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ABSTRACT 

 

Characterizing global surface ocean phytoplankton community composition from in situ 

sampling and remote sensing 

 

by 

 

Sasha Jane Kramer 

 

Phytoplankton are microscopic protists that are ubiquitous in the sunlit global ocean. 

These organisms form the base of the marine food web and are essential to biogeochemical 

cycling as sources and sinks of elemental compounds and nutrients. Carbon sequestration 

from the atmosphere to ocean sediments is facilitated through biological production by 

phytoplankton, and phytoplankton produce half of the oxygen in Earth’s atmosphere. 

Distinct phytoplankton taxa differentially impact these essential ecosystem processes. Thus, 

a complete understanding of the role of phytoplankton in the Earth system can only be 

achieved through a complete description of the distribution and abundance of phytoplankton 

communities in the global ocean. Existing methods to characterize phytoplankton 

community composition (PCC) using in situ measurements are limited by the scales of 

observation. However, satellites provide unprecedented coverage of the global surface 

ocean. While existing global ocean color sensors are limited to multi-spectral sampling 

resolution, future satellites (such as NASA’s Plankton, Aerosol, Cloud, ocean Ecosystem 

[PACE] sensor) will have hyperspectral resolution, providing observations across the visible 



 

 xiv 

spectrum of light at wavelengths sensitive to absorption and scattering by phytoplankton. 

Satellite ocean color approaches can therefore be leveraged to distinguish between 

phytoplankton groups. The major goal of this thesis is to characterize patterns of PCC in the 

global surface ocean using a combination of existing chemotaxonomic, molecular, and 

imaging methods with newly-developed remote sensing approaches.  

In chapter 1, I used quality-controlled, consistent measurements of high performance 

liquid chromatography (HPLC) phytoplankton pigments collected across the global surface 

ocean to characterize the distributions of phytoplankton groups from co-variability in 

phytoplankton pigment concentrations. In both the global dataset and regional time series 

datasets, the number of phytoplankton groups that could be separated from HPLC pigments 

was limited across statistical methods to maximum 4-6 distinct pigment-based groups. In 

chapter 2, the statistical methods employed in chapter 1 were applied to a dataset of HPLC 

pigments and flow cytometry collected as part of the North Atlantic Aerosols and Marine 

Ecosystems Study (NAAMES) to describe the evolving surface ocean PCC in the western 

North Atlantic Ocean across distinct bloom phases. Pigment-based phytoplankton 

communities revealed a transition from diatoms and dinoflagellates in spring and early 

summer to haptophytes and cyanobacteria in early fall, followed by green algae and mixed 

pigment assemblages in early winter.  

In chapter 3, I modeled phytoplankton pigment concentrations in the global surface 

ocean from measured and modeled remote sensing reflectance spectra. The concentrations 

of thirteen pigments were retrieved by the model, and these results were validated with 

measured HPLC phytoplankton pigment concentrations. The relationships between and 

among groups of phytoplankton pigments remained consisted between measured and 
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modeled pigment datasets, separating five distinct pigment communities. Finally, in chapter 

4, multiple in situ methods were compared to better constrain and quantify the information 

content of HPLC pigment data using samples collected as part of NAAMES and the first 

EXport Processes in the Ocean from RemoTe Sensing (EXPORTS) field campaign in the 

North Pacific Ocean. The eukaryotic phytoplankton community was compared from HPLC 

pigments, 18S rRNA metabarcoding, and quantitative cell imagery from the Imaging 

FlowCytobot. The prokaryotic and eukaryotic phytoplankton communities were both 

compared from HPLC pigments, 16S rRNA metabarcoding, and flow cytometry. While 

broad group-level trends were consistent between methods, inconsistencies between 

methods arose at higher taxonomic resolution and when environmental and physiological 

impacts were taken into account (e.g., sea surface temperature; mixotrophy). 

Taken together, these four chapters describe PCC from in situ and remote sensing 

approaches across the global surface ocean. Chapters 1 and 2 use HPLC pigments to 

describe broad trends in phytoplankton pigments across regions (chapter 1) and seasons 

(chapter 2). Chapter 3 demonstrates that pigments can be modeled with reasonable accuracy 

from hyperspectral ocean color data. Chapter 4 then describes the strengths and limitations 

of HPLC pigment data when compared to methods with higher taxonomic resolution and in 

the context of a changing ocean environment.   
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I. Introduction 

Phytoplankton are an essential component of the Earth system: they form the base of 

the oceanic food web as primary producers, they contribute to the cycling of macronutrients, 

and they facilitate the flux of atmospheric carbon to carbon in ocean sediments through the 

biological pump. The contributions of individual phytoplankton groups to these essential 

ecosystem services are not consistent across taxonomic groups. Thus, it is essential to 

quantify patterns in phytoplankton community composition (PCC) to get a full 

characterization of these climatic, biogeochemical, and ecological services through either 

observation or models (i.e., Follows and Dutkiewicz, 2011; Siegel et al., 2014; Bisson et al., 

2018). Many approaches attempt to simplify the vast taxonomic diversity of phytoplankton 

by condensing thousands of genera into more manageable groupings. For instance, 

phytoplankton may be divided based on their optical properties (e.g., Bracher et al., 2009), 

into micro/nano/pico size classes (e.g., Brewin et al., 2010), or into several “functional 

groups” based on their role in an ecosystem (e.g., silica-containing phytoplankton, nitrogen 

fixing phytoplankton, etc.; Le Quéré et al., 2005). These simplified designations of PCC 

allow global climatic, biogeochemical, and ecosystem models to probe the impact of 

individual or multiple groups of phytoplankton on the broader Earth system.  

Many Earth system models that incorporate PCC rely on these simple divisions (size, 

functional group, etc.) to derive a standard phytoplankton diversity term that is then used to 

simulate the impact of multiple phytoplankton groups on the broader ecosystem (Le Quéré 

et al., 2005; Gregg and Casey, 2007; Dutkiewicz et al., 2009; Henson et al., 2021; etc.). 

Some of these models seek to understand the role of phytoplankton in mediating climate, or 
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the impact of changing climate on phytoplankton and other components of the Earth system. 

The palaeoceanographic record suggests that the impact of climate on phytoplankton (and 

vice versa) can be extreme (Falkowski and Oliver, 2007). Different phytoplankton groups 

demonstrate variable responses to variations in nutrient regimes, biotic drivers, and the 

physical environment (e.g., temperature, turbulence, etc.). As the ocean changes in response 

to anthropogenic climate change, with impacts such as warmer water and increased 

acidification, PCC will naturally be affected (i.e., Behrenfeld, 2014; Behrenfeld et al., 2016). 

While the response of phytoplankton in culture to acidification varies, model results on 

global scales suggest decreasing functional diversity and less flexibility to adaptation for 

phytoplankton communities under increased acidification (Dutkiewicz et al., 2015). 

Generally, ecosystems that start with higher taxonomic diversity are thought to be more 

productive and more stable to oceanic and climatic change (Vallina et al., 2017; Ibarbalz et 

al., 2019). A diverse assemblage of phytoplankton with varied niches for temperature and 

nutrient regimes will be more resilient both over a seasonal cycle and in a changing world: 

as temperatures rise or nutrient levels decrease, ecosystems with a diverse assortment of 

phytoplankton will continue to thrive. 

Efforts to characterize the biogeographic distribution of phytoplankton on global 

scales fall into two categories: modeling studies (e.g., Follows and Dutkiewicz, 2011; 

Dutkiewicz et al., 2018; Henson et al., 2021) and observational studies (e.g., Uitz et al., 

2015; Guidi et al., 2016; Chase et al., 2017). Modeling approaches to describe the global 

distribution of PFTs rely on measured distributions of physical and chemical variables, as 

well as allometric relationships between phytoplankton cells and nutrient uptake and/or 

response to temperature (Follows and Dutkiewicz, 2011). Some of these models constrain 
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certain PCC to specific latitudes (i.e., Le Quéré et al., 2005). Others incorporate satellite 

data products, such as surface ocean temperature or photosynthetically active radiation (i.e., 

Brun et al., 2015, etc.), to predict PCC. While the model constructions vary, the results are 

often quite similar: small phytoplankton with high light and low nutrient requirements 

dominate at low latitudes; larger phytoplankton that thrive under more turbulent conditions 

with periodic injections of nutrients dominate at higher latitudes; various taxa fill in the mid-

range latitudes and coastal regions. These results match the expected surface ocean PCC 

reconstructed from the fossil record of diatom and coccolithophore distribution (e.g., 

Falkowski and Oliver, 2007) and from global observations.  

While there are many examples of in situ studies that characterize PCC on local to 

regional scales, there are far fewer examples of observational studies that use in situ data to 

characterize the PCC on broad global scales. This paucity of in situ observational work on 

global scales is due to the difficulty of collecting samples and standardizing methods to 

describe PCC. High performance liquid chromatography (HPLC) analysis of phytoplankton 

pigments is a highly standardized method (Van Heukelem and Hooker, 2011) and thus there 

are quality-controlled, globally distributed datasets of HPLC pigments available from the 

surface ocean (Hooker et al., 2012). HPLC pigments also have clear links to optics, as 

pigments impact the shape and magnitude of phytoplankton absorption spectra. Global 

analyses of HPLC pigments have used various statistical methods to describe the broad 

groups of phytoplankton, such as Uitz et al. (2006), who used the Diagnostic Pigment 

Analysis (Claustre, 1994; Vidussi, et al. 2001). Uitz et al. (2015) then use a global dataset of 

phytoplankton absorption and remote sensing reflectance spectra to describe clusters of 

spectra attributable to distinct phytoplankton communities identified by HPLC pigments. 
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More recent global field campaigns, such as the Tara Oceans expedition, provided 

unprecedented global coverage of phytoplankton pigments and optics (Chase et al. 2013; 

2017), alongside in situ methods with higher taxonomic resolution, such as flow cytometry 

and rRNA metabarcoding (de Vargas et al., 2015; Guidi et al., 2016). These in situ data can 

be used to describe both the phytoplankton communities and their relationships to other 

environmental variables (e.g., Richter et al., 2020; Sommaria-Klein et al., 2021). While the 

small-scale variability may disagree between these in situ studies and ecosystem models, the 

broad patterns in PCC are often quite similar.  

A wide variety of algorithms also exist to characterize PCC from space using ocean 

color satellites. These approaches broadly aim to either describe dominance by one or 

multiple phytoplankton groups, or the presence/absence of one or multiple phytoplankton 

groups. A few recent reviews divide these methods broadly into abundance-based or 

spectral-based approaches to retrieve PCC from space (IOCCG, 2014; Bracher et al., 2017; 

Mouw et al., 2017; Werdell et al., 2018). Abundance-based approaches rely on the 

assumption that PCC covaries with phytoplankton biomass (i.e., Brewin et al., 2010; Hirata 

et al., 2011). These approaches use chlorophyll-a as an input and rely on changes in 

satellite-derived chlorophyll (as a proxy for biomass, although this proxy is known to be 

imperfect [i.e., Behrenfeld et al., 2005]) to diagnose PCC in the surface ocean. As 

chlorophyll-a concentration or biomass can be highly correlated with phytoplankton 

community composition, especially on local to regional scales, some spectral-based 

approaches that use chlorophyll-a as an input to dictate taxonomy (i.e., Sathyendranath et 

al., 2004) are also inherently abundance-based in the model construction (Kramer et al., 

2018).  
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Spectral- or radiance-based approaches use the spectral shape and magnitude of 

remote sensing reflectance or its component parts (e.g., decomposing remote sensing 

reflectance into absorption and scattering) to describe PCC in the surface ocean. There are a 

number of methods that target just one phytoplankton group at a time, aiming to separate a 

dominance of one group from all other groups. Algorithms exist to identify coccolithophores 

(Brown and Yoder, 1994), diatoms (Sathyendranath et al., 2004), Trichodesmium spp. 

(Westberry and Siegel, 2006), and Phaeocystis spp. (Lubac et al., 2008) from other 

phytoplankton when these taxa dominate the optical signal (which is not to say that they are 

necessarily also dominating as a fraction of carbon biomass or cell abundance). Other 

methods target multiple phytoplankton groups simultaneously, aiming to determine the 

group that contributes the most to the optical signal (e.g., Alvain et al., 2008; Sadeghi et al., 

2009; Ben Mustapha et al., 2013; Uitz et al., 2015; Xi et al., 2015; Chase et al., 2017). While 

radiance-based methods target variations in the shape and magnitude of remote sensing 

reflectance and phytoplankton absorption spectra, these properties are also impacted by 

other absorbing and scattering components in the ocean, including seawater, non-algal 

particles, and colored dissolved organic matter. There can be large uncertainties introduced 

by optical variability in seawater and its component parts, as well as by atmospheric 

corrections (Werdell et al., 2018). Thus, methods that use high spectral resolution and 

magnify the variations in spectral shape by removing the broad-scale variability are 

preferable (i.e., Torrecilla et al., 2011; Xi et al., 2015; Uitz et al., 2015; Catlett and Siegel, 

2018).  

Nearly all of the existing satellite ocean color algorithms for determining PCC are 

constructed or validated (or both) with HPLC pigment data. The concentrations or ratios of 
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phytoplankton pigments are used directly to infer dominance of a particular phytoplankton 

group, or various pigment-based algorithms (such as the DPA) are used to derive 

phytoplankton groups or sizes from pigments. However, HPLC pigments have a number of 

weaknesses as a method for separating phytoplankton groups. For instance, HPLC pigments 

only allow for characterization of the phytoplankton community at coarse taxonomic 

resolution, due to the number of pigments that are shared between taxonomic groups (i.e., 

Higgins et al., 2011 and references therein; Catlett and Siegel, 2018). Additionally, the 

interpretation of pigment data is complicated by the plasticity of pigment composition and 

concentration between different ecological conditions, under varied light and nutrient 

conditions, and even between strains of the same phytoplankton species (Schlüter et al., 

2000; Havskum et al., 2004; Irigoien et al. 2004, Zapata et al., 2004, etc.). While there are 

fewer studies comparing HPLC pigments to other in situ methods of determining PCC, the 

studies that do exist highlight further complications to using HPLC pigments. For instance, 

some phytoplankton are mixotrophic and do not contain clear pigment signatures, but are 

readily identifiable by microscopy (e.g., dinoflagellates, haptophytes, and cryptophytes; 

Coupel et al., 2015). Similarly, some regions have dominant groups of phytoplankton that 

share major accessory pigments, making pigments an unreliable biomarker while rRNA 

metabarcoding can more easily separate the contributions of each group (e.g., diatoms and 

haptophytes in the West Antarctic Peninsula; Lin et al., 2019). 

Ultimately, any method of characterizing phytoplankton community composition is 

going to be imperfect, whether it is providing high resolution taxonomic information from 

an in situ sample or low resolution phytoplankton groups from a satellite image. No one 

method can capture the entire breadth and depth of diversity in the phytoplankton 
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community with perfect quantitative and qualitative accuracy. However, accurate 

characterizations PCC are essential for describing the distribution of different phytoplankton 

groups across space and time, and for validating the results of satellite-based PCC models. 

Each in situ method is able to target a different component of phytoplankton taxonomy, 

morphology, and/or functional diversity that may also be captured by satellite-based 

methods; thus, the choice of an in situ method for satellite model validation can affect the 

model result and construction (e.g., Kramer et al., 2018; Chase et al., 2020). Thus, PCC 

methods must be carefully combined to have the highest possible information content from 

each method and to understand the strengths and weaknesses of individual methods.  

A complete understanding of the impact of phytoplankton on the current and future 

biogeochemistry, ecology, and climate of the Earth and its oceans can only be achieved with 

a complete understanding of the current functional and taxonomic diversity of 

phytoplankton in the ocean. Modeling results suggest that phytoplankton diversity will 

increase more than chlorophyll-a concentration will change under future climate warming 

scenarios (e.g., Dutkiewicz et al., 2019). The ability to accurately describe the PCC masked 

by the chlorophyll concentration retrieved from space will be crucial. The advent of more, 

better hyperspectral ocean color sensors (e.g., NASA’s Plankton Aerosol Cloud and ocean 

Ecosystem sensor, PACE; Werdell et al., 2019) will also improve the quality of data 

available from space and the information available for comparison to in situ methods. This 

dissertation contributes to efforts to improve the characterization of the surface ocean 

phytoplankton community on global scales, and by extension aims to help improve estimates 

of nutrient cycling, marine food web dynamics, and community-level responses to a warmer, 

more acidic ocean under anthropogenic climate change. In chapters 1, 2, and 3, 
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phytoplankton pigments are used as a tool to describe broad patterns in pigment-based 

surface ocean PCC and to build models linking pigments to ocean color. In chapter 4, the 

taxonomic information content of those pigment samples is quantified with comparisons to 

higher-resolution in situ PCC methods. These four chapters describe pigment-based 

phytoplankton community composition in the global surface ocean from in situ methods and 

remote sensing, but also investigate the strengths and weaknesses of the methods used to 

characterize PCC.  
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II. How can phytoplankton pigments be best used to characterize surface 
ocean phytoplankton groups for ocean color remote sensing algorithms? 

Abstract: High performance liquid chromatography (HPLC) remains one of the most 
widely-applied methods for estimation of phytoplankton community structure from ocean 
samples, which are used to create and validate satellite retrievals of phytoplankton 
community structure. HPLC measures the concentrations of phytoplankton pigments, some 
of which are useful chemotaxonomic markers for phytoplankton groups. Here, consistent 
suites of HPLC phytoplankton pigments measured on global surface water samples are 
compiled across spatial scales. The global dataset includes >4,000 samples from every major 
ocean basin and representing a wide range of ecological regimes. The local dataset is 
composed of six time series from long-term observatory sites. These samples are used to 
quantify the potential and limitations of HPLC for understanding surface ocean 
phytoplankton groups. Hierarchical cluster and Empirical Orthogonal Function analyses are 
used to examine the associations between and among groups of phytoplankton pigments and 
to diagnose the main controls on these associations. These methods identify four major 
groups of phytoplankton on global scales (cyanobacteria, diatoms/dinoflagellates, 
haptophytes, and green algae) that can be identified by diagnostic biomarker pigments. On 
local scales, the same methods identify more and different taxonomic groups of 
phytoplankton than are detectable in the global dataset. Notably, diatom and dinoflagellate 
pigments group together on global scales, but dinoflagellate marker pigments always 
separate from diatoms on local scales. Together, these results confirm that HPLC pigments 
can be used for satellite algorithm quantification of no more than four phytoplankton groups 
on global scales, but can provide higher resolution for local-scale algorithm development 
and validation.  

II.1 Introduction 

Phytoplankton form the base of the marine food web and are essential to 

biogeochemical cycling as a source of elemental compounds and nutrients (e.g., Le Quéré et 

al., 2005). In order to quantify the ecological, biogeochemical, and economic importance of 

phytoplankton in the global ocean, it is necessary to accurately describe the distribution and 

abundance of various taxonomic groups (Legendre, 1990; Falkowski and Oliver, 2007; 
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Guidi et al., 2009). The global surface ocean distribution of total chlorophyll-a, which is 

often used as a proxy for phytoplankton biomass, has been well described using satellite-

based methods (e.g., Martinez et al., 2009; Siegel et al., 2013). However, progress toward a 

unified satellite-based approach for assessing the phytoplankton groups that comprise the 

total chlorophyll-a distribution is ongoing (IOCCG, 2014 and references therein). NASA’s 

upcoming hyperspectral Plankton, Aerosol, Cloud and ocean Ecosystem (PACE) mission 

will provide unprecedented spectral resolution and thus offers the potential for new insights 

into phytoplankton community dynamics on local to global scales (Werdell et al., 2019). In 

anticipation of PACE, there will likely be an increase in algorithms to detect phytoplankton 

groups from ocean color remote sensing (Chase et al., 2017; Catlett and Siegel, 2018). 

The taxonomic diversity of phytoplankton is often simplified into functional groups 

based on their ecological roles and physiological traits (Le Quéré et al., 2005). 

Phytoplankton Functional Types (PFTs) seek to quantify specific phytoplankton groups 

based on their roles in elemental cycling and the group’s cell size. This designation of PFTs 

broadly corresponds to specific taxonomic groups: for instance, diatoms are micro- and 

nano-sized phytoplankton that require siliceous nutrients and are thought to dominate export 

production. Conversely, haptophytes are nano- to pico-sized phytoplankton that include both 

dimethyl sulfide- (e.g., Phaeocystis spp.) and calcium carbonate-producers (e.g., Emiliania 

huxleyi). Finally, cyanobacteria are pico-sized bacterioplankton that make important 

contributions to global primary production (e.g., Synechococcus and Prochlorococcus spp.). 

There are many existing methods to measure and describe phytoplankton taxonomy 

and functional diversity, including microscopy, optical proxies, quantitative cell imaging, 

and genomic sequencing, each with associated strengths and weaknesses. While microscopy 
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and quantitative imaging remain the “gold standard” for phytoplankton identification, High 

Performance Liquid Chromatography (HPLC) remains one of the most widespread, 

methodical, and quality-controlled methods currently available (Van Heukelem and Hooker, 

2011). HPLC enables the determination of the concentrations of ~25 phytoplankton 

pigments, some of which are useful chemotaxonomic markers for specific phytoplankton 

groups either in their presence or in their co-occurrence with other phytoplankton pigments. 

The difficulty is that many if not most phytoplankton pigments are shared among taxonomic 

groups (Table 1, following Jeffrey et al., 2011 and references therein), making 

chemotaxonomic quantification of phytoplankton groups challenging. Fortunately, groups 

with similar evolutionary lineages naturally tend to share the same groups of pigments (e.g., 

Falkowski et al., 2004). Red algae (diatoms, dinoflagellates, haptophytes, and cryptophytes) 

have more pigments in common with each other than with green algae or cyanobacteria. 

These taxonomic groups can be broadly separated into size classes, using methods that relate 

biomarker pigments to size relying on general relationships between phytoplankton groups 

and cell size.  
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Table 1. Summary of 18 pigments used in this analysis (17 accessory pigments and 
monovinyl chlorophyll-a) and the distribution of these pigments across twelve taxonomic 
groups, including the four major taxonomic groups identified in this analysis (diatoms and 
dinoflagellates, haptophytes, green algae, and cyanobacteria). Known distributions of each 
pigment in each group (for the species in each group that have been cultured and had HPLC 
analysis performed) are shown (adapted from Jeffrey et al. 2011 and references therein). 
Stars indicate the major taxa identified in this analysis. 

 

Pigment-based methods for characterizing phytoplankton community structure are 

limited by the variable occurrence and plasticity of pigments across species, groups, strains, 

and environmental conditions (Table 1). Changes in pigment composition and concentration 

(and thus ratios of pigments to total chlorophyll-a concentration or phytoplankton carbon 

biomass) may not occur linearly with changes in the environment. Intercellular pigment 

concentrations will be highly susceptible to light, nutrient, and temperature variations; 

species-specific and strain-specific compositional variations are also found (Schlüter et al., 

2000; Havskum et al., 2004). Likewise, measured changes in pigment composition and 
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concentration in one species are not easily transferred between and among other strains of 

the same species (Irigoien et al., 2004; Zapata et al., 2004).  

Despite these challenges, HPLC pigment data remain in wide use for characterizing 

phytoplankton groups on local to global scales, particularly for the calibration and validation 

of ocean color remote sensing algorithms. Many analytical approaches have been developed 

for this purpose. Some of these methods use weighted contributions of pigments to total 

chlorophyll-a while other methods rely on threshold ratio values of specific pigments to 

diagnose the dominance of a given group. For instance, in the Diagnostic Pigment Analysis 

(DPA; Claustre, 1994; Uitz et al., 2006), certain pigments are used to represent groups of 

phytoplankton that contribute to each of three phytoplankton size classes. Hierarchical 

cluster and Empirical Orthogonal Function (EOF) analyses (Latasa and Bidigare, 1998; C. 

R. Anderson et al., 2008; Catlett and Siegel, 2018) seek to group pigments based on the 

correlation and co-occurrence between and among HPLC pigments. The matrix inversion 

method CHEMTAX (Mackey et al., 1996) assumes that pigment ratios are known for each 

phytoplankton group and that linear relationships exist among phytoplankton pigment ratios 

for a given data set. Under these assumptions, the contribution of each group to total 

chlorophyll-a can be determined. However, CHEMTAX results are often sensitive to choice 

of pigment ratios and will not be used here (e.g., Latasa, 2007; Pan et al., 2011; Swan et al., 

2016).  

The development of robust global algorithms to derive phytoplankton community 

composition from satellite ocean color has long been a research community-wide goal (i.e., 

IOCCG, 2014; Bracher et al., 2017). Such algorithms would allow for global estimates of 

phytoplankton groups on broader spatiotemporal scales than currently exist and would 
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support many applications, from assessment of export fluxes to fisheries management (e.g., 

Fogarty et al., 2016; Bisson et al., 2018; etc.). The development and validation of these 

algorithms requires determinations of surface ocean phytoplankton community composition 

on both global and local scales; HPLC pigments remain the only data source widely 

sampled, standardized, and available for this purpose. Hence, understanding the variability 

of these data on global scales is a first step for developing robust satellite algorithms to 

quantify phytoplankton groups. 

Here, a compilation of consistent surface ocean HPLC pigment observations is 

constructed and used to quantify the potential and limitations of using HPLC pigments to 

assess global and local surface ocean phytoplankton community structure. Results are shown 

for statistical analyses using HPLC pigment observations (hierarchical clustering and EOFs) 

on both local and global scales, to identify groups of pigments that are representative of 

specific groups of phytoplankton. By examining the composition and average concentration 

of pigments within each group and across the statistical methods used, the distributions of 

phytoplankton groups can be interpreted. The present results describe robust patterns in four 

major taxonomic groups on global scales (cyanobacteria, diatoms and dinoflagellates, 

haptophytes, and green algae). On local scales, HPLC pigments can characterize up to six 

phytoplankton groups, which are more often than not different from those identified 

globally. While the taxonomic utility of pigment-based approaches can be limited, the 

results shown here suggest that HPLC pigments are well suited to calibration and validation 

of global remote sensing applications that will identify these same four groups on global 

scales, while the development of regional remote sensing algorithms remains important to 

maximize local scale information and distinguish higher resolution taxonomic features. 
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II.2 Materials and Methods 

II.2.1 HPLC pigment data 

The present analysis requires synthesis of HPLC phytoplankton pigment surface 

samples with geographic diversity, with the same pigments measured for all cruises, and 

from labs with quality assurance protocols in place. The global dataset was constructed from 

near-surface HPLC phytoplankton pigment observations, which were compiled from 66 

oceanographic research cruises conducted between 2000-2018 (Table S1). The dataset 

includes samples from the Atlantic, Pacific, Indian, Arctic, and Southern Oceans for both 

coastal and open ocean sites, over a broad range of chlorophyll-a concentrations from 

oligotrophic to eutrophic conditions (Figure 1A and 1B). For each sample in the global 

dataset, the full pigment suite is supplemented with measurements of latitude, longitude, 

date and time, sampling depth, water temperature, salinity, annually averaged mean nitrate 

concentration, and water depth (data sources in Table S1). In the event of replicate samples 

in space or time, an average of the replicates was used.  
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Figure 1. (A) Total chlorophyll-a concentration for all samples in the global analysis (in 
green, N = 4,480). Values greater than 1 mg m-3 are colored as equal to 1 mg m-3. Local 
observatory sites are also shown: BOUSSOLE (orange star), Bowdoin Buoy (yellow star), 
CARIACO (cyan star), MVCO (pink star), Palmer LTER (purple star), and Plumes and 
Blooms (red star). Histograms show the frequency distribution of (B) log10(chlorophyll-a), 
(C) temperature, and (D) annual mean nitrate concentration for the global dataset used in 
this analysis. 

 

Strict criteria are applied to reduce potential sources of uncertainty: (1) As this 

dataset aims to support remote sensing applications, all samples used in this analysis were 

taken in the surface ocean from a depth of 7 meters or shallower; (2) HPLC data were 
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analyzed at one of six labs (see Quality assurance and quality control, below); (3) A 

consistent suite of 25 pigments was measured. These pigments (and their abbreviation 

herein) include total chlorophyll-a (Tchla, the sum of monovinyl chlorophyll-a, divinyl 

chlorophyll a, chlorophyllide, and chlorophyll-a allomers and epimers), total chlorophyll b 

(Tchlb, the sum of monovinyl chlorophyll b, divinyl chlorophyll b, and chlorophyll b 

epimers), total chlorophyll c (Tchlc, the sum of chlorophylls c1, c2, and c3), alpha-beta 

carotene (ABcaro, the sum of alpha and beta carotenes), 19’-hexanoyloxyfucoxanthin 

(HexFuco), 19’-butanoyloxyfucoxanthin (ButFuco), alloxanthin (Allo), fucoxanthin (Fuco), 

peridinin (Perid), diatoxanthin (Diato), diadinoxanthin (Diadino), zeaxanthin (Zea), 

monovinyl chlorophyll-a (MVchla), divinyl chlorophyll a (DVchla), chlorophyllide 

(chllide), monovinyl chlorophyll b (MVchlb), divinyl chlorophyll b (DVchlb), chlorophyll 

c1+c2 (Chlc12), chlorophyll c3 (Chlc3), lutein (Lut), neoxanthin (Neo), violaxanthin (Viola), 

phaeophytin (Phytin), phaeophorbide (Phide), prasinoxanthin (Pras). Datasets that did not 

measure either or both of the divinyl chlorophylls (which are essential for separating 

Prochlorococcus from Synechococcus) or did not separate lutein (which is found in only 

green algae) and zeaxanthin (which is found in red algae, green algae, and cyanobacteria) 

were not included in the final dataset. Taken together, these criteria eliminated many 

datasets from consideration that were included in previous global summaries (c.f., Uitz et 

al., 2006; Peloquin et al., 2013; Swan et al., 2016). Further, all degradation pigments 

(chllide, Phytin, and Phide) were removed from all further analysis as well as redundant 

calculated values (MVchla, Tchlb, Tchlc, and ABcaro), leaving seventeen accessory 

pigments and Tchla. The chemotaxonomic utility of the remaining pigments used in 

statistical analyses is illustrated in Table 1. This table, adapted from Jeffrey et al. (2011) and 
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references therein, describes many (but certainly not all) possible pigment compositions for 

a given taxonomic group of phytoplankton. 

To supplement the global dataset, a suite of local datasets were constructed from 

time series observatory sites where HPLC phytoplankton pigments were consistently 

measured (locations are stars in Figure 1A). The selected time series sites are: Martha’s 

Vineyard Coastal Observatory (MVCO); BOUée pour l’acquiSition d’une Série Optique 

à Long termE (BOUSSOLE), French Mediterranean Sea; CArbon Retention In A Colored 

Ocean (CARIACO), Cariaco Basin; Palmer Long Term Ecological Research Program 

(LTER), West Antarctic Peninsula; Bowdoin College Buoy, Gulf of Maine; and Plumes and 

Blooms, Santa Barbara Channel. The same criteria were applied to the local data for 

consistency with the global data: only surface samples were considered in this analysis, a 

complete pigment suite was measured for each sample, and the samples were analyzed at the 

facilities listed below. The local dataset was not included in the global summaries of total 

chlorophyll-a concentration, temperature, and nitrate concentration (Figure 1B-D) given the 

large dynamic range in these parameters over a seasonal cycle of sampling.  

II.2.2 Quality assurance and quality control 

Precautions were taken to remove potential sources of uncertainty from this global 

dataset by assuring the quality of the samples used here, as HPLC is a highly sensitive and 

variable analysis (Van Heukelem and Hooker, 2011). First, only HPLC data that had been 

processed at any one of six labs was included in the global dataset: Horn Point Laboratory 

(HPL), NASA Goddard Space Flight Center (NASA GSFC), Laboratoire Oceanographique 

de Villefranche-sur-Mer (LOV), the Australian Commonwealth Scientific and Industrial 

Research Organisation (CSIRO), the Alfred Wegner Institute (AWI), and the DiTullio lab at 
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the College of Charleston (Figure S1). Four of these six laboratories (HPL, NASA GSFC, 

LOV, and CSIRO) participated in the NASA SeaWiFS HPLC Analysis Round-Robin 

Experiments (SeaHARRE, Hooker et al., 2012). The other two labs use common approaches 

for HPLC methodology, both of which were evaluated through the SeaHARRE process: the 

Barlow et al. (1997) method (AWI) and the Zapata et al. (2000) method (DiTullio). The 

influence of data source was examined using a dummy control in the statistical analyses to 

follow. Time series samples were also processed at one of the above six labs with the 

exception of the Palmer LTER; Palmer HPLC pigments were measured at Rutgers 

University using the Wright et al. (1991) method, which was also evaluated through 

SeaHARRE. 

A total of 4,480 samples were used in the global dataset and 1,607 samples in the 

local dataset for subsequent analyses after applying the above data quality assurance 

procedures. The data were further quality controlled by setting all pigment values below 

established HPLC method detection limits to zero (Van Heukelem and Thomas, 2001). Prior 

to any of the following analyses, all pigments were normalized to total chlorophyll-a 

concentration. As the following statistical and network analyses are correlation-based, the 

Pearson correlation coefficients (R values) between the remaining seventeen pigments are 

used. Correlation coefficient values were calculated for the global dataset among these 17 

pigments (both absolute concentrations and ratios to Tchla) and with Tchla (Figure 2). 
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II.2.3 Hierarchical cluster analysis 

Hierarchical cluster analyses were performed separately on both the global dataset 

and on the local dataset for each time series observatory site using all seventeen pigments 

described above, normalized to Tchla. The correlation distance (1-R, where R is the Pearson 

correlation coefficient between phytoplankton pigments) and Ward’s linkage method (the 

squared inner distance), following Latasa and Bidigare (1998) and Catlett and Siegel (2018), 

are calculated in MATLAB (R2018a) with the “pdist” and “linkage” functions, respectively. 

The cophenetic correlation coefficient and p-values were computed in MATLAB with the 

“cophenet” function for all dendrograms to evaluate the validity of the hierarchical cluster 

analyses performed here (Legendre and Legendre, 1998). The cophenetic correlation 

coefficient compares the distance matrix generated during the cluster analysis with the 

linkage distances determined for construction of the dendrogram. The correlation coefficient 

can vary from 0-1: values closer to one indicate high correlation between these distances, 

which suggests that the resulting dendrogram accurately depicts the distances between the 

input parameters (in this case, the pigment ratios to Tchla). The p-value indicates the 

significance of this correlation (values <0.05 are considered significant). If these metrics 

suggested that the dendrogram was accurate and significantly related to the distance matrix, 

then the “cluster” function was used in MATLAB (R2018a) to define the linkage distance 

cutoff for a maximum number of taxonomically relevant clusters, using the linkages 

calculated using the Ward method. 

