
UCLA
UCLA Electronic Theses and Dissertations

Title
Electrospray Plume Evolution and Divergence

Permalink
https://escholarship.org/uc/item/7vv2n19p

Author
Davis, McKenna

Publication Date
2024

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7vv2n19p
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

Electrospray Plume Evolution and Divergence

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Aerospace Engineering

by

McKenna Davis

2024

© Copyright by

McKenna Davis

2024

ABSTRACT OF THE DISSERTATION

Electrospray Plume Evolution and Divergence

by

McKenna Davis

Doctor of Philosophy in Aerospace Engineering

University of California, Los Angeles, 2024

Professor Richard E. Wirz, Chair

Electrospray thrusters require significant improvements in operational lifetime for use in

multi-year spacecraft propulsion missions. The primary thruster lifetime-limiting mechanism

is propellant overspray, in which wide-angle particles impinge on and saturate downstream

electrodes instead of exiting through the electrode aperture and contributing to produced

thrust. Electrospray particles are emitted within a small radial range, but diverge as they

move downstream from emission to form a 3D plume, the edges of which contribute to

overspray. In order to improve electrospray thruster designs towards minimizing overspray

and optimizing operational lifetime, we need to understand what causes electrospray plume

divergence.

This dissertation investigates electrospray plume divergence using the Discrete Electro-

spray Lagrangian Interaction (DELI) Model to simulate electrospray particle dynamics. The

governing equation for particle propagation includes the applied electrostatic force from the

potential difference between the emitter and downstream electrode, the Coulomb forces

between particles (including image charges), and the drag force. Each of these forces is in-

vestigated theoretically and computationally to determine its influence on plume divergence.

ii

None of the forces introduce radial divergence into a set of particles emitted straight down

the axis of emission with no range in radial coordinate. However, electrospray particles are

always emitted with some small range in radial coordinate due to hydrodynamic instabilities

and minute asymmetries in the emitter. All three forces exacerbate existing radial diver-

gence among a set of particles: the applied electric field has a radial component due to jet

curvature and the electrode aperture; there is a radial component to Coulomb forces between

particles with a difference in radial coordinate; and drag counters particle motion, keeping

particles in a clustered state in which Coulomb forces are magnified.

Simulations compare the radial divergence of groups of particles with equal velocities and

with an upstream velocity gradient, in which upstream particles are moving faster than their

forward neighbors. In the upstream velocity gradient case, faster particles catch up to their

forward neighbors, magnifying the Coulomb interaction between the two in response to their

increased proximity. We term this interaction a ‘traffic jam’ and correlate it with increased

plume divergence through Coulomb interactions. We present two novel means of character-

izing plume divergence: 1) a metric for positional divergence based on three standards of a

Gaussian or Super-Gaussian fit to particle mass density distribution as a function of radial

coordinate, and 2) emittance as a metric for positional and velocity divergence. We further

describe how emittance can be used to identify when an electrospray plume has reached the

steady state.

Machine learning is applied for the first time to electrospray particle dynamics data,

produced by the DELI Model. Results demonstrate predictive abilities for downstream

particle dynamic properties given particle properties at emission. Furthermore, a novel

method is proposed for combining experimental electrospray particle data, computational

plume evolution models, and machine learning algorithms to optimize diagnostic design.

In summary, this dissertation presents a comprehensive consideration of electrospray

plume divergence using computational and analytical models supported by experimental

data. The origins and sources of growth of electrospray plume divergence are identified, new

iii

metrics for electrospray plume divergence are presented, and machine learning algorithms

are developed to predict electrospray plume divergence.

iv

The dissertation of McKenna Davis is approved.

David L. Bilyeu

Jacob Bortnik

Jeffrey D. Eldredge

Kunihiko Taira

Richard E. Wirz, Committee Chair

University of California, Los Angeles

2024

v

TABLE OF CONTENTS

1 Introduction . 1

1.1 Spacecraft Propulsion . 1

1.2 Electrospray Plume Physics . 4

1.3 Electrospray Spacecraft Propulsion . 10

1.3.1 Electrospray Divergence Considerations 11

1.4 This Dissertation . 17

2 Electrospray Plume Modeling . 19

2.1 Literature Review . 19

2.2 End-to-End Model System . 21

2.3 DELI Model . 23

2.3.1 Governing Equations . 24

2.3.2 Numerical Algorithm . 27

2.3.3 Simulation Time Step . 30

2.3.4 Particle Emission . 31

2.4 Verification . 33

2.5 Validation . 38

3 Electrostatic Plume Divergence . 45

4 Coulomb Plume Divergence . 50

4.1 Experimental Motivation . 51

4.2 Three Particle Demonstration . 53

vi

4.3 Theory of Coulomb Plume Divergence . 55

4.4 Defining the Interaction Region . 57

5 Drag Plume Divergence . 64

5.1 Two Particle Study . 67

5.2 Full Plume Study . 67

5.2.1 Influence of Drag Force . 70

5.2.2 Influence of Background Pressure 74

5.3 Drag Paper Collision Analysis . 88

6 Other Sources of Plume Divergence . 91

6.1 Gravity . 91

6.2 Thermal Gradient . 93

6.3 Fluid Mechanics . 95

6.4 Gas Polarization . 97

7 Novel Methods for Characterizing Plume Divergence 99

7.1 Results and Discussion . 103

8 Predicting Plume Divergence . 108

8.1 Methods . 110

8.1.1 Data Acquisition . 110

8.1.2 Data Preparation . 113

8.1.3 Model Construction . 114

8.1.4 Model Optimization . 115

vii

8.2 Results and Discussion . 115

8.2.1 Case I: Strictly Axial Emission Velocity 115

8.2.2 Case II: Non-zero Radial Emission Velocity 120

8.2.3 Comparison of Case I and II . 121

8.2.4 Discussion of Application to Experimental Data 129

9 Conclusion . 133

9.1 Conclusion . 133

9.2 Future Work . 135

9.2.1 Chapter 6 Considerations . 135

9.2.2 Plume Evolution Studies . 136

9.2.3 Include Secondaries . 136

9.2.4 Transient Modes . 137

9.2.5 Parallelization . 138

9.2.6 Machine Learning . 141

Appendix A Empirical Drag Terms . 142

Appendix B Machine Learning Histograms . 143

Appendix C Machine Learning Hyperparameter Tuning 147

Appendix D Plume Evolution Studies . 155

D.1 Mass Flowrate . 155

D.2 Mean Specific Charge . 156

D.3 Specific Charge Inhomogeneity . 156

viii

Appendix E Analytical Efforts . 161

E.1 Nondimensionalize Governing Equation . 161

E.2 Traffic Jam Expression . 163

Appendix F DELI Model Code . 167

References . 245

ix

LIST OF FIGURES

1.1 Thrust vs. specific impulse for several common spacecraft propulsion systems[1]. 4

1.2 Total nanosatellites and CubeSats launched in recent years demonstrates expo-

nential increase trend in CubeSat launches.[2]. 5

1.3 Electrospray geometry for a thrust-producing application. The electric potential

difference is generated between the emitter and downstream electrode, which has

an aperture to allow for thrust release. [3] . 6

1.4 Cloud plumes of small secondary particles are separated from central primary

particle plumes in bi-modal inhomogeneous plumes.[4] 7

1.5 Sources of secondary particle production. 8

1.6 The first published images of the electrospray [5]. 9

1.7 Electrospray behavioral modes experimentally mapped over a range of flowrate

and voltage [6]. 10

1.8 An expanded view of the LISA Pathfinder spacecraft, with ‘Electric propulsion’

labels added to the original figure from [7]. The insert figure shows one of the

Colloid MicroNewton Thrusters providing electrospray propulsion [8]. 12

1.9 A hierarchical tree of life-limiting/failure mechanisms for electrospray thrusters.[3] 13

1.10 Particles optimally exit the thruster and produce thrust (1); however, overspray

to the first ‘extractor’ grid (3) and a secondary downstream ‘accelerator’ grid (2)

occurs from particles displaced to wide plume angles, (5) and (4) respectively, by

Coulomb interactions, represented by (7) and (6) respectively. The two grids will

eventually become saturated and backspray upstream, (9) and (8) respectively[3]. 14

1.11 The line-of-sight angle between the emitter and a the aperture edged of a down-

stream electrode. 16

x

1.12 The effect of changes to electrode geometry (LOS), porous electrode capacity

(open volume), and beam shape (standard deviation σm of Gaussian mass flux

distribution) on electrode (in this case, an ‘accelerator’ grid) saturation time.[3] 16

2.1 End-to-end model system for electrospray plume evolution consists of discretized

regions based on governing physics. 22

2.2 Electrospray domain with a solid collector plate, displaying examples of the ap-

plied electric field, Coulomb, drag, and image charge forces on emitted particles.

Only the portion of image charges nearest the collector plate are shown. 28

2.3 Algorithm for evolving electrospray plume in the Discrete Electrospray Lagrangian

Interaction Model. 29

2.4 The DELI model matches mass flowrate and current constraints over time fol-

lowing startup. 33

2.5 All particles have q = 1C and m = 1kg unless otherwise specified. a) Particle

6 approaches stationary particles 4 and 5, positioned 0.02m apart. b) Particle 5

orbits stationary particle 4 (q = 1×1011 C and m = 1×1011 kg) with a velocity

of 1m s−1. c) 8 stationary particles initially at rest at the corners of a cube with

side length 2m and 1 particle in the center. d) 8 stationary particles are initially

at rest at the corners of a cube with side length 2m and 1 particle in the center. 34

2.6 Difference in the radial and axial components of the Coulomb force on two inter-

actions particles. The Coulomb force is exerted symmetrically, with differences

in force on the two particles in the range of machine error. 35

2.7 Particle 1 approaches particle 2 with relative velocity v0 and impact parameter

b. The deflection is shown from the frame of the reference of particle 2. The

deflection angle θ of particle 1 from particle 2 is measured from the intersection

of the line connecting the point of closest approach of particle 1 to particle 2 and

the impact parameter axis line. 36

xi

2.8 DELI deflection angle results for 2-particle Coulomb interactions are compared

to analytical solutions (dashed lines). 37

2.9 The error in deflection angle from a two particle Coulomb interaction is given

for different orders of magnitude of simulation timestep. A line with slope 1 is

shown for reference to confirm that the time-stepping algorithm is first-order. . 38

2.10 DELI results for plume shape evolved to steady state are compared with previ-

ously published steady state results. 42

2.11 DELI results for mean axial velocity approaching the collector plate are compared

with previously published results. 43

2.12 DELI results for normalized particle velocity magnitude over radial position are

shown for several axial heights. The axial positions 14mm, 18.1mm, and 21.6mm

correspond to the heights for which Gañán-Calvo et al. presented simulation

and experimental results[9]. The axial positions 10mm, 15mm, and 20mm

correspond to the heights for which Wilhelm et al.[10] and Grifoll and Rosell-

Llompart[11] presented simulation results. 44

3.1 A 2D slice showing half of the axisymmetric electric potential field (a) in the

full domain between the emitter and one downstream electrode with a thrust-

releasing aperture and (b) only in the region surrounding the high-voltage emitter. 46

3.2 The (a) axial and (b) radial components of the electric field surrounding the

high-voltage emitter. 46

3.3 Varying accelerator grid geometries demonstrating methods to increase the angle

from the emitter to the accelerator grid (marked with dashed line) from a) nom-

inal configuration by b) decreasing grid spacing, c) increasing accelerator grid

radius, and d) a combination of spacing and radius changes. [3]. 48

xii

3.4 The effects of changing the accelerator grid’s aperture radius and the spacing

between the accelerator and extractor grids on time to saturate the accelerator

grid. [3]. 49

4.1 Successive high speed video frames obtained on the UCLA PESPL Atmospheric

Pressure Electrospray eXperiment (APEX) system show electrospray particle

clustering preceding plume divergence[12]. 52

4.2 Three ethanol particles with axial spacing ∆z = 0 µm and the middle particle

displaced to the right by ∆x =10 pm. The particles have (a) equal initial veloci-

ties v =1m/s and (b) an upstream initial velocity gradient with initial velocities

v1 = 1m/s, v2 = 2m/s, v3 = 3m/s from downstream to upstream. 53

4.3 Displacement from Coulomb interaction between particles with a) equal initial

velocities v =1m/s and b) an upstream initial velocity gradient, with initial

velocities v1 = 1m/s, v2 = 2m/s, v3 = 3m/s from downstream to upstream. . . 54

4.4 Radial thresholds for approximating the Coulomb force utilized by (a) Gamero-

Castaño and Galobardes-Esteban [13] and (b) Petro et al. [14]. 59

4.5 Snapshot of DELI simulation of electrospray plume with color corresponding to

the radius of each of the three particle species. 60

4.6 The ratio of radial acceleration from the Coulomb force and the applied electro-

static force are plotted over a) axial coordinate and b) radial coordinate with

color corresponding to species. 62

5.1 The acceleration resulting from the drag force at different velocities is shown for

a range of particle sizes. 66

5.2 The two particle Coulomb interaction (a) under the influence of the drag force

and (b) in a dragless environment. Arrows display particle velocity vectors. . . . 68

5.3 Experimental comparison of atmospheric and vacuum electrospray plumes [15]. . 69

xiii

5.4 A comparison between plumes evolved to steady state with different levels of

applied drag force. 71

5.5 The 3D plume evolved to steady-state with different fractions of drag force applied. 72

5.6 The number of particles in the simulation domain over progressing time steps

(time normalized with the default time step ∆t) for plumes evolved with different

levels of applied drag force. 73

5.7 The DELI Model algorithm for electrospray plume evolution with drag calculated

as a function of particle Reynolds, Knudsen, and Mach number. 79

5.8 The outline of plumes simulated with different background pressures with color

according to background pressure on a logarithmic scale. The inset plot shows the

coefficient of a square root functional fit to the plume outline at each background

pressure. 80

5.9 Terminal angle measurements at the collector plate location are given for 1 and

3 standard deviations of particle number density and the outline of plumes sim-

ulated at different background pressures using a single coefficient of drag from

[16] (solid lines) and multiple coefficients of drag from [17], [18], [19], and [20]

depending on particle Re and Kn (dashed lines). 83

5.10 The pressure limit, P , for drag-free plume evolution for a range of particle sizes

as bounded by the Free Molecular flow definition from Eq. 5.21 and the phe-

nomenological pressure threshold from Eq. 5.22. 86

5.11 The relationship between pressure and Knudsen Number is presented for different

path lengths. 90

xiv

6.1 The influence of gravity on electrospray plumes in different orientations. The

plume outline without gravity is shown in red, the gravitational force is denoted

with black arrows, and the modified plume shape under the influence of gravity

is shown in blue. 92

6.2 The thermophoretic force on a micron diameter particle for different local back-

ground fluid temperatures T and temperature gradients ∇T . The gravitational

force on a m = 1× 10−16 kg particle is included as for reference. 94

6.3 Spherical fluid particles have initial separation with 2.5 particle radii experience

local attraction to one another and coalesce. The black line on the bottom of the

lower particle represents negative charge concentration. The dashed lines show

the motion of rigid particles for comparison [21] 96

7.1 Cross sections of the plume used to observe trends in emittance as the plume

moves downstream[22]. 103

7.2 Cross sections of the tri-species EMI-Im plume at which emittance measurements

were taken. 104

7.3 Emittance plots of the particles from each cross-sectional beam slice in Fig. 7.2. 105

7.4 Emittance in the x component direction against axial coordinate for cross-sectional

plume slices . 106

7.5 Emittance in the x component direction for the full plume with color correspond-

ing to species. 107

8.1 Emission velocity vector direction is the angle between particle emission position

and a reference point in the jet distance l upstream from the jet tip, where

l varies from one mean particle radius to one mean breakup wavelength. An

example emission velocity vector is shown for l = λ. 112

8.2 Process of preparing particle tracking data for input to machine learning models. 114

xv

8.3 Performance metrics R2 (a,c) and ANRMSE (b,d) for all regression algorithms

with final angle withheld from the feature set (a, b) and final angle included (c,d).116

8.4 Random Forest feature rankings for final axial velocity (a,c) and potential (b,d)

for the case in which final angle is excluded from the feature set (a,b) and the

case in which it is included (c,d). Error bars show feature importance range of

all individual estimators in the RF algorithm. 118

8.5 Performance metrics R2 (a) and ANRMSE (b) for all regression algorithm for

the case with non-zero radial emission velocity. 120

8.6 Pathlines are shown for 30 particles in the solely axial emission velocity Case I

(red) and the non-zero radial emission velocity Case II (blue). 123

8.7 Predicted vs. actual values for final angle (a,c) and the Random Forest feature

rankings for predicting final angle (b,d) for the case in which emission velocity is

strictly axial (a,b) and the case in which there is a radial component to emission

velocity (c,d). Feature ranking error bars show the range among estimators in

the RF algorithm. 124

8.8 Mean R2 scores for different distances l between the jet tip and the reference point

for determining velocity emission angle for the prediction of: final angle given

emission properties (black), final lateral velocity (vfx) given emission properties

(blue), final axial velocity given emission properties (green), and final particle

potential given emission properties and final angle (red). Dashed lines display

R2 results for the case with no radial emission velocity. Error bars display the

performance range of the 6 ML models. 128

9.1 The number of particles in an electrospray plume simulated in the DELI Model

from the start-up for flow, to steady state, to flow shut-down. 138

9.2 Whipping mode of electrospray jet operation[6]. 139

xvi

9.3 Examples of the multi-jet mode of electrospray jet operation[6]. 139

9.4 Particles are divided into cells with an octree algorithm to parallelize the simu-

lation of an n-body problem. 140

B.1 Histograms of each particle data feature for the case where emission velocity is

strictly axial. 144

B.2 Histograms of each particle data feature for the case where the distance between

the jet tip and the reference point for emission velocity angle is equal to the mean

particle radius: l = d/2. 144

B.3 Histograms of each particle data feature for the case where the distance between

the jet tip and the reference point for emission velocity angle is equal to the mean

particle diameter: l = d. 145

B.4 Histograms of each particle data feature for the case where the distance between

the jet tip and the reference point for emission velocity angle is equal to half the

mean jet breakup wavelength: l = λ/2. 145

B.5 Histograms of each particle data feature for the case where the distance between

the jet tip and the reference point for emission velocity angle is equal to the mean

jet breakup wavelength: l = λ. 146

B.6 Histograms of each particle data feature for the case where the distance between

the jet tip and the reference point for emission velocity angle is equal to twice

the mean jet breakup wavelength: l = 2λ. 146

C.1 Hyperparameters and their tuning ranges for each of the six utilized ML models. 148

C.2 Optimal hyperparameter settings for the Random Forest algorithm for the solely

axial emission velocity and the l = d/2 radial emission velocity cases, when final

angle is given and when it is not. All variables in the prediction column are final

state variables. 149

xvii

C.3 Optimal hyperparameter settings for the Support Vector Regression algorithm

for the solely axial emission velocity and the l = d/2 radial emission velocity

cases, when final angle is given and when it is not. 150

C.4 Optimal hyperparameter settings for the K-Nearest Neighbors algorithm for the

solely axial emission velocity and the l = d/2 radial emission velocity cases, when

final angle is given and when it is not. 151

C.5 Optimal hyperparameter settings for the Multi-Layer Perceptron algorithm for

the solely axial emission velocity and the l = d/2 radial emission velocity cases,

when final angle is given and when it is not. 152

C.6 Optimal hyperparameter settings for the Extreme Gradient Boosting Method

algorithm for the solely axial emission velocity and the l = d/2 radial emission

velocity cases, when final angle is given and when it is not. 153

C.7 Optimal hyperparameter settings for the Light Gradient Boosting Method al-

gorithm for the solely axial emission velocity and the l = d/2 radial emission

velocity cases, when final angle is given and when it is not. 154

D.1 Mass density contours of electrospray plumes with a) 100%, b) 50%, and c) 10%

of the mass flowrate from the validation Sec. 2.5. 156

D.2 Mass density contours of electrospray plumes with a) the same, b) double, and

c) triple mean specific charge of emitted particle from the validation Sec. 2.5. . 157

D.3 Current density as a function of half angle for varying (a) extraction voltages

(fixed flow rate of 420 pL s−1) and (b) flow rates (constant voltage of 1.6 kV).

Mass flux as a function of half angle for varying (c) extraction voltages (fixed flow

rate of 420 pL s−1) and (d) flow rates (constant voltage of 1.6 kV). All profiles

shown with super-Gaussian fits.[23] . 158

xviii

D.4 An x-z snapshot of a specific charge inhomogeneous plume simulated in the DELI

Model, with particles colored according to specific charge. 159

D.5 Mass flux and current density profiles of an specific charge inhomogeneous elec-

trospray plume a) near emission b) further downstream. 160

xix

LIST OF TABLES

5.1 The range of background pressures utilized for the presented DELI simulation. . 75

5.2 Collisionality regimes determined based on the rarefaction parameter, Knudsen

number. 76

7.1 Tri-species EMI-Im electrospray mass and integer charge number properties[24].

All particles are negatively charged. 104

8.1 Feature Variables . 113

A.1 The empirical coefficient of drag terms used in DELI Model simulations. 142

xx

Nomenclature

Physical Constants

g Gravitational constant

kB Boltzmann constant

Superscripts

n Order

t Time step index

Subscripts

inf Free-stream

A Applied

B Beam

C Coulomb

Ch Cheng

Cu Cunningham

D Drag

d Drift

dom Domain

el Electrode

em Emission

f Final

fl Background fluid

G Gravity

I Image

i Initial

j Jet

m Mass

n Number

norm Normalized

p Particle

q Charge

R Rayleigh

red Reduced

ref Reference

rel Relative

RPA Retarding potential analyzer

t Tilt

TN Tangential momentum

v Viscous relaxation

w Wall

x Lateral x position coordinate

y Lateral y position coordinate

z Axial position coordinate

Variables

ṁ Mass flowrate

ϵ0 Permittivity of vacuum

γ Ratio of specific heats

γST Surface tension

λ Mean free path

a Acceleration

c Exit velocity

E Electric field

xxi

F Force

Isp Specific impulse

K Mobility

R Position

T Thrust

v Velocity

µ dynamic viscosity

ν kinematic viscosity

ϕ Azimuthal angle/Potential

ρ Density

σ Cross-section

θ Angle

ε Emittance

a Speed of sound

b Impact Parameter

C Coefficient

d Diameter

I Current

j Mass flux

k Thermal conductivity

Kn Knudsen number

L Characteristic length

l Jet tip to reference point distance

LOS Line-of-sight angle

m Mass

Ma Mach Number

n Number of particles/samples

P Pressure

p Momentum/ Predicted Variable

q Charge

R Correlation

r Radius/Radial Position

Re Reynold’s number

T Temperature

t Time

x′ Momentum Angle, x component

x Lateral x position coordinate

y Lateral y position coordinate

z Axial position coordinate

xxii

ACKNOWLEDGMENTS

I would first like to thank my advisor, Professor Richard Wirz, for recognizing my potential

and supporting my development as a researcher. Through both foreseen and unforeseen chal-

lenges in my graduate studies, you have been an understanding mentor. I would also like to

express my thanks to my graduate committee members: Prof. Jeff Eldredge, Prof. Kunihiko

Taira, Prof. Jacob Bortink, and Dr. David Bilyeu. My interest in and understanding for

my research grew through your lessons, and beyond the classroom and the laboratory, you

have been kind to and inspired me.

I would also like to thank those who mentored me at the Air Force Research Laboratories

during my NDSEG Fellowship: Dr. Justin Koo, Dr. Daniel Eckhardt, and Dr. Rob Martin.

Under your mentorship, my dissertation research was bettered by peer review long before it

was submitted for publication. I am further grateful to my mentors in electrospray research

at NASA JPL, Dr. John Ziemer and Dr. Colleen Marrese-Reading. Your passion inspires

me even more than your incredible research, and I am thankful for your encouragement of

my contribution to our field. To the fellow women in electric propulsion, it is an honor to

count myself among you. Thank you to Dr. Elaine Petro, Dr. Deborah Levin, Dr. Colleen

Marrese-Reading, and Dr. Kristina Lemmer for being visible beacons of success in our field.

I have been thankful for your presence every time we’ve been in the same room, and your

words of encouragement have carried their weight tenfold.

I am thankful to have completed this PhD in a laboratory full of people I can not only

call incredible scientific researchers, but also dear friends. Mary Konopliv, Peter Wright, Ani

Thuppul, Henry Huh, Nolan Uchizono, Adam Collins, Gary Li, Stephen Samples, Patrick

Crandall, Graeme Sabiston, Shehan Parmar, Gary Wan, Rich Obenchain, Blake Haist, and

Luke Franz – I’m so thankful this experience was one shared with you guys. To the elec-

trospray team members – when I think of this PhD, I will think of our row in the cubicles,

complete with kitchen stall and custom calendar. I am thankful to have experienced the free-

xxiii

dom of graduate school before Covid with you, and to have relied on each other amidst the

difficulties of the pandemic. I’m also thankful that the Plasma, Energy & Space Propulsion

Laboratory has grown to include members at Oregon State University, because this growth

has brought friendships and new ideas which have enriched this dissertation.

Finally, I express my deepest thanks to my family. Thank you to my husband, Jeremy

Breddan, for supporting me through all the highs and lows of this PhD. The joy that you

bring into my life makes doing the hard things possible. Thank you to my mother, Laurie

Davis. I am who I am for your efforts. You have seen every paper, presentation, and draft

of this dissertation, supported me through every frustrated phone call, and celebrated every

accomplishment. In all I do, I hope to make you proud. To my brothers, the responsibility

of being your older sister has always inspired me to be my best. To Conor, your tenacity

for defining and pursuing success for yourself inspires me to do the same. To Evan, your

kindness has lifted me up when I need it most. To my father, Malcolm Davis, I am thankful

for my earliest inspirations to pursue aerospace engineering. Camping trips looking at the

stars of the Arizona desert are my earliest memory of love for the cosmos. Finally, to my

grandmothers, Joy Ott and Laura Davis, I am thankful for your love and nurturing. I have

always felt myself to be part of a lineage of incredible women, and I am thankful to you for

establishing that.

I dedicate this dissertation to my grandfathers, Dr. Donald Eugene Ott and Dr. Frederick

Gerald Davis. Your love of learning, encouragement of my education from an early age, and

support for my graduate pursuits have been my inspiration to continue through the most

challenging parts of earning my PhD. Through all my successes in life, I will think of you.

This dissertation research was supported by the National Defense Science and Engineer-

ing Graduate Fellowship (No. 7275700478), NASA Jet Propulsion Laboratory (Award No.

1580267), and the Air Force Office of Scientific Research (Award No. FA9550-21-1-0067).

xxiv

VITA

2015 Research Intern, Physics Department, Rhodes College

2016 Research Assistant, Astrophysics Department, University of Birmingham

2016 Budapest Semesters in Mathematics Program

2017 Engineering Intern, American Pan

2017 Goldwater Scholarship

2018 B.S. (Physics, Mathematics), Rhodes College

2018 - 2019 UCLA Mechanical and Aerospace Engineering First-Year Research Fellow

2019 NASA Space Grant

2019 - 2021 National Defense Science and Engineering Graduate Fellow

2020 - 2024 Graduate Writing Consultant, UCLA

2021 M.S. (Aerospace Engineering), UCLA

2021 - 2024 Graduate Research Student, Plasma, Energy & Space Propulsion Labora-

tory, UCLA

PUBLICATIONS

xxv

Electrospray Plume Evolution: Background Pressure Influence. M. J. D. Breddan and R. E.

Wirz. Journal of Aerosol Science, (2024), Accepted with Revisions.

Machine Learning Electrospray Plume Dynamics. M. J. D. Breddan and R. E. Wirz. Engi-

neering Applications of Artificial Intelligence 133 D, 108095 (2024).

Electrospray Plume Evolution: Influence of Drag. M. J. D. Breddan and R. E. Wirz. Journal

of Aerosol Science 167, 106079 (2023).

Multi-spatial-mode effects in squeezed-light-enhanced interferometric gravitational wave de-

tectors. Daniel Töyrä, Daniel D. Brown, McKenna Davis, Shicong Song, Alex Wormald, Jan

Harms, Haixing Miao, and Andreas Freise, Physical Review D 96, 022006 (2017).

Exact and Approximate Capacitance and Force Expressions for the Electrostatic Interaction

Between Two Equal-Sized Charged Conducting Spheres. Shubho Banerjee, Mason Levy,

McKenna Davis, and Blake Wilkerson, IEEE Transactions on Industry Applications 53 (3),

2455 - 2460 (2017).

xxvi

CHAPTER 1

Introduction

This section begins with a brief introduction to spacecraft propulsion before presenting the

governing physics and current state in spacecraft propulsion of the electrospray. This section

concludes with the motivation, objective, hypothesis, and approach of this dissertation, and

an outline of the dissertation manuscript.

1.1 Spacecraft Propulsion

In keeping with Newton’s First Law of Motion, spacecraft at rest will remain at rest unless

an unbalanced force is exerted upon them. Space is full of unbalanced forces, from gravita-

tional and electromagnetic fields, to thermal and solar radiation pressures. Many missions

utilize these existing forces to propel spacecraft towards a designated location, but the set of

trajectories traversable under only these forces is limited. Therefore, many missions require

additional onboard propulsion systems to augment or counter existing forces and access a

much wider range of space.

Moving through space requires changes in spacecraft momentum. To generalize trajectory

planning for any mass of spacecraft, aerospace engineers utilize the metric of change in

velocity, or mass specific change in moment:

∆v = gIsp ln

(
mi

mf

)
, (1.1)

where g is the gravitational acceleration constant on Earth, mi is the spacecraft initial mass

with all propellant, mf is the spacecraft final mass after expelling all propellant, and Isp is

1

the specific impulse of the spacecraft, defined as

Isp =
T

gṁ
, (1.2)

where ṁ is propellant mass flowrate and thrust is

T = cṁ, (1.3)

where c is the propellant exit velocity.

Propulsion systems which control spacecraft orientation by providing changes in angular

momentum are termed attitude control systems. Examples include momentum wheels, con-

trol moment gyroscopes, and Vernier thrusters. Attitude control systems allow spacecraft

to rotate and face targets for long periods of time, for purposes including weather tracking,

satellite communication, military reconnaissance, and cosmological studies. Other propul-

sion systems provide changes in translation momentum, allowing spacecraft to move through

space. There are discrete classes of such spacecraft propulsive devices: thermal, chemical

and electrical.

Thermal propulsion systems create momentum by releasing heated or pressurized pro-

pellants. Examples include cold gas thrusters, steam rockets, and nuclear thermal rockets.

In these systems, propellant is pressurized or heated prior to entering the thruster system,

unlike in chemical propulsion in which propellant is heated and gains momentum in a chem-

ical reaction such as fuel oxidation. Chemical propulsion systems can utilize solid fuel, as

exemplified by the earliest rockets, 13th century Chinese gunpowder rockets. They can also

utilize liquid propellants, as demonstrated by the Space Shuttle used to place humans in

orbit. Liquid-propellant rockets are further divided into monopropellant, bi-propellant, and

tripropellant systems, which use one, two, and three types of propellant, respectively, in the

same system. Hybrid rockets combine solid-fuel and liquid-propellant propulsion systems,

using a solid propellant in the combustion chamber and adding a liquid or gas oxidizer for

combustion. Chemical propulsion systems are heralded for the high thrust to mass ratios

2

they achieve by accelerating heavy particles (yielding high thrust through high mass flowrate

following Eq. 1.3). However, such systems are specific impulse limited by the terminal ve-

locity the heavy particles can reach in the chemical reaction, typically with Isp < 450 s.

Electric propulsion systems create momentum by using electrostatic or electromagnetic

fields to accelerate particles to higher velocities than is possible with chemical propulsion.

These fields can be increased in strength as spacecraft power capabilities allow to exert more

force on a particle than a chemical reaction can impart. Furthermore, the particles acceler-

ated in electric propulsion systems can be as low-mass as single charges, such that they reach

higher terminal velocities under the same applied force than heavy fuel particles in chemical

propulsion systems. Electric propulsion systems include ion engines (famously featured in

Star Wars) such as gridded ion engines and Hall effect thrusters, pulsed plasma thrusters,

magneto plasma dynamic thrusters, resistojets, arcjets, air breathing electric propulsion

systems, field emission electric propulsion thrusters, and electrospray thrusters. Electric

propulsion systems are capable of delivering specific impulse on order of 10.000 s. However,

such systems are thrust-limited by the electric power available on the spacecraft. Low-mass

propellant corresponds to a lower mass flowrate, and propellant exit velocity depends on

the field strength created with available electric power, so thrust also depends on available

power following Eq. 1.3. The thrust provided by electric propulsion systems is often lower

than in chemical propulsion systems where heavy fuel provides a higher mass flowrate. The

thrust and specific impulse capabilities of various thermal, chemical, and electric propulsion

systems are shown in Fig. 1.1.

The choice of propulsion systems depends on mission objectives. Chemical propulsion

systems are the default choice for liftoff systems because they provide sufficient thrust to

exit the Earth’s atmosphere. Electric propulsion systems utilize charged gaseous propellants

much lighter than the fuel and oxidizers required for chemical propulsion, enabling a range

of propellant-limited missions from multi-year deep space missions, which must preserve pro-

pellant to ensure long operational lifetimes, to Lower Earth Orbit (LEO) CubeSat endeavors,

3

Figure 1.1: Thrust vs. specific impulse for several common spacecraft propulsion systems[1].

which are size-limited in the propellant quantity they can carry. The number of launched

CubeSats has increased exponentially since the technology’s inception as shown in Fig. 1.2,

signaling an increased need for electric propulsion technologies in the future.

1.2 Electrospray Plume Physics

The term electrospray is used to refer to both a) the physical phenomenon of an electrified

jet forming and releasing a fine aerosol in response to a strong electric field and b) the

apparatus which deliberately applies an electric field to a fluid meniscus to prompt this

physical phenomenon. This dissertation will utilize the second definition by default, although

many statements herein will be true for both definitions. Electrospray will also be used as

an adjective, such as in the cases of ‘electrospray thruster’ and ‘electrospray ionization.’

Electrosprays create an aerosol from a liquid meniscus through the application of a

4

Figure 1.2: Total nanosatellites and CubeSats launched in recent years demonstrates expo-

nential increase trend in CubeSat launches.[2].

strong electric field which electrohydrodynamically deforms the meniscus into one or mul-

tiple cone-jets which emit charged particles (droplets, ions, and/or ionic clusters). These

like-charged emitted species repel one another through Coulomb interactions, evolving into

a 3-dimensional plume over time. The means of supplying liquid to be sprayed can be ac-

tive, such as applying pressure to move fluid through a capillary needle, or passive, such as

through the innate capillary forces in a porous mesh. The electrostatic potential difference

which induces fluid motion is created between the emitter and a downstream electrode. In

many electrospray applications, such as mass spectrometry[25, 26] the single downstream

electrode is a solid collector plate. In thrust-producing electrospray applications, there are

one or more downstream electrodes commonly termed ‘grids’ which contain thrust-releasing

apertures. An electrospray geometry with two downstream electrodes with thrust-releasing

apertures is visualized in Fig. 1.3.

Electrospray plume particle populations have been observed to vary from nearly homo-

5

Figure 1.3: Electrospray geometry for a thrust-producing application. The electric potential

difference is generated between the emitter and downstream electrode, which has an aperture

to allow for thrust release. [3]

6

Figure 1.4: Cloud plumes of small secondary particles are separated from central primary

particle plumes in bi-modal inhomogeneous plumes.[4]

geneous in species to highly inhomogeneous, containing particle with a wide range of size,

mass, and charge. In plumes with pronounced bi-modality in the emitted particle popula-

tion, there is marked species separation in the plume as shown in Fig. 1.4. At lower angles

the plume consists of larger ‘primary’ particles, at higher plume angles there is a ‘cloud’

plume of smaller ‘secondary’ particles, and at middle angles there is sometimes a ‘dark zone’

with low particle density.

The mechanisms of secondary particle production which yield inhomogeneous plumes oc-

cur both during and after particle emission from the electrified jet. These means of secondary

production, depicted in Fig. 1.5, are:

• Emission of minute ‘satellite’ particles from the jet between larger primary particles.

• Electric field-induced ion emission the fluid meniscus when the surface electric field

magnitude surpasses a fluid-dependent threshold value on the order of E =1Vnm−1,

typically at the ‘neck’ of the cone jet where curvature and thereby electric field strength

are maximized[27].

• Electric field-induced ion emission from the surface of primary particles after emission

if the surface electric field magnitude surpasses a fluid-dependent threshold value on

the order of E =1Vnm−1 [27].

7

Figure 1.5: Sources of secondary particle production.

• Coulomb fission (also called Coulomb explosion) of a primary particle emitted with

charge higher than its Rayleigh limit[28]:

qR = π
√

8γST ϵ0d3, (1.4)

where γST is surface tension, d is particle diameter, and ϵ0 is the permittivity of free

space. Electrospray particles have been reported to fission with charges as low as 60%

of the Rayleigh limit because their shapes deform from the spherical ideal.

• Electric field-induced ion emission or Coulomb fission of a particle created by the

coalescence of multiple primary particles following emission which meets the above

thresholds for secondary particle production.

The time required for ion emission is shorter than that for a Coulomb fission such that

particles preferentially field-emit ions. Field-emission of ions can suppress Coulomb fission

in a particle emitted over its Rayleigh limit by rapidly charge-reducing the particle to below

its Rayleigh limit.

8

Figure 1.6: The first published images of the electrospray [5].

Electrosprays (the physical phenomenon) were first theorized by Lord Rayleigh when he

derived the Rayleigh limit, who hypothesized that spherical fluid particles could reach such

a charge threshold before throwing out fine jets of liquid. The first images of an electrospray

were published by John Zeleny in 1917[5], presented in Fig. 1.6, beginning over a century

of research into the many behavioral/operational modes of electrosprays. Primary modes

which have been identified include spindle, pulsating, whipping, multi-jet, and the optimal

cone-jet mode[4]. Electrospray modes have been experimentally discretized as functions of

flowrate and applied voltage as displayed in Fig. 1.7. In the cone-jet mode, a single jet emits

particles within a small displacement range of the axis of emission. The cone formed by the

fluid meniscus was studied by Sir Geoffrey Ingram Taylor in the 1960s, who found that it

has a half angle of 49.3◦ in the optimal cone-jet mode, a geometry now know as the Taylor

cone[29].

9

Figure 1.7: Electrospray behavioral modes experimentally mapped over a range of flowrate

and voltage [6].

1.3 Electrospray Spacecraft Propulsion

Applications of the electrospray have developed simultaneously alongside efforts to visual-

ize and describe the electrospray. Once a niche scientific phenomenon, electrosprays have

found use in ink-jet[30, 31] and 3D printers[32, 33]; drug delivery systems[34]; automotive[35],

agricultural[36, 37], cleaning[38, 39, 40], and fire-fighting sprays[41, 42, 43]; and mass spectrometry[25],

for which John Fenn and Koichi Tanaka were awarded the Nobel Prize in Chemistry in 2002.

Electrosprays are also applicable for spacecraft propulsion, having demonstrated successful

in-space operation in 2015 on the Space Technology 7 Disturbance Reduction System (ST7-

DRS), a National Aeronautics and Space Administration (NASA) technology demonstration

payload of the European Space Agency (ESA) Laser Interferometer Space Antenna (LISA)

Pathfinder (LPF) Mission [44].

The LISA Mission aims to observe the gravitational waves predicted by Einstein’s Theory

of General Relativity without noise from vibrations in the crust of the Earth, and the LISA

Pathfinder spacecraft demonstrated the several key technology components for the future

10

LISA Mission. Figure 1.8 shows an expanded view of the LISA Pathfinder spacecraft compo-

nents. This mission used a bi-propellant chemical propulsion system to reach the Lagrange

1 point in space, which then detached (‘Propulsion Module’ in Fig. 1.8). Once stationed,

the spacecraft used electrospray propulsion systems (‘Electric propulsion’ in Fig. 1.8) for

high-resolution thrust stabilization during gravitational-wave observation. These electro-

spray thruster devices were developed by Busek and are named the Colloid MicroNewton

Thrusters (CMNTs) after their micro-Newton thrust precision capabilities. When the CMNT

Disturbance Reduction Systems (DRS) were active, noise was comparable to the diameter

of a DNA Helix (2 nm). One of the of the CMNTs is displayed in the inset in Fig. 1.8,

showing four arms extruding from a main body containing the power source, among other

components. Each arm ends with a gridded array, and each hole in the grid is the thrust-

releasing aperture for a single electrospray. This gridded electrospray thruster structure is

highly scalable because the grid size can be expanded to meet mission requirements.

1.3.1 Electrospray Divergence Considerations

The LISA mission requires operational thruster lifetime an order of magnitude greater than

the 2,400 hours demonstrated by the LISA Pathfinder DRS thrusters. While performance

enhancements are always desirable, operational lifetime is the metric limiting the use of

electrospray thrusters for propulsion in current and upcoming spacecraft missions. Figure

1.9 presents a hierarchical failure tree of electrospray life-limiting mechanisms. Each first-

tier failure mechanism is inherent to electrospray operation in a thrust-releasing system:

overspray describes plume constituents which reach too wide of angles to pass through the

thrust-releasing aperture, backstreaming electrons are generated through overspray and then

guided by the applied electric field, and electrochemical interactions are induced between such

backstreaming electrons and emitted particles. From this failure tree, overspray has been

identified as the primary life-limiting mechanism, presented in Fig. 1.10. Particles which

reach too wide of angles to exit through the thrust-releasing aperture instead impinge on

11

Figure 1.8: An expanded view of the LISA Pathfinder spacecraft, with ‘Electric propulsion’

labels added to the original figure from [7]. The insert figure shows one of the Colloid

MicroNewton Thrusters providing electrospray propulsion [8].

12

Figure 1.9: A hierarchical tree of life-limiting/failure mechanisms for electrospray

thrusters.[3]

the downstream electrodes critical in electrostatic thrust generation. These fluid particles

are absorbed by the electrode until it exceeds its volumetric absorption threshold, triggering

propellant backspray towards the emitter and electrical shorting. Over multi-year periods

of thruster operation, even a minute percentage of emitted flux incident on downstream

electrodes will cause thruster failure through these overspray mechanisms.

Following the overspray life-limiting mechanism, the widest angles of the plume with the

lowest particle density are most critical to electrospray thruster lifetime extension efforts.

This key criteria is dissimilar to many other electrospray applications, such as printing

and drug delivery, which are concerned with the central majority of the plume rather than

its edges. Experimental measurements at wide plume angles are difficult to obtain and

prone to high uncertainty due to the relative lack of particle flux to such angles. Therefore,

electrospray plume modeling is needed to provide further insight towards electrospray plume

structure at wide angles. Experimental and computational studies work with synergy on

13

Figure 1.10: Particles optimally exit the thruster and produce thrust (1); however, overspray

to the first ‘extractor’ grid (3) and a secondary downstream ‘accelerator’ grid (2) occurs from

particles displaced to wide plume angles, (5) and (4) respectively, by Coulomb interactions,

represented by (7) and (6) respectively. The two grids will eventually become saturated and

backspray upstream, (9) and (8) respectively[3].

14

electrospray thruster designs to optimize thruster lifetimes for future of missions of interest.

The operational lifetime of an electrospray thruster before overspray fully saturates a

downstream electrode can be analytically estimated given a functional form of the mass

flux, j, in the plume, such as a Gaussian distribution of mass flux over plume angles θ:

j(θ) = exp

(
− θ2

2σ2
m

)
, (1.5)

where σm is the standard deviation of the mass flux distribution[3]. Non-Gaussian mass flux

distributions have also been reported, such as Super-Gaussian distributions[45, 23]:

j(θ) = A(IB) exp

(
−
(
(θ − θt)

2

2σm(IB)
2

)n
)
, (1.6)

where A is a scale factor which is a function of beam current IB, θt is the tilt angle of the

plume (0 in an ideal case), and n is the order of the super-Gaussian. The time for propellant

overspray to saturate an electrode depends on many factors, such as the electrode aperture

radius, the applied electric field, the emitter-to-electrode distance, and the open volume of

the porous electrode material. The emitter aperture radius and emitter-to-electrode distance

can be collectively represented using a line-of-sight angle, shown in Fig.1.11 and calculated

by

LOS = arctan

(
rel
zel

)
, (1.7)

where rel is the radius of the electrode aperture and zel is the axial coordinate of the electrode

with the origin coordinate at the center of the emitter tip. Assuming Gaussian mass flux

distributions, the impact of varying LOS and electrode open volume on time to saturate

a downstream electrode for different standard deviations σm of mass flux distribution is

illustrated in Fig. 1.12, reproduced from [3]. The best method for improving lifetime is

beam confinement, moving left along the horizontal axis. However, changes to the electrode

geometry dictating LOS and changes to the electrode material dictating porous capacity

can also improve lifetime. The influence of changes to electrode geometry on electrospray

plume divergence is further discussed in Chapter 3.

