated results (Fig. 7) for a typical
multicrystalline structure show significant variability. So much so that a
deterministic representation (such as homogenization) would be insufficient
in describing the overall response characteristics of this class of structures.

The proposed probabilistic model enables a more appropriate analysis of
such structures. It also allows further investigations of microstructural effects
on structural response to include such effects as texture, residual stresses and
grain boundary regions. In addition, and in light of the inherent inefficiencies
of simulation methods, the proposed model can be used as a basis for
generating numerical results needed to calibrate random field models of

multicrystalline materials for a more efficient probabilistic analysis of MEMS.
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FIGURE CAPTIONS

Fig. 1 VRH Averages for the Shear Modulus vs. Degree of Anisotropy
Fig.2 VRH Averages for Young’s Modulus vs. Degree of Anisotropy

Fig. 3 VRH Averages of G for Variously Textured Examples with a = 1.562
Fig. 4 Voronoi Tesselation in the Plane

Fig. 5 Subdivisions of a Typical Crystal into Quadrilateral Elements

Fig. 6 Example Multicrystalline Structure and Loading

Fig. 7 Bounds and Simulations for Tip Deflection vs. Degree of Anisotropy
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Normalized Shear Modulus, G

Fig. 1 VRH Averages for the Shear Modulus vs. Degree of Anisotropy
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Fig. 2 VRH Averages for Young’s Modulus vs. Degree of Anisotropy
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(a) (b)

Fig. 5 Subdivisions of a Typical Crystal into Quadrilateral Elements

Fig. 6 Example Multicrystalline Structure and Loading
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Fig.7 Bounds and Simulations for Tip Deflection vs. Degree of Anisotropy
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