II.2.4 Empirical Orthogonal Function analysis 

An Empirical Orthogonal Function (EOF) analysis was performed on both the global 

dataset and on each time series observatory dataset to further evaluate the co-variability in 
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groups of phytoplankton pigments (following C. R. Anderson et al., 2008 and Catlett and 

Siegel, 2018). An EOF analysis decomposes the data into dominant orthogonal functions 

descriptive of the major modes of variability in the dataset. The percent variance explained 

by each mode decreases with higher modes; i.e., Mode 1 describes the most variance in the 

dataset and only the lowest few modes are useful for interpreting a dataset. For each mode, 

an EOF analysis results in both the loadings over the entire dataset and amplitude functions 

for each sample. The loadings describe the correlations between each mode and the input 

variables (in this case, pigment ratios to Tchla). The amplitude function describes the 

strength of each mode for each sample. The summed product of the loadings and amplitude 

functions over all of the EOF modes enables reconstruction of the original dataset. Pigments 

concentrations (normalized to Tchla) were mean-centered and normalized by their standard 

deviation before EOF analysis. Correlations between the dominant global EOF modes and 

several relevant environmental variables (specifically latitude, temperature, salinity, annual 

mean nitrate concentration, and water depth from bathymetry) were also evaluated.  

II.3 Results 

II.3.1 Global HPLC pigment data 

The global HPLC pigment dataset features a broad range of chlorophyll-a concentrations 

(0.006-26 mg m-3) from oligotrophic to eutrophic conditions (Figure 1A). The log-

transformed chlorophyll-a data follow an approximately normal distribution (Figure 1B) 

with a median global value of 0.31 mg m-3. The global temperature data (Figure 1C) and 

annual mean nitrate concentration (Figure 1D) show a bi-modal distribution with regions of 

low and high temperature and nitrate concentration well represented in the dataset.  
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Nearly all pigments are positively correlated with Tchla (Figure 2, top row). The 

absolute concentration of the seventeen pigments are also nearly all positively correlated 

with one another (Figure 2, upper right portion of matrix), with the exception of the 

pigments unique to picophytoplankton (DVchla and DVchlb), which are positively 

correlated only with each other and with Zea (which is also found in nanophytoplankton) 

and not with other pigments. However, when the pigments are normalized to total 

chlorophyll-a (Figure 2, bottom left portion of matrix), the strong positive correlations 

between pigment pairs are lost and the remaining significant correlations with Tchla are 

largely among related groups of pigments (left column of Figure 2). In the statistical 

analyses to follow, pigment concentrations are normalized to Tchla to maximize the strength 

of connections among related pigments, with the goal of separating groups of pigments 

detectable by existing and future global remote sensing algorithms. 

II.3.2 Local HPLC pigment data 

The six local observatory sites used in this analysis represent a broad range of 

geographic and ecological conditions, and thus very different median Tchla concentrations 

and accessory pigment ratios (Table 2). While many of the local sites have year-round 

sampling, at the Palmer LTER and Bowdoin Buoy, the sampling is seasonal (local spring 

and summer) and thus represents fewer months of the year. The highest median Tchla 

concentration (3.30 mg m-3) is at the Bowdoin Buoy, which is in a productive estuary; the 

lowest median Tchla concentration (0.17 mg m-3) is at BOUSSOLE, which is in the 

Mediterranean Sea. The variations in ratios of biomarker pigments to Tchla at these different 

sites suggest that different phytoplankton communities dominate at these sites (Table 2). 

Further, some pigments were never present or always measured below instrument detection 
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level (and thus were set to equal zero) at the local sites (Table 2), whereas the global dataset 

represents a wider variety of samples such that all 17 pigments in the global dataset have a 

median value or median ratio to Tchla above zero. 

 

Table 2. Statistics for global HPLC dataset and local observatory datasets. Bold values 
indicate the highest (red) and lowest (blue) values for each parameter. Stars indicate that the 
value for a given dataset is significantly different from the median values of all other 
datasets (2-way ANOVA, p<0.001).    
 

II.3.3 Global hierarchical cluster analysis 

The global hierarchical cluster analysis illustrates that there are four groups of 

phytoplankton pigments that dominate co-variability of the global pigment suite, inferred 

from the groups of pigments clustered in each branch and the distribution of these pigments 

across taxonomic groups (Figure 3). The cophenetic correlation coefficient for the global 

dataset is high (0.83, Table 2) and the p-value is extremely low (<<0.001), which indicate 

that the dendrogram is a significant and appropriate representation of the distances between 

pigment ratios to Tchla. Marker pigments indicate specific groups of phytoplankton 

(following Table 1): for the diatom and dinoflagellate group, the strong association between 

Fuco and Perid, respectively; for haptophytes, HexFuco and Chlc3; for green algae, the 
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combination of MVchlb with Pras and other accessory carotenoid pigments; and for 

cyanobacteria, the presence of DVchla and Zea. While some of these pigments are shared 

between groups (i.e., Chlc12 are found in diatoms and dinoflagellates, but also in 

haptophytes; Table 1), the grouping here reflects the strength of the correlation coefficient 

between pigments normalized to Tchla (so Chlc12 is here most strongly correlated with 

other pigments most commonly found in diatoms and dinoflagellates; Figure 2). The linkage 

distance cutoff for these four taxonomic groups was 1.0 (Table 2). 

 

Figure 3. Hierarchical clustering of phytoplankton pigment ratios to total chlorophyll-a for 
the global dataset. The four major pigment communities (diatoms + dinoflagellates, 
haptophytes, green algae, and cyanobacteria) are identified based on a linkage distance 
cutoff of 1.0 (red dashed line). The suggested phytoplankton cell size classes for each group 
are delineated with brackets. 
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The dominant groups can also be described in terms of their contributions to the three 

major size classes of phytoplankton (pico-, nano-, and microphytoplankton; Figure 3). Here, 

the haptophytes, which are nanophytoplankton, cluster more closely with other red algae 

(the micro- to nano-sized phytoplankton) while the green algal group (also 

nanophytoplankton) clusters more closely with the picophytoplankton. Finally, cryptophytes 

(which are nano- to pico-sized red algae that uniquely contain alloxanthin) cluster or group 

with the nano-sized green algal community across all analyses presented here, but are not as 

strongly correlated with the pigments in this group. 

II.3.4 Global Empirical Orthogonal Function (EOF) analysis  

The dominant modes of the global EOF analysis are represented by a set of loadings 

showing the relative contribution of each pigment ratio to each mode (Figures 4 and S2), as 

well as an amplitude function that shows the contribution of each mode to the covariability 

of the pigment suite spatially (Figure 5). The Pearson correlation coefficients (R values) 

between EOF loadings and pigment ratios to total chlorophyll-a are also presented (Figures 

4 and S2). The first six modes describe 72% of the variance in the dataset. However, only 

the first four modes are examined here, as the fifth and sixth modes have weak taxonomic 

associations (Figure S2).  
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Figure 4. Loadings for EOF modes (A) 1, (B) 2, (C) 3, and (D) 4 for the global dataset. The 
mode number and percent variance explained by that mode are listed above each plot. 
Numbers above each pigment represent the correlation coefficient of that pigment with the 
given mode multiplied by 100. Pigments are colored by major taxonomic group: 
cyanobacteria (light blue), haptophytes (dark blue), diatoms and dinoflagellates (brown), 
green algae (green). 

 

EOF Mode 1 (Figure 4A) accounts for nearly one quarter of the variability in the 

dataset (24.4%) and can be interpreted as a diatom- and dinoflagellate-dominated 

community when the mode’s amplitude function is positive and a picophytoplankton-

dominated community when it is negative. The pigments associated with diatoms and 

dinoflagellates are most strongly positively correlated with Mode 1. The pigments 

associated with cyanobacteria and picophytoplankton are strongly negatively correlated with 

Mode 1. Neither haptophyte nor green algal pigments make substantive contributions to the 

loadings of Mode 1. Mode 1 shows spatial patterns that are negative (cyanobacteria) at low 
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latitudes and positive (diatoms and dinoflagellates) at high latitudes consistent with this 

interpretation (Figure 5A). 

EOF Mode 2 (Figure 4B) explains 14.7% of the variance in the dataset and is 

strongly positively correlated with pigments related to the green algal communities, 

including prasinophytes (which uniquely contain Pras). Mode 2 is negatively and 

moderately correlated with all other groups: diatoms and dinoflagellates, haptophytes, most 

strongly with cyanobacteria pigments. When this mode’s amplitude function is positive, it 

explains a dominance of green algae in the phytoplankton community, with strongly positive 

samples found near the coasts (Figure 5B). 

EOF Mode 3 (Figure 4C) explains 11.5% of the variance and is strongly positively 

correlated with pigments found in haptophytes, particularly HexFuco which is found in both 

coccolithophores (i.e., Emiliania huxleyi) and Phaeocystis spp (Table 1). This mode is 

negatively correlated with all other groups, particularly with the diatom and dinoflagellate 

cluster of pigments. Mode 3 explains a dominance of haptophytes when the amplitude 

function is positive and is found at mid latitudes, as a transition between the low- and high-

latitude phytoplankton communities (Figure 5C).  

Finally, EOF Mode 4 (Figure 4D), which explains 8.7% of the total variance, is 

positively correlated with nearly every pigment, notably DVchla, DVchlb, and Zea, which 

are markers for cyanobacteria. The only pigment that is negatively correlated with Mode 4 is 

Fuco. While this correlation is low (R = -0.12), this result suggests that Mode 4 can in 

principle partition diatoms from the other groups. When the Mode 4 amplitude function is 

positive, a mixed assemblage is present with an emphasis on the cyanobacteria community 
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at low latitudes, while samples with negative amplitude function values are found at high 

latitudes (Figure 5D). 
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Figure 5. Spatial distribution of amplitude functions (AFs) for EOF modes (A) 1, (B) 2, (C) 
3, and (D) 4 for the global dataset. Positive values are red, negative values are blue. 
 

Few environmental variables were either positively or negatively correlated with the 

first four EOF amplitude functions. The amplitude function for the first mode is slightly 
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negatively correlated with temperature (R2=0.36) and positively correlated with nitrate 

concentration (R2=0.36), but the amplitude functions for all other modes are uncorrelated 

with temperature, salinity, nitrate concentration, or water depth (R2<=0.17). The role of data 

source as a dummy variable was also examined to determine whether the dominant modes of 

variability in the dataset were correlated with the lab where the HPLC pigment data were 

processed; none of the modes identified by the EOF analysis were correlated with the source 

of the data (R2<=0.14). 

II.3.5 Local hierarchical cluster and EOF analyses 

Hierarchical cluster and EOF analyses for each time series observatory site in the 

local dataset show clear differences from the global scale results (Figure 6; Figure S3).  

 

Figure 6. Hierarchical clustering of phytoplankton pigment ratios to total chlorophyll-a at 
six observatory time series sites: (A) BOUSSOLE, (B) Bowdoin, (C) CARIACO, (D) 
MVCO, (E) Palmer LTER, and (F) Plumes and Blooms. The major pigment-based 
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communities are delineated with brackets. Pigments that were not measured or measured 
below detection 75+% of the time were not included in the cluster analysis, but are listed on 
the x-axis. Red lines indicate the linkage distance cutoff for taxonomically relevant groups 
(Table 2). 
 

On global scales, four phytoplankton groups could be distinctly identified from both 

hierarchical clustering and EOFs, but on local scales, more and different phytoplankton 

groups emerge. The cophenetic correlation coefficients for the local datasets range between 

0.87-0.95 and the p-values are all extremely low (<<0.001), which indicates that the distance 

matrices for pigment ratios to Tchla are accurately represented by the dendrograms for all 

sites. Between four and six taxonomically relevant groups are then identified at each site, 

with linkage distance cutoffs between 0.8-1.0 (Table 2). The differences between 

observatory sites, and between the local and global data, are considered here.  

There are four phytoplankton groups that are clearly separated by hierarchical 

clustering at MVCO and the Bowdoin Buoy, five groups identified at BOUSSOLE, 

CARIACO, and Plumes and Blooms, and six groups identified at the Palmer LTER (Table 

2). Both global and local hierarchical cluster analyses identify distinct groups of 

cyanobacteria, haptophytes, and green algae (Figures 3 and 6). However, some of the groups 

identified in the global dataset do not emerge at some local sites. For instance, 

cyanobacterial pigments are not found at MVCO, Palmer, or the Bowdoin Buoy. 

Conversely, new groups emerge on local scales that were not identified on global scales. 

Notably, dinoflagellate biomarker pigments (Perid and others; Table 1) separate from 

diatom pigments (Fuco and others) at all six sites (Figure 6). In the global cluster analysis, 

dinoflagellate pigments group with diatom pigments and thus the dinoflagellates are 

indistinguishable as a separate taxonomic group; at all sites except Plumes and Blooms, 
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Perid is quite distant from Fuco. Additionally, the cryptophyte biomarker pigment (Allo) 

separates from other red algal pigments at BOUSSOLE and Palmer, and clusters with 

dinoflagellate pigments at the Bowdoin Buoy. In the global analysis, Allo clusters with 

green algal pigments, suggesting the co-occurrence of cryptophytes and green algae when 

viewed on global scales. Finally, at the Palmer LTER, Perid groups with crysophytes based 

on the affiliation of ButFuco and Zea; in the global dataset and at other observatory sites, 

these pigments cluster with haptophytes and cyanobacteria, respectively. While the new 

groups identified on local scales are different than the groups found in the global 

hierarchical cluster analysis, all of these groups can still be identified by diagnostic 

biomarker pigments. 

The local EOF analyses (Figure S3) show similar results to the local hierarchical 

cluster analyses. The same major taxonomic groups are identified in the EOF analyses as are 

identified in the hierarchical cluster analyses for each site; again, the local results show more 

and different groups emerging in the EOFs than the global results. On global scales, 

dinoflagellate pigments separate from diatom pigments only in Mode 4 (Figure 4), but the 

pigment loading for Perid is not highly correlated with Mode 4 (R=0.31). Dinoflagellate 

pigments separate from all other pigments in at least one mode from Modes 2-4 for each 

observatory site (Figure S3) and Perid is highly correlated with the mode in which 

dinoflagellates are best represented (R=0.47-0.79). At Plumes and Blooms, a pigment cluster 

emerges of photoprotective pigments Diadino and Diato (Figure 6): these pigments are 

found in all red algae and some green algae (Table 1). The EOF analysis shows that these 

pigments are positively correlated with Mode 2 (haptophytes) and Mode 3 (dinoflagellates) 
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and negatively correlated with Mode 4 (diatom pigments). Thus, they are not associated with 

one cluster of pigments but form their own, highly linked cluster.  

As the local results represent time series sampling while the global results are 

individual points in time, the EOF results for the local analyses often show groups of 

phytoplankton co-occurring in different modes, capturing different seasons of sampling. For 

instance, at MVCO, which is sampled year-round, dinoflagellate and haptophyte pigments 

are both positively correlated with Mode 2, while dinoflagellates separate from all other 

groups in Mode 3, and then dinoflagellate and green algal pigments are both negative 

correlated with Mode 4 while haptophyte pigments are positive correlated with Mode 4 

(Figure S3D). In this case, dinoflagellates can be separated from other groups in 3 of the 

first 4 modes, but each mode offers new ecological information for further interpretation 

over a seasonal cycle. 

II.4 Discussion 

The statistical methods applied to global and local surface ocean HPLC pigment 

observations allow us to characterize four robust taxonomic groups of phytoplankton on 

global scales, and more and different groups of phytoplankton on local scales. Here, the 

dominant information content in HPLC pigments across varying spatial scales is discussed. 

The construction of the global and local surface ocean HPLC datasets and the selection of 

statistical methods are considered, as the information content in HPLC pigments is 

weakened without quality control. Finally, in light of the results found here, suggestions are 

made for using HPLC data in global and local satellite algorithm development and 

calibration, including the utility of employing biomarker pigment concentrations to denote 

the main phytoplankton communities identified here. Our results suggest that robust 
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communities of phytoplankton can be identified on varying spatial scales, but the limitations 

of the HPLC pigment dataset used will necessarily limit the phytoplankton communities 

obtained and the satellite algorithms that can be created. 

II.4.1 Evaluating the dominant information content in HPLC pigments across varying 

spatial scales 

Pigment-based methods remain some of the most common ways to assess 

phytoplankton community structure across taxonomic groups, despite any associated 

limitations. While phytoplankton diversity is vastly more complex than the results presented 

here might suggest (i.e., de Vargas et al., 2015), HPLC data are available on global scales, 

across biogeographic provinces, seasons, and environmental conditions, and at time series 

observatory sites to track long-term changes in pigment composition and concentration. A 

goal of this analysis is to determine the maximum amount of information that can be 

determined about global vs. local phytoplankton community structure from HPLC pigments 

with application to remote sensing algorithm calibration and validation. The results 

presented here demonstrate that the relationships between and among groups of 

phytoplankton pigments can reliably be used to describe four distinct taxonomic groups of 

phytoplankton on global scales: diatoms and dinoflagellates, cyanobacteria, green algae, and 

haptophytes. On local scales, up to six taxonomic groups can be successfully separated from 

HPLC pigments, but the groups that emerge vary based on the dominant taxa at each 

observatory site.  

Globally, proportion of samples with high concentrations of dinoflagellate (Perid) 

and crypotophyte (Allo) biomarker pigments are rare enough in the global dataset that these 

groups are not independently identified by the statistical methods applied in the global 
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analyses. However, on local scales, HPLC pigments often provide higher taxonomic 

resolution about the phytoplankton community. The hierarchical cluster (Figure 6) and EOF 

analyses (Figure S3) of each local dataset identify more and different phytoplankton groups 

than were detected in the global dataset (Figures 3 and 4). Notably, dinoflagellate (Perid) 

pigments separate from diatom (Fuco) pigments at every site in the local dataset, but 

dinoflagellate and diatom pigments cluster together in the global dataset. Cryptophyte (Allo) 

pigments and crysophyte (ButFuco and Zea) pigments also cluster individually from other 

red algal pigments in the local data, but these pigments generally cluster with either the red 

algal or haptophyte pigments in the global dataset. The information content of local scale 

HPLC pigment data provides higher taxonomic resolution than the global dataset, as more 

groups can be identified at most of the observatory sites than on global scales. Importantly, 

HPLC pigments allow for the identification of dinoflagellates on local scales, which is also 

relevant to regional ecology, fisheries, and human health, as many dinoflagellate species can 

form harmful algal blooms (e.g., D. M. Anderson et al., 2008). HPLC pigments measured at 

time series sites offer a larger dynamic range of pigment concentrations sampled over the 

course of a seasonal cycle that captures seasonal successional patterns of phytoplankton 

groups, rather than the global dataset which encapsulates the entire global range of possible 

combinations of pigments. 

The results presented here demonstrate the potential and limitations of using HPLC 

pigment ratios to develop global and local remote sensing algorithms. While some methods 

purport to identify as many as eight distinct phytoplankton groups from HPLC pigments 

(e.g., CHEMTAX; Mackey et al., 1996), this analysis suggests that only four and up to six 

groups can be identified from pigments, even from high resolution local-scale sampling. 
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Given the shared pigments between many phytoplankton groups (Table 1), the cluster and 

EOF analyses allow for differentiation between groups, but to a point. As the groups that can 

be reliably identified from pigments on local scales are different than the groups that can be 

identified on global scales, HPLC pigments can be used on local scales to create and 

validate remote sensing algorithms that target local, pigment-specific phytoplankton groups 

(such as dinoflagellates). Understanding the differences in phytoplankton taxonomic 

resolution on varying spatial scales is crucial to constructing applicable and relevant satellite 

remote sensing models for the present and future ocean (Bracher et al., 2017 and references 

therein). 

II.4.2 Considerations in synthesizing and analyzing a global surface ocean phytoplankton 

pigment dataset 

In order to evaluate the suitability of HPLC pigments for distinguishing between 

phytoplankton group across varying spatial scales, consistent data are required, with 

spurious samples removed and inconsistent or redundant data sources eliminated before 

analysis. Thus, in this case, more data are not necessarily better. Rather, two distinct, 

coherent datasets of global and local scale samples, with clear criteria for inclusion, were 

essential. The careful inclusion of these datasets allows for the associations between and 

among HPLC pigments to be investigated with as few spurious samples included as 

possible. Here, the choices required and challenges involved in curating and analyzing such 

a data synthesis are discussed.  

In constructing a global dataset of HPLC samples with contributions from over sixty 

distinct oceanographic cruises and sampling programs, there are bound to be sources of 

uncertainty and caveats to the conclusions presented here. While community-defined 
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recommendations for best practices exist at all stages of analysis for sampling seawater, 

filtering seawater, storing filters before analysis, and for the analysis itself (i.e., 

https://oceancolor.gsfc.nasa.gov/docs/technical/), it would be impossible to ensure that these 

protocols were followed for every sample in this dataset. Thus, while all efforts have been 

made to remove spurious data from the global assemblage (see Quality control and quality 

assurance, above), some sources of error may remain. However, other sources of potential 

uncertainty in this analysis can be quantified and are described in further detail. 

The role of data source was considered carefully throughout this analysis. The EOF 

amplitude functions for the global dataset were not strongly correlated with any one data 

source (R2<=0.14). When the mean values of several biomarker pigments are compared for 

each data source, it is clear that the sample collection for some data sources was biased to 

specific geographic regions (Figure S1, Table S2). The samples from the DiTullio lab are 

overwhelmingly from the Peruvian Upwelling Zone and the Southern Ocean (Figure S5), 

regions dominated by diatoms and haptophytes. Unsurprisingly, the mean values of Fuco 

and HexFuco are significantly higher than the mean values for other analytical facilities 

(Table S2). Similarly, the AWI samples were all taken from low to mid latitudes, 

concentrated in the equatorial Atlantic and Pacific Oceans (Figure S5); these regions are 

dominated by cyanobacteria, which is reflected by the significantly high mean concentration 

of Zea for this analysis facility. The local dataset includes six time series observatory sites: 

naturally, the data from each of these sites has high geographic variation and very different 

biomarker pigment concentrations and ratios (Table 2)—with the exceptions of the Bowdoin 

Buoy and MVCO, which are geographically close but with different phytoplankton 
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communities (e.g., cryptophytes group with dinoflagellates at the Bowdoin Buoy but with 

green algae at MVCO).  

The construction of a large HPLC pigment dataset across multiple sources includes 

the decision to require a minimum phytoplankton pigment suite and to average data over 

space, depth, and/or time; these decisions may lead to differences in the conclusions of 

pursuant statistical analyses. Comparable global analyses of HPLC pigment data have 

grouped samples by season (i.e., Swan et al., 2016) or integrated pigment values over the 

euphotic zone (i.e., Uitz et al., 2006) prior to analysis. As our goal was assessing 

information content in surface ocean HPLC pigment observations for remote sensing 

applications, the quality of the global and local datasets (including the depth of sampling, 

consistency of the pigments measured, and the geographic distribution of samples) was 

central to our conclusions. Strict criteria were used to construct the dataset used for this 

analysis. A minimum number of pigments were required to be measured for inclusion in the 

dataset, samples were processed at a limited number of analytical facilities, and were not 

averaged over space or depth. These criteria necessarily excluded some datasets from 

inclusion.   

Similarly, the selection of statistical methods was carefully considered in this 

analysis. The co-variability observed between pigments and pigment ratios in the global 

dataset (Figure 2) creates difficulties for statistical methods that model phytoplankton 

groups from observations of HPLC pigments. Some common methods, such as the DPA, do 

not make assumptions about co-linearity in the pigment data that would be complicated by 

the observed co-variability; however, other methods rely on assumptions of linear 

contributions between accessory pigments or between accessory pigments and Tchla. For 
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instance, CHEMTAX is a widely used method (Mackey et al., 1996) that aims to estimate 

several phytoplankton groups from HPLC pigments based on assumptions of their 

contributions to Tchla. CHEMTAX assumes that individual pigments or combinations of 

pigments correspond to unique groups of phytoplankton, allowing for statistical separation 

of phytoplankton group contributions to Tchla, and that the contributions of individual 

phytoplankton pigments to each taxonomic class are known. On global scales, taxa-specific 

pigment ratios are not expected to be constant. Even on local scales, where pigment 

contributions can be better defined and constrained for taxa of interest, direct comparisons 

between CHEMTAX and other methods of phytoplankton identification are often 

inconsistent (e.g., Havskum et al., 2004; Pan et al., 2011; Kramer et al., 2018). Finally, 

CHEMTAX assumes linear independence between the pigments, which is inconsistent with 

the data compiled here (Figure 2). Multicollinearity dilutes the significance of individual 

pigments in the matrix inversion due to the correlation between pigments (Legendre and 

Legendre, 1998). As several of the underlying assumptions of CHEMTAX are not supported 

by the global dataset, it was not used here. 

The data-driven methods presented here do not require a priori assumptions to 

determine group membership, but rather rely on the similarity in pigment composition and 

concentration between groups of samples to define taxonomic phytoplankton communities 

across spatial scales. Similarly, only the ratios of individual pigments to Tchla are used here 

to reduce the between-group correlations of nearly all phytoplankton pigments. The global 

data did not support an attempt to further parse the main communities detected here into 

more distinct groups. Thus, differences are not discernable on global scales between, for 
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example, distinct haptophyte communities, between cryptophytes and other red algae, or 

between prasinophytes and other green algae.  

II.4.3 Potential and limitations of HPLC pigments for calibration and validation of 

remote sensing algorithms 

The results shown here demonstrate both the potential and the limitations of HPLC 

pigments to identify phytoplankton groups on varying spatial scales from consistent 

datasets. Phytoplankton pigments are a proxy for community composition that do not 

necessitate the human effort required for microscopic identification or for classification and 

validation of quantitative cell imaging (i.e., Sosik and Olson, 2007; Lombard et al., 2019). 

Despite the relatively high cost and longer processing time of HPLC samples, HPLC 

remains a cheap, fast, and standardized method compared with high-throughput molecular 

sequencing techniques (i.e., de Vargas et al., 2015; Hugerth and Andersson, 2017). Finally, 

the connections between phytoplankton pigments and phytoplankton absorption allow the 

attribution of spectral features in both phytoplankton absorption and remote sensing 

reflectance to specific phytoplankton pigments (i.e., Roesler and Perry, 1995; Uitz et al., 

2015; Chase et al., 2017; Catlett and Siegel, 2018; etc.), which can then be ascribed to 

certain taxonomic groups, as shown here.  

Future satellite-based PFT quantification will likely require hyperspectral resolution 

for accurate estimates of pigment concentrations that can then be used to identify distinct 

phytoplankton groups (e.g., Werdell et al., 2019). Hyperspectral resolution is required due to 

the overlap in phytoplankton pigment absorption peaks. In anticipation of these 

hyperspectral data, algorithms have been proposed to identify phytoplankton groups from 

high resolution reflectance measurements (i.e., Uitz et al., 2015, Chase et al., 2017, etc.). On 



 

 51 

global scales, the present global HPLC pigment dataset can then be applied to develop and 

calibrate remote sensing algorithms that would detect up to the same four phytoplankton 

groups identified by the statistical methods used here. On local scales, the HPLC samples 

measured at each time series site could be used to calibrate and validate regional scale 

remote sensing algorithms that would identify more and different phytoplankton groups than 

the global algorithms, or that distinguished specific phytoplankton groups of interest at a 

local site (such as dinoflagellates, which can form toxic algal blooms).  

Previous methods to detect phytoplankton groups from HPLC pigments for remote 

sensing algorithm validation purposes have proposed the selection of biomarker pigments to 

represent taxonomic groups (e.g., Uitz et al., 2006; Catlett and Siegel, 2018; etc.). The 

groups identified in this analysis on both global and local scales can be represented by 

individual pigments to serve as similar function: Fuco (globally: diatoms and 

dinoflagellates; locally: diatoms), HexFuco (haptophytes), MVchlb (green algae), DVchla or 

Zea (cyanobacteria). These pigments are meaningful for the broad taxonomic groups they 

represent (Table 1) and consistent with existing observations of HPLC pigments and optical 

oceanographic data, such as phytoplankton absorption spectra (i.e., Chase et al., 2013; 

Catlett and Siegel, 2018). The local datasets used here suggest that local scale remote 

sensing algorithms may be able to achieve more taxonomic resolution to separate bloom 

species, such as dinoflagellates, from other phytoplankton using Perid. However, on global 

scales, future and existing satellite methods that are validated with this HPLC pigment 

dataset could not robustly achieve higher taxonomic resolution than the four distinct groups 

identified here.  
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The dataset used to construct or validate a remote sensing algorithm will necessarily 

limit the potential and applications of a remote sensing algorithm. A model developed with 

the global dataset used here would only be able to detect a maximum of four phytoplankton 

groups in the surface ocean; on local scales, the model results would not accurately reflect 

the ecology of that region. For instance, an algorithm for dinoflagellates cannot be built 

from the current global dataset. If a global remote sensing algorithm validated with the 

present global HPLC pigment dataset was applied to remote sensing data for a coastal 

region, it would likely be unable to distinguish between diatoms and dinoflagellates. A 

global scale algorithm would be limited to identify only the four groups that emerge on a 

global scale from this dataset. Thus, a global algorithm created with this dataset should only 

be applied on a regional or local scale with full understanding of these limitations, as some 

major local-scale groups will not be able to be identified with a global-scale algorithm 

constructed from this dataset. Similarly, remote sensing algorithms developed using data 

from one of the time series observatory sites shown here would not be suitable for global 

application. Many of the local sites are missing groups that appear on global scales (i.e., 

cyanobacteria are globally important, but their biomarker pigments are not detected at the 

Bowdoin Buoy, MVCO, or Palmer).  

Thus, the selection of an appropriate remote sensing algorithm for the desired 

spatiotemporal scale of analysis is essential. Criteria will need to be established for the 

spatial scales where a global algorithm transitions to a local one. For example, if a global 

algorithm is applied and one of the four groups is missing (from an absence of the associated 

biomarker pigment), that missing group might provide clues of how to switch from a global 

to local scale algorithm. For instance, in several of the local datasets, picoplankton and 
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cyanobacteria biomarker pigments are missing (Figure 6). Continued local and global in situ 

monitoring of phytoplankton communities will also be critical for determining the times and 

regions in which global vs. local remote sensing algorithms would be more suitable. Finally, 

the datasets used here are only relevant for calibration and validation of remote sensing 

algorithms describing conditions up to present day. These models will be limited to detect 

future change. Climate change is expected to alter global patterns in nutrient availability and 

surface ocean stratification, which may lead to increases in dinoflagellates in the global 

ocean (i.e., Falkowski and Oliver, 2007). However, a model developed using the global 

dataset presented here would only be able to detect a mixed group of diatoms and 

dinoflagellates on global scales, and not a separate dinoflagellate community.  

Pigment-based methods will remain essential for building global satellite algorithms 

to determine phytoplankton community structure from space given the widespread 

availability of HPLC pigment data on varying spatial scales and over time. While there is 

inherent value in understanding the biogeographic distribution of phytoplankton species, 

ultimately many of these algorithms aim to link surface ocean biology to the downward flux 

of organic carbon to the deep ocean, which has implications for global climate (e.g., Guidi et 

al., 2016). Like many methods of phytoplankton identification, pigments do not measure 

biomass nor productivity nor rates of organic matter export. In order to better quantify these 

terms, pigment-based methods will have to be merged with other methods that can quantify 

cellular carbon (e.g., flow cytometry) and describe the fraction carbon contributed by each 

taxonomic group. The limitations of pigment-based methods aside, this analysis offers 

metrics and datasets to strengthen both existing and future remote sensing algorithms and 
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subsequent models that will benefit from characterizing surface ocean phytoplankton 

community structure. 
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here. 

 

Figure S1. HPLC data analysis sources for each sample in this analysis (blue = Horn Point 
Labs, cyan = NASA Goddard Space Flight Center, green = Laboratoire d’Océanographie de 
Villefranche-sur-Mer, yellow = Alfred Wegner Institute, orange = Commonwealth Scientific 
and Industrial Research Organisation, red = DiTullio lab (College of Charleston). 

 

 

Figure S2. EOF loadings of modes (A) 5 and (B) 6 for the global dataset. The mode number 
and percent variance explained by that mode are listed above each plot. Numbers above each 
pigment represent the correlation coefficient of that pigment with the given mode multiplied 
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by 100. Pigments are colored by major taxonomic group: cyanobacteria (light blue), 
haptophytes (dark blue), diatoms and dinoflagellates (brown), green algae (green). 
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Figure S3. EOF loadings for Modes 1-4 of each observatory: (A) BOUSSOLE, (B) 
Bowdoin Buoy, (C) CARIACO, (D) MVCO, (E) Palmer, (F) Plumes and Blooms. Pigment 
loadings mirror the order and color of the cluster results for each observatory. Pigments are 
colored by major taxonomic group: cyanobacteria (light blue), haptophytes (dark blue), 
diatoms (brown), dinoflagellates (red), green algae (green), cryptophytes (purple), 
crysophytes (gold). Suggested taxonomic affiliation of pigments that are either positively 
and negatively correlated with Modes 1-4 are indicated. The mode number and percent 
variance explained by that mode are listed above each plot. Numbers above each pigment 
represent the correlation coefficient of that pigment with the given mode multiplied by 100. 
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Source Fuco Perid 19but 19hex Allo MVchlb Zea 

All 0.29 0.03 0.04 0.12 0.01 0.04 0.04 
HPL 0.26 0.04 0.10* 0.06 0.02 0.05 0.07 
GSFC 0.24 0.02 0.02 0.08 0.01 0.05 0.03 
LOV 0.10 0.03 0.01 0.05 0.01 0.04 0.03 
AWI 0.24 0.02 0.03 0.10 0.01 0.04 0.08* 

CSIRO 0.06 0.01 0.02 0.08 0.01 0.03 0.04 
DiTullio 0.54* 0.06 0.03 0.24* 0.02 0.05 0.03 
 
Table S2. Mean value of biomarker pigments in the global dataset for all six source labs. 
HPL = Horn Point Labs, GSFC = NASA Goddard Space Flight Center, LOV = Laboratoire 
d’Océanographie de Villefranche-sur-Mer, AWI = Alfred Wegner Institute, CSIRO = 
Commonwealth Scientific and Industrial Research Organisation, DiTullio = DiTullio lab 
(College of Charleston). Bold values indicate the highest (red) and lowest (blue) values for 
each parameter. If the highest or lowest value is the same for a given pigment, the value is 
not indicated in bold or color. A star indicates that the value was significantly different from 
the mean values of that pigment for all other labs (2-way ANOVA, p<0.001). 
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III.  Phytoplankton community composition determined from co-
variability among phytoplankton pigments from the NAAMES field 
campaign 

Abstract: Analysis of phytoplankton chemotaxonomic markers from high performance 
liquid chromatography (HPLC) pigment determination is a common approach for evaluating 
phytoplankton community structure from ocean samples. Here, HPLC phytoplankton 
pigment concentrations from samples collected underway and from CTD bottle sampling on 
the North Atlantic Aerosols and Marine Ecosystems Study (NAAMES) are used to assess 
phytoplankton community composition over a range of seasons and environmental 
conditions. Several data-driven statistical techniques, including hierarchical clustering, 
Empirical Orthogonal Function, and network-based community detection analyses, are 
applied to examine the associations between groups of pigments and infer phytoplankton 
communities found in the surface ocean during the four NAAMES campaigns. From these 
analyses, five distinguishable phytoplankton community types emerge based on the 
associations of phytoplankton pigments: diatom, dinoflagellate, haptophyte, green algae, and 
cyanobacteria. We use this dataset, along with phytoplankton community structure metrics 
from flow cytometric analyses, to characterize the distributions of phytoplankton biomarker 
pigments over the four cruises. The physical and chemical drivers influencing the 
distribution and co-variability of these five dominant groups of phytoplankton are 
considered. Finally, the composition of the phytoplankton community across the onset, 
accumulation, and decline of the annual phytoplankton bloom in a changing North Atlantic 
Ocean is compared to historical paradigms surrounding seasonal succession.  