15

Figure 1.11: The line-of-sight angle between the emitter and a the aperture edged of a

downstream electrode.

Figure 1.12: The effect of changes to electrode geometry (LOS), porous electrode capacity

(open volume), and beam shape (standard deviation σm of Gaussian mass flux distribution)

on electrode (in this case, an ‘accelerator’ grid) saturation time.[3]

16

In order to increase thruster lifetimes by confining the electrospray beam, or limiting

the plume divergence, we must understand the sources of plume divergence and the mecha-

nisms which grow divergence as the plume evolves. Furthermore, we must develop industry

standards for characterizing plume divergence in order to measure the success of proposed

means of beam confinement. These motivating factors and the objective of this dissertation

research towards these needs are presented in the following section.

1.4 This Dissertation

The motivation for this dissertation research is to improve the lifetime of electrospray

thrusters for spacecraft propulsion. In Sec. 1.3.1, we discussed that electrospray thruster

lifetimes are primarily limited by propellant backspray which occurs as a result of propellant

flux to downstream electrodes. The amount of propellant flux to downstream electrodes

depends on the divergence of the electrospray plume. Therefore, the objective of this dis-

sertation is to characterize the physics governing electrospray plume divergence and the

resulting plume shape.

The electrospray plume is governed by three major forces: the electrostatic force from

the potential difference between the emitter and downstream electrodes, the Coulomb force

between particles, and the counter-motion drag force. Based on high speed video of elec-

trospray particle dynamics presented in Sec. 4.1 which shows particles clustering prior to

diverging, we hypothesize that Coulomb forces are the dominant force in electrospray plume

expansion. Our approach to investigating this hypothesis is to computationally study the

influence of each of these forces on electrospray plume evolution using a Lagrangian model

of electrospray plume particle dynamics.

The outline of the dissertation is as follows. In chapter 1, we present introductions to

spacecraft propulsion in general, electrospray physics, and electrospray spacecraft propulsion.

This chapter concludes with the present outline of the dissertation manuscript. Chapter 2

17

presents the Discrete Electrospray Lagrangian Interaction (DELI) Model for simulating elec-

trospray plume evolution, including validation of the model published in [46]. Chapters 3-6

discuss electrospray plume divergence physics: Chapter 3 focused on the applied electro-

static force from potential difference between electrodes, Chapter 4 on the Coulomb force

between charged particles, Chapter 5 on the drag force, and Chapter 6 on the other forces

not included in the DELI Model. Chapter 7 presents a new means of electrospray plume

divergence analysis. Chapter 8 applies machine learning algorithms to particle evolution

data produced by the DELI Model. Finally, Chapter 9 summarizes the major conclusions

of this dissertation and presents future work which expands upon this dissertation research.

The dissertation appendices present: empirical coefficient of drag terms used in DELI Model

simulations (App. A), variable histograms for the machine learning studies (App. B), hyper-

parameter tuning information for the machine learning studies (App. C), plume evolution

parameter studies (App. D), unpublished analytical efforts of dissertation research including

nondimensionalization of the governing equation (App. E), and the code for the DELI Model

in C++ (App. F).

18

CHAPTER 2

Electrospray Plume Modeling

This chapter presents the computational approach of this dissertation research to investigat-

ing electrospray plume evolution. It begins with a literature review of electrospray plume

modeling efforts. Next, the end-to-end electrospray evolution model developed by the UCLA

Plasma, Energy & Space Propulsion Laboratory is presented, followed by the introduction

of the Discrete Electrospray Lagrangian Interaction (DELI) model developed during this

dissertation, which is part of the end-to-end model. Finally, canonical verification and ex-

perimental validation of the DELI Model are presented.

2.1 Literature Review

The first simulation of electrospray plume evolution was developed by Ganan-Calvo et al. in

1994[9]. The authors utilized a Lagrangian approach and a governing equation with applied

electrostatic, Coulomb, drag, and image charge forces to simulate the evolution of a single

electrospray plume. This seminal work serves as the foundation for many other publications:

Tang and Liu propagated the plume in the vacuum domain relevant to colloid thrusters[47];

Gamero-Castaño also simulated in vacuum, but used a line-of-charge approximation for the

Coulomb term[48]; Deng and Gomez also used a line-of-charge approximation for space

charge and also extended their simulations from single electrosprays to multi-plexed electro-

spray systems[49]; Yang et al. also simulated multi-plexed electrosprays, but on a Personal

Super Computer with theoretical computational power of 10 TFlops[50]; Oh et al.[51] and

Jung et al. studied dual or “twin” nozzle systems[52]; and Wilhelm et al. introduced a

19

solvent evaporation module[10]. Grifoll and Rosell-Llompart have published extensively on

simulating plume evolution[53, 11, 54, 55, 26]. They along with Arumugham-Achari inves-

tigated simulation timestep[55], Coulomb explosions[26], induced flow in the background

gas, vapor concentration, gas temperature, and residual charges[54]. Some non-Lagrangian

approaches to electrospray plume modeling have also been proposed: Higuera utilized an

Eulerian approach to plume propagation[56], and Cui and Weng utilized a PIC approach to

plume simulation, assuming the plume (in this case an ion beam) becomes Coulombically

collisionless soon after emission[57].

All charged particles in an electrospray interact Coulombically, creating a computation-

ally expensive n-body problem, with n2 Coulomb force calculations in each time step, where

n is the number of particles. Therefore, methods of approximating the Coulomb term have

been proposed to increase computational efficiency. Early efforts to curtail the Coulomb

term were made by Rietveld, who neglected all Coulomb forces[58], and Hartman et al., who

restricted the the Coulomb term to consider only the closest 120 particles[59]. The line-of-

charge approximation to the plume used by Gamero-Castaño[48] and Deng and Gomex[49] is

another simple means of approximating the Coulomb term. This method was shown to accu-

rately resolve the evolved plume outline, but misrepresent interior plume structure[49]. More

sophisticated and accurate means of approximating space charge were developed by Grifoll

and Rosell-Llompart, such as the such as the Lumped Space Charge[11] and Continuous

Charge[53] methods.

In recent years, methods have been proposed which discretize the electrospray plume and

treat independent regions differently. Gamero-Castaño[13] defined a radial threshold around

emission, within which a fully discrete Coulomb term was used and outside of which Poisson’s

equation was solved in a manner similar to Grifoll and Rosell-Llompart’s Continuous Charge

method[53]. Similarly, Petro et al. defined two radial thresholds around emission: within

the first 5 µm radially, the Coulomb force was calculated fully discretely in every timestep;

between the first and second radial thresholds (5 µm < r 250 µm), the Coulomb force was

20

calculated fully discretely but only updated every 10 timesteps; outside the second radial

threshold (r > 250 µm), Coulomb interactions were neglected [14]. Grifoll and Rosell-

Llompart also proposed discretizing the electrospray plumes, but for the purpose of using

different simulation timesteps in the different regions instead of different Coulomb force

terms, termed the Zonal Time Stepping method [11]. Specifically, a smaller timestep was

used closer to emission, where Coulomb interactions occur most frequently, than was used

further downstream where particle density is lower.

2.2 End-to-End Model System

The electrospray is comprised of multiple scales of physics and is governed by balances of

different forces in different regions. Therefore, it is best approached computationally with

a multi-model system in which it is discretized into regions with different governing equa-

tions. These regions, each with a unique associated model, are displayed in Fig. 2.1. The

Extraction Region, in which an ideally axisymmetric cone-jet forms and emits particles,

is simulated with an electrohydrodynamic computational fluid dynamics (CFD) model[60];

analytical equations have also been developed for emitted particle properties based on jet

properties[4]. In the UCLA PESPL, the model for this region was developed by Henry Huh

during his dissertation research[61] and is named the Plasma & Space Propulsion Laboratory

Electrohydrodynamic Model (PSPL-EHD). In the Transition Region, particle break-up and

coalescence occurs following emission on very small scales (nanometer to micron order), ne-

cessitating molecular dynamics (MD) models. Research in this region was completed in the

UCLA PESPL by Shehan Parmar during his thesis research[62]. In the Interaction Region,

the plume has high particle density in the region following emission, and Coulomb interac-

tions between particles dominantly govern plume dynamics. This region of the plume is the

focus of this dissertation, and the model for this region is described in detail in the following

Sec. 2.3. In the Plume Region, the plume has expanded enough that Coulomb interactions

21

Figure 2.1: End-to-end model system for electrospray plume evolution consists of discretized

regions based on governing physics.

no longer dominate particle dynamics, and the plume can be simulated with solely applied

electrostatic forces. This process is completed in the PESPL using the commercial software

COMSOL Multiphysics 5.1. Computational and analytical research in this region was com-

pleted by Shehan Parmar during his thesis research [63, 64]. The threshold between the

Interaction Region and the Plume Region is discussed further in Sec. 4.4. Additional facility

effects such as electron backstreaming were investigated through environmental models by

Nolan Uchizono during his dissertation research [65, 66] and Jared Magnusson during his

thesis research [67].

Information is passed between models to create an end-to-end model of the electrospray

system, from jet formation, to particle emission, to plume evolution. The CFD model in the

Emission Region PSPL-EHD model provides emitted particle data (charge, radius, mass,

22

3D location, 3D velocity) to the Transition Region MD model. The Interaction Region par-

ticle tracking model takes input particle data directly from the Emission Region model if

breakup and coalescence effects are being excluded; otherwise, the Interaction Region model

can take input particle data from the output of the Transition Region MD model. The

particle data output by the Interaction Region particle tracking model is input to the Plume

Region model, which in turn outputs particle dynamics data at any given downstream loca-

tion. Information from environmental models, such as electron backstreaming populations,

can be incorporated into each of the primary plume propagation models. For example, a

backstreaming electron population can be introduced into the Interaction Region as a neg-

ative charge species emitted at the downstream end of the domain[66, 65]. All models are

capable of operating independently of the others to study their specific plume regime given

appropriate input data from any source, such as from the literature.

2.3 DELI Model

The Discrete Electrospray Lagrangian Interaction (DELI) Model was developed during this

dissertation in order to simulate electrospray plume evolution. This model is part of the

end-to-end model system introduced in Sec. 2.2 and covers the Interaction Region where

Coulomb forces dominate plume evolution. While the electrospray plume modeling literature

includes examples of both Lagrangian[9, 11, 68] and Eulerian[56] models, the DELI model

was chosen to be Lagrangian in order to divulge the dynamics of individual particles which

reach wide plume angles and detract from thruster lifetime. Furthermore, Eulerian methods

can misrepresent the influence of inter-particle Coulomb forces in high charge density areas

such as the Interaction Region. A fully discrete approach to Coulomb forces was chosen

for the DELI model to optimize simulation accuracy despite this approach being computa-

tionally intensive. Study into the regions of the plume, potentially time-evolving, in which

space charge can be approximated while preserving simulation accuracy is an active area of

23

electrospray plume modeling research and is further discussion in Ch. 4.

This section will present the governing equations of the DELI model, the model algo-

rithm for plume evolution including a flowchart representation, details of the time-stepping

algorithm and time step size, and a description of the particle emission module. Following

the introduction of the model, verification of the applied electrostatic module, and Coulomb

module, and the time-stepping algorithm are presented. Finally, validation with results from

the literature is provided for full electrospray plume evolution.

2.3.1 Governing Equations

The DELI Model utilizes the following governing force equation to simulate particle motion

in the vacuum of space:

ma = q(EA + EC)

= qEA +
q

4πϵ0

n∑
j=1

qiri
|ri|3

(2.1)

where m is particle mass, a is particle acceleration, q is particle charge, EA is the electric field

applied by electrodes, EC is the the Coulomb field induced by other particles (space charge),

ϵ0 is the permittivity of vacuum, n is the total number of particles, and ri is the separation

vector from particle i. The 2D-axisymmetric static electric field applied by the electrodes EA

is obtained from COMSOL Multiphysics 5.1 by fitting a fine, adaptive mesh to the relevant

emitter-electrode geometry and applying the relevant electric potentials. A Taylor cone with

semi-angle 49.3◦ is staked to the emitter radial edge (outer radial edge in the case of a tapered

emitter), and a jet with length 13.5 times the mean particle diameter[9, 53] and radius 1.89

times the mean particle radius is emitted from the tip of the cone. This jet-to-mean-particle

radius ratio was first derived by Rayleigh for atmospheric, uncharged jet breakup[69, 28]

and holds for steady cone-jet mode electrosprays of lower-conductivity propellants[70, 71, 72],

although it has been challenged for electrosprays of high-conductivity propellants[73, 74, 75].

Both the Taylor cone and jet are held at the same voltage as the emission electrode in the

24

COMSOL model unless otherwise specified. By setting the emitted cone and jet to the high

potential of the emitter, the repulsive force exerted on emitted particles from the cone and

jet is included in the electric field force applied by the electrodes, EA, in Eq. 5.19 governing

particle motion. The 2D-axisymmetric electrostatic field is imported from COMSOL to the

DELI Model and interpolated onto 3D particle coordinates assuming axisymmetry. The

interpolation utilizes the nearest-neighbor method, in which particles experience the electric

field associated with the closest point on the imported EA data mesh, to obtain the electric

field acting on each particle in the plume.

When simulating atmospheric validation cases, a drag term is included in the particle

governing equation. This drag term is empirical and dependent on emitted particle charac-

teristics and properties of the background fluid. For incompressible, continuum flow, Stokes

found the drag force on a sphere to be directly proportional to its diameter:

FD = −3πdνflv, (2.2)

where νfl is the kinematic viscosity of the surrounding fluid[17]. In more compressible or

rarefied flow environments, the drag force on the particle departs from the Stokes solution:

FD = −π

8
d2νflCDv|v|, (2.3)

where CD is the coefficient of drag. Stokes analytically determined the coefficient of drag

when the Reynolds number is Re << 1, where

Re =
|v|d
νfl

, (2.4)

and the Knudsen number Kn << 1, where

Kn = l/d, (2.5)

and

l =
1

ρnσ
(2.6)

25

is the particle mean free path, ρn is the number density of the surrounding fluid particles,

and σ is the cross-section of the surrounding particles, to be

CD = 24/Re. (2.7)

Otherwise, the coefficient of drag is determined empirically[16, 19, 76, 77, 78] over specific

range of flow parameters Re, Kn, and Ma, where Ma is Mach Number:

Ma =
|v|
a
. (2.8)

Note that Knudsen, Mach, and Reynolds number are related by

Kn =
Ma

Re

√
γπ

2
, (2.9)

where γ is the ratio of specific heats, such that knowing two flow parameters determines the

third. The collection of empirical coefficients of drag utilized during dissertation research

studies is given in Appendix A. With the addition of the drag term from Eq. 5.17, the

governing equation becomes

ma = q(EA + EC)− FD

= qEA +
q

4πϵ0

n∑
j=1

qiri
|ri|3

− CD
π

8
ρfld

2v|v|.
(2.10)

When simulating non-thruster geometries with solid collector plate electrodes, rather

than electrodes with thrust-releasing apertures, Eq. 2.10 is modified to include an image

charge term which accelerates particles as they approach the collector plate:

ma = q(EA + EC + EI)− FD

= qEA +
q

4πϵ0

n∑
i

qi

(
ri
|ri|3

− rIi
|rIi|3

)
− CD

π

8
ρfld

2v|v|,
(2.11)

where EI is the field due to image charge in the collector plate, and rIi is the separation

vector from each image charge, which has axial component 2H− zi, where H is the collector

plate height and zi is the axial coordinate of the particle yielding the image. In the case that

26

there is a downstream electrode with a thrust-releasing aperture, there will still be an image

charge attraction induced by charged particles in the electrode, but it is more geometrically

complex than for the parallel collector plate case and is currently simplfied to Eq.2.11 in the

model. A diagram of the forces in Eq. 2.11 is presented in Fig. 2.2.

Particles are assumed to be perfectly spherical in drag force calculations. In Coulomb

force calculations, they are treated as uniform spherical charges, with the high-order effects

of motion of charge on the surface of fluid droplets excluded from the current model. Charge

motion in fluid droplets and its influence on their Coulomb interactions has been researched

in the literature [21, 79] and is discussed in Sec. 6.3. Brownian motion, gravitational,

Boussinesq–Basset, and phoretic forces are many orders of magnitude weaker than the forces

included in Eq. 2.11 are thus neglected from the governing equation of motion[9, 4]. The

forces which are neglected from the governing equation of the DELI model are disucssed in

Ch. 6. Secondary emission, whether through the field emission of ions from the surface of

particles downstream of emission[80, 27], Coulomb repulsion[81, 26], or particle impacts on

surfaces within the domain[67, 65, 82, 83], is not currently considered in the model and has

potential for future work.

2.3.2 Numerical Algorithm

A flowchart of electrospray plume simulation in the DELI model is presented in Fig. 2.3.

The model begins by importing a 2D-axisymmetric electric field solution from COMSOL,

and creating a corresponding 3D simulation domain. In order to emit particles under flow

constraints, the model inputs the density of the sprayed fluid, particle mass and charge

distributions, particle emission location and velocity distributions, and current and/or mass

flow rate constraints. The particle emission module is discussed further in discussed further

in Sec. 2.3.4. After particle emission is constrained to meet flow inputs, all particles are

advanced according to Eq. 2.11 as described in Sec. 2.3.1. Any particles which exit the

simulation domain or strike an electrode are removed from the simulation following the

27

Figure 2.2: Electrospray domain with a solid collector plate, displaying examples of the

applied electric field, Coulomb, drag, and image charge forces on emitted particles. Only the

portion of image charges nearest the collector plate are shown.

28

Figure 2.3: Algorithm for evolving electrospray plume in the Discrete Electrospray La-

grangian Interaction Model.

advancement step. Particle properties are output at a user-declared frequency. This iterative

process of emitting particles to meet flow constraints, propagating them according to the

governing Eq. 2.11, and removing them as they exit the simulation domain is repeated for a

user-designated number of steps, after which the simulation is terminated.

The DELI model utilizes the first-order Velocity Verlet time-stepping algorithm[84] to

advance particles:

Rt+1 = Rt + vt∆t+
1

2
at∆t2,

vt+1 = vt +
1

2
∆t(at + at+1),

(2.12)

where R is the particle position vector, t is the time step index, and ∆t is the simulation

time step, discussed further in Sec. 2.3.3. The velocity used in Eq. 5.17 to calculate the drag

force in each iteration is

vt+1 = vt + at∆t. (2.13)

29

This algorithm is common in the molecular dynamics community and has been shown to

preserve energy in electrospray plume simulations[55]. This order of this time-stepping al-

gorithm is verified in Sec. 2.5

2.3.3 Simulation Time Step

Simulated plume evolution accuracy is sensitive to simulation time step[55, 14]. Grifoll et

al. reported that overly large time steps cause false ‘physical collisions’ between particles,

in which the distance between particle centers is less than their summed radii[55]. In the

absence of a coalescence module, these physical collisions are interpreted as high-magnitude

Coulomb collisions which propel ‘outlier particles’ to inaccurately wide plume angles. Grifoll

et al. therefore advised plume simulations utilize a time step for which the number of physical

collisions in the plume has plateaued to a minimum, such that further decreasing the time

step does not further decrease the number of collisions, in order to ensure any remaining

collisions are genuine particle collision events in the plume rather than simulation artefacts.

The motivation in selecting a simulation time step for the DELI model is to capture

high-frequency particle emission and interaction events. A sufficiently small time step is

chosen to allow each emitted particle to move downstream for multiple timesteps before the

next particle is emitted. The DELI simulation time step is a defined to be one hundredth of

the mean particle emission period:

∆t ≤ tem
100

, (2.14)

where the average particle emission period, tem, is the ratio of average mass, m, to com-

manded mass flow rate, ṁ, or average charge, q, to commanded current, I:

tem =
m̄

ṁ
=

q̄

I
. (2.15)

The time step ∆t in Eq. 2.14 is set to be one on the order of tem
100

. For example, if

100 µs ≤ tem < 1000 µs, then ∆t = 1 µs. Once a time step is selected, it is ensured not

to cause false physical collisions between electrospray particles. If physical collisions are

30

observed during the simulation, a lower timestep is tested to see if the number of physical

collisions can be reduced. The simulation time step is finalized once it is verified to create

the lowest number of physical collisions.

2.3.4 Particle Emission

The DELI model emits particles given input distributions for diameter and charge - P (d)

and P (q), respectively. The distributions may be discrete, or a single joint probability

distribution P (d, q), and can be varied to match different experimental or theoretical con-

ditions. The emission module further requires an inputs for emission position P (ri, θi, zi),

where ri, θi, and zi are cylindrical emission coordinates, or P (xi, yi, zi), where xi, yi, and zi

are Cartesian emission coordinates; the distributions for the three emission coordinates may

be discrete or joint. Previous evolution studies note that the resulting plume structure is

not sensitive to the magnitude of the applied radial perturbation, ∆ri, so long as the mag-

nitude range is less than or equal to the jet radius, rj, corresponding to varicose instabilities

inherent in the jet[59]. When the radial perturbation magnitude exceeds the jet radius, the

perturbations correspond to a jet experiencing both kink and varicose instabilities, such that

the simulated plume is no longer operating in the desired steady cone-jet mode[59]. Simu-

lation results are sensitive to P (∆zi): too large a range in axial emitted coordinate allows

particles to be emitted on top of other existing particles, creating a physical collision in the

emission condition.

Electrospray particle emission location is determined by the electrohydrodynamic cone-

jet from which the particles are released. Furthermore, the electrostatic force which propels

particle downstream after emission is influenced by the changing cone-jet structure. Dy-

namically updating the applied electric field to reflects changes in cone-jet structure is com-

putationally intensive and therefore has only been implemented in the Emission Region by

the PSPL-EHD Model to simulate particle emission. The DELI model uses the electric field

input from COMSOL as discussed in Sec. 2.3.1, and the particle axial emission coordinate

31

is fixed at the jet tip.

Emitted mass flow rate and current are constrained in alternating emission steps, such

that neither constraint is neglected in favor of the other. In each step, the emission module

compares the last-emitted particle mass, m−1, or last-emitted particle charge, q−1, to the

appropriate flow rate constraint - mass flowrate or charge, respectively - to calculate the

associated particle emission period, tem:

tem =

m−1

ṁ
, n is even

q−1

I
, n is odd

, (2.16)

where n is the total number of emitted particles. When only mass flowrate is known, the

particle emission period is a function of particle mass for every emission; when only current

is known, the emission period is always a function of particle charge. If more simulation

time has passed since the last particle emission than the particle emission period in Eq. 2.16,

a new particle is emitted with properties from particle property input distributions. Figure

2.4 displays the DELI Model particle emission module matching flow constraints following

startup of the flow.

Because the DELI model utilizes a constant time step, the total simulation time is always

equal to a positive integer multiple of the discrete simulation time step C∆t, C ∈ Z. In

contrast, particle emission periods can vary over a continuous range. Therefore, tem can be

offset from the closest discrete simulation time step ∆t by some small δt = |t − tem| < ∆t.

In this case, there is some small difference between the emitted flow and the targeted flow

with mass δm = δtṁ and charge δq = δtI. Utilizing a time step that is a small fraction

of tem, such that δt << tem as described in Eq. 2.14, prevents this difference from being

significant and compromising the efficacy of the emission module to conform to commanded

flow constraints. Alternatively, the charge or mass difference between emitted flow and

commanded flow following an emission event may be added on to the next-emitted particle,

as done by Grifoll and Rosell-Llompart [11]. This method precludes any difference between

32

(a) (b)

Figure 2.4: The DELI model matches mass flowrate and current constraints over time fol-

lowing startup.

simulated and commanded flow emission, but assigns additional mass or charge to emitted

particles beyond particle property input distributions.

2.4 Verification

The first verification tests performed on the Coulomb force component of particle propagation

in the DELI model were canonical tests of symmetry, several of which are presented in Fig.

2.5. Coulomb forces between two interacting particles were observed to be symmetric, with

differences between the force on two particles within the range of machine error, as shown

in Fig. 2.6.

Following these canonical tests, the Coulomb force component of the DELI Model was

further verified by comparing simulated angles of deflection in a canonical two-particle in-

teraction with no applied electric field or drag to the analytical solutions for these deflection

angles. The analytical solution is derived from the conservation of energy in the center-of-

33

Figure 2.5: All particles have q = 1C and m = 1kg unless otherwise specified. a) Particle

6 approaches stationary particles 4 and 5, positioned 0.02m apart. b) Particle 5 orbits

stationary particle 4 (q = 1 × 1011 C and m = 1 × 1011 kg) with a velocity of 1m s−1. c)

8 stationary particles initially at rest at the corners of a cube with side length 2m and 1

particle in the center. d) 8 stationary particles are initially at rest at the corners of a cube

with side length 2m and 1 particle in the center.

34

Figure 2.6: Difference in the radial and axial components of the Coulomb force on two

interactions particles. The Coulomb force is exerted symmetrically, with differences in force

on the two particles in the range of machine error.

35

1

1

2

Closest

Approach

0

Figure 2.7: Particle 1 approaches particle 2 with relative velocity v0 and impact parameter

b. The deflection is shown from the frame of the reference of particle 2. The deflection angle

θ of particle 1 from particle 2 is measured from the intersection of the line connecting the

point of closest approach of particle 1 to particle 2 and the impact parameter axis line.

mass frame:

tan

(
θ

2

)
=

q1q2b

4πϵ0|vrel
2|mred

, (2.17)

where θ is the deflection angle in the center-of-mass frame, q1 and q2 are the charges of the

two particles, b is the impact parameter (minimum separation between the particles if they

passed without interacting), vrel = v1 − v2 is the relative velocity (where v1 and v2 are

the velocities of the two particles), and mred = m1m2

m1+m2
is the reduced mass of the system

(where m1 and m2 are the masses of the two particles). This two particle deflection scenario

is displayed in Fig. 2.7; in the presented case, m2 >> m1 such that the lab frame of view is

very close to that of nearly stationary particle 2.

This deflection angle verification study was conducted with radius r1 = 1 µm and r2 = 100 µm

particles, which are in the range of experimentally observed electrospray particle sizes[4, 9].

The study included three relative velocities: v0 = v∗, 2v∗, and 4v∗, where v∗ = 5m/s, such

that all three velocities are on order of experimentally observed electrospray particle emission

36

Figure 2.8: DELI deflection angle results for 2-particle Coulomb interactions are compared

to analytical solutions (dashed lines).

velocities[9]. The verification study included impact parameters ranging from b = 0.1 µm to

b = 0.1m to verify Coulomb deflection angles from near 0◦ to almost 180◦. DELI simula-

tions with size-diverse plumes[68] include instances in which small particles are ‘bounced’

back and forth between larger particles, such that large-angle deflections near 180 degrees

are anticipated. particles are eventually deflected through Coulomb interactions off the axis

of emission at smaller plume angles (< 40◦), such that lower angles of deflection are also

anticipated[85, 23]. The results of the verification study are displayed in Fig. 2.8.

The DELI deflection angle results in Fig. 2.8 strong display agreement with the analytical

solutions for all angles. In all cases, the absolute error of the DELI result is below 1◦ and

the relative error is below 0.6%. This verification study demonstrates the trustworthiness

of the DELI model in simulating Coulomb interactions.

Two particle Coulomb interactions were also used to verify the order of the first-order

Velocity Verlet time-stepping algorithm used to advance particles. The order of magnitude

37

Figure 2.9: The error in deflection angle from a two particle Coulomb interaction is given

for different orders of magnitude of simulation timestep. A line with slope 1 is shown for

reference to confirm that the time-stepping algorithm is first-order.

of the time step was varied and the resulting error in deflection angle from the analytical

solution was observed. The results are presented in Fig. 2.9. The slope of the error line is

0.996, very near 1, verifying that this scheme moves particles forward in time with first-order

error, O(∆t).

2.5 Validation

The DELI model has been validated against experimental measurements and simulation

results from Gañán-Calvo et al. [9], as well as subsequent publications by Wilhelm et al.[10]

and Grifoll and Rosell-Llompart [11] in which the authors validate their models against

the same source case. While the DELI model is primarily motivated by electrosprays for

38

spacecraft propulsion, which occurs in a vacuum environment, an atmospheric validation case

was chosen for several reasons. Simulation in the atmospheric regime is less computationally

intensive and includes less uncertainty in emitted particle data than does simulation in the

vacuum regime; there is a wide variety of atmospheric particle data available in the literature,

and atmospheric plumes generally contain fewer, larger, and slower particles than those

in vacuum[4, 73]. Such atmospheric particles can be directly visualized optically through

methods such as flash photography and Phase Doppler Anemometer (PDA), which cannot

be applied to vacuum plumes comprised of particles with radii smaller than the diffraction

limit[4]. Although atmospheric validation introduces the drag force to DELI simulations, it

also includes all governing forces relevant to the vacuum regime.

The electrode geometry, applied voltage, flow rate constraints, and emitted species data

for the validation case are taken from Sec. 3.4 Experiment no. 2 of Gañán-Calvo et al. [9]: the

needle radius is 0.5mm, needle-to-collector-plate distance is 30mm, and voltage applied to

needle is Φ0 = 5.2 kV; volumetric flow rate is Q = 2.4×10−9 m3/s and current is I = 45 nA;

sprayed fluid is liquid heptane with 0.4% of STADIS 450 with density ρ = 685 kg/m3;

constant emission velocity is v0 = 7.8m/s; the particle diameter distribution is Gaussian

with mean d̄ = 38 µm and standard deviation σ = 0.04d̄; and the number of charges in a

particle is assumed to hold the following proportionality to its size:

q

q̄
=
(d
d̄

)3
. (2.18)

Particle radial emission location follow a Gaussian distributions following earlier pub-

lished simulations[9, 10, 11]. In some publications, the distribution parameters are not

specified[9, 10], while later authors[11] specify the radial perturbation mean, ∆rem, to be

two average particle diameters, d. For the presented validation case, the DELI model uses

rem = 2d (2.19)

in line with [11]. For the axial emission location coordinate, Gañán-Calvo et al. and Wilhelm

et al. perturbed emission randomly within 60-100 times the jet radius rj above jet emission

39

from the conical meniscus[9, 10]. When the axial emission range P (zem) = (60rj, 100rj) was

implemented in DELI Model simulations, the range proved to be so wide that it occasionally

prompted spurious ‘physical collisions’ between particles by emitting a particle on top of an

existing particle, as discussed in Sec. 2.3.4. Grifoll and Rosell-Llompart elected to prevent

such collisions by altering the emission axial range to be in an interval equal to jet speed

(used also as particle emission speed) times default time step[11]. In the absence of a sub-

module which adjusts the near-emission electric field as axial emission coordinate varies, as

discussed in Sec. 2.3.4, the DELI model prevents non-physical collisions in this validation

case by holding the axial emission coordinate constant at the most-probable axial breakup

position for a cone-jet electrospray, one Taylor cone height and 3 mean varicose breakup

wavelengths, or 13.5 d̄, downstream of the emitter electrode[9, 55].

To ensure an accurate comparison with previous results, simulations used an analytical

form of the electric field applied by electrodes instead of importing an electric field generated

by COMSOL. The analytical eletric potential takes the form

ϕ(r, z) =
Kv

log(4H/Ra)
log

(
[r2 + (1− z)2](1/2) + (1− z)

[r2 + (1 + z)2](1/2) + (1 + z)

)
, (2.20)

where r and z are cylindrical coordinates normalized with emitter-to-extractor distance H,

Ra is the needle radius, and Kv is a constant set to 1 for the presented simulations for the

given geometry. The coefficient of drag utilized for this validation case is

CD =
24

Re
(1 + 0.15Re0.687), (2.21)

valid for Re < 800 [86], which was used by Wilhelm et al. for the same validation case[10].

The coefficient of drag used in the original simulation of this source data is not specified[9],

and the coefficient of drag term used by Grifoll and Rosell-Llompart[11] differs from the

Wilhelm et al. term by less than 1% across all Reynolds numbers for which both equations

are valid.

The average particle emission period for the presented electrospray is

tem =
m̄

ṁ
= 11.97µs (2.22)

40

such that the DELI default time step according to Sec. 2.3.3 is ∆t = 0.1 µs, such that

∆t <
tem
100

. (2.23)

This time step is one tenth that utilized by Grifoll and Rosell-Llompart, which they obtained

by calculating the minimum electric variation time, or time needed to experience 100%

change in the total electric force applied to a particle (from electrodes, other particle, and

image charges), of any particle in the plume.

The DELI results for plume shape at steady state are compared to the steady-state

plume outline results of previous authors in Fig. 2.10. Simulated plumes are defined to have

reached steady state when the number of particles in the domain becomes asymptotic[9,

26]. Both the lateral x and axial z coordinates have been normalized with collector plate

height H. The outline for the Gañán-Calvo et al. result was obtained by symmetrically

mirroring the published result for radial outline[9] across the emission axis. The DELI plume

result is consistent with previous published results, featuring higher particle density near the

upstream emission region and a more dispersed plume further downstream. The DELI result

for the validation case plume at steady state contains 502 ± 4 particles, in the range of the

400 ± 2 particles reported by Gañán-Calvo et al.[9], 552 particle average reported by Wilhelm

et al.[10], and 498.2 particle average reported by Grifoll and Rosell-Llompart[11].

In Fig. 2.11, a comparison is provided between DELI results and those of previously

published studies for normalized mean axial particle velocity over normalized distance from

the collector plate. The distance from the collector plate is normalized with collector plate

height H, and the velocity is normalized following Gañán-Calvo et al. [9] with vnorm = H/tv,

where tv = d̄/18ανfl is the particle viscous relaxation time, α = ρfl/ρp, and ρp is emitted

fluid density. The DELI result matches closely with that of Wilhelm et al.[10], which is also

very near the Grifoll and Rosell-Llompart result[11]. The trends in velocity seen in all three

previous studies are clearly preserved in the DELI results: particles undergo electrostatic

acceleration near the high-voltage emitter (normalized distance to plate ≈ 1), before being

drag-decelerated as they move downstream, and finally slightly accelerated again by image

41

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

Normalized x Coordinate

0

0.2

0.4

0.6

0.8

1

N
o
rm

a
li

z
e
d
 A

x
ia

l
C

o
o
rd

in
a
te

Figure 2.10: DELI results for plume shape evolved to steady state are compared with previ-

ously published steady state results.

charges as they approach the collector plate (normalized distance to plate → 0). Wilhelm

et al.[10] demonstrates that a fit can be obtained to the Gañán-Calvo et al. mean axial

velocity result[9], which deviates from that of other authors, by altering a constant in the

analytical electric potential equation. Furthermore, Wilhelm et al.[10] notes that the Gañán-

Calvo et al. result[9] includes an erroneously strong image charge effect responsible for the

exceedingly strong near-plate accelerations in the Gañán-Calvo solution in Fig. 2.11 and

the overall narrower plume in the Gañán-Calvo et al. result in Fig. 2.10. This assertion

about the image charge is supported by Grifoll and Rosell-Llompart[11] results and further

corroborated by DELI results for mean axial velocity trends and evolved plume shape. It

is notable that Wilhelm et al.[10], Grifoll and Rosell-Llompart[11], and DELI results still

contain a slight visible increase in particle velocity very near the collector plate from the

induced image charge, but not so strong as in the Gañán-Calvo et al. result[9].

A final means of validation with experimental results[9] and the simulation results of

previous authors[9, 10, 11] is presented in Fig. 2.12. This figure displays particle axial velocity

42

0 0.2 0.4 0.6 0.8 1

Normalized Distance to Plate

0

0.5

1

1.5

N
o

rm
al

iz
ed

 A
x

ia
l

V
el

o
ci

ty

Figure 2.11: DELI results for mean axial velocity approaching the collector plate are com-

pared with previously published results.

trends, normalized with vnorm = H/tv as in Gañán-Calvo et al.[9], over radial coordinate,

normalized with collector plate height H, at several constant axial positions in the steady-

state plume. Three clear trends can be identified from the DELI simulation results with drag

presented in Fig. 2.12: 1) the plume widens with increasing axial coordinate, 2) the plume

slows with increasing axial coordinate at a given radial coordinate, 3) the plume slows with

increasing radial coordinate at a given axial coordinate, with some local variation. All of

these trends match the simulation results presented by Gañán-Calvo et al.[9], Wilhelm et

al.[10], and Grifoll and Rosell-Llompart[11], and experimental results presented by Gañán-

Calvo et al.[9], validating the DELI Model for simulating electrospray plume evolution.

43

Figure 2.12: DELI results for normalized particle velocity magnitude over radial position are

shown for several axial heights. The axial positions 14mm, 18.1mm, and 21.6mm correspond

to the heights for which Gañán-Calvo et al. presented simulation and experimental results[9].

The axial positions 10mm, 15mm, and 20mm correspond to the heights for which Wilhelm

et al.[10] and Grifoll and Rosell-Llompart[11] presented simulation results.

44

CHAPTER 3

Electrostatic Plume Divergence

The electric field in an electrospray thruster is generated by applying a potential difference

between an emitter and one or more downstream electrodes. Such a potential difference

between an emitter and one downstream electrode with a thrust-releasing aperture, generated

in COMSOL, is presented in Fig. 3.1. Fig. 3.1b presents a magnified view of the potential

field surrounding the emitter, which is held at 5 kV. In this case, the emitter is at high

voltage and the downstream electrode is grounded, but these potentials can be changed to

tune the resulting electrostatic field. The direction of the electric field can be reversed in

order to draw out particles of opposite charge, a technique which is employed in bipolar

electrospray thrusters[87].

The thrust-releasing aperture is centered above the emitter such that the resulting electric

field is axisymmetric. On the axis of emission, the electric field is strictly axial. Therefore,

the electric field will not cause radial divergence in a line of particles emitted straight down

the axis of emission. Off of the axis of emission, there is a radial component to the electric

field due to the thrust-releasing aperture in the downstream electrode. This radial electric

field component contributes radial electrostatic acceleration to particles emitted off of the

emission axis, thereby exacerbating particle displacement from the axis. The axial and radial

components of the electric field for the region surrounding the emitter are shown in Fig. 3.2b

and Fig. 3.2a, respectively.

The electric field is strongest on the corners of the tapered emitter where 1) the emitter

curvature is the high and 2) the downstream electrode is closest due to the thrust-releasing

45

(a) (b)

Figure 3.1: A 2D slice showing half of the axisymmetric electric potential field (a) in the full

domain between the emitter and one downstream electrode with a thrust-releasing aperture

and (b) only in the region surrounding the high-voltage emitter.

(a) (b)

Figure 3.2: The (a) axial and (b) radial components of the electric field surrounding the

high-voltage emitter.

46

aperture, as shown in Fig. 3.2. Even in electrospray geometries with a solid collector plate

with no thrust-releasing aperture, the curvature of the emitter (and the fluid cone-jet) still

contributes a radial component to the electric field. One could argue that in an ideal ge-

ometry, particles are emitted in the center of an elongated emitter tip, far enough from

any upstream emitter tapering to be effected by electric field concentration due to emitter

curvature. Furthermore, in the ideal case of a steady cone-jet, the electric field is symmetric

such that particles which are emitted from the exact center of the jet tip will be not radially

electrostatically accelerated. However, in reality, electrospray particles are always emitted

with some non-zero divergence range around the axis of emission due to hydrodynamic in-

stabilities and micro-scale roughness on the emitter surface. Therefore, electrostatic plume

divergence is inherent to electrosprays due to the curvature of jet tip, and it cannot be

precluded with geometric design changes to the emitter or the downstream electrode aper-

ture. Electrostatic plume divergence can be mitigated to some degree by scaling the distance

between downstream electrodes and the aperture width of the electrodes. Such geometric

changes are demonstrated in Fig. 3.3 for an electrospray with two downstream electrodes,

an ‘extractor grid’ and further downstream ‘accelerator grid.’

Decreasing the distance between these electrodes while holding their potentials constant

increases the strength of the electric field generated between them, thereby increasing the

axial component of the electric field which generates thrust and the radial component of

the electric field which contributes to plume divergence. Decreased aperture width corre-

sponds to less electrostatic plume divergence because there is a lesser radial component to

the electric field. However, it also corresponds to decreased thruster lifetime because parti-

cles at wide angles strike the downstream electrode instead of passing through the aperture.

Particles which impinge on downstream electrodes saturate the electrodes over time, contin-

ually detracting from thruster performance and eventually leading to propellant backspray

and thruster failure[3]. Conversely, wider apertures increase contamination in the thruster

domain from the external space environment. Figure 3.4, reproduced from [3], shows the

47

Figure 3.3: Varying accelerator grid geometries demonstrating methods to increase the an-

gle from the emitter to the accelerator grid (marked with dashed line) from a) nominal

configuration by b) decreasing grid spacing, c) increasing accelerator grid radius, and d) a

combination of spacing and radius changes. [3].

influence on thruster lifetime (based on time until electrode saturation) of changes to the

distance between electrodes and the accelerator electrode aperture width.

48

Figure 3.4: The effects of changing the accelerator grid’s aperture radius and the spacing

between the accelerator and extractor grids on time to saturate the accelerator grid. [3].

49

CHAPTER 4

Coulomb Plume Divergence

The Coulomb force is the electrostatic force generated between spherically symmetric charged

particles which are stationary in a non-accelerating frame of reference. The Coulomb force

between two particles is:

FC =
1

4πϵ0

q1q2 ˆr12
|r12|2

, (4.1)

where q1 and q2 are the particle charges, r12 is the displacement vector between the charges,

and ε0 is the permittivity of vacuum. In an ensemble of particles, the sum Coulomb force

on a particle of charge q is

FC =
q

4πε0

n∑
i=1

qiri
|ri|3

, (4.2)

where n is this number of particles in the ensemble. Eq. 4.2 is the Coulomb force equation

used within Eq. 5.19 for particle propagation in the DELI model. As noted in 2.3.1, the

DELI model approximates fluid electrospray particles as spheres of uniform charge density

in order to apply this analytically simple Coulomb force equation. The literature presents

analyses of the complex electromagnetic forces generated between non-symmetrical fluid

particles with moving charges[88, 89, 22]; however, these analyses currently study individ-

ual particle pairs and are too computationally expensive to extend to the full electrospray

plume under existing computing capabilities. When interacting charges are moving or the

frame of reference is accelerating, Eq.s 4.1 and 4.2 oversimplify the resulting force because

they do not account for the magnetic fields generated by moving charges. These magnetic

fields become non-negligible as particles approach relativistic speeds, such as in particle

accelerators[22, 89]. However, electrospray particles do not reach sufficient velocities for the

50

simplified Coulomb force expressions to introduce substantive error in electrospray plume

simulations. Eq. 4.2 is the literature standard for Coulomb force in Lagrangian plume sim-

ulations. How the Coulomb force in electrospray plumes can be further approximated for

computational efficiency was introduced in Sec. 2.1 and is discussed further in Sec. 4.4.

The Coulomb force repels charged particles away from one another. If particle are emit-

ted in a perfectly straight line, the Coulomb forces between them will be directed along that

line and Coulomb interactions will not displace particles away from the line. Therefore, if

electrospray particles are emitted down the axis of emission with no radial displacement,

Coulomb forces will not introduce radial displacement. However, as discussed in Ch. 3,

electrospray particles are always emitted with some range in radial position due to hydro-

dynamic instabilities and micro-scale emitter asymmetries. Therefore, Coulomb interactions

are inherent to all electrosprays regardless of whether the geometry is thrust-releasing or

contains a solid collector plate. The Coulomb force is an origin of plume divergence in all

cases of electrospray operation.

4.1 Experimental Motivation

Early in this dissertation research, we hypothesized that Coulomb interactions served as

the primary means of plume divergence based on experimental high-speed video (HSV)

of atmospheric ethanol plumes obtained by the UCLA PESPL. Figure 4.1 displays HSV

frames showing a set of particles which is initially near-linear before several particles cluster

together and are displaced radially. Frame-by-frame particle tracking shows that the green

particle moves at a faster velocity than the blue particle preceding the displacement of

these particles. This velocity difference causes the distance between the blue and green

particles to decrease over time such that the particles are clustered together. Following this

clustering, the blue and green particles are displaced radially in opposite directions. This

radial displacement spreads both upstream and downstream in the set of particles, yielding

51

Figure 4.1: Successive high speed video frames obtained on the UCLA PESPL Atmospheric

Pressure Electrospray eXperiment (APEX) system show electrospray particle clustering pre-

ceding plume divergence[12].

overall plume divergence.

From this video analysis, we hypothesized that the forces driving plume divergence cor-

relate inversely with the distance between plume particles. Following this line of thought,

we hypothesized that Coulomb forces are responsible for plume divergence given the inverse-

squared relationship between Coulomb force and the distance between particles, stated in Eq.

4.2. Given the relative velocity difference between the green and blue particles prior to their

radial displacement, we further hypothesized that differences in particle speed - specifically

upstream velocity gradients, in which upstream particles move faster than their downstream

neighbors - cause particles to cluster. Inspired by the UCLA PESPL surrounding of Los

Angeles, we colloquially termed this phenomena a ‘traffic jam.’ The increased proximity of

the particles in this clustered state magnifies the Coulomb forces between particles, yielding

plume divergence [90, 68].

52

Figure 4.2: Three ethanol particles with axial spacing ∆z = 0 µm and the middle particle

displaced to the right by ∆x =10 pm. The particles have (a) equal initial velocities v =1m/s

and (b) an upstream initial velocity gradient with initial velocities v1 = 1m/s, v2 = 2m/s,

v3 = 3m/s from downstream to upstream.

4.2 Three Particle Demonstration

We tested our hypothesis of Coulomb plume divergence for the case of three particles. We

compared two simulation scenarios to observe the effect of relative particle velocity on re-

sulting particle divergence: one in which the particles have equal velocities, and the other in

which there is an upstream particle velocity gradient. In both cases, three identical ethanol

particles are evenly distributed over a distance ∆z = 10 µm and the middle particle is later-

ally displaced to the right of the others by ∆x =10 pm. These initial conditions are portrayed

in Fig. 4.2. To isolate the particle dynamics to only inertia and Coulomb interactions, drag

is neglected and there is no applied electric field. The simulation results are presented in

Fig. 4.3.

In case a), in which the particles have the same initial velocity (v = 1m/s), particles

maintain their axial separation and are only slightly perturbed laterally via Coulombic in-

53

Figure 4.3: Displacement from Coulomb interaction between particles with a) equal ini-

tial velocities v =1m/s and b) an upstream initial velocity gradient, with initial velocities

v1 = 1m/s, v2 = 2m/s, v3 = 3m/s from downstream to upstream.

54

teractions. However, in case b), there is an upstream initial velocity gradient (v1 = 1m/s,

v2 = 2m/s, v3 = 3m/s from downstream/front to upstream/back) which causes particles to

cluster and have Coulomb interactions magnified by their close proximity. This ‘traffic jam,’

coupled with the initial lateral offset of the middle particle, causes all three particles to be

laterally displaced by the inter-particle Coulomb forces. These simulations demonstrate that

the relative velocities between particles determine the degree to which a small displacement

in their initial positions is expanded into larger divergence. Therefore, these simulations cor-

roborate our experimentally-motivated hypothesis that upstream particle velocity gradients

enhance plume divergence through Coulomb interactions.

4.3 Theory of Coulomb Plume Divergence

We have provided experimental and computational evidence supporting our initial hypothe-

sis of Coulomb plume divergence, such that it has developed from a hypothesis into a theory.

A summary of our theory of Coulomb plume divergence is as follows. Some emitted particles

move forward faster than their downstream neighbors, such that they becomes close to the

forward particles over time (‘traffic jams’). The Coulomb force exerted on these particles

increases in response to their increased proximity, such that any difference in their radial

coordinates is exacerbated by the Coulomb interaction. Through such differences in particle

axial velocity, a collection of particles with a small range in radial coordinate will expe-

rience localized particle clustering events which further displace particles radially through

Coulomb interactions, thereby resulting in plume divergence. Without such differences in

axial velocity, particles emitted in a near-linear formation cannot cluster and increase their

Coulomb influence on one another beyond their initial state. Coulomb interactions still act

over longer distances to expand differences in particle radial coordinates, but this Coulomb

plume divergence process occurs much more slowly than in plumes with particle clustering

events.

55

This theory for plume divergence supports experimental observations and simulation

replications of particle size-segregation in electrospray plumes[55, 59, 9, 47]. In an inter-

action between polydisperse particles, the Coulomb force is exerted identically on the two

particles, but the lower mass (and therefore smaller, assuming constant density) particle

is more accelerated by the interaction, and is thereby repelled to a wider plume angle.

Therefore, smaller particles will be generally found at wider angles in polydisperse plumes

than larger particles as a result of Coulomb interactions. If plume particles are not only

size-diverse, but also have a range of specific charge, then the plume will be segregated by

specific-charge in addition to mass as a result of Coulomb interactions. This specific charge

segregation trend can be inferred by combining Newton’s Second Law of Motion with the

Coulomb force Eq. 4.2 to yield an equation for Coulomb acceleration of a particle with

charge q and mass m in a charge ensemble:

aC =
q

4πε0m

n∑
i=1

qiri
|ri|3

=
q

m
EC.

(4.3)

The acceleration imparted to a particle from a Coulomb interaction is therefore a function

of specific charge, such that high specific charge particles such as ions are Coulombically

repelled to wider plume angles than low specific charge particles such as heavy droplets.

Specific charge inhomogeneity in an emitted particle population creates differences in

particle velocity due to differences in electrostatic acceleration. These differences in velocity

lead to plume divergence through Coulomb interactions, as displayed in Sec. 4.2. Particle

electrostatic acceleration from the applied electric field correlates linearly specific charge,

following Lorentz Force Law and Newton’s Second Law of Motion:

aE =
q

m
EA. (4.4)

A high specific charge particle emitted behind a lower specific charge particle will be elec-

trostatically accelerated forward into the larger particle, causing a high-magnitude Coulomb

56

interaction between the clustered particles which will displace both particles, but predomi-

nantly the smaller particle. The drag force is also capable of introducing velocity differences

in particle velocity in a polydisperse plume. Drag decelerates each particle as a function of

diameter as given in Eq. 5.17, such that larger particles are slowed more by the drag force

than smaller particles. In summary, if a plume is comprised of specific charge inhomoge-

neous or polydisperse particles, the applied electrostatic force or the drag force, respectively,

will introduce differences in particle velocity even if the particles are emitted with the same

velocity. These differences in particle velocity will lead to particle clustering in localized

areas with upstream particle velocity gradients, thereby yielding plume divergence through

Coulomb interactions.

4.4 Defining the Interaction Region

We have identified that Coulomb interactions are an intrinsic source of divergence in elec-

trospray plumes, regardless of system design. We have also presented the computational

challenge of simulating the N-body problem created by these Coulomb interactions in Sec.

2.1. Simulations with the fully discrete Coulomb term given in Eq. 4.2 have been limited by

current computational capabilities to simulating fully evolved electrospray plumes with on

order of 105 micron-radius particles. Simulations of smaller particles (e.g. ions) which use a

fully discrete Coulomb term are limited to curtailed domain lengths giving only a portion of

the full experimental plume. Such plumes have been analytically estimated to contain 108

particles[91], which is computationally overwhelming with a fully discrete Coulomb term.

Due to the computational limitations of a fully discrete Coulomb term, significant at-

tention has been given in the literature to means of approximating the Coulomb term while

preserving simulation accuracy. Several such methods have been presented in Sec. 2.1. Ini-

tially, approximations for the Coulomb term were applied indiscriminately across the full

plume domain. However, this assumption that all regions of the plume should be treated

57

equally with regards to the Coulomb term used in simulation is being challenged. In recent

years, methods have been proposed which discretize the electrospray plume and treat inde-

pendent regions differently, as presented in Fig. 4.4. Since the first photos published by

Zeleny[5], electrosprays have been recognized to be most charge-dense near emission, with

charge-density decreasing downstream as the plume expands. Force analysis of Lagrangian

simulations of such plumes identifies that the Coulomb force dominates other governing

forces in the particle-dense region near emission. As particles move downstream and are

displaced radially into less particle-dense regions, the Coulomb force dominance fades into

applied electrostatic force dominance. Approximations to the Coulomb term will introduce

less error to simulated particle trajectories when applied in regions where Coulomb forces are

not dominant. Therefore, establishing a threshold in the plume structure beyond which the

Coulomb force does not dominate particle trajectories is critical towards determining where

the Coulomb term can be approximated without sacrificing simulation accuracy. While such

a threshold bounding the interaction region is of great computational value, the literature

has yet to converge on such a definition.

This section aims to determine a threshold for the ‘interaction region’ in which Coulomb

interactions dominate particle dynamics. Our first discussions of this concept occurred at

the Fall 2018 Technology Interchange Meeting at NASA Jet Propulsion Laboratory. In

the following years, two models have been presented in the literature which apply radial

threshold(s)[13, 14] to determine whether a fully discrete or approximated Coulomb term is

used to simulate particle motion, introduced in Sec. 2.1. Gamero-Castaño and Galobardes-

Esteban defined a radial threshold around emission within which a fully discrete Coulomb

term was used, and outside of which Poisson’s equation was solved for the electric potential

field[13]. Petro et al. defined two radial thresholds around emission: within the first 5 µm

radially, the Coulomb force was calculated fully discretely in every timestep; between the

first and second radial thresholds (5 µm < r 250 µm), the Coulomb force was calculated

fully discretely but only updated every 10 timesteps; outside the second radial threshold

58

(r > 250 µm), Coulomb interactions were neglected [14]. These thresholding schemes are

displayed in Fig. 4.4 for reference. In both these approaches to approximating the Coulomb

term, all emitted particles are bounded by the same radial threshold(s)[13, 14]; however,

different species in polydisperse plumes diverge differently under balancing of applied elec-

trostatic and Coulombic forces. The objective of this section is to propose a definition for

the ‘interaction region’ threshold for approximating the Coulomb term which accounts for

species-dependent physics in polydisperse plumes.

(a) (b)

Figure 4.4: Radial thresholds for approximating the Coulomb force utilized by (a) Gamero-

Castaño and Galobardes-Esteban [13] and (b) Petro et al. [14].

Plume simulation results presented in this section were obtained by the Plasma, Energy &

Space Propulsion Laboratory (PESPL) at the University of California, Los Angeles (UCLA)

using the Discrete Electrospray Lagrangian Interaction (DELI) Model. The electrospray

geometry, 1.31nl/s flowrate constraint, and emitted EMI-Im particle data for the presented

plume divergence results are from Miller et al[24]; three species of particles were utilized

to observe differences in species divergence. A snapshot of the simulated plume at steady

state is presented in Fig. 4.5 with color corresponding to particle radius to identify separate

particle species.

The purpose of defining a threshold for the interaction region is to separate the region in

59

Figure 4.5: Snapshot of DELI simulation of electrospray plume with color corresponding to

the radius of each of the three particle species.

which the Coulomb force dominates plume divergence (and therefore should be calculated

exactly) from the region in which it is not dominant and may be approximated. Acknowledg-

ing that plume divergence stems from the radial component of particle velocity, we define

the interaction region for each particle to be where the radial component of acceleration

from the Coulomb force, aCr, is larger than radial acceleration from the applied electrostatic

force, aEr. In mathematical form, a particle is in the interaction region for the range of

positions, R, for which
aCr

aEr

(R) ≥ 1. (4.5)

The interaction region threshold can be extended to further minimize error from approxi-

mating Coulomb interactions by decreasing the value to the right of the inequality in Eq.

4.6. For example, if 0.5 is used in place of 1, the interaction region threshold would extend to

where the acceleration from the applied electric field is double the acceleration from Coulomb

60

interactions, thereby extending the portion of the plume in which the discrete Coulomb term

is used for particle propagation.

The radial acceleration ratios are shown over axial and radial coordinates for the tri-

species EMI-Im plume in Fig. 4.6 for the region following emission. The interaction region

threshold where the radial acceleration ratio reaches unity is seen to be species-dependent:

the mass-mobile small species (blue) are quickly repelled from the particle-dense plume

center and exit the interaction region after less axial propagation than the medium (red)

and large (green) species which remain trapped further in the plume center. Particle species

segregation is evident for the radial acceleration ratio in the same manner as has been

observed for angular particle divergence. The interaction region threshold is also shown

not to be one radial threshold for all species and rather is a species-dependent function of

both axial and radial coordinate. There is a notable division among large species particles

which diverge to wide angles and those which maintain low radial coordinates as they move

downstream; particles which maintain low plume angles do not exit the interaction region

defined by Eq. 4.6 even far downstream of emission due to continued Coulomb interactions

near the emission axis. Therefore, Coulomb interactions cannot be approximated for such

on-axis particles even beyond a threshold for which other, wider-angled particles have exited

their interaction regions.

We propose that the interaction region threshold given by Eq. 4.6 should be applied on

a particle-by-particle basis in electrospray plume simulations to determine when Coulomb

interactions can be approximated for individual particles. It is not beneficial in simulation

to define and apply a location-specific threshold for the interactions region, even for in-

dividual particle species, because stochastic Coulomb interactions change when individual

particles exit the interaction region. Furthermore, it is possible for electrospray particles

to exit and then re-enter regions of Coulomb dominance, such that the interaction region

should be defined based on acceleration ratios per Eq. 4.6, instead of physical location with

no force analysis. A spatial boundary for the interaction region of a given particle species

61

(a) (b)

Figure 4.6: The ratio of radial acceleration from the Coulomb force and the applied electro-

static force are plotted over a) axial coordinate and b) radial coordinate with color corre-

sponding to species.

can be obtained in the case that it is desirable for visualization and discussion purposes.

The acceleration of a particle by electrostatic forces is a function charge and mass, such that

same-species particles experience the same dynamics on a given trajectory, with the excep-

tion of stochastic near-neighbor Coulomb interactions. To consider such stochasticity, the

interaction region threshold for a particle species can be defined by geometrically averaging

the interaction region thresholds of all simulated particles in that species. Again, such a

physical interaction region threshold should be used only for visualization purposes; in simu-

lation, the interaction region threshold in Eq. 4.6 should be applied on a particle-by-particle

basis.

In conclusion, Coulomb interactions create a computationally burdensome n-body prob-

lem in Lagrangian electrospray plume simulations and other charged particle simulations[92,

93]. The computational challenge associated with a fully discrete Coulomb term motivates

the approximation of this term for computational efficiency. However, Coulomb interac-

tions are the dominant source of radial acceleration on particles in a region near emission,

62

and thereby are the dominant source of plume divergence in that region. Approximating

Coulomb interactions in regions where they dominate plume divergence introduces error

into electrospray plume simulations. Therefore, it is necessary to threshold the ‘interaction

region’ in which Coulomb interactions dominate electrospray plume divergence and utilize

a fully discrete Coulomb term within that region. In this section we have proposed this

interaction region threshold definition to be

aCr

aEr

(R) ≥ 1, (4.6)

such that particles are in the interaction region when Coulomb interactions dominate their

radial acceleration. We advise that Lagrangian electrospray plume simulations apply this def-

inition on a particle-by-particle basis such that Coulomb interactions are only approximated

when they no longer dominate a particle’s divergence. In this manner, Coulomb interactions

are approximated for computational efficiency only when they do not dominantly govern

plume divergence.

63

CHAPTER 5

Drag Plume Divergence

The drag force is generated on a moving body by surrounding fluid which is resistant to being

displaced. The drag force is similar to frictional forces in that it acts counter to motion;

however, unlike friction, the drag force is proportional to the velocity of the body relative to

the fluid. No drag force exists on bodies which are stationary with respect to the surrounding

fluid. The drag force depends on the velocity, size, and shape of the moving body, as well

as properties of the background fluid.

As given in Eq. 5.17 drag force acting on a spherical particle with diameter d and velocity

v, moving through a fluid of density ρfl, is

FD = −π

8
d2ρflCDv|v|, (5.1)

where CD is the coefficient of drag. When Reynolds number,

Re =
|v|d
νfl

, (5.2)

where νfl is the kinematic viscosity of the background fluid, is Re << 1, and Knudsen

number,

Kn = l/d, (5.3)

where particle mean free path is

l =
1

ρnσ
(5.4)

ρn is the number density of the background fluid molecules, and σ is the cross-section of the

fluid molecules, is Kn < 0.001, and Mach number,

M =
|v|
a
, (5.5)

64

where a is the local speed of sound, is subsonic (not transitional) Ma < 0.8, Stokes[17] found

the coefficient of drag to be

CD = 24/Re. (5.6)

As Reynolds number increases, causing convective effects such as flow separation from the

particle surface [16, 19]; or Knudsen number increases, causing rarefaction effects associated

with decreasing air density; or Mach number increases, causing compressibility effects asso-

ciated with high-speed flows, the coefficient of drag is empirically determined as a function of

Reynolds, Knudsen, and Mach numbers[16, 94, 95, 96, 86, 97]. These three flow parameters

are analytically related through

Kn =
Ma

Re

√
γπ

2
, (5.7)

where γ is the ratio of specific heats.

Drag acts directly opposite to particle motion, such that it will not impart a radial

component to particles with solely axial motion. Therefore, drag will not act radially on

electrospray particles on a strictly axial trajectory. In the realistic electrospray plume case

in which particles are emitted in a non-zero radial range around the axis of emission, the

applied electric field and Coulomb interactions radially accelerate particles as discussed in

Ch. 3 and Ch. 4, respectively. Those forces impart particles with non-zero radial velocity

components, such that the drag force then acts counter to particle radially divergent motion.

In this manner, the drag force causes radially displaced particles to remain more clustered

near the central majority of the plume than they would in a dragless environment.

We discussed in Sec. 4.3 that ‘traffic jams’ between particles lead to plume divergence

through Coulomb forces between close-range particles. The drag force creates velocity differ-

ences between particles of different sizes following the dependence on particle diameter given

in Eq. 5.17. The drag force also exacerbates existing velocity differences between particles

because it depends on particle velocity. The acceleration resulting from the drag force with

65

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

Velocity [m s-1]

-3

-2.5

-2

-1.5

-1

-0.5

0
D

ra
g

 A
cc

el
er

at
io

n
 [

m
 s

-2
]

10
-7

r = 1e-3m

r = 1e-4m

r = 1e-5m

r = 1e-6m

r = 1e-7m

r = 1e-8m

r = 1e-9m

Figure 5.1: The acceleration resulting from the drag force at different velocities is shown for

a range of particle sizes.

coefficient of drag[19] used in the validation case in Sec. 2.5,

CD =

(
0.127 +

3.957

0.140 + Re0.983

)
(5.8)

is presented in Fig. 5.1 for particles of different size and velocity moving through air at

atmospheric pressure. Results display the difference in the drag deceleration of polydisperse

particles; specifically, smaller particles are more drag decelerated. In this manner, the drag

force creates velocity differences between polydisperse particles and exacerbates existing

velocity differences between particles, both of which foster particle clustering events which

lead to Coulomb plume divergence, as discussed in Sec. 4.3.

66

5.1 Two Particle Study

Particle displacement in a two-particle Coulomb interaction is compared in Fig. 5.2 for the

case with atmospheric, full drag force (Fig. 5.2a) and the case with no drag force(Fig. 5.2b).

No external electric field is applied in either case. A particle with radius r = 1 µm is initially

positioned 3r behind and 1r to the right of a particle with radius 0.5r. Both particles have

specific charge q/m = 1C/kg, initial axial velocity vz = 1m/s, and no initial radial velocity.

Particle density is that of the Sec. 2.5 validation case particles. These size, specific charge,

velocity, and density values are on order with experimentally observed electrospray particle

properties [9, 98]. The simulation time step is ∆t = 1 µs, which captures the interaction over

many time steps.

In both the cases, the small particle is more displaced from its initial position than the

large particle due to its higher mass mobility. In the dragless case, both particles have

linear trajectories following the Coulomb interaction because they maintain their inertia in

the absence of other forces. In the case with drag, both particles are less displaced than

in the dragless case (O(-5)m vs. O(-4)m displacements) because their kinetic energy is lost

to drag. The small particle experiences more drag deceleration than the large particle as

shown in Fig. 5.1, such that the trajectory of the smaller particle is more significantly by

drag than that of the large particle. Drag has hereby been demonstrated to significantly

affect the Coulomb interaction between two particles, and to influence polydisperse particles

differently according to their size.

5.2 Full Plume Study

This section extends the study of drag divergence from a two-particle interaction to a full

electrospray plume. Atmospheric electrospray plumes have been experimentally observed

to be more divergent than those produced under the same propellant, flowrate, and volt-

age conditions in vacuum, as shown in Fig. 5.3. There are many differences in the physics

67

(a) (b)

Figure 5.2: The two particle Coulomb interaction (a) under the influence of the drag force

and (b) in a dragless environment. Arrows display particle velocity vectors.

68

Figure 5.3: Experimental comparison of atmospheric and vacuum electrospray plumes [15].

of electrospray formation and evolution in atmospheric and vacuum environments, includ-

ing the amount of drag force exerted on emitted particles, induced secondary flow in the

background fluid [54], fluid evaporation and Coulomb fission of particles which have been

critically size-reduced by evaporation [28, 10, 26], corona discharges[99, 4], and the proper-

ties of the generated cone-jet (stability, length, radius, velocity, etc.) and emitted particles

(mass, charge, velocity, etc.)[4]. Many liquids which create stable cone-jet electrosprays

in atmosphere do not have sufficiently low vapor pressure, high surface tension, and high

conductivity to create a stable cone-jet electrospray in the vacuum environment. This ma-

terials science challenge precluded electrospray spacecraft propulsion from being realized

for many decades following its theoretical conception and initial technology tests[100], until

ionic liquids and other propellants with desired properties for vacuum electrospraying were

developed[101]. Such propellants utilized in vacuum electrosprays, with higher conductivity

and lower vapor pressure than those utilized atmospherically, produce particles with orders

of magnitude smaller radii moving orders of magnitude faster than those in atmospheric

electrosprays[4]. Therefore, differences between vacuum and atmospheric electrosprays often

stem from differences in utilized propellants as well as environment-dependent physics.

This section is divided into two studies of electrospray plume evolution which seek to

isolate the influence of drag divergence. The first study treats the drag force, FD, as the

independent variable, varying the fraction of atmospheric drag force applied to the plume

69

and observing plume divergence in response. While this study provides theoretical insight

towards the influence of drag on plume divergence, the drag force cannot be scaled directly in

practice. The second study treats the background pressure, P , as the independent variable,

because this variable can be directly controlled in an experimental setting and it is related

to the drag force as explained in Sec. 5.2.2. The domain and emitted species utilized in both

studies are those of the validation case described in Sec. 2.5, which were experimentally

observed at atmospheric pressure. The influence of drag on emitted particle properties

is beyond the scope of this dissertation, which focuses on evolution of electrospray plume

following particle emission.

5.2.1 Influence of Drag Force

In this subsection, different fractions of atmospheric drag force are applied to simulated

plumes and their evolution is compared. The drag force is calculated given in Eq. 5.17

with the coefficient of drag from Eq. 5.8. In this study, drag is not modified as a function

of Reynolds, Mach, and Knudsen numbers based on background pressure; rather, a scaling

coefficient is multiplied by the drag force at atmospheric pressure. The scaling coefficients

used in this study are 1, 3
4
, 1
2
, 1
4
, and 0. In this manner, the relationship trend between

drag force and plume divergence can be obtained without yet considering how empirical

coefficients of drag vary with flow parameters. In all simulations, the axial emission location

of particles is held constant at the most probable jet breakup location as in the validation

case in Sec. 2.5. The radial emission location range is that presented in Sec. 2.3.4, such

that simulated emission is in the steady cone-jet mode. The electric field applied by the

electrodes, EA in Eq. 2.11, is determined using COMSOL as described in Sec. 2.3.2 for the

Sec. 2.5 validation case. The flowchart for particle propagation presented in Fig. 5.7 is

representative of the algorithm for this study.

Plume structures evolved to steady state under the different fractions of applied drag

force are compared in Fig. 5.4, in which both the lateral x and axial z coordinates are

70

Figure 5.4: A comparison between plumes evolved to steady state with different levels of

applied drag force.

normalized with emitter-to-collector-plate-length H. Drag positively contributes to plume

divergence, with plumes expanding wider with increasing fraction of drag force. At the

collector plate, the widest particle in the dragless plume reaches less than half the angle of

the widest particle in the full atmospheric drag plume.

Figure 5.5 provides comparisons of the mean axial velocity over normalized distance

from plate for the plumes evolved with different fractions of the drag force. Without drag,

particles are electrostatically accelerated away from the high voltage emitter and maintain

the resulting high velocities as they move downstream. With increasing fraction of drag force

applied, particles are increasingly drag decelerated following their electrostatic acceleration,

slowing them as they move downstream. There is an order of magnitude difference between

mean terminal velocity at the collector plate in the dragless and the full drag cases.

Drag deceleration causes particles to remain in the simulation domain for longer residence

times, such that the number of particles in a plume evolved to steady state increases with

increased drag force. Fig. 5.6 compares the number of particles at steady state in plumes

evolved with different fractions of the atmospheric drag force, with steady state defined when

71

0 0.2 0.4 0.6 0.8 1

Normalized Distance to Plate

0

0.2

0.4

0.6

0.8

1

1.2

1.4

N
o

rm
al

iz
ed

 A
x

ia
l

V
el

o
ci

ty

No Drag Force

1/4 Drag Force

1/2 Drag Force

3/4 Drag Force

Full Drag Force

Figure 5.5: The 3D plume evolved to steady-state with different fractions of drag force

applied.

the number of particles in the simulation domain plateaus (with little variance)[26, 9]. For

the dragless case, the steady state plume contains 169 ± 5 particles, with 1
4

drag force it

has 212 ± 3 particles, 251 ± 4 particles with 1
2

drag force, 403 ± 6 particles with 3
4

drag

force, and 607 ± 6 particles with the full drag force applied. This increase in steady state

particle number with increased drag force fits with results in Fig. 5.4 of plumes widening

with increasing drag force. Inter-particle Coulomb forces grow in magnitude with increased

particle density, such that plumes with higher number particles experience greater Coulomb

plume divergence as described in Sec. 4.3.

72

0 5 10 15

Normalized Time 10
4

0

100

200

300

400

500

600

700

N
u

m
b

er
 o

f
D

ro
p

le
ts

No Drag Force

1/4 Drag Force

1/2 Drag Force

3/4 Drag Force

Full Drag Force

Figure 5.6: The number of particles in the simulation domain over progressing time steps

(time normalized with the default time step ∆t) for plumes evolved with different levels of

applied drag force.

73

5.2.2 Influence of Background Pressure

In this subsection, the evolution of electrospray plume in different background pressures is

compared. The drag force on each particle is calculated based on background pressure using

empirical coefficients of drag which are functions of particle Reynolds, Mach, and Knudsen

number. Background pressure is an experimentally controllable variable, such that this study

is experimentally replicable, unlike the previous study which scaled drag force directly. As in

the previous study, the only change in response to different background pressures included in

this study is changes in the drag force; further differences in particle emission and subsequent

breakup are not included in this study. The domain specifications and emitted particle

properties are again that of the validation case in Se. 2.5. The background fluid molecules

are air, with radius rfl = 1.8 × 10−10 m, molar mass Mfl = 28.97 g, dynamic viscosity

µfl = 1.89Pa · s, and ratio of specific heats γfl = 1.4. The set of pressures examined is

shown in Table 5.1.

The background pressure determines the density of the background fluid molecules in the

simulated electrospray environment,

ρn =
P

kT
, (5.9)

where k is the Boltzmann constant and T is temperature, which is room temperature in this

publication. The number density of the background fluid molecules determines the mean

free path of a charged electrospray particle,

λ =
1

ρnσfl

, (5.10)

where σ is the interaction cross-section of the background fluid molecules. For neutral

molecules such as the air in the presented simulations, the interaction cross-section is the

physical cross-sectional area of the molecule,

σfl = πrfl
2, (5.11)

where rfl is the background fluid molecule radius.

74

P [Atm] P [Torr]

1 760

0.75 550

0.5 380

0.25 190

0.1 76

0.05 38

0.02 15.2

0.01 7.6

0.005 3.8

0.002 1.52

0.001 0.76

0.0005 0.38

0.0002 0.152

0.0001 0.076

Table 5.1: The range of background pressures utilized for the presented DELI simulation.

As background pressure decreases in an environment, the number density of the back-

ground gas decreases according to Eq. 5.9, a process termed rarefaction. In response to this

density change, the mean free path of a particle passing through the environment increases

following Eq. 5.10. Such rarefaction effects on particle dynamics are represented through

a rarefaction parameter called the Knudsen number. The Knudsen number expresses the

rarefaction of a flow as the ratio of mean free path to particle diameter:

Kn =
λ

d
, (5.12)

thereby representing how far, in terms of multiples of its own diameter, a particle will

progress on average in an environment before a collision [102, 18, 19, 20, 103]. The literature

75

has established discrete rarefaction regimes for discussion and theory purposes, presented in

Table. 5.2 [104, 105, 106, 107].

Knudsen Range Regime

Kn < 0.001 Continuum Flow

0.001 ≤ Kn < 0.1 Slip Flow

0.1 ≤ Kn < 10 Transitional Flow

10 ≤ Kn Free Molecular Flow

Table 5.2: Collisionality regimes determined based on the rarefaction parameter, Knudsen

number.

Following Table 5.2, at high Knudsen numbers, particle trajectories are very rarely al-

tered through collisions with background gas particles, such that they have ‘free molecular

flow’ through the environment. At lower Knudsen numbers in the ‘transitional’ regime, the

background gas particle density is higher and collisions with such background particles have a

non-negligible effect on the dynamics of particles passing through the environment. At even

lower Knudsen numbers, collisions with background particles have a significant effect, such

that passing particles are ‘slipping’ on the background particles instead of moving through

them freely. At the lowest Knudsen numbers, background gas density is so high that back-

ground particles fill the environment as a ‘continuum’ instead of as discrete particles, and

collisions with background particles are critical in passing particle dynamics.

The numerical influence of Knudsen number on particle motion is less clear-cut than the

theoretical discussion, with the literature presenting a plethora of empirical equations for

coefficient of drag[18, 19, 20, 103, 16, 97] as functions of Knudsen number, as well as Mach

number,

Ma =
|v|
a
, (5.13)

where a is the speed of sound in the environment, and Reynolds number, which expresses

76

the ratio of inertial to viscous forces:

Re =
|v|d
νfl

, (5.14)

where v is particle velocity, d is particle diameter, and νfl is the kinematic viscosity of the

background gas,

νfl =
µflA

ρnMfl

, (5.15)

where Mfl is the molar mass of the background gas molecules, µfl is the dynamic viscosity,

and A is Avogadro’s number. Note that Mach number, Reynolds number, and Knudsen

number are analytically related via

Kn =
Ma

Re

√
γπ

2
, (5.16)

where γ is the ratio of specific heats, such that range limits on two flow parameters limits

the third flow parameter. Empirical coefficient of drag equations are applicable only within

the range of flow parameters over which they were developed. Appendix A presents the

empirical drag terms utilized in the presented DELI simulations, their flow parameter ranges,

and their source publications. Two sets of DELI simulations were run: one using the [16]

coefficient of drag for all particles, and one using the coefficients of drag from [17], [18],

[19], and [20] depending on particle Re and Kn. Below P = 0.007692 Atm, mean particle

Knudsen number exceeds one and the only applicable coefficient of drag in Table A.1 is

from [16]. Therefore, only the [16] coefficient of drag term was used to simulate the P =

0.005, 0.002, 0.001, 0.0005, 0.0002 and 0.0001 Atm cases.

For the high Kn Transitional Flow range (Kn > 1) and the Free Molecular Flow range

(Kn ≥ 10) there are few empirical coefficient of drag terms in the literature because the col-

lisions between particles and background fluid molecules are infrequent, stochastic exchanges

of momentum range than a continuous loss of particle momentum to drag. When simulating

this environment in the absence of an empirical drag term, background fluid molecules could

be randomly dispersed in the simulation domain with the number density set as a function

77

of background pressure following Eq. 5.9, and momentum exchanges from collisions between

particles and background fluid molecules could be included in particle propagation. This

effort is beyond the scope of this publication, but could extend the present study to lower

pressures in the future.

The coefficient of drag is utilized to calculate the drag force exerted on each particle,

FD = −π

8
d2ρfCDv|v|, (5.17)

where the density of the surrounding gas can be calculated using the number density given

by Eq. 5.9,

ρfl = ρn

(
Mfl

A

)
. (5.18)

Electrospray particles in the DELI Model are propagated downstream from emission under

electrostatic, Coulomb, image charge, and drag forces:

m
d2x
dt2

= q(EA + EC + EI)− FD

= qEA +
q

4πϵ0

n∑
i

qi

(
ri
|ri|3

− rIi
|rIi|3

)
− CD

π

8
ρfld

2v|v|,
(5.19)

where EA is the applied electric field, EC is the Coulomb electric field generated by the

charged plume particles, EI is the electric field created by image charges induced in the

collector plate, ϵ0 is the permittivity of vacuum, n is the total number of particles in the

plume, and ri is the separation vector between particles (rIi is the separation vector from

each image charge, which has axial component 2H−zi, where H is the collector plate height

and zi is the axial coordinate of the particle yielding the image). Image charges are also

generated in the emitter and the fluid meniscus, but these are geometrically complex and

not included in the presented simulations. The flowchart for the DELI Model, including the

selection of an empirical drag term in each timestep based on the Kn, Re, and Ma of each

particle, is presented in Fig. 5.7.

Simulation results successfully replicate the experimentally established trend of decreas-

ing plume divergence with decreasing background pressure. Fig. 5.8 presents the outlines

78

Figure 5.7: The DELI Model algorithm for electrospray plume evolution with drag calculated

as a function of particle Reynolds, Knudsen, and Mach number.

of plumes simulated over the range of background pressures given in Table 5.1. Square root

functional forms were fit to each plume outline and the fit coefficients are plotted against

pressure in the inset plot of Fig. 5.8. There is a clear decrease in the coefficient of the outline

functional fit with background pressure, demonstrating the narrowing of the plume outlines

as pressure is decreased.

The correlation between background pressure and plume divergence is further analyzed

in Fig. 5.9, in which the terminal angles for one standard deviation (containing 68% of

particles), three standard deviation (containing 99.7%), and outline (containing 100%) mea-

surements of particle number density are plotted against background pressure. Results are

shown for simulations using a single coefficient of drag from [16] at pressures, and for simu-

lations using multiple coefficients of drag from [17], [18], [19], and [20] depending on particle

Re and Kn at the given pressure. The standard deviation measurements were obtained by

dividing the plumes axially into sections and radially fitting a Gaussian profile to particle

number density distributions in each section. The terminal angle is defined as the polar

79

Figure 5.8: The outline of plumes simulated with different background pressures with color

according to background pressure on a logarithmic scale. The inset plot shows the coefficient

of a square root functional fit to the plume outline at each background pressure.

80

angle measurement,

θ = tan

(√
x2 + y2

z

)
, (5.20)

where x, y, and z are the 3D positional coordinates upon reaching the collector plate at the

downstream end of the simulation domain. The outline terminal angle in the atmospheric

case is consistent with previous publications [10, 11, 46]. In all cases, the angles of particle

velocity vectors at the collector plate was wider than their positional angles, implying that

the plumes would expand further in wider domains.

In Fig. 5.9, there is a significant angular difference between the 3σ and outline measure-

ments, especially at high pressure levels. The terminal 3σ measurement displays the angle

within which all but outlier particles are incident on the collector plate, so very few outlier

particles account for a large range of wide incidence angles; 0.3% of particles account for

the widest 12◦ of incidence angles for the simulated plumes at near-atmospheric background

pressures. Therefore, the 3σ measurement may be a more accurate measurement of evolved

plume shape than the outline measurement, which is dictated by outliers.

The single and multiple coefficient of drag results agree within 3◦ for the one standard

deviation, three standard deviation, and outline particle number density terminal angles

for all pressures in the range of both coefficient of drag approaches. In both cases, plume

divergence continuously decreases with decreasing background pressure for all three angular

measurements in Fig. 5.9, although the changes are more significant for the outline and

3σ measurements than for the 1σ measurements. Hence, the trajectories of particles on the

fringe or edge of the plume are more impacted by changes in background pressure than those

of particles in the central majority of the plume. This is physically reasonable, as particles

on the plume edges experience outwardly radial, expansion-inducing Coulomb forces from

particles in the plume center with only the drag force countering divergence. On the other

hand, particles in the plume center experience inwardly radial, counter-expansion forces from

both the drag force and from Coulomb forces from particles wider in the plume. The only case

in which particles do not exert radial Coulomb forces on one another is if they are emitted in a

81

perfectly straight line; electrospray particles are always emitted within some non-zero radial

position range due to hydrodynamic instabilities and microscopic asymmetries in emitter

geometry. Therefore, the divergence of particles on the plume edge is more impacted by the

drag force, and thereby background pressure, than that of particles in the plume center.

Including reference thresholds for Knudsen number of the mean particle at emission in

Fig. 5.9 shows that the simulations span the Slip, Transitional, and Free Molecular Flow

regimes. When P < 5.87Torr, the average-sized particle (d = 38 µm) has Kn > 1 and

is approaching the Free Molecular Flow regime where dynamics are not longer affected by

collisions with background air molecules. In the simulation cases below this pressure, the out-

lines in Fig. 5.8 and the angular measurements in Fig. 5.9 display that the plume structure

plateaus to a near-constant shape. For P ≤ 0.76Torr, corresponding to Kn ≥ 7.7299 for

the mean particle, the plume is not any further narrowed by additional reductions in back-

ground pressure. Collisions between electrospray particles and background air molecules

happen so infrequently at these pressures that they have negligible impact on resulting par-

ticle trajectories. At pressures below P = 0.76Torr, the divergence of the plume is solely

a result of the applied electrostatic force and inter-particle Coulomb forces rather than the

drag force.

A final metric for observing changes to plume structure corresponding to changes in

background pressure is the number of particles in the plume at steady state. This metric

is defined as the number of particles in the plume when this population asymptotes after

increasing during plume startup. A similar trend is observed for number of particles at

steady state with background pressure as for plume divergence: the number of particles at

steady state decreases as background pressure decreases until P = 0.76Torr, at which point

the number of particles at steady state remains constant even with further drops in pressure.

This pressure threshold for the plateau in number of particles at steady state is the same as for

the plateau in plume divergence. At high background pressures, a high density of stationary

background air molecules collide with moving ES particles, slowing their progress through

82

Figure 5.9: Terminal angle measurements at the collector plate location are given for 1 and

3 standard deviations of particle number density and the outline of plumes simulated at

different background pressures using a single coefficient of drag from [16] (solid lines) and

multiple coefficients of drag from [17], [18], [19], and [20] depending on particle Re and Kn

(dashed lines).

83

the domain with drag force. This slowed motion towards the collector plate causes a higher

number density of particles in the plume domain which repel one another Coulombically.

In this manner, the same physical process which correlates increased background pressure

with an increased number of particles in the plume at steady state also correlates increased

background pressure with increased plume divergence. The number of particles in the plume

at steady state for pressures at and below P = 0.76Torr is equal to the result obtained for

the plume simulated with no drag force (FD = 0) [46, 108], confirming that drag is negligible

at these pressure and no changes will occur to plume shape through further reductions in

background pressure.

Having investigated the relationship between background pressure and plume divergence

computationally with DELI Model simulations, we now present an analytical determination

of the background pressure for minimized electrospray plume divergence. For many elec-

trospray technologies, optimizing performance requires minimizing plume divergence. For

example, the operational lifetime of electrospray thrusters for spacecraft propulsion depends

on avoiding propellant deposition on downstream electrodes at wide plume angles, and thrust

control also is maximized by a minimally divergent plume [3, 85, 23, 45]. When operating

electrospray technologies desiring minimal plume divergence, the background pressure needs

to be sufficiently low that drag no longer significantly contributes to plume divergence. This

pressure threshold for no drag divergence for the electrospray particles occurs by conceptual

definition in the Free Molecular regime with Kn = 10. Combining equations 5.9 - 5.12, the

analytical form of this pressure threshold is

P =
kBT

10σfld
. (5.21)

The simulated plume presented in Fig.s 5.8 and 5.9 was observed to exhibit minimal

divergence for P ≤ 0.76Torr, where the mean emitted particle is in the Transitional Flow

regime with Kn ≥ 7.7299. Note that this Kn threshold is very near the analytical Free

Molecular threshold. Based on our simulation results, we phenomenologically define a pres-

84

sure threshold for minimum electrospray plume divergence to be

Pth ≡ kBT

7.7299σfld
. (5.22)

Eq. 5.22 provides a pressure limit for an environment shown computationally to sufficiently

resemble full vacuum for electrospraying the presented plume. The Knudsen number thresh-

old of Kn = 7.7299 is based on a specific size of mean particle and the equation is therefore

plume-dependent. Equation 5.21 provides a stricter pressure limit for plume confinement for

plumes of any particle size; this threshold is not plume-dependent because it is analytically

determined based on the definition of the Free Molecular regime. Fig. 5.10 plots both pres-

sure limits for drag-free electrospray operation for different particle sizes spanning the range

used in electrospraying.

The cross-section of the background fluid molecule in Eq. 5.21 is a general cross-section

term which can be specified to charged or neutral molecules for any background fluid. Elec-

trosprays generally operate in domains with neutral background fluid molecules, such as

air. However, when neutral molecules are placed in an electric field, they become polarized,

with the positive and negative charges pushed to opposite sides of the molecule. Charged

electrospray particles create local electric fields, such that they induce dipoles in neutral

background molecules and are then attracted to the oppositely-charge end of the dipoles

[109, 110, 111]. This ion-induced dipole attraction increases the cross-section of the back-

ground fluid molecule and introduces a charge-dependence to the interaction between the

electrospray particle and the background fluid molecule.

Thus far in this section, drag has been discussed as the effect of physical collisions between

electrospray particles and background fluid molecules. Depending on Knudsen number,

particles move through a Continuum Flow of background molecules, or have sparse collisions

in an otherwise Free Molecular Flow environment. In this view of drag, electrospray particles

only exchange momentum with background molecules with which they physically collide.

However, when long-range polarization forces are considered, electrospray particles have

electrostatic interactions with the induced dipoles in all background molecules [109, 110, 111].

85

Figure 5.10: The pressure limit, P , for drag-free plume evolution for a range of particle sizes

as bounded by the Free Molecular flow definition from Eq. 5.21 and the phenomenological

pressure threshold from Eq. 5.22.

86

Electrospray particles exchange momentum with all the background molecules, not only

those with which they physically collide, as they do with all the other charged electrospray

particles.

Molecular dynamics simulations have observed polarization forces to significantly impact

the ion mobility,

K =
vd
E
, (5.23)

where vd is drift velocity and E is electric filed strength, of singly-charged ions in air with

diameters less than 1.3 nm [110]. Electrospray particles can be much higher in charge; for

example, large droplets can contain thousands of single charges. Therefore, while long-range

polarization forces are too computationally intensive to include in current electrospray plume

simulations, they should be anticipated to occur in the background fluids of electrosprays.

These attractive forces between electrospray particles and neutral background gas molecules

increase the overall force which the molecules exert on the particles, thereby increasing drag,

slowing particle motion, and increasing particle density in the domain. This increase in

charge density causes increased plume divergence through Coulomb interactions, such that

gas polarization increases plume divergence.

The Free Molecular pressure threshold for eliminating drag effects presented in Eq. 5.21

and plotted in Fig. 5.10 is applicable beyond electrosprays to any particulate flow system, in-

cluding particle accelerators [112, 113], aerosol drug delivery systems [114, 115, 34], ablative

beams [116, 117], and other electric propulsion systems like Hall thrusters [118, 119, 120, 121].

Performing this pressure threshold analysis allows for efficient electrospray or other exper-

imentation in vacuum with minimal investment in high-vacuum systems as it analytically

determines the background pressure required for negligible drag influence prior to experiment

construction.