III.1 Introduction 

The North Atlantic Ocean has long been a location of significant oceanographic 

interest due to its role in oceanic primary productivity, carbon sequestration, and climate 

mediation (Longhurst, 1998; Behrenfeld, 2014; Siegel et al., 2014). The spring 

phytoplankton bloom in the North Atlantic has been extensively examined from both in situ 

sampling (i.e., Ducklow and Harris, 1993; Barnard et al., 2004; Cetinić et al., 2015) and 

satellite remote sensing of ocean color (i.e., Siegel et al., 2002; Behrenfeld et al., 2013). The 



 

 68 

North Atlantic Aerosols and Marine Ecosystems Study (NAAMES) builds on this historical 

sampling, aiming to characterize the seasonal cycle of plankton dynamics in the western 

subarctic Atlantic Ocean and to relate the emission of biogenic aerosols to atmospheric 

boundary layer dynamics (Behrenfeld et al., 2019). The NAAMES field campaign 

conducted four cruises in four different seasons to assess seasonal phytoplankton bloom 

phases, from onset to accumulation to decline, including multiple approaches to describe 

changes in phytoplankton community structure (see Behrenfeld et al., 2019 for an overview 

of the NAAMES field campaign).  

Previous studies have examined the succession of phytoplankton community 

structure in the North Atlantic Ocean using a variety of tools and methods to describe 

phytoplankton taxonomy, including traditional light microscopy, flow cytometry, and high 

performance liquid chromatography (HPLC) pigment analysis (i.e., Riley, 1946; Sieracki et 

al., 1993; Mousing et al., 2016; etc.). HPLC analysis quantifies the composition and 

concentration of phytoplankton specific pigments, allowing for chemotaxonomic 

characterization of the phytoplankton community based on established relationships between 

pigments and various taxonomic groups. Applications of these different approaches have 

resulted in an understanding of seasonal trends in community structure that have been 

associated with both bottom-up (i.e., nutrients, light availability, turbulent mixing) and top-

down factors (e.g., grazing by zooplankton). Previous HPLC phytoplankton pigment-based 

analyses of phytoplankton successional processes for this region (i.e., Sieracki et al., 1993; 

Taylor et al., 1993; Barlow et al., 1993) have found that the onset and accumulation phases 

of the North Atlantic spring phytoplankton bloom are dominated by diatoms, which are 

hypothesized to thrive under turbulent physical conditions (Margalef, 1978). The spring 
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diatom bloom depletes the surface ocean concentrations of essential nutrients (silicate and 

nitrate), as stratification increases, leading to silicate limitation for the diatom community. 

Communities of haptophytes and dinoflagellates follow the peak of the diatom bloom, with 

background communities of green algae and cyanobacteria also thriving in these lower-

nutrient periods.  

HPLC pigment analysis provides an opportunity to characterize the phytoplankton 

community at relatively low taxonomic resolution (i.e., to group level) based on associations 

between phytoplankton taxonomy and pigment composition (e.g., Jeffrey et al., 2011; 

Kramer and Siegel, 2019). HPLC methods measure the concentration of ~25 distinct 

phytoplankton pigments, some of which serve as biomarker pigments that are either 

commonly found in one phytoplankton group (e.g., fucoxanthin in diatoms) or are unique to 

another (e.g., alloxanthin in cryptophytes). However, most pigments are not perfect 

indicators of taxonomy and many pigments are shared between taxonomic groups (Figure 2; 

Higgins et al., 2011 and references therein)—for instance, fucoxanthin is also found in 

dinoflagellates and haptophytes. Regardless, the composition and concentration of these 

biomarker pigments can be used to broadly diagnose phytoplankton community structure. 

The interpretation of pigment data may be further complicated by the plasticity of pigment 

composition and concentration between different ecological conditions, under varied light 

and nutrient conditions, and even between strains of the same phytoplankton species 

(Schlüter et al. 2000; Irigoien et al. 2004; Zapata et al. 2004). This pigment plasticity along 

with the high degree of correlation between phytoplankton pigment concentrations preclude 

the routine use of methods that assume specific ratios of pigments in certain phytoplankton 

communities (Higgins et al., 2011; Kramer and Siegel, 2019). However, despite these 
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limitations, a quality-controlled HPLC dataset can be used in conjunction with data-driven 

statistical methods to characterize the phytoplankton community with reasonable confidence 

(Anderson et al., 2008; Catlett and Siegel, 2018; Kramer and Siegel, 2019).  

Here, a dataset of surface ocean HPLC samples collected on all four NAAMES 

cruises is examined using several data-driven statistical methods to examine the distribution 

of phytoplankton communities on varying spatiotemporal scales. These methods 

independently assemble clusters or communities of pigments that are relevant to 

taxonomically distinct assemblages of phytoplankton (i.e., the association between divinyl 

chlorophylls and zeaxanthin can be used to identify a cyanobacteria community). These 

methods result in the identification of five distinct phytoplankton community types in the 

surface ocean sampled during the NAAMES field campaigns. The distribution of these 

communities throughout four seasons is considered here in the context of the paradigmatic 

cycle of North Atlantic phytoplankton seasonal succession and across a range of physical 

and biogeochemical conditions. The results of the statistical methods used here are 

supplemented with flow cytometric phytoplankton community information to compare with 

the HPLC pigment-based community analyses.   

III.2 Materials and Methods 

The North Atlantic Aerosols and Marine Ecosystems Study (NAAMES) conducted 

four field campaigns in the western Atlantic Ocean in November 2015 (NAAMES 1), May-

June 2016 (NAAMES 2), August-September 2017 (NAAMES 3), and March-April 2018 

(NAAMES 4). The science objectives of the NAAMES field campaigns and the physical 

context of these efforts have been described elsewhere (Behrenfeld et al., 2019; Della Penna 

and Gaube, 2019). Here, a dataset of HPLC phytoplankton pigments and flow cytometry 
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data from all four NAAMES cruises is used to determine surface ocean phytoplankton 

community composition to relatively low taxonomic resolution.  

III.2.1 HPLC dataset summary 

The dataset used here includes 229 surface samples (<= 5 m, from CTD and flow-

through sampling) for HPLC phytoplankton pigments collected on NAAMES 1-4 (Figure 

1). Samples were collected in the Subarctic and Temperate provinces, as well as the 

Subtropical and Sargasso Sea provinces as defined for the NAAMES project by Della Penna 

and Gaube (2019). HPLC samples were processed at the NASA Goddard Space Flight 

Center, following strict quality assurance and quality control protocols (i.e., Van Heukelem 

and Hooker, 2011; Hooker et al., 2012). All HPLC data were further quality controlled by 

setting all pigment values below the HPLC method detection limits for each pigment equal 

to zero (following the NASA Ocean Biology Processing Group method limits described in 

Van Heukelem and Thomas, 2001). Degradation pigments (chlorophyllide, phaeophytin, and 

phaeophorbide) were removed from all analyses, as were redundant accessory pigments 

(monovinyl chlorophyll-a, total chlorophyll b, total chlorophyll c, and alpha-beta carotene). 

Lutein (an accessory pigment in green algae) was also removed from all further analyses, as 

it was below detection level or not measured in >75% of all surface HPLC samples from 

NAAMES. 



 

 72 

 

Figure 1. Surface ocean total chlorophyll-a concentration from HPLC (N = 229) on 
NAAMES 1 (solid line), NAAMES 2 (dashed line), NAAMES 3 (dotted line), and 
NAAMES 4 (dash-dot line). Subpolar (north of dashed red line) and subtropical (south of 
dashed red line) provinces are delineated as defined by Della Penna and Gaube (2019). 
 

The remaining sixteen pigments used in this analysis (and their abbreviations) are: 

19’-hexanoyloxyfucoxanthin (HexFuco), 19’-butanoyloxyfucoxanthin (ButFuco), 

alloxanthin (Allo), fucoxanthin (Fuco), peridinin (Perid), diatoxanthin (Diato), 

diadinoxanthin (Diadino), zeaxanthin (Zea), divinyl chlorophyll a (DVchla), monovinyl 

chlorophyll b (MVchlb), divinyl chlorophyll b (DVchlb), chlorophyll c1+c2 (Chlc12), 

chlorophyll c3 (Chlc3), neoxanthin (Neo), violaxanthin (Viola), and prasinoxanthin (Pras). 

The chemotaxonomic utility of the pigments used in data-driven community analyses is 

illustrated in Figure 2, adapted from Jeffrey et al. (2011) and references therein, which 
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denotes many common combinations of pigments found in different taxonomic groups of 

phytoplankton relevant to the North Atlantic Ocean. Prior to any of the following statistical 

analyses, all pigments were normalized to total chlorophyll-a concentration, given the high 

degree of co-linearity between absolute pigment concentrations (Figure S1).  

 

Figure 2. Summary of 18 pigments used in this analysis (17 accessory pigments and 
monovinyl chlorophyll-a) and the distribution of these pigments across twelve taxonomic 
groups, including the five major taxonomic groups identified in this analysis (starred). 
Known distributions of each pigment in each group (for the species in each group that have 
been cultured and had HPLC analysis performed) are shown (adapted from Jeffrey et al. 
2011 and references therein). 
 

The HPLC pigment data are also compared to matched samples of inorganic nutrient 

concentration, underway temperature and salinity, and particle backscattering at 532 nm (as 

a proxy for particle concentration). All pigment, flow cytometry, and environmental data 

and descriptions of their collection and analyses are available on NASA’s SeaBASS data 

repository (https://seabass.gsfc.nasa.gov/naames). Flow cytometry data are discussed in 

more detail below. 
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III.2.2 Flow cytometry dataset summary 

Flow cytometry analyses were performed on whole unpreserved surface seawater 

samples collected directly from in-line near-surface sampling system and CTD mounted 

Niskin bottles into sterile 5 ml polypropylene tubes (3x rinsed) and immediately stored at 

~4°C until analysis on a BD Influx Cell Sorter (ICS). All samples were analyzed within 30 

min or less from the time of collection. A minimum of ~7,000 total cells were interrogated 

per sample and counts were transformed into concentrations using calculated sample flow 

rates (Graff et al. 2018). The ICS was calibrated daily with fluorescent beads following 

standard protocols (Spherotech, SPHERO™ 3.0 μm Ultra Rainbow Calibration Particles).  

Flow cytometry data were broadly classified into cyanobacteria and eukaryotic 

phytoplankton with distinction made between Prochlorococcus and Synechococcus for the 

cyanobacteria and pico- and nanoeukaryotes defined based upon groupings of scattering and 

fluorescence properties that are associated with these groups. The BD ICS used during 

NAAMES was equipped with a 100 µm nozzle which has an upper cell size limit for 

analysis of ~55-64 µm as determined in the lab and at sea using cultures. As with all particle 

counting methods, constraints of the volume of water that can be realistically analyzed also 

limit the number of observations made for the largest cells within each sample. For all 

analyses presented here, the concentration of cells in each class (Prochlorococcus, 

Synechococcus, picoeukaryotes, and nanoeukaryotes) was normalized to the total 

concentration of cells measured by flow cytometry.  

III.2.3 Hierarchical cluster analysis 

A hierarchical cluster analysis was performed on the NAAMES 1-4 HPLC pigment 

dataset, using all sixteen pigments described above after normalization to Tchla (e.g., 
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Fuco:Tchla, etc.). This method uses Ward’s linkage method (the inner squared distance), 

based on the correlation distance (1-R, where R is Pearson’s correlation coefficient between 

phytoplankton pigment ratios), as in Latasa and Bidigare (1998) and Catlett and Siegel 

(2018). A linkage cutoff distance of 1 is used to divide the resulting dendrogram into distinct 

phytoplankton community clusters. The correlation distances between samples were then 

used to assign each sample to one of the resulting clusters. 

III.2.4 Empirical Orthogonal Function (EOF) analysis 

An Empirical Orthogonal Function (EOF) analysis was performed on the NAAMES 

1-4 surface HPLC pigment dataset to evaluate the co-variability in groups of phytoplankton 

pigments (following Catlett and Siegel, 2018 and Kramer and Siegel, 2019). This analysis 

decomposes the data into dominant orthogonal functions descriptive of the major modes of 

variability in the dataset. The percent variance explained by each mode decreases with 

higher modes; i.e., Mode 1 describes the most variance in the dataset, thus only the lowest 

few modes are useful for interpreting a dataset. For each mode, an EOF analysis results in 

both the loadings over the entire dataset and amplitude functions for each sample. The 

loadings describe the correlation between the mode of variability and the input variables (in 

this case, ratios of phytoplankton pigments to Tchla) while the amplitude functions describe 

the strength of each mode at each sample location. The summed product of the loadings and 

amplitude functions over all of the EOF modes enables reconstruction of the original 

dataset. Pigment concentrations (normalized to Tchla) were mean-centered and normalized 

by their standard deviation before EOF analysis. Correlations between the dominant EOF 

modes and several relevant environmental variables (specifically latitude, temperature, 

salinity, and inorganic nutrient concentrations) were also considered.  



 

 76 

III.2.5 Network-based community detection analysis 

To perform the network-based community detection analysis, the NAAMES 1-4 

HPLC pigment dataset was first transformed into a symmetrical adjacency matrix. The 

adjacency matrix describes the strength of the correlation between two nodes (here, between 

sampling sites) for all 229 sampling sites; these correlations describe the edges connecting 

the nodes. Pearson’s correlation coefficients were used to describe the relationships between 

nodes based on the ratios of each pigment normalized to Tchla. The edges between nodes 

were weighted following the Weighted Gene Co-Expression Network Analysis (WGCNA; 

Zhang and Horvath 2005):  

[1] !!" =	 $%&''()! , )")$
# 

where !!" is the adjacency matrix, %&''()! , )") is the Pearson correlation coefficient 

between nodes (sampling sites) )! and )", and , is a scaling term determined based on the 

average correlation coefficient in the input matrix (here , = 6, as in Zhang and Horvath 

2005). The WGCNA was chosen because it was developed for networks similar to the one 

used here, which has many nodes (229), each of which encompasses multiple traits (ratios of 

sixteen pigments to Tchla). 

 Next, community detection analysis was performed on the adjacency matrix using 

the modularity_und.m function, which is part of the Brain Connectivity Toolbox 

(https://sites.google.com/site/bctnet/Home) developed for MATLAB as detailed in Rubinov 

and Sporns (2010). This method determines the number and type of communities that 

maximize the modularity of the network. Modularity refers to the connectedness of the 

network within communities: modularity of 0.3 or above is considered high and indicates 

highly interconnected sites within each community with weaker between-group connections. 
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The output of this function gives a community assignment to each sampling site in the 

matrix based on the relatedness of the sixteen pigment ratios. The mean ratios of biomarker 

pigments in each community were used to determine the taxonomic significance of the 

community.  

III.3 Results 

The NAAMES 1-4 surface HPLC pigment dataset represents a wide range of 

environmental and ecological conditions (Table 1). NAAMES 2 (May-June) featured the 

coldest mean surface water temperature, highest mean surface Tchla concentration, and 

highest mean surface concentrations of nitrate. The highest mean Fuco:Tchla and mean 

Perid:Tchla ratios were also found in the surface ocean on NAAMES 2, suggesting more 

diatoms and dinoflagellates compared with other cruises. On NAAMES 3 (August-

September), the mean surface ocean water temperature was the warmest of the four cruises, 

and the mean concentrations of Tchla and nitrate were the lowest. During this cruise, the 

mean ratios of HexFuco:Tchla and Zea:Tchla were the highest, indicating more haptophytes 

and picophytoplankton (including cyanobacteria). NAAMES 1 (November) and NAAMES 

4 (March-April) had mid-range mean surface water temperature and nutrient concentrations. 

The highest mean ratio of MVchlb:Tchla, which is a biomarker pigment for all green algae, 

was found on NAAMES 1, while the lowest mean ratios of MVchlb:Tchla and Perid:Tchla 

(dinoflagellates) were found on NAAMES 4.  
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Table 1. Summary of environmental and ecological variables for surface samples on 
NAAMES 1-4. Red values are the highest for a given parameter; blue values are the lowest. 
Stars indicate that the value is significantly different from all other values for a given 
parameter. 

Parameter November 
(NAAMES 1) 

March-April 
(NAAMES 4) 

May-June 
(NAAMES 2) 

August-Sept. 
(NAAMES 3) 

Number samples 48 70 53 58 

Tchla (mg m-3) 0.674 0.716 1.77* 0.383 

Temperature (°C) 13.5* 16.6 10.4* 17.1 

Nitrate (μmol L-1) 3.95 2.19 6.10 0.938 

Fuco:Tchla 0.134 0.196 0.216 0.098 

Perid:Tchla 0.037 0.018* 0.068* 0.038 

HexFuco:Tchla 0.208 0.226 0.164 0.294* 

MVchlb:Tchla 0.177* 0.111 0.118 0.117 

Zea:Tchla 0.054 0.071 0.020 0.206* 

 

III.3.1 Hierarchical cluster analysis 

Five distinct phytoplankton pigment clusters emerge from the hierarchical cluster 

analysis of pigment ratios normalized to Tchla across the four NAAMES cruises (Figure 

3A). The associations between pigment ratios can be used to infer the taxonomic designation 

of each major cluster (Figure 2). Cyanobacterial pigments (Zea, DVchla, DVchlb) are 

strongly correlated to each other and separate from all other pigments. Diatom pigments 

(Fuco, Chlc12) and dinoflagellate pigments (Perid) also separate from all other pigments, 

and from each other. Haptophyte pigments (HexFuco, ButFuco, Chlc3) and green algal 

pigments (MVchlb, Neo, Pras, Viola) are broadly linked but separate from each other and 

separate from the clusters of either cyanobacteria or diatoms and dinoflagellates. Allo (a 

cryptophyte biomarker) is correlated with green algal pigments, although cryptophytes are 

red algae (Figure 2). Thus, the hierarchical cluster analysis identified five distinct clusters of 

community types: diatom, dinoflagellate, green algae, haptophyte, and cyanobacteria.  
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Figure 3. Hierarchical clustering of phytoplankton pigment ratios to total chlorophyll-a 
concentration. (A) Dendrogram showing five major phytoplankton pigment groups 
delineated with brackets, defined by a linkage distance cutoff of 1 (dashed red line). (B) 
Spatiotemporal distribution of surface samples on NAAMES colored by the cluster to which 
that sample was assigned (light blue = cyanobacteria, dark blue = haptophytes, green = 
green algae/mixed, brown = diatoms, gold = dinoflagellates). 
 

The spatiotemporal distribution of these five clusters shows clear seasonal and 

latitudinal patterns (Figure 3B and S2). In the early spring (NAAMES 4) and at high 

latitudes (NAAMES 2), most samples are in the diatom and dinoflagellate clusters. In the 

late summer (NAAMES 3) and at low latitudes (beginning of NAAMES 4), nearly all 

B

A
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samples are in the cyanobacteria cluster. In the early winter (NAAMES 1) and during 

transitions between the shelf to the open ocean (NAAMES 2-4), more samples in the green 

algae cluster were observed. Finally, samples in the haptophyte cluster were observed at 

mid-latitude from late summer (NAAMES 3) into the early winter (NAAMES 1) and again 

in the early spring (NAAMES 4).  

III.3.2 EOFs 

While hierarchical cluster analysis divides the pigments and samples into distinct 

groups, Empirical Orthogonal Function analysis provides spatiotemporal resolution for 

covariation in pigment variability. EOFs are represented by loadings that show the relative 

contribution of each pigment ratio, as well as amplitude functions (AFs) that show the 

spatial distribution of the intensity of each EOF mode at each sampling site (Figure 4 and 

S3). Here, the first four modes of the EOF analysis were used to show major modes of 

variability in pigment composition and concentration on NAAMES 1-4, including the 

correlation coefficients between each pigment used in this analysis and the first four EOF 

modes (Table S1). The first four EOF modes explain 77.7% of the variability in the dataset. 
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Figure 4. Empirical orthogonal functions for Mode 1 (A & B), 2 (C & D), 3 (E & F), and 4 
(G & H), calculated for phytoplankton pigment ratios to total chlorophyll-a concentration. 
Loadings are colored based on pigment clusters (Fig. 3): light blue (cyanobacteria), dark 
blue (haptophytes), green (green algae), brown (diatoms and dinoflagellates). Amplitude 
function magnitude is indicated as positive (red) or negative (blue) for each sample and 
latitude is in gray. 
 

Mode 1 explains 28.1% of the overall variability and separates green algae (positive) 

from cyanobacteria (negative) (Figure 4A). Mode 1 is most negative at low latitudes 

(NAAMES 4 transit) and in the late summer (NAAMES 3) and most positive in the early 



 

 82 

winter (NAAMES 1) (Figure 4B). Mode 2 explains 23.2% of the all variability and separates 

diatoms and dinoflagellates (positive) from cyanobacteria, pelagophytes, and green algae 

(negative) (Figure 4C). Mode 2 is most positive at high latitude and in late spring 

(NAAMES 2). This mode is most negative at low latitude (NAAMES 4 transit), in late 

summer (NAAMES 3), and in early winter (NAAMES 1) (Figure 4D). Mode 3 explains 

15.5% of the variability in the dataset and separates haptophytes from all other 

phytoplankton (positive), notably cryptophytes and prasinophytes (negative) (Figure 4E). 

This mode is most positive in late summer (NAAMES 3) and in transitions between major 

water masses (NAAMES 4 transit) (Figure 4F). Mode 4 explains 10.9% of the total 

variability; this mode is the first to separate diatoms (negative) from dinoflagellates 

(positive) (Figure 4G). Mode 4 is most positive in summer (NAAMES 2 and 3) and most 

negative in early spring and late summer (NAAMES 4 and 3) (Figure 4H). Thus, the EOF 

analysis identifies the same five phytoplankton pigment communities as the hierarchical 

cluster analysis, as well as more and different communities that emerge at higher modes of 

variability.  

III.3.3 Network-based community detection 

The network-based community detection method employed here identifies four major 

phytoplankton pigment communities (Figure 5 and S4).  
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Figure 5. Results of network-based community detection (undirected modularity) for all 
surface samples. Samples are colored based on the dominant community determined from 
the community detection analysis: light blue (cyanobacteria), dark blue (haptophytes), green 
(green algae), brown (diatoms and dinoflagellates). Latitude plotted in gray. 
 

In identifying these communities, this method aims to maximize the modularity of the 

network. Modularity is used as a metric for the connectedness between communities vs. 

within communities. Values of modularity > 0.3 are considered high (Newman, 2006). The 

modularity for the NAAMES surface HPLC pigment ratio network was 0.33, suggesting 

high similarity between samples identified to be within the same community and robust 

separation of community types using this method. The taxonomic designation of each major 

phytoplankton pigment community was determined by the mean pigment to Tchla ratio of 

five biomarker pigments for each community (Figure 6). The first community has the 

highest mean ratios of Fuco and Perid to Tchla, suggesting high concentrations of diatoms 

and dinoflagellates (Figure 6A-B). The second community has the highest mean ratio of 

HexFuco to Tchla, indicating a haptophyte community (Figure 6C). The third community 

has the highest ratio of MVchlb:Tchla, which is found in green algae (Figure 6D). Finally, 
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the fourth community has the highest ratio of Zea:Tchla, suggesting high concentrations of 

picoplankton and cyanobacteria (Figure 6E).  

 

Figure 6. Mean pigment ratios to total chlorophyll-a for five biomarker pigments: (A) 
fucoxanthin, (B) peridinin, (C) 19’hexanoyloxyfucoxanthin, (D) mono-vinyl chlorophyll b, 
(E) zeaxanthin and (F) Prochlorococcus + Synechococcus and (G) pico- and nanoeukaryote 
fractions of total cells measured by FCM for each community detected in the community 
detection analysis (light blue = cyanobacteria, dark blue = haptophytes, green = green 
algae/mixed, brown = diatoms and dinoflagellates). 
 

These four communities are unequally distributed across NAAMES 1-4 (Figure 5). 

NAAMES 1 features the most samples in the green algal community. NAAMES 2 features 

primarily samples assigned to the diatom and dinoflagellate community, particularly at high 

latitude. On NAAMES 3, most samples at lower latitudes are assigned to the cyanobacteria 

community, while higher latitude samples are generally assigned to the haptophyte 

community. Finally, the transit through the Sargasso Sea on NAAMES 4 shows a transition 

from cyanobacteria to haptophytes to diatoms and dinoflagellates with increasing latitude 

and inorganic nutrient concentration and decreasing water temperature. The absence of 

certain communities on each cruise is also notable: while all four communities were present 

on NAAMES 4, there were no samples in the cyanobacteria community on NAAMES 1 or 

A B C D
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NAAMES 2, and only two samples in the diatom and dinoflagellate communities on 

NAAMES 3. There was only one sample in the green algal community for each cruise on 

NAAMES 2 and 3.  

III.3.4 Combining network-based community detection and EOF analyses 

While diatoms and dinoflagellates were separated in the hierarchical cluster and EOF 

analyses presented here, these groups were combined in the network-based community 

detection analysis, prompting further examination of these results. The results of the EOF 

analysis were combined with the communities identified by the network-based community 

detection analysis in order to separate dinoflagellates from diatoms (Figure 7 and S5). The 

Mode 2 AF is positively correlated with both diatom and dinoflagellate pigments (Figure 

4C) while the Mode 4 AF separates diatom (negative) and dinoflagellate (positive) pigments 

(Figure 4G). When these AFs are regressed against each other (Figure 7A), a distinct subset 

of samples in the diatom community (positive Mode 2 and negative Mode 4) separates from 

samples in the dinoflagellate community (positive Modes 2 and 4). The samples in the 

diatom community are enclosed with an ellipse designed to include all samples within ±2 

standard deviations of the mean AF value for each EOF mode. The samples in the 

dinoflagellate community (samples in the diatom community with positive AF values for 

Modes 2 and 4) become a fifth taxonomic community that can be isolated from the four 

communities already identified. The ratios of each biomarker pigment to Tchla for these five 

communities further validate the existence of a dinoflagellate pigment community (Figure 

S2). 
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Figure 7. (A) Amplitude function of Mode 4 vs. Mode 2. When Mode 2 and Mode 4 are 
both positive, dinoflagellates can be separated from diatoms. Using this metric, samples are 
colored by the dominant community detected in the community detection analysis (light 
blue = cyanobacteria, dark blue = haptophytes, green = green algae/mixed, brown = diatoms, 
gold = dinoflagellates). The black ellipse encircles 95% of the diatom samples. (B) 
Resulting spatiotemporal distribution of all five communities identified using network-based 
community detection and EOF regression (latitude plotted in grey). 
 

The spatiotemporal distribution of the samples in the dinoflagellate community 

(Figure 7B) shows that the dinoflagellate community is most common on NAAMES 2, 

particularly at the highest latitudes, but also on the cruise track from the shelf to the open 

ocean. There are also samples in the dinoflagellate community found on the shelf on 

NAAMES 1 and 3. Clearly, the five taxonomic groups identified from EOF and network-

based community detection analyses have different spatiotemporal distributions and 

represent different ecological and environmental conditions sampled on NAAMES. The five 

communities can be further divided based on the mean values for environmental and 

chemotaxonomic parameters (Table 2). The cyanobacteria community has the lowest mean 

surface Tchla concentration, nutrient concentrations, and ratios of Fuco and MVchlb to 

Tchla. This community also has the highest mean surface water temperature and Zea to 

Tchla concentrations. Alternately, the dinoflagellate community has the lowest mean surface 

water temperature and the highest mean surface Tchla concentration, nutrient 

concentrations, and Perid:Tchla ratio. As expected, the diatom community has the highest 

B
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mean Fuco:Tchla ratio, the green algae community has the highest mean MVchlb:Tchla 

ratio, and the haptophyte community has the highest mean HexFuco:Tchla ratio. It is notable 

that there is also a significantly high ratio of Fuco:Tchla found in the dinoflagellate 

community, which is unsurprising as many species in this group contain Fuco (Figure 2).  

Table 2. Summary of environmental and ecological variables for surface samples on 
NAAMES 1-4, divided into results of network-based community detection analysis. Red 
values are the highest for a given parameter; blue values are the lowest. Stars indicate that 
the value is significantly different from all other values for a given parameter. 
 

Parameter Green 
algae  Diatom  Cyanos Haptos Dinos 

Number samples 41 64 28 72 24 

Latitude (°N) 43.5 44.1 39.0* 46.3 48.1 

Tchla (mg m-3) 0.465 1.39 0.156 0.690 1.49 

Temperature (°C) 16.3 14.1 22.4* 14.5 8.22* 

Nitrate (μmol L-1) 3.01 3.38 0.548 1.55 9.16* 

Fuco:Tchla 0.110 0.285* 0.051* 0.114 0.209* 

Perid:Tchla 0.019 0.026 0.018 0.040 0.117* 

HexFuco:Tchla 0.202 0.150 0.204 0.348* 0.123 

MVchlb:Tchla 0.214* 0.104 0.051* 0.135 0.113 

Zea:Tchla 0.060 0.017 0.412* 0.068 0.023 

 

When the distribution of these five communities is compared proportionally for each 

NAAMES cruise, a seasonal cycle of phytoplankton community composition emerges 

(Figure 8).  
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Figure 8. Proportion of samples in each community detected using network-based 
community detection and EOF regression on NAAMES 1-4, arranged in seasonal order: (A) 
winter, (B) early spring, (C) early summer, (D) early fall. Colors correspond to the dominant 
community (light blue = cyanobacteria, dark blue = haptophytes, green = green algae, brown 
= diatoms, gold = dinoflagellates). 
 

In early winter (NAAMES 1), over 50% of the surface samples were assigned to the green 

algal community, with additional contributions from the haptophyte and diatom 

communities of ~20% each. By early spring (NAAMES 4), the diatom community were 

nearly 50% of the total number of samples, with contributions by green algae and 

haptophytes of ~20% each. Samples in the cyanobacteria community also appeared, from 

the NAAMES 4 transit through the Sargasso Sea (Figure 7B). Diatoms continued to 

comprise a large proportion of the samples in early summer (NAAMES 2). The 

dinoflagellate community also comprised more than 1/3 of the total samples at this time of 

year, while ~20% of the samples were in the haptophyte community. Finally, in late summer 

(NAAMES 3), samples in the haptophyte community comprised over 60% of the overall 

samples, with the cyanobacteria community comprising the majority of the rest of the 

samples. NAAMES 3 featured one sample in the green algal community and one in the 

dinoflagellate community, both on the shelf and not in the open ocean. 

A B C D
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The results of the merged EOF and network-based community detection analyses 

compare favorably to the communities determined by the hierarchical cluster analysis 

(Figures 3B and 7B). The spatiotemporal distribution of the samples identified in each 

community by the two methods is nearly identical. The number of samples in each 

community is also quite similar, although the merged EOF-network method identified more 

diatoms and fewer dinoflagellates compared to the hierarchical cluster analysis (Table S2).  

III.3.5 HPLC pigments and flow cytometry  

The results presented here from HPLC pigments provide a relatively lower taxonomic 

resolution in comparison to other methods: a maximum of five phytoplankton communities 

can be detected in the surface ocean on NAAMES using pigment-based taxonomy. 

Fortunately, 161 of the 229 samples used in the original HPLC pigment analysis also had 

concurrent FCM samples taken for characterization and quantification of four distinct 

phytoplankton groups. The same statistical analyses were applied to this matched HPLC-

FCM dataset (Figures 9 and S7). In the hierarchical cluster analysis (Figure 9), relative 

Prochlorococcus cell abundances cluster with DVchla, DVchlb, and Zea. Prochlorococcus 

spp. uniquely contain DVchla and DVchlb, while Zea is an accessory pigment in 

Prochlorococcus and other cyanobacteria. Relative Synechococcus cell abundances form 

their own cluster separate from all other taxonomic groups. Finally, relative pico- and 

nanoeukaryote cell abundances cluster with diatom pigments, though diatoms are typically 

considered nano- to micro-sized phytoplankton.  
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Figure 9. Hierarchical clustering of phytoplankton pigment ratios to total chlorophyll-a 
concentration and flow cytometry group cell counts to total cell counts. Five major 
phytoplankton pigment groups (cyanobacteria, haptophytes, green algae, diatoms and 
dinoflagellates) are delineated with brackets. 
 

The EOF loadings show similar patterns: the five major taxonomic communities 

identified by HPLC pigments separate from one another, Prochlorococcus relative cell 

abundances covary with cyanobacterial pigments, pico- and nanoeukaryote cell abundances 

covary with diatom and dinoflagellate pigments, and Synechococcus relative cell 

abundances separate from all other taxonomic groups in Mode 1 (Figure S7A). However, the 

EOF loadings add nuance to the results of the hierarchical cluster analysis. For instance, 

Synechococcus relative cell abundances also covary with green algal pigments, while 

picoeukaryote relative cell abundances covary with green algal and cyanobacterial pigments 

(Modes 2 and 3, Figures S7B and S7C). Finally, nanoeukaryote relative cell abundances 

Cyanobacteria
Green algae DiatomsHaptophytes Dinoflagellates
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covary most strongly with diatom and dinoflagellate pigments (Modes 1 and 2, Figures S7A 

and S7B). 

The patterns observed in the hierarchical cluster analysis are further reinforced when 

comparing the relative fractions of cyanobacteria cells and eukaryotic cells as measured by 

flow cytometry in each pigment community identified in the network-based community 

detection analysis (Figures 5 and S6). Unsurprisingly, the highest fractions of 

Prochlorococcus and Synechococcus were found in samples assigned to the cyanobacterial 

community (Figures 5F and S6F). Similarly, echoing the results of the hierarchical cluster 

and EOF analyses, the highest fractions pico- and nanoeukaryotic cells were found in the 

diatom (Figures 5G and S6G) and dinoflagellate (Figure S6G) communities. While diatoms 

and dinoflagellates are traditionally designated to the microphytoplanton size fraction in 

pigment-based methods, there are many nano-sized members of both of these groups (e.g., 

Leblanc et al., 2018).  