87

5.3 Drag Paper Collision Analysis

An analysis of collisions between charged electrospray plume particles and the background

neutral air molecules present in the electrospray domain is presented in this section. Sec-

ondary induced flow of the background gas is not considered in this analysis; the neutral air

molecules are considered stationary in the laboratory frame, while the charged electrospray

particles are moving. Given the pressure, P , and temperature, T , in an electrospray domain,

the number density of air molecules in the domain can be calculated through the ideal gas

law:

ρn =
P

kBT
, (5.24)

where kB is the Boltzmann constant. The mean free path, l, or average distance traveled by

a charged electrospray particle before a colliding with a stationary background neutral air

molecule, through a domain with number density ρn of such stationary particles, is given by

Eq. 2.6. The cross section of the neutral air molecules is given by Eq. 5.11. Given a path

length of interest, L, such as the emitter-to-collector-plate or emitter-to-extractor-electrode

distance in an electrospray geometry, the domain Knudsen number can be calculated follow-

ing Eq. 5.12 as the ratio of the mean free path to the domain length:

Kndom =
l

L
=

1

Lρnπr2fl
. (5.25)

Note that this Knudsen number is defined with a different characteristic length than was

done for coefficient of drag purposes, which utilized the particle diameter as the scaling

length L instead of the domain length. The objective of present collision analysis is to find

the pressure at which the mean free path of an electrospray particle exceeds the particle path

length in a given geometry, such that collisions with air molecules can be neglected from the

analysis of particle dynamics in the full domain.

Figure 5.11 displays the relationship between the domain Knudsen number and back-

ground pressure for multiple path lengths, L. The path lengths considered range from

L = 1 µm, smaller than electrospray thruster emitter-to-extractor-electrode distances, to

88

L = 10m, the size of a large vacuum chamber, such that the presented results are appli-

cable to a wide range of technology geometries. A dashed line is shown representing the

emitter-to-collector-plate distance, H, from Sec. 2.5, with a star marking the atmospheric

case presented in that section. The Knudsen number for the atmospheric validation case falls

well below unity, meaning that collisions with background air molecules have a significant

effect on electrospray particle dynamics; this conclusion aligns with the notable effects of the

drag force on particle dynamics observed in Sec. 2.5. The pressures considered range from

atmospheric pressure to ultra-high vacuum, thereby including pressures relevant to many

industry and scientific applications. Using this figure, given the path length, L, of an elec-

trospray application, the pressure at which the mean free path of an electrospray particle

exceeds the relevant domain length can be determined, as given by the unity Knudsen num-

ber threshold. Alternatively, given the pressure level, P , that can be obtained in a given

electrospray apparatus, the domain length which yields a particle mean free path greater

than that length can be determined, such that the electrospray geometry may be scaled to

avoid collisions between charged electrospray particles and background neutral air molecules.

89

10
-10

10
-5

10
0

Pressure [torr]

10
-10

10
-5

10
0

10
5

10
10

10
15

K
n

u
d

se
n

 N
u

m
b

er

L = 1 µm

L = 1 mm

L = 3 cm

L = 1 m

L = 10 m
A

tm
o

sp
h

er
e

In
d

u
st

ry
 V

ac
u

u
m

H
ig

h
 V

ac
u

u
m

U
lt

ra
-h

ig
h

 V
ac

u
u

m

Collisionless within L

Figure 5.11: The relationship between pressure and Knudsen Number is presented for dif-

ferent path lengths.

90

CHAPTER 6

Other Sources of Plume Divergence

The previous three chapters have been devoted to each of the three dominant forces in elec-

trospray plume dynamics: the applied electrostatic force, the inter-particle Coulomb forces,

and the drag force. These forces are represented in the governing equation for the particle

propagation DELI Model, Eq. 2.11. This chapter is devoted to forces and phenomena which

have a lesser impact on plume evolution and are therefore neglected from DELI simulations.

The objective of discussing these higher-order plume evolution terms is to provide a com-

prehensive view of plume divergence beyond current DELI Model simulation capabilities.

6.1 Gravity

The gravitational forces acts on all electrospray particles according to their mass,

FG = mg, (6.1)

where g is the Earth’s gravitational acceleration. Order of magnitude analysis revealed the

gravitational force to be less than 1% than the applied electrostatic, Coulomb, and drag

forces for the validation case in Sec. 2.5, such that it can be neglected without introducing

significant error to simulated plume evolution. Gravity acts downward, such that its influence

on electrospray particles depends on the orientation of the electrospray setup. The effect of

the gravitational forces on an electrospray plume in various orientations is displayed in Fig.

6.1. If the electrospray faces upward, gravity works counter to the axial forward motion of

the electrospray particles. This causes slowed axial velocities and thereby increased particle

91

Figure 6.1: The influence of gravity on electrospray plumes in different orientations. The

plume outline without gravity is shown in red, the gravitational force is denoted with black

arrows, and the modified plume shape under the influence of gravity is shown in blue.

residence time in the domain, resulting in a higher particle number density within the plume.

As discussed in Sec. 5.2, increased particle number density causes increased plume divergence

through Coulomb interactions. Therefore, orienting the electrospray to emit against gravity

causes gravity to contribute to plume divergence. On the other hand, if the electrospray

is facing down such that particles are emitted in the direction of the gravitational force,

then gravity accelerates particles in the direction of their inertial axial motion. In this case,

particles move more quickly and spend less time in the domain, allowing for less plume

divergence through Coulomb interactions as described in Sec. 4.3. In the case in which

electrospray plumes face to the side, at a 90◦ angle to the gravitational force, the plume

will experiences ‘skewing’ or ‘tilting’ as particles are pulled to one side. The plume will not

maintain axisymmetry around the axis of emission. Plume emission at an angle which is

not fully parallel or perpendicular to the gravitational force will yield a combination of the

effects described here for the cases with emission parallel and perpendicular to gravity.

This ‘tilting’ of the electrospray plume when oriented perpendicular to gravity has been

experimentally observed[122, 85, 123]. In order to include the gravitational force in DELI

simulations to reproduce such behavior, the governing Eq. 2.11 would need to be modified

92

to include the gravitational force:

ma = q(EA + EC + EI)− FD + FG

= qEA +
q

4πε0

n∑
i

qi

(
ri
|ri|3

− rI
|rI|3

)
− CD

π

8
ρgd

2v|v| −mg.
(6.2)

6.2 Thermal Gradient

The thermophoretic force acts on particles due to temperature gradients in the background

fluid. Background gas molecules in warmer areas have higher kinetic energies than those in

colder areas, such that they transfer more energy in collisions with particles. This causes

a net thermophoretic force on the particles towards colder areas. In continuum flows with

Kn ≤ 0.001, the thermophoretic force is

FT = −
6πdµ2

flCΛ∇T

ρfl(2Λ + 1)T
, (6.3)

where T is the local background fluid temperature, ∇T is the local temperature gradient in

the background fluid, C = 1.17 is a dimensionless constant, µ is the dynamic viscosity of the

background fluid, ρ is the density of the background fluid, and

Λ =
kfl
kp

, (6.4)

where kfl is the thermal conductivity of the background fluid and kp is the thermal conduc-

tivity of the particle. To include the thermophoretic force in DELI simulations, the governing

Eq. 2.11 would be:

ma = q(EA + EC + EI)− FD + FT

= qEA +
q

4πε0

n∑
i

qi

(
ri
|ri|3

− rI
|rI|3

)
− CD

π

8
ρgd

2v|v| − 6πdµ2CΛ∇T

ρ(2Λ + 1)T
.

(6.5)

To include rarefaction effects on the thermophoretic force when the flow is not in the con-

tinuum regime, empirical formulas have been developed[124].

93

Figure 6.2: The thermophoretic force on a micron diameter particle for different local back-

ground fluid temperatures T and temperature gradients ∇T . The gravitational force on a

m = 1× 10−16 kg particle is included as for reference.

Fig. 6.2 displays the thermophoretic force on a micron diameter particle in different

background fluid temperature gradients and local background fluid temperatures. A line

showing the gravitational force on a particle with m = 1× 10−16 kg (the same order as the

mean particle in the validation case in Sev. 2.5) is included for reference. The thermophoretic

force is less than the gravitational force in all cases, which has already been noted in Sec.

6.1 to be negligible compared to the applied electrostatic, Coulomb, and drag force.

Thermal gradients can exist inside of the electrospray jet and fluid electrospray droplets

in addition to throughout the thruster domain. Thermal gradients within the electrospray

jet have been reported in simulations of jet formation and particle emission[125], with the

jet tip being hotter than the length of the jet. This thermal gradient provides additional

94

kinetic energy to particles emitted from the tip. Thermal gradients within particles affect

charge motion within the particle, which is discussed in the following Sec. 6.3.

6.3 Fluid Mechanics

The DELI Model approximates electrospray particles to be perfectly spherical and uniformly

charged, but in reality they are fluid collections of mobile charges. Interactions between

charges within the particle, and interactions with mobile charges between particles cause

charges to move around and deform the fluid surface which contains them. Charge mobility

causes the Coulomb interactions between particles to vary from the theoretical ideal for

perfect spheres. Polarization alters the Coulomb interaction between aqueous droplets by

inducing multipoles[21]. As a result, charges of one sign within a particle move to be closer

to charges of the opposite sign within neighboring particle, increasing their electrostatic

attraction or reducing their electrostatic repulsion. This process is displayed in Fig. 6.3,

reproduced from [21].

Deforming from the spherical ideal also causes ‘primary’ particles emitted from the jet

to emit ‘secondary’ progeny particles through Coulomb fission when the primary particle

charge is below the Rayleigh limit for spherical particles of the same size. Fluid electrospray

particles have been observed to undergo Coulomb fission at less than 70% of the Rayleigh

charge limit for spherical particles of the same size[126, 127, 128]. Furthermore, primary par-

ticles can emit secondaries through field-emission of ions where the local surface electric field

exceeds 1V nm−1[27]. Electric field strength is magnified in areas of high curvature, such

that particles which deform in a highly curved manner may emit ions when they would not

have done so in a non-deformed, spherical state. The mass, charge, and number of progeny

produced during particle breakup, through Coulomb fission or field-emission of ions, is highly

variable and an area of active research[129]. Coulomb fission has been included in Lagrangian

simulations with the ranges for mass, charge, and number of secondaries based on experi-

95

Figure 6.3: Spherical fluid particles have initial separation with 2.5 particle radii experience

local attraction to one another and coalesce. The black line on the bottom of the lower

particle represents negative charge concentration. The dashed lines show the motion of rigid

particles for comparison [21]

96

mental observations[26, 10]. Particle breakup is currently restricted to molecular dynamics

simulations of individual of small numbers of particles; such calculations are currently too

computationally intensive for full electrospray plume simulations.

In addition to particle breakup, fluid electrospray particles are capable of coalescing.

Coalescence events include full particles merging together, and partial transfers of groups of

charges from one particle to another. Similar to particle breakup, particle fluid coalescence

is currently too computationally expensive to include in full plume simulations. Molecular

dynamics simulations of coalescing particles can provide statistical outputs on the particle

properties resulting from particle coalescence which can be input to full plume simulations

for reference during simulated particle collisions.

6.4 Gas Polarization

Electrosprays generally operate in domains with neutral background fluid molecules, such as

air. However, when neutral molecules are placed in an electric field, they become polarized,

with the positive and negative charges pushed to opposite sides of the molecule. Charged

electrospray particles approach create local electric fields, such that they induce a dipole in

the neutral background molecules and are then attracted to the oppositely-charge end of the

dipole. This ion-induced dipole attraction introduces a charge-dependence to the interaction

between the electrospray particle and the background fluid molecules which is not represented

in conventional drag force equations such as that presented in Ch. 5 [109, 110, 111].

In Ch. 5, drag is discussed as the effect of physical collisions between electrospray particles

and background fluid molecules. Depending on Knudsen number, electrospray particles

can move through a Continuum Flow of background molecules, or have sparse collisions

in an otherwise Free Molecular Flow environment. Electrospray particles only exchange

momentum with background molecules with which they physically collide in this view of drag.

However, when long-range polarization forces are considered, electrospray particles have

97

electrostatic interactions with the induced dipoles in all background molecules [109, 110, 111].

Electrospray particles exchange momentum with all the background molecules, not only

those with which they physically collide, as they do with all the other charged electrospray

particles.

Molecular dynamics simulations have observed polarization forces to significantly impact

the ion mobility,

K =
vd
E
, (6.6)

where vd is drift velocity, of singly-charged ions in air with diameters less than 1.3 nm [110].

Electrospray particles can be much higher in charge; for example, large droplets can con-

tain thousands of single charges. Therefore, while long-range polarization forces are too

computationally intensive to include in current electrospray plume simulations, they should

be anticipated to occur in the background fluids of electrosprays. These attractive forces

between electrospray particles and neutral background gas molecules increase the overall

force which the molecules exert on the particles, thereby increasing the effect of drag. As

described in Ch. 5, the counter-motion effect of drag slows particles motion through the

domain, thereby increasing particle density in the domain. This increase in charge density

causes increased plume divergence through Coulomb interactions as described in Ch. 4.

Therefore, gas polarization contributes positively to plume divergence.

98

CHAPTER 7

Novel Methods for Characterizing Plume Divergence

While divergence is a key metric for electrospray lifetime and also performance, the commu-

nity has yet to converge on a metric for electrospray plume divergence. Means of presenting

simulated or experimentally observed electrospray plume divergence in the literature include

plume outlines and 2-dimensional snapshots of the plume, which may be instantaneous or

time-averaged. The electrospray plume outline is dictated by outlier particles, which can

reach much wider angles than the majority of plume particles. Figure 5.9 presents the termi-

nal angles on the downstream collector plate reached by one standard deviation (containing

68% of particles), three standard deviations (containing 99.7%), and the outline (containing

100%) of particle number density for various background pressures. The standard devia-

tion measurements were obtained by dividing the plumes axially into sections and radially

fitting a Gaussian profile to particle number density distributions in each section. A Super-

Gaussian fit could also be used in cases for which it fits better to the particle mass density

distribution[23]. The terminal angle is defined as the polar angle measurement,

θ = tan

(√
x2 + y2

z

)
, (7.1)

where x, y, and z are the 3D positional coordinates upon reaching the collector plate at the

downstream end of the simulation domain. In Fig. 5.9, there is a significant angular difference

between the 3σ and outline measurements, especially at high pressure levels. The terminal

3σ measurement displays the angle within which all but outlier particles are incident on the

collector plate, so very few outlier particles account for a large range of wide incidence angles;

0.3% of particles account for the widest 12◦ of incidence angles for the simulated plumes at

99

near-atmospheric background pressures. Therefore, utilizing the outline to represent plume

divergence overstates the divergence of the bulk of the plume.

Snapshots of the plume, such as that presented in Fig. 2.10, are not determined solely

by outlier particles, but rather represent every particle in the plume. Such snapshots can be

misleading in that particles which appear near one another in a 2-D view may not actually

be near each other in 3-D space. Furthermore, snapshots are not quantifiable. One can

utilize plume outlines along with plume snapshots to visually compare plume divergence, as

presented in Fig. 2.10, but it is not feasible to quantitatively compare the plume divergence

using snapshots. Therefore, while snapshots are a means of visualizing plume divergence,

they are not a plume divergence metric. The objective of this section is to propose a definition

for electrospray plume divergence which is quantifiable and is representative of the majority of

the plume, rather than outlier particles. Furthermore, recognizing that electrospray plumes

can evolve in momentum in addition to position, we propose a secondary plume divergence

metric which accounts for momentum evolution in addition to positional evolution.

Fundamentally, electrospray plumes and the plumes or beams produced by other electric

propulsion systems[130, 131, 132, 133] are collections of moving particles, similar to a laser

beam. In a focused beam like a laser, there is a ’sharp’ edge to the particle stream such that

angular beam divergence from the emission axis can be defined as

θ = arctan

(
∆rb
l

)
(7.2)

where ∆rb is the beam radius (measure from the beam center to the outline containing 100%

of particles) over distance l along the primary axis of beam motion. However, electrospray

plumes are diffuse and have no sharp edge. As presented in Fig. 5.9, the plume outline set

by the widest particle trajectories is much broader than most particle trajectories, such that

outlines misrepresent divergence of the bulk of the plume. We propose that the effective

plume ‘edge’ for electrospray thrusters can be defined based on three standard deviations,

3σ, of a Gaussian fit to the particle mass density distribution. Three standard deviations

represents the statistical bulk (99.7%) of the plume without being skewed by outlier particle

100

trajectories. Particle mass density is the key distribution for thruster divergence analysis

because electrospray thruster lifetime is limited by the mass of propellant deposited on

downstream grids [3]. Plume divergence angle at distance z downstream of emission is

thereby obtained from Eq. 7.2 by substituting the radius of three of standard deviations of

particle mass density, ∆r3σ for ∆rb, and distance z for the path length l:

θ3σ = arctan

(
∆r3σ
z

)
. (7.3)

Utilizing Fig. 5.9 as an example, under our definition, the electrospray plume has divergence

of 23.5◦ at atmospheric pressure (P = 760Torr).

In addition to defining plume divergence using three standard deviations of the mass

density distribution, we propose the use of emittance, ϵ, as a new metric for characterizing

electrospray plume divergence. Emittance is a beam parallelism measure from the particle

accelerator community[88, 89, 22]. Accelerator beams such as the Large Hadron Collider

(LHC) at CERN propagate within confining systems for kilometers[134], orders of magnitude

longer distances than the beams and plumes produced by electric propulsion systems which

may propagate only centimeters before exiting the thruster. In pursuit of keeping charged

particle beams steady and confined for such long distances, the particle accelerator research

community has developed a rich literature of beam quality analysis and diagnostic metrics[88,

89, 22]. Emittance is one such beam quality metric, which displays the influence of non-

Hamiltonian forces on the beam. Louiville’s Theorem of emittance conservation states that

emittance is conserved in a non-accelerating beam with no Hamiltonian forces. If the beam is

being accelerated, the emittance normalized with Lorentz parameters β and γ is conserved:

ϵn = ϵβγ (7.4)

where

β =
v

c
, (7.5)

v is particle velocity, c is the speed of light, and

γ =
1

1− β2
. (7.6)

101

Emittance decreases in response to non-Hamiltonian forces like cooling, and increases in

response to non-Hamiltonian forces such as heating, friction, scattering phenomena[135], or

close-range Coulomb ‘collisions’ termed ‘intra-beam scattering’ in the CERN literature[88,

89]. The overall space charge effect of the charged electrospray plume creates an electric

potential field which exerts Hamiltonian forces on particles and does not increase emittance;

however, the stochastic, close-range Coulomb ‘collisions’ between neighboring particles do

not create a consistent Hamiltonian force potential field and therefore do increase emittance.

Such Coulomb collisions violate Louiville’s Theorem of emittance conservation in 6-dimension

phase space by initiating Markov processes separate from the Hamiltonian influence of the

space charge of the overall plume[89]. Close-range Coulomb interactions between particles

which have clustered in a ’traffic jam’ are critical to electrospray plume divergence[68, 46],

such that emittance can be hypothesized to increase in electrospray plumes due to intra-beam

scattering.

Emittance plots convey transverse particle position component against transverse angle

component, where angle is defined as the ratio of momentum in the transverse direction to

momentum in the axial direction of beam propagation,

x′ =
px
pz

. (7.7)

A quantitative emittance metric can be calculated using the area of the particle collection

in the position-angle trace space for each transverse component direction:

εx =
1

π

∫ ∫
dxdx′. (7.8)

Emittance evolution in a beam is observed by taking emittance measurements of cross-

sectional beam slices as shown in Fig. 7.1.

The beam emittance plots in Fig. 7.1 show changes in position as the beam converges

and diverges, but no changes of momentum. The elliptical shape of the particle distributions

on the emittance plots is conventional for propagating beams, in which particle position and

102

Figure 7.1: Cross sections of the plume used to observe trends in emittance as the plume

moves downstream[22].

momentum in a beam cross-section have a physics-driven relationship. The area of the

emittance plot ellipses in Fig. 7.1 remains constant throughout the propagation of the

beam, conveying that his beam is not influenced by non-Hamiltonian forces such as intra-

beam scattering.

7.1 Results and Discussion

Plume simulation results presented in this publication were obtained by the Plasma, En-

ergy & Space Propulsion Laboratory (PESPL) at the University of California, Los An-

geles (UCLA) using the Discrete Electrospray Lagrangian Interaction (DELI) Model. This

model has been previously introduced and validated[46]. The electrospray geometry, 1.13nl/s

flowrate constraint, and emitted EMI-Im particle data for the presented plume divergence

results are from Miller et. al[24]. Three species of EMI-Im particles were utilized with the

properties presented in Table 7.1.

A 2-D x − z snapshot of the tri-species electrospray plume after 80ms of simulation time

using 1 µs timesteps is presented in Fig. 7.2. Lines overlayed on the plume show the location

of cross-sectional beam slices at which emittance measurements were taken. The emittance

103

Table 7.1: Tri-species EMI-Im electrospray mass and integer charge number properties[24].

All particles are negatively charged.

Attribute Small Species Medium Species Large Species

Mass [kg] 9.99e6 5.99.e7 2.78e8

Charge Number 90 252 650

plots of the particle collections at each of these cross-sections are presented in Fig. 7.3.

Figure 7.2: Cross sections of the tri-species EMI-Im plume at which emittance measurements

were taken.

The emittance plots in Fig. 7.3 show that as the electrospray plume propagates down-

stream increasing axial coordinate z, the positional spread of the droplets across lateral

104

Figure 7.3: Emittance plots of the particles from each cross-sectional beam slice in Fig. 7.2.

coordinate x increases, meaning that the plume is diverging. The plume is also observed

to generally decrease in x momentum angle, with a few outlier droplets that increase their

momentum angle from the initial emission state. The momentum angle x′ can be reduced

by particle mass to velocity angle,

v′x =
vx
vz
. (7.9)

Therefore, most particles in this plume are observed to decrease in velocity angle as they

move downstream. This observation fits with the understanding that Coulomb interactions

cause significant divergence near the emission region, but as particles move downstream and

spread out from one another, their trajectories are less divergent and guided by electric

field lines. The area of the minimum enclosing ellipse for each cross-sectional collection of

particles in Fig. 7.3 was calculated and used in Eq. 7.8 to yield emittance measurements for

each cross-section. The emittance measurements are plotted against axial coordinate in Fig.

7.4 to show the evolution of emittance as the electrospray plume propagates downstream.

Cross-sectional emittance measurements in the direction of plume propagation allows for

105

Figure 7.4: Emittance in the x component direction against axial coordinate for cross-

sectional plume slices

divergence analysis considering both position and velocity. Figure 7.4 shows that emittance

increases as the electrospray beam propagates. This result fits our hypothesis, because elec-

trospray plume divergence is driven by stochastic Coulomb collisions between neighboring

charged particles, which are a source of emittance growth. While the emittance trend pre-

sented in Fig. 7.4 is generally increasing, the exact shape of the emittance growth curve was

found to be sensitive to the spacing between cross-sectional beam slices in the region near

emission (z < 3 × 10−5 m). The frequency of near-neighbor Coulomb collisions decreases

as particles move downstream of the charge-dense emission region, such that the emittance

evolution slope can be expected to decrease as the plume moves further downstream. Bound-

ing the ‘interaction region’ in which particles are dominated by Coulomb interactions is an

active area of electrospray research[13, 14, 136]. Emittance can be useful towards this ef-

fort, because when stochastic, near-neighbor Coulomb collisions are no longer contributing

to plume divergence, normalized emittance will plateau.

106

Finally, we propose that emittance diagrams of the full plume, as opposed to cross-

sectional plume slices, can be useful for identifying when plumes have reached steady state.

An emittance plot for the x-component of the full tri-species EMI-Im plume is presented

in Fig. 7.5. As the plume evolves, so does the emittance representation of the plume.

During plume startup, the full-plume emittance evolves with plume position and velocity

distributions. When the plume is steady in both position and velocity, the emittance diagram

will show no further changes in structure. We propose that a simulated plume has reached

steady state when its full-plume emittance diagram reaches a constant shape.

Figure 7.5: Emittance in the x component direction for the full plume with color correspond-

ing to species.

107

CHAPTER 8

Predicting Plume Divergence

Although both experimental and computational electrospray research have produced a sur-

plus of valuable data, machine learning (ML) has previously only been applied to experi-

mental data: to predict mean emitted particle size [137]; to assist with medical diagnoses

[87, 138, 139, 140] and biological classifications [141, 142]; and to estimate ionization effi-

ciency [143]. This chapter demonstrates the utility of applying machine learning, specifically

regression algorithms, to simulated electrospray particle data.

Electrospray plume simulations are computationally expensive because the many charged

particles in a plume interact Coulombically. Atmospheric electrospray plumes have been ob-

served to contain over 104 particles [11]. In the vacuum regime, electrospray plumes generate

significantly higher numbers of particles with diameters beneath the diffraction limit of op-

tical microscopy [48, 122, 4]. Analysis of the flow rates and times to steady state from the

University of California, Los Angeles (UCLA) Plasma, Energy & Space Propulsion Labora-

tory (PESPL) plume measurements made in vacuum [23] assuming 10 nm diameter particles

implies that vacuum plumes can contain over 108 particles in typical experimental domain

sizes on the order of 0.5m [46]. Simulations of such electrospray plumes create large amounts

of particle dynamics data to which ML methods can be applied for both classification and

regression purposes. Each unique particle trajectory from a Lagrangian simulation can be

used as a sample in the training set for ML models. Once a Lagrangian model has generated

sufficient particle dynamics data for a validated case, regression algorithms trained on that

particle data can predict the dynamics of particles outside the training set. In this manner,

108

ML regression models can form meta-models of the Lagrangian particle tracking model for

the given case of interest. A benefit of regressing on the known particle data set is saving

the computational expense of additional runs of the full Lagrangian model.

A second benefit of applying ML to electrospray dynamics data is that certain algorithms,

such as the Random Forest, yield feature rankings which are not inherently produced by La-

grangian particle tracking models, thereby elucidating correlations between discrete particle

properties. No closed-form relation is known between electrospray particle properties at

emission and final particle properties downstream of emission. While feature rankings can-

not provide such an explicit relationship, they can provide insight towards the correlation

strength between given emission and downstream particle properties.

Thirdly, it is beneficial to understand correlations between different final particle proper-

ties. Significant experimental time, effort, and resource is focused on building, aligning, and

utilizing many types of electrospray measurement devices with discrete and specific purposes.

For example, Faraday probes obtain current measurements, quartz crystal microbalances

(QCM) obtain mass flux measurements; inductive charge detectors (ICD) measure charge

flux; retarding potential analyzers (RPA) measure particle retarding potential; and time

of flight (TOF) sensor measurements are used to determine particle velocity distributions.

Probes can be moved throughout the plume to map parameters of interest, but may run into

challenges with measurement speed, resolution, and geometric constraints. Challenges are

compounded in efforts to utilize multiple probes in a single diagnostic chamber. Therefore,

it is valuable to predict one type of measurement reliably from another with the assistance

of a validated Lagrangian particle tracking code and ML models. This publication demon-

strates how regression algorithms trained on validated particle tracking simulation data can

predict unknown final particle properties given a known final property. Furthermore, ana-

lyzing which final particle properties help most in predicting other final properties allows ML

models to optimize diagnostic design by determining which probes to include in a diagnostic

suite to maximize knowledge of final particle properties.

109

This study serves as an initial investigation into applying machine learning to electrospray

simulation results. Results reveal three primary benefits: the creation of a surrogate model

for a Lagrangian particle tracking model, the provision of feature relations between emission

and final particle properties, and the prediction of unknown final particle properties given

known final properties. To demonstrate the utility of applying ML regression to electrospray

simulation results, this investigation uses data produced by the UCLA PESPL Discrete

Electrospray Lagrangian Interaction (DELI) Model [46], but this process can also be applied

to other Lagrangian particle tracking models and data in the literature [9, 48, 13, 11, 14].

8.1 Methods

8.1.1 Data Acquisition

The Lagrangian particle tracking data used in this investigation were obtained from DELI

Model simulations of emitted particle data and experimental conditions from Gañan-Calvo et

al. [9], for which case the DELI Model was validated in Sec. 2.5. Particle data sampling was

conducted during the steady-state of the simulated plume, when total particle number in the

simulation domain had become asymptotic [9, 26]. Each data sample includes the following

feature combination of initial (emission) and final (at collector plate) particle properties

of every particle which left the domain during simulation: mass m, charge q, 3D emission

coordinates (xi, yi, zi), 3D emission velocity (vxi, vyi, vzi), final positional plume angle θf , 3D

final velocity (vxf , vyf , vzf), and final potential ϕRPAf . Eight of these particle characteristics

(m, q, xi, yi, zi, vxi, vyi, vzi) are assigned at emission, while the remaining five (θf , vxf , vyf ,

vzf , ϕRPAf) are obtained when the particle reaches the collector plate. The DELI Model

simulations did not include particle breakup after emission such that the mass and charge

of each particle are the same at the collector plate as they are at emission. As in Eq. 2.11,

particles in the DELI Model are propagated downstream from emission under electrostatic,

Coulomb, image charge, and drag forces:

110

m
d2x
dt2

= q(EA+EC−EI)−FD = qEA+
q

4πϵ0

n∑
i=1

qiri
|ri|3

− q2

4πϵ0

rI
|rI|3

−CD
π

8
ρfld

2v|v|, (8.1)

where x is the particle position, EA is the applied electric field, EC is the Coulomb electric

field generated by the charged plume particles, EI is the electric field created by image

charges induced in the collector plate, and FD is the drag force. Furthermore, ϵ0 is the

permittivity of vacuum, n is the total number of particles in the plume, ri is the separation

vector between particles (rI is the separation vector between a particle and its image charge

in the collector plate), CD is the coefficient of drag, ρfl is the density of the surrounding

fluid, d is particle diameter, and v is particle velocity.

Axial emission coordinate zi does not vary between particles for the presented simulations

such that it can be removed from the feature set. Two cases of particle data results are

analyzed in this publication:

Case I: particles have strictly axial emission velocity

Case II: particles have non-zero radial emission velocity.

The emission velocity magnitude was held constant in both cases. Experimental observations

of the cone-jet and particles [123], or just the cone-jet structure when particles are too small

to be visualized [122, 85], show that particle emission can occur at a tilted angle from the

vertical axis, contributing radial components to the velocity vectors of emitted particles.

Off-axis particle emission can occur due to a tilted cone-jet structure [122, 85] or instabilities

in a jet emitted from a nominal cone-jet structure [123]. Therefore, for case II, particle

emission velocity angle is set to correspond to particle emission angle:

tan
(vri
vzi

)
= tan

(ri
l

)
, (8.2)

where ri is the emission radial coordinate, vri is the emission radial velocity component,

and l is the distance between the jet tip from which particles are emitted and the upstream

reference point for calculating velocity emission angle. This distance is varied from one mean

particle radius l = d/2 to two mean jet breakup wavelengths l = 2λ , where λ = 4.5d [9, 55].

111

Figure 8.1: Emission velocity vector direction is the angle between particle emission position

and a reference point in the jet distance l upstream from the jet tip, where l varies from one

mean particle radius to one mean breakup wavelength. An example emission velocity vector

is shown for l = λ.

Figure 8.1 provides a diagram of this method of determining emission velocity angle. The

nearer the reference point to the emission point, the larger the radial component to the

particle emission velocity vector. Sec. 8.2.2 presents results for the shortest l case, l = d/2,

because it has the most variance in emission velocity component data and thereby gives the

most stark comparison with the solely axial velocity case presented in Sec. 8.2.1.

Table 8.1 provides descriptions of each feature variable and formulas for cases where

calculations were made to obtain the variable. In the table formulas, θi is the emission polar

angle, ϕi is the emission azimuthal angle, vf is exit velocity, rf is the final radial position, and

zf is the final axial position, in this case the constant collector plate position. The formulas

given for the emission velocity vector components are for the case in which emission velocity

is not strictly axial; in that case there are no lateral components to velocity and the axial

component is constant according to Gañan-Calvo et al. [9].

DELI simulation datasets including 35,000 unique particle samples were used for each

of the emission velocity cases presented. Histograms of the emission (m, q, xi, yi, vxi, vyi,

112

Table 8.1: Feature Variables

Variable Definition Formula

m mass

q charge

xi emission x position

yi emission y position

zi emission z position

ri emission radial position
√

xi
2 + yi2

vxi emission velocity x component arctan
(

ri
l

)
cos θi cosϕi

vyi emission velocity y component arctan
(

ri
l

)
cos θi sinϕi

vzi emission velocity z component arctan
(

ri
l

)
sin θi

rf final radial position
√
xf

2 + yf 2

θf final positional plume angle tan
(

rf
zf

)
vxf final velocity x component

vyf final velocity y component

vzf final velocity z component

ϕRPAf final potential
1
2
m|vf |2

q

vzi) and final (θf , vxf , vyf , vzf , ϕRPAf) particle property data are presented in Appendix

B for each emission velocity case; for the strictly axial emission velocity case, the constant

emission velocity components are not visualized.

8.1.2 Data Preparation

The data in this study are strictly numerical and there are no missing data entries. A

flowchart for the process of data preparation is presented in Fig. 8.2

Data were first filtered for uniqueness by eliminating duplicate samples. Then, the order

113

Figure 8.2: Process of preparing particle tracking data for input to machine learning models.

of data samples was shuffled randomly using the shuffle function from the scikit-learn library

(v1.1.2) Python package [144]. Finally, all data were scaled before regression using the

StandardScaler function in the scikit-learn library (v1.1.2)[144]. A standard scaler was fit

to the training feature data and then applied to the testing feature data. The scikit-learn

library train_test_split function was used to split the data into training and testing sets

for the ML models, with 80% of the particle dynamics data reserved for training, and the

remaining 20% for testing.

8.1.3 Model Construction

Six different ML models are applied to electrospray simulation results in this study: Ran-

dom Forest (RF), Support Vector Regression (SVR), k-Nearest Neighbor(kNN), Multilayer

Perceptron (MLP), Extreme Gradient Boosting (XGBoost), and Light Gradient Boosting

Machine (LGBM) models. The scikit-learn library (v1.1.2)[144] was used for all models be-

114

sides the XGboost model from the py-xgboost library (v1.6.2)[145] and the LGBM model

from the lightgbm library (v3.3.2)[146].

The performance metrics used in this study are the coefficient of determination (R2) and

the absolute-normalized root mean squared error (ANRMSE), defined as follows:

R2 = 1−
∑N

i=1(p̄i − p̂i)
2∑N

i=1(p̄i − pi)2
, (8.3)

ANRMSE =

√∑N
i=1(pi−p̂i)2

N

|pi|
, (8.4)

where N is the number of samples, pi is the true value of the variable being predicted, p̂i is

the value predicted by an ML model, and pi is the mean of the true values.

8.1.4 Model Optimization

Hyperparameter tuning was conducted through 5-fold cross validation on all ML models

to obtain each presented result. The goal of this tuning was to optimize model R2 scores.

The hyperparameters for each model, their tuning ranges, and the tuned parameters for

the strictly axial emission velocity case and the non-zero radial emission velocity case where

l = d/2 are presented in Appendix C.

8.2 Results and Discussion

8.2.1 Case I: Strictly Axial Emission Velocity

We first present analysis of the case in which particles were emitted with constant, strictly

axial velocity. R2 scores and ANRMSE results are shown in Fig.s 8.3a and 8.3b, respectively,

for the prediction of each final particle property (θf , vxf , vyf , vzf , ϕRPAf) using non-constant

emission particle properties (m, q, xi, yi) as input features. The performance metric results

are presented with bar color corresponding to predictive model, such that the range of

performance can be seen among the six ML models.

115

vxf vyf vzf ϕRPAf θf
0.0

0.2

0.4

0.6

0.8

1.0

R
2

RF SVR KNN MLP XGB LGBM

(a)

vxf vyf vzf ϕRPAf θf
0.0

0.2

0.4

0.6

0.8

1.0

AN
RM

SE

RF SVR KNN MLP XGB LGBM

(b)

vxf vyf vzf ϕRPAf
0.0

0.2

0.4

0.6

0.8

1.0

R
2

RF SVR KNN MLP XGB LGBM

(c)

vxf vyf vzf ϕRPAf
0.0

0.2

0.4

0.6

0.8

1.0

AN
RM

SE

RF SVR KNN MLP XGB LGBM

(d)

Figure 8.3: Performance metrics R2 (a,c) and ANRMSE (b,d) for all regression algorithms

with final angle withheld from the feature set (a, b) and final angle included (c,d).

116

We observe that no ML models are able to reliably predict any final particle proper-

ties from solely emission properties, as all R2 scores are below 0.7, signaling low correlation

between the input features and predicted variable. Axial emission coordinate and all compo-

nents of emission velocity are constant in this case. Furthermore, as shown in the mass and

charge histograms in Appendix B, this plume is nearly monodisperse. Therefore, there is lit-

tle ability to differentiate emitted particles from one another in order to predict final particle

dynamic properties from solely emission properties. However, when final particle angle θf is

added to the input feature list alongside emission particle properties, stronger performance

is achieved in predicting other final particle properties (specifically vzf and ϕRPAf), as shown

in the increased R2 scores in Fig. 8.3c and the decreased ANRMSE scores in Fig. 8.3d.

This predictive ability response to knowing final angle reveals a strong correlation between

final angle and other final particle dynamic properties for this emission velocity case. Know-

ing final angle alongside emission properties allows ML models to reliably regress final axial

velocity (R2 > 0.88 for all models) and final potential (R2 > 0.76 for all models) from the

known particle data. Additionally, the ANRMSE with final angle in the feature set in Fig.

8.3d has decreased for final axial velocity and final potential from the case in which final

angle was not included in Fig. 8.3b. Therefore, a limited meta-model for the full Lagrangian

model can be created with ML models to obtain final axial velocity and final potential given

emission properties and final angle.

Feature correlations are further investigated for final axial velocity and final potential,

which the ML models predict with high accuracy when final angle is included with emission

properties in the known feature set. Figure 8.4 displays the feature relation results produced

by the Random Forest model for each of these two variables, for the case in which final angle

was not included in the input feature list and the case in which it was. Error bars display the

range of performance of all individual estimators, or trees, in the RF algorithm. When final

angle is not included in the feature list, particle charge has dominant feature importance

for the prediction of both final axial velocity and final angle. This charge-dominated result

117

q m y i x i
0.0

0.2

0.4

0.6

0.8

1.0

Fe
at
ur
e
Im

po
rta

nc
e

(a)

q m y i x i
0.0

0.2

0.4

0.6

0.8

1.0

Fe
at
ur
e
Im

po
rta

nc
e

(b)

θf q m y i x i
0.0

0.2

0.4

0.6

0.8

1.0

Fe
at
ur
e
Im

po
rta

nc
e

(c)

q m θf y i x i
0.0

0.2

0.4

0.6

0.8

1.0
Fe
at
ur
e
Im

po
rta

nc
e

(d)

Figure 8.4: Random Forest feature rankings for final axial velocity (a,c) and potential (b,d)

for the case in which final angle is excluded from the feature set (a,b) and the case in which

it is included (c,d). Error bars show feature importance range of all individual estimators in

the RF algorithm.

118

physically stems from the direct relationship between particle charge and the electrostatic

forces in Eq. 8.1. When final angle is included in the feature list, it is significantly dominant

over all other features for the prediction of final axial velocity, displaying that final angle

and final axial velocity are highly correlated for this simulation case. For the prediction

of final potential energy, particle charge remains the dominant feature when final angle is

included in the feature list. This is expected as final potential energy is indirectly related

to particle charge by definition, as given in Table 8.1. Similarly, mass has secondary feature

dominance as potential energy is directly related to particle mass by the definition given in

Table 8.1. However, final angle has a non-negligible feature importance for final potential

energy in every decision tree in the random forest, with average feature importance across

the forest nearly equal to that of mass. Final particle angle offers insight towards how much

a particle has been displaced from its emission state under the forces in Eq. 8.1, such that

knowing this angle provides insight toward other final properties which have been displaced

from their emission state by the same forces, such as velocity and potential.

In the future, terminal particle properties may be more reliably predicted from solely

emission particle properties for the strictly axial emission velocity case with 1) an increased

number of unique training data samples; 2) increased variance among particle emission

property feature data sets, such as increased mass polydispersity or charge inhomogeneity,

so that emitted particles are more distinguishable from one another; 3) the identification

of additional particle emission properties of relevance to expansion which can be added to

the feature set; and 4) the improvement of Lagrangian particle tracking models, such as

including particle coalescence and breakup[10, 26, 83, 62], so that simulated results more

closely match the physical reality of electrospray evolution. As an example of the effect of

increasing data samples on the study, changing from 3,000 samples for initial research to

35,000 samples for the presented case improved the mean R2 score for predicting final axial

velocity component by 0.09 in the case without θf in the known feature set, and by 0.08 in

the case with θf in the known feature set.

119

vxf vyf vzf ϕRPAf θf
0.0

0.2

0.4

0.6

0.8

1.0

R
2

RF SVR KNN MLP XGB LGBM

(a)

vxf vyf vzf ϕRPAf θf
0.0

0.2

0.4

0.6

0.8

1.0

AN
RM

SE

RF SVR KNN MLP XGB LGBM

(b)

Figure 8.5: Performance metrics R2 (a) and ANRMSE (b) for all regression algorithm for

the case with non-zero radial emission velocity.

8.2.2 Case II: Non-zero Radial Emission Velocity

We now extend our analysis to the simulation case in which particles were emitted with

non-zero radial velocity. The results presented in this section are for the shortest l length

tested (l = d/2) because this case has the largest variance among emitted velocity vector

components of all simulated cases. Results were also obtained for l = d, λ/2, λ, and 2λ,

where the mean jet breakup wavelength λ = 4.5d; the influence of l on ML model results

is discussed in Sec. 8.2.3. R2 scores and ANRMSE results are shown in Fig. 8.5 for

the prediction of final particle properties using solely emitted particle properties as input

features.

Unlike in the previous case with constant, strictly axial emission velocity, there is sig-

nificant correlation between emission and final particle properties in this case with non-

zero radial emission velocity. The final lateral velocity components can be predicted with

R2 ≥ 0.79 and ANRMSE ≤ 0.3 by all models. Therefore, a surrogate model for the larger

Lagrangian model can be created for the prediction of final lateral velocity components from

120

solely emission properties in this case. Additionally, all models but SVR predict final angle

with R2 ≥ 0.77 and ANRMSE ≤ 0.25. Therefore, the surrogate model created by these

ML models can also predict final angle from solely emission properties.

R2 scores for predicting all final properties improve when final angle is added to the

known features set because all particle properties are still displaced from their emission state

through the same dynamic process described by Eq. 8.1, yielding an angular dependence of

final properties as discussed in Sec. 8.2.1. This improvement is most significant for predicting

final axial velocity, for which mean R2 increases by 0.19 when final angle is added to the

known feature set. The differences between predictions which can be reliably made in the

two emission velocity cases and the governing physics underlying such predictive abilities are

discussed in Sec. 8.2.3. Prediction accuracy for this non-zero radial emission velocity case

may be improved through the same mechanisms as for the strictly axial emission velocity

case: increased training data samples, increased variance in emission property feature data

sets, expansion of the feature set to include newly identified particle emission properties, and

improvement of the Lagrangian particle tracking models used to obtain training data.

8.2.3 Comparison of Case I and II

We now compare and contrast results from simulation Case I, with solely axial emission

velocity, and Case II, for which emission velocity angle corresponds to emission position

angle. There are significant differences between the predictive meta-models which can be

created using ML in each case. While the applied machine learning models all perform

different methods of physics-blind, statistical regression, the correlations between particle

properties that they reveal stem from underlying electrospray particle dynamic physics. Fig.

8.6 presents snapshots in the x-z plane of the pathlines of 30 particles for the axial emission

velocity (red pathlines) and non-zero radial emission velocity (blue pathlines) cases. The

snapshots were taken every 10 µs over a 30 µs period and pathlines are shown for every

other emitted particle out of 60 particles to prevent the density of rendered pathlines from

121

obscuring figure clarity. As seen in blue in Fig. 8.6, charged particles emitted with non-zero

radial emission velocity disperse quickly from one another due to inertia, and therefore spend

less time in close proximity to one another experiencing nonlinear, inter-particle Coulomb

forces. In this case, particle expansion dynamics have a significant linear component from

inertia which allows ML models to correlate some final particle properties with solely emission

properties. In contrast, as shown in red in Fig. 8.6, charged particles emitted with strictly

axial emission velocity remain in a nearly linear formation for much longer, until Coulomb

forces exacerbate the minute perturbation applied to particle emission position to yield

plume expansion. In this case, particle dynamics are governed by nonlinear Coulomb forces,

which preclude ML models from predicting final particle properties from exclusively emission

properties.

Particle positional angle exiting an electrospray thruster is a key metric for thruster

lifetime because there is a finite line-of-sight angle at which particles can exit the thruster;

particles beyond this angular limit strike downstream thruster electrodes and saturate them

over time until the thruster fails due to propellant backspray [44, 3, 12, 45]. Predictions

for final particle angle from all six ML models using solely emission particle properties are

compared to the actual final angle values in the test data set in Fig. 8.7. Feature rankings

produced by the RF models for both emission velocity cases are also presented in Fig. 8.7.

Note that the feature rankings for the case with radial emission velocity include velocity

components vxi, vyi, and vzi because they differ between emitted particles.

Fig. 8.7 shows the R2 score for predicting final positional angle from strictly emission

properties is higher in the non-zero radial emission velocity case as a result of stronger

influence of linear forces on particle dynamics. For the solely axial emission velocity case,

although final angle cannot be reliably predicted (R2 < 0.7) from solely emission properties

due to the non-linear nature of particle dynamics, RF feature rankings reveal charge to be the

dominant feature for predicting final angle. This result matches the physical understanding of

plume expansion in this case as dominated by the charge-dependent Coulomb collisions [9, 11,

122

Figure 8.6: Pathlines are shown for 30 particles in the solely axial emission velocity Case I

(red) and the non-zero radial emission velocity Case II (blue).

123

0 5 10 15 20 25 30
Expected

0

5

10

15

20

25

30

Pr
ed

ict
ed

Fit line
SVR, R2 = 0.48
KNN, R2 = 0.43
RF, R2 = 0.47
XGB, R2 = 0.47
MLP, R2 = 0.48
LGBM, R2 = 0.48

(a)

q y i x i m
0.0

0.2

0.4

0.6

0.8

1.0

Fe
at
ur
e
Im

po
rta

nc
e

(b)

0 10 20 30 40 50
Expected

0

10

20

30

40

50

Pr
ed
ict
ed

Fit line
SVR, R2 = 0.55
KNN, R2 = 0.77
RF, R2 = 0.78
XGB, R2 = 0.79
MLP, R2 = 0.80
LGBM, R2 = 0.80

(c)

vxi vyi q m y i x i vzi
0.0

0.2

0.4

0.6

0.8

1.0
Fe
at
ur
e
Im

po
rta

nc
e

(d)

Figure 8.7: Predicted vs. actual values for final angle (a,c) and the Random Forest feature

rankings for predicting final angle (b,d) for the case in which emission velocity is strictly

axial (a,b) and the case in which there is a radial component to emission velocity (c,d).

Feature ranking error bars show the range among estimators in the RF algorithm.

124

68, 46] in the absence of lateral emission velocity components. For the case including radial

emission velocity, final angle is reliably predicted (R2 ≥ 0.8) by all ML models but SVR.

An R2 score exceeding 0.75 is comparable with the high end of R2 scores in other machine

learning studies of electrosprays [137, 143]. In the non-zero radial emission velocity case,

RF feature rankings reveal that final positional angle has a dominant feature dependence

on emission lateral velocity components, followed by a lesser feature dependence on charge.

These results fit with the physical understanding of particle trajectories in this case as

dominated by inertial motion from emission with additional influence from charge-dependent

electrostatic forces in Eq. 8.1. In both cases, there is a sparsity of data with high final particle

positional angles, leading to higher error in the predictions of ML models for high-angle

particles due to a lack of sufficient model training data in that range. This data sparsity at

high angles is not a simulation artefact and is also seen in experimental measurements due

to the relative lack of particle flux at high positional angles compared to the particle-dense

center of the plume [45, 147, 23]. Model performance in this range can be improved in the

future with increased data sampling at high angles.

ML models applied to particle dynamics in the DELI Model simulation region, in which

particles are propagated according to Eq. 8.1, have determined that emission lateral velocity

components, and therefore emission velocity angle, are strongly correlated with final posi-

tional angle as shown in Fig. 8.7. Sobol Index analysis of the region downstream of that of

the DELI Model, in which particles are propagated under applied electrostatic forces with

no Coulomb interactions, found that particle entry velocity angle into that region has the

strongest correlation with final position angle of any particle entry property [63]. Thus, there

is a continuous narrative of emission velocity angle dominantly influencing final positional

angle in all electrospray plume simulation regions. Given the importance of final particle

position angle to thruster lifetime, the correlation between final positional angle and emis-

sion velocity angle motivates continued study into the angle at which particles are emitted

from the fluid electrospray jet. Existing literature on electrospray jet behavior identifies sev-

125

eral operational modes which emit particles with off-axis velocity vectors, such as whipping

[85, 148, 6, 123], multi-jet [85, 149, 6, 150], and transitional modes [4, 85], and furthermore

suggests whipping can occur at the jet tip even when the overall cone-jet structure is in

the desired steady operational mode [123]. Increased study of modes which emit particles

with off-axis velocity will improve the understanding of deviations from desired thruster

lifetime during mission-relevant electrospray thruster operation, which includes periods of

non-optimal transitional operation such as start-up and shut-down modes [44, 3, 12, 45].

The thrust force produced by an electrospray device is given by:

T =

∫
ṁ(θ)v(θ)dθ, (8.5)

where ṁ(θ) is the mass flux at a given angle and v(θ) is the velocity at that angle. Therefore,

final particle velocity exiting the thruster not only relates to thruster lifetime as discussed,

but is alo directly related to produced thrust, a key performance metric. For predicting axial

final velocity from strictly emission properties, comparing R2 scores in Sections 8.2.1 and

8.2.2 shows that such scores are higher in the strictly axial emission velocity case. In both

emission velocity cases, the applied electrostatic field (EA in Eq. 8.1) provides the dominant

axial propagation force to emitted particles [68, 4]. The acceleration aEA
imparted to a

particle from this field is directly related to charge and indirectly related to mass:

aEA
=

q

m
EA. (8.6)

Under this electrostatic means of axial propagation in a constant applied electrostatic field,

the final axial velocity of particles emitted at the same axial velocity has a linear relationship

with charge and mass. Therefore, ML models can strongly correlate final axial velocity with

emission properties for the strictly axial emission velocity case. However, for the non-zero

radial velocity emission case, this linear relationship between final axial velocity and emission

properties is significantly weakened because variance in particles’ final axial velocity does not

stem solely from electrostatic acceleration, but also from variance in emission axial velocity.

Randomness in emission conditions, rather than a change in the dominant physical force

126

guiding particle motion, causes the axial motion of particles to be less predictable in the

non-zero radial velocity emission case than in the strictly axial emission case. In both cases

there is a relative sparsity of data at low final axial velocities compared to higher final axial

velocities displayed in Appendix B; ML model prediction strength for final axial velocity can

be improved through increased data sampling.

On the other hand, for predicting lateral final velocity components from strictly emission

properties, comparing R2 scores in Sections 8.2.1 and 8.2.2 shows that such scores are higher

in the non-zero radial emission velocity case. Coulomb interactions between charged parti-

cles, which are highly nonlinear, provide the dominant radial expansion force to electrospray

particle trajectories [9, 11, 68, 46]. Therefore, in the absence of a radial component to emit-

ted particle velocity, plume expansion is highly nonlinear. As for final positional angle, final

lateral velocity emission components can be more reliably predicted from emission proper-

ties in the non-zero radial emission velocity case due to the dominance of linear inertia in

radial particle motion, in comparison to the dominance of nonlinear Coulomb interactions

in particle radial motion in the strictly axial emission velocity case. In agreement with the

dominance of emission inertia, RF feature rankings reveal that emission lateral velocity com-

ponents share dominant feature importance for final lateral velocity components in the case

with non-zero radial emission velocity.

The results presented for the non-zero radial emission velocity case in Sec. 8.2.2 are

for the shortest l length tested (l = d/2) because this case has the largest variance among

emitted velocity vector components of all simulated cases. Results were also obtained for

l = d, λ/2, λ, and 2λ, where the mean jet breakup wavelength λ = 4.5d. The R2 scores for

predicting final angle θf , final lateral velocity component vf x, final axial velocity component

vf z, and final potential ϕRPAf
are displayed in Fig. 8.8 for all emission velocity cases. Point

markers represent the mean performance of all six ML models and error bars display the

range of performance among the six models. The performance metrics for the strictly axial

velocity case are shown as constant, dashed lines for comparison with the non-zero radial

127

̄d/2 ̄d ̄λ/2 ̄λ 2 ̄λ
l

0.0

0.2

0.4

0.6

0.8

1.0

R
2

Axial Emit Vel.
θf
vxf
vzf
ϕRPAf

Figure 8.8: Mean R2 scores for different distances l between the jet tip and the reference

point for determining velocity emission angle for the prediction of: final angle given emission

properties (black), final lateral velocity (vfx) given emission properties (blue), final axial ve-

locity given emission properties (green), and final particle potential given emission properties

and final angle (red). Dashed lines display R2 results for the case with no radial emission

velocity. Error bars display the performance range of the 6 ML models.

emission velocity cases.

Fig. 8.8 displays that for predicting final angle given emission properties, R2 varies di-

rectly with l. R2 also varies directly with l for predicting final axial velocity given emission

properties. On the other hand, for predicting final lateral x velocity component given emis-

sion properties, R2 varies inversely with l. The same is true for predicting the final lateral y

velocity component. R2 also varies indirectly with l for the predicting final potential given

emission properties and final angle. These results show that ML model performance be-

comes increasingly similar to the strictly axial emission case as l increases. The ML results

128

for l = 2λ are nearly equivalent to those from the zero radial emission velocity case repre-

sented by the dashed lines. The convergence of ML results to the strictly axial case with

increasing l is physically logical because increasing the distance l between the jet tip and

upstream reference point for velocity emission angle decreases the resulting range of emission

velocity angles. The lower the variance in emission velocity angle, the less particles disperse

from inertia directly following emission, such that particle pathlines more closely resemble

those in the strictly axial emission velocity case shown in red in Fig. 8.6. When particle

velocity emission conditions approach the strictly axial case as l increases, resulting particle

dynamics and the ability to predict final particle properties from emission properties also

approach those of the strictly axial velocity emission case.

8.2.4 Discussion of Application to Experimental Data

We will now discuss the diagnostic design benefits of using ML models trained on electrospray

particle tracking simulation data in conjunction with experimental results. Our discussion

is focused on the coupling of experimental particle property measurements with ML models

applied to simulated particle tracking data to predict unknown particle properties which can

be validated experimentally. Suppose an angular plume profile has been obtained using one

type of measurement device. Further suppose that a particle tracking model such as the

UCLA PESPL DELI Model has been validated for the case of interest, and the ML models

described in this publication have been trained on a significant amount of particle dynamics

data produced by the particle tracking model for this case. Let the varying particle emission

properties (m, q, xi, yi) be established by optical tools [151, 72, 122, 85], validated elec-

trospray particle emission models [60, 152, 153, 154], or estimated using theoretical limits

accepted in the field [155, 156, 98, 157, 4]. The Lagrangian model, and thereby ML models

which utilize Lagrangian simulation data, will more faithfully replicate physical reality when

inputs for particle emission properties are able to be discretely measured for each particle

- such as experimentally with Phase Doppler Anemometers (PDA) [9], flash shadowgraph

129

[158], or high speed videography (HSV) [6], or computationally with a validated electrospray

emission model [60, 152, 153, 154] - than if they must be estimated with some uncertainty

using an analytical approach [155, 98, 4] or experimental measurements which cannot resolve

single particles [122], as in electrosprays comprised of particles beneath the diffraction limit

[23, 4, 48]. In the case that particle emission property data contains uncertainty introduced

by theoretical approximations of unmeasured properties, experimental noise, or inherent

uncertainty in experimental measurements, machine learning models can be applied to sep-

arate datasets with feature values spanning the ranges of emission properties to establish

prediction ranges for final particle properties. Uncertainty quantification within machine

learning is an active research field [159, 160, 161], and a field-standard means of quantifying

the influence of uncertainty in feature set values on resulting ML predictions has yet to be

established.

A testing set of particle data for the trained ML models can be created by choosing an

angle and experimentally measuring final particle properties at that angle. The emission

properties of particles which terminated at this angle can be a) selected based on discrete

particle trajectory results from validated Lagrangian simulations or b) randomly selected

from emission property ranges determined experimentally, analytically, or computationally.

This particle data generation process can be repeated at each measured angle to generate

a data set encompassing the full angular range of the measured plume. The particle data

samples can then be fed to trained ML models to predict other final particle properties which

the ML models have been shown to predict accurately. In cases where final angle can be

accurately regressed from emission properties, ML models can first predict the final angle

of a test set of emitted particles, and then the coupled final angle and emission property

particle data can be input to the ML models again to predict other final properties.

For example, in the strictly axial emission velocity case in Sec. 8.2.1, measured final

angle and emission property data can be used to predict final axial velocity and particle

potential. Therefore, for this case, an angular profile measurement, such as that provided

130

by a Faraday probe [23, 162], could be used to estimate the velocity measurements obtained

by angularly sweeping a TOF probe, or predict the potential measurements generated by

angularly sweeping a RPA device. In this manner, the limited meta-model for the full

Lagrangian model created using ML models can be used in conjunction with experimental

measurements to predict additional measureable properties. Furthermore, the ML feature

ranking results for this case which reveal that final positional angle is of significant value

to predicting final axial velocity and final potential are valuable for optimizing diagnostic

designs. Experimentalists can infer from these results that a simple Faraday probe can

be used in conjunction with an ML meta-model to predict measurements which would be

obtained by more complex measurement devices, such as RPA and TOF devices.

In conclusion, the research in this chapter is the first application of ML models to electro-

spray simulation data, published in [91]. Lagrangian particle tracking data produced by the

UCLA PESPL DELI Model for validated simulation cases are used in order to demonstrate

the utility of regressing on simulated electrospray particle data. This chapter has identified

and exemplified three discrete benefits of applying ML models to electrospray simulation

results: (1) the creation of limited meta-models for the full Lagrangian particle tracking

model, (2) feature relations between emission and final particle dynamics properties, and (3)

the prediction of unknown final particle properties with the assistance of known final prop-

erties. We also presented a method to couple ML models trained on validated simulated

particle tracking data with experimental measurements to predict unmeasured properties

which could be validated experimentally. Our presented processes for creating ML mod-

els from Lagrangian particle tracking data can be replicated for any electrospray particle

dynamics data set - simulated or measured - therefore, we welcome researchers involved

in all approaches to electrospray research, development, and characterization to utilize the

presented approach and findings.

The primary obstacle to correlating emission and final particle properties in the context of

electrospray particle dynamics stems from the non-linearity of particle trajectories, primarily

131

due to the non-linear Coulomb force between charged particles. Machine learning for non-

linear charged particle trajectories is an active area of research exploration, including at

the Joint Institute of Nuclear Research [163], the Large Hadron Collider [164, 165], and

in medical biophysical research settings [166]. Machine learning predictions of electrospray

particle dynamics will improve as the overarching application of ML to nonlinear particle

trajectories matures, as electrospray plume evolution models become more representative

of experimental realities, and as additional electrospray particle dynamics data is obtained

through further plume measurement and simulation efforts.

132

CHAPTER 9

Conclusion

9.1 Conclusion

We conclude from the overview of the current state of electrospray spacecraft propulsion pre-

sented in Ch. 1 that operational lifetime is the primary area in which electrospray thrusters

must improve to meet future mission requirements. Propellant overspray to downstream elec-

trodes is the primary life-limiting mechanism in electrospray thrusters. We demonstrated

the geometric changes to thruster design can reduce overspray and positively contribute

to thruster lifetime; however, we concluded that mitigating mitigating electrospray plume

divergence is the most effective means of extending thruster lifetime. To investigate elec-

trospray plume divergence, the Discrete Electrospray Lagrangian Interaction (DELI) Model

was developed, verified, and validated as described in Ch. 2.

Chapters 3-6 of this dissertation were devoted to understanding the origins and sources

of growth of electrospray plume divergence. Neither applied electrostatic, Coulomb, nor drag

forces are found to induce plume divergence in linear sets of droplets down the axis of emis-

sion; rather, electrospray droplets are emitted with a small range of radial divergence due to

hydrodynamic instabilities and microscopic emitter asymmetries. Chapter 3 discussed plume

divergence in response to the electrostatic forces from the potential difference applied be-

tween the emitter and downstream electrode(s), concluding that there is a radial component

to the electric field due to curvature in the jet and the thrust-aperture in the downstream

electrode(s) which magnifies existing divergence in the plume. Chapter 4 investigated plume

133

divergence in response to Coulomb forces between droplets, which have a radial component

that grows existing radial divergence in the plume. We compared divergence between sets

of particles with equal velocity and with an upstream particle velocity gradient in which

upstream particles are moving faster than their forward neighbors and concluded that the

latter condition creates a ‘traffic jam’ in which droplet cluster and have magnified Coulomb

interactions, resulting in increased plume divergence. We proposed a means of thresholding

the ‘interaction region’ in which Coulomb forces are dominant with a ratio of Coulomb to

applied electrostatic forces, and demonstrated that such a threshold is species-dependent

and a function of axial and radial position.

Chapter 5 investigated plume divergence in response to the drag force, concluding that

drag grows existing plume divergence by slowing particle progress and thereby causing in-

creased charge density in the domain. This increase in charge density causes magnified

Coulomb interactions, which grows existing plume divergence. Decreasing the background

pressure decreases the density of background fluid molecules and thereby the drag force, con-

fining the plume in response. Pressure thresholds beyond which drag no longer contributes

to plume divergence were proposed based on simulation results and the theoretical definition

of Free Molecular Flow. Similarly, the pressure at which particle mean free path is greater

than the domain length was presented for several domain lengths, such that electrospray

particles can move through the full domain without colliding with background molecules.

Chapter 6 discusses the influence of forces and phenomena (gravity, thermal gradients, fluid

mechanics, and gas polarization) on plume divergence which are not included in the DELI

Model. The neglected forces are concluded to have a much smaller influence on plume evolu-

tion and divergence than those included in the DELI Model, although they could be included

in the future for completeness as discussed in Sec. 9.2.

Chapter 7 presented new means of characterizing plume divergence: a positional diver-

gence definition based on three standard deviations of a Gaussian or Super-Gaussian fit to

particle mass distribution over radial coordinate, and a 2D position and velocity divergence

134

measurement called emittance which is frequently used in particle accelerators[88, 89, 22].

We concluded that steadiness in an emittance diagram is a means of determining that a

simulated plume has reached steady state.

Finally, chapter 8 presented the first application of machine learning to simulated particle

dynamics data, produced by the DELI Model. We concluded three primary benefits of

applying machine learning to simulated particle dynamics data: the creation of a surrogate

model for a Lagrangian particle tracking model, the provision of feature relations between

emission and final particle properties, and the prediction of unknown final particle properties

given known final properties. We proposed a novel method for combining experimental data,

Lagrangian plume evolution models, and machine learning algorithms to optimize diagnostic

design.

Overall, this dissertation has identified the origins and sources of growth of electrospray

plume divergence, proposed novel means of characterizing plume divergence, and applied

machine learning to predict plume divergence. The DELI Model developed during this

dissertation to simulate electrospray plume evolution is validated against published experi-

mental data, and the code is presented in App. F for future plume evolution and divergence

research, some of which is proposed in the following Sec. 9.2.

9.2 Future Work

I have no shortage of ideas to continue this research, but I do have a shortage of time

remaining in my degree. In this section, I propose future work which builds upon this

dissertation research.

9.2.1 Chapter 6 Considerations

Chapter 6 was devoted to forces and phenomena which occur in physical electrosprays but

are not included in the DELI Model: gravity, thermophoretic forces, fluid mechanical effects,

135

and gas polarization. Including these phenomena would improve the accuracy of the DELI

model. The governing equation of the DELI Model can be modified to include gravity and

thermophoretic forces as shown in Eq. 6.2 and Eq. 6.5, respectively. Fluid mechanical effects

and gas polarization have thus far only been incorporated into machine learning models of

individual or small groups of particles due to their computational intensity. However, as

computational capabilities improve, they may be included in full electrospray plume models

such as the DELI Model in the future. Additional considerations of atmospheric effects, such

as induced flow in the background gas, which have been included in atmospheric electrospray

models such as those for mass spectrometry[54], could also be incorporated into the DELI

Model in the future.

9.2.2 Plume Evolution Studies

Appendix D presents studies of plume evolution in response to changing mass flowrate, mean

specific charge, and specific charge inhomogeneity. Chapter 5 also presents studies of plume

evolution in response to changing the drag force (directly and via the background pressure).

Many more variable studies on plume evolution could be conducted in the DELI Model

- any variable which is input to the model as an independent variable (emitted particle

properties, flowrate constraints, electrode geometry and resulting electric field, background

pressure, background fluid properties, etc.) could be varied, and the result on plume evolu-

tion observed. Such variable studies have served as excellent high school and undergraduate

research projects throughout this dissertation.

9.2.3 Include Secondaries

Electrospray particles impinge on surfaces inside the thruster, such as downstream electrodes,

and generate secondary particles [67, 65, 66]. These secondary particles can be charged, such

that they have Coulomb interactions with electrospray particles. They can also be oppositely

136

charged to primary emitted electrospray particles, such that they are accelerated in the op-

posite direction by the applied electric field. In this manner, negatively charged secondaries

generated from the downstream electrode are electrostatically drawn upstream towards the

emitter. The presence of charged secondary particles in the electrospray thruster domain

changes the dynamics of primary emitted electrospray particles. Therefore, including such

secondaries would be a useful future addition to the DELI Model. An electron population of

secondaries generated from the downstream electrode could be included in the DELI model

by calling the same function used to emit primary particles, but with different emission

properties, such as emission location set to downstream electrode location. The emission

mass, charge, and velocity distributions could be based on experimental secondary distri-

butions or analytical relationships given the properties of primary particles which strike the

downstream electrode[66].

9.2.4 Transient Modes

This dissertation has focused on simulating electrospray plume evolution in the optimal

steady cone-jet mode. Simulations have included the start-up mode, from no flow to steady

state, such as in Ch. 5. Simulations were also conducted investigating the shut-down elec-

trospray mode from steady state to no flow. The results for number of particles in the

simulation domain from start-up, to steady state, to shut-down are shown in Fig. 9.1. DELI

Model simulations of start-up and shut-down have thus far instantaneously turned the flow

on and off. In the future, more realistic flowrates which are functions of time could be insti-

tuted. Pulsating mode electrosprays in which the emitted flowrate is inconsistent over time

could also be simulated. Correlating the frequency and magnitude of flowrate pulsation with

maximum divergence angle obtained by the plume would be a very interesting future study

with potentially useful thrust applications.

In addition to electrospray operational modes which are temporally unstable, the DELI

Model could also simulate electrospray modes which change spatially, such as the whipping

137

Figure 9.1: The number of particles in an electrospray plume simulated in the DELI Model

from the start-up for flow, to steady state, to flow shut-down.

jet mode shown in Fig. 9.2. This mode could be simulated by changing the position and

velocity angle at which particles are emitted over time. The DELI Model could also simulate

operational modes which are spatially stable, but not operationally ideal, such as the multi-

jet mode shown in Fig. 9.3. In a mission setting, electrospray thrusters will go through many

operational modes, including start-up, shut-down, and steady cone-jet at different flowrates.

Furthermore, the pressure and temperature conditions in which the thruster operates may

change. The DELI Model is capable of being applied in the future to mission-relevant

simulations with time-varying emission and environment conditions.

9.2.5 Parallelization

The DELI Model is currently fully sequential. Particle tracking models have a legacy of

parallelization, which greatly increases simulation efficiency[167, 168, 169]. Parallelization

has been employed in in particle-in-cell (PIC) electrospray plume models [170]. Paralleliza-

138

Figure 9.2: Whipping mode of electrospray jet operation[6].

Figure 9.3: Examples of the multi-jet mode of electrospray jet operation[6].

139

Figure 9.4: Particles are divided into cells with an octree algorithm to parallelize the simu-

lation of an n-body problem.

tion of the DELI Model with OpenMP and MPI was considered and discussed with AFRL

mentors during the course of this dissertation research, but not implemented due to time

constraints and the prioritization of other research efforts. In the future, implementing paral-

lelization into the DELI Model would decrease simulation runtime, allowing for a faster pace

of research. One specific area of the model in which parallelization could be implemented

is in approximating the Coulomb term outside the interaction region bounded in Sec, 4.4.

Octree methods can reduce the order of n-body problems such as Coulomb interactions by

dividing particles into cells, treating particles in neighboring cells individually, and treating

particles in distant cells as single large particles as the cell center-of-mass, as shown in Fig.

9.4. Such methods can reduce the order of calculation in an n-body problem from O(n2) to

O(n log n) for the Barnes-Hut algorithm[167], and from O(n2) to O(n) for the Fast Multi-

ple Method[168]. Parallelization would also be useful in the case that the DELI Model is

extended to simulate multi-plexed electrosprays[49, 50].

140

9.2.6 Machine Learning

Chapter 8 presented the first application of machine learning to simulated electrospray dy-

namics data; there is so much more which can be done. Regression on DELI Model particle

dynamics data could be applied in the reverse direction as in Ch. 8, predicting particle emis-

sion properties from ‘final’ properties at the collector plate. Machine learning algorithms

could be trained on data sets of different input mass flowrates, applied electric fields, or par-

ticle properties, and the resulting DELI Model plume structures (quantified through mass

flux and charge density profiles, such as those presented in Sec. D.3) in order to predict

the electrospray plume structure which results from given input conditions. Classification

algorithms could also be applied to DELI Model data in useful ways, such as to identify and

group particles which reach wide plume angles and contribute to overspray, or which strike

the downstream electrode with enough kinetic energy to produce secondaries. The possi-

bilities for applying machine learning to DELI Model data are as wide as the simulation

possibilities for the model.

141

Appendix A

Empirical Drag Terms

Empirical coefficient of drag terms were selected from the literature for use in the DELI

simulations over different background pressures in Sec. 5.2.2. The empirical terms, domain

of flow parameters, and references from which the terms were selected are given in Table

A.1.

CD Re Domain Kn Domain Reference

24
Re

Re < 1 Kn < 0.001 [17]
24
Re

(
1+2

2−CTM
CTM

Kn

1+3
2−CTM
CTM

Kn

)
Re < 1 0.01 ≤ Kn < 0.1 [18]

0.127 + 3.957
0.150+Re0.983

(
7.407Kn+2.293
1.688Kn+0.292

)
1 ≤ Re ≤ 50 0.001 ≤ Kn < 0.1 [19]

24(1+0.15Re0.687)ea1+a2Rea3+a4Kna5+a6ReKn

Re[1+2.0Kn(1.142+0.558e−0.4995/Kn)]
1 ≤ Re ≤ 3.5 0.1 ≤ Kn < 1 [20]

Table A.1: The empirical coefficient of drag terms used in DELI Model simulations.

In the table, σT = 1 is the tangential momentum accommodation coefficient[18], and a1 =

1.40671, a2 = −1.50268, a3 = 0.01803, a4 = 0.00118, a5 = −0.79338, and a6 = 0.09905 [20].

In addition to these empirical terms with discrete flow parameter ranges, the coefficient of

drag described in [16] was also used in Sec. 5.2.2, which is valid for all Knudsen numbers. Be-

low P = 0.007692 Atm, mean particle Knudsen number exceeds one and the only applicable

coefficient of drag in Table A.1 is from Loth08.Therefore, onlytheLoth08coefficientofdragtermwasusedtosimulatetheP

= 0.005, 0.002, 0.001, 0.0005, 0.0002 and 0.0001 Atmcases.

142

Appendix B

Machine Learning Histograms

Histograms of the feature variables for the six emission velocity cases, ranging from strictly

axial emission velocity to increasingly radial emission velocity vectors. The feature variables

are mass m, charge q, 3D emission coordinates (xi, yi, zi), 3D emission velocity (vxi, vyi, vzi),

final positional plume angle θf , 3D final velocity (vxf , vyf , vzf), and final potential ϕRPAf .

143

Figure B.1: Histograms of each particle data feature for the case where emission velocity is

strictly axial.

Figure B.2: Histograms of each particle data feature for the case where the distance between

the jet tip and the reference point for emission velocity angle is equal to the mean particle

radius: l = d/2.

144

Figure B.3: Histograms of each particle data feature for the case where the distance between

the jet tip and the reference point for emission velocity angle is equal to the mean particle

diameter: l = d.

Figure B.4: Histograms of each particle data feature for the case where the distance between

the jet tip and the reference point for emission velocity angle is equal to half the mean jet

breakup wavelength: l = λ/2.

145

Figure B.5: Histograms of each particle data feature for the case where the distance between

the jet tip and the reference point for emission velocity angle is equal to the mean jet breakup

wavelength: l = λ.

Figure B.6: Histograms of each particle data feature for the case where the distance between

the jet tip and the reference point for emission velocity angle is equal to twice the mean jet

breakup wavelength: l = 2λ.

146

Appendix C

Machine Learning Hyperparameter Tuning

The algorithm hyperparameters, their tuning ranges, and their optimal values for the solely

axial emission velocity and the l = d/2 radial emission velocity cases are given for the six

machine learning algorithms used in this study: Random Forest, Support Vector Regression,

K-Nearest Neighbors, Multi-Layer Perceptron, Extreme Gradient Boosting Method, and

Light Gradient Boosting Method.

147

Figure C.1: Hyperparameters and their tuning ranges for each of the six utilized ML models.

148

Figure C.2: Optimal hyperparameter settings for the Random Forest algorithm for the solely

axial emission velocity and the l = d/2 radial emission velocity cases, when final angle is

given and when it is not. All variables in the prediction column are final state variables.

149

Figure C.3: Optimal hyperparameter settings for the Support Vector Regression algorithm

for the solely axial emission velocity and the l = d/2 radial emission velocity cases, when

final angle is given and when it is not.

150

Figure C.4: Optimal hyperparameter settings for the K-Nearest Neighbors algorithm for the

solely axial emission velocity and the l = d/2 radial emission velocity cases, when final angle

is given and when it is not.

151

Figure C.5: Optimal hyperparameter settings for the Multi-Layer Perceptron algorithm for

the solely axial emission velocity and the l = d/2 radial emission velocity cases, when final

angle is given and when it is not.

152

Figure C.6: Optimal hyperparameter settings for the Extreme Gradient Boosting Method

algorithm for the solely axial emission velocity and the l = d/2 radial emission velocity cases,

when final angle is given and when it is not.

153

Figure C.7: Optimal hyperparameter settings for the Light Gradient Boosting Method al-

gorithm for the solely axial emission velocity and the l = d/2 radial emission velocity cases,

when final angle is given and when it is not.

154

Appendix D

Plume Evolution Studies

Plume evolution in response to changes in flowrate and emitted particle properties were

conducted with the DELI Model throughout the course of this dissertation research. The

goal of these studies was to gain a better understanding of how these properties affect

electrospray plume evolution. The properties studies presented in this section are on mass

flowrate of the emitted fluid, mean specific charge of the emitted fluid, and specific charge

inhomogeneity in the emitted particle population. Targeted attention was given to specific

charge because inhomogeneity in specific charge has been identified to contribute to plume

divergence through ‘traffic jams’ and Coulomb interactions, as discussed in Sec. 4.3.

D.1 Mass Flowrate

A study on the influence of mass flowrate on plume evolution was conducted with the DELI

model using the atmospheric validation case in Sec. 2.5 as the control case. Emitted species

properties are held constant despite changes in mass flowrate, as the electrohydrodynamic

process of particle emission is beyond the scope of this dissertation. Fig. D.1 presents mass

density contours, time-averaged from when the plume reaches steady-state, of plumes with

100%, 50%, and 10% of the mass flowrate from the validation Sec. 2.5. Plume divergence

is seen to increase with increasing mass flowrate. This follows the theory of plume diver-

gence through Coulomb interactions presented in Sec. 4.3, as increased mass flowrate causes

increased particle number density in the interaction region near emission.

155

(a) (b) (c)

Figure D.1: Mass density contours of electrospray plumes with a) 100%, b) 50%, and c) 10%

of the mass flowrate from the validation Sec. 2.5.

D.2 Mean Specific Charge

A study on the influence of the mean specific charge of emitted particles on evolved plume

evolution was conducted with the DELI model using the atmospheric validation case in

Sec. 2.5 as the control case. All other emitted particle properties beyond the mean specific

charge were not changed from the validation case. Fig. D.2 presents mass density contours,

time-averaged from when the plume reaches steady-state, of plumes with the same, double,

and triple the mean specific charge of emitted particle from the validation Sec. 2.5. Plume

divergence is seen to increase with increasing mean specific charge. This follows the theory

of plume divergence through Coulomb interactions presented in Sec. 4.3, as increasing mean

specific charge of emitted particles magnifies the strength of their Coulomb interactions.

Because the particles have increased in charge but not mass, they are more displaced in

response to such increased Coulomb forces.

D.3 Specific Charge Inhomogeneity

In Sec. 4.3, we discussed how specific charge inhomogeneity in an electrospray plume popula-

tion contributes positively to plume divergence because applied electrostatic forces, and drag

forces if present, accelerate particles differently according to their specific charge. Therefore,

156

(a) (b) (c)

Figure D.2: Mass density contours of electrospray plumes with a) the same, b) double, and

c) triple mean specific charge of emitted particle from the validation Sec. 2.5.

velocity differences are introduced into specific charge inhomogeneous plumes, which cause

particles to cluster and displace one another through proximity-magnified Coulomb interac-

tions. In agreement with this theory, experimental mass flux profiles have been observed

to take on different shapes than charge density profiles of the same plume as presented in

Fig. D.3. This difference in profile shapes suggests that 1) the plume is specific charge in-

homogeneous and 2) particles are displaced differently according to their specific charge. To

simulate charge inhomogeneous plume evolution, the DELI simulation utilized the Gaussian

particle size distribution from Sec. 2.5 and a separate Gaussian particle charge distribution

with the mean charge from Sec. 2.5. A snapshot of the resulting plume is presented in Fig.

D.4, with two lines displaying the cross sections at which profiles measurements were taken.

The mass flux density and current density profiles taken at those locations are presented in

Fig. D.5. The two profiles can be seen to diverge in shape as the plume moves downstream,

matching the trend demonstrated by the experimental results.

157

Figure D.3: Current density as a function of half angle for varying (a) extraction voltages

(fixed flow rate of 420 pL s−1) and (b) flow rates (constant voltage of 1.6 kV). Mass flux as a

function of half angle for varying (c) extraction voltages (fixed flow rate of 420 pL s−1) and

(d) flow rates (constant voltage of 1.6 kV). All profiles shown with super-Gaussian fits.[23]

158

Figure D.4: An x-z snapshot of a specific charge inhomogeneous plume simulated in the

DELI Model, with particles colored according to specific charge.

159

(a) (b)

Figure D.5: Mass flux and current density profiles of an specific charge inhomogeneous

electrospray plume a) near emission b) further downstream.

160

Appendix E

Analytical Efforts

During this dissertation research, analytical effort was put forth towards 1) a nondimensional

representation of the governing equation for particle propagation in the DELI Model (Eq.

5.19, without drag or image charges) and 2) an expression for the ‘traffic jam’ described in

Sec. 4.3. While these efforts were not included in published or presented efforts, they enriched

our understanding of electrospray plume evolution, and contributed to the formation of the

Coulomb Plume Divergence Theory presented in Sec. 4.3.

E.1 Nondimensionalize Governing Equation

The governing equation for particle propagation in the DELI Model is:

ma =
1

4πϵ0

n∑
i

qqir

|ri3
|+ qE (E.1)

To non-dimenzionalize this equation, we need to identify characteristic parameters. The

choices of variable to non-dimensionalize m and q (and qi) are simple: mean particle mass

m and mean particle charge q, respectively. The choice to non-dimensionalize a is less clear.

Unlike mass and charge, particle acceleration changes as the particle moves. We choose to

focus our analysis directly following emission, where plume divergence and evolution begins.

Therefore, we choice the mean acceleration directly following emission, aemit. Similarly, we

nondimensionalize E with the electric field magnitude at the jet tip, Eemit, and r (and ri)

with the mean distance vector a particle travels in the first time step after emission from the

161

jet tip, defined as

remit = Tv0, (E.2)

where v0 is the mean emission velocity and mean droplet emission period is

T =
m

ṁ
, (E.3)

where ṁ is mass flowrate. Using ∗ to represent a quantity which has been nondimensionalized

via division by these characteristic parameters, the non-dimensionalized governing equation

for particle propagation in the DELI Model is:

maemitm
∗a∗ =

1

4πϵ0

q2

r2emit

n∑
i

q∗q∗i r
∗

|r∗i 3|
+ qEemitq

∗E∗ (E.4)

We can define mean force magnitude on a particle following emission:

Femit = maemit, (E.5)

the Coulomb force magnitude between two mean-charge particles separated by one emission

timestep:

FCemit
=

1

4πϵ0

q2

r2emit

, (E.6)

and the mean electrostatic applied force at the jet tip where particles are emitted:

FEemit
= qEemit (E.7)

such that the non-dimensionalized governing equation can be written as

Femitm
∗a∗ = FCemit

n∑
i

q∗q∗i r
∗

|r∗i 3|
+ FEemit

q∗E∗. (E.8)

Therefore, we are able to see that the force which is exerted on a particle following emission

is a determined by 2 scaling factors: the force of a mean Coulomb interaction FCemit
, and

the mean electrostatic force FEemit
. The first scaling factor is directly related to mean charge

and mass flowrate, and inversely related to mean charge. The second scaling factor is directly

related to mean charge and to mean electric field strength, which can be tuned by changing

the electric potential, or through geometric modifications as discussed in Ch. 3.

162

E.2 Traffic Jam Expression

The traffic jam nondimensionalization effort was approached from a two particle perspec-

tive with the understanding that local clustering events between individual particles spread

throughout the plume, as discussed in Ch. 4.

We understand a ‘traffic jam’ to occur when neighboring particles have different velocities

near the same position. We define this ‘bottleneck’ position xb to occur some distance

downstream emission which can be defined as some constant A ∈ R multiplied by the

characteristic length parameter remit = |remit| defined in Sec. E.1,

xb = Aremit = T |v0|. (E.9)

We define the first droplet to reach this position after some some t1 which can be expressed

as some constant B ∈ R multiplied by the characterise time parameter T

t1 = BT. (E.10)

The second droplet is emitted later by some finite emission period determined by scaling

particle mass (or charge) against mass flowrate (or current) as described in Sec. 2.3.4:

T2 =
m2

ṁ
. (E.11)

In order for the second particle to reach the bottleneck position at the same time as the first

particle the second droplet must take time after emission

t2 = t1 − T2 = BT − m2

ṁ
. (E.12)

Recall that traffic jams have been found to occur in Sec. 4.3 when there is an upstream

velocity gradient, where upstream particles are moving faster that those downstream. In

this two particle case, that would mean that the second particle has a faster velocity, v2,

than that of the first particle, v1. The velocity of the particles at the bottleneck position

163

depends on their emission velocity, v0, and acceleration a they have experienced over the

time t approaching that position:

v = v0 +

∫ t

0

a(t)dt. (E.13)

It is difficult to move forward in the nondimensional analysis with temporal integrals, so we

average the acceleration experienced by the particle approaching the bottleneck position, a

such that the velocity of the particle at that position can be written as

v = v0 + at. (E.14)

Therefore, the velocities of the two particles at the bottleneck position are

v1 = v01 + a1BT (E.15)

and

v2 = v02 + a2(BT − T2). (E.16)

Thus the second particle has difference in velocity from the first particle of

∆v = v2 − v1 =

(
v02 + a2(BT − T2)

)
−
(
v01 + a1BT

)
. (E.17)

Defining difference in the initial velocity of the second particle from the first particle of

∆v0 = ∆v02 −∆v01 , (E.18)

and the difference in the mean acceleration experienced by the particles from emission to

the bottleneck position of

∆a = a2 − a1, (E.19)

we can re-write the difference in velocity equation as

∆v = ∆v0 +BT (∆a)− a2T2. (E.20)

When this difference in velocity is negative, we have an upstream velocity gradient which

can cause particles to cluster and have a magnified Coulomb interaction.

164

To establish a frequency term with Hz units, we define a traffic jam based on the velocity

difference ∆v which particles achieve traveling the distance xb:

TJ =
∆v

xb

(E.21)

Substituting Eq. E.9 and E.20, this equation takes the form

TJ =
1

ATv0

(
∆v0 +BT (∆a)− a2T2

)
. (E.22)

With some restructuring, E.11,

TJ =
1

AT

(
∆v0
v0

)
+

B

A

(
∆a

v0

)
− 1

AT

(
a2T2

v0

)
. (E.23)

Defining

v2 = a2T2 (E.24)

which represents the additional speed particle two would have gained had it been born at

the same time as particle one, our traffic jam equation becomes

TJ =
1

AT

(
∆v0
v0

)
+

B

A

(
∆a

v0

)
− 1

AT

(
v2
v0

)
. (E.25)

Defining coefficients C1 = 1/A and C2 = B/A,

TJ =
C1

T

(
∆v0 − v2

v0

)
+ C2

(
∆a

v0

)
. (E.26)

Recall that a traffic jam causing Coulomb plume divergence must have a upstream velocity

gradient, such that ∆v defined in Eq. E.20 is positive. In this case we have a positive traffic

jam frequency, TJ > 0, which means

C1

T

(
∆v0 − v2

v0

)
> −C2

(
∆a

v0

)
. (E.27)

Note that C2/C1 = B, such that this inequality can be simplified to

∆v0 − v2 > −B∆aT . (E.28)

165

Defining the average velocity a particle has at the bottleneck position to be

v = B∆aT , (E.29)

our inequality becomes

∆v0 − v2 > −v, (E.30)

or

v2 < ∆v0 + v. (E.31)

In order to cause a traffic jam, the velocity which particle two would gain if emitted at the

same time as particle one must be greater than the sum of the difference in particle initial

velocity and the average velocity of a particle reaching the bottleneck position. Expanding

this equation using the definitions for each term,

a2T2 < v02 − v01 +B∆aT , (E.32)

from which substituting t1 gives

a2T2 < v02 − v01 + t1∆a, (E.33)

and expanding ∆a,

a2T2 < v02 − v01 + t1(a2 − a1). (E.34)

Rearranging,

a2(T2 − t1)− v02 < −t1a1 − v01 , (E.35)

and multiplying through by −1,

a2(t1 − T2) + v02 > t1a1 + v01 , (E.36)

or

v2 > v1, (E.37)

Therefore, we see that our traffic jam frequency term successfully describes the situation in

which a second upstream particle reaches the same bottleneck location with greater speed

as a downstream first particle.

166

Appendix F

DELI Model Code

The DELI Model code in C++ is presented below. The code is comprised of a Main.cpp

file which is executed to run the simulation, World.h and World.cpp files which contain the

independent variables related to particle property and simulation domain, PotentialSolver.h

and PotentialSolver.cpp files which can apply a homogeneous mesh to solve simple electric

field when it is not necessary to import more complex electric fields from COMSOL, Source.h

and Source.cpp files related to particle emission, Droplet.h and Droplet.cpp files related to

particle propagation, Output.h and Output.cpp files related to outputting data for process-

ing and visualization, and Fields.h which contains 3D vector definitions. As noted in the

comments at the top of Main.cpp, this C++ version of the code was built using particle

tracking code from Ludos Brieda’s textbook[171] and adapted to be specific to electrospray

simulation. A prototype version of the DELI Model exists in Python, which was developed

during the first two years of this dissertation before computational runtimes of large elec-

trospray plume simulations necessitated a move to C++. This version of the code is not

included herein, but can be made available upon request to future researchers.