III.4. Discussion 

III.4.1 Seasonal succession of phytoplankton in the North Atlantic 

A major goal of the NAAMES field campaign was to characterize the phytoplankton 

dynamics over the seasonal cycle in the subarctic Atlantic Ocean (Behrenfeld et al., 2019). 

This analysis describes the surface ocean phytoplankton community at coarse taxonomic 

resolution, but with coverage of all four cruises and seasons. Despite the high dynamic 

ranges in Tchla, surface ocean temperature, nutrient concentrations, and biomarker pigment 

ratios to Tchla across the four cruises, the results presented here show consistent retrieval 

across data-driven statistical analyses and identification of five taxonomically distinct 

communities of phytoplankton on the four NAAMES cruises. The five communities that 
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emerge can be characterized by five biomarker pigments: diatoms (Fuco), dinoflagellates 

(Perid), haptophytes (HexFuco), green algae (MVchlb), and cyanobacteria (Zea). 

Comparable analyses have shown that a maximum of four phytoplankton communities can 

be retrieved from HPLC pigments on global scales, but this regional example identifies five 

communities in the western North Atlantic, with dinoflagellates separating from diatoms, 

which does not occur globally (Kramer and Siegel, 2019). There were enough sites sampled 

on the four NAAMES cruises with high concentrations of dinoflagellate pigments that these 

pigments separate from diatom and other red algal pigments in hierarchical cluster and EOF 

analyses (Figures 2 and 3). The designation of each sample to a distinct community in the 

network-based community detection analysis further allows for consideration of the 

spatiotemporal distribution of these five communities (Figure 7B).  

The classic seasonal cycle of phytoplankton species succession in the North Atlantic 

begins with a spring diatom bloom, followed by a late summer to fall peak in haptophytes 

and dinoflagellates, transitioning to a winter community dominated by smaller 

phytoplankton, such as green algae and cyanobacteria (i.e., Taylor et al., 1993). While each 

NAAMES cruise represents only a snapshot of each season, in many ways, the seasonal 

progression of phytoplankton communities sampled on NAAMES 1-4 reflects this paradigm 

(Figure 8). An abundance of samples in the diatom community were found on the spring 

(NAAMES 4) and early summer (NAAMES 2) cruises during the onset and accumulation of 

the spring phytoplankton bloom. On NAAMES 4, haptophytes and green algae were also 

present. By early summer, dinoflagellates also comprised a large fraction of the community 

with diatoms. The transition from late summer into early fall (NAAMES 3) was dominated 

by samples in the haptophyte community with some cyanobacteria in the bloom decline. By 
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early winter (NAAMES 1), the community is comprised of mostly green algae dominated 

samples with some haptophytes and diatoms. While each NAAMES cruise only captures 2-3 

weeks of the surface ocean phytoplankton community, and phytoplankton community 

dynamics can change on the order of hours to days over the course of a month or a season, 

the changes in latitude on each NAAMES cruise increase the range of bloom states and 

phytoplankton communities sampled in the western North Atlantic Ocean. In order to further 

interpret these snapshots of the seasonal cycle, it will be necessary to consider the HPLC 

pigment data in the context of more continuously collected data from the North Atlantic, 

including satellite remote sensing of ocean color and autonomous bio-optical profiling floats 

(e.g., Bisson et al., 2019).   

It does not appear that the five phytoplankton communities that can be separated 

using HPLC pigments have individual niches in the physical environment, though some 

communities are particularly prevalent under certain environmental conditions. Spatial 

patterns in community composition (Figures 3B and 7B) reflect trends in environmental 

variables (Table 2) that also confirm expectations of phytoplankton succession from 

previous studies. As expected, most samples taken at high latitudes with colder water 

temperatures and higher nutrient concentrations are assigned to the diatom and 

dinoflagellate communities, while cyanobacteria communities are only found at lower 

latitudes. Haptophyte and green algae communities are found throughout the mid-range of 

latitudes sampled on NAAMES, representing a broader range of temperatures and nutrient 

environments. These patterns are further reinforced by direct comparisons between 

environmental variables (Figure 10).  
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Figure 10. Regressions of physical and environmental parameters including (A) salinity vs. 
temperature, (B) total chlorophyll-a vs. temperature, and (C) particle backscattering (bbp) at 
532 nm vs. total chlorophyll-a, all colored by the dominant community (light blue = 
cyanobacteria, dark blue = haptophytes, green = green algae, brown = diatoms, gold = 
dinoflagellates). 
 

Unsurprisingly, samples in the cyanobacteria community are mostly found the 

warmest, saltiest water (Figure 10A) with the lowest chlorophyll-a concentrations (Figure 

10B) and the lowest concentrations of phytoplankton and other particles (using particle 

backscattering as a proxy for particle concentration; Figure 10C). Dinoflagellates and some 

diatoms are found mostly in the coldest, fresher water (Figure 10A), with high chlorophyll-a 

concentration (Figure 10B) and high concentrations of phytoplankton and other particles 

(Figure 10C). All haptophytes and green algae, along with a large fraction of the diatoms, 

fill in the mid-ranges of these environmental parameters. Ultimately, the spatiotemporal 

distribution of phytoplankton communities derived from HPLC pigments on NAAMES is 

broadly consistent with expected environmental controls on phytoplankton community 

composition.   

III.4.2 Comparing methods of characterizing phytoplankton taxonomy on NAAMES  

The taxonomic resolution provided by HPLC pigments in this study is too low to 

discern intricacies in these community dynamics, such as the dominant cell size in each 

community or the composition of species of the same major taxonomic group. Some 

A B C



 

 95 

pigment-based methods assume that biomarker pigments are confined to a given cell size 

distribution (i.e., Claustre, 1994; Uitz et al., 2006). For these methods, diatoms (Fuco) and 

dinoflagellates (Perid) are always considered microplankton (>20 µm), although there are 

important nano-sized members of both of these groups (2-20 µm; i.e., Leblanc et al., 2018). 

Quantitative imaging results from NAAMES suggest that pigment-based methods 

underestimate the contribution of nano-sized diatoms and dinoflagellates to cell counts, cell 

biovolume, and cellular carbon in this dataset (Chase et al., in review). DNA metabarcoding 

has also been applied to concurrent samples from NAAMES, and gives higher resolution 

taxonomic information, to species, group, or strain level, such as separation between high- 

and low-light variants of the cyanobacteria identified with HPLC pigments and flow 

cytometry (i.e., Bolaños et al., in review). While the taxonomic resolution of HPLC 

pigments is lower than the resolution provided by methods such as microscopy and imaging 

or DNA metabarcoding, these results still provide a low-level characterization of the surface 

ocean phytoplankton community in the western North Atlantic across a seasonal cycle. 

Other methods supplement the community assessment provided by HPLC to give a full 

picture of the phytoplankton community on NAAMES. A complete characterization of the 

phytoplankton ecosystem can then be used to investigate further components of the 

NAAMES field campaign, such as the role of community composition in net primary 

productivity and photoacclimation (i.e., Fox et al., 2020) or in biogenic aerosol production 

(i.e., Bell et al., in prep). 

 While higher-resolution taxonomic data from other sources can add nuance and 

complexity to the results found from lower-resolution data, such as HPLC pigments, these 

different characterizations of taxonomy often complement each other. Each method presents 
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an incomplete picture of phytoplankton taxonomy and cell size; thus, they must be 

combined for maximum information content. As a first step, flow cytometric 

characterization and quantification of the pico- and nano-sized cells confirms and 

supplements the results shown from pigment-based taxonomy (Figures 9 and S7). The 

clustering of Prochlorococcus spp. with other cyanobacterial pigments is unsurprising, as 

Prochlorococcus uniquely contain divinyl chlorophylls rather than monovinyl chlorophyll-a, 

which all other phytoplankton taxa contain (Figure 2). Synechococcus spp., which contain 

MVchla and Zea, are most closely related to the haptophyte pigment community, suggesting 

co-occurrence of these communities in the environment given the weak but positive 

correlation between these communities (Table S3). The relatively large linkage distance 

separating these communities means that Synechococcus is distinct from all other 

phytoplankton groups.  

The clustering of pico- and nano-eukaryotes with pigments typically associated with 

diatom populations is unexpected, as diatoms are usually considered nano- to micro-sized 

phytoplankton. However, an EOF analysis including FCM data (Figure S7) shows that 

relative picoeukaryote cell abundance is also correlated with pigments found in 

phytoplankton communities known to contain pico-sized members, such as green algae 

(Figure S7A) and cyanobacteria (Figure S7D). Relative nanoeukaryote cell abundance is 

also correlated with pigments found in dinoflagellates (Figure S7B, Table S3) and green 

algae (Figure S7D). As the association of picoeukaryotes and diatoms is based on 

correlation, the EOF analysis adds necessary nuance to the relationship between relative 

picoeukaryote abundance and diatom pigments and better describes the composition of the 

nanoeukaryote community.  
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Ultimately, an analysis of taxonomy can only be as powerful as the quality of the 

input data. Other common pigment-based methods, such as CHEMTAX (Mackey et al., 

1996), purport to separate more and different phytoplankton communities than were 

identified by the methods used here. CHEMTAX assumes linear independence of the 

pigments: the high degree of collinearity between HPLC pigments in this dataset makes it 

impossible to separate more distinct taxonomic groups than the 5 groups identified here 

(Figure S1; Kramer and Siegel, 2019). CHEMTAX also assumes that the contributions of 

one or many pigments to individual phytoplankton groups are set and known. The 

NAAMES cruises surveyed a broad latitudinal range across four seasons under varying 

nutrient and light conditions, which likely led to varying pigment contributions across taxa 

and time (i.e., Schlüter et al., 2000, Havskum et al., 2004, Irigoien et al., 2004; Zapata et al., 

2004). The data-driven statistical analyses performed here demonstrate how pigment-based 

methods are also limited by the conditions under which the data were collected. For 

instance, in the NAAMES dataset, the dinoflagellate community consistently separates from 

other communities, as dinoflagellates were often present during surface ocean sampling on 

NAAMES in high enough concentrations to comprise large fractions of both total cell counts 

and total chlorophyll concentration (Kramer and Siegel, 2019; Chase et al., in review). 

Conversely, cryptophytes (a red alga, denoted by the biomarker pigment Allo) are never a 

large enough fraction of the community in this dataset to separate from the broader green 

algal community. As the assumptions made by CHEMTAX were not supported by this 

dataset, this method was not implemented here. 
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III.4.3 NAAMES in the context of a changing North Atlantic Ocean 

The results presented here capture the surface ocean phytoplankton community of the 

western North Atlantic across four seasons, representing succession through different phases 

of phytoplankton bloom onset, accumulation, and decline. While the exact structuring of the 

phytoplankton community and ecosystem change on an interannual basis, these results can 

provide a baseline against which to consider future change. The North Atlantic 

phytoplankton bloom will undoubtedly change in a warming ocean (Boyd and Doney, 2002; 

Barton et al., 2016). The timing of bloom initiation, the extent and magnitude of the bloom, 

the structuring of the water column (impacting properties that influence bloom initiation and 

progression, such as mixed layer depth and nutrient concentration), the frequency and 

magnitude of other climate oscillations, etc., are all sensitive to changing surface and deep 

ocean temperatures (Henson et al., 2009; Racault et al., 2012; Behrenfeld, 2014). These 

events and parameters in turn have impacts on the resulting phytoplankton community 

composition and phenology. The diatom pigment community on NAAMES 1-4 was found 

predominantly in the spring to early summer, in water with cold temperatures and high 

nutrient concentrations (Table 2). Under future warming scenarios, a more highly stratified 

ocean would limit the injections of deep, nutrient-rich water to the surface ocean even 

during the spring bloom, and favor communities of smaller phytoplankton including 

dinoflagellates, haptophytes, and cyanobacteria (Falkowski and Oliver, 2007).  

A changing ocean may also experience altered light availability, as the 

concentrations of phytoplankton and other absorbing ocean constituents (i.e., colored 

dissolved organic matter [CDOM], non-algal particles), as well as surface mixed layer 

depth, change with a warming climate (Dutkiewicz et al., 2019). The amount and the 
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wavelength range of the remaining available light shapes the resulting phytoplankton 

community, both in the surface and at depth (Bidigare et al., 1990; Siegel et al., 1990; 

Huisman et al., 1999). Overlapping communities of phytoplankton with depth are often 

identified by changes in phytoplankton pigment composition and concentrations—but these 

same processes may occur throughout the euphotic zone, particularly if there is an increase 

in compounds that absorb in the same wavelength range as phytoplankton (such as elevated 

CDOM, which absorbs most strongly in the blue wavelengths, where Tchla and most 

phytoplankton accessory pigments also absorb light). Measurements of phytoplankton 

pigment composition in conjunction with phytoplankton absorption spectra can indicate that 

the communities have chromatically adapted to the shifting light field and optimized the 

narrowing niche of light and nutrients (Hickman et al., 2009). If the ratios of accessory 

pigments to Tchla change in the surface ocean under future warming scenarios, as 

phytoplankton adapt to changes in available light, historical data relating phytoplankton 

pigment ratios to taxonomy will not be able to describe the new relationships between 

pigments and taxonomy, and new relationships will have to be constructed. 

Historically, the magnitude and extent of the North Atlantic bloom has been 

observed using satellite remote sensing (i.e., Siegel et al., 2002; Behrenfeld et al., 2013). 

Pigment-based methods are well suited to link satellite measurements to surface ocean 

ecology at coarse resolution given the impact of phytoplankton pigments on absorption, 

which directly alters the shape and magnitude of remote sensing reflectance. However, these 

methods are limited by both the spectral resolution of the satellite and the composition of the 

HPLC dataset used to calibrate and validate the satellite models (i.e., Werdell et al., 2019; 

Kramer and Siegel, 2019). Based on the results presented here, a future satellite model of 
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phytoplankton community composition built for the western North Atlantic Ocean using this 

HPLC dataset for calibration and validation could retrieve at most 5 distinct phytoplankton 

communities. The addition of other data types, such as cell quantification with flow 

cytometry as shown here, can improve the confidence of these models to describe surface 

ocean phytoplankton ecology, particularly in a region of high variability and particular 

oceanographic and biogeochemical interest, such as the North Atlantic Ocean.  
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III.6 Supplemental Information 

This section includes supplementary figures that are referenced in the main text. 
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Supplementary Figure 2. Spatial distribution of surface samples on NAAMES colored by 
the cluster to which that sample was assigned (light blue = cyanobacteria, dark blue = 
haptophytes, green = green algae/mixed, brown = diatoms, gold = dinoflagellates). 
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A B 

C D 

Supplementary Figure 3. Spatial distribution of amplitude functions for EOF Modes (A) 
1, (B) 2, (C) 3, and (D) 4, calculated for phytoplankton pigment ratios to total chlorophyll-
a concentration. Amplitude function magnitude is indicated as positive (red) or negative 
(blue) for each sample on NAAMES 1 (solid line), NAAMES 2 (dashed line), NAAMES 
3 (dotted line), and NAAMES 4 (dash-dot line). 
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Supplementary Figure 4. Spatial results of network-based community detection on 
NAAMES 1 (solid line), NAAMES 2 (dashed line), NAAMES 3 (dotted line), and 
NAAMES 4 (dash-dot line). Samples are colored based on the dominant community 
determined from the community detection analysis: light blue (cyanobacteria), dark blue 
(haptophytes), green (green algae), brown (diatoms and dinoflagellates).  
 



 

 105 

 

Supplementary Figure 5. Spatial distribution of all five communities identified using 
network-based community detection and EOF regression on NAAMES 1 (solid line), 
NAAMES 2 (dashed line), NAAMES 3 (dotted line), and NAAMES 4 (dash-dot line). 
Samples are colored by the dominant community (light blue = cyanobacteria, dark blue = 
haptophytes, green = green algae/mixed, brown = diatoms, gold = dinoflagellates).
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IV. Modeling surface ocean phytoplankton pigments from hyperspectral 
remote sensing reflectance on global scales 

Abstract: Phytoplankton community composition impacts food webs, climate, and fisheries 
on regional and global scales. Phytoplankton community composition can be assessed at 
coarse taxonomic resolution from biomarker pigments measured using high-performance 
liquid chromatography (HPLC). Presently, satellite ocean color provides unprecedented 
coverage of the global surface ocean and offers reliable estimates of bulk biological 
properties; however, existing multispectral sensors have limited ability to provide 
information about phytoplankton community composition. Satellite ocean color at 
hyperspectral resolution (e.g., NASA’s upcoming Plankton, Aerosol, Cloud, and ocean 
Ecosystem sensor, PACE) is expected to improve estimates of phytoplankton community 
composition from space. Phytoplankton impact ocean color via contributions to absorption 
and fluorescence (through phytoplankton pigments) and scattering, especially on narrow 
spectral scales (5-100 nm). Here, a global open ocean dataset of concurrent HPLC pigments 
and hyperspectral remote sensing reflectance (-$%(.)) observations is used to model 
phytoplankton pigment composition from optical data. Phytoplankton pigments are 
reconstructed from -$%(.) using optimized principal components regression modeling. This 
work demonstrates that thirteen phytoplankton pigments, representing five phytoplankton 
pigment groups (e.g., diatoms, dinoflagellates, haptophytes, green algae, and cyanobacteria), 
can be modeled from hyperspectral -$%(.). Spectral information needed to model each 
phytoplankton pigment concentration is found throughout the entire visible spectrum and the 
model results are best at high spectral resolution (≤5nm). The resulting model recreates 
observed relationships among pigment concentrations, providing support for the designation 
of five pigment-based phytoplankton groups for the global open ocean. This work represents 
a step toward developing robust, global spectral models for phytoplankton pigment 
composition. However, more high-quality data from a wide range of ecosystems and 
environments are still needed to achieve this goal. 

IV.1 Introduction 

Phytoplankton community composition has a strong influence on the structure of 

planktic ecosystems, global biogeochemical cycles, and the ecosystem services that the 

oceans provide (Legendre, 1990; Vanni and Findlay, 1990; Le Quéré et al., 2005; Falkowski 
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and Oliver, 2007). Characterizing the diversity of phytoplankton is crucial to develop marine 

food web and ocean carbon cycle models with improved accuracy (e.g., Legendre et al., 

1990; Siegel et al., 2014). Satellite ocean color sensors observe surface ocean properties on 

unparalleled spatiotemporal scales, including parameters relevant to phytoplankton 

abundance and community composition, such as chlorophyll-a concentration (e.g., O’Reilly 

et al., 1998; Hu et al., 2012), colored dissolved and detrital materials (e.g., Siegel et al., 

2002; Morel and Gentili, 2009), particulate backscattering (e.g., Stramski et al., 2001; 

Kostadinov et al., 2010), and particulate absorption (e.g., Ciotti and Bricaud, 2006; Chase et 

al., 2013). Many methods have also been developed to characterize phytoplankton 

community composition from ocean color measurements, including both phytoplankton 

abundance-based (e.g., Brewin et al., 2010; Hirata et al., 2011) and radiance-based (e.g., 

Alvain et al., 2008; Bracher et al., 2009; Uitz et al., 2015; Chase et al., 2017) approaches 

(see Mouw et al., 2017 and Bracher et al., 2017 for reviews of these approaches). With the 

upcoming launch of NASA’s Plankton, Aerosol, Cloud, and ocean Ecosystem (PACE) 

mission, the spectral resolution and range of satellite ocean color data will increase 

dramatically (Werdell et al., 2019). Improving the spectral resolution of ocean color 

measurements from multispectral to hyperspectral is expected to provide improved estimates 

of phytoplankton community composition from satellites (Wolanin et al. 2016; Xi et al., 

2017; Werdell et al., 2018; Cael et al., 2020), highlighting the need for new phytoplankton 

community composition algorithms that take advantage of this higher spectral resolution. 

Many ocean color models that separate groups of phytoplankton target spectral 

variations in remote sensing reflectance (-$%(.)) to retrieve information about 

phytoplankton community composition, relying on differences in the shape and magnitude 
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of -$%(.) introduced by phytoplankton pigment absorption (e.g., Alvain et al., 2005; 

Torrecilla et al., 2011; Bracher et al., 2015a; Uitz et al., 2015; Chase et al., 2017). The shape 

and magnitude of -$%(.) are also dependent on other absorbing and scattering components 

in the ocean, including seawater, non-algal particles (NAP), and colored dissolved organic 

matter (CDOM). The optical properties of many of these oceanic constituents are either well 

characterized (i.e., absorption and scattering by seawater) or have simple spectral shapes that 

change over long (≥100 nm) spectral scales (i.e., absorption by CDOM and NAP, scattering 

by NAP). Conversely, variability in phytoplankton absorption and some scattering features 

occurs on narrower spectral scales (<100 nm; Bidigare et al., 1989; Bricaud et al., 2004). 

Improvements in assessing phytoplankton abundance and composition from hyperspectral 

reflectance may be made by first accounting for the broader absorption and scattering 

signals associated with CDOM and NAP, and then isolating and enhancing the 

phytoplankton-specific features in absorption and scattering.  

Ocean color modeling approaches to describe phytoplankton communities must be 

carefully constructed to account for both the input -$%(.) data quality and the phytoplankton 

community metrics targeted (e.g., cell size, pigment composition, functional traits, etc.). In 

addition to the variability in -$%(.) shape and magnitude caused by oceanic constituents 

other than phytoplankton, further uncertainty and variation is introduced to satellite-derived 

-$%(.) by atmospheric correction (Werdell et al., 2018). Derivative methods that isolate 

spectral features of interest are therefore well suited to high spectral resolution data: these 

methods are less sensitive to the uncertainties in spectral magnitude introduced by other 

optically-relevant components of the surface ocean and atmosphere and magnify the 

variations in spectral shape (e.g., Tsai and Philpot, 1998; Taylor et al., 2011; Torrecilla et 
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al., 2011; Xi et al., 2015; Uitz et al. 2015; Catlett and Siegel, 2018). However, spectral 

derivative methods can also accentuate instrument- and dataset-specific noise in bio-optical 

measurements (Tsai and Philpot, 1998), emphasizing the need to evaluate the utility of 

spectral derivative methods in approaches to reconstruct phytoplankton pigments and assess 

phytoplankton pigment composition from hyperspectral optics.  

The validation method for any ocean color phytoplankton composition model is also 

important, as it determines the taxonomic scope and resolution of the model. While there are 

many available methods of characterizing phytoplankton community composition in situ, 

high performance liquid chromatography (HPLC) measurements of phytoplankton pigment 

concentrations are currently the most globally-available, consistent, quality-controlled data 

for validating phytoplankton community composition models (Mouw et al., 2017; Kramer 

and Siegel, 2019). HPLC pigment measurements are widespread in the global surface ocean 

relative to other characterizations of phytoplankton community composition and offer 

taxonomic information to broad group levels (see Kramer and Siegel, 2019). While 

pigments offer limited taxonomic resolution of phytoplankton composition compared to 

other, more taxonomically resolved methods (i.e., quantitative cell imaging [Chase et al., 

2020], next generation sequencing [Lin et al., 2019], etc.) and inference of pigment-based 

taxonomy is not straightforward, retrieval of phytoplankton pigment concentrations from 

ocean color data is the first step required to assess phytoplankton composition from space.  

Here, we quantify phytoplankton pigment concentrations using principal components 

regression modeling applied to a global surface ocean dataset of hyperspectral -$%(.) 

spectra. The models are developed and validated using a paired dataset of globally-

distributed HPLC pigment samples. Reflectance residuals were calculated between 
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measured -$%(.) data and -$%(.) constructed from a generic reflectance model. The use of 

residual spectra removes many of the optical features that vary on long spectral scales (e.g., 

absorption and/or scattering by seawater, NAP, and CDOM) while enhancing the narrower 

spectral features, which may be associated with variations in absorption and scattering for 

the different pigment-based phytoplankton groups. Derivative analysis was then performed 

on the residual spectra to further enhance these narrow spectral features. -$%(.) residual 

derivatives were used in an optimized principal components regression modeling framework 

to retrieve the concentrations of various phytoplankton pigments. This approach reconstructs 

representative pigment concentrations from five pigment-based phytoplankton groups and 

preserves the co-variability between and among phytoplankton pigment concentrations. 

Ultimately, the phytoplankton pigment composition model presented here demonstrates the 

utility of the spectral gap hypothesis for modeling phytoplankton pigments from 

hyperspectral data. Specifically, it shows that phytoplankton pigment concentrations can be 

successfully estimated from hyperspectral -$%(.) when the fine-scale features most strongly 

correlated with phytoplankton absorption and scattering are isolated and compositional 

differences from base-state conditions are accentuated, while other features that vary on long 

spectral scales are removed.  

IV.2 Materials and Methods 

IV.2.1 HPLC dataset construction and quality control 

The global HPLC pigment dataset used in this analysis was constructed following 

the criteria defined in Kramer and Siegel (2019). Samples from the surface ocean (depths of 

7 meters or less) were analyzed at a small number of labs to reduce lab-dependent variability 

in the dataset. All samples had a consistent suite of HPLC pigments measured between 
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samples. The initial dataset (from Kramer and Siegel, 2019) included 4,480 samples. 70 

additional surface samples collected as part of the EXport Processes in the Ocean from 

RemoTe Sensing (EXPORTS) North Pacific field campaign in August-September 2018 and 

analyzed at NASA Goddard Space Flight Center (GSFC) following Van Heukelem and 

Thomas (2001) were added to the Kramer and Siegel (2019) dataset for 4,550 samples total. 

All pigment values below established HPLC method detection limits were set to zero (Van 

Heukelem and Thomas, 2001). If replicate samples of HPLC pigments were taken at a given 

site, an average of the replicates was used before the matchup procedure was applied.  

The thirteen HPLC pigments used in all subsequent analyses (and their 

abbreviations) include: total chlorophyll-a (Tchla), 19’-hexanoyloxyfucoxanthin (HexFuco), 

19’-butanoyloxyfucoxanthin (ButFuco), alloxanthin (Allo), fucoxanthin (Fuco), peridinin 

(Perid), zeaxanthin (Zea), divinyl chlorophyll a (DVchla), monovinyl chlorophyll b 

(MVchlb), chlorophyll c1+c2 (Chlc12), chlorophyll c3 (Chlc3), neoxanthin (Neo), and 

violaxanthin (Viola). Several pigments were measured in all datasets but not included for 

analysis, including: pigments that were redundant or not useful as taxonomic markers (total 

chlorophyll b, total chlorophyll c, alpha-beta carotene, diatoxanthin, diadinoxanthin; Kramer 

and Siegel, 2019); degradation pigments (chlorophyllide, phaeophytin, phaeophorbide); and 

pigments that were not detected or measured below established method detection limits 

(defined following Van Heukelem and Thomas, 2001) in >75% of samples in the final 

matchup dataset (divinyl chlorophyll b, lutein, and prasinoxanthin).  

IV.2.2 Hyperspectral 0&'(1) dataset construction and quality control 

 Model development and validation requires concurrent samples of HPLC 

phytoplankton pigments and hyperspectral -$%(.) spectra. Hyperspectral -$%(.) spectra 
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were considered concurrent with HPLC samples if measurements were made within ±2 

hours at the same geographic location. Of the 4,550 quality-controlled surface ocean HPLC 

samples, 178 samples had concurrent observations of hyperspectral -$%(.) spectra, 

including spectra from eight oceanographic field campaigns (Table 1).  

Table 1. Summary table for the eight field campaigns represented in the matched HPLC and 
-$%(.) dataset. All data are cited in Kramer et al. (2021); campaign-specific citations: 
1Bracher et al. (2015b), 2Behrenfeld et al. (2014a), 3Cetinić (2013), 4Behrenfeld et al. 
(2014b), 5Boss and Claustre (2009), 6Boss and Claustre (2014), 7Claustre and Sciandra 
(2004) and Casey et al. (2019), 8Behrenfeld et al. (2018). 

 

 

Details of initial -$%(.) data processing can be found in: Chase et al., 2017 (Tara 

Oceans, Tara Mediterranean, SABOR, RemSensPOC, NAAMES, EXPORTS); Uitz et al., 

2015 (BIOSOPE); and Bracher et al., 2015a (ANT). All spectra were interpolated to 1 nm 

resolution and smoothed using a 5 nm moving mean bandpass filter before subsequent 

analyses. Following this smoothing procedure, the first and last 4 nm of all spectra were 

removed. As some field campaigns measured a wider spectral range than others, the range of 
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-$%(.) in the final dataset was then restricted to 400-700 nm to match the range common to 

all campaigns.  

Following this consistent smoothing approach, each individual -$%(.) spectrum was 

visually inspected for quality control. Some -$%(.) spectra in the original datasets exhibited 

extremely high noise-to-signal ratios in the ~610-660 nm range, where relatively low 

variance was expected. For these spectra, multiple large (e.g., a factor of 2- to 5-fold larger 

than the mean value) departures from the mean -$%(.) value over this spectral range were 

observed, and thus these spectra were removed from this analysis (Table 1). The number of 

spectra used in each dataset are indicated in Table 1, and the number of spectra removed 

from each dataset is indicated in parentheses; ultimately, 33 of the 178 samples were 

removed following this quality control approach (~19% of the initial dataset), resulting in 

145 valid matchup samples between HPLC and quality-controlled, hyperspectral -$%(.). 

The matched HPLC and -$%(.) dataset is composed mostly of open ocean samples 

from the Atlantic, Pacific, and Indian Oceans as well as the Mediterranean Sea (Table 1). 

The dataset encompasses a broad range of chlorophyll-a concentrations, from 0.019-4.15 mg 

m-3 (Figure 1; Table 1); however, the median chlorophyll-a concentration is relatively low 

(0.110 mg m-3). 
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Figure 1. Global distribution of 145 matched HPLC and hyperspectral -$%(.) samples, 
colored by chlorophyll-a concentration (Tchla). 

 
IV.2.3 Hyperspectral reflectance model construction 

 A generic hyperspectral reflectance model was developed with the goal of enhancing 

the spectrally narrow phytoplankton signals associated with phytoplankton pigment 

variability. The generic formulation of the hyperspectral reflectance model is based on the 

quadratic relationship between reflectance measured just below the surface ('$%(0(, .)), 

absorption (!), and backscattering (3)), developed from radiative transfer theory by Gordon 

et al. (1998):  

'$%(0(, .) = 	∑ 5! 	6
)!"(+)-)!#(+)

."(+)-.#$(+)-.%&(+)-)!"(+)-)!#(+)
7
!

/
!01	  [1], 

where '$%(0(, .) is related to remote sensing reflectance measured just above the surface 

(-$%(0-, .)) following Lee et al. (2002): 

'$%(0(, .) = 	-$%(0-, .)/[0.52 + 1.7 ∗ -$%(0-, .) [2]. 

In equation [1], the 5! coefficients are the same as those used in the original Gordon 

et al. (1988) model. The components of backscattering and absorption are parameterized as 
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follows. Backscattering by seawater, 3)3(.), is computed as in Zhang et al. (2009) using 

temperature and salinity values from the NOAA NODC World Ocean Atlas ¼° resolution 

statistical mean climatology (Locarnini et al., 2013; Zweng et al., 2013). Pure water 

absorption, !3(.), is taken from Mason et al. (2016). Phytoplankton absorption, !45(.), is 

expressed as a power law function of Tchla: 

!45(.) = A(.) ∗ B%ℎD!6(+) [3]. 

The A(.) and E(.) coefficients were derived from regressions performed at each 

wavelength using a large, global, multispectral (18 wavelengths) dataset extracted from the 

NASA SeaBASS bio-optical data repository (NOMAD; Werdell and Bailey, 2005) 

interpolated to 1 nm resolution between 350 and 700 nm using cubic spline interpolation. 

The A(.) and E(.) coefficients used here are shown between 400-700 nm in Table S6. The 

NOMAD data used to determine the !45(.) parameterization are independent from the 

paired -$%(.)-HPLC dataset constructed here. 

The combined absorption of non-algal particles and dissolved matter, !78(.), is 

expressed as: 

!78(.) = 	!78(443) ∗ exp	(K78(. − 443)) [4], 

where the slope in the exponential term, K78, is a linear function of the -$%(490)/-$%(555) 

ratio (as in Carder et al., 1999): 

K78 = −0.01447 + 0.00033 ∗ -$%(490)/-$%(555) [5]. 

This relationship was also obtained from a large dataset of reflectance and !78(.) data from 

SeaBASS (Werdell and Bailey, 2005).  

Finally, particulate backscattering is expressed as: 

3)4(.) = 	3)4(443) ∗ (./443)9 [6], 
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where the exponent, !, is a function of the below-surface "!"(490)/"!"(555) ratio, following 

Lee et al. (2002).  

The hyperspectral *!"(+) model first solves for three parameters in reconstructing 

the measured spectra: chlorophyll-a concentration (,-ℎ/0), non-algal absorption excluding 

water at 443 nm (combined CDOM and NAP absorption, 0#$(443)), and particulate 

backscattering at 443 nm (2%&(443)) through a non-linear fit between measured and 

modeled reflectance, as in Maritorena et al. (2002). In that process, full spectra for 2%&(+), 

0#$(+), and ultimately *!"(+) are reconstructed using the expressions described above 

(equations 1-6). 

 The resulting modeled *!" spectra (*!",()#(+); Figure 2B) were subtracted from the 

measured *!" spectra (*!",(*+"(+); Figure 2A) to create the *!"(+) residual: 3*!"(+) 

(Figure 2C). The second derivative of the *!"(+) residual, 3*!""(+), was used in subsequent 

analyses to maximize the narrow spectral features most related to phytoplankton absorption 

and scattering. As in Catlett and Siegel (2018), 3*!""(+) spectra were calculated using a 

second-order finite difference approximation. 
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Figure 2. (A) Measured (*!",(*+"(+)) and (B) modeled (*!",()#(+)) hyperspectral *!"(+) 
spectra and (C) the residual spectrum (3*!"(+)) between measured and modeled *!"(+). All 
spectra are colored by source (red = ANT, orange = NAAMES, yellow = RemSensPOC 
[RSPOC], green = SABOR, blue = Tara, purple = BIOSOPE, black = EXPORTS).   

 

IV.2.4 Hierarchical clustering and empirical orthogonal function (EOF) analysis of 

HPLC data 

Hierarchical cluster analysis of thirteen HPLC phytoplankton accessory pigment 

ratios to Tchla was performed following Catlett and Siegel (2018) and Kramer and Siegel 

(2019), using Ward’s linkage method (the inner squared distance) and the correlation 

distance (1-R, where R is Pearson’s correlation coefficient between phytoplankton pigment 

ratios). The dendrogram for all pigment ratios was then divided into distinct taxonomic 

clusters using a linkage cutoff distance of 0.65. The same linkage and distance methods 

were used to cluster the modeled pigments. The taxonomic utility of groups of 

phytoplankton pigments was assumed following Catlett and Siegel (2018) and Kramer and 

Siegel (2019).  
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 Empirical orthogonal function (EOF) analysis was also performed following Kramer 

et al. (2019) and Kramer et al. (2020). Briefly, this analysis aims to decompose the data into 

the dominant orthogonal functions that describe the major modes of variability in the 

dataset. Here, the EOF loadings, which describe the correlation between each mode of 

variability and ratios of phytoplankton pigments to Tchla, are considered. Phytoplankton 

pigment concentrations were normalized to Tchla concentration, then mean-centered and 

normalized by their standard deviation before the EOF analysis was performed. The same 

approach was repeated for the modeled pigment dataset.  

IV.2.5 Principal components regression model  

A number of statistical methods were considered to model pigments from *!"(+), 

including hierarchical cluster analysis of spectra (as in Torrecilla et al., 2011; Uitz et al., 

2015) and network-based community detection approaches (as in Kramer et al., 2020). 

Ultimately, following the approach of Catlett and Siegel (2018), a principal components 

regression model was constructed. Here, the model used the second derivative of the *!"(+) 

residual (3*!""(+)). Principal components regression modeling was selected as this method 

accounts for the high degree of collinearity across phytoplankton bio-optical signatures that 

arises due to the co-variability among phytoplankton groups and accessory pigments (e.g., 

Massy, 1965; Catlett and Siegel, 2018). This approach reduced the inter-relatedness of the 

datasets (that is to say, the high correlations between pigment concentrations and 3*!""(+)) 

prior to modeling. Many other principal components regression models were tested, 

including models reliant on both the first and second derivatives of the measured 

hyperspectral reflectance (*!",(*+"′(+) and *!",(*+""(+)) and models that varied the spectral 

resolution of the input data (see Supporting Information for details regarding these model 
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constructions and results). The performance of the best of these models was similar, and 

thus we chose to highlight the results of the model constructed using 3*!""(+) at 1 nm, 

which had excellent performance and one spectral input. 

Optimized principal component regression coefficients were determined following 

Catlett and Siegel (2018) and transformed into spectral coefficients for 3*!""(+). Pigment 

concentrations were modeled as: 

6̂( =	∑ ;((+,) ∗-
,./ 3*!""(+,) +	>( [7], 

where ;((+,) is the wavelength-specific coefficient applied to 3*!""(+,) at the ?th 

wavelength (+) for a given pigment concentration (6̂(), and >( is an intercept. Resulting 

pigment values were constrained to be positive values (or zero) before computing goodness-

of-fit statistics.  

We employed the cross-validation-based model optimization and validation 

procedures described in Catlett and Siegel (2018), with some adjustments. The modeling 

approach was validated using a 100-fold cross-validation procedure for each pigment. 75% 

of the dataset was used for model training, while 25% of the dataset was used for model 

performance evaluation. Principal components are computed from standardized (z-scored; 

mean-centered and divided by the variance) 3*!""(+) spectra included in the training set. 

Principal components regression models are then optimized based on the training set by 

minimizing the mean absolute difference (@;A) following Seegers et al. (2018) and 

McKinna et al. (2021):  

@;A =	 /-∑ B6̂(,, − 6(,,B-
,./  [8], 

where D is the number of samples in the model training dataset (25% of 145, or 36 

samples), 6(,, is the measured HPLC pigment concentration, and 6̂(,, is the corresponding 
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modeled pigment concentration, each for the ?th observation. This approach differs from 

Catlett and Siegel (2018) where models were optimized by maximizing Pearson’s squared 

correlation coefficient (*0).  

Pigment concentrations were reconstructed for the entire dataset (see Figures 3 and 6 

below). For this exercise, the 100 quasi-independent sets of optimized coefficients (;((+,) 

and >() determined from the 100 cross-validations were applied to all 3*!""(+,) spectra 

used here, following equation [8]. The median pigment value of those 100 modeled values 

was used in further analyses. Any modeled pigment values that were below the standard 

HPLC pigment detection limits (Van Heukelem and Thomas, 2001) were again set to zero 

before subsequent analyses. It should be noted that the goodness-of-fit statistics are expected 

to improve in this exercise relative to those determined from the 100-fold cross-validation 

procedure employed above since the training and validation datasets are not independent in 

this step. 

IV.3 Results 

IV.3.1 HPLC pigments 

The relationships between and among phytoplankton pigment ratios to Tchla in the 

measured HPLC pigment dataset constrain the number of distinct groups that can be 

identified from any subsequent modeling using the *!"(+) data (Kramer and Siegel, 2019; 

Kramer et al., 2020). In this HPLC dataset, hierarchical cluster analysis separates five 

distinct phytoplankton pigment groups (Figure 3A), each of which can be distinguished by 

one biomarker pigment (with assumed taxonomic representation): Fuco (diatoms), Perid 

(dinoflagellates), HexFuco (haptophytes), MVchlb (green algae), and Zea (cyanobacteria).  
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Figure 3. Hierarchical cluster analysis of thirteen pigment ratios to Tchla. (A) Results for 
measured HPLC pigments: using a linkage distance of 0.65 (red dashed line), five distinct 
groups emerge and are annotated here with their assumed taxonomic representation: 
haptophytes (dark blue), diatoms (brown), dinoflagellates (gold), green algae (green), and 
cyanobacteria (light blue). (B) Results for principal components regression modeled 
pigments from 3*!""(+): using a linkage distance of 0.80 (red dashed line), the same five 
pigment groups identified in (A) emerge. 
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The connections between and among the phytoplankton pigment groups that emerge 

here are very similar to those identified in the global analysis by Kramer and Siegel (2019); 

conclusions drawn there would be applicable to this subset of their data. The groups 

identified here also broadly separate along (widely-assumed) phytoplankton size class lines, 

with diatoms and dinoflagellates mostly comprising the micro- and nano-sized 

phytoplankton groups, while haptophytes, green algae, and cyanobacteria mostly comprise 

the nano- to pico-sized groups. The same phytoplankton pigment groups emerged from the 

EOF analysis (Figure S1A-D), with the first mode separating cyanobacterial pigments from 

all other groups, the second mode separating haptophyte pigments from green algal 

pigments, the third mode separating diatom pigments from all other groups, and the fourth 

mode separating dinoflagellate and cyanobacteria pigments from all other groups.  

IV.3.2 Hyperspectral reflectance spectra  

The hyperspectral reflectance modeling used here aims to reproduce the spectral 

shape and magnitude of the *!",(*+"(+) data (Figure 2A) using a generic, data- and 

literature-based parameterization of the model components. The *!",()#(+) data (Figure 2B) 

match the range of spectral shapes and magnitudes of the *!",(*+"(+) data quite well. The 

broadly similar patterns in spectral shape and relatively low magnitude of the residual 

spectra (3*!"(+)) show that most of the differences between the measured and modeled 

*!"(+) are in the blue and red wavelengths (Figure 2C), where phytoplankton accessory 

pigment absorption is highest and most variable in shape, and in the red, where chlorophyll 

fluorescence is active. The 3*!"(+) spectra are relatively flat in the ~520-550 and ~600-660 

regions. The similarity in the shapes of the 3*!"(+) spectra qualitatively validates the 

approach taken here, to remove much of the signal from *!"(+) that varies on broader 
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spectral scales (e.g., 0-12(+), 03456(+), 2%&(+)) and preserve the signal that varies on 

narrower spectral scales (e.g., due to PCC differences).  

The performance of the hyperspectral reflectance model was further evaluated by 

comparing the model retrieval of Tchla with measured HPLC Tchla (Figure 4).  

Figure 4. Correlation between measured Tchla and Tchla modeled according to (A) the 
OC4 chlorophyll algorithm and (B) the hyperspectral GSM-like model used here. Samples 
are colored by source (red = ANT, orange = NAAMES, yellow = RemSensPOC [RSPOC], 
green = SABOR, blue = Tara, purple = BIOSOPE, black = EXPORTS). 

 
Measured Tchla was compared to both Tchla derived from the OC4v6 chlorophyll 

algorithm (Figure 4A; O’Reilly et al., 1998) and from the hyperspectral reflectance model 

used here (Figure 4B). While both models produce Tchla concentrations that are well 

correlated with the measured HPLC Tchla (R2 = 0.75 and 0.86, respectively), the 

performance of the hyperspectral reflectance model improves upon the OC4v6 algorithm 

performance both in terms of the model fit to the measured data and its adherence to the 1:1 

line (slope = 0.96 vs. slope = 0.87). This result is consistent with previous findings showing 

that multispectral Tchla models perform better if the effects of 2%&(+) and 0#$(+) are 

accounted for (i.e., Siegel et al., 2005; 2013). 
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IV.3.3 Correlations between FG78(H) and HPLC pigments 

 In order to assess the nature of phytoplankton pigment signals contained in 3*!"(+) 

spectra, correlations were examined between the 3*!"(+) spectra and pigment 

concentrations (Figure 5A&D diatom and cyanobacteria pigments; Figure S2 all other 

pigments), the first derivative of 3*!"(+) and pigments (3*!"′(+), Figure 5B&E; Figure 

S3), and the second derivative of 3*!"(+) and pigments (3*!""(+), Figure 5C&F; Figure 

S4).  

Figure 5. Pearson’s correlation coefficients (R) between (A & D) 3*!"(+) spectra and 
pigments, (B & E) 3*!"′(+) spectra and pigments, (C & F) 3*!""(+) spectra and pigments, 
grouped based on the results of hierarchical cluster analysis (Figure 3): (A, B, C) diatom 
pigments and (D, E, F) cyanobacterial pigments. Grey bars indicate wavelengths at which 
the correlation coefficients for all pigments are significantly different from zero. The 
correlation with Tchla (in red) is included on each panel for comparison. 

 
Correlations were considered between 3*!"(+) and Tchla and between 3*!"(+) and 

each of the five groups of biomarker pigments that broadly describe the five major pigment 

groups based on the results of the hierarchical cluster analysis presented in Figure 3A. For 
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3*!"(+), 3*!"′(+), and 3*!""(+), high correlations (|R| >= 0.5) were found between 

reflectance spectra and pigments across the range of wavelengths considered in this analysis.  

Strongly positive or negative relationships were not restricted to wavelengths where 

3*!"(+) was necessarily more positive or negative (e.g., blue and red wavelengths; Figure 

2C); rather, nearly all pigments were significantly correlated with 3*!"(+) and its first and 

second derivatives across the visible spectrum (Figures 5A&D, S2). Generally, correlations 

were high in the blue, through the green, and into the red part of the spectrum for most 

pigment groups (excluding cyanobacterial pigments). Some of the strongest correlations 

(both positive and negative) between 3*!"(+) (or its derivatives) and pigments were in the 

red, where chlorophyll both absorbs and fluoresces, which has an impact on the spectral 

shape and magnitude of both measured and modeled *!"(+). The correlation spectra for 

some pigment groups (for instance, diatom pigments; Figure 5A-C) were almost identical to 

that of Tchla; however, there were differences in the ranges of wavelengths for which these 

pigments are most strongly correlated with 3*!"(+), indicated by the regions in which 

pigment correlations are significantly different from zero. Other pigment groups (such as 

cyanobacterial pigments; Figure 5D-F) have correlation spectra that vary in spectral shape 

and magnitude from that of Tchla, often presenting an inverse correlation to that of Tchla. 

Ultimately, the strong correlations between most pigments and 3*!"(+) (and its derivative 

spectra) across nearly all wavelengths suggested that hyperspectral reflectance residuals are 

well suited to pigment modeling using all measured wavelengths.  

IV.3.4 Modeling phytoplankton pigments from hyperspectral FG78"(H)   

The concentrations of all thirteen phytoplankton pigments considered here were 

estimated from the 3*!""(+) principal components regression modeling approach with 
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relatively high accuracy and low error (Table 2; Figure 6; R2 >= 0.5 for all pigments except 

Zea and the green algal pigments). Given the large differences in concentration of Tchla and 

each accessory pigment, the @;A presented in Table 2 was normalized to the average 

retrieved pigment concentration for each pigment to facilitate comparison of the model 

performance between pigments. 

Table 2. Average summary statistics (R2 and normalized MAD) and standard deviations of 
summary statistics across 100 model cross-validations for all modeled pigments. MAD and 
its standard deviation are normalized to the mean retrieved pigment concentration for each 
pigment. All statistics were assessed on a linear scale. 

 

Pigment Mean R2 SD R2 Mean normalized MAD SD normalized MAD
Allo 0.40 0.19 1.221 0.400
But 0.62 0.16 0.588 0.185

Chlc3 0.68 0.13 0.639 0.212
Chlc12 0.70 0.13 0.703 0.235
DVchla 0.55 0.12 0.594 0.103
Fuco 0.65 0.15 0.844 0.274
Hex 0.54 0.16 0.692 0.201

MVchlb 0.42 0.19 0.975 0.295
Neo 0.42 0.21 1.127 0.354
Perid 0.49 0.13 0.783 0.166
Tchla 0.72 0.15 0.498 0.127
Viola 0.38 0.18 1.101 0.370
Zea 0.37 0.10 0.472 0.071
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Figure 6. Relationships between HPLC measured pigments and principal components 
regression modeled pigments using the median model result of all 100 cross-validations: (A) 
Tchla, (B) Fuco, (C) Perid, (D) HexFuco, (E) MVchlb, (F) Zea. The 1:1 line is shown in 
black; the linear fit is shown in red for Tchla, brown for Fuco, gold for Perid, dark blue for 
HexFuco, green for MVchlb, and light blue for Zea. Samples are colored by source (red = 
ANT, orange = NAAMES, yellow = RemSensPOC [RSPOC], green = SABOR, blue = Tara, 
purple = BIOSOPE, black = EXPORTS).  

 
The mean model summary statistics from the 100-fold cross-validation exercise (Table 

2) provide estimates of the central tendency of the model performance when extrapolated to 

novel observations (e.g., the randomly selected 25% of the dataset used for testing model 

performance for each cross-validation). The normalized mean absolute difference (MAD) 

was lowest for Tchla and red algal and cyanobacterial pigments and higher for green algal 

pigments. The relationships between measured and modeled pigments were quite strong 

when the entire pigment dataset was reconstructed from median modeled values across the 

100 cross-validations (Figure 6): the slopes of the relationship between measured and 

modeled pigments for Tchla and five of the major biomarker pigments (excluding Zea) are 

close to 1 (0.74-0.94), while the R2 values for these linear fits are also high (0.51-0.73). 

There were no clear relationships between the data source (e.g., the individual field 

campaign) and the pigment reconstruction (Figure 6). Specifically, the relationships between 

and among pigments were conserved through this modeling exercise and the same five 

pigment clusters found in the measured pigment dataset (Figure 3A) are also identified from 

hierarchical cluster analysis of the modeled pigment dataset (Figure 3B).  

Five phytoplankton pigment groups can generally be distinguished by the co-

variability between the ratios of five biomarker pigments to Tchla (Figure 3). These same 

five pigment groups emerged from analyses of both the measured and modeled pigment 

analyses. The modeled pigments showed reasonably good correspondence with the 
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measured pigments for most biomarker pigments (Table 2), particularly for Fuco (R2 = 

0.65). The order of some of the branches of the dendrogram shifted between the measured 

(Figure 3A) and modeled (Figure 3B) pigment datasets. Most notably, the modeled Perid 

clustered more closely with the modeled (assumed) cyanobacterial pigments, while 

measured Perid clustered more closely with measured (assumed) diatom pigments. 

However, the broad pigment groups remained the same between these analyses at high 

(>0.5) linkage distance thresholds, and the five groups of covarying pigments remain 

consistent. Similarly, the same major pigment-based taxonomic groups separated from the 

EOF analysis, but with different groups dominating different modes between the measured 

(Figure S1A-D) and modeled (Figure S1 E-H) datasets. The first mode separated green algal 

pigments from all other groups, the second mode separated haptophyte pigments from 

dinoflagellate pigments, the third mode separated diatom pigments from all other groups, 

and the fourth mode separated cyanobacterial pigments from all other groups.   

Even the accessory and biomarker pigments with relatively poor model performance 

were reconstructed accurately enough that the patterns of covariation among those pigment 

ratios to Tchla, and between those pigment ratios and pigment ratios modeled with higher 

skill, were consistently recovered (Figures 3, S1). For instance, Zea was retrieved with lower 

accuracy than many other pigments (Table 2; R2 = 0.37); however, the strong covariation 

between Zea and DVchla meant that these reconstructed pigments still clustered closely 

together and away from all other pigments (Figures 3B, S1H). Similarly, many of the green 

algal pigments were not as accurately modeled as many other pigments (Table 2; MVchlb 

R2  = 0.42, Neo R2 = 0.42, Viola R2 = 0.38), but these pigments covary with each other and 
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with Allo (R2 = 0.40) and thus still clustered together as a distinct pigment group (Figures 

3B, S1E).  

IV.4 Discussion 

The goal of this analysis was to model phytoplankton pigment concentrations from 

hyperspectral optics and use those modeled pigments to reconstruct relationships between 

and among groups of pigments that describe open ocean phytoplankton pigment 

composition. To achieve this goal, principal components regression was employed to model 

pigment concentrations from the second derivative of the residual spectra between measured 

and modeled hyperspectral remote sensing reflectance (3*!""(+)). From a hierarchical 

cluster analysis of the measured HPLC pigment data, five distinct phytoplankton pigment 

groups were identified (diatoms, dinoflagellates, haptophytes, green algae, and 

cyanobacteria), constraining the number of groups that could be identified by the reflectance 

modeling approach to these same five (or fewer) groups. Ultimately, the principal 

components regression modeling approach reconstructed the measured pigment dataset, 

such that the same five pigment-based phytoplankton groups were identified again. The 

resulting modeled pigment dataset both reconstructs the patterns of covariability between 

and among phytoplankton pigments, and recreates the qualitative descriptions of five 

phytoplankton pigment groups determined from hierarchical cluster and EOF analyses. 

While the analyses presented here used the residual between the measured and modeled 

reflectance (3*!""(+)), principal components regression modeling was repeated using the 

combined first and second derivatives of the measured hyperspectral reflectance 

(*!",(*+"′(+) and *!",(*+""(+)) with comparable results (Figures S6-8, Table S1).  
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Here, we consider the strengths and limitations of the modeling approach and the 

results presented in this work. Since the derivative approach is sensitive to measurement 

noise in addition to variations in spectral shape, this analysis required the curation of a 

highly quality-controlled dataset. Data were limited for hyperspectral *!"(+) matchups with 

HPLC pigments to 145 samples; more high quality data will improve this analysis and future 

analyses that use hyperspectral optics to model phytoplankton pigment concentrations. The 

results of the principal components regression models (or any bio-optical model) are 

constrained by the validation dataset used in the analysis. In this case, the taxonomic groups 

determined from the associations between and among HPLC phytoplankton pigments 

restricted the pigment groups that could be identified from optics to the five identified here. 

These five groups represent the extent to which phytoplankton pigment composition can be 

resolved within the global open ocean HPLC dataset assembled here. Finally, while this 

analysis aims to describe the central tendencies of the dataset used here, analyses that 

include different taxonomic or optical regimes than those included in this dataset 

(particularly inland or coastal waters) might need to combine approaches to fully describe 

the surface ocean phytoplankton pigment composition from optics. This approach describes 

a “base state” in the global surface ocean, while rare or more extreme departures from that 

base state will have divergent optical properties and will likely require more targeted 

approaches.  

IV.4.1 Quality controlling a global dataset from multiple sources  

The robustness of any modeling approach is limited by the dataset used to construct 

and test that model. Here, data from eight field campaigns were combined, most of which 

had already been published in previous analyses (e.g., Uitz et al., 2015; Bracher et al., 
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2015a; Chase et al., 2017) or had been collected by those same groups using identical 

methods (e.g., the EXPORTS samples). The HPLC pigment dataset dictates the potential 

and limitations of the resulting optical model—here, the results were limited to five distinct 

pigment groups (Figure 3A, Figure S1A-D). The derivative analysis approach magnifies 

narrow spectral features, including measurement noise and error; thus, quality control of the 

*!"(+) spectra was crucially important to ensure that the model results were influenced by 

real features rather than artifacts. Strict quality control will be particularly important for 

ocean color sensors such as PACE, particularly considering the potential effects of imperfect 

atmospheric corrections on reflectance data from these missions. It is likely that 

imperfections in atmospheric correction will occur on broader spectral scales (as is expected 

from the shapes of aerosol absorption and scattering; Werdell et al., 2019). Thus, the 

approach used here will negate many of these issues.  

The quality control approach employed here aimed to remove any spectra with 

spurious features that would be amplified in the present approach; thus, some samples were 

removed from the datasets that were suitable for other analyses. Similarly, the wavelength 

range of the *!"(+) spectra was selected to maximize overlap between different sampling 

approaches; all eight field campaigns measured reflectance between 400-700 nm, while 

some field campaigns had a larger range of measurements. There is undoubtedly useful 

phytoplankton community information in the UV and specific spectral features in the UV 

region have been shown to covary with specific biomarker pigments (e.g., Barrón et al., 

2014; Kahru et al., 2021). Ideally, future *!"(+) datasets will include high-quality 

measurements over a broader spectral range for full consideration of the impact of 

phytoplankton pigments on spectral data. Our results show that the model coefficients in this 
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analysis vary across the visible spectrum (Figure  S5), not just in a narrow wavelength 

range. This result supports the importance of rigorous quality control for the spectral data 

used here; even small variations on short (5-10 nm) spectral scales are ultimately important 

in this pigment modeling approach. Similarly, the noise-to-signal ratio across the visible 

spectrum for in situ *!"(+) data (as were used here) is much lower than for remotely sensed 

*!"(+) data. Thus, spatiotemporal aggregation of remotely-sensed *!"(+) will likely be 

required to improve and increase the signal-to-noise ratio to a level that can be tolerated by 

the approach presented here.  

IV.4.2 The need for more high-quality, paired global data 

While the dataset used in this analysis was limited by the stringent quality control 

approach for both the HPLC pigment samples and *!"(+) spectra, it was also limited by the 

available data that fit these requirements. There are abundant HPLC pigment samples with 

high data quality in the surface ocean (e.g., Kramer and Siegel, 2019). However, of the 

4,550 HPLC pigment samples in that analysis, only 145 had co-located, hyperspectral 

*!"(+) spectra that passed the present quality control process. The distributions of both 

Tchla and the major accessory pigments varied in the 145 HPLC samples with 

corresponding *!"(+) spectra, relative to the larger 4,550 sample dataset analyzed 

previously (Figure 7).  
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Figure 7. Histograms of measured HPLC pigment concentrations from this analysis and 
from Kramer and Siegel (2019): (A) Tchla, (B) Fuco, (C) Perid, (D) HexFuco, (E) MVchlb, 
(F) Zea.  

 
The mean pigment concentrations and ranges are significantly different for Tchla, Fuco, 

Perid, and HexFuco (two-sample t-test; p<0.01). The mean values and range of the pigment 

concentrations in the global dataset were higher for Tchla and all accessory pigments except 

Zea compared to this dataset. The dataset used in this analysis was skewed more to samples 

with lower average Tchla concentrations that contained higher concentrations of Zea, but the 

difference in the mean Zea concentration between the two datasets was not significant 

(Figure 7F). While the pigment-based statistical analyses from this dataset were comparable 

to the results of Kramer and Siegel (2019) in identifying nearly the same five groups of 

phytoplankton pigments (this analysis separated diatom pigments from dinoflagellate 

pigments; Figure 3A), the bio-optical models that were constructed for this dataset fit a 

specific subset of the global dataset. Further model optimization may be required to apply 
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this model accurately to all samples in that dataset, given the differences in dataset 

characteristics. However, despite the lower concentrations of most accessory pigments in 

this dataset, the model still reasonably reconstructed the concentrations of most accessory 

pigments.  

There are many datasets that contain paired HPLC pigment samples and 

multispectral optics and/or radiometry (e.g., Werdell and Bailey, 2005). Similarly, some 

datasets include paired HPLC pigment samples (or other measurements of phytoplankton 

community composition) and hyperspectral optics (such as absorption by phytoplankton or 

other oceanic constituents), though few include hyperspectral reflectance as noted above 

(e.g., Valente et al., 2019; Casey et al., 2020). These datasets are also limited by their 

sampling locations—it is operationally more straightforward to collect both water samples 

and spectral measurements in inland and coastal waters than in the open ocean, so open 

ocean observations are more limited. The ratio of coastal to open ocean samples in most bio-

optical datasets is not representative of the fraction of coastal to open ocean ecosystems on 

Earth (Mouw et al., 2017). The work presented here demonstrates conclusively the need for 

more and consistently collected, paired measurements of phytoplankton community 

composition (including, but not limited to, HPLC pigments) and hyperspectral *!"(+) data 

(and, ideally, hyperspectral optical data) from diverse environments. Since all models, 

including the principal component regression model used here, are constrained by the 

quality and content of the datasets used to train and test those models, efforts to reconstruct 

phytoplankton community indices from hyperspectral reflectance can only be strengthened 

by the addition of more, high-quality open ocean hyperspectral optical and pigment data 

(e.g., Bracher et al., 2017). 
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IV.4.3 The importance of spectral resolution 

The quality and content of the model input data is also determined by the spectral 

resolution of that data. Hyperspectral data provide more degrees of freedom for modeling 

phytoplankton accessory pigments from *!"(+) (Wolanin et al., 2016; Werdell et al., 2018; 

Cael et al., 2020). However, there are also high degrees of correlation between 

measurements made at similar wavelengths, which dilutes the statistical power of individual 

wavelengths (Cael et al., 2020). Thus, with these potential strengths and limitations in mind, 

this analysis was replicated for 3*!""(+) using 5 nm and 10 nm resolution rather than 1 nm 

resolution. The results demonstrate very little loss of qualitative or quantitative power for 

pigment reconstruction between 1 nm and 5 nm resolution: the same 5 pigment groups 

separate (Figures S9, S10), the relationships between measured and modeled pigments are 

comparably strong (Table S2, Figure S11), and there is still predictive power across the 

visible spectrum that can be used for pigment modeling (Figure S12). However, at 10 nm 

resolution, the results are notably worse for all modeled pigments (Table S3). This result is 

encouraging for existing and future ocean color remote sensing missions with high (~5 nm) 

spectral resolution (e.g., Werdell et al., 2019). These results can be replicated using both the 

first and second derivatives of the measured hyperspectral reflectance, *!",(*+"′(+) and 

*!",(*+""(+) at varying spectral resolution in principal component regression models 

(Figures S13-15; Tables S4, S5).  

IV.4.4 The potential of the spectral gap hypothesis 

 The present results highlight the benefit of removing *!"(+) variability at broad 

spectral scales to accentuate those spectral variations that should be better associated with 

optical features caused by changes in phytoplankton pigment composition. Central to this 
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approach is the hypothesis that phytoplankton optical signals can be useful for quantifying 

phytoplankton pigment composition by maximizing the variability in 3*!"(+) on narrow 

spectral scales (<100 nm) and reducing or removing the broad scale (>100 nm) signals that 

dominate the major optical properties in the ocean (e.g., CDOM, NAP). By removing broad-

scale spectral signals, the 3*!"(+) spectra (and its derivatives) should accentuate the optical 

signals associated with the phytoplankton community. The major variations in the 

magnitude and shape of 3*!""(+) were predominantly in the blue and red wavelengths 

(Figure 2C), where phytoplankton accessory pigment absorption and fluorescence are the 

highest. However, the results of the principal components regression modeling approach 

demonstrate that relevant information for modeling pigments from the second derivative of 

3*!"(+) is not just contained in the spectral regions where many phytoplankton pigments 

absorb, but across the whole visible spectrum (Figures 5, S4). These results demonstrate the 

covariation amongst pigments and their absorption features, but also the co-variability of 

pigments with other phytoplankton pigment group-specific optical properties (e.g., 

fluorescence, scattering, packaging, etc.). The model coefficients also have power across the 

visible spectrum (Figure S5), demonstrating the importance of using data from 400-700 nm 

in this modeling approach (see also discussion in Catlett and Siegel, 2018).  

IV.4.5 Further applications of FG78(H) for PACE 

To a large extent, the residuals between measured and modeled *!"(+), 3*!"(+), 

represent the differences in the relationship between Tchla and accessory pigments and their 

influence on phytoplankton absorption, 0&9(+), in the measured and modeled dataset (e.g., 

NOMAD; Werdell and Bailey, 2005) and might not accurately reflect the relationships 

between Tchla and accessory pigments (which influence the shape and magnitude of 
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0&9(+)) in the present dataset. Thus, the residual reflectance spectrum, 3*!"(+), is a useful 

tool to quantify the shape differences of a given *!"(+) spectrum—particularly when 

combined with a derivative analysis that accentuates the fine-scale features related to 

phytoplankton absorption and scattering. The usefulness of the reflectance residual approach 

in bio-optical oceanography has been established before (e.g., Roesler and Perry, 1995; 

Alvain et al., 2005), though it has not been applied for modeling phytoplankton pigment 

concentrations. This approach could be further applied to hyperspectral ocean color data to 

classify and cluster optical data and describe broad patterns in the global surface ocean (e.g., 

Siegel et al., 2005; Blondeau-Patissier et al., 2014). Through measurements and modeling of 

surface ocean reflectance, the 3*!"(+) parameter could describe similarities and differences 

in the shapes of measured hyperspectral *!"(+). Statistical analyses, such as EOFs or cluster 

analysis, could then partition these optical communities into broadly similar groups, and 

allow for a deeper investigation of the phytoplankton pigment composition underlying these 

similar optical regimes. Ultimately, this type of approach would aim to describe the central 

tendency in the dataset by classifying groups of spectra that were correlated with similar 

surface ocean patterns and ecosystems. 

IV.4.6 Combining principal components regression modeling with other remote sensing 

phytoplankton community composition algorithms 

The model that was constructed here describes a statistical approach for predicting 

phytoplankton biomarker pigment concentrations from reflectance spectra. The modeling 

approach implemented with this dataset is empirical, and thus it was only able to reconstruct 

the phytoplankton pigment communities represented in this dataset. While many remote 

sensing algorithms have similarly been constructed to retrieve various optical parameters 
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(e.g., Maritorena et al., 2002; Werdell and Bailey, 2005; Uitz et al., 2015; Chase et al., 2017; 

etc.), some remote sensing algorithms for detecting phytoplankton community composition 

aim to identify the cases that deviate from standard oceanic conditions. In those models, the 

aim is to identify the phytoplankton group that dominates the optical signal in a given 

ecosystem, often in the case of a monospecific phytoplankton bloom. This information is 

likely not retrievable using empirical techniques aimed at quantifying the central tendencies 

in a dataset. Approaches exist to quantify or identify blooms of coccolithophores (Brown 

and Yoder, 1994; Sadeghi et al., 2012) or Trichodesmium spp. (Westberry et al., 2005; 

Westberry and Siegel, 2006) on global scales, as well as Phaeocystis spp. (Lubac et al., 

2008), harmful algal blooms (i.e., Karenia brevis, Stumpf et al., 2003; Pseudo-nitzschia 

spp., Smith and Bernard, 2020; etc.), and diatoms (Sathyendranath et al., 2004; Soppa et al., 

2014; Kramer et al., 2018) on local scales. It is important to note that the approach 

developed here is not comparable to these methods, as it does not attempt to identify the 

dominant phytoplankton group within a community, but rather reconstructs individual 

phytoplankton pigment concentrations from *!"(+) and 3*!"(+). Reconstructed pigment 

compositions and concentrations can then be used to estimate phytoplankton community 

composition. In other ecosystems or regions, the combinations of reconstructed pigments 

might cluster differently to form distinct phytoplankton pigment groups from the ones 

identified here (e.g., Kramer et al., 2019). By aiming to describe variability in suites or 

communities of biomarker pigment concentrations, the principal components regression 

modeling approach used here describes a central tendency in the dataset, and is 

complimentary to ocean color algorithms that attempt to identify outliers dominated by a 

single phytoplankton type.  
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Combining the method presented here with one of the above more targeted methods 

may provide insight into how well the reconstructed pigment suites match the distinct 

optical signals associated with a given phytoplankton group. For example, in an ecosystem 

where a “coccolithophore bloom” (Brown and Yoder, 1994) can be identified from remote 

sensing, would the reconstructed pigment modeling also retrieve high concentrations of 

HexFuco and Chlc3? In this case, the principal components regression modeling approach 

could serve to describe a community in which the optics were more useful for describing 

phytoplankton community composition than the pigments. These combined approaches 

could also give insights into bloom succession, and the strengths or weaknesses of 

individual models as the optical properties of a bloom change. Alternately, the Westberry et 

al. (2005) approach can identify a Trichodesmium bloom from ocean color based on optical 

anomalies above a defined threshold value. Using pigment data, Trichodesmium could be 

distinguished by the cyanobacterial biomarker pigments considered here (Zea, DVchla), but 

also by phycobilins, which are not measured by traditional HPLC methods, but can be 

modeled by similar approaches to those employed here (Taylor et al., 2013). Again, the 

optics may provide more information than the pigment-based taxonomy, and thus the 

methods would be stronger when combined.  

IV.5 Conclusions 

This analysis demonstrates the potential and limitations of hyperspectral remote 

sensing reflectance data for reconstructing phytoplankton pigment composition. Five 

pigment groups were separated from the validation dataset of HPLC pigments and are 

assumed to represent diatoms, dinoflagellates, haptophytes, green algae, and cyanobacteria. 

Thirteen pigments were then modeled from a matched-up dataset of reflectance data, 
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resulting in the same five pigment groups. The approach used here tested the spectral gap 

hypothesis—i.e., that phytoplankton signals useful for characterizing phytoplankton pigment 

composition are contained on spectral scales narrower than the scale of other factors 

influencing optical properties (<100 nm). Overall, our results suggest that principal 

components regression modeling is a strong candidate for retrieving phytoplankton pigment 

composition from hyperspectral remote sensing data. The success of this model depended in 

part on rigorous quality control applied to both datasets before modeling, which ensured that 

only real features were magnified by the residual and derivative methods. Furthermore, the 

model works best at high (1-5 nm) spectral resolutions, and model performance decreases at 

coarser (10+ nm) resolution, which is relevant to future remote sensing instruments with 

improved spectral resolution (e.g., NASA’s PACE sensor). Finally, this model is limited to 

the dataset for which it was developed; however, in combination with other remote sensing 

algorithms that target specific phytoplankton taxa, it would offer more information about 

both surface ocean optics and phytoplankton ecology, as it could help to illuminate some of 

the assumptions underlying both types of approaches. More high-quality, paired datasets 

from a range of different ecosystems and environments will also improve this approach and 

future global models for phytoplankton pigment composition. 
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IV.7 Supplemental Information  

The supporting information presented in this section includes: 

Section S1: Supplemental information for the datasets and principal components regression 

models presented in the main section of the manuscript. This section includes: the results of 

an Empirical Orthogonal Function (EOF) analysis performed with both the measured and 

modeled pigment datasets; Pearson’s correlation coefficients between the remote sensing 

reflectance residual (3*!"(+)) and each accessory pigment; and the mean model coefficients 

resulting from the principal components regression modeling. 