167

...ckenna\Background Pressure Sweeps\DELI_BPS_2\Main.cpp 1
1
2
3
4
5
6
7

8
9

10
11
12

13

14
15
16

17
18
19

20
21
22
23
24

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

/* Based on Ch.4 of Brieda, "Plasma Simulations by Example"
*
* Demo particle-particle code
*
* World grid used to solve potential and obtain vacuum field
* Part_grid is a coarser grid used to sort particles
* Particles in cells more than some threshold away act as a single point
charge

* otherwise, Coulomb force is used directly
*
* Only the Coulomb force is included, see Droplets::advance
*
* Droplets are injected in DropletSource::sample using some arbitrary,
likely

* very non-physical model. Here you can change size range, surface charge
density,

* and wheter to make negative ions
*
* Code uses custom "vec3" data objects that are defined in Field.h (see
the book

* for more info on templates/operator overloading if not familiar)
*
* To compile and run (assuming gcc on Linux, on Windows use Visual Studio

or Eclipse):
* $ g++ -O2 -I DELI/ DELI/*.cpp -std=c++11 -o il-pic
* $ mkdir results
* $./il-pic
*
* To visualize electrodes, you can use Paraview "threshold filter" to
threshold by

* object id, uncheck "All scalars"
*
* Open parts_il_* group, add "glyphs", change to spheres
*/

#include <math.h>
#include <iostream>
#include <iomanip>
#include <vector>
#include <chrono>
#include <memory>
#include <stdio.h>
#include "World.h"
#include "PotentialSolver.h"
#include "Droplets.h"
#include "Output.h"
#include "Source.h"

using namespace std; //to avoid having to write std::cout
using namespace Const; //to avoid having to write Const::ME

168

...ckenna\Background Pressure Sweeps\DELI_BPS_2\Main.cpp 2
44
45
46
47
48
49

50

51
52
53
54

55
56
57
58

59

60

61

62

63

64
65
66

67
68
69
70
71

72
73
74
75
76

/*program execution starts here*/
int main(int argc, char *args[])
{

/*Time Keeping Variables*/
double make_world_time; double add_objects_time; double
solve_potential_time; double solve_electric_field; double
create_species_time;

double emit_time; double sort_cells_time; double advance_time; double
compute_densities_time; double compute_cumulatives_time; double
output_time;

/*initialize domain*/
World world(Const::x_n,Const::y_n,Const::z_n);
world.setExtents({ -Const::electrode_h, -Const::electrode_h, 0.0},
{Const::electrode_h, Const::electrode_h, Const::electrode_h *
1.01});

std::cout << "xn: " << Const::x_n << std::endl;
std::cout << "yn: " << Const::y_n << std::endl;
std::cout << "zn: " << Const::z_n << std::endl;
std::cout << "x: " << (2 * Const::electrode_h) / Const::x_n <<
std::endl;

std::cout << "y: " << (2 * Const::electrode_h) / Const::y_n <<
std::endl;

std::cout << "height z: " << (1.01*Const::electrode_h) / Const::z_n <<
std::endl;

std::cout << "area x*y: " << ((2 * Const::electrode_h) / Const::x_n)*
((2 * Const::electrode_h) / Const::y_n)<< std::endl;

//world.setExtents({ 0.0,0.0,0.0 },
{ Const::electrode_h*2,Const::electrode_h*2,Const::electrode_h*1.1})
;

std::cout << "EmHeight: " << Const::EmHeight << " , Jet Length: " <<
Const::EmHeight - Const::emitter_h - Const::TC_h << std::endl;

/*Read Electric field from external .csv file*/
std::vector<std::pair<std::string, std::vector<double>>> result =
world.read_Efield();

cout << "read Efield" << endl;

int num_steps = 100000;
double default_dt = 1e-6;
world.setTime(default_dt, num_steps); // time step and number of
steps

make_world_time = world.getWallTime();

/*set objects*/
//world.addObject(new RingZ
({0,0,Const::Em_to_grid},Const::grid_thick,Const::grid_rad),0.0); //

169

...ckenna\Background Pressure Sweeps\DELI_BPS_2\Main.cpp 3

77

78

79

80
81
82

83

84
85
86
87
88
89

90
91
92
93
94
95
96
97
98

99
100
101
102
103
104
105
106
107
108
109
110
111
112

113

Grounded extractor plate w/ orifice
world.addObject(new PlateZ({ 0,0,Const::electrode_h },
Const::grid_thick), 0.0); //Grounded extractor plate (no orifice)

//world.addObject(new ConeZ
({ 0,0,Const::emitter_h },Const::TC_h,Const::emitter_rad),
Const::voltage); //Taylor Cone (high voltage)

world.addObject(new CylinderZ
({0,0,0},Const::emitter_h,Const::emitter_rad), Const::voltage); //
Emitter (high voltage)

//TWO PLATE SET-UP//
//world.addObject(new PlateZ({0,0,0.03}, 1e-3), 0.0); //Grounded plate

(no orifice)
//world.addObject(new PlateZ({0,0,0}, 1e-6), 1000.0); //High Voltage
plate (no orifice)

add_objects_time = world.getWallTime();

/*initialize potential solver and solve initial potential*/
// PotentialSolver solver(world, SolverType::PCG, 10000, 1e-6);
//solver.setReferenceValues(0, 0, 0); // n0=0 (3rd entry) gives us
linear solver

//std::cout << "Solving potential" << std::endl;
//solver.solve();
//Output::PSOutput(world);

solve_potential_time = world.getWallTime();

/*obtain initial electric field*/
//solver.computeEF();
//std::cout << "Potential solution took " << world.getWallTime() << "
seconds" << std::endl;

solve_electric_field = world.getWallTime();

// create a second grid for sorting particles
int3 part_grid_dims(100,100,100);

/*set up particle species*/
Droplets droplets("il", world, part_grid_dims);

/*setup injection sources*/
DropletSource source(droplets,world,1); //source
int emit_count = 0;
//Two particle simulation
//source.sample(world.time, {1e-1, 0, 0.01 }, { 0.0,0.0,10.0 }, 1); //
back droplet

//source.sample(world.time, {1e-6, 0, 0.01}, { 0.0,0.0,1.0 }, 1); //
back droplet

170

...ckenna\Background Pressure Sweeps\DELI_BPS_2\Main.cpp 4
114
115

116
117
118
119
120
121

122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137

138
139
140
141
142
143
144
145

146
147
148

149
150
151

152
153
154
155

//emit_count += 1;
//source.sample(world.time, {0, 0, 0.01 + 3e-6}, {0.0,0.0,1.0},
0.5); //forward droplet

//emit_count += 1;

create_species_time = world.getWallTime();
double3 last_emitted = { 0.0, 0.0, 0.0 }; //time, mass, charge

std::cout << "Don't forget to create a 'results/' folder if does not
exist" << std::endl;

//Track recent history of number of emitted droplets
vector <int> n_hist(500);

/* main loop*/
while (world.advanceTime())
{

size_t n = droplets.getNp();
emit_time = 0.0;

if (n == 0) {
source.sample(world.time, n); //initial droplet
n = droplets.getNp();
last_emitted = { world.time, droplets.particles[n - 1].mass,
droplets.particles[n - 1].charge }; //time, mass, charge

//std::cout << "last emitted: " << last_emitted << std::endl;
emit_count += 1;

}

else {
//int parity = emit_count % 2;
//if (parity != 0) {

if (world.time - last_emitted[0] >= last_emitted[1] /
Const::mflowrate) {

source.sample(world.time, n);
n = droplets.getNp();
//std::cout << " mass emitted: " << emit_count <<

std::endl;
emit_count += 1;
emit_time = world.getWallTime();
last_emitted = { world.time, droplets.particles[n -

1].mass, droplets.particles[n - 1].charge }; //time,
mass, charge

}
//}
//else {
// if (world.time - last_emitted[0] >= last_emitted[2] /

171

...ckenna\Background Pressure Sweeps\DELI_BPS_2\Main.cpp 5

156
157
158

159
160
161

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200

Const::current) {
// source.sample(world.time, n);
// n = droplets.getNp();

//std::cout << " charge emitted: " << emit_count <<
std::endl;

// emit_count += 1;
// emit_time = world.getWallTime();
// last_emitted = { world.time, droplets.particles[n -
1].mass, droplets.particles[n - 1].charge }; //time, mass,
charge

// }
//}

}

//Update n_hist array
for (int i = 0; i < n_hist.size()-1; i++) {

n_hist[i] = n_hist[i + 1];
}
n_hist[n_hist.size()-1] = n;

//print history
/* for (int i = 0; i < 9; i++) {

std::cout << "i: " << i << std::endl;
std::cout << "n_hist[i]: " << n_hist[i] << std::endl;

}*/

/*sort particles to cells for use in force calculation*/
droplets.sortToCells();
sort_cells_time = world.getWallTime();

// advance velocity and position
droplets.advance(result);
advance_time = world.getWallTime();

/*Droplet population information sampling and passing to grid*/
droplets.computeInstDensities();
compute_densities_time = world.getWallTime();

//If steady-state, update averages
if (world.getTs() > 500) {

//std::cout << "steady? " << world.steady_state << std::endl;
if (world.steady_state == false) {

double up_count = 0.0; //n_hist increrasing
double down_count = 0.0; //n_hist decreasing
for (int i = 1; i < n_hist.size() - 1; i++) {

if (n_hist[i] > n_hist[i-1]) {
up_count += 1;

}
else if (n_hist[i] < n_hist[i - 1]) {

172

...ckenna\Background Pressure Sweeps\DELI_BPS_2\Main.cpp 6
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238

239

240

241
242
243
244
245

down_count += 1;
}

}
//std::cout << "up count: " << up_count << std::endl;
//std::cout << "down count: " << down_count << std::endl;
double d_u = down_count/up_count;
//std::cout << "ratio: " << d_u << std::endl;
if (d_u >= 0.8) {

world.steady_state = true;
}

}

else if (world.steady_state == true) {
world.t_steady += 1.0;
droplets.computeAveDensities();

}
}

//droplets.computeCumulativeContours();
compute_cumulatives_time = world.getWallTime();

output_time = 0.0;
Output::nOutput(droplets.getNp(), world.getTs(), world.time);
if (world.getTs() % 1000 == 0) {

/*screen output*/
Output::screenOutput(world, droplets);
Output::diagOutput(world, droplets);

/*file output*/
droplets.sampleMoments();
droplets.computeSpaceCharge();
Output::particles(world, droplets);
Output::fields(world, droplets);

/*flowrate & emission counter screen output*/
droplets.computeFlow();
std::cout << "emitted mass flowrate: " << world.mflow <<
std::endl;

std::cout << "emitted charge flowrate: " << world.qflow <<
std::endl;

std::cout << "total emitted: " << emit_count << std::endl; //
includes droplets no longer in domain

cout << "collisions: " << world.collision_count << endl;
//cout<<"TJs: " << world.TJ_count <<endl;
output_time = world.getWallTime();

}
Output::runtimesOutput(make_world_time, add_objects_time,
solve_potential_time, solve_electric_field, create_species_time,

173

...ckenna\Background Pressure Sweeps\DELI_BPS_2\Main.cpp 7

246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263

264
265
266
267

emit_time, sort_cells_time, advance_time,
compute_densities_time, compute_cumulatives_time, output_time);

make_world_time = 0.0;
add_objects_time = 0.0;
solve_potential_time = 0.0;
solve_electric_field = 0.0;
create_species_time = 0.0;
output_time = 0.0;

}
/*screen output*/
Output::screenOutput(world, droplets);
Output::diagOutput(world, droplets);

/*file output*/
Output::particles(world, droplets);
Output::fields(world, droplets);
Output::exitparticlesOutput(droplets);

/* grab starting time*/
std::cout<<"Simulation took "<<world.getWallTime()<<" seconds"<<
std::endl;

system("pause");
return 0; //indicate normal exit

}

174

...ckground Pressure Sweeps\DELI_BPS_2\PotentialSolver.h 1
1
2
3
4
5
6
7
8
9

10
11

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

28
29

30

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

#ifndef _SOLVER_H
#define _SOLVER_H

#include <assert.h>
#include "World.h"

//structure to hold data for a single row
template <int S>
struct Row {

Row() {for (int i=0;i<S;i++) {a[i]=0;col[i]=-1;}}
void operator= (const Row &o) {for (int i=0;i<S;i++) {a[i] = o.a
[i];col[i]=o.col[i];}}

double a[S]; //coefficients
int col[S];

};

/*matrix with up to seven non zero diagonals*/
class Matrix
{
public:

Matrix(int nr):nu{nr} {rows=new Row<nvals>[nr];}
Matrix(const Matrix &o):Matrix(o.nu) {

for (int r=0;r<nu;r++) rows[r] = o.rows[r];
}; //copy constructor
~Matrix() {if (rows) delete[] rows;}
dvector operator*(dvector &v); //matrix-vector multiplication

double& operator() (int r, int c); //reference to A[r,c] value in a
full matrix

void clearRow(int r) {rows[r]=Row<nvals>();} //reinitializes a row
Matrix diagSubtract(dvector &P); //subtracts a vector from the
diagonal

Matrix invDiagonal(); //returns a matrix containing inverse of
our diagonal

double multRow(int r, dvector &x); //multiplies row r with vector x

static constexpr int nvals = 7; //maximum 7 non-zero values
const int nu; //number of rows (unknowns)

protected:
Row<nvals> *rows; //row data

};

enum SolverType {GS, PCG, QN};

class PotentialSolver
{
public:

/*constructor*/

175

...ckground Pressure Sweeps\DELI_BPS_2\PotentialSolver.h 2
46

47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93

PotentialSolver(World &world, SolverType type, int max_it, double
tol):

world(world), solver_type(type), A(world.ni*world.nj*world.nk),
max_solver_it(max_it), tolerance(tol) {
//std::cout << "In Solver constructor, n0: " << n0 << std::endl;

buildMatrix();
}

/*sets reference values*/
void setReferenceValues(double phi0, double Te0, double n0) {

this->phi0 = phi0;
this->Te0 = Te0;
this->n0 = n0;
//std::cout << "Set n0: " << n0 << std::endl;

}

double getTol() const { return tolerance; }

/*computes electric field = -gradient(phi)*/
void computeEF();

/*builds the "A" matrix for linear potential solver*/
void buildMatrix();

//calls the appropriate potential solver
bool solve()
{

switch(solver_type)
{

std::cout << "solver type: " << solver_type << std::endl;
case GS: return solveGS();
case PCG: return solveNRPCG();
case QN: return solveQN();
default: return false;

}
}

protected:
World &world;
SolverType solver_type;
Matrix A; //system matrix for the linear equation

enum NodeType {REG,NEUMANN,DIRICHLET};
std::vector<NodeType> node_type; //flag for different node types

unsigned max_solver_it; //maximum number of solver iterations
double tolerance; //solver tolerance
double phi0 = 0; //reference plasma potential
//double n0 = 1e12; //reference electron density
double n0 = 0; //reference electron density

176

...ckground Pressure Sweeps\DELI_BPS_2\PotentialSolver.h 3
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113

114
115
116
117

//double Te0 = 1.5; //reference electron temperature in eV
double Te0 = 0; //reference electron temperature in eV

/*computes potential in vacuum (all phi0 besides objects)*/
bool solveV();

/*computes potential using quasineutral boltzmann model*/
bool solveQN();

/*solves non-linear potential using Gauss-Seidel*/
bool solveGS();

/*linear PCG solver for Ax=b system*/
bool solvePCGLinear(Matrix &A, dvector &x, dvector &b);

/*linear GS solver for Ax=b system*/
bool solveGSLinear(Matrix &A, dvector &x, dvector &b);

/*Newton Raphson solver for a nonlinear system, uses PCG for the
linear solve*/

bool solveNRPCG();
};
#endif

177

...kenna\Background Pressure Sweeps\DELI_BPS_2\World.cpp 1
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

/*defines the simulation domain*/
#include <random>
#include <math.h>
#include <iostream>
#include <string>
#include <sstream>
#include <vector>
#include <fstream>
#include "World.h"
#include "Field.h"

//make an instance of the Rnd class
Rnd rnd;

using namespace std;

/*constructor*/
World::World(int ni, int nj, int nk):

ni{ni}, nj{nj}, nk{nk}, nn{ni,nj,nk},
phi(nn), rho(nn),
node_vol(nn), dh3(nn),
ef(nn), Pos(nn),
Time(nn), object_id(nn) {

time_start = chrono::high_resolution_clock::now(); //save
starting time point

}

/*sets domain bounding box and computes mesh spacing*/
void World::setExtents(double3 _x0, double3 _xm) {

/*set origin and the opposite corner*/
x0 = _x0;
xm = _xm;

/*compute spacing by dividing length by the number of cells*/
for (int i=0;i<3;i++)

dh[i] = (xm[i]-x0[i])/(nn[i]-1);

//compute centroid
xc = 0.5*(x0+xm);

/*recompute node volumes*/
computeNodeVolumes();

for (int i = 0; i < ni; i++) {
for (int j = 0; j < nj; j++) {

for (int k = 0; k < nk; k++) {
double3 dh = getDh();
dh3[i][j][k] = dh[2];

}

178

...kenna\Background Pressure Sweeps\DELI_BPS_2\World.cpp 2
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96

}
}

}

/*returns elapsed wall time in seconds*/
double World::getWallTime() {

auto time_now = chrono::high_resolution_clock::now();
chrono::duration<double> time_delta = time_now-time_start;
return time_delta.count();

}

/*computes node volumes, dx*dy*dz on internal nodes and fractional
* values on domain boundary faces*/

void World::computeNodeVolumes() {
for (int i=0;i<ni;i++)

for (int j=0;j<nj;j++)
for (int k=0;k<nk;k++)
{

double V = dh[0]*dh[1]*dh[2]; //default volume
if (i==0 || i==ni-1) V*=0.5; //reduce by two for each
boundary index

if (j==0 || j==nj-1) V*=0.5;
if (k==0 || k==nk-1) V*=0.5;
node_vol[i][j][k] = V;

}
}

/*ads a new object and fixes dirichlet node*/
void World::addObject(Object *object, double phi_obj)
{

objects.emplace_back(object);
for (int i=0;i<ni;i++)

for (int j=0;j<nj;j++)
for (int k=0;k<nk;k++)
{

/*compute node position*/
double3 x = pos(i,j,k);
if (object->isInside(x))
{

object_id[i][j][k] = 1;
phi[i][j][k] = phi_obj;

}
}

}

vector<pair<string, vector<double>>> World::read_Efield()
{

std::ifstream fin; //go to cwd

179

...kenna\Background Pressure Sweeps\DELI_BPS_2\World.cpp 3
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117

118

119
120
121
122
123
124
125
126
127
128
129
130
131

132
133
134
135
136
137
138
139
140
141

fin.open("Em_Ex_2DAxi.csv", ios::in);//open .csv file

vector<pair<string, vector<double>>> result; //multi-dim structure to
store input: <column name, data>

string line, colname; //helper strings

for (int row = 0; row < 8; row++) {
getline(fin, line); //skip first 9 lines with COMSOL model details

}

if (fin.good()) { //Read the column names
getline(fin, line); //reads first line with column labels

//Manual entry column names
result.push_back({ "r", vector<double>{} });
result.push_back({ "z", vector<double>{} });
result.push_back({ "Er", vector<double>{} });
result.push_back({ "Ez", vector<double>{} });

//Read column names from .csv
//std::stringstream ss(line); //make stream from line string
//while (std::getline(ss, colname, ',')) { //break input up at
commas

// result.push_back({ colname, vector<double>{} }); //add column
names to results

// cout << "colname:" << colname << endl;
//}

}

double val; //Double reference
int ColId = 0; //initialize
int RowId = 0; //initialize
while (getline(fin, line)) { //read remaining lines one at a time

std::stringstream ss(line); //make stream from line string

ColId = 0; //re-initiate for each new line
while (ss >> val) { //reads only doubles

result.at(ColId).second.push_back(val); //adds data to
appropraite column name section of results

if (ss.peek() == ',') ss.ignore(); //Ignore commas
ColId++; //update column tracker

}
RowId++;//update row tracker

}
fin.close();//close .csv file
//cout << "Col: " << ColId << endl;
//cout << "Row: " << RowId << endl;

//vector<double> r; vector<double> z; vector<double> Er;

180

...kenna\Background Pressure Sweeps\DELI_BPS_2\World.cpp 4

142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176

vector<double> Ez;
//for (int j = 0; j < RowId; j++) {
// r.push_back(result.at(0).second[j]);
// z.push_back(result.at(1).second[j]);
// Er.push_back(result.at(2).second[j]);
// Ez.push_back(result.at(3).second[j]);
//}
//for (int j = 0; j < RowId; j++) {
// cout << "point " << j << ": (";
// cout << r[j] << ", " << z[j] << ")" << endl;
// }
//}
//cout << "z:" << endl;
//for (int j = 0; j < RowId; j++) {
// cout << z[j] << endl;
//}
//cout << "Er:" << endl;
//for (int j = 0; j < RowId; j++) {
// cout << Er[j] << endl;
//}
//cout << "Ez:" << endl;
//for (int j = 0; j < RowId; j++) {
// cout << Ez[j] << endl;
//}

pair<pair<int,int>, vector<pair<string, vector<double>>>> Efield;
Efield.first.first = RowId;
Efield.first.second = ColId;
Efield.second = result;

return result;
}

181

...ckground Pressure Sweeps\DELI_BPS_2\PotentialSolver.h 1
1
2
3
4
5
6
7
8
9

10
11

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

28
29

30

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

#ifndef _SOLVER_H
#define _SOLVER_H

#include <assert.h>
#include "World.h"

//structure to hold data for a single row
template <int S>
struct Row {

Row() {for (int i=0;i<S;i++) {a[i]=0;col[i]=-1;}}
void operator= (const Row &o) {for (int i=0;i<S;i++) {a[i] = o.a
[i];col[i]=o.col[i];}}

double a[S]; //coefficients
int col[S];

};

/*matrix with up to seven non zero diagonals*/
class Matrix
{
public:

Matrix(int nr):nu{nr} {rows=new Row<nvals>[nr];}
Matrix(const Matrix &o):Matrix(o.nu) {

for (int r=0;r<nu;r++) rows[r] = o.rows[r];
}; //copy constructor
~Matrix() {if (rows) delete[] rows;}
dvector operator*(dvector &v); //matrix-vector multiplication

double& operator() (int r, int c); //reference to A[r,c] value in a
full matrix

void clearRow(int r) {rows[r]=Row<nvals>();} //reinitializes a row
Matrix diagSubtract(dvector &P); //subtracts a vector from the
diagonal

Matrix invDiagonal(); //returns a matrix containing inverse of
our diagonal

double multRow(int r, dvector &x); //multiplies row r with vector x

static constexpr int nvals = 7; //maximum 7 non-zero values
const int nu; //number of rows (unknowns)

protected:
Row<nvals> *rows; //row data

};

enum SolverType {GS, PCG, QN};

class PotentialSolver
{
public:

/*constructor*/

182

...ckground Pressure Sweeps\DELI_BPS_2\PotentialSolver.h 2
46

47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93

PotentialSolver(World &world, SolverType type, int max_it, double
tol):

world(world), solver_type(type), A(world.ni*world.nj*world.nk),
max_solver_it(max_it), tolerance(tol) {
//std::cout << "In Solver constructor, n0: " << n0 << std::endl;

buildMatrix();
}

/*sets reference values*/
void setReferenceValues(double phi0, double Te0, double n0) {

this->phi0 = phi0;
this->Te0 = Te0;
this->n0 = n0;
//std::cout << "Set n0: " << n0 << std::endl;

}

double getTol() const { return tolerance; }

/*computes electric field = -gradient(phi)*/
void computeEF();

/*builds the "A" matrix for linear potential solver*/
void buildMatrix();

//calls the appropriate potential solver
bool solve()
{

switch(solver_type)
{

std::cout << "solver type: " << solver_type << std::endl;
case GS: return solveGS();
case PCG: return solveNRPCG();
case QN: return solveQN();
default: return false;

}
}

protected:
World &world;
SolverType solver_type;
Matrix A; //system matrix for the linear equation

enum NodeType {REG,NEUMANN,DIRICHLET};
std::vector<NodeType> node_type; //flag for different node types

unsigned max_solver_it; //maximum number of solver iterations
double tolerance; //solver tolerance
double phi0 = 0; //reference plasma potential
//double n0 = 1e12; //reference electron density
double n0 = 0; //reference electron density

183

...ckground Pressure Sweeps\DELI_BPS_2\PotentialSolver.h 3
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113

114
115
116
117

//double Te0 = 1.5; //reference electron temperature in eV
double Te0 = 0; //reference electron temperature in eV

/*computes potential in vacuum (all phi0 besides objects)*/
bool solveV();

/*computes potential using quasineutral boltzmann model*/
bool solveQN();

/*solves non-linear potential using Gauss-Seidel*/
bool solveGS();

/*linear PCG solver for Ax=b system*/
bool solvePCGLinear(Matrix &A, dvector &x, dvector &b);

/*linear GS solver for Ax=b system*/
bool solveGSLinear(Matrix &A, dvector &x, dvector &b);

/*Newton Raphson solver for a nonlinear system, uses PCG for the
linear solve*/

bool solveNRPCG();
};
#endif

184

...ground Pressure Sweeps\DELI_BPS_2\PotentialSolver.cpp 1
1
2
3
4
5
6
7
8
9

10
11

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

#include <math.h>
#include <iostream>
#include "World.h"
#include "PotentialSolver.h"
#include "Field.h"
#include "Output.h"

using namespace std;
using namespace Const;

/*solves poisson equation with Boltzmann electrons using the Gauss-Seidel
scheme*/

#include <math.h>
#include <iostream>
#include <stdlib.h>
#include <string.h>

using namespace std;
using dvector = vector<double>;

//matrix-vector multiplication
dvector Matrix::operator*(dvector &v) {

dvector r(nu);
for (int u=0;u<nu;u++) {

auto &row = rows[u];
r[u] = 0;
for (int i=0;i<nvals;i++){

if (row.col[i]>=0) r[u]+=row.a[i]*v[row.col[i]];
else break; //end at the first -1

}
}
return r;

}

//returns reference to A[r,c] element in the full matrix
double& Matrix::operator()(int r, int c){

//find this entry
auto &row = rows[r]; int v;
for (v=0;v<nvals;v++)
{

if (row.col[v]==c) break; //if found
if (row.col[v]<0) {row.col[v]=c; //set

break;}
}
assert(v!=nvals); //check for overflow
return row.a[v];

}

185

...ground Pressure Sweeps\DELI_BPS_2\PotentialSolver.cpp 2
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97

/*returns inverse of a diagonal preconditioner*/
Matrix Matrix::invDiagonal()
{

Matrix M(nu);
for (int r=0;r<nu;r++) M(r,r) = 1.0/(*this)(r,r);

return M;
}

/*subtracts diagonal matrix diag from A*/
Matrix Matrix::diagSubtract(dvector &P) {

Matrix M(*this); //make a copy
for (int u=0;u<nu;u++) M(u,u)=(*this)(u,u)-P[u];
return M;

}

//multiplies row r with vector x
double Matrix::multRow(int r, dvector &x){

auto &row = rows[r];
double sum=0;
for (int i=0;i<nvals;i++)
{

if (row.col[i]>=0) sum+=row.a[i]*x[row.col[i]];
else break;

}
return sum;

}

dvector operator-(const dvector &a, const dvector &b) {
size_t nu = a.size();
dvector r(nu);
for (size_t u=0;u<nu;u++) r[u] = a[u]-b[u];
return r;

}

dvector operator+(const dvector &a, const dvector &b) {
size_t nu = a.size();
dvector r(nu);
for (size_t u=0;u<nu;u++) r[u] = a[u]+b[u];
return r;

}

dvector operator*(const double s, const dvector &a) {
size_t nu = a.size();
dvector r(nu);
for (size_t u=0;u<nu;u++) r[u] = s*a[u];
return r;

}

186

...ground Pressure Sweeps\DELI_BPS_2\PotentialSolver.cpp 3
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146

/*vector math helper functions*/
namespace vec
{

/*returns sum of v1[i]*v2[i]*/
double dot(dvector v1, dvector v2)
{

double dot = 0;
size_t nu = v1.size();
for (size_t j=0;j<nu;j++)

dot+=v1[j]*v2[j];
return dot;

}

/*returns l2 norm*/
double norm(dvector v)
{

double sum = 0;
int nu = v.size();
for (int j=0;j<nu;j++)

sum+=v[j]*v[j];
return sqrt(sum/nu);

}

/** converts 3D field to a 1D vector*/
dvector deflate(Field &f3)
{

dvector r(f3.ni*f3.nj*f3.nk);
for (int i=0;i<f3.ni;i++)

for (int j=0;j<f3.nj;j++)
for (int k=0;k<f3.nk;k++)

r[f3.U(i,j,k)] = f3[i][j][k];
return r;

}

/** converts 1D vector to 3D field*/
void inflate(dvector &d1, Field& f3)
{

for (int i=0;i<f3.ni;i++)
for (int j=0;j<f3.nj;j++)

for (int k=0;k<f3.nk;k++)
f3[i][j][k] = d1[f3.U(i,j,k)];

}

};

//constructs the coefficient matrix
void PotentialSolver::buildMatrix()
{

//std::cout << "In Build Matrix, n0: " << n0 << std::endl;

187

...ground Pressure Sweeps\DELI_BPS_2\PotentialSolver.cpp 4
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172

173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194

double3 dh = world.getDh();
double idx = 1.0/dh[0];
double idy = 1.0/dh[1];
double idz = 1.0/dh[2];
double idx2 = idx*idx; /*1/(dx*dx)*/
double idy2 = idy*idy;
double idz2 = idz*idz;
int ni = world.ni;
int nj = world.nj;
int nk = world.nk;
int nu = ni*nj*nk;

/*reserve space for node types*/
node_type.resize(nu);

/*solve potential*/
for (int k=0;k<nk;k++)

for (int j=0;j<nj;j++)
for (int i=0;i<ni;i++)
{

int u = world.U(i,j,k);
A.clearRow(u);
//dirichlet node
if (world.object_id[i][j][k]>0)
{

//std::cout << "Dirichlet: " << i << j << k <<
std::endl;
A(u,u)=1; //set 1 on the diagonal
node_type[u] = DIRICHLET;
continue;

}

//Neumann boundaries
node_type[u] = NEUMANN; //set default
if (i==0) {A(u,u)=idx;A(u,u+1)=-idx;}
else if (i==ni-1) {A(u,u)=idx;A(u,u-1)=-idx;}
else if (j==0) {A(u,u)=idy;A(u,u+ni)=-idy;}
else if (j==nj-1) {A(u,u)=idy;A(u,u-ni)=-idy;}
else if (k==0) {A(u,u)=idz;A(u,u+ni*nj)=-idz;}
else if (k==nk-1) {

A(u,u)=idz;
A(u,u-ni*nj)=-idz;}

else {
//standard internal stencil
A(u,u-ni*nj) = idz2;
A(u,u-ni) = idy2;
A(u,u-1) = idx2;
A(u,u) = -2.0*(idx2+idy2+idz2);
A(u,u+1) = idx2;

188

...ground Pressure Sweeps\DELI_BPS_2\PotentialSolver.cpp 5
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218

219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242

A(u,u+ni) = idy2;
A(u,u+ni*nj) = idz2;
node_type[u] = REG; //regular internal node

}
}

//solveQN();
solveV();

}

/*vacuum potential solver*/
bool PotentialSolver::solveV()
{

std::cout << "In V Solver, n0: " << n0 << std::endl;
Field& phi = world.phi;
Field& rhoi = world.rho;
double rho0 = n0 * QE;
double rho_ratio_min = 1e-6;

for (int i = 0; i < world.ni; i++)
for (int j = 0; j < world.nj; j++)

for (int k = 0; k < world.nk; k++)
{

if (world.object_id[i][j][k] > 0) continue; /*skip
Dirichlet nodes*/

phi[i][j][k] = phi0;
}

return true;
}

/*quasi-neutral potential solver*/
bool PotentialSolver::solveQN()
{

std::cout << "In QN Solver, n0: " << n0 << std::endl;
Field& phi = world.phi;
Field& rhoi = world.rho;
double rho0 = n0*QE;
double rho_ratio_min = 1e-6;

for (int i=0;i<world.ni;i++)
for (int j=0;j<world.nj;j++)

for (int k=0;k<world.nk;k++)
{

if (world.object_id[i][j][k] > 0) {
continue; /*skip Dirichlet nodes*/

}

189

...ground Pressure Sweeps\DELI_BPS_2\PotentialSolver.cpp 6
243
244
245
246
247
248
249
250

251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270

271

272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288

double rho_ratio = rhoi[i][j][k]/rho0;
if (rho_ratio<rho_ratio_min) rho_ratio=rho_ratio_min;
phi[i][j][k] = phi0 + Te0*log(rho_ratio);

}
return true;

}

/*Newton Raphson solver for a nonlinear system, using PCG for the linear
solve */

bool PotentialSolver::solveNRPCG()
{

std::cout << "In PCG Nonlinear" << std::endl;

/*main NR iteration loop*/
const int NR_MAX_IT=20; /*maximum number of NR iterations*/
const double NR_TOL = 1e-3;
int nu = A.nu;

Matrix J(nu);
dvector P(nu);
dvector y(nu);
dvector x = vec::deflate(world.phi);
dvector b = vec::deflate(world.rho);

/*set RHS to zero on boundary nodes (zero electric field)
and to existing potential on fixed nodes */

for (int u=0;u<nu;u++)
{

if (node_type[u]==NEUMANN) b[u] = 0; /*neumann
boundary*/

else if (node_type[u]==DIRICHLET) b[u] = x[u]; /*dirichlet
boundary*/

else b[u] = -b[u]/EPS_0; /*regular node*/
}

// use linear solver if n0 non-zero
std::cout << "e density n0: " << n0 << std::endl;
if (n0<=0) {

bool converged = solvePCGLinear(A,x,b);
//bool converged = solveGSLinear(A, x, b);
vec::inflate(x,world.phi);
return converged;

}

double norm;
bool converged=false;
for(int it=0;it<NR_MAX_IT;it++)
{

190

...ground Pressure Sweeps\DELI_BPS_2\PotentialSolver.cpp 7
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337

/*compute F by first subtracting the linear term */
dvector F = A*x-b;

/*subtract b(x) on regular nodes*/
for (int n=0;n<nu;n++)

if (node_type[n]==REG) /*regular nodes*/
F[n] -= QE*n0*exp((x[n]-phi0)/Te0)/EPS_0;

/*Compute P, diagonal of d(bx)/dphi*/
for (int n=0;n<nu;n++)
{

if (node_type[n]==REG)
P[n] = n0*QE/(EPS_0*Te0)*exp((x[n]-phi0)/Te0);

}

/*Compute J = A-diag(P)*/
Matrix J = A.diagSubtract(P);

/*solve Jy=F*/
if (!solvePCGLinear(J,y,F))

solveGSLinear(J,y,F);

/*clear any numerical noise on Dirichlet nodes*/
for (int u=0;u<nu;u++)

if (node_type[u]==DIRICHLET) y[u]=0;

/*x=x-y*/
x = x-y;

norm=vec::norm(y);
//cout<<"NR norm: "<<norm<<endl;

Output::convOutput(it, NR_TOL, norm);
if (norm<NR_TOL)
{

converged=true;
break;

}
}

if (!converged)
cout<<"NR+PCG failed to converge, norm = "<<norm<<endl;

/*convert to 3d data*/
vec::inflate(x,world.phi);
return converged;

}

/*PCG solver for a linear system Ax=b*/

191

...ground Pressure Sweeps\DELI_BPS_2\PotentialSolver.cpp 8
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386

bool PotentialSolver::solvePCGLinear(Matrix &A, dvector &x, dvector &b)
{

std::cout << "In PCG Linear" << std::endl;
bool converged= false;

double l2 = 0;
Matrix M = A.invDiagonal(); //inverse of Jacobi preconditioner

/*initialization*/
dvector g = A*x-b;
dvector s = M*g;
dvector d = -1*s;

for (unsigned it=0;it<max_solver_it;it++)
{

dvector z = A*d;
double alpha = vec::dot(g,s);
double beta = vec::dot(d,z);

x = x+(alpha/beta)*d;
g = g+(alpha/beta)*z;
s = M*g;

beta = alpha;
alpha = vec::dot(g,s);

d = (alpha/beta)*d-s;
l2 = vec::norm(g);
Output::convOutput(it, tolerance, l2);
if (l2<tolerance) {converged=true;break;}

}

if (!converged) cerr<<"PCG failed to converge, norm(g) = "<<l2<<endl;
return converged;

}

/*solves non-linear Poisson equation using Gauss-Seidel*/
bool PotentialSolver::solveGS()
{

std::cout << "In GS Nonlinear" << std::endl;

//references to avoid having to write world.phi
Field &phi = world.phi;
Field &rho = world.rho; //rho contains only ion contribution

//precompute 1/(dx^2)
double3 dh = world.getDh();
double idx2 = 1.0/(dh[0]*dh[0]);
double idy2 = 1.0/(dh[1]*dh[1]);

192

...ground Pressure Sweeps\DELI_BPS_2\PotentialSolver.cpp 9
387
388
389
390
391
392
393
394
395
396
397
398
399

400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416

417
418
419

420

421

422

423
424
425

426
427
428

double idz2 = 1.0/(dh[2]*dh[2]);

double L2=0; //norm
bool converged= false;

/*solve potential*/
for (unsigned it=0;it<max_solver_it;it++)
{

for (int i=0;i<world.ni;i++)
for (int j=0;j<world.nj;j++)

for (int k=0;k<world.nk;k++)
{

/*skip over solid (fixed) nodes = Dirichlet
boundaries*/
if (world.object_id[i][j][k]>0) continue;

if (i==0)
phi[i][j][k] = phi[i+1][j][k];

else if (i==world.ni-1)
phi[i][j][k] = phi[i-1][j][k];

else if (j==0)
phi[i][j][k] = phi[i][j+1][k];

else if (j==world.nj-1)
phi[i][j][k] = phi[i][j-1][k];

else if (k==0)
phi[i][j][k] = phi[i][j][k+1];

else if (k==world.nk-1)
phi[i][j][k] = phi[i][j][k-1];

else { //standard internal open node

//evaluate electron density from the Boltzmann
relationshp

double ne = n0 * exp((phi[i][j][k]-phi0)/Te0);

double phi_new = ((rho[i][j][k]-Const::QE*ne)/
Const::EPS_0 +

idx2*(phi[i-1][j][k] + phi[i+1][j]
[k]) +

idy2*(phi[i][j-1][k]+phi[i][j+1]
[k]) +

idz2*(phi[i][j][k-1]+phi[i][j][k
+1]))/(2*idx2+2*idy2+2*idz2);

/*SOR*/
phi[i][j][k] = phi[i][j][k] + 1.4*(phi_new-phi[i]

[j][k]);
}

}

193

...ground Pressure Sweeps\DELI_BPS_2\PotentialSolver.cpp 10
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454

455

456
457

458

459
460
461
462
463
464
465
466
467
468
469
470
471
472
473

/*check for convergence*/
if (it%25==0)
{

double sum = 0;
for (int i=0;i<world.ni;i++)

for (int j=0;j<world.nj;j++)
for (int k=0;k<world.nk;k++)
{

/*skip over solid (fixed) nodes*/
if (world.object_id[i][j][k]>0) continue;

double R = 0;
if (i==0)

R = phi[i][j][k] - phi[i+1][j][k];
else if (i==world.ni-1)

R = phi[i][j][k] - phi[i-1][j][k];
else if (j==0)

R = phi[i][j][k] - phi[i][j+1][k];
else if (j==world.nj-1)

R = phi[i][j][k] - phi[i][j-1][k];
else if (k==0)

R = phi[i][j][k] - phi[i][j][k+1];
else if (k==world.nk-1)

R = phi[i][j][k] - phi[i][j][k-1];
else {

//evaluate electron density from the
Boltzmann relationshp

double ne = n0 * exp((phi[i][j][k]-phi0)/
Te0);

R = -phi[i][j][k]*(2*idx2+2*idy2+2*idz2) +
(rho[i][j][k]-Const::QE*ne)/

Const::EPS_0 +
idx2*(phi[i-1][j][k] + phi[i+1][j][k])

+
idy2*(phi[i][j-1][k]+phi[i][j+1][k]) +
idz2*(phi[i][j][k-1]+phi[i][j][k+1]);

}

sum += R*R;
}

L2 = sqrt(sum/(world.ni*world.nj*world.nk));
Output::convOutput(it, tolerance, L2);
if (L2<tolerance) {converged=true;break;}

}
}

if (!converged) cerr<<"GS failed to converge, L2="<<L2<<endl;
return converged;

194

...ground Pressure Sweeps\DELI_BPS_2\PotentialSolver.cpp 11
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489

490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521

}

/*solves non-linear Poisson equation using Gauss-Seidel*/
bool PotentialSolver::solveGSLinear(Matrix &A, dvector &x, dvector &b)
{

std::cout << "In GS Linear" << std::endl;

double L2=0; //norm
bool converged= false;

/*solve potential*/
for (unsigned it=0;it<max_solver_it;it++)
{

for (int u=0;u<A.nu;u++)
{

double S = A.multRow(u,x)-A(u,u)*x[u]; //multiplication of
non-diagonal terms

double phi_new = (b[u]- S)/A(u,u);

/*SOR*/
x[u] = x[u] + 1.*(phi_new-x[u]);

}

/*check for convergence*/
if (it%25==0)
{

dvector R = A*x-b;
L2 = vec::norm(R);
Output::convOutput(it, tolerance, L2);
if (L2<tolerance) {converged=true;break;}

}
}

if (!converged) cerr<<"GS failed to converge, L2="<<L2<<endl;
return converged;

}

/*computes electric field = -gradient(phi) using 2nd order differencing*/
void PotentialSolver::computeEF()
{

//grab references to data
Field &phi = world.phi;
Field3 &ef = world.ef;

double3 dh = world.getDh();
double dx = dh[0];
double dy = dh[1];
double dz = dh[2];

195

...ground Pressure Sweeps\DELI_BPS_2\PotentialSolver.cpp 12
522
523
524
525
526
527
528
529

530
531

532
533

534
535
536
537

538
539

540
541

542
543
544
545

546
547

548
549

550
551
552

for (int i=0;i<world.ni;i++)
for (int j=0;j<world.nj;j++)

for (int k=0;k<world.nk;k++)
{

/*x component*/
if (i==0)

ef[i][j][k][0] = -(-3*phi[i][j][k]+4*phi[i+1][j][k]-
phi[i+2][j][k])/(2*dx); /*forward*/

else if (i==world.ni-1)
ef[i][j][k][0] = -(phi[i-2][j][k]-4*phi[i-1][j][k]

+3*phi[i][j][k])/(2*dx); /*backward*/
else

ef[i][j][k][0] = -(phi[i+1][j][k] - phi[i-1][j][k])/
(2*dx); /*central*/

/*y component*/
if (j==0)

ef[i][j][k][1] = -(-3*phi[i][j][k] + 4*phi[i][j+1][k]-
phi[i][j+2][k])/(2*dy);

else if (j==world.nj-1)
ef[i][j][k][1] = -(phi[i][j-2][k] - 4*phi[i][j-1][k] +
3*phi[i][j][k])/(2*dy);

else
ef[i][j][k][1] = -(phi[i][j+1][k] - phi[i][j-1][k])/

(2*dy);

/*z component*/
if (k==0)

ef[i][j][k][2] = -(-3*phi[i][j][k] + 4*phi[i][j][k+1]-
phi[i][j][k+2])/(2*dz);

else if (k==world.nk-1)
ef[i][j][k][2] = -(phi[i][j][k-2] - 4*phi[i][j][k-1]

+3*phi[i][j][k])/(2*dz);
else

ef[i][j][k][2] = -(phi[i][j][k+1] - phi[i][j][k-1])/
(2*dz);

}
}

196

...ckenna\Background Pressure Sweeps\DELI_BPS_2\Source.h 1
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

18
19
20
21
22
23
24
25
26
27
28
29
30
31

#ifndef SOURCE_H_
#define SOURCE_H_

#include <iostream>
#include "World.h"
#include "Droplets.h"

//simple monoenergetic source
class DropletSource {
public:

DropletSource(Droplets &droplets, World &world, int num_droplets) :
sp{droplets}, world{world}, num_droplets{num_droplets} {}

//generates particles
void sample(double addtime, double n);
//void sample(double addtime, double3 x, double3 v, double r_ratio,
double n);

protected:
Droplets &sp; //reference to the injected species
World &world; //reference to world
double3 x0;
int num_droplets;

};

#endif /* SOURCE_H_ */

197

...enna\Background Pressure Sweeps\DELI_BPS_2\Source.cpp 1
1
2
3
4
5
6

7
8
9

10

11
12
13

14
15
16
17
18

19
20
21
22

23
24

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

#include <iostream>
#include "Source.h"

//samples particles with finite thermal and drift velocity
void DropletSource::sample(double addtime, double n)
//void DropletSource::sample(double addtime, double3 x, double3 v, double
r_ratio, n)

{
std::default_random_engine generator;

// random device class instance, source of 'true' randomness for
initializing random seed

std::random_device rd;

// Mersenne twister PRNG, initialized with seed from previous random
device instance

std::mt19937 gen(rd());

//Gaussian distributions
//radius
std::normal_distribution<double> ddistribution
(Const::dmean,Const::dRMS);