Section S2: This section includes the results of repeating the principal components 

regression modeling approach using the first and second derivatives of the measured remote 

sensing reflectance (G78,:;<8′(H) and G78,:;<8"(H)) instead of the second derivative of the 

reflectance residual (3*!""(+)).  

Section S3: This section includes the results of repeating the principal components 

regression modeling approach using the second derivative of the reflectance residual 

(3*!""(+)) at 5 nm resolution. 
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Section S4: This section includes the results of the principal components regression 

modeling approach using the second derivative of the reflectance residual (3*!""(+)) at 10 

nm resolution. 

Section S5: This section includes the results of repeating the principal components 

regression modeling approach using the first and second derivatives of the measured remote 

sensing reflectance (*!",(*+"′(+) and *!",(*+""(+)) at 5 nm resolution. 

Section S6: This section includes the results of the principal components regression 

modeling approach using the first and second derivatives of the measured remote sensing 

reflectance (*!",(*+"′(+) and *!",(*+""(+)) at 10 nm resolution. 

Section S7: A and B coefficients in the phytoplankton absorption component of *!",()#(+). 

Section S1 

This section addresses additional analysis for the measured and modeled datasets 

presented in the main manuscript. First, the results of the EOF analysis performed on both 

the measured (Figure S1A-D) and principal components regression modeled (Figure S1E-H) 

are shown. The correlations between 3*!"(+), 3*!"′(+), and 3*!""(+) with the accessory 

pigments for dinoflagellates, haptophytes, and green algae are also shown (Figures S2-S4). 

Finally, the median spectral model coefficients (;(+,)) optimized across 100-fold cross-

validations of the principal components regression models are displayed for each major 

group of accessory pigments.  
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Figure S1. Empirical orthogonal function loadings for measured (A-D) and modeled (E-H) 
pigments. Modes (A & E) 1, (B & F) 2, (C & G) 3, and (D & H) 4 are displayed for 



 

 155 

phytoplankton pigment ratios to total chlorophyll-a. Loadings are colored based on pigment 
clusters (Figure 3): light blue (cyanobacteria), dark blue (haptophytes), green (green algae), 
brown (diatoms), and gold (dinoflagellates). 
 

Figure S2. Pearson’s correlation coefficients (R) between 3*!"(+) spectra and pigments, 
grouped based on the results of hierarchical cluster analysis (Figure 3): (A) Tchla, (B) 
dinoflagellate pigments, (C) haptophyte pigments, (D) green algal pigments. Grey bars 
indicate wavelengths at which the correlation coefficients for all pigments are significantly 
different from zero. 
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Figure S3. Pearson’s correlation coefficients (R) between 3*!"′(+) spectra and pigments, 
grouped based on the results of hierarchical cluster analysis (Figure 3): (A) Tchla, (B) 
dinoflagellate pigments, (C) haptophyte pigments, (D) green algal pigments. Grey bars 
indicate wavelengths at which the correlation coefficients for all pigments are significantly 
different from zero. 
 

Figure S4. Pearson’s correlation coefficients (R) between 3*!""(+) spectra and pigments, 
grouped based on the results of hierarchical cluster analysis (Figure 3): (A) Tchla, (B) 
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dinoflagellate pigments, (C) haptophyte pigments, (D) green algal pigments. Grey bars 
indicate wavelengths at which the correlation coefficients for all pigments are significantly 
different from zero. 
 

Figure S5. Median model coefficients for all pigments, grouped based on the results of 
hierarchical cluster analysis (Figure 3): (A) Tchla, (B) diatom pigments, (C) dinoflagellate 
pigments, (D) haptophyte pigments, (E) green algal pigments, and (F) cyanobacterial 
pigments. Grey bars indicate wavelengths at which the correlation coefficients for all 
pigments are significantly different from zero.   
 
Section S2 

This section repeats the principal component regression modeling approach 

presented in the main manuscript, but using *!",(*+"′(+) and *!",(*+""(+) as the input 

rather than 3*!""(+): 

6̂( =	∑ ;((+,) ∗-
,./ *!",(*+"′(+,) + I,(+,) ∗ *!",(*+""(+,) + >( [S1]. 

where ;((+,) and I((+,) are the wavelength-specific coefficient applied to *!",(*+"′(+,) 

and *!",(*+""(+,), respectively, at the ?th wavelengths (+) for a given pigment concentration 

(6̂(), and >( is an intercept. 
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All other model parameters were kept exactly the same. The results presented here 

show the *!",(*+"′(+) and *!",(*+""(+) model performance summary (Table S1), the 

outcome of a hierarchical cluster analysis performed with ratios of modeled accessory 

pigments to modeled Tchla (Figure S6), an EOF analysis with the ratios of modeled 

pigments to modeled Tchla (Figure S7), and correlations between measured and modeled 

pigment concentrations for Tchla and the five major accessory pigments (Figure S8).  

Table S1. Summary statistics (R2 and MAD) and standard deviations of statistics across 100 
model cross-validations for all modeled pigments for the *!",(*+"′(+) and *!",(*+""(+) 
model. MAD and its standard deviation are normalized to the mean pigment concentration 
for each pigment. 

 
 

Pigment Mean R2 SD R2 Mean normalized MAD SD normalized MAD
Allo 0.46 0.23 1.296 0.389
But 0.67 0.19 0.544 0.155

Chlc3 0.72 0.15 0.586 0.172
Chlc12 0.76 0.14 0.623 0.188
DVchla 0.55 0.11 0.583 0.103
Fuco 0.73 0.17 0.717 0.232
Hex 0.6 0.2 0.636 0.174

MVchlb 0.44 0.2 0.964 0.306
Neo 0.45 0.22 1.095 0.349
Perid 0.49 0.14 0.779 0.176
Tchla 0.75 0.16 0.455 0.104
Viola 0.41 0.19 1.082 0.369
Zea 0.36 0.11 0.465 0.072
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Figure S6. Hierarchical cluster analysis of thirteen modeled pigment ratios to modeled 
Tchla from the *!",(*+"′(+) and *!",(*+""(+) model. Using a linkage distance of 0.50 (red 
dashed line), five distinct groups emerge: haptophytes (dark blue), diatoms (brown), 
dinoflagellates (gold), green algae (green), and cyanobacteria (light blue). 
 

Figure S7. Empirical orthogonal function loadings for the reconstructed pigments of the 
*!",(*+"′(+) and *!",(*+""(+) model. Modes (A) 1, (B) 2, (C) 3, and (D) 4 were calculated 
for phytoplankton pigment ratios to total chlorophyll-a concentration. Loadings are colored 
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based on pigment clusters (Figure S6): light blue (cyanobacteria), dark blue (haptophytes), 
green (green algae), brown (diatoms), and gold (green algae). 
 

Figure S8. Correlation between HPLC measured pigments and principal components 
regression modeled pigments using the *!",(*+"′(+) and *!",(*+""(+) model: (A) Tchla, (B) 
Fuco, (C) Perid, (D) HexFuco, (E) MVchlb, (F) Zea. The 1:1 line is shown in black; the 
linear fit is shown in red. Samples are colored by source (red = ANT, orange = NAAMES, 
yellow = RemSensPOC [RSPOC], green = SABOR, blue = Tara, purple = BIOSOPE, black 
= EXPORTS). 
 
Section S3 

This section repeats the principal component regression modeling approach 

presented in the main manuscript, using 3*!""(+) at 5nm resolution (every 5nm from 400-

700nm). All other model parameters were kept exactly the same. The results presented here 

show the model performance summary (Table S2), the outcome of a hierarchical cluster 

analysis performed with ratios of modeled accessory pigments to modeled Tchla (Figure 

S9), an EOF analysis with the ratios of modeled pigments to modeled Tchla (Figure S10), 

and correlations between measured and modeled pigment concentrations for Tchla and the 
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five major accessory pigments (Figure S11). Spectral model coefficients are also shown 

(Figure S12).   

Table S2. Summary statistics (R2 and MAD) and standard deviations of statistics across 100 
model cross-validations for all modeled pigments using 3*!""(+) at 5nm resolution. MAD 
and its standard deviation are normalized to the mean pigment concentration for each 
pigment. 

 
 

Figure S9. Hierarchical cluster analysis of thirteen modeled pigment ratios to modeled 
Tchla from the 3*!""(+) model at 5 nm resolution. Five distinct groups emerge: haptophytes 
(dark blue), diatoms (brown), dinoflagellates (gold), green algae (green), and cyanobacteria 
(light blue). 

Pigment Mean R2 SD R2 Mean normalized MAD SD normalized MAD
Allo 0.38 0.16 1.329 0.390
But 0.59 0.15 0.613 0.185

Chlc3 0.66 0.12 0.680 0.199
Chlc12 0.66 0.12 0.751 0.229
DVchla 0.42 0.11 0.688 0.111
Fuco 0.63 0.13 0.903 0.261
Hex 0.54 0.16 0.704 0.193

MVchlb 0.41 0.19 0.985 0.305
Neo 0.4 0.19 1.151 0.358
Perid 0.45 0.12 0.825 0.167
Tchla 0.68 0.15 0.532 0.122
Viola 0.36 0.17 1.115 0.385
Zea 0.35 0.11 0.491 0.076
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Figure S10. Empirical orthogonal function loadings reconstructed from the 3*!""(+) model 
at 5 nm resolution for Modes (A) 1, (B) 2, (C) 3, and (D) 4, calculated for phytoplankton 
pigment ratios to total chlorophyll-a concentration. Loadings are colored based on pigment 
clusters (Figure S9): light blue (cyanobacteria), dark blue (haptophytes), green (green algae), 
brown (diatoms), and gold (green algae). 
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Figure S11. Correlation between HPLC measured pigments and principal components 
regression modeled pigments constructed from the 3*!""(+) model at 5 nm resolution: (A) 
Tchla, (B) Fuco, (C) Perid, (D) HexFuco, (E) MVchlb, (F) Zea. The 1:1 line is shown in 
black; the linear fit is shown in red. Samples are colored by source (red = ANT, orange = 
NAAMES, yellow = RemSensPOC [RSPOC], green = SABOR, blue = Tara, purple = 
BIOSOPE, black = EXPORTS). 
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Figure S12. Median model coefficients from the 3*!""(+) model at 5 nm resolution for all 
pigments, grouped based on the results of hierarchical cluster analysis (Figure S9): (A) 
Tchla, (B) diatom pigments, (C) dinoflagellate pigments, (D) haptophyte pigments, (E) 
green algal pigments, and (F) cyanobacterial pigments. Grey bars indicate wavelengths at 
which the correlation coefficients for all pigments are significantly different from zero.   
 
Section S3 

This section repeats the principal component regression modeling approach 

presented in in the main manuscript (using 3*!""(+)) at 10nm resolution (every 10nm from 

400-700nm). All other model parameters were kept exactly the same. Model performance is 

compared for 3*!""(+) at 10 nm resolution (Table S3).   

Table S3. Summary statistics (R2 and MAD) and standard deviations of statistics across 100 
model cross-validations for all modeled pigments using 3*!""(+) at 10nm resolution. MAD 
and its standard deviation are normalized to the mean pigment concentration for each 
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pigment. 

 
 

Section S4 

This section repeats the principal component regression modeling approach 

presented in Section S2, using *!",(*+"′(+) and *!",(*+""(+) at 5nm resolution (every 5nm 

from 400-700nm). All other model parameters were kept exactly the same. The results 

presented here show the model performance summary (Table S4), the outcome of a 

hierarchical cluster analysis performed with ratios of modeled accessory pigments to 

modeled Tchla (Figure S13), an EOF analysis with the ratios of modeled pigments to 

modeled Tchla (Figure 14), and correlations between measured and modeled pigment 

concentrations for Tchla and the five major accessory pigments (Figure 15).  

Table S4. Summary statistics (R2 and MAD) and standard deviations of statistics across 100 
model cross-validations for all modeled pigments using *!",(*+"′(+) and *!",(*+""(+) at 
5nm resolution. MAD and its standard deviation are normalized to the mean pigment 

Pigment Mean R2 SD R2 Mean normalized MAD SD normalized MAD
Allo 0.27 0.11 1.418 0.392
But 0.42 0.12 0.725 0.183

Chlc3 0.45 0.11 0.841 0.208
Chlc12 0.44 0.13 0.918 0.238
DVchla 0.44 0.11 0.683 0.112
Fuco 0.42 0.11 1.072 0.266
Hex 0.36 0.13 0.808 0.193

MVchlb 0.36 0.16 1.055 0.303
Neo 0.33 0.14 1.271 0.344
Perid 0.43 0.11 0.843 0.166
Tchla 0.52 0.14 0.654 0.133
Viola 0.29 0.13 1.202 0.377
Zea 0.33 0.12 0.490 0.075
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concentration for each pigment. 

 
 

Figure S13. Hierarchical cluster analysis of thirteen modeled pigment ratios to modeled 
Tchla from the *!",(*+"′(+) and *!",(*+""(+) model at 5nm resolution. Using a linkage 
distance of 0.60 (red dashed line), five distinct groups emerge: haptophytes (dark blue), 
diatoms (brown), dinoflagellates (gold), green algae (green), and cyanobacteria (light blue). 

Pigment Mean R2 SD R2 Mean normalized MAD SD normalized MAD
Allo 0.44 0.22 1.247 0.410
But 0.66 0.18 0.557 0.166

Chlc3 0.71 0.15 0.605 0.176
Chlc12 0.73 0.14 0.666 0.196
DVchla 0.5 0.1 0.623 0.104
Fuco 0.71 0.17 0.751 0.224
Hex 0.59 0.19 0.651 0.177

MVchlb 0.44 0.21 0.966 0.307
Neo 0.44 0.22 1.091 0.355
Perid 0.49 0.14 0.785 0.177
Tchla 0.73 0.17 0.475 0.105
Viola 0.4 0.2 1.094 0.375
Zea 0.35 0.11 0.466 0.073
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Figure S14. Empirical orthogonal function loadings constructed from the *!",(*+"′(+) and 
G78,:;<8"(H) model at 5nm resolution for Modes (A) 1, (B) 2, (C) 3, and (D) 4, calculated 
for phytoplankton pigment ratios to total chlorophyll-a concentration. Loadings are colored 
based on pigment clusters (Figure S13): light blue (cyanobacteria), dark blue (haptophytes), 
green (green algae), brown (diatoms), and gold (green algae). 
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Figure S15. Correlation between HPLC measured pigments and principal components 
regression modeled pigments from the *!",(*+"′(+) and *!",(*+""(+) model at 5nm 
resolution: (A) Tchla, (B) Fuco, (C) Perid, (D) HexFuco, (E) MVchlb, (F) Zea. The 1:1 line 
is shown in black; the linear fit is shown in red. Samples are colored by source (red = ANT, 
orange = NAAMES, yellow = RemSensPOC [RSPOC], green = SABOR, blue = Tara, 
purple = BIOSOPE, black = EXPORTS). 
 
Section S6 

This section repeats the principal component regression modeling approach 

presented in Section S2 (using *!",(*+"′(+) and *!",(*+""(+)) at 10nm resolution (every 

10nm from 400-700nm). All other model parameters were kept exactly the same. Model 

performance is compared for *!",(*+"′(+) and *!",(*+""(+) at 10 nm resolution (Table S5).   

Table S5. Summary statistics (R2 and MAD) and standard deviations of statistics across 100 
model cross-validations for all modeled pigments using *!",(*+"′(+) and *!",(*+""(+) at 
10nm resolution. MAD and its standard deviation are normalized to the mean pigment 
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concentration for each pigment. 

 
 

Section S7:  

Phytoplankton absorption component is a function of chlorophyll: 0&9(+) = ;(+) ∗

,-ℎ/0=(?). The ; and I coefficients used here are shown below in Table S6. 

Wavelength (λ)  A  B  λ  A  B 

400 0.0361528 0.820472  417 0.0450843 0.781304 
401 0.0366568 0.817517  418 0.0455743 0.780118 
402 0.0371692 0.81458  419 0.0460527 0.779034 
403 0.037689 0.811675  420 0.0465182 0.778042 
404 0.038215 0.808814  421 0.0469695 0.77713 
405 0.0387458 0.806011  422 0.0474052 0.776289 
406 0.0392805 0.803279  423 0.047824 0.77551 
407 0.0398179 0.80063  424 0.0482245 0.774782 
408 0.0403567 0.79808  425 0.0486052 0.774096 
409 0.040896 0.795641  426 0.0489645 0.773442 
410 0.0414344 0.793327  427 0.0493011 0.772811 
411 0.0419709 0.791153  428 0.0496133 0.772193 
412 0.0425044 0.789132  429 0.0498994 0.77158 
413 0.0430336 0.787276  430 0.0501578 0.77096 
414 0.0435575 0.785576  431 0.0503868 0.770326 
415 0.0440747 0.784022  432 0.0505845 0.769668 
416 0.044584 0.782601  433 0.0507492 0.768975 

Pigment Mean R2 SD R2 Mean normalized MAD SD normalized MAD
Allo 0.39 0.19 1.331 0.408
But 0.57 0.19 0.617 0.173

Chlc3 0.63 0.17 0.703 0.176
Chlc12 0.65 0.16 0.771 0.197
DVchla 0.5 0.11 0.627 0.105
Fuco 0.65 0.19 0.859 0.225
Hex 0.5 0.18 0.726 0.183

MVchlb 0.42 0.21 0.987 0.315
Neo 0.41 0.22 1.165 0.350
Perid 0.48 0.14 0.808 0.167
Tchla 0.69 0.18 0.534 0.113
Viola 0.39 0.19 1.124 0.380
Zea 0.38 0.11 0.456 0.070
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Wavelength (λ)  A  B  λ  A  B 
434 0.0508788 0.76824  471 0.0406587 0.752086 
435 0.0509714 0.767451  472 0.0402921 0.752333 
436 0.051025 0.7666  473 0.0399081 0.752526 
437 0.0510373 0.765675  474 0.0395075 0.752676 
438 0.0510062 0.764669  475 0.0390911 0.752799 
439 0.0509293 0.763569  476 0.0386597 0.752907 
440 0.0508043 0.762366  477 0.0382142 0.753015 
441 0.0506286 0.761049  478 0.0377551 0.753135 
442 0.0503996 0.759607  479 0.0372833 0.753282 
443 0.0501146 0.75803  480 0.0367994 0.753468 
444 0.0497729 0.756315  481 0.036304 0.753708 
445 0.0493817 0.754497  482 0.0357979 0.754015 
446 0.0489503 0.752621  483 0.0352815 0.754403 
447 0.0484879 0.750731  484 0.0347555 0.754887 
448 0.0480036 0.748871  485 0.0342205 0.75548 
449 0.0475065 0.747084  486 0.0336771 0.756197 
450 0.0470055 0.745416  487 0.0331256 0.757053 
451 0.0465099 0.74391  488 0.0325668 0.758063 
452 0.0460285 0.742613  489 0.032001 0.759242 
453 0.0455705 0.741568  490 0.0314288 0.760606 
454 0.045145 0.740822  491 0.0308507 0.762167 
455 0.0447612 0.740421  492 0.0302675 0.76392 
456 0.0444255 0.740395  493 0.0296799 0.765857 
457 0.044133 0.740704  494 0.0290889 0.767971 
458 0.043876 0.741294  495 0.028495 0.770253 
459 0.043647 0.742108  496 0.0278993 0.772698 
460 0.0434384 0.743092  497 0.0273023 0.775298 
461 0.0432427 0.744191  498 0.026705 0.778047 
462 0.0430524 0.745351  499 0.026108 0.780938 
463 0.0428601 0.746518  500 0.0255122 0.783966 
464 0.0426582 0.747638  501 0.0249184 0.787125 
465 0.0424394 0.748657  502 0.0243273 0.79041 
466 0.0421975 0.749532  503 0.0237396 0.793816 
467 0.0419323 0.750265  504 0.0231564 0.797338 
468 0.0416447 0.750873  505 0.0225782 0.800971 
469 0.0413359 0.75137  506 0.022006 0.804711 
470 0.0410069 0.751769  507 0.0214405 0.808554 
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Wavelength (λ)  A  B  λ  A  B 

508 0.0208826 0.812496  545 0.0086346 0.937605 
509 0.0203333 0.816533  546 0.0084485 0.939341 
510 0.0197932 0.820661  547 0.0082646 0.940989 
511 0.0192634 0.824875  548 0.0080827 0.942548 
512 0.0187445 0.829159  549 0.0079025 0.944017 
513 0.0182373 0.833496  550 0.0077237 0.945396 
514 0.0177427 0.837866  551 0.007546 0.946684 
515 0.0172614 0.842253  552 0.007369 0.947879 
516 0.0167942 0.846638  553 0.007193 0.94898 
517 0.0163421 0.851005  554 0.007018 0.949986 
518 0.0159059 0.855334  555 0.006842 0.950895 
519 0.0154865 0.859608  556 0.006667 0.951707 
520 0.015085 0.86381  557 0.006492 0.952428 
521 0.0147019 0.867924  558 0.006321 0.953066 
522 0.0143363 0.871945  559 0.006153 0.953629 
523 0.0139871 0.875875  560 0.00599 0.954124 
524 0.0136531 0.879711  561 0.005833 0.954559 
525 0.0133332 0.883451  562 0.005685 0.954942 
526 0.0130262 0.887096  563 0.005545 0.955279 
527 0.0127311 0.890643  564 0.005416 0.955578 
528 0.0124468 0.89409  565 0.005299 0.955845 
529 0.0121722 0.897435  566 0.005195 0.956087 
530 0.0119064 0.900676  567 0.005103 0.956307 
531 0.0116484 0.903812  568 0.005024 0.956508 
532 0.0113978 0.906843  569 0.004955 0.95669 
533 0.0111541 0.909774  570 0.004897 0.956857 
534 0.0109168 0.912604  571 0.004848 0.95701 
535 0.0106857 0.915338  572 0.004809 0.957151 
536 0.0104604 0.917975  573 0.004778 0.957283 
537 0.0102404 0.920519  574 0.004754 0.957407 
538 0.0100255 0.92297  575 0.004737 0.957525 
539 0.0098153 0.925329  576 0.004727 0.95764 
540 0.0096094 0.927598  577 0.004723 0.957753 
541 0.0094076 0.929777  578 0.004724 0.957867 
542 0.0092095 0.931866  579 0.00473 0.957982 
543 0.0090149 0.933868  580 0.00474 0.958101 
544 0.0088233 0.935781  581 0.004753 0.958227 
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Wavelength (λ)  A  B  λ  A B 

582 0.004769 0.958361  619 0.005635 0.972645 
583 0.004788 0.958504  620 0.005698 0.972999 
584 0.004808 0.95866  621 0.005766 0.973331 
585 0.00483 0.95883  622 0.00584 0.973638 
586 0.004853 0.959015  623 0.00592 0.973919 
587 0.004876 0.95922  624 0.006006 0.974172 
588 0.004899 0.959444  625 0.006099 0.974394 
589 0.004921 0.959691  626 0.006199 0.974584 
590 0.004942 0.959963  627 0.006305 0.974744 
591 0.004961 0.960261  628 0.006418 0.974873 
592 0.004978 0.960584  629 0.006537 0.974974 
593 0.004994 0.960931  630 0.006663 0.975048 
594 0.005009 0.961299  631 0.006793 0.975095 
595 0.005023 0.961686  632 0.00693 0.975118 
596 0.005036 0.962092  633 0.007071 0.975115 
597 0.005049 0.962513  634 0.007218 0.97509 
598 0.005061 0.962949  635 0.007369 0.975042 
599 0.005073 0.963398  636 0.007525 0.974973 
600 0.005085 0.963858  637 0.007685 0.974883 
601 0.005098 0.964328  638 0.007849 0.974773 
602 0.005111 0.964805  639 0.008017 0.974645 
603 0.005125 0.965289  640 0.008189 0.974497 
604 0.00514 0.965778  641 0.008365 0.974332 
605 0.005156 0.96627  642 0.008544 0.97415 
606 0.005173 0.966765  643 0.008727 0.973951 
607 0.005192 0.967259  644 0.008912 0.973736 
608 0.005213 0.967752  645 0.009101 0.973506 
609 0.005236 0.968242  646 0.009293 0.973261 
610 0.005261 0.968728  647 0.009488 0.973001 
611 0.005289 0.969208  648 0.009685 0.972728 
612 0.00532 0.969681  649 0.009885 0.972441 
613 0.005354 0.970144  650 0.010087 0.97214 
614 0.005391 0.970597  651 0.010292 0.971827 
615 0.005431 0.971038  652 0.010499 0.971501 
616 0.005476 0.971465  653 0.010708 0.971163 
617 0.005524 0.971876  654 0.010919 0.970813 
618 0.005578 0.97227  655 0.011133 0.970451 
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Wavelength (λ)  A  B  λ  A B 
656 0.011348 0.970078  693 0.008581 1.027931 
657 0.011565 0.969693  694 0.007726 1.034717 
658 0.011784 0.969298  695 0.006829 1.041786 
659 0.012004 0.968892  696 0.005891 1.049128 
660 0.012227 0.968475  697 0.004914 1.056734 
661 0.012451 0.968047  698 0.003898 1.064597 
662 0.012676 0.967609  699 0.002846 1.072708 
663 0.012903 0.967161  700 0.001757 1.08106 
664 0.013131 0.966702     
665 0.013361 0.966233     
666 0.013591 0.965757     
667 0.013819 0.965294     
668 0.014042 0.964864     
669 0.014257 0.96449     
670 0.01446 0.964195     
671 0.014647 0.964     
672 0.014816 0.963929     
673 0.014963 0.964005     
674 0.015085 0.96425     
675 0.015178 0.964688     
676 0.015238 0.965343     
677 0.015262 0.966239     
678 0.015246 0.967402     
679 0.015187 0.968857     
680 0.015081 0.970629     
681 0.014923 0.972745     
682 0.014709 0.975232     
683 0.014436 0.978119     
684 0.014101 0.981426     
685 0.013703 0.985145     
686 0.013247 0.989259     
687 0.012735 0.993753     
688 0.012167 0.998612     
689 0.011548 1.003823     
690 0.010877 1.009373     
691 0.010158 1.015248     
692 0.009392 1.021438     
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V. Toward a global synthesis of phytoplankton community composition 
methods 
 
Sasha J. Kramer, Dylan Catlett, Luis M. Bolaños, Alison P. Chase, Nils Haëntjens, 
Emmanuel S. Boss, Lee Karp-Boss, Jason R. Graff, Stephen J. Giovannoni, Michael J. 
Behrenfeld, Collin S. Roesler, Heidi M. Sosik, David A. Siegel 
 
Abstract: Phytoplankton are essential to marine ecosystem function, but phytoplankton 
diversity in the global surface ocean is highly variable and generally not well described. 
Many in situ methods exist to characterize phytoplankton community composition (PCC), 
with varying degrees of taxonomic resolution. Accordingly, the resulting PCC can depend 
on the method used to classify and quantify the community. In this analysis, we compare 
pigment-based PCC in the surface ocean to four other methods. Using samples collected 
during field campaigns in the North Atlantic and North Pacific Oceans, we evaluate PCC 
using high performance liquid chromatography (HPLC) pigment concentrations, quantitative 
imaging, flow cytometry, and 16S and 18S rRNA amplicon sequencing. These five methods 
allow for characterization of both prokaryotic and eukaryotic PCC across size classes. 
Multiple broad phytoplankton groups can be defined using biomarker pigments: diatoms, 
dinoflagellates, prymnesiophytes, silicoflagellates, chlorophytes, cryptophytes, and 
cyanobacteria. These broad taxonomic groups separated by pigments are then compared to 
the higher taxonomic resolution offered by amplicon sequencing, cell imaging, and flow 
cytometry. Many groups have strong positive correlations across methods at the class level 
(e.g., diatoms, prymnesiophytes, chlorophytes), while other groups (e.g., dinoflagellates) are 
not well captured by one or more methods. Since variations in phytoplankton pigment 
concentrations are related to changes in optical properties, this combined dataset improves 
the potential scope of ocean color remote sensing by associating PCC at the genus- and 
species-level with group- or class-level PCC from pigments. Quantifying the strengths and 
limitations of pigment-based PCC methods compared to PCC assessments from amplicon 
sequencing, imaging, and cytometry methods will allow for the development of future 
remote sensing approaches to describe PCC more robustly from space. 
 

V.1 Introduction 

Phytoplankton taxonomy encompasses tens of thousands of species and varies 

broadly across spatiotemporal scales (e.g., Caron et al., 2012; de Vargas et al., 2015). The 

vast taxonomic diversity of phytoplankton structures marine food webs, impacts 

biogeochemical cycling of nutrients, and facilitates the sequestration of carbon in the deep 

ocean via the biological pump (Worm et al., 2006; Martiny et al., 2013; Guidi et al., 2016). 

The abundance and types of phytoplankton in the surface ocean directly impact the flux of 
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carbon to depth, which is an important control for global climate (Trudnowska et al., 2021; 

Durkin et al., 2022). Phytoplankton biodiversity is also a major control on ecosystem 

productivity and resilience (e.g., Behrenfeld, 2014; Vallina et al., 2017). Thus, quantifying 

and describing surface ocean phytoplankton community composition (PCC) is essential for a 

complete understanding of the current marine ecosystem and biological pump, and for 

forecasting future changes to the ecosystem services provided by phytoplankton.  

 Many methods exist to characterize the diversity in PCC, with varying taxonomic 

resolution, quality control and standardization criteria, and scales of observation (Johnson 

and Martiny, 2015; Lombard et al., 2019). Common methods include: high performance 

liquid chromatography (HPLC) pigments (e.g., Uitz et al., 2006; Kramer and Siegel, 2019), 

flow cytometry (e.g., Sosik et al., 2010; Graff et al., 2012), quantitative cell imaging (e.g., 

with the Imaging FlowCytobot; Olson and Sosik, 2007), rRNA amplicon sequencing (e.g., 

Needham and Fuhrman, 2016; Catlett et al., 2020), etc. This list of methods is by no means 

exhaustive and it ignores the vast number of optical proxy methods that have been 

developed for use via in situ and remote sensing approaches (e.g., Chase et al., 2013; Uitz et 

al., 2015; Chase et al., 2017; Catlett and Siegel, 2018; Kramer et al., 2022; etc.). 

Phytoplankton are not only taxonomically diverse, but also morphologically and 

functionally diverse; often, the appropriate method for targeting PCC relates to the goal for 

characterizing PCC. For example, approaches that require high spatial coverage often rely 

on ocean color methods from remote sensing data to cover the necessary scales (e.g., 

Bracher et al., 2017 and references therein). Alternately, approaches that require high 

taxonomic resolution favor methods that provide genus- to species-level characterization of 

PCC, like amplicon sequencing (e.g., Sommeria-Klein et al., 2021).  
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Each of these methods also has strengths and weaknesses that may make it more or 

less favorable for use, depending on the goal of the analysis (Johnson and Martiny, 2015). 

For instance, nearly all of these methods capture a specific size range of the phytoplankton 

community, limited by the filter pore size or by the resolution of the instrument. Similarly, 

each method will have a (quantifiable or unquantifiable) fraction of “unknown” or 

“unidentified” phytoplankton—whether because these cells were not captured by the method 

or because the method is limited to describe those cells (e.g., unclassified images or 

sequences). The ability of each method to describe an “abundance” of phytoplankton taxa 

includes both direct (i.e., cell counts) and indirect (i.e., pigment concentrations, number of 

amplicon sequence variants, etc.) metrics. Comparisons between methods are relatively rare, 

and reveal mixed results (e.g., Not et al., 2008; Gong et al., 2020; Campbell et al., 2022). In 

one example, amplicon sequencing and light microscopy both provide high resolution 

taxonomic information, but patterns do not agree in genus- to species-level comparisons 

(Abad et al., 2016). In another example, phytoplankton pigments agree with amplicon 

sequencing data for some groups (e.g., cryptophytes) but not for other groups (e.g., diatoms; 

Lin et al., 2019). While method comparison shows varied success, disagreement between 

methods can also be useful to highlight method limitations, strengths, and weaknesses.  

Here, we use HPLC phytoplankton pigments as the main metric for PCC against 

which to compare other methods. HPLC pigments are the gold standard for creating and 

validating ocean color remote sensing algorithms: these measurements are widespread in the 

global surface ocean (e.g., Kramer and Siegel, 2019), quality-controlled (e.g., Hooker et al., 

2012), and have clear links to ocean color due to the impact of phytoplankton pigments on 

the spectral shape and magnitude of absorption, and thus remote sensing reflectance (e.g., 
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Chase et al., 2013; Kramer et al., 2022). On broad spatial scales, HPLC pigments are limited 

to describe phytoplankton pigments (Kramer et al., 2019). The maximum of groups 

separated by HPLC pigments depends on the dataset and scale of observation, but between 4 

and 7 distinct groups can usually be separated by a given HPLC dataset (Catlett and Siegel, 

2018; Kramer and Siegel, 2019). There are also a number of known complicating factors 

and caveats to pigment-based taxonomy. For instance, pigment concentration and 

composition can be affected by light levels and nutrient limitation (e.g., Schlüter et al., 2000; 

Henriksen et al., 2002). Species or even strains of phytoplankton within the same species 

can have varying pigment compositions (e.g., Zapata et al., 2004; Neeley et al., 2022). Most 

notably, nearly all phytoplankton groups share some accessory pigments due to their 

evolutionary history or their feeding strategies (such as mixotrophy), leading to similarities 

in inter- and intra-lineage pigment composition that make chemotaxonomic methods 

unsuitable to assess PCC at high taxonomic resolution (e.g., Jeffrey et al., 2011; Catlett and 

Siegel, 2018; Kramer and Siegel, 2019). 

Despite these known limitations of HPLC pigment-based characterization of PCC, 

pigments remain a standardized, widespread method with applicability from coastal 

observatories to open oceans. Thus, it is important to characterize and quantify the 

information content of HPLC pigments using other, higher-resolution methods of describing 

PCC. Here, a paired dataset of surface ocean HPLC pigment samples is compared to PCC 

from 18S and 16S rRNA amplicon sequencing, quantitative imaging from the Imaging 

FlowCytobot (IFCB), and flow cytometry (FCM). This analysis uses open ocean samples 

collected in the western North Atlantic as part of the North Atlantic Aerosols and Marine 

Ecosystems Study (NAAMES) and in the eastern North Pacific as part of the EXport 
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Processes in the Ocean from RemoTe Sensing (EXPORTS) field campaigns. Combining 

these two oceanographic regions and five PCC methods with diverse measurement strengths 

and limitations allows for a complete consideration of pigment-based PCC compared to 

other, higher resolution methods. 

The pigment-based PCC from both regions has been previously characterized, 

resulting in five pigment communities: diatom, dinoflagellate, prymnesiophyte (haptophyte), 

chlorophyte (green algal), and cyanobacteria (Kramer and Siegel, 2019; Kramer et al., 

2020). In this analysis, these five pigment-based groups (plus cryptophyte and 

silicoflagellate pigment markers) are compared to amplicon sequence variant (ASV)-level 

taxonomy from amplicon sequencing and cell-level taxonomy from IFCB and FCM. At the 

group or class level, there is broadly good agreement for most groups between relative 

concentrations of biomarker pigments and relative sequence abundances of the same groups. 

However, at higher taxonomic resolution (e.g., genus or species level), the relationships 

among pigments and other PCC methods are not as strong. Deviations may be due to a 

number of factors that can limit the usefulness of pigment-based PCC methods, such as 

inter- and intra-group pigment variability, co-variability of various phytoplankton in the 

environment, environmental impacts on pigment production and expression, and diverse 

feeding strategies (e.g., mixotrophy). Ultimately, this analysis provides an opportunity to 

examine the strengths and weaknesses of pigment-based methods for PCC characterization, 

and highlights the need for substantive improvement in PCC methods beyond the 

capabilities provided by HPLC pigment concentrations alone.  
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V.2 Methods  

This analysis includes two contemporaneous datasets to consider phytoplankton 

community composition, each using three methods to assess PCC. Near-surface samples 

were prioritized in this analysis for future comparisons with optical measurements and ocean 

color data. The first dataset compares HPLC phytoplankton pigments, 18S rRNA amplicon 

sequencing, and quantitative cell imaging from the Imaging FlowCytobot (IFCB). This 

dataset includes 45 samples total: 24 samples were collected in the eastern North Pacific 

Ocean in August-September 2018 as part of EXPORTS (Siegel et al., 2021; Figure 1A); all 

24 samples have collocated HPLC, 18S, and IFCB data. Additionally, 21 samples were 

collected in the western North Atlantic Ocean in May-June 2016, August-September 2017, 

and March-April 2018 as part of NAAMES (Behrenfeld et al., 2019; Figure 1B); all 21 

samples have collocated HPLC and 18S data, and 18 of those samples also include IFCB 

data.  

The second dataset compares HPLC pigments, 16S rRNA amplicon sequencing, and 

cell counts from flow cytometry. This dataset includes 65 concurrent HPLC and 16S 

samples (34 of these samples have flow cytometry matchups), which were all collected in 

the western North Atlantic Ocean as part of NAAMES, in November 2015, May-June 2016, 

August-September 2017, and March-April 2018 (Figure 1C).  
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Figure 1. Maps of sampling locations, colored by HPLC total chlorophyll-a concentrations, 
for (A) EXPORTS HPLC + 18S + IFCB, (B) NAAMES HPLC + 18S + IFCB, and (C) 
NAAMES HPLC + 16S + FCM. 
 

V.2.1 HPLC phytoplankton pigments 

Surface water samples for HPLC pigment analysis were collected from Niskin 

bottles on the CTD rosette and via flow-through sampling from the ship’s underway system 

(≤5 m). Two liter whole seawater samples were filtered onto 25 mm Whatman ® GF/F 

filters that had been pre-combusted (450ºC for 4 hours). The nominal pore size of these 

filters is 0.7 µm; after combustion, the pore size is 0.3 µm (Nayar and Chou, 2003). Filters 

were stored in foil packets and frozen in LN2 immediately after sampling. Filters were kept 

in liquid nitrogen (LN2) or at -80ºC until analysis. HPLC samples were processed at the 

NASA Goddard Space Flight Center, following strict quality assurance and quality control 

protocols (i.e., Van Heukelem and Hooker, 2011; Hooker et al., 2012).  

Degradation pigments (chlorophyllide, phaeophytin, and phaeophorbide) and 

redundant accessory pigments (monovinyl chlorophyll-a, total chlorophyll b, total 

chlorophyll c, alpha-beta carotene, diatoxanthin, and diadinoxanthin) were removed from 

this analysis (following Kramer and Siegel, 2019), as well as lutein (an accessory pigment in 

chlorophytes) which was below detection level or not measured in >80% of the samples in 

this dataset. The concentrations of the remaining 15 pigments were used in this analysis: 

total chlorophyll-a (Tchla), 19’-hexanoyloxyfucoxanthin (19HexFuco), 19’-

butanoyloxyfucoxanthin (19ButFuco), alloxanthin (Allo), fucoxanthin (Fuco), peridinin 

(Perid), zeaxanthin (Zea), divinyl chlorophyll a (DVchla), monovinyl chlorophyll b 

(MVchlb), divinyl chlorophyll b (DVchlb), chlorophyll c1+c2 (Chlc12), chlorophyll c3 

(Chlc3), neoxanthin (Neo), violaxanthin (Viola), and prasinoxanthin (Pras). Pigment values 
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below the NASA Ocean Biology Processing Group method limits (Van Heukelem and 

Thomas, 2001) were set equal to zero prior to further analysis.  

While most accessory pigments are shared between phytoplankton groups (Jeffrey et 

al., 2011 and references therein), some assumptions were made here to compare between 

PCC methods and investigate the strength of pigment-based taxonomic relationships. Major 

pigment-based taxonomic designations are as follows: Fuco (diatoms), Perid 

(dinoflagellates), 19HexFuco (prymnesiophytes), 19ButFuco (silicoflagellates), Allo 

(cryptophytes), DVchla (Prochlorococcus), Zea (other cyanobacteria), MVchlb 

(chlorophytes). The ratio of these accessory pigments to Tchla was used to create 

phytoplankton composition metrics for comparison with other PCC methods.  

While traditional HPLC measures the concentrations of at least 23 distinct 

phytoplankton pigments (some of which are then summed, such as Chlc12+Chlc3 to total 

chlorophyll c), it does not measure some notable pigments that can be used for taxonomy 

(e.g., phycobilipigments found in cyanobacteria and used in fluorescence detection 

methods). 

V.2.2 16S amplicon sequencing 

 Samples for 16S rRNA amplicon sequencing were always collected at the same time 

as HPLC pigment samples on NAAMES, whether from the flow-through system or from 

discrete Niskin bottle sampling. Detailed methodology for sample collection and preparation 

can be found in Bolaños et al. (2020). These protocols are summarized here. For each 

sample, four liters of water were filtered onto a Sterivex filter with a 0.22 µm pore size. 1 

mL of sucrose lysis buffer (SLB) was added to each filter, and filters were then stored at -

80°C until further processing. The methods used here targeted the V1-V2 region of the 16S 
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rRNA gene. All samples were prepared following a standard Illumina 16S sequencing 

preparation protocol, and sequencing was conducted at the Center for Genome Research and 

Biocomputing (Oregon State University, Corvallis, OR USA).  

After sequencing, sequences were trimmed and chimeras were removed using the 

DADA2 (v. 1.2) package for R (Callahan et al., 2016). Taxonomy was then assigned to 

sequences using the assignTaxonomy command in DADA2 with the SILVA gene database 

(v. 123; Quast et al., 2012; Yilmaz et al., 2014). Taxonomy was also assigned and confirmed 

using phylogenetic tree placement via Phyloassigner (v. 089; Vergin et al., 2013). A subset 

of the 1594 total phytoplankton and bacterial amplicon sequence variants (ASVs) were then 

condensed into 45 broad phytoplankton classes. Fourteen of those classes were >1% 

abundant in any one of the 65 matchup samples and were used in analyses going forward: 

Prochlorococcus, Synechococcus, Bacillariophyceae (diatoms), Bolidophyceae, 

Crysophyceae, Prymnesiophyceae, Rappemonads, Dictyochophyceae (silicoflagellates), 

Pelagophyceae (silicoflagellates), Cryptophyceae, Bathycoccus (chlorophytes), Micromonas 

(chlorophytes), Ostreococcus (chlorophytes), and Prasinophyceae (chlorophytes). 16S 

amplicon sequencing detects many prokaryotic and eukaryotic taxa, but notably does not 

capture dinoflagellates, which have inherited plastids through their evolutionary history 

(Lin, 2011).  

V.2.3 18S amplicon sequencing 

All 18S rRNA amplicon sequencing samples from NAAMES and EXPORTS were 

collected concurrently with surface HPLC samples. The NAAMES 18S rRNA amplicon 

sequencing samples (N = 21) were sequenced using extra extracted DNA from the 16S 

samples, collected either from discrete Niskin bottle sampling or from the flow-through 
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system. The EXPORTS 18S samples (N = 24) were collected similarly to the NAAMES 

samples: 2-4 liters of water (exact volume measured for each sample; variations in sample 

volume depended on filtering time) were collected from the flow-through system and 

filtered on Sterivex filters with a 0.22 µm pore size at low pressure. 1 mL SLB was added to 

all samples before the filters were stored at -80°C. The methods used here targeted the V9 

region of the 18S rRNA gene. All samples were prepared following the methods presented 

in Catlett et al. (2020). The samples were sequenced in three batches between July 2020 and 

December 2020: each batch also included blank samples and mock community samples 

(Catlett et al., 2020) to ensure consistency between sequencing runs. Sequencing was 

conducted using a MiSeq PE150 v2 kit (Illumina) at the DNA Technologies Core of the UC 

Davis Genome Center (University of California Davis, Davis, CA USA). 

After sequencing, the DADA2 (v. 1.2) package for R was used to trim sequences and 

remove chimeras. Taxonomy was assigned to sequences using the ensembleTax method 

developed by Catlett et al. (2021), which combines the result of the assignTaxonomy 

function in the DADA2 pipeline (Callahan et al., 2016) with the result of the IDTAXA 

function from the DECIPHER Bioconductor package (v. 2.2; Murali et al., 2018) using both 

the Protist Ribosomal Reference (PR2; v. 4.14; Guillou et al., 2012) database and the 

SILVA gene database (v. 138; Quast et al., 2012; Yilmaz et al., 2014) as references. The 

result resolves one merged, high-resolution taxonomy for each sequence in each sample. 

Following Catlett et al. (2022, in revision), all ASVs of non-protistan origin were removed 

from further analysis. 2433 unique ASVs remained at this stage of analysis; the Catlett et al. 

(2022) approach was then used to identify phytoplankton ASVs from other protists, and to 
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assign a feeding strategy (“phototroph,” “mixotroph,” or “unknown”) to all phytoplankton 

ASVs based on literature (e.g., Adl et al., 2019) and other refereed or non-refereed sources.  

Of the 2433 ASVs, 635 were known phytoplankton taxa. ASVs were aggregated to 

the class level to consider classes with >1% abundance in any one of the 45 samples. 

Thirteen classes fit this criteria: Bacillariophyta (diatoms), Dinophyceae (dinoflagellates), 

Bolidophyceae, Crysophyceae, MOCH-2 (red algae), Prymnesiophyceae, Dictyochophyceae 

(silicoflagellates), Pelagophyceae (silicoflagellates), Cryptophyceae, Chloroarachniophyceae 

(chlorophytes), Chloropicophyceae (chlorophytes), Mamiellophyceae (chlorophytes), and 

Pyramimonadophyceae (chlorophytes). While 18S reliably separates many eukaryotes, this 

gene is not found in prokaryotes and thus is unable to identify those groups in the 

phytoplankton. 

V.2.4 Quantitative cell imaging (IFCB) 

 On both NAAMES and EXPORTS, the IFCB was run via the ship’s flow-through 

system. Sequential whole seawater samples from the surface ocean (≤5 m) were analyzed; 

each sample was ~5 mL, but the exact volume of water for each sample was recorded by the 

instrument and used to standardize the concentrations of cells collected in that sample. 

Matched samples were selected based on the time of sample collection (±2 hours) and the 

location of the ship at the time of sampling. If multiple IFCB samples were collected within 

the hour of the discrete samples (HPLC pigments, 18S amplicon sequencing) and those 

IFCB samples were collocated with the discrete samples, then multiple (≤3) IFCB samples 

were aggregated to create one matchup sample. The IFCB uses fluorescence and scattering 

thresholds, where all cells and particles (~6-150 µm diameter) that trigger a signal above a 

defined threshold are individually imaged (Olson and Sosik, 2007). These images are then 
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exported for automated and manual taxonomic analysis of each image. For both field 

campaigns, cell biovolumes were estimated following Moberg and Sosik (2012).  

Detailed methodology for the taxonomic assignment of IFCB imagery on NAAMES 

can be found in Chase et al. (2020). In summary, 250,660 images were exported to the web 

platform EcoTaxa (Picheral et al., 2017) for taxonomic identification. A trained random 

forest machine learning approach was used to predict the classification of each image into 

84 pre-determined classes, and the automated classification was confirmed or corrected with 

sequential manual classification. Non-living and detrital particles were separated from living 

cells, and living cells were annotated with the highest taxonomic designation possible. 

Following the automated and manual classification and validation, the diversity of living 

phytoplankton cells was condensed into seven taxonomic categories meant to match many 

of the phytoplankton pigment groups: diatoms, dinoflagellates, silicoflagellates, 

prymnesiophytes, cryptophytes, euglenoids, chlorophytes, and “other” (which includes 

unidentifiable living cells and all other taxonomic groups not described by the prior six 

categories). 

The EXPORTS images were automatically classified using a trained convolutional 

neural network approach (González et al., 2019). As with the NAAMES dataset, this 

machine learning approach separated the 177,161 images into 49 pre-determined classes, 

including detritus or non-phytoplankton (which were removed from further analysis) and 

many classes of living phytoplankton cells. The results of the automated classifier were 

confirmed or corrected via sequential manual classification. Once all images were classified 

and validated, the EXPORTS images were aggregated into the same seven classes as the 

NAAMES dataset. There were no euglenoids or chlorophytes identified in the EXPORTS 
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IFCB dataset; however, these classes are still included for comparison. The IFCB does not 

capture cells smaller than ~6 µm diameter, meaning that many nano- and pico-sized 

phytoplankton are missed by this method. 

V.2.5 Flow cytometry (FCM) 

Full methodological details of flow cytometric analysis on NAAMES can be found 

in Graff and Behrenfeld (2018). Briefly, flow cytometry was performed using a calibrated 

BD Influx Cell Sorter (ICS) on whole, unpreserved surface seawater samples collected from 

Niskin bottles and from the flow-through system (≤5 m). In each sample, a minimum of 

7,000 total cells were interrogated. The counts per sample were transformed into cell 

concentrations based on calculated sample flow rates (Graff et al., 2018). Data were broadly 

classified into four taxonomic categories: Prochlorococcus sp., Synechococcus sp., 

picoeukaryotes, and nanoeukaryotes (limited to diameters ≤64 µm, determined in the lab and 

at sea from cultures). These classes were defined by the scattering and fluorescence 

properties associated with each group, which allows groups of cells to be separated from one 

another. As with the IFCB samples, matchups between flow cytometry and other discrete 

samples were defined by collocation in space and time: a matchup sample was defined if 

FCM samples were collected at the same place within ±2 hours of concurrent HPLC and 

16S amplicon sequencing samples. While flow cytometry can capture the smaller cell size 

ranges, larger phytoplankton (micro-sized eukaryotes) are not measured by this method. 

V.2.6 Environmental data 

 Environmental data associated with the two sets of samples was also collected and is 

compared here. All environmental samples were matched up to the closest PCC sample in 

space and time. Sea surface temperature and salinity were collected underway. The mixed 
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layer depth (MLD) was calculated for all samples where there were coincident CTD profiles 

(details in Della Penna and Gaube [2019] for NAAMES and Siegel et al. [2021] for 

EXPORTS). Finally, photosynthetically active radiation (PAR) was collected using a 

LICOR cosine sensor, mounted to avoid the impact of ship shadow in the measurements as 

much as possible (further details available on SeaBASS for both field campaigns). The 

average PAR value for the 24 hours prior to the HPLC sample was used to be more relevant 

to cell physiology and pigment production, rather than using the exact magnitude of PAR at 

the time of the discrete PCC samples.  

V.2.7 Statistical methods 

 A number of different statistical methods were employed in this analysis. 

Hierarchical clustering and empirical orthogonal function (EOF) analyses were applied, 

following Catlett and Siegel (2018) and Kramer and Siegel (2019). Hierarchical clustering 

was done in MATLAB (v. 2020a) with the “pdist” and “linkage” functions, using Ward’s 

linkage method (the inner squared distance) and the correlation distance (1-R; R is Pearson’s 

correlation coefficient) and plotted using the “dendrogram” function. Branches of the 

dendrograms were organized using the “optimalleaforder” function. EOF analyses were also 

conducted in MATLAB, using the “pca” function; all variables were standardized by mean-

centering the values and normalizing them to their standard deviation before EOF analysis. 

A chord diagram (Gu et al., 2014) was constructed using the “circlize” package in R (v. 

4.1.2) based on the adjacency matrix between pigments and other metrics for PCC. The 

adjacency matrix was constructed following Kramer et al. (2020), where correlations 

between variables were weighted following the Weighted Gene Co-Expression Network 

Analysis (Zhang and Horvath, 2005) to maximize within-group correlations and minimize 
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between-group correlations. A network graph of all variables was also constructed from this 

same adjacency matrix using the “graph” function in MATLAB; variables were colored by 

the results of a network-based community detection analysis following Kramer et al. (2020), 

using the “modularity_und” function for MATLAB (Rubinov and Sporns, 2010; Brain 

Connectivity Toolbox, https://sites.google.com/site/bctnet/Home).  

V.3. Results 

The goal of this analysis is to compare pigment-based PCC estimates with higher-

resolution PCC from amplicon sequencing, quantitative imaging, and flow cytometry. Here, 

pigment-based PCC is considered qualitatively (as relative proportions of the phytoplankton 

community across samples) and quantitatively (through direct comparisons between 

methods) in relation to all other PCC methods. While there is broad agreement at the class 

and group level between pigments and most other methods for many phytoplankton groups, 

the assumed relationships between accessory pigments and other PCC methods often do not 

hold at higher taxonomic resolution for all groups. 

V.3.1 Trends in PCC from HPLC pigments, 18S, and IFCB 

 Some clear similarities emerge between pigment-based PCC and other methods 

when comparing across the aggregate dataset (Figure 2). Median Fuco concentrations, 

Bacillariophyta sequence abundance, and diatom cell biovolume are consistently high across 

all three methods and across cruises. Similarly, there are consistent observations of 

cryptophyte markers: median Allo concentrations, Cryptophyceae sequences, and 

cryptophyte biovolumes are proportionate across the dataset. While median Perid 

concentrations are relatively low compared to other accessory pigments (and lower on 

EXPORTS than NAAMES; Figure 2A and B), median Dinophyceae sequence abundance 
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and dinoflagellate cell biovolumes are high for all samples (Figure 2C-F). Alternately, 

median 19HexFuco concentrations are relatively high, particularly on NAAMES (Figure 

2A), which is consistent with high numbers of Prymnesiophyceae sequences (Figure 2C-D) 

but lower median prymnesiophyte biovolumes (Figure 2E-F). Median 19ButFuco 

concentrations are similar between NAAMES and EXPORTS, but Dictyochophyceae and 

Pelagophyceae sequence abundances are much higher on EXPORTS than on NAAMES 

(Figure 2C-D). There were very few silicoflagellates observed in the EXPORTS IFCB 

imagery, with much higher dictyochophyte biovolumes seen in the NAAMES data. 
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Figure 2. Distributions of (A) phytoplankton pigment concentrations from NAAMES and 
(B) from EXPORTS; (C) total 18S sequence abundances from NAAMES and (D) from 
EXPORTS; and (E) IFCB biovolume from NAAMES and (F) from EXPORTS. The box 
shows the median value and encompasses the upper and lower quartiles; whiskers are the 
non-outlier minimum and maximum values; outliers (black dots) are any samples that fall 
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greater than 1.5x the interquartile range from the top or bottom of the box. Boxes are 
colored similarly for shared groups: chlorophytes in bright green, diatoms in brown, 
dinoflagellates in red, prymnesiophytes in dark blue, silicoflagellates in gold, and 
cryptophytes in purple. 

 

These trends can also be observed across samples rather than as a composite for the 

dataset as a whole (Figure 3). Over the three PCC methods, the phytoplankton community is 

much more consistent between samples on EXPORTS than on NAAMES, which is expected 

given the broader spatiotemporal range of the NAAMES sampling. Relative Perid 

concentrations are notably lower than relative Dinophyceae sequence abundance, which are 

lower than relative dinoflagellate biovolumes. Alternately, the relative concentration of 

19HexFuco is always higher than the relative fraction of Prymnesiophyceae sequences, 

which is still higher than the fraction of prymnesiophyte biovolumes. Relative Fuco 

concentrations, relative Bacillariophyta sequence abundance, and relative fractions of 

diatom biovolume are similar across samples, as are relative 19ButFuco concentrations and 

relative silicoflagellate sequence abundance. Cryptophytes are consistently a small fraction 

of all three methods, with the exception of a few samples on NAAMES with higher relative 

cryptophyte biovolumes (Figure 3C). Finally, there is a notable peak in the relative 

contribution of Zea (a picophytoplankton and cyanobacteria marker pigment) to the 

accessory pigment concentrations on NAAMES 3 at stations 1 and 2 (Figure 3A), which is 

not comparable to the other 2 methods, as these cells are below the detection limit of the 

IFCB and are not detected by 18S methods.  

Ultimately, these qualitative comparisons of absolute values across the dataset 

(Figure 2) and relative values between samples (Figure 3) demonstrate broad similarities and 

notable differences between pigment-based PCC, 18S amplicon sequencing, and IFCB 
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images. The results shown here are considering only one component of each dataset: each 

method measures other pigments (Figure S1A, S2A), sequences (Figure S1B, S2B), and 

cells (Figure S1C, S2C). The “other” accessory pigments are a minor but consistent fraction 

of the total pigment concentration (32-48%), while the “other” sequences are a small 

fraction of the total sequence abundance (2-18%). The “other” cells compose a variable and 

sometimes large fraction of the total IFCB biovolume (20-83%); “other” biovolume covaries 

with the total IFCB biovolume for a given sample (R2 = 90). 
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Figure 3. Relative fractions of (A) phytoplankton pigments; (B) 18S sequence variants; and 
(C) IFCB biovolume from NAAMES and EXPORTS. Samples are organized in order of 
collection from left to right, with NAAMES 2, NAAMES 3, and NAAMES 4 on the left half 
and EXPORTS on the right half. Fractions are colored similarly for shared groups: 
chlorophytes in bright green, diatoms in brown, dinoflagellates in red, prymnesiophytes in 
dark blue, silicoflagellates in gold, and cryptophytes in purple. 
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V.3.2 Covariation of pigment-based PCC with PCC from 18S and IFCB 

 The qualitative comparisons of HPLC pigment concentrations, 18S sequence 

abundances, and IFCB biovolumes suggested broad patterns of agreement for some groups 

and disagreement for other groups (Figures 2-3). A direct comparison of these approaches 

allows for quantification of the similarities and differences between pigment-based PCC and 

other methods (Figure 4). The relationships between relative pigment concentrations and 

relative sequence abundances are strong (p<<0.001) and positive for diatoms (Figure 4A; R2 

= 0.57), silicoflagellates (Figure 4C; R2 = 0.60), and chlorophytes (Figure 4E; R2 = 0.59). 

The relationships are still strong (p<0.001) and positive but with a slightly worse fit for 

prymnesiophytes (Figure 4D; R2 = 0.37) and cryptophytes (Figure 4F; R2 = 0.41). Finally, 

dinoflagellates have the weakest positive relationship of the groups considered here (Figure 

4B; R2 = 0.13; p = 0.01).  

Qualitatively, there are some similarities between the fraction of IFCB biovolume 

and the relationships between relative pigment concentrations and relative sequence 

abundances—for instance, the high fraction of diatom biovolume that corresponds well with 

the highest Fuco/Tchla concentrations and largest relative Bacillariophyta sequence 

abundance (Figure 4A). However, the relationships between relative pigment concentrations 

and relative biovolume fractions for these same groups (Figure S3) are either lower (for 

diatoms and cryptophytes) or statistically insignificant (for all other groups).  



 

 209 

Figure 4. Relationships between relative pigment concentrations (normalized to Tchla) and 
relative sequence abundances for (A) Fuco and Bacillariophyta, (B) Perid and Dinophyceae, 
(C) 19ButFuco and Pelagophyceae plus Dictyochophyceae, (D) 19HexFuco and 
Prymnesiophyceae, (E) MVchlb and Chlorophyta, and (F) Allo and Cryptophyta. All 
samples are colored by the relative fraction of IFCB biovolume for the corresponding group. 
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Blue text refers to the linear fit for the relative pigment concentration and relative IFCB 
biovolume (Figure S3). The red circle in (B) denotes a notable outlier. 

 

 The relationships between all variables, across all three methods, are also shown to 

highlight the strengths and weaknesses of pigment-based PCC. A hierarchical cluster 

analysis of variables from the three methods (Figure 5) demonstrates the strongest 

correspondence within some phytoplankton groups, such as the diatoms, for which all three 

methods cluster closely together and are highly related. Other groups show correspondence 

between two methods (e.g., the close association of the Allo/Tchla ratio and the relative 

abundance of Cryptophyceae sequences) but not the third method (e.g., the IFCB 

cryptophyte biovolume fraction clusters quite far from the other two methods for detecting 

cryptophytes). 19HexFuco and 19ButFuco share a broad cluster with the Prymnesiophyceae, 

Pelagophyceae, and Dictyochophyceae classes from 18S, but are distant from the 

dictyochophytes and prymnesiophytes measured by the IFCB. All chlorophyte pigments 

cluster tightly with one class of chlorophytes from 18S amplicon sequencing, the 

Mamiellophyceae, while the other three chlorophyte classes from 18S are more closely 

associated with other accessory pigments (Chloropicophyceae with Perid; 

Chlorarachniophyceae with 19ButFuco, 19HexFuco, and the Chlcs; and 

Pyramimonadophyceae with Zea, DVchla, and DVchlb). Finally, the dinoflagellate markers 

separate across the dendrogram: Perid/Tchla concentration clusters with Bolidophyceae and 

Chloropicophyceae relative sequence abundances; Dinophyceae relative sequence 

abundance clusters with MOCH-2 relative sequence abundance; and the dinoflagellate 

biovolume fraction from the IFCB clusters with prymnesiophyte and silicoflagellate markers 

from both 18S and pigments.  



 

 211 

Figure 5. Hierarchical cluster analysis of HPLC (accessory pigments normalized to Tchla), 
18S (relative sequence abundances), and IFCB (relative fraction of biovolume) from 
NAAMES and EXPORTS. Labels are colored based on PCC (see Figure 3). 

 

 While the order and linkage distance of each group in this hierarchical cluster 

analysis demonstrate the strongest correlations between pigment-based PCC and other 

methods, it is also relevant to visualize all correlations between pigments, 18S classes, and 

IFCB groups. A chord diagram (Gu et al., 2014) demonstrates the relative strength of the 

correlations between pigment ratios with relative sequence abundances and biovolume 

fractions (Figure 6). Here, all accessory pigments are used, not just the assumed biomarker 

pigment for representative groups (as in Figure 4). The width of the edge between each 

pigment and 18S class or IFCB group describes the relative strength of the correlation 

between those groups. Many biomarker pigments share edges with the class or group that 

they are expected to represent. For instance, Fuco is strongly associated with relative 

Bacillariophyta sequence abundance and IFCB diatom biovolume fraction. Allo is 

associated with relative Cryptophyceae sequence abundance and IFCB cryptophyte 

biovolume fraction. 19ButFuco shares edges with relative Pelagophyceae and 
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Dictyochophyceae sequence abundances, while 19HexFuco shares edges with relative 

Prymnesiophyceae sequence abundance. MVchlb and other chlorophyte accessory pigments 

(Neo, Viola, Pras) share edges with most chlorophyte classes (Chloropicophyceae, 

Chorarachniophyceae, and Mamiellophyceae), as well as with IFCB chlorophyte biovolume 

fractions. 

Figure 6. Chord diagram constructed from the weighted adjacency matrix of HPLC 
pigments (normalized to Tchla), 18S amplicon sequencing (relative sequence abundances), 
and IFCB (relative fraction of biovolume) from NAAMES and EXPORTS. The diagram is 
directed from pigments to other methods; line colors correspond with pigments. The width 
of the line connecting pigments to 18S classes or IFCB groups is based on the weighted 
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correlation coefficient between these parameters. Label colors are consistent with Figures 3-
5. 

 
However, this diagram also reveals many unexpected associations between pigments 

and higher-resolution PCC methods, highlighting examples where pigment-based PCC is 

unable to account for the variability in phytoplankton community composition. For instance, 

the picoplankton biomarker pigments (Zea, DVchla, DVchlb) are unexpectedly associated 

with one chlorophyte class (Pyramimonadophyceae) and with relative Crysophyceae 

sequence abundance (a red algal class). Similarly, Perid is strongly associated with 

Bolidophyceae, which are pico-sized phytoplankton known to contain Fuco but not Perid 

and thus more often associate with diatom biomarkers (Kuwata et al., 2018). 19ButFuco and 

19HexFuco are both associated with the IFCB dinoflagellate biovolume fraction, though 

dinoflagellates are not known to contain either of these pigments unless acquired through 

mixotrophy (e.g., Nascimento et al., 2005). Finally, MOCH-2 (a broad red algal class) and 

IFCB “other” biovolume both share an edge with 19HexFuco. 

The information contained in the hierarchical cluster analysis and chord diagram can 

be further visualized to consider the strongest connections between variables and across 

methods while still prioritizing the strongest within-group connections (Figure 7). This 

graph separates pigment ratios, relative 18S sequence abundances, and IFCB biovolume 

fractions by highlighting positive connections between groups and demonstrating relative 

distances between broad communities. Six communities separate using network-based 

community detection analysis. The first community (in brown) includes Fuco, 

Bacillariophyta sequence abundance, and IFCB diatoms. The second community (in light 

blue) is made up of cyanobacterial pigments (Zea, DVchla, DVchlb) and two 18S classes: 

Pyramimonadophyceae (a chlorophyte class) and Crysophyceae (a red algal class). This 
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association in the light blue community is not surprising given the consistently strong 

correlations between these variables across analyses (Figures 5-6). The third community (in 

light green) is mostly composed of pigments and 18S classes in the cryptophyte and 

chlorophyte groups: Allo, Cryptophyceae, and IFCB cryptophytes; MVchlb, Neo, Viola, 

Pras, Mamiellophyceae, Chloropicophyceae, and IFCB chlorophytes. The light green 

community also unexpectedly includes IFCB dictyochophytes, but this group is arranged 

closely in space to the fourth community (in dark blue), which includes silicoflagellate and 

prymnesiophyte groups, and some dinoflagellate markers. The dark blue community 

comprises: 19HexFuco, Chlc12, Chlc3, and Prymnesiophyceae; 19ButFuco, 

Dictyochophyceae, and Pelagophyceae; and Dinophyceae and IFCB dinoflagellates. 

MOCH-2 and one chlorophyte class (Chlorarachniophyceae) are also associated with this 

community, which is expected given the correlations between these 18S classes and 

19HexFuco in other statistical analyses (Figures 5-6). The fifth community (in dark green) 

contains IFCB prymnesiophytes and IFCB euglenophytes: these classes are relatively sparse 

within the dataset and cluster closely across analyses (Figure 5). Finally, the sixth 

community (in red) is composed of Perid and Bolidophyceae, mirroring a surprising 

association found in the hierarchical cluster analysis and chord diagram. 
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Figure 7. Unweighted graph built from the adjacency matrix of HPLC pigments 
(normalized to Tchla), 18S (relative sequence abundances), and IFCB (relative fraction of 
biovolume) from NAAMES and EXPORTS. Each major community is colored by the 
community assignment from network-based community detection analysis.  

 

V.3.3 PCC from HPLC pigments, 16S, and FCM 

 A similar comparison was performed for the second dataset of HPLC pigments, 16S 

amplicon sequencing, and flow cytometry (FCM) from the NAAMES cruises. There are a 

few notable considerations for this dataset compared to the HPLC, 18S, and IFCB dataset. 

First, the pico-sized fraction of the phytoplankton community can be considered across 

methods, and Prochlorococcus sp. can be separated from other picophytoplankton. Next, 

dinoflagellates are not able to be reliably identified by 16S amplicon sequencing approaches 

due to their inherited plastids from other taxonomic groups (Lin, 2011). Finally, FCM 

methods for eukaryotes can separate two broad groups based on size, but do not have higher 

taxonomic resolution for these cells.  

 Good correspondence was found across methods for most major phytoplankton 

groups. Median abundances of Prochlorococcus sp. are similar across all three methods 

(Figure 8A, C, E). However, the relative fraction of DVchla is often lower than the relative 
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sequence abundance or cell counts of Prochlorococcus from the other two methods (Figure 

8B, D, F). There are also similar median fractions of Zea, Synechococcus sp. from 16S, and 

Synechococcus sp. from FCM. In some samples (e.g., early transit on NAAMES 4), the 

relative Zea concentration is much higher than the fraction of Synechococcus from 16S or 

FCM, while in other samples (e.g., mid-cruise transit on NAAMES 4), the opposite trend is 

observed. Since Zea is not unique to Synechococcus, it is not a perfect biomarker for this 

genus. There are similar median values of chlorophyte, diatom, prymnesiophyte, and 

silicoflagellate markers between pigments and 16S (Figure 8A, C, E); however, the relative 

fractions of these groups across all samples is often quite different. The relatively low 

fraction of Prymnesiophyceae sequences compared to the relatively high fraction of 

19HexFuco to other accessory pigments is particularly notable (Figure 8B, D).  
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Figure 8. (A) Distributions and (B) relative fractions of phytoplankton pigments; (C) 
distributions and (D) total sequence counts from 16S; and (E) distributions and (F) relative 
fractions of cells measured by flow cytometry, all from NAAMES. Samples are organized 
from left to right in the order collected, from NAAMES 2 and 3 on the left half and 
NAAMES 4 on the right half. Boxes and fractions are colored similarly for shared groups: 
Prochlorococcus in cyan, Synechococcus in light blue, chlorophytes in bright green, diatoms 
in brown, prymnesiophytes in dark blue, silicoflagellates in gold, and cryptophytes in 
purple. 