//specific charge
//std::normal_distribution<double> qmdistribution(qmmean,qmsigma);
//charge
//std::normal_distribution<double> qdistribution(Const::qmean,
0.1*Const::qmean);

//radius
//std::lognormal_distribution<> ddistribution(mean order, std. dev.
order);

for (int p=0;p<num_droplets;p++) {
//Radius
//double r = (1e-6)*r_ratio;
double d = ddistribution(gen);
double r = d/ 2;
double m = Const::density * (4 / 3) * Const::PI * pow(r, 3);
//double d = 2*r;

//Charge
double q = Const::qmean * (d/ (Const::dmean));
//double q = qdistribution(gen);

//Specific Charge
//double qm = qmdistribution(gen);
double qm = q / m;

// pos and velocity

198

...enna\Background Pressure Sweeps\DELI_BPS_2\Source.cpp 2
44

45

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

66
67
68
69
70
71
72

double rscale = 0.1*(0.5/1.87)*Const::dmean; //0.1r_jet, r_jet =
1.87r_drop

//double rscale = 2 * Const::dmean; //From Grifoll & Rosell-
Llompart 2012

double3 pos = sp.emitPerturbed(rscale);
//double3 pos = x;
double3 vel = { 0,0, Const::v0 };
//double3 vel = v;

//acceleration
double3 acc = {0.0,0.0,0.0};

//force
double3 Cforce = {0.0,0.0,0.0};
double3 Dforce = {0.0,0.0,0.0};
double3 Eforce = {0.0,0.0,0.0}; //fix this
double3 Iforce = { 0.0, 0.0 ,0.0 };

double birthID = n; //will be updated at first motion

//make negative ions
//if (rnd()>=0.5) qden*=-1.0;

sp.addParticle(birthID, pos, vel, acc, Cforce, Eforce, Dforce,
Iforce, r, qm, addtime);

}

}

199

...enna\Background Pressure Sweeps\DELI_BPS_2\Droplets.h 1
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

19
20
21
22
23
24
25
26
27
28
29
30
31

32
33
34

35

36
37
38
39
40
41
42
43

/*Defines flying material data*/

#ifndef _DROPLETS_H
#define _DROPLETS_H

#include <iostream>
#include <vector>
#include "Field.h"
#include "World.h"

/** Data structures for particle storage **/
struct Particle
{

int birthID; // ID in particles vector
double birthmass; // mass at birth [kg]
double3 pos; // position
double3 vel; // velocity
double3 vel_for_drag; // for 1st order Velocity Verlet Scheme with
drag (Grifoll, AKA, & RL 2011)

double3 acc; // acceleration
double3 Cforce; // Coulombic force
double3 Eforce; // Electric field (from electrodes) force
double3 Dforce; // Drag force
double3 Iforce; //Image charge force
double3 force; // force
double3 frat; // frat
double r; // radius
double charge; // charge
double mass; // droplet mass
double addtime; // time born
double rss; // impact parameter for 90 degree self scatter
double rsep; // distance to nearest neighbor (surface-to-
surface)

double angle; // plume angle

Particle(int ID, double3 x, double3 v, double3 acc, double3 Cforce,
double3 Eforce, double3 Dforce, double3 Iforce, double r, double qm,
double addtime):
birthID{ ID }, pos{ x }, vel{ v }, acc{ acc }, Cforce{ Cforce },
Eforce{ Eforce }, Dforce{ Dforce }, Iforce{ Iforce }, r{ r },
addtime{ addtime } {

double A = 4.0*Const::PI*r*r;
double V = A*r/3.0;

vel_for_drag = v;
mass = V*Const::density;
charge = mass*qm;
force = Cforce + Eforce + Dforce;
frat = Cforce/Eforce;

200

...enna\Background Pressure Sweeps\DELI_BPS_2\Droplets.h 2
44
45
46
47

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77

78
79
80
81
82
83
84
85
86
87
88
89
90

angle = pow((pow(pos[0], 2) + pow(pos[1], 2)), 0.5) / pos[2];
birthmass = mass;

rss = (1 / (4.0 * Const::PI * Const::EPS_0)) * charge * charge *
2 / (mass * pow(2.0, 2.0));

rsep = 1.0;
}

};

struct Cell {
std::vector<Particle *> parts;
double3 xc; // cell center position
double3 mass_xc; // mass centroid
double charge; // total charge

};

class PartGrid {
public:

PartGrid(const int3 &dims, const double3 &x0, const double3 &xm):
dims{dims},x0{x0}, xm{xm} {
size_t num_cells = dims[0]*dims[1]*dims[2];
cells.resize(num_cells);

// set cell sizes, assuming dims is the number of cells
for (int i=0;i<3;i++)

dh[i] = (xm[i]-x0[i])/dims[i];

// set centers
size_t c = 0;
//std::vector<Cell>::iterator it = cells.begin();

for (int k=0;k<dims[2];k++)
for (int j=0;j<dims[1];j++)

for (int i=0;i<dims[0];i++) {
cells[c].xc = {(i+0.5)*dh[0], (j+0.5)*dh[1], (k+0.5)

*dh[2]};
//it->xc = ...
c++;

}
}

void clear() {
for (Cell &c:cells) {c.parts.clear();c.charge=0;}

}

// return cell index, or -1 if out of bounds
int XtoC(const double3 &pos) {

int3 l;
// convert and check for bounds

201

...enna\Background Pressure Sweeps\DELI_BPS_2\Droplets.h 3
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114

115
116
117
118
119

120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137

for (int d=0;d<3;d++) {
l[d] = (int)((pos[d]-x0[d])/dh[d]);
if (l[d]<0 || l[d]>dims[d]) return -1;

}

return l[2]*dims[0]*dims[1] + l[1]*dims[0] + l[0];
}

int3 dims;
double3 x0, xm; // bounding box extents
std::vector<Cell> cells;

double3 dh;
};

/*species container*/
class Droplets
{
public:

Droplets(std::string name, World &world, int3 part_grid_dims) :
name(name),
inst_den(world.nn), inst_mden(world.nn), inst_qden(world.nn),
ave_den(world.nn), ave_mden(world.nn), ave_qden(world.nn), Cf
(world.nn),

mass_cm(world.nn), charge_cm(world.nn),
vel(world.nn), force(world.nn), //den_ave(world.nn),
radfrat(world.nn),
n_sum(world.nn),nv_sum(world.nn),
world(world), part_grid(part_grid_dims, world.getX0(), world.getXm
()) { }

/*return a pointer to part_grid*/
PartGrid& getPG() { return part_grid; }

/*return a pointer to the particles address*/
std::vector<Particle>& getparticlesadd() { return particles; }

/*return the particles*/
std::vector<Particle> getparticles() { return particles; }

/*returns the number of simulation particles*/
size_t getNp() {return particles.size();}

/*returns the number of real particles*/
int getRealCount();

/*computes simulation timestep*/
double adaptTimeStep(double default_dt);

202

...enna\Background Pressure Sweeps\DELI_BPS_2\Droplets.h 4
138
139
140

141
142
143

144
145

146
147
148

149
150
151
152
153
154
155
156
157
158

159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181

/*Computer Efield using nearest-neighbor*/
double3 compute_Efield_nn(std::vector<std::pair<std::string,
std::vector<double>>>, Particle& part);

/*Computing Efield using barycentric interpolation*/
double3 compute_Efield_bc(std::vector<std::pair<std::string,
std::vector<double>>>, Particle& part);

/*Computing Efield using line-of-charge (LOC) approach from Ganan-
Calvo et al. 1994*/

double3 compute_Efield_LOC(Particle& part);

/*Computing Efield using analytical approach from Ganan-Calvo et al.
1994*/

double3 compute_Efield_ANLTC(Particle& part);

/*returns the species momentum*/
double3 getMomentum();

/*returns the species kinetic energy*/
double getKE();

/*moves all particles using electric field ef[]*/
void advance(std::vector<std::pair<std::string, std::vector<double>>>
result);

/*compute instataneous number, mass, and charge densities*/
void computeInstDensities();

/*compute steady-state averaged number, mass, and charge densities*/
void computeAveDensities();

/*compute space charge*/
void computeSpaceCharge();

/*compute mass contour*/
void computeCumulativeContours();

/*samples velocity moments*/
void sampleMoments();

/*uses sampled data to compute velocity and temperature*/
void computeGasProperties();

/*clears sampled moment data*/
void clearSamples();

/*computes emitted mass flowrate and current*/

203

...enna\Background Pressure Sweeps\DELI_BPS_2\Droplets.h 5
182
183
184
185
186
187
188

189
190
191
192
193
194
195
196
197
198
199
200
201

202
203
204
205
206
207
208
209

210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226

void computeFlow();

// sorts particles to cells
void sortToCells();

/*adds a new particle of radius r*/
void addParticle(double birthID, double3 pos, double3 vel, double3
acc, double3 Cforce, double3 Eforce, double3 Dforce, double3 Iforce,
double r, double qm, double addtime);

/*updates number density*/
//void updateAverages() {den_ave.updateAverage(den);}

/*returns random thermal velocity*/
double sampleVth(double T);

/*samples random isotropic velocity*/
double3 emitPerturbed(double diameter);

const std::string name; /*species name*/

std::vector<Particle> particles; /*contiguous array for storing
particles*/

std::vector<std::vector<double>> exitparticles;
Field inst_den; /*instantaneous number density*/
Field inst_mden; /*instantaneous mass density*/
Field inst_qden; /*instantaneous charge density*/
Field ave_den; /*steady-state average number density*/
Field ave_mden; /*steady-state average mass density*/
Field ave_qden; /*steady-state average charge density*/
Field3 Cf; //Coulombic force (space charge) field
components*/

Field mass_cm; /*cumulative mass*/
Field charge_cm; /*cumulative charge*/
Field radfrat; /*radial F_C/F_E*/
Field3 vel; /*stream velocity*/
Field3 force; /*Total force*/
//Field den_ave; /*averaged number density*/
PartGrid part_grid;
World& world;

protected:

Field n_sum;
Field3 nv_sum;

};

204

...enna\Background Pressure Sweeps\DELI_BPS_2\Droplets.h 6
227
228

#endif

205

...na\Background Pressure Sweeps\DELI_BPS_2\Droplets.cpp 1
1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

26

27
28

29
30
31

32

33
34

35
36
37
38
39
40
41
42

/*definitions for species functions*/
#include <math.h>
#include <iostream>
#include "Droplets.h"
#include "Field.h"

/*updates velocities and positions of all particles of this species*/
void Droplets::advance(std::vector<std::pair<std::string,
std::vector<double>>> results)

{

// average particle grid cell dimension, using this to scale forces
double pg_size = mag(part_grid.dh);
int p_index = 0;
// update particle velocities
for (Particle& part : particles)
{

/*increment particle's dt by world dt*/
double dt = world.getDt();

/*reset nearest neighbor separation*/
part.rsep = 1.0;

/*Drag Calculations*/
double P = 0.50*Const::P0; /*Pressure, Pa*/
double rho_n = P / (Const::K * Const::T0); /*Number Density, 1/
m^3*/

double sigma = Const::PI * pow(Const::r_air, 2); /*m^2, Neutral
air particle cross-sectional area*/

double MFP = 1 / (rho_n * sigma); /*[m], Mean Free Path*/
/*double MFP = 2.937e-7; [m], Mean Free Path through air particles

at atmospheric pressure*/
double Kn = MFP / (2 * part.r); /*Knudsen Number*/

double nu_air = Const::mu_air / (rho_n * Const::M_air /
Const::A); /*m^2/s, kinematic viscosity of air*/

double Re = mag(part.vel) * 2 * part.r / nu_air; /*Reynolds number
= v*d/nu */

double Ma = (Re * Kn) / pow(Const::gamma_air * Const::PI / 2,
0.5);

double Cd = 0; //initialize coefficient of drag

double C_m;
double G_m;
if (Re > 45) {

if (Ma <= 1.45) {
C_m = 5 / 3 + (2 / 3) * tanh(3 * log(Ma + 1)); // Ma <=

206

...na\Background Pressure Sweeps\DELI_BPS_2\Droplets.cpp 2

43
44
45

46
47
48
49
50
51

52
53
54
55
56

57
58
59
60
61
62

63
64
65
66

67
68

69
70

71
72

73
74
75
76
77
78

1.45
}
else {

C_m = 2.044 + 0.2 * exp(-1.8 * pow(log(Ma / 1.5), 2)); //
Ma > 1.45

}
if (Ma <= 0.89) {

G_m = 1 - 1.525 * pow(Ma, 4); // Ma <= 0.89
}
else {

G_m = 0.0002 + 0.0008 * tanh(12.77 * (Ma - 2.02)); // Ma >
0.89

}

double H_m = 1 - (0.258 * C_m) / (1 + 514 * G_m);

Cd = (24 / Re) * (1 + 0.15 * pow(Re, 0.687)) * H_m + (0.42 *
C_m) / (1 + (42500 * G_m) / pow(Re, 1.16)); // Re > 45

}

else {
double f_Kn = 1 / (1 + Kn * (2.514 + 0.8 * exp(-0.55 / Kn)));

double CD_Kn_Re = (24 / Re) * (1 + 0.15 * pow(Re, 0.687)) *
f_Kn;

double s = Ma * sqrt(Const::gamma_air / 2);
double Tratio = 1.0;
double CD_fm = (1 + 2 * pow(s, 2)) * exp(-pow(s, 2)) / ((pow
(s, 3)) * sqrt(Const::PI)) + (4 * pow(s, 4) + 4 * pow(s, 2)
- 1) * erf(s) / (2 * pow(s, 4)) + (2 / (3 * s)) * sqrt
(Const::PI * Tratio);

double CD_fm_prime = (1 + 2 * pow(s, 2)) * exp(-pow(s, 2)) /
((pow(s, 3)) * sqrt(Const::PI)) + (4 * pow(s, 4) + 4 * pow
(s, 2) - 1) * erf(s) / (2 * pow(s, 4));

double CD_fm_Re = CD_fm / (1 + ((CD_fm_prime / 1.63) - 1) *
sqrt(Re / 45));

Cd = (CD_Kn_Re) / (1 + pow(Ma, 4)) + (pow(Ma, 4) * CD_fm_Re) /
(1 + pow(Ma, 4)); // Re <= 45

}

//if (Kn >= 1e-3 && Kn < 1e-1) {
// if (Re > 1 && Re < 50) {
// if (Ma < 3.37) {
// Cd = (0.127 + 3.957 / (0.140 + pow(Re, 0.983))) *
((7.407 * Kn + 2.293) / (1.688 * Kn + 0.292)); //Niazmand and

207

...na\Background Pressure Sweeps\DELI_BPS_2\Droplets.cpp 3

79
80
81
82

83
84
85
86

87
88
89
90
91
92
93
94
95
96
97

98
99

100
101

102
103
104
105
106
107
108
109
110
111

112
113
114
115

116
117
118
119
120

Anbarsooz (2012)
// //std::cout << "Low Kn Cd" << std::endl;
// }
// else {
// std::cout << "No Cd - Ma too high for low Kn term." <<

std::endl;
// }
// }
// else {
// std::cout << "No Cd - Re outside range for low Kn term."
<< std::endl;

// }
//}
//else if (Kn >= 1e-1) {
// if (Kn <= 1) {
// if (Re > 0.1 && Re < 3.5) {
// if (Ma > 0.0067 && Ma < 2.36) {
// Cd = 1; //Tao, Zhang, and Guo (2017)
// //std::cout << "Mid Kn Cd" << std::endl;
// }
// else {
// std::cout << "No Cd - Ma outside range for middle
Kn term." << std::endl;

// }
// }
// else {
// std::cout << "No Cd - Re outside range for middle Kn
term." << std::endl;

// }
// }
// else if (Kn <= 5.44) {
// if (Re > 2.99 && Re < 1378.81) {
// if (Ma > 10.96 && Ma < 25.29) {
// Cd = 1; //Singh and Schwartzenruber (2016)
// //std::cout << "High Kn Cd" << std::endl;
// }
// else {
// std::cout << "No Cd - Ma outside range for high Kn

term." << std::endl;
// }
// }
// else {
// std::cout << "No Cd - Re outside range for high Kn
term." << std::endl;

// }
// }
// else {
// std::cout << "No Cd - Kn too high" << std::endl;
// }

208

...na\Background Pressure Sweeps\DELI_BPS_2\Droplets.cpp 4
121
122
123
124

125
126

127

128
129
130
131

132
133
134
135
136
137
138

139
140
141
142
143
144
145
146

147

148
149
150
151
152
153
154
155
156
157
158
159
160

//}
//std::cout << "Cd : " << Cd << std::endl;

//F_D = 6 Pi Cd r v eta (eta = kinematic viscosity = rho nu, where
nu = dynamic viscosity)

for (int i = 0; i < 3; i += 1) {
part.Dforce[i] = -Const::drag_bin * Cd * (Const::PI / 8) *
(rho_n * Const::M_air / Const::A) *

pow((2 * part.r), 2) * part.vel_for_drag[i] * abs
(part.vel_for_drag[i]);

}

//Nearest-neighbor lookup on uniform mesh
part.Eforce = compute_Efield_nn(results, part) * part.charge; //Ef

= E*q

//Hardline Efield such that 2D stays 2D
for (int i = 0; i < 3; i += 1) {

part.Cforce[i] = 0.0;
part.force[i] = 0.0;
if (part.pos[i] == 0.0) {

part.Eforce[i] = 0.0; // initialize to vacuum
Lorentz force

}
else {

continue;
}

}

double3 r_im = { 0, 0, Const::electrode_h + Const::grid_thick +
(Const::electrode_h - part.pos[2]) }; //Self Image Charge
separation vector

part.Cforce -= (part.charge * part.charge / Const::k) * r_im /
(pow(mag(r_im), 3)); //Force from Self Image Charge

//now add contribution from all other particles
// F = q1*q2/(4*pi*eps0)*unit(r12)/(r12*r12)
for (Cell& cell : part_grid.cells) {

// skip empty cells
if (cell.parts.empty()) continue;

// compute distance to the mass centroid
//double dist = mag(cell.mass_xc-part.pos);
//if (dist>10*pg_size) {

//std::cout << "PIC" << std::endl;
//double3 r12 = part.pos - cell.mass_xc;
//part.Cforce += part.charge*cell.charge/Const::k*unit
(r12)/(dot(r12,r12));

209

...na\Background Pressure Sweeps\DELI_BPS_2\Droplets.cpp 5
161
162
163

164
165
166
167
168

169
170

171

172
173

174

175

176
177
178
179
180
181

182

183
184

185
186
187
188
189
190
191
192
193
194
195
196
197

//}
//else {

// loop over all particles and add individual
contributions

for (Particle* pp2 : cell.parts) {
Particle& part2 = *pp2; // dereference

if (&part2 == &part) continue; // ignore self, but would
also be taken care of below

double3 r12 = part.pos - part2.pos; //physical separation
vector

double3 p2_im = { part2.pos[0], part2.pos[1],
Const::electrode_h + Const::grid_thick +
(Const::electrode_h - part2.pos[2]) };

double3 r12_im = part.pos - p2_im; //separation vector
from image charge

part.Cforce += (part.charge * part2.charge / Const::k) *
r12 / (pow(mag(r12), 3)); //Physical Plume Force

part.Cforce -= (part.charge * part2.charge / Const::k) *
r12_im / (pow(mag(r12_im), 3)); //Image Charge Plume
Force

//Collision Tracking
double separation = mag(r12) - part.r - part2.r;
if (separation < part.rsep) {

part.rsep = separation;
if (separation <= 0) { //overlapping particles

(physical collision)
world.collision_count += 0.5; //only add 0.5

because both particles will count collision
}
else if (separation <= 0.1 * (part.r + part2.r)) { //

near-collision particles, 10% from overlap
world.TJ_count += 0.5; //"Traffic Jam" count

}
}

}
}

part.force = part.Eforce + part.Cforce + part.Dforce;

for (int i = 0; i < 3; i += 1) {
if (part.Eforce[i] == 0.0) {

part.frat[i] = 0.0;
}

210

...na\Background Pressure Sweeps\DELI_BPS_2\Droplets.cpp 6
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212

213
214
215

216
217

218
219
220
221
222
223
224
225
226

227
228

229
230
231
232
233

234
235
236

237
238
239

else {
part.frat[i] = abs(part.Cforce[i])/abs(part.Eforce[i]);

}
}

}

// update positions
for (Particle &part: particles)
{

/*increment particle's dt by world dt*/
double dt = world.getDt();
p_index += 1;

/*keep iterating while time remains and the particle is alive*/
part.pos += part.vel*dt + 0.5*part.acc*pow(dt,2); //using v and a
from last time step (not updated yet)

/*calculate new acceleration from a = F/m */
double3 new_acc = part.force / part.mass; //update particle
acceleration to new timestep

/*update velocity to new timstep with dv/dt = (a + a_old)/2,
Velocity Verlet first order algorithm*/

part.vel += dt * 0.5 * (part.acc + new_acc);

part.vel_for_drag = part.vel + dt * part.acc;

//update particle acceleration to new timestep
part.acc = new_acc;

/*For 2 Particle*/
//std::cout << "p_index: " << p_index << ", r: " << part.r <<
std::endl;

//if (p_index == 2) {//big droplet held fixed
//std::cout << "Fixed particle: " << p_index << ", new
position: " << part.pos << std::endl;

// continue;
//}
//else {
// part.pos += part.vel * dt; //small droplet moves

//std::cout << "Mobile particle: " << p_index << ", new
position: " << part.pos << std::endl;

//}

part.angle = atan(pow((pow(part.pos[0], 2) + pow(part.pos[1], 2)),
0.5) / part.pos[2]) * (180.0/Const::PI);

/*did this particle leave the domain?*/

211

...na\Background Pressure Sweeps\DELI_BPS_2\Droplets.cpp 7
240
241
242

243

244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263

264

265
266
267
268
269
270
271

272

273

274
275
276
277
278
279

if (!world.inBounds(part.pos) ||
world.inObject(part.pos)) {

//if (!world.inBounds(part.pos)){std::cout << "Left domain: "
<< p_index << ", new position: " << part.pos << std::endl; }

//if (world.inObject(part.pos)) { std::cout << "Hit object: "
<< p_index << ", new position: " << part.pos << std::endl; }

part.mass = 0; //kill the particle
}

}

//remove dead particles
size_t np = particles.size();

for (size_t p=0;p<np;p++)
{

particles[p].birthID = p; //update birthID
if (particles[p].mass>0) continue; //ignore live particles
//std::cout << "particle death, " << world.time << std::endl;
size_t nep = exitparticles.size();
for (size_t ep = 0; ep < nep; ep++)

if (exitparticles[ep][0] == p * 1.0) {
double velx = particles[p].vel[0];
double vely = particles[p].vel[1];
double velz = particles[p].vel[2];
double thetaf = tan(pow(pow(particles[p].pos[0], 2) + pow
(particles[p].pos[1], 2), 0.5) / particles[p].pos[2]) *
180 / Const::PI;

double KE_q = 0.5 * particles[p].birthmass*pow(mag
(particles[p].vel),2)/particles[p].charge;

exitparticles[ep][10] = thetaf;
exitparticles[ep][11] = velx;
exitparticles[ep][12] = vely;
exitparticles[ep][13] = velz;
exitparticles[ep][14] = KE_q;

}
particles[p] = particles[np-1]; //overwrite dead particle with
particle from the end the particles vector

//for (size_t s = p; s < np - 1; s++) { //overwrite dead particle
by shuffling remainder of array to the left

// particles[s] = particles[s + 1]; //At this point, we've
written over dead particle. There is a duplicate last entry
which we will delete later

//}
np--; //reduce count of valid elements
p--; //decrement p so this position gets checked again

}

//now delete particles[np:end]

212

...na\Background Pressure Sweeps\DELI_BPS_2\Droplets.cpp 8
280
281
282
283
284
285

286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303

304
305
306
307
308
309
310
311
312

313
314
315
316
317
318
319
320
321

322
323

particles.erase(particles.begin()+np,particles.end());
}

/*adds a new particle, rewinding velocity by half dt*/
void Droplets::addParticle(double birthID, double3 pos, double3 vel,
double3 acc, double3 Cforce, double3 Eforce, double3 Dforce, double3
Iforce, double r, double qm, double addtime)

{
//don't do anything (return) if pos outside domain bounds
if (!world.inBounds(pos)){

std::cout<<"emitted out of bounds"<<std::endl;
return;}

// TODO: add contribution from other particles

//get particle logical coordinate
// double3 lc = world.XtoL(pos);

//evaluate electric field at particle position
// double3 ef_part = world.ef.gather(lc);

//rewind velocity back by 0.5*dt*ef

//add to list
particles.emplace_back(birthID, pos,vel,acc, Cforce, Eforce, Dforce,
Iforce, r, qm, addtime);

double thetaf = 0.0;
double vfx = 0.0;
double vfy = 0.0;
double vfz = 0.0;
double KE_q = 0.0;
double V = 4.0 /3.0 * Const::PI * pow(r,3);
double mass = V * Const::density;
double charge = mass * qm;
exitparticles.push_back({ birthID, pos[0], pos[1], pos[2], vel[0], vel
[1], vel[2], r, mass, charge, thetaf, vfx, vfy, vfz, KE_q });

//std::cout << "particle born, " << addtime << std::endl;
//std::cout <<"emission location:" << pos <<std::endl;
//std::cout <<"emitted r:" << r <<std::endl;
//std::cout <<"emitted qm:" << qm <<std::endl;

}

/*returns perturbed droplet emission*/
double3 Droplets::emitPerturbed(double rscale) {

// random device class instance, source of 'true' randomness for
initializing random seed

std::random_device rd;

213

...na\Background Pressure Sweeps\DELI_BPS_2\Droplets.cpp 9
324

325
326
327
328
329
330

331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361

362
363
364
365
366
367
368
369

// Mersenne twister PRNG, initialized with seed from previous random
device instance

std::mt19937 gen(rd());
//Gaussian distribution
std::normal_distribution<double> pert_distribution(0,rscale);

//Gaussian radial perturbation and random from set range axial
perturbation

double r_pert = pert_distribution(gen);
double theta = 2 * Const::PI * rnd();

double x_pert = cos(theta)*r_pert;
double y_pert = sin(theta)*r_pert;

double3 pos;
pos[0] = x_pert;
pos[1] = y_pert;
pos[2] = Const::EmHeight;

return pos;
}

/* computes the adaptive timestep*/
double Droplets::adaptTimeStep(double default_dt)
{

double ts;
double mints = default_dt;

for (Particle &part:particles){
double minr = 1;
for (Particle &part2:particles) {

if (&part2 == &part) continue; // ignore self
double3 r12 = part.pos - part2.pos;
double r_mag = mag(r12);
if (r_mag < minr){

minr = r_mag;
}

}
ts = (-mag(part.vel) + sqrt(pow(mag(part.vel),2) + 2*mag(part.acc)
*minr))/mag(part.acc);

if (ts < mints){
mints = ts;

}
}
//std::cout << "adapted ts: " << mints << std::endl;
return mints;

}

214

...na\Background Pressure Sweeps\DELI_BPS_2\Droplets.cpp 10
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407

408
409
410
411
412
413
414
415
416
417

/* returns the species momentum*/
double3 Droplets::getMomentum() {

double3 mom;
for (Particle &part:particles)

mom+=part.mass*part.vel;
return mom;

}

/* returns the species kinetic energy*/
double Droplets::getKE() {

double ke = 0;
for (Particle &part:particles)
{

double v2 = mag(part.vel)*mag(part.vel);
ke += 0.5*part.mass*v2;

}
return ke;

}

/*compute instantaneous densities*/
void Droplets::computeInstDensities()
{

inst_den.clear();
inst_mden.clear();
inst_qden.clear();
force.clear();
for (Particle &part:particles)
{

double3 lc = world.XtoL(part.pos);
inst_den.scatter(lc, 1);
inst_mden.scatter(lc, part.mass);
inst_qden.scatter(lc, part.charge);
force.scatter(lc, part.force);

}

//divide by node surface area (in xy plane) for [units]/m^2 density
inst_den / (world.node_vol*world.dh3); //node_vol *Idh3 = node_vol
*cell_height = node_xy_surface_area

inst_mden / (world.node_vol *world.dh3);
inst_qden / (world.node_vol *world.dh3);

}

/*compute steady-state average densities*/
void Droplets::computeAveDensities()
{

//std::cout << "t_steady: " << world.t_steady << std::endl;
double t_last = world.t_steady - 1.0;

215

...na\Background Pressure Sweeps\DELI_BPS_2\Droplets.cpp 11
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433

434
435
436
437
438
439

440
441
442
443
444

445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461

462

//std::cout << "t_last: " << t_last << std::endl;
ave_den *= t_last;
ave_mden *= t_last;
ave_qden *= t_last;
//std::cout << "ave_den: " << ave_den << std::endl;
ave_den += inst_den;
ave_mden += inst_mden;
ave_qden += inst_qden;
//std::cout << "new_den: " << new_den << std::endl;
ave_den /= world.t_steady;
ave_mden /= world.t_steady;
ave_qden /= world.t_steady;
//std::cout << "new ave_den: " << ave_den << std::endl;

}

/*computes space charge at each mesh point using single avg. point
charge*/

void Droplets::computeSpaceCharge() {
Cf.clear();
for (int i = 0; i < Const::x_n; i++) {

for (int j = 0; j < Const::y_n; j++) {
for (int k = 0; k < Const::z_n; k++) {

double3 C = { 0.0, 0.0, 0.0 }; //initialize space charge
to 0 at each node

double3 P = world.pos(i, j, k); //compute node position
for (Particle& part : particles) {

double3 r12 = P - part.pos;
double r_mag = mag(r12);
C += Const::qmean * part.charge / Const::k * unit

(r12) / (r_mag * r_mag);
}
Cf[i][j][k] = C;

}
}

}
}

/*computes cumulative profiles*/
void Droplets::computeCumulativeContours()
{

//radfrat.clear(); /*instantaneous, not cumulative*/
for (Particle& part: particles)
{

double3 lc = world.XtoL(part.pos);
mass_cm.scatter(lc, part.mass);
charge_cm.scatter(lc, part.charge);
radfrat.scatter(lc, pow(pow(part.frat[0], 2) + pow(part.frat[1],
2), 0.5));

}

216

...na\Background Pressure Sweeps\DELI_BPS_2\Droplets.cpp 12
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511

}

/*samples velocity moments*/
void Droplets::sampleMoments() {

for (Particle &part:particles)
{

double3 lc = world.XtoL(part.pos);
n_sum.scatter(lc, part.mass);
nv_sum.scatter(lc,part.mass*part.vel);

}
}

/*uses sampled data to compute velocity and temperature*/
void Droplets::computeGasProperties() {

vel = nv_sum/n_sum; //stream velocity
}

/*clears sampled moment data*/
void Droplets::clearSamples() {

n_sum = 0; nv_sum = 0;
}

/*computes emitted mass flowrate and current*/
void Droplets::computeFlow() {

double m = 0;
double q = 0;
for (Particle& part : particles)
{

m += part.mass;
q += part.charge;

}
world.mflow = m / world.time;
world.qflow = q / world.time;

}

// creates a list of pointers to all particles in a cell,
// also computes total charge in the cell
void Droplets::sortToCells() {

part_grid.clear();
for (Particle &part:particles) {

int c = part_grid.XtoC(part.pos);
if (c<0) continue;

part_grid.cells[c].parts.push_back(&part);
part_grid.cells[c].charge += part.charge;

}

// set mass centroid in each cell

217

...na\Background Pressure Sweeps\DELI_BPS_2\Droplets.cpp 13
512
513
514
515
516
517
518
519
520
521
522
523

524
525

526

527

528
529
530
531
532
533
534
535
536
537
538

539
540
541
542
543
544

545
546
547
548
549
550
551
552
553
554

for (Cell &cell:part_grid.cells) {
double mass = 0;
cell.mass_xc = 0;
for (Particle *part:cell.parts) {

cell.mass_xc += part->mass*part->pos;
mass+=part->mass;

}
cell.mass_xc /= mass;

}
}

double3 Droplets::compute_Efield_nn(std::vector<std::pair<std::string,
std::vector<double>>> result, Particle& part)

{
double r = sqrt(pow(part.pos[0], 2) + pow(part.pos[1], 2)); //r^2 =
x^2 + y^2

//double theta = (180/3.14)*atan(part.pos[1] / part.pos[0]); //theta =
atan(y/x)

double theta = (180 / 3.14) * atan2(part.pos[1], part.pos[0]); //theta
= atan(y/x)

double rmin = 100.0;
double3 Ef;

double r_grid; double z_grid;
int rmin_index;
double Er; double Ez;

for (int i = 0; i < result.at(0).second.size(); i++) {
double dist = pow((pow((r - result.at(0).second[i]), 2) + pow
((part.pos[2] - result.at(1).second[i]), 2)), 0.5);

if (dist < rmin) {
rmin = dist;
rmin_index = i;

}
}
//std::cout << "rmin: " << rmin << ", id: " << rmin_index <<
std::endl;

Er = result.at(2).second[rmin_index];
Ez = result.at(3).second[rmin_index];

double Ex = Er * cos(theta * (3.14 / 180)); //x = r*cos(theta)
double Ey = Er * sin(theta * (3.14 / 180)); //y = r*sin(theta)
Ef = { Ex, Ey, Ez };
r_grid = result.at(0).second[rmin_index];
z_grid = result.at(1).second[rmin_index];

//std::cout << "x: " << part.pos[0] << ", y: " << part.pos[1] << ", z:

218

...na\Background Pressure Sweeps\DELI_BPS_2\Droplets.cpp 14

555
556
557

558
559

560
561
562
563

564
565

566

567

568
569

570
571
572
573
574
575
576
577
578
579
580

581
582
583
584
585
586
587
588
589

590

591
592

" << part.pos[2] << std::endl;
//std::cout << "r: " << r << ", z: " << part.pos[2] << std::endl;
//std::cout << "theta: " << theta << std::endl;
//std::cout << "r_grid: " << r_grid << ", z_grid: " << z_grid <<
std::endl;

//std::cout << "Er: " << Er << std::endl;
//std::cout << "Ex: " << Ef[0] << ", Ey: " << Ef[1] << ", Ez: " << Ef
[2] << std::endl;

return Ef;
}

double3 Droplets::compute_Efield_bc(std::vector<std::pair<std::string,
std::vector<double>>> result, Particle& part)

{
double r = sqrt(pow(part.pos[0], 2) + pow(part.pos[1], 2)); //r^2 =
x^2 + y^2

//double theta = (180/3.14)*atan(part.pos[1] / part.pos[0]); //theta =
atan(y/x)

double theta = (180 / 3.14) * atan2(part.pos[1], part.pos[0]); //theta
= atan(y/x)

double rmin1 = 100.0; double rmin2 = 100.0; double rmin3 = 100.0;
double rmin4 = 100.0;

int r1 = 1; int r2 = 1; int r3 = 1; int r4 = 1;
double rmin4_proposed; int r4_proposed;
//int *r1p = &r1; int* r2p = &r2; int* r3p = &r3;

double3 Ef;
double r_grid;
double z_grid;
double Er;

for (int i = 0; i < result.at(0).second.size(); i++) {
double dist = pow((pow((r - result.at(0).second[i]), 2) + pow
((part.pos[2] - result.at(1).second[i]), 2)), 0.5);

if (dist < rmin3) {
rmin3 = dist;
//*r3p = i;
r3 = i;
if (dist < rmin2) {

rmin3 = rmin2;
//*r3p = *r2p;
r3 = r2;
r4_proposed = r3;//Propose P4 = old P3, check later that
it's not collinear with P1 & P2

rmin4_proposed = rmin3;//Propose P4 = old P3, check later
that it's not collinear with P1 & P2

rmin2 = dist;
//*r2p = i;

219

...na\Background Pressure Sweeps\DELI_BPS_2\Droplets.cpp 15
593
594
595
596
597
598
599
600
601
602
603

604

605
606
607

608
609
610
611

612
613

614

615

616

617

618

r2 = i;
if (dist < rmin1) {

rmin2 = rmin1;
//*r2p = *r1p;
r2 = r1;
rmin1 = dist;
//*r1p = i;
r1 = i;

}
}
//Check that proposed P4 is not (very nearly) collinear with
P1 & P2

if (abs(((result.at(1).second[r2] - result.at(1).second[r1]) *
(result.at(0).second[r4_proposed] - result.at(0).second

[r1]) + (result.at(0).second[r1] - result.at(0).second[r2])
* (result.at(1).second[r1] - result.at(1).second
[r4_proposed]))) > 1e-15) {

r4 = r4_proposed;
rmin4 = rmin4_proposed;
//std::cout << "Found new nonlinear close vertex" <<
std::endl;

}
}

}
std::cout << "|Denom 124|: " << abs(((result.at(1).second[r2] -
result.at(1).second[r1]) * (result.at(0).second[r4] - result.at
(0).second[r1]) + (result.at(0).second[r1] - result.at(0).second
[r2]) * (result.at(1).second[r1] - result.at(1).second[r4]))) <<
std::endl;

//If 3 closest points are (very nearly) collinear, bump the third
point for the third guaranteed non-collinear close point

if (abs(((result.at(1).second[r2] - result.at(1).second[r3]) *
(result.at(0).second[r1] - result.at(0).second[r3]) + (result.at
(0).second[r3] - result.at(0).second[r2]) * (result.at(1).second[r1]
- result.at(1).second[r3]))) < 1e-15) {
std::cout << "|Denom 123|: " << abs(((result.at(1).second[r2] -
result.at(1).second[r3]) * (result.at(0).second[r1] - result.at
(0).second[r3]) + (result.at(0).second[r3] - result.at(0).second
[r2]) * (result.at(1).second[r1] - result.at(1).second[r3]))) <<
std::endl;

std::cout << "Replaced interpolation vertex due to collinearity"
<< std::endl;

std::cout << "|Denom 123|: " << abs(((result.at(1).second[r2] -
result.at(1).second[r3]) * (result.at(0).second[r1] - result.at
(0).second[r3]) + (result.at(0).second[r3] - result.at(0).second
[r2]) * (result.at(1).second[r1] - result.at(1).second[r3]))) <<
std::endl;

r3 = r4;

220

...na\Background Pressure Sweeps\DELI_BPS_2\Droplets.cpp 16
619
620
621
622
623

624

625

626

627
628
629
630

631

632
633
634
635

636

637
638
639
640
641

642
643
644

645
646
647
648
649
650
651
652
653
654

rmin3 = rmin4_proposed;
}

//Check for collinearity among all 3 points
//double slope_12 = (result.at(1).second[r2] - result.at(1).second
[r1]) / (result.at(0).second[r2] - result.at(0).second[r1]);

//double slope_23 = (result.at(1).second[r3] - result.at(1).second
[r2]) / (result.at(0).second[r3] - result.at(0).second[r2]);

//double slope_13 = (result.at(1).second[r3] - result.at(1).second
[r1]) / (result.at(0).second[r3] - result.at(0).second[r1]);

//if (slope_12 == slope_23 && slope_23 == slope_13 && slope_12 ==
slope_13) {//if collinear, find 4th point - nearest point not on
line.