 

V.3.4 Covariation of pigment-based PCC with PCC from 16S and FCM 

 As with the HPLC, 18S, and IFCB dataset, the qualitative comparisons between 

HPLC pigment ratios, 16S relative sequence abundances, and FCM cell count fractions 

seem to show broad patterns of agreement between groups and across methods. The direct 

quantitative comparison between pigment-based PCC and 16S amplicon sequencing reveals 
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strong relationships (p<<0.001) for some groups (Figure 9). Diatoms (Figure 9A; R2 = 0.75), 

chlorophytes (Figure 9E; R2 = 0.57), and Prochlorococcus (Figure 9F; R2 = 0.81) are highly 

positively correlated across methods. Cryptophytes (Figure 9C; R2 = 0.30) and 

silicoflagellates (Figure 9D; R2 = 0.26) still strong (p<0.001) and positively correlated, but 

with a slightly worse fit. The weakest positive relationship of the groups considered here is 

found for prymnesiophytes (Figure 9B; R2 = 0.14; p = 0.002). There are also strong positive 

relationships between Fuco/Tchla and nanoeukaryote cell fractions from FCM (R2 = 0.50) 

and between DVchla/Tchla and Prochlorococcus from FCM (R2 = 0.52). To a lesser degree, 

Allo/Tchla and picoeukaryote cell fractions from FCM are also positively correlated (R2 = 

0.30). Zea/Tchla and Synechococcus are not strongly correlated (R2 = 0.10), and there are no 

other notable correlations between flow cytometry cell fractions and pigment-based PCC.  



 

 219 

Figure 9. Relationships between relative pigment concentrations and relative sequence 
abundances for (A) Fuco and Bacillariophyceae, (B) 19HexFuco and Prymnesiophyceae 
plus Rappemonad, (C) Allo and Cryptophyceae, (D) 19ButFuco and Dictyochophyceae plus 
Pelagophyceae, (E) MVchlb and Chlorophyta, and (F) DVchla and Prochlorococcus. All 
samples are colored by the relative fraction of FCM biovolume that was determined to be 
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most appropriate for that phytoplankton group. Gray dots represent samples for which there 
was not a FCM matchup. 

 

 The relationships between and among groups of phytoplankton from all three 

methods are also considered. A hierarchical cluster analysis was performed to evaluate the 

strongest correlations between phytoplankton groups from HPLC pigment ratios, relative 

abundances of 16S sequences, and fractions of cell counts from FCM (Figure 10). 

Prochlorococcus from 16S and FCM separated clearly with DVchla (and DVchlb). Fuco 

and Bacillariophyceae separated from other metrics, and clustered closely with pico- and 

nanoeukaryotes from FCM. Synechococcus from 16S and FCM were closely associated with 

one another (and with two chlorophyte pigments, Viola and Pras), but distant from Zea, 

which is found with the Prochlorococcus cluster. All other chlorophyte pigments and 16S 

classes (MVchlb, Neo, Pras, Micromonas, and Bathycoccus) are in a broad cluster with 

Cryptophyceae and Allo. Most silicoflagellate and prymnesiophyte pigments and 16S 

classes were also closely associated, with the exception of Dictyochophyceae, which 

clustered with Crysophyceae and the Prochlorococcus markers (a similar placement for 

Crysophyceae as in the 18S dataset; Figure 5). Finally, Perid clustered most closely with 

Bolidophyceae (similar to the association between Perid and Bolidophyceae from 18S; 

Figure 5) and Rappemonad (a red algal class that contains Fuco, 19HexFuco, and 

chlorophyll c; Kawachi et al., 2021).  
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Figure 10. Hierarchical cluster analysis of HPLC (accessory pigments normalized to Tchla), 
16S (relative sequence abundance), and FCM (relative cell counts) from NAAMES. Labels 
are colored based on PCC (see Figure 8). 

 

 A chord diagram was also constructed to show the relative strength of the weighted 

correlations between pigment-based PCC and PCC from 16S and FCM (Figure 11). Many of 

the connections in this diagram are expected based on the distribution of pigments in major 

phytoplankton classes. Prochlorococcus from 16S and from FCM are strongly correlated 

with DVchla, DVChlb, and Zea. Fuco shares an edge with Bacillariophyceae; 19HexFuco 

shares an edge with Prymnesiophyceae; 19ButFuco shares an edge with Pelagophyceae; 

Allo shares an edge with Cryptophyceae. All four chlorophyte pigments are correlated with 

the four chlorophyte classes from 16S. This diagram also contains information about 

unexpected correlations between groups. For instance, Zea is strongly correlated with 

Crysophyceae (as in the HPLC and 18S dataset; Figure 6) and with Dictyochophyceae. Perid 

shares edges with Bolidophyceae (as in the HPLC and 18S dataset; Figure 6) and with 

Rappemonad, though we have found no evidence in the literature that members of these 

classes contain peridinin. Similiarly, Synechococcus from 16S is correlated with 19HexFuco 
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and the Chlcs, while Synechococcus from FCM is correlated with Zea, as expected. The 

picoeukaryote fraction of the FCM dataset shares edges with chlorophyte pigments, Allo, 

and Fuco, while the nanoeukaryote fraction shares edges with Allo, prymnesiophyte 

pigments, and Fuco.  

Figure 11. Chord diagram constructed from weighted adjacency matrix of HPLC pigments 
(normalized to Tchla), 16S (relative sequence abundances), and FCM (relative fraction of 
cells) from NAAMES. The diagram is directed from pigments to other methods; line colors 
correspond to pigments. The width of the line connecting pigments to 16S classes or FCM 
groups is based on the weighted correlation coefficient between these parameters. Label 
colors are consistent with Figures 8-10. 
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 Finally, a graph was constructed to visualize the relative correlations between and 

among communities of pigments, 16S classes, and FCM groups (Figure 12). Five broad 

communities separated from a network-based community detection analysis. The first 

community (in cyan) comprises cyanobacterial pigments and classes: Zea, DVchla, DVchlb, 

and Prochlorococcus from 16S and from FCM. Community 1 also includes Crysophyceae 

and Dictyochophyceae, presumably due to their strong correlations with Zea (Figures 10-

11). The second community (in green) is composed of chlorophyte and cryptophyte 

pigments and 16S classes: Allo and Cryptophyceae; MVchlb, Neo, Viola, Pras, 

Micromonas, Bathycoccus, and Ostreococcus. Community 2 is highly connected to 

picoeukaryotes, which belong to Community 3 (in brown) along with nanoeukaryotes and 

diatom pigments (Fuco, Chlc12) and Bacillariophyceae. Chlc12 links Community 3 to 

Community 4 (in dark blue), which includes prymnesiophyte and silicoflagellate pigments 

and 16S classes (19HexFuco, 19ButFuco, Chlc3, Prymnesiophyceae, Pelagophyceae). This 

community also includes Prasinophyceae (a chlorophyte class) and Synechococcus from 16S 

and FCM. Finally, Community 5 (in red) includes Perid, Bolidophyceae, and Rappemonad, 

similarly to the hierarchical cluster (Figure 10) and chord (Figure 11) analyses.  
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Figure 12. Unweighted graph from adjacency matrix of HPLC pigments (normalized to 
Tchla), 16S (relative sequence abundances), and FCM (relative cell counts), colored by the 
community assignment from network-based community detection analysis. 
 

V.4. Discussion 

V.4.1 Overview 

The major goal of this analysis is to compare the consistency and accuracy of 

pigment-based PCC with PCC from higher-resolution methods. Taken together, these 

analyses reveal broadly positive trends between pigment-based PCC and other methods at 

the class- to group-level for many groups (Figure 4; Figure 9). For most groups, the ratio of 

the expected biomarker pigment to Tchla was well correlated with the relative sequence 

abundance of the associated class, with the notable exceptions of Dinophyceae from 18S and 

Prymnesiophyceae from 16S. There were also strong positive correlations between relative 

pigment concentrations and relative fractions of IFCB biovolume for diatoms (Figure S3), 

and between relative pigment concentrations and relative fractions of cell counts from FCM 

for Prochlorococcus. While these results reveal many of the expected correlations between 
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accessory pigments and higher resolution PCC methods, there were also unlikely 

correlations between some pigments and phytoplankton groups (Figures 5-7; Figures 10-12).  

There are many potential sources of difficulty in comparing disparate methods for 

assessing phytoplankton community composition. Here, we briefly summarize four major 

challenges that can arise from comparing pigment-based PCC to higher resolution methods. 

(1) There are intra-group variations in phytoplankton pigment composition and 

concentration (e.g., Zapata et al., 2004; Irigoien et al., 2004; Zapata et al., 2012; Neeley et 

al., 2022): while there might be broad agreement between pigments and relative sequence 

abundances or biovolumes at the class level, many of these relationships change or fall apart 

at the genus- to species-level. (2) There are inter-group variations in phytoplankton pigment 

composition and concentration (Jeffrey et al., 2011 and references therein). Pigments are 

imperfect biomarkers for taxonomy, and many major groups share fundamental accessory 

pigments. For example, Fuco is found in diatoms but also in some dinoflagellates, 

prymnesiophytes, silicoflagellates, and bolidophytes. This consideration also includes 

differential feeding strategies, such as mixotrophy, through which a phytoplankter might 

acquire pigments that are not typically found in that group via phagocytosis of another cell 

(e.g., Stoecker et al., 2017; Li et al., 2022). (3) Some genera or species may co-occur in the 

environment, leading to the covariation of unexpected taxa with a pigment that is not found 

in one of those groups, but is dominant in the other group. For instance, if a small population 

of dinoflagellates that contain Perid coexisted in nature with a large population of 

chlorophytes with high concentrations of MVchlb, the resulting dinoflagellate sequence 

abundances or biovolumes might covary with MVchlb and not with Perid in that dataset. (4) 

Phytoplankton pigments may vary in composition and concentration due to environmental 
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factors, such as light history (particularly as many pigment have photoprotective functions, 

including Allo and Zea) and nutrient concentrations (e.g., Schlüter et al., 2000; Henriksen et 

al., 2002) or the physical mixing environment (e.g., Thompson et al., 2007).  

In the sections that follow, we use examples from the current datasets to investigate 

each of these four sources of inconsistencies between methods that lead to higher 

uncertainty in pigment-based PCC analyses. Disagreements between methods can provide 

opportunities to further quantify the strength of pigments as biomarkers for specific 

phytoplankton groups (e.g., the outliers of the Perid vs. Dinophyceae relationship; Figure 

4B) or to describe the co-occurrence of some groups in their environment (e.g., the 

associations of DVchla and DVchlb with some 18S classes; Figures 5-7). We summarize 

major method strengths and weaknesses highlighted by this analysis and provide examples 

of recommendations for PCC method selection in selected use cases. Finally, we review the 

challenges and impediments to integrating PCC methods to build better proxies, particularly 

for ocean color models, where phytoplankton pigments remain the gold standard for 

calibration and validation of remotely-sensed PCC. None of the methods reviewed here are 

able to provide a “perfect” assessment of phytoplankton community composition for a 

whole community alone. However, when methods are combined, two or more approaches 

can offer a more consistent story across methods. 

V.4.2 Intra-group variations in phytoplankton pigments 

 At the class or group level, there is broad agreement between pigment-based PCC 

and other PCC methods (Figure 4; Figure 9). However, at higher taxonomic resolution, these 

relationships do not always hold. To illustrate this concept in the current analysis, the 18S 

dataset was decomposed from the aggregated class-level taxonomy (as shown in Figures 4-
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8) to look at the correlations of individual amplicon sequence variants (ASVs) with 

pigments (Figure 13D). This analysis compares the relative abundance of the 135 ASVs that 

comprise >1% of the total sequences in any given sample in this dataset with pigment ratios 

to Tchla. While there are broad patterns that mirror the positive class-level correlations 

between pigments and relative sequence abundances, the correlations are highly variable 

within classes. For instance, about half of the Prymnesiophyceae ASVs are positively 

correlated with 19HexFuco, while the other half are negatively correlated. Similarly, despite 

the strong relationship between Fuco/Tchla and Bacillariophyta relative sequence abundance 

(Figure 4A), there are many Bacillariophyta ASVs that are uncorrelated or weakly 

negatively correlated with Fuco. Finally, many Dinophyceae ASVs have a weak relationship 

or no relationship with Perid, which may help to explain the poor overall relationship 

between Perid/Tchla and Dinophyceae relative sequence abundance (Figure 4B). This 

analysis used all ASVs that were >1% abundant in the dataset, meaning that some ASVs 

were only present in a small fraction of the samples (Figure 13B) or only ever reached a 

very low overall abundance in the dataset (Figure 13C). Thus, it is perhaps unsurprising that 

the correlations between pigments and relative sequence abundances are variable across all 

ASVs, as the relative abundances themselves are highly variable. Differences in pigment 

concentration and composition between genera and species of the same phytoplankton class 

have been well documented; the intra-group variability in the correlations between pigments 

and ASVs in this dataset directly demonstrates this phenomenon.  
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Figure 13. (A) Presumed feeding strategy for each >1% abundant ASV (red = known 
phototroph, purple = known mixotroph, blue = unknown). (B) The relative frequency of 
each ASV on NAAMES vs. EXPORTS. (C) Mean relative percent abundance of each ASV 
in the dataset. (D) Pearson’s correlation coefficient (R) between relative pigment 
concentrations and ASVs from 18S (relative sequence abundances, sorted by mean 
abundance within each class). The strength of the correlation is shown on a scale from -1 
(blue) to 1 (red). Correlations with environmental variables (temperature, salinity, MLD, 
PAR) are also shown. 

 

V.4.3 Inter-group variations in phytoplankton pigments  

 There are also many major accessory pigments that are not unambiguous biomarkers, 

and are shared between phytoplankton groups. These shared pigments may be known to 

exist between groups (for instance, Fuco is found in many red algal classes) or may occur 

due to mixotrophy by groups that consume other phytoplankton (and their pigments) via 

phagocytosis in addition to performing photosynthesis.  
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Here, the Prymnesiophyceae class from 18S provides one opportunity to explore 

inter-group pigment variability. The strong, positive correlation between Fuco and diatoms 

across methods (Figure 4, Figure S3) demonstrates a clear relationship between this 

phytoplankton group and its expected biomarker pigment. However, Fuco is also found in 

many other classes, including the Prymnesiophyceae. Some prymnesiophytes contain both 

19HexFuco and Fuco, while others contain just Fuco as their major carotenoid (Zapata et al., 

2004). In the HPLC and 18S dataset, one group of ASVs clusters closely with 19HexFuco, 

while another group clusters closely with Fuco (Figure 14), demonstrating that there are 

stronger positive correlations for some Prymnesiophyceae ASVs with Fuco than with 

19HexFuco, though 19HexFuco is used as a biomarker for prymnesiophytes. Some of the 

uncertainty in the 19HexFuco/Tchla vs. relative Prymnesiophyceae abundance relationship 

(Figure 4D) and in the Fuco/Tchla vs. relative Bacillariophyta abundance relationship 

(Figure 4A) may be attributable to the ambiguity of Fuco as a biomarker at the ASV level. 

Figure 14. Dendrogram showing the relationships between 19HexFuco (dark blue), Fuco 
(brown), and all Prymnesiophyceae ASVs in the 18S dataset, colored by feeding strategy 
(red = known phototroph, purple = known mixotroph, blue = unknown). ASVs are identified 
at the highest level of taxonomy possible.  
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 Inter-group pigment sharing can also arise due to mixotrophy. Many of the ASVs in 

the 18S dataset are known mixotrophs (Figure 13A) or have undocumented feeding 

strategies (i.e., could be either phototrophic or mixotrophic phytoplankton), but are members 

of groups that are known to perform mixotrophy. Members of many of the classes 

represented in this dataset have demonstrated mixotrophy in nature and in culture. For 

instance, a recent study demonstrated the phagocytosis of Prochlorococcus sp. by 

dictyochophytes, prymnesiophytes, chlorophytes, crysophytes, bolidophytes, and 

dinoflagellates (Li et al., 2022). Some of the ASVs in these classes have strong correlations 

with DVchla and DVchlb, which are marker pigments for Prochlorococcus (Figure 13D). 

Of the sixteen ASVs that are highly correlated with DVchla and DVchlb (R>0.7), eight are 

known phototrophs, two are known mixotrophs (a chlorophyte, Cymbomonas 

tetramitiformis, and a prymnesiophyte, Chrysochromulina acantha), and six have 

undocumented feeding strategies, but are members of groups known to contain mixotrophs 

(specifically, three Dinophyceae ASVs and three Prymnesiophyceae ASVs). This dataset 

only indicates correlations between these ASVs and pigments, and there may be other 

reasons for these correlations, but mixotrophic assimilation of Prochlorococcus pigments is 

one possibility. 

V.4.4 Co-variability of phytoplankton taxa in the environment 

The positive correlations between phytoplankton groups and unlikely accessory 

pigments may also be explained by co-occurrence or co-variability of these pigments and 

taxa in their environment. Since the analyses presented here are correlation-based, there are 

statistical relationships between pigments and taxa that co-occur, whether that relationship 

can be explained in nature or not. Particularly in the NAAMES dataset (Figure 3, Figure 8), 



 

 231 

most phytoplankton groups demonstrate high spatial and temporal variability across bloom 

states and latitudes. The evolution of the phytoplankton community in the North Atlantic 

over the course of the phytoplankton annual cycle means that some groups are in high 

relative abundances in only a few samples, while other groups are consistently present at 

low levels (Figure 8, Figure 13B-C; Bolaños et al., 2020). Alternately, the EXPORTS 

samples were collected over a shorter period of time in a smaller region, and thus have more 

consistency among samples: most samples have many of the same ASVs (Figure 13B) and 

pigments present (Figure 3). However, in both the NAAMES and EXPORTS datasets, there 

are co-variations between phytoplankton groups and accessory pigments. The associations 

of, for instance, Perid with Bolidophyceae from both 18S and 16S, or Zea with 

Crysophyceae from both 18S and 16S (Figure 6, Figure 11), are not attributable to any 

documented pigment-based taxonomy, but likely highlight the role of environmental 

covariation in these analyses that leads to a high correlation between these parameters. 

In another example, environmental data can be used as a proxy for phytoplankton 

community composition to consider the correlations between pigment-based PCC and other 

PCC methods. Prochlorococcus sp. do not have 18S and are too small to be imaged by the 

IFCB, but this genus is clearly separated in the 16S and FCM datasets (Figure 9F). 

Prochlorococcus relative sequence abundance are highly positively correlated with DVchla 

and DVchlb, but also with sea surface temperature (Figure S4). Many of the 18S ASVs that 

have strong positive correlations with DVchla and DVchlb (but are not expected to contain 

these pigments) are also positively correlated with sea surface temperature (Figure 13D), 

suggesting a co-occurrence of these 18S ASVs with Prochlorococcus in the environment, as 

evidenced by the biomarker pigments and the warm ocean temperature. In this anecdote, the 
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combined PCC methods validate the pigment-based PCC, but also draw on environmental 

co-variability to inform a fuller picture of taxonomy. These relationships between disparate 

parameters are also useful for considering these datasets in the context of community 

ecology, where interactions between phytoplankton and other taxa shape the ecosystem as a 

whole (e.g., Lima-Mendez et al., 2015; Zhou and Ning, 2017). 

V.4.5 Impacts of environmental conditions on phytoplankton pigments 

 Finally, uncertainties in pigment-based PCC can be affected by the impacts of the 

physical and chemical environment on phytoplankton pigment composition, concentration, 

and production. Light levels and nutrient concentrations can impact the production and 

expression of phytoplankton pigments: under lower light levels or high nutrient 

concentrations, accessory pigment production per cell often increases (Schlüter et al., 2000; 

Henriksen et al., 2002). Physical mixing can affect the exposure of phytoplankton to both 

light and nutrients, and thus can also be an important consideration for pigment production 

and expression. In this study, mixed layer depth (MLD) and PAR were typically weakly 

correlated with individual 18S ASVs (Figure 13D), though Bacillariophyta ASVs from 16S 

were slightly more positively correlated with MLD and PAR (Figure S4), as were some 

chlorophyte classes. Since the PCC methods compared here included cell-specific 

measurements from the IFCB and FCM, the impact of environmental conditions could be 

indirectly interrogated by examining changes in pigment-per-cell or pigment-per-biovolume 

over the dataset. 

For instance, when the outliers from the Perid/Tchla vs. relative Dinophyceae 

sequence abundance relationship (Figure 4B; highest outlier circled in red) are considered as 

a function of pigment-per-biovolume, there is anomalously high Perid-per-biovolume in 
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those samples (Figure S5A). The Tchla-per-biovolume for the outlier samples is consistent 

with the mean value for the dataset (Figure S5B); however, the accessory pigment 

concentration per biovolume is higher, suggesting that these samples comprise Perid-

containing dinoflagellates with higher Perid concentrations per cell than the rest of the 

dataset. This trend in the outlier samples may also be due to intra-group variability in 

pigment concentration, with some Dinophyceae ASVs in those outlier samples containing 

higher ratios of Perid/Tchla than the mean in the dataset. The most abundant ASVs in this 

sample include two dinoflagellates (Biechelaria sp. and Prorocentrum sp.), but we could not 

find evidence in the literature to support these genera having higher documented Perid/Tchla 

than other Perid-containing, phototrophic dinoflagellates. 

V.4.6 Summarizing the performance of PCC methods 

The datasets compared here demonstrate some overall strengths of pigment-based 

PCC and some clear weaknesses. Generally, the relationships between most pigments and 

amplicon sequencing data are positive and strong (Figure 4; Figure 9). Some of the 

relationships between pigments and IFCB (Figure S3) and pigments and FCM (Figure 9) are 

positive and strong, while other groups show no correspondence. Furthermore, there are 

intricacies to the amplicon sequencing data that reveal weaknesses or challenges in using 

pigment-based estimates of PCC (Figures 13-14, Figures S4-5). The matchup datasets 

considered here are also relatively small; datasets that measure PCC across multiple 

methods are not always easy to compare due to differences in sampling timing/frequency or 

vastly disparate taxonomic assignments. Some approaches address these discrepancies by 

scaling PCC metrics to internal standards or to measurements of particulate organic carbon 
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(e.g., Lin et al., 2019; Catlett et al., in revision), but these decisions are dataset-specific and 

may not be appropriate in all cases. 

A summary of the five PCC methods presented here, based on observations from this 

analysis and knowledge from the literature, is presented in Table 1. For each method, some 

practical considerations are included (kingdom of life targeted, size range represented, 

taxonomic resolution provided) as well as some known strengths and limitations for each 

method. This analysis focused on pigment-based taxonomy as the standard against which 

amplicon sequencing, IFCB, and FCM measurements were compared; however, each of 

those methods has its own set of strengths and weaknesses. 18S amplicon sequencing 

provides the highest resolution taxonomic identification for eukaryotic phytoplankton, while 

16S also includes prokaryotic phytoplankton diversity. The IFCB uniquely captures cells at 

high taxonomic resolution and allows for iterative attempts at classification from imagery. 

Flow cytometry has relatively low taxonomic resolution, but captures both prokaryotes and 

eukaryotes at the cell level.  

Some particularly notable weaknesses across these methods are: the unequal scaling 

of gene copy numbers across taxa in 18S and 16S (de Vargas et al., 2015); the inability of 

16S to identify dinoflagellates (Lin et al., 2011); the high fraction of cells missed by the 

IFCB due to the relatively large size range of sampling (Sosik and Olson, 2007); and the 

limited taxonomic resolution for eukaryotes measured by FCM. While the IFCB and FCM 

have explicit upper size limits set by the intakes on these instruments, the other three 

methods also have necessary upper size limits set by the sampling volume and method that 

bias against rare, larger organisms. Each method also has a fraction of the dataset that is 

“unknown,” either due to lack of identification of some of the phytoplankton that were 
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measured (for amplicon sequencing, IFCB, and FCM), missing the cells altogether (smaller 

cells in the IFCB, larger cells in FCM), or because some things were simply not measured 

(e.g., accessory pigments not included in standard HPLC analyses).  

Table 1. Summary of the five PCC methods presented here. For each method, a short 
overview is provided of the targeted taxonomic range and resolution, the approximate size 
range captured by the method (*HPLC pigment size range assumes combusted GF/F filters), 
the exact measurement provided by each method, and known method strengths and 
weaknesses. 

 

 The comparison between methods is further explored in Table 2, where the statistical 

methods shown in Figures 4-6 and 9-11 are summarized across many of the broad 

phytoplankton groups examined in this analysis. For each of seven major accessory 

pigments, the performance of that pigment is compared to the other PCC methods used here 

(18S and IFCB for Fuco, Perid, HexFuco, ButFuco, Allo, and MVchlb; 16S and FCM for 

DVchla). Pigments that are better predictors of PCC from other methods have higher R2 

values, lower linkage distances, and higher chord diagram weights. Some pigments perform 

well across methods (Fuco, DVchla), suggesting that these pigments are strong predictors of 

the groups they represent in this dataset (diatoms and Prochlorococcus, respectively). 
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HexFuco, ButFuco, MVchlb, and Allo compare well to their respective phytoplankton 

classes from 18S, but do not compare well to those same classes as captured by the IFCB. 

Finally, Perid is poorly correlated with dinoflagellates across methods. These summarized 

results suggest that pigments are better predictors of PCC for some phytoplankton groups 

than others. However, these results are also very specific to this dataset, which includes 

limited samples and was collected in a relatively small spatial range; in other datasets or 

ecosystems, pigments such as Perid or Allo may have better correspondence across methods.  

Table 2. Summary of the method performance across seven major accessory pigments and 
their assumed taxonomic groups using other methods. The results of linear relationships (R2; 
Figures 4 and 9), hierarchical cluster analysis (linkage; Figures 5 and 10), and chord 
diagrams (chord weight; Figures 6 and 11) are shown for each pigment.

 
 

V.4.7 Recommendations for selecting the most suitable PCC method 

Based on the strengths and weaknesses observed across the five PCC methods 

considered here (Tables 1-2), some recommendations for PCC method selection can now be 

provided. As much as possible, the PCC method should be selected with the goal of the 

analysis in mind, taking into consideration the desired taxonomic resolution, the data against 

which PCC may be compared (e.g., optical measurements, imaging by larger platforms such 

as the Underwater Vision Profiler, etc.), the cost of the analysis, the time scale on which 

results are available vs. when results are needed, etc.  
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For instance, a major goal of describing phytoplankton community composition in 

many coastal ecosystems is to detect and monitor the development of harmful algal blooms 

(HABs; e.g., Anderson et al., 2012). Early detection of HABs is crucial for shutting down 

fisheries and beaches before human health impacts can arise. In this case, the IFCB provides 

an ideal method to detect high-resolution PCC, with automated, remote data collection at an 

existing mooring or observatory. The IFCB has been used successfully to detect (Campbell 

et al., 2010) and monitor the development (Brosnahan et al., 2015) of HABs in varying 

ecosystems. IFCB data are available in near real-time, which allows for quick detection and 

timely warnings when a harmful bloom develops (as opposed to methods such as pigments 

or amplicon sequencing, which require weeks to months of processing and analysis after 

sample collection). While the IFCB is limited in the range of phytoplankton cells it can 

detect, most HAB species have cells that are >6 µm in diameter, particularly in productive 

coastal regions, making it well suited to target those taxa. While other measurements may be 

necessary to monitor a HAB (such as direct measurements of toxicity in the environment 

once the cells from a harmful group are detected), the IFCB can provide an early warning 

and indicate the need for auxiliary sampling.  

Time-series observatories often include PCC measurements to monitor the seasonal 

succession of phytoplankton and changes in PCC over time with environmental change. At 

these sites, the IFCB may also be used in combination with other methods, such as FCM, to 

acquire high-resolution PCC across a large spectrum of cell sizes (e.g., Peacock et al., 2014; 

Hunter-Cevera et al., 2016). Pigments may also be collected to compare ongoing optical 

measurements with a record of PCC at these sites. Sometimes, the impact of an 

environmental disturbance on the phytoplankton community may be the focus of an 
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investigation—in these cases, the IFCB can provide instantaneous information that may be 

confirmed later on with amplicon sequencing approaches or pigment data, which may 

confirm the impact of the disturbance on the function or optical properties of the 

phytoplankton community (e.g., Laney and Sosik, 2014; Kramer et al., 2020). Across both 

long and acute timescales, the combination of methods offers a more consistent picture of 

PCC.  

Another example of a potential PCC use case involves carbon export models or 

schematics of the biological pump, which typically include phytoplankton size and/or 

community composition terms to constrain the export of phytoplankton carbon from the 

surface ocean to the deep ocean (e.g., Siegel et al., 2016; Buesseler et al., 2020). In these 

cases, methods that measure cell biovolume (IFCB, FCM) are useful to more accurately 

estimate the carbon-per-cell. Since many Earth system models use satellite data to achieve 

global ocean coverage, pigment measurements are also important to link ocean color 

estimates of PCC to in water data. A related challenge includes the monitoring, reporting, 

and verification (MRV) of potential carbon dioxide removal (CDR) strategies. For instance, 

nutrient fertilization to stimulate phytoplankton growth is a CDR strategy that has received 

increased attention in recent years (National Academies of Sciences, Engineering, and 

Medicine, 2022 and references therein). However, the resulting phytoplankton community 

from a nutrient fertilization event would need to be carefully monitored (as part of 

responsible MRV) in order to assess the intended and unintended impacts. A combination of 

instantaneous approaches to monitor potential HAB development (e.g., IFCB) and 

approaches that describe the function or trophic mode of the resulting community (e.g., 18S 

amplicon sequencing) would be essential for monitoring the effects of this experiment on the 
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overall phytoplankton community and either validating or rejecting the potential CDR 

impact.  

Clearly, the need to sample PCC at different resolutions and for different purposes is 

universal in biological oceanography. By comparing method performance and accuracy 

across methods, we also encourage consistency in sampling approaches and method 

development. More data is only better if it is highly quality controlled and provides useful 

information about PCC—while measurements of PCC in situ will continue to improve, 

broad-scale comparisons across methods are only possible with high quality approaches. As 

more and better PCC data become available from different ecosystems and environments, 

new and different comparisons PCC methods will be necessary to consider the changing 

relationships between these methods.  

V.4.8 Constraining pigment-based PCC for better ocean color algorithm development 

 The results shown in this work have demonstrated some encouraging trends in the 

accuracy of pigment-based PCC compared to other methods. Pigment-based PCC is the 

current gold standard for ocean color methods: pigments are used to develop and validate 

algorithms that detect PCC from space (e.g., Uitz et al., 2015; Chase et al., 2017; Kramer et 

al., 2022). This analysis presents some encouraging considerations for pigment-based PCC. 

For many broad phytoplankton groups (diatoms, chlorophytes, cryptophytes, 

prymnesiophytes), pigments are strongly positively correlated with PCC from higher-

resolution methods.  

This result is particularly notable with the advent of NASA’s Plankton Aerosol 

Cloud and ocean Ecosystem (PACE) sensors, set to be launched in 2024 (Werdell et al., 

2019). PACE will have hyperspectral sampling resolution, which will improve estimates of 
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pigments from ocean color (Wolanin et al., 2016; Kramer et al., 2022). If pigments can be 

accurately modeled from satellite measurements, and the comparisons between pigments 

and amplicon sequencing or IFCB datasets continues on broader spatiotemporal scales, then 

better relationships can be developed between pigments and phytoplankton classes from 

other methods throughout the global ocean. There are still clear needs for improvement in 

many of these comparisons between pigment-based PCC and other methods—for instance, 

dinoflagellates are an important phytoplankton group (particularly in coastal regions, where 

they may form toxic blooms), but their relative abundance is not well correlated with Perid 

concentration in this dataset. Further investigations will be needed between pigment-based 

PCC and other methods, ideally with larger datasets that have been collected across 

gradients of biomass and under varying physical and biogeochemical conditions, in both 

coastal (e.g., Catlett et al., 2022 in review) and open ocean ecosystems.  

Ultimately, a comprehensive understanding of global surface ocean PCC is essential 

for better describing the impact of the ocean on global climate, the strength of the biological 

pump, the changes to marine food webs over time, and the cycling of nutrients throughout 

the oceans. Constraining the PCC information from satellites and in situ is an important and 

necessary step toward this broader goal. 

V.5. Data availability statement  

• HPLC pigments and EXPORTS IFCB data are on SeaBASS: 

https://seabass.gsfc.nasa.gov/experiment/NAAMES and 

https://seabass.gsfc.nasa.gov/cruise/EXPORTSNP. 18S data are currently available 

upon request to SJK or DC but will be added to SeaBASS in mid 2022. 
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• NAAMES IFCB data are available on the IFCB dashboard: https://ifcb-

data.whoi.edu/timeline?dataset=NAAMES and on EcoTaxa: https://ecotaxa.obs-

vlfr.fr.  

• Code for IFCB image analysis can be found at: https://github.com/OceanOptics/ifcb-

tools (NAAMES) and https://github.com/hsosik/ifcb-analysis (EXPORTS).  

• Code for 16S data prep and taxonomic assignment can be found at: 

https://github.com/lbolanos32/Phyto_NAAMES_2019.  

• Code for 18S data prep and taxonomic assignment can be found at: 

https://github.com/dcat4/amplicon_bioinformatics.  
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V.7. Supplemental Information 
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Figure S1. Distributions of (A) phytoplankton pigment concentrations from NAAMES and 
(B) from EXPORTS; (C) relative 18S sequence abundances from NAAMES and (D) from 
EXPORTS; and (E) IFCB biovolume from NAAMES and (F) from EXPORTS. The box 
shows the median value and encompasses the upper and lower quartiles; whiskers are the 
non-outlier minimum and maximum values; outliers (black dots) are any samples that fall 
greater than 1.5 x the interquartile range from the top or bottom of the box.  

 

 

Figure S2. Relative fractions of (A) phytoplankton pigments; (B) 18S sequences; and (C) 
IFCB biovolume from NAAMES and EXPORTS. Samples are organized in order of 
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collection from left to right, with NAAMES 2, NAAMES 3, and NAAMES 4 on the left half 
and EXPORTS on the right half. Grey bars indicate the “other” fraction for each group. 

 

 

Figure S3. Relationships between relative pigment concentrations (normalized to Tchla) and 
relative biovolume fractions for (A) Fuco and diatoms, (B) Perid and dinoflagellates, (C) 
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19ButFuco and dictyochophytes, (D) 19HexFuco and prymnesiophytes, (E) MVchlb and 
chlorophytes, and (F) Allo and cryptophytes. All samples are colored by the relative fraction 
of 18S sequence abundances for the corresponding group. 

Figure S4. Pearson’s correlation coefficient (R) between relative pigment concentrations 
and environmental variables (temperature, salinity, MLD, PAR) and relative sequence 
abundances from 16S. 

Figure S5. Perid/Tchla vs. relative Dinophyceae sequence abundance colored by (A) Perid 
concentration per IFCB biovolume and (B) Tchla per IFCB biovolume.  
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