//double rmin4 = 100;
//int r4 = 1;
//for (int i = 0; i < result.at(0).second.size(); i++) {

//double dist = pow((pow((r - result.at(0).second[i]), 2) +
pow((part.pos[2] - result.at(1).second[i]), 2)), 0.5);

//if (dist <= rmin3) {//ignore the 3 closest points already
found

//continue;
//}
//else if (dist < rmin4) {

//double slope_14 = (result.at(1).second[i] - result.at
(1).second[r1]) / (result.at(0).second[i] - result.at
(0).second[r1]);

//if (slope_14 != slope_12) {//only accept 4th point not
on line

//rmin4 = dist;
//r4 = i;

//}
//}

//}//Once all points have been searched for to fine 4th point
closest not collinear with closest 3, replace 3rd closest point
with new 4th point

//rmin3 = rmin4;
//r3 = r4;
//std::cout << "Replaced interpolation vertext due to
collinearity" << std::endl;

//}

//std::cout << "rmin1: " << rmin1 << ", r1: " << r1 << std::endl;
//std::cout << "rmin2: " << rmin2 << ", r2: " << r2 << std::endl;
//std::cout << "rmin3: " << rmin3 << ", r3: " << r3 << std::endl;

//Barycentric Coordinates:
//Ef_p = w_1 * Ef_1 + w_2 + Ef_2 + w_3 + Ef_3
//Weights are defined as follows:
//x_p = w_1*x_1 + w_2*x_2 + w_3*x_3

221

...na\Background Pressure Sweeps\DELI_BPS_2\Droplets.cpp 17
655
656
657
658

659

660
661
662
663

664

665
666

667

668
669

670

671
672
673
674
675
676
677
678

679
680
681

682

//y_p = w_1*y_1 + y_2*x_2 + w_3*y_3
//w_1 + w_2 + w_3 = 1
//Re-arranged:
//w_1 = ((y_2 - y_3)(x_p - x_3) + (x_3 - x_2)(y_p - y_3))/((y_2 - y_3)
(x_1 - x_3) + (x_3 - x_2)(y_1 - y_3))

//w_2 = ((y_3 - y_1)(x_p - x_3) + (x_1 - x_3)(y_p - y_3))/((y_2 - y_3)
(x_1 - x_3) + (x_3 - x_2)(y_1 - y_3))

//w_3 = 1 - w_1 - w_2;

double w_1 = ((result.at(1).second[r2] - result.at(1).second[r3]) * (r
- result.at(0).second[r3]) + (result.at(0).second[r3] - result.at

(0).second[r2]) * (part.pos[2] - result.at(1).second[r3])) /
((result.at(1).second[r2] - result.at(1).second[r3]) * (result.at
(0).second[r1] - result.at(0).second[r3]) + (result.at(0).second[r3]
- result.at(0).second[r2]) * (result.at(1).second[r1] - result.at

(1).second[r3]));
double w_2 = ((result.at(1).second[r3] - result.at(1).second[r1]) * (r

- result.at(0).second[r3]) + (result.at(0).second[r1] - result.at
(0).second[r3]) * (part.pos[2] - result.at(1).second[r3])) /
((result.at(1).second[r2] - result.at(1).second[r3]) * (result.at
(0).second[r1] - result.at(0).second[r3]) + (result.at(0).second[r3]
- result.at(0).second[r2]) * (result.at(1).second[r1] - result.at

(1).second[r3]));
double w_3 = 1 - w_1 - w_2;
//std::cout << "w1: " << w_1 << ", w2: " << w_2 << ", w3: " << w_3 <<
std::endl;

//std::cout << "Er_1: " << result.at(2).second[r1] << ", Er_2: " <<
result.at(2).second[r2] << ", Er_3: " << result.at(2).second[r3] <<
std::endl;

Er = w_1 * result.at(2).second[r1] + w_2 * result.at(2).second[r2] +
w_3 * result.at(2).second[r3];

double Ez = w_1 * result.at(3).second[r1] + w_2 * result.at(3).second
[r2] + w_3 * result.at(3).second[r3];

double Ex = Er * cos(theta * (3.14 / 180)); //x = r*cos(theta)
double Ey = Er * sin(theta * (3.14 / 180)); //y = r*sin(theta)
Ef = { Ex, Ey, Ez };
r_grid = result.at(0).second[r1];
z_grid = result.at(1).second[r1];

//std::cout << "x: " << part.pos[0] << ", y: " << part.pos[1] << ", z:
" << part.pos[2] << std::endl;

//std::cout << "r: " << r << ", z: " << part.pos[2] << std::endl;
//std::cout << "theta: " << theta << std::endl;
//std::cout << "r_grid: " << r_grid << ", z_grid: " << z_grid <<
std::endl;

//std::cout << "Er: " << Er << std::endl;

222

...na\Background Pressure Sweeps\DELI_BPS_2\Droplets.cpp 18
683

684
685
686
687
688
689
690
691
692

693
694
695
696
697
698
699
700

701
702
703
704
705

706

707
708

709

710
711
712
713

714

715

716

717
718

719

//std::cout << "Ex: " << Ef[0] << ", Ey: " << Ef[1] << ", Ez: " << Ef
[2] << std::endl;

return Ef;
}

double3 Droplets::compute_Efield_LOC(Particle& part) {
//Analytical Solution form
//R = nozzle OR = 0.5e-3m, H = emitter - to - plate distance = 0.03m
//r * = r / H, z * = 1 - (z-h)/H
//Wilhelm reports best fit with k = 0.7
//phi = k / ln(4H / R) * ln(((r * ^2 + (1 - z*) ^ 2) ^ (1 / 2) + (1 -
z*)) / ((r * ^2 + (1 + z*) ^ 2) ^ (1 / 2) + (1 + z*)))

int V0 = Const::voltage;
double H = Const::Em_to_grid;
double h = Const::emitter_h;
double R = Const::emitter_rad;
double kv = 0.7; //dimensionless constant

double r = sqrt(pow(part.pos[0],2) + pow(part.pos[1],2)); // create r
array from xand y arrays

double r_s = r / H;
double z_s = 1 - (part.pos[2] - h) / H;
double c = (kv / log(4 * H / R));

double num = (pow((pow(r_s,2) + pow((1 - z_s),2)),(1 / 2))) + (1 -
z_s);

double denom = (pow((pow(r_s,2) + pow((1 + z_s),2)), (1 / 2))) + (1 +
z_s);

//num_dz = (1 / 2) * ((r_s ^ 2 + (1 - z_s) ^ 2) ^ (-1 / 2)) * 2 * (1 -
z_s) * (-1) - 1

double num_dz = -(pow((pow(r_s, 2) + pow((1 - z_s),2)),(-1 / 2))) * (1
- z_s) - 1;

//num_dr = (1 / 2) * ((r_s ^ 2 + (1 - z_s) ^ 2) ^ (-1 / 2)) * 2 * r_s
double num_dr = (pow((pow(r_s,2) + pow((1 - z_s),2)),(-1 / 2))) * r_s;

//denom_dz = (1 / 2) * ((r_s ^ 2 + (1 + z_s) ^ 2) ^ (-1 / 2)) * 2 * (1
+ z_s) + 1

double denom_dz = (pow((pow(r_s ,2) + pow((1 + z_s),2)),(-1 / 2))) *
(1 + z_s) + 1;

//denom_dr = (1 / 2) * ((r_s ^ 2 + (1 + z_s) ^ 2) ^ (-1 / 2)) * 2 *
r_s

double denom_dr = (pow((pow(r_s,2) + pow((1 + z_s),2)),(-1 / 2))) *
r_s;

//Quotient rule : d(phi) / dz = (denom * d(num) / dz - num * d
(denom) / dz) / (denom) ^ 2

double phi_dz = c* (denom * num_dz - num * denom_dz) / pow((denom),

223

...na\Background Pressure Sweeps\DELI_BPS_2\Droplets.cpp 19

720

721
722
723
724
725
726

727
728
729
730
731
732
733
734
735
736
737
738
739

740

741
742
743
744

745

746

747

2);
double phi_dr = c* (denom * num_dr - num * denom_dr) / pow((denom),
2);

double Ez = V0 / H * phi_dz;
double Er = V0 / H * phi_dr;

//Trig. conversion from 2D Axisymmetric to 3D
double theta = (180 / 3.14) * atan2(part.pos[1], part.pos[0]); //theta

= atan(y/x)
double Ex = Er * cos(theta * (3.14 / 180)); //x = r*cos(theta)
double Ey = Er * sin(theta * (3.14 / 180)); //y = r*sin(theta)
double3 Ef = { Ex, Ey, Ez };
return Ef;

}

double3 Droplets::compute_Efield_ANLTC(Particle& part) {
//Create Analytical Potential Solution Array From GC 94
double H = Const::Em_to_grid; //Emitter - to - Extractor Height [m]
double Ra = Const::emitter_rad; //Emitter radius [m]
double Kv = 0.685; //Kv = fn(H/Ra) value for H/Ra = 60

double za = ((part.pos[2] - Const::emitter_h - Const::TC_h) -
Const::Em_to_grid) / Const::Em_to_grid; // Set z coordinate origin
on top of emitter and TC, reverse for distance from plate [m],
nondimensionalize

double ra = pow(pow(part.pos[0], 2) + pow(part.pos[1], 2), 0.5) /
Const::Em_to_grid; // Nondimensionalize r

//std::cout << "(ra, za): " << ra << " , " << za << std::endl;;

double A_V = Const::voltage * Kv / log(4 * H / Ra) * log((pow(pow(ra,
2) + pow(1 - za, 2), 0.5) + (1 - za)) / (pow(pow(ra, 2) + pow(1 +
za, 2), 0.5) + (1 + za))); // [V]

double Er = -(Const::voltage * Kv * (ra / (pow(pow(za - 1, 2) + pow
(ra, 2), 0.5) * (za + pow(pow(za + 1, 2) + pow(ra, 2), 0.5) + 1)) -
(ra * (pow(pow(za - 1, 2) + pow(ra, 2), 0.5) - za + 1)) / (pow(pow
(za + 1, 2) + pow(ra, 2), 0.5) * pow((za + pow(pow(za + 1, 2) + pow
(ra, 2), 0.5) + 1), 2))) * (za + pow(pow(za + 1, 2) + pow(ra, 2),
0.5) + 1)) / (H * log((4 * H) / Ra) * (pow(pow(za - 1, 2) + pow(ra,
2), 0.5) - za + 1)); // [V/m]

double Ez = -(Const::voltage * Kv * (((2 * za - 2) / (2 * pow(pow(za -
1, 2) + pow(ra, 2), 0.5)) - 1) / (za + pow(pow(za + 1, 2) + pow(ra,
2), 0.5) + 1) - (((2 * za + 2) / (2 * pow(pow(za + 1, 2) + pow(ra,

2), 0.5)) + 1) * (pow(pow(za - 1, 2) + pow(ra, 2), 0.5) - za + 1)) /
pow(za + pow(pow(za + 1, 2) + pow(ra, 2), 0.5) + 1, 2)) * (za + pow

(pow(za + 1, 2) + pow(ra, 2), 0.5) + 1)) / (H * log((4 * H) / Ra) *
(pow(pow(za - 1, 2) + pow(ra, 2), 0.5) - za + 1)); // [V/m]

224

...na\Background Pressure Sweeps\DELI_BPS_2\Droplets.cpp 20
748
749
750

751
752
753
754
755
756

//Trig. conversion from 2D Axisymmetric to 3D
double theta = (180 / 3.14) * atan2(part.pos[1], part.pos[0]); //theta

= atan(y/x)
double Ex = Er * cos(theta * (3.14 / 180)); //x = r*cos(theta)
double Ey = Er * sin(theta * (3.14 / 180)); //y = r*sin(theta)
double3 Ef = { Ex, Ey, Ez };
return Ef;

}

225

...ckenna\Background Pressure Sweeps\DELI_BPS_2\Output.h 1
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

19
20
21
22
23

#ifndef _OUTPUT_H
#define _OUTPUT_H

#include <vector>
#include <fstream>
#include "World.h"
#include "PotentialSolver.h"
#include "Droplets.h"

namespace Output {
void fields(World &world, Droplets &droplets);
void particles(World& world, Droplets& droplets);
void screenOutput(World &world, Droplets &droplets);
void diagOutput(World &world, Droplets &droplets);
void exitparticlesOutput(Droplets& sp);
void convOutput(int i, double tol, double err);
void PSOutput(World& world);
void runtimesOutput(double make_world_time, double add_objects_time,
double solve_potential_time, double solve_electric_field, double
create_species_time, double emit_time, double sort_cells_time, double
advance_time, double compute_densities_time, double

compute_cumulatives_time, double output_time);
void nOutput(int n, int ts, double t);

}

#endif

226

...enna\Background Pressure Sweeps\DELI_BPS_2\Output.cpp 1
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

#include <fstream>
#include <sstream>
#include <iostream>
#include <iomanip>
#include "Output.h"
#include "World.h"
#include "Droplets.h"

using namespace std;

//writes information to the screen
void Output::screenOutput(World& world, Droplets& sp)
{

cout << "ts: " << world.getTs();
cout << setprecision(3) << "\t " << sp.name << ":" << sp.getNp();
cout << endl;

}

//file stream handle
namespace Output {

std::ofstream f_diag;
std::ofstream f_conv;
std::ofstream f_PS;
std::ofstream f_runtimes;
std::ofstream f_ep;

}

/*save runtime diagnostics to a file*/
void Output::diagOutput(World& world, Droplets& sp)
{

using namespace Output; //to get access to f_diag

//is the file open?
if (!f_diag.is_open())
{

f_diag.open("diagnostics.csv");
f_diag << "ts,time,wall_time";
f_diag << ",mp_count." << sp.name

<< ",px." << sp.name << ",py." << sp.name << ",pz." << sp.name
<< ",KE." << sp.name;

f_diag << endl;
}

f_diag << world.getTs() << "," << world.getTime();
f_diag << "," << world.getWallTime();

double tot_KE = 0;
double KE = sp.getKE(); //species kinetic energy

227

...enna\Background Pressure Sweeps\DELI_BPS_2\Output.cpp 2
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

71
72
73
74

75

76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

tot_KE += KE; //increment total energy
double3 mom = sp.getMomentum();

f_diag << "," << sp.getNp()
<< "," << mom[0] << "," << mom[1] << "," << mom[2] << "," << KE;

//write out system potential and total energy

f_diag << "\n"; //use \n to avoid flush to disc
if (world.getTs() % 25 == 0) f_diag.flush();

}

void Output::exitparticlesOutput(Droplets& sp)
{

using namespace Output; //to get access to f_diag

//is the file open?
if (!f_ep.is_open())
{

f_ep.open("exitparticles.csv");
f_ep << "birthID, bpx, bpy, bpz, bvz, bvy, bvz, r, m, q, thetaf,
vfx, vfy, vfz, KE_q" << endl;

}

for (std::vector<double> ep : sp.exitparticles) {
f_ep << ep[0] << "," << ep[1] << "," << ep[2] << "," << ep[3] <<
"," << ep[4];

f_ep << "," << ep[5] << "," << ep[6] << "," << ep[7] << "," << ep
[8];

f_ep << "," << ep[9] << "," << ep[10] << "," << ep[11];
f_ep << "," << ep[12] << "," << ep[13] << "," << ep[14];
f_ep << "\n";

}
f_ep.flush();

}

/*save potential solver convergence diagnostics to a file*/
void Output::convOutput(int i, double tol, double err)
{

using namespace Output; //to get access to f_conv

//check if file is open
if (!f_conv.is_open())
{

f_conv.open("PS_convergence.csv"); //filename
f_conv << "i, tolerance, error"; //labels
f_conv << endl;

}

228

...enna\Background Pressure Sweeps\DELI_BPS_2\Output.cpp 3
96
97
98
99

100

101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120

121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139

140

f_conv << i << "," << tol; //iteration number and tolerance threshold
f_conv << "," << err; //error in iteration step

f_conv << "\n"; //use \n to avoid flush to disc
if (i % 1 == 0) f_conv.flush(); //keep information from all iteration
steps

}

/*save number of droplets at each (n) timestep to a file*/
void Output::nOutput(int n, int ts, double t)
{

using namespace Output; //to get access to f_conv

//check if file is open
if (!f_conv.is_open())
{

f_conv.open("n_droplets.csv"); //filename
f_conv << "n, timestep, time"; //labels
f_conv << endl;

}

f_conv << n << "," << ts; //iteration number and tolerance threshold
f_conv << "," << t; //error in iteration step

f_conv << "\n"; //use \n to avoid flush to disc
if (ts % 1 == 0) f_conv.flush(); //keep information from all iteration

steps
}

/*save runtime diagnostics to a file*/
void Output::PSOutput(World& world)
{

using namespace Output; //to get access to f_PS

//is the file open?
if (!f_PS.is_open())
{

f_PS.open("PS.csv");
f_PS << "x, y, z, phi";
f_PS << endl;

}

for (int i = 0; i < world.ni; i++) {
for (int j = 0; j < world.nj; j++) {

for (int k = 0; k < world.nk; k++) {
f_PS << world.pos(i, j, k)[0] << "," << world.pos(i, j, k)
[1] << "," << world.pos(i, j, k)[2]; //iteration number
and tolerance threshold

f_PS << "," << world.phi[i][j][k]; //error in iteration

229

...enna\Background Pressure Sweeps\DELI_BPS_2\Output.cpp 4

141
142
143
144
145
146
147
148

149
150
151
152
153
154
155
156

157
158
159
160

161

162
163
164
165
166
167
168
169
170
171
172
173
174

175
176

step
f_PS << "\n"; //use \n to avoid flush to disc
f_PS.flush(); //store information

}
}

}
}

void Output::runtimesOutput(double make_world_time, double
add_objects_time, double solve_potential_time, double
solve_electric_field, double create_species_time, double emit_time,
double sort_cells_time, double advance_time, double
compute_densities_time, double compute_cumulatives_time, double
output_time) {

using namespace Output; //to get access to f_runtimes

//check if file is open
if (!f_runtimes.is_open())
{

f_runtimes.open("runtimes.csv"); //filename
f_runtimes << "make world, add objects, solve potential, solve
electric field, create species, emit, sort cells, advance,
compute densities, compute cumulatives, output";

f_runtimes << endl;
}

f_runtimes << make_world_time << "," << add_objects_time << "," <<
solve_potential_time << "," << solve_electric_field << "," <<
create_species_time;

f_runtimes << "," << emit_time << "," << sort_cells_time << "," <<
advance_time << "," << compute_densities_time << "," <<
compute_cumulatives_time << "," << output_time;

f_runtimes << "\n"; //use \n to avoid flush to disc
f_runtimes.flush(); //keep information from all iteration steps

}

/*saves fields in VTK format*/
void Output::fields(World& world, Droplets& sp)
{

/*update gas macroscopic properties*/
sp.computeGasProperties();

stringstream name;
name << "results/fields_" << setfill('0') << setw(5) << world.getTs()
<< ".vti";

/*open output file*/

230

...enna\Background Pressure Sweeps\DELI_BPS_2\Output.cpp 5
177
178

179
180
181
182
183
184

185
186

187
188
189
190
191
192

193
194
195
196
197
198
199
200
201
202
203
204

205
206
207
208
209
210
211
212
213
214

215
216
217
218
219

ofstream out(name.str());
if (!out.is_open()) { cerr << "Could not open " << name.str() << endl;

return; }

/*ImageData is vtk format for structured Cartesian meshes*/
out << "<VTKFile type=\"ImageData\">\n";
double3 x0 = world.getX0();
double3 dh = world.getDh();
out << "<ImageData Origin=\"" << x0[0] << " " << x0[1] << " " << x0[2]

<< "\" ";
out << "Spacing=\"" << dh[0] << " " << dh[1] << " " << dh[2] << "\" ";
out << "WholeExtent=\"0 " << world.ni - 1 << " 0 " << world.nj - 1 <<
" 0 " << world.nk - 1 << "\">\n";

/*output data stored on nodes (point data)*/
out << "<PointData>\n";

/*object id, scalar*/
out << "<DataArray Name=\"object_id\" NumberOfComponents=\"1\" format=
\"ascii\" type=\"Int32\">\n";

out << world.object_id;
out << "</DataArray>\n";

/*cell position, vector*/
for (int i = 0; i < world.ni; i++) {

for (int j = 0; j < world.nj; j++) {
for (int k = 0; k < world.nk; k++) {

world.Pos[i][j][k] = world.pos(i, j, k);
}

}
}
out << "<DataArray Name=\"Pos\" NumberOfComponents=\"3\" format=
\"ascii\" type=\"Float64\">\n";

out << world.Pos;
out << "</DataArray>\n";

/*node volumes, scalar*/
Field f(world.node_vol);
for (int i = 0; i < world.ni; i++)

for (int j = 0; j < world.nj; j++)
for (int k = 0; k < world.nk; k++)

f[i][j][k] = world.node_vol[i][j][k];
out << "<DataArray Name=\"NodeVol\" NumberOfComponents=\"1\" format=
\"ascii\" type=\"Float64\">\n";

out << world.node_vol;
out << "</DataArray>\n";

/*cell height, scalar*/
out << "<DataArray Name=\"cell_height\" NumberOfComponents=\"1\"

231

...enna\Background Pressure Sweeps\DELI_BPS_2\Output.cpp 6

220
221
222
223
224
225

226
227
228
229
230

231
232
233
234
235

236
237
238
239
240

241
242
243
244
245

246
247
248
249
250

251
252
253
254
255

256
257
258
259
260

format=\"ascii\" type=\"Float64\">\n";
out << world.dh3;
out << "</DataArray>\n";

/*potential, scalar*/
out<<"<DataArray Name=\"phi\" NumberOfComponents=\"1\" format=\"ascii
\" type=\"Float64\">\n";

out<<world.phi;
out<<"</DataArray>\n";

/*charge density, scalar*/
//out << "<DataArray Name=\"rho\" NumberOfComponents=\"1\" format=
\"ascii\" type=\"Float64\">\n";

//out << world.rho;
//out << "</DataArray>\n";

/*instantaneous species number densities, scalar*/
out<<"<DataArray Name=\"inst_den."<<sp.name<<"\" NumberOfComponents=
\"1\" format=\"ascii\" type=\"Float64\">\n";

out<<sp.inst_den;
out<<"</DataArray>\n";

/*instantaneous species mass densities, scalar*/
out << "<DataArray Name=\"inst_mden." << sp.name << "\"
NumberOfComponents=\"1\" format=\"ascii\" type=\"Float64\">\n";

out << sp.inst_mden;
out << "</DataArray>\n";

/*instantaneous species charge densities, scalar*/
out << "<DataArray Name=\"inst_qden." << sp.name << "\"
NumberOfComponents=\"1\" format=\"ascii\" type=\"Float64\">\n";

out << sp.inst_qden;
out << "</DataArray>\n";

/*average species number densities, scalar*/
out << "<DataArray Name=\"ave_den." << sp.name << "\"
NumberOfComponents=\"1\" format=\"ascii\" type=\"Float64\">\n";

out << sp.ave_den;
out << "</DataArray>\n";

/*average species mass densities, scalar*/
out << "<DataArray Name=\"ave_mden." << sp.name << "\"
NumberOfComponents=\"1\" format=\"ascii\" type=\"Float64\">\n";

out << sp.ave_mden;
out << "</DataArray>\n";

/*average species charge densities, scalar*/
out << "<DataArray Name=\"ave_qden." << sp.name << "\"

232

...enna\Background Pressure Sweeps\DELI_BPS_2\Output.cpp 7

261
262
263
264
265

266
267
268
269
270

271
272
273
274
275

276
277
278
279
280
281

282
283
284
285
286

287
288
289
290
291

292
293
294
295
296

297
298
299
300
301

NumberOfComponents=\"1\" format=\"ascii\" type=\"Float64\">\n";
out << sp.ave_qden;
out << "</DataArray>\n";

/*cumulative mass, scalar*/
out << "<DataArray Name=\"mass_cm." << sp.name << "\"
NumberOfComponents=\"1\" format=\"ascii\" type=\"Float64\">\n";

out << sp.mass_cm;
out << "</DataArray>\n";

/*cumulative charge, scalar*/
out << "<DataArray Name=\"charge_cm." << sp.name << "\"
NumberOfComponents=\"1\" format=\"ascii\" type=\"Float64\">\n";

out << sp.charge_cm;
out << "</DataArray>\n";

/*total force, vector*/
out << "<DataArray Name=\"force." << sp.name << "\"
NumberOfComponents=\"3\" format=\"ascii\" type=\"Float64\">\n";

out << sp.force;
out << "</DataArray>\n";

/*time, scalar*/
world.Time = world.time;
out << "<DataArray Name=\"time\" NumberOfComponents=\"1\" format=
\"ascii\" type=\"Float64\">\n";

out << world.Time;
out << "</DataArray>\n";

/*species averaged number densities*/
//out<<"<DataArray Name=\"nd-ave."<<sp.name<<"\" NumberOfComponents=
\"1\" format=\"ascii\" type=\"Float64\">\n";

//out<<sp.den_ave;
//out<<"</DataArray>\n";

/*species stream velocity, 3 component vector*/
out<<"<DataArray Name=\"vel."<<sp.name<<"\" NumberOfComponents=\"3\"
format=\"ascii\" type=\"Float64\">\n";

out<<sp.vel;
out<<"</DataArray>\n";

/*electric field, 3 component vector*/
out<<"<DataArray Name=\"ef\" NumberOfComponents=\"3\" format=\"ascii\"

type=\"Float64\">\n";
out<<world.ef;
out<<"</DataArray>\n";

/*Coulombic force, 3 component vector*/
out << "<DataArray Name=\"Cf." << sp.name << "\" NumberOfComponents=

233

...enna\Background Pressure Sweeps\DELI_BPS_2\Output.cpp 8

302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

324
325
326
327

328
329
330
331
332
333
334
335
336
337
338

339
340

341
342
343
344
345

\"3\" format=\"ascii\" type=\"Float64\">\n";
out << sp.Cf;
out << "</DataArray>\n";

/*close out tags*/
out<<"</PointData>\n";

out<<"</ImageData>\n";
out<<"</VTKFile>\n";
out.close();

/*clear samples if not at steady state*/
if (!world.isSteadyState())

sp.clearSamples();
}

/*saves particle data*/
void Output::particles(World &world, Droplets &sp) {

/*loop over all species*/

//open a phase_sp_it.vtp
stringstream name;
name<<"results/parts_"<<sp.name<<"_"<<setfill('0')<<setw(5)
<<world.getTs()<<".vtp";

/*open output file*/
ofstream out(name.str());
if (!out.is_open()) {cerr<<"Could not open "<<name.str()
<<endl;return;}

/*build a list of particles to output*/
// here just outputting all but leaving this legacy code
vector<Particle*> to_output;
for (Particle &part : sp.particles) {

to_output.emplace_back(&part);
}

/*header*/
out<<"<?xml version=\"1.0\"?>\n";
out<<"<VTKFile type=\"PolyData\" version=\"0.1\" byte_order=
\"LittleEndian\">\n";

out<<"<PolyData>\n";
out<<"<Piece NumberOfPoints=\""<<to_output.size()<<"\" NumberOfVerts=
\"0\" NumberOfLines=\"0\" ";

out<<"NumberOfStrips=\"0\" NumberOfCells=\"0\">\n";

/*points*/
out<<"<Points>\n";
out<<"<DataArray type=\"Float64\" NumberOfComponents=\"3\" format=

234

...enna\Background Pressure Sweeps\DELI_BPS_2\Output.cpp 9

346
347
348
349
350
351
352
353
354

355
356
357
358
359
360

361
362
363
364
365
366

367
368
369
370
371
372

373
374
375
376
377
378

379
380
381
382
383
384

385
386
387

\"ascii\">\n";
for (Particle *part: to_output)

out<<part->pos<<"\n";
out<<"</DataArray>\n";
out<<"</Points>\n";

/*data*/
out<<"<PointData>\n";
/*velocities*/
out<<"<DataArray Name=\"vel\" type=\"Float64\" NumberOfComponents=\"3
\" format=\"ascii\">\n";

for (Particle *part: to_output)
out<<part->vel<<"\n";

out<<"</DataArray>\n";

/*accelerations*/
out<<"<DataArray Name=\"acc\" type=\"Float64\" NumberOfComponents=\"3
\" format=\"ascii\">\n";

for (Particle *part: to_output)
out<<part->acc<<"\n";

out<<"</DataArray>\n";

/*Electric field forces*/
out<<"<DataArray Name=\"Eforce\" type=\"Float64\" NumberOfComponents=
\"3\" format=\"ascii\">\n";

for (Particle *part: to_output)
out<<part->Eforce<<"\n";

out<<"</DataArray>\n";

/*Coulombic forces*/
out<<"<DataArray Name=\"Cforce\" type=\"Float64\" NumberOfComponents=
\"3\" format=\"ascii\">\n";

for (Particle *part: to_output)
out<<part->Cforce<<"\n";

out<<"</DataArray>\n";

/*Drag forces*/
out << "<DataArray Name=\"Dforce\" type=\"Float64\"
NumberOfComponents=\"3\" format=\"ascii\">\n";

for (Particle* part : to_output)
out << part->Dforce << "\n";

out << "</DataArray>\n";

/*Total forces*/
out<<"<DataArray Name=\"Force\" type=\"Float64\" NumberOfComponents=
\"3\" format=\"ascii\">\n";

for (Particle *part: to_output)
out<<part->force<<"\n";

out<<"</DataArray>\n";

235

...enna\Background Pressure Sweeps\DELI_BPS_2\Output.cpp 10
388
389
390

391
392
393
394
395
396

397
398
399
400
401
402

403
404
405
406
407
408

409
410
411
412
413
414

415
416
417
418
419
420

421
422
423
424
425
426

427
428
429

/*Force ratios F_C/ F_E*/
out << "<DataArray Name=\"frat\" type=\"Float64\" NumberOfComponents=
\"3\" format=\"ascii\">\n";

for (Particle* part : to_output)
out << part->frat << "\n";

out << "</DataArray>\n";

/*r*/
out<<"<DataArray Name=\"r\" type=\"Float64\" NumberOfComponents=\"1\"
format=\"ascii\">\n";

for (Particle *part: to_output)
out<<part->r<<"\n";

out<<"</DataArray>\n";

/*charge*/
out<<"<DataArray Name=\"charge\" type=\"Float64\" NumberOfComponents=
\"1\" format=\"ascii\">\n";

for (Particle *part: to_output)
out<<part->charge<<"\n";

out<<"</DataArray>\n";

/*mass*/
out<<"<DataArray Name=\"mass\" type=\"Float64\" NumberOfComponents=\"1
\" format=\"ascii\">\n";

for (Particle *part: to_output)
out<<part->mass<<"\n";

out<<"</DataArray>\n";

/*radius f0r 180 degree self-scatter*/
out << "<DataArray Name=\"rss\" type=\"Float64\" NumberOfComponents=
\"1\" format=\"ascii\">\n";

for (Particle* part : to_output)
out << part->rss << "\n";

out << "</DataArray>\n";

/*nearest-neighbor separation*/
out << "<DataArray Name=\"rsep\" type=\"Float64\" NumberOfComponents=
\"1\" format=\"ascii\">\n";

for (Particle* part : to_output)
out << part->rsep << "\n";

out << "</DataArray>\n";

/*plume angle*/
out << "<DataArray Name=\"angle\" type=\"Float64\" NumberOfComponents=
\"1\" format=\"ascii\">\n";

for (Particle* part : to_output)
out << part->angle << "\n";

out << "</DataArray>\n";

236

...enna\Background Pressure Sweeps\DELI_BPS_2\Output.cpp 11
430
431
432
433
434
435
436
437
438
439
440

/*close out tags*/
out<<"</PointData>\n";

out<<"</Piece>\n";
out<<"</PolyData>\n";
out<<"</VTKFile>\n";

out.close();
}

237

...mckenna\Background Pressure Sweeps\DELI_BPS_2\Field.h 1
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

16

17

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

34
35
36
37
38
39
40
41
42
43
44
45

/*Field is a container for mesh node data division by volume*/
#ifndef _FIELD_H
#define _FIELD_H

#include <ostream>

template <typename T>
struct vec3 {

vec3 (const T u, const T v, const T w) : d{u,v,w} {}
vec3 (const T a[3]) : d{a[0],a[1],a[2]} {}
vec3 (): d{0,0,0} {}
T& operator[](int i) {return d[i];}
T operator[](int i) const {return d[i];}
vec3<T>& operator=(double s) {d[0]=s;d[1]=s;d[2]=s;return (*this);}
vec3<T>& operator+=(vec3<T> o) {d[0]+=o[0];d[1]+=o[1];d[2]+=o
[2];return(*this);}

vec3<T>& operator-=(vec3<T> o) {d[0]-=o[0];d[1]-=o[1];d[2]-=o
[2];return(*this);}

vec3<T> operator/(double s) {vec3<T>o; o[0]=d[0]/s;o[1]=d[1]/s;o[2]=d
[2]/s;return o;}

vec3<T> operator/=(double s) {d[0]/=s;d[1]/=s;d[2]/=s;return (*this);}

//dot product of two vectors
friend T dot(const vec3<T> &v1, const vec3<T> &v2) {

T s=0; for (int i=0;i<3;i++) s+=v1[i]*v2[i];
return s; }

//vector magnitude
friend T mag(const vec3<T> &v) {return sqrt(dot(v,v));}

//unit vector
friend vec3<T> unit(const vec3<T> &v) {return vec3(v)/mag(v);}

//cross product
friend vec3<T> cross(const vec3<T> &a, const vec3<T> &b) {

return {a[1]*b[2]-a[2]*b[1], a[2]*b[0]-a[0]*b[2], a[0]*b[1]-a[1]*b
[0]};

}

protected:
T d[3];

};

//vec3-vec3 operations
template<typename T> //addition of two vec3s
vec3<T> operator+(const vec3<T>& a, const vec3<T>& b) {

return vec3<T> (a[0]+b[0],a[1]+b[1],a[2]+b[2]); }
template<typename T> //subtraction of two vec3s
vec3<T> operator-(const vec3<T>& a, const vec3<T>& b) {

238

...mckenna\Background Pressure Sweeps\DELI_BPS_2\Field.h 2
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

return vec3<T> (a[0]-b[0],a[1]-b[1],a[2]-b[2]); }
template<typename T> //element-wise multiplication of two vec3s
vec3<T> operator*(const vec3<T>& a, const vec3<T>& b) {

return vec3<T> (a[0]*b[0],a[1]*b[1],a[2]*b[2]); }
template<typename T> //element wise division of two vec3s
vec3<T> operator/(const vec3<T>& a, const vec3<T>& b) {

return vec3<T> (a[0]/b[0],a[1]/b[1],a[2]/b[2]); }

//vec3 - scalar operations
template<typename T> //scalar multiplication
vec3<T> operator*(const vec3<T> &a, T s) {

return vec3<T>(a[0]*s, a[1]*s, a[2]*s);}
template<typename T> //scalar multiplication 2
vec3<T> operator*(T s,const vec3<T> &a) {

return vec3<T>(a[0]*s, a[1]*s, a[2]*s);}

//output
template<typename T> //ostream output
std::ostream& operator<<(std::ostream &out, vec3<T>& v) {

out<<v[0]<<" "<<v[1]<<" "<<v[2];
return out;

}

using double3 = vec3<double>;
using int3 = vec3<int>;

template <typename T>
class Field_
{
public:

/*constructor*/
Field_(int ni, int nj, int nk) :
ni{ni}, nj{nj}, nk{nk}
{

//allocate memory for a 3D array
data = new T**[ni];
for (int i=0;i<ni;i++)
{

data[i] = new T*[nj];
for (int j=0;j<nj;j++) data[i][j] = new T[nk];

}

clear();
}

//another constructor taking an int3
Field_(int3 nn) : Field_(nn[0],nn[1],nn[2]) {};

239

...mckenna\Background Pressure Sweeps\DELI_BPS_2\Field.h 3
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143

//copy constructor
Field_(const Field_ &other):
Field_{other.ni,other.nj,other.nk} {

for (int i=0;i<ni;i++)
for (int j=0;j<nj;j++)

for (int k=0;k<nk;k++)
data[i][j][k] = other(i,j,k);

}

//move constructor
Field_(Field_ &&other):

ni{other.ni},nj{other.nj},nk{other.nk} {
data = other.data; //steal the data
other.data = nullptr; //invalidate

}

//move assignment operator
Field_& operator = (Field_ &&f) {data=f.data;

f.data=nullptr; return *this;}

//destructor: release memory
~Field_() {

//don't do anything if data is not allocated (or was moved away)
if (data==nullptr) return;

for (int i=0;i<ni;i++)
{

for (int j=0;j<nj;j++)
delete[] data[i][j];

delete[] data[i];
}

delete[] data;
}

//overloaded operator [] to allow direct access to data
T** operator[] (int i) {return data[i];}

/*returns data[i][j][k] marked as const to signal no data change*/
T operator() (int i, int j, int k) const {return data[i][j][k];}

/*sets all values to some scalar*/
void operator =(double s) {

for (int i=0;i<ni;i++)
for (int j=0;j<nj;j++)
for (int k=0;k<nk;k++)
data[i][j][k] = s;

}

240

...mckenna\Background Pressure Sweeps\DELI_BPS_2\Field.h 4
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192

/*performs element by element division by another field*/
void operator / (const Field_ &other) {

for (int i=0;i<ni;i++)
for (int j=0;j<nj;j++)

for (int k=0;k<nk;k++) {
if (other.data[i][j][k]!=0)

data[i][j][k] /= other.data[i][j][k];
else

data[i][j][k] = 0;
}

}

/*increments values by data from another field*/
Field_& operator += (const Field_ &other) {

for (int i=0;i<ni;i++)
for (int j=0;j<nj;j++)

for (int k=0;k<nk;k++)
data[i][j][k]+=other(i,j,k);

return (*this);
}

/*performs element by element multiplication by a double*/
Field_& operator *= (double s) {

for (int i=0;i<ni;i++)
for (int j=0;j<nj;j++)

for (int k=0;k<nk;k++)
data[i][j][k]*=s;

return (*this);
}

/*performs element by element division by a double*/
Field_& operator /= (double s) {

for (int i = 0; i < ni; i++)
for (int j = 0; j < nj; j++)

for (int k = 0; k < nk; k++)
if (s != 0)

data[i][j][k] /= s;
else

data[i][j][k] = 0;
return (*this);

}

//multiplication operator, returns f*s
friend Field_<T> operator*(double s, const Field_<T>&f) {

Field_<T> r(f);
return r*=s;

}

241

...mckenna\Background Pressure Sweeps\DELI_BPS_2\Field.h 5
193
194
195
196
197
198
199
200
201
202
203
204

205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240

//multiplication of a field by a field of doubles
friend Field_<T> operator*(const Field_<T>&f1, const Field_<T>&f2) {

Field_<T> r(f1);
for (int i=0;i<f1.ni;i++)

for (int j=0;j<f1.nj;j++)
for (int k=0;k<f1.nk;k++)

r[i][j][k] = f1(i,j,k)*f2(i,j,k);
return r;

}

//division of a field by a field of doubles
friend Field_<T> operator/(const Field_<T>&f, const Field_<double>&d)
{

Field_<T> r(f);
for (int i=0;i<f.ni;i++)

for (int j=0;j<f.nj;j++)
for (int k=0;k<f.nk;k++)
{

if (d(i,j,k)!=0) //check for div by zero
r[i][j][k] = f(i,j,k)/d(i,j,k);

else
r[i][j][k] = 0;

}
return r;

}

/*returns index for node (i,j,k)*/
int U(int i, int j, int k) {return k*ni*nj+j*ni+i;}

/*sets all data to zero*/
void clear() {(*this)=0;}

/* scatters scalar value onto a field at logical coordinate lc*/
void scatter(double3 lc, T value)
{

int i = (int)lc[0];
double di = lc[0]-i;

int j = (int)lc[1];
double dj = lc[1]-j;

int k = (int)lc[2];
double dk = lc[2]-k;

data[i][j][k] += (T)value*(1-di)*(1-dj)*(1-dk);
data[i+1][j][k] += (T)value*(di)*(1-dj)*(1-dk);
data[i+1][j+1][k] += (T)value*(di)*(dj)*(1-dk);
data[i][j+1][k] += (T)value*(1-di)*(dj)*(1-dk);
data[i][j][k+1] += (T)value*(1-di)*(1-dj)*(dk);

242

...mckenna\Background Pressure Sweeps\DELI_BPS_2\Field.h 6
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276

277
278
279
280
281
282
283
284
285
286
287
288

data[i+1][j][k+1] += (T)value*(di)*(1-dj)*(dk);
data[i+1][j+1][k+1] += (T)value*(di)*(dj)*(dk);
data[i][j+1][k+1] += (T)value*(1-di)*(dj)*(dk);

}

/* gathers field value at logical coordinate lc*/
T gather(double3 lc)
{

int i = (int)lc[0];
double di = lc[0]-i;

int j = (int)lc[1];
double dj = lc[1]-j;

int k = (int)lc[2];
double dk = lc[2]-k;

/*gather electric field onto particle position*/
T val = data[i][j][k]*(1-di)*(1-dj)*(1-dk)+

data[i+1][j][k]*(di)*(1-dj)*(1-dk)+
data[i+1][j+1][k]*(di)*(dj)*(1-dk)+
data[i][j+1][k]*(1-di)*(dj)*(1-dk)+
data[i][j][k+1]*(1-di)*(1-dj)*(dk)+
data[i+1][j][k+1]*(di)*(1-dj)*(dk)+
data[i+1][j+1][k+1]*(di)*(dj)*(dk)+
data[i][j+1][k+1]*(1-di)*(dj)*(dk);

return val;
}

//incorporates new instantaneous values into a running average
void updateAverage(const Field_ &I) {

for (int i=0;i<ni;i++)
for (int j=0;j<nj;j++)

for (int k=0;k<nk;k++)
data[i][j][k] = (I(i,j,k)+ave_samples*data[i][j][k])/

(ave_samples+1);
++ave_samples; //increment number of samples

}

template<typename S>
friend std::ostream& operator<<(std::ostream &out, Field_<S> &f);
const int ni,nj,nk; //allocated dimensions

protected:
T ***data; /*data held by this field*/
int ave_samples = 0; //number of samples used for averaging

};

243

...mckenna\Background Pressure Sweeps\DELI_BPS_2\Field.h 7
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306

/*writes out data to a file stream*/
template<typename T>
std::ostream& operator<<(std::ostream &out, Field_<T> &f)
{

for (int k=0;k<f.nk;k++,out<<"\n")
for (int j=0;j<f.nj;j++)

for (int i=0;i<f.ni;i++) out<<f.data[i][j][k]<<" ";
return out;

}

//some typedefs
using Field = Field_<double>;
using FieldI = Field_<int>;
using Field3 = Field_<double3>;
using dvector = std::vector<double>;

#endif

244

REFERENCES

[1] Bowman A 2024 State-of-the-art of small spacecraft technology state of the art small
spacecraft technology report

[2] Kulu E 2024 Running total

[3] Thuppul A, Wright P L, Collins A L, Ziemer J K and Wirz R E 2020 Aerospace 7
ISSN 2226-4310 URL https://www.mdpi.com/2226-4310/7/8/108

[4] Rosell-Llompart J, Grifoll J and Loscertales I G 2018 Journal of Aerosol
Science 125 2–31 ISSN 0021-8502 from Electro-Hydro-Dynamics of liquids
for the production of charged droplets by Electro-Spray to applications
for tailored Materials (aerosols, powders, coatings) and Environment URL
https://www.sciencedirect.com/science/article/pii/S0021850217304366

[5] Zeleny J 1917 Physical Review 10 1–6

[6] Wright P L, Thuppul A and Wirz R E 2018 Life-limiting emission modes for electro-
spray thrusters Joint Propulsion Conference, AIAA pp AIAA 2018–4726

[7] Lisa pathfinder overview accessed May 2024

[8] Lisa-pathfinder accessed May 2024

[9] Gañán-Calvo A, Lasheras J, Dávila J and Barrero A 1994 Jour-
nal of Aerosol Science 25 1121–1142 ISSN 0021-8502 URL
https://www.sciencedirect.com/science/article/pii/0021850294902054

[10] Wilhelm O, Mädler L and Pratsinis S 2003 Jour-
nal of Aerosol Science 34 815–836 ISSN 0021-8502 URL
https://www.sciencedirect.com/science/article/pii/S002185020300034X

[11] Grifoll J and Rosell-Llompart J 2012 Journal of Aerosol Science 47 78–93 ISSN 0021-
8502 URL https://www.sciencedirect.com/science/article/pii/S0021850212000109

[12] Thuppul A, Wright P L and Wirz R E 2018 Lifetime considerations and estimation
for electrospray thrusters Joint Propulsion Conference, AIAA pp AIAA 2018–4652

[13] Gamero-Castaño M and Galobardes-Esteban M 2022 Journal of Ap-
plied Physics 131 013307 (Preprint https://doi.org/10.1063/5.0073380) URL
https://doi.org/10.1063/5.0073380

[14] Petro E M, Gallud X, Hampl S K, Schroeder M, Geiger C and Lozano P C 2022
Journal of Applied Physics 131 193301 (Preprint https://doi.org/10.1063/5.0065615)
URL https://doi.org/10.1063/5.0065615

245

[15] Ninomiya S, Sakai Y, Chen L C and Hiraoka K 2014 Journal of Surface Analysis 20
171–176

[16] Loth E 2008 AIAA Journal 46 2219–2228 (Preprint https://doi.org/10.2514/1.28943)
URL https://doi.org/10.2514/1.28943

[17] Stokes G G 2009 On the Effect of the Internal Friction of Fluids on the Motion of
Pendulums (Cambridge Library Collection - Mathematics vol 3) (Cambridge University
Press)

[18] Moshfegh A, Shams M, Ahmadi G and Ebrahimi R 2010
Journal of Aerosol Science 41 384–400 ISSN 0021-8502 URL
https://www.sciencedirect.com/science/article/pii/S0021850210000200

[19] Niazmand H and Anbarsooz M 2012 Journal of Mechanical Science and Technology 26
2741–2749

[20] Tao S, Zhang H and Guo Z 2017 Journal of Aerosol Science 103 105–116 ISSN 0021-
8502 URL https://www.sciencedirect.com/science/article/pii/S0021850216301884

[21] Tsao H K, Sheng Y J and Chen S B 2002 Physical review. E, Statistical, nonlinear,
and soft matter physics

[22] Braun H 2008 Emittance diagnostics

[23] Thuppul A, Collins A L, Wright P L, Uchizono N M and Wirz R E 2021 Jour-
nal of Applied Physics 130 103301 (Preprint https://doi.org/10.1063/5.0056761) URL
https://doi.org/10.1063/5.0056761

[24] Miller S, Ulibarri-Sanchez J, Prince B and Bemish R 2021 Journal of Fluid Mechanics
928 A12

[25] Fenn J B, Matthias M, Kai M C, Fu W S and Whitehouse C M 1989 Science 246 64–71

[26] Arumugham-Achari A K, Grifoll J and Rosell-Llompart J 2014 Numerical simulations
of evaporating electrosprays with coulomb explosions Aerosol Technologies

[27] Gamero-Castaño M and de la Mora J F 2002 Physical Review Letters 89 147602

[28] FRS L R 1882 The London, Edinburgh, and Dublin Philosophical Magazine and Journal
of Science 14 184–186 (Preprint https://doi.org/10.1080/14786448208628425) URL
https://doi.org/10.1080/14786448208628425

[29] Taylor G I 1964 Proceedings of the Royal Society of London. Series A. Mathematical
and Physical Sciences 280 383–397

246

[30] Che F, Lin L, Zhang J, He Z, Uchiyama K and Lin J M 2016 Analytical Chemistry 88
4354–4360 pMID: 27015013 (Preprint https://doi.org/10.1021/acs.analchem.5b04749)
URL https://doi.org/10.1021/acs.analchem.5b04749

[31] LibreTexts 2021 Applications of electrostatics URL

[32] qun Huang C, Jian G, Delisio J B, Wang H and Zachariah M R 2015 Advanced Engi-
neering Materials 17

[33] Taylor A P and Velásquez-García L F 2015 Nanotechnology 26 505301

[34] Steipel R T, Gallovic M D, Batty C J, Bachelder E M and Ainslie K M 2019 Materials
Science & Engineering: C, Materials for biological applications 105 1110070

[35] Anderson E, Carlucci A P, Risi A and Kyritsis D 2007 International Journal of Vehicle
Design 45 61–79

[36] Law S E 2001 Journal of Electrostatics 51-52 25–42 ISSN 0304-3886
electrostatics 2001: 9th International Conference on Electrostatics URL
https://www.sciencedirect.com/science/article/pii/S0304388601000407

[37] Jason Deveau S 2018 Electrostatic spraying in agriculture URL
https://sprayers101.com/electrostatic/

[38] of America S B S 2021 Electrostatic spraying
URL https://www.spectrumbsa.com/service/electrostatic-
spraying/?ref=semgclid=CjwKCAjwruSHBhAtEiwAqCppl0BoQlpTOlY 4H7LsrY l1fdOzToRLZ3khshwKHmkFCNXn4zJWf4FmxoC6A8QAvDBwE

[39] Jaworek A, Balachandran W, Lackowski M, Kulon J and Krupa
A 2006 Journal of Electrostatics 64 194–202 ISSN 0304-3886 URL
https://www.sciencedirect.com/science/article/pii/S0304388605001580

[40] Cadnum J L, Jencson A L, Livingston S H, Li D F, Redmond S N, Pearlmutter B,
Wilson B M and Donskey C J 2020 American Journal of Infection Control 951–954

[41] Hanlon J 2020 Fire department awarded grant for electrostatic sprayers URL
https://oxfordleader.com/fire-department-awarded-grant-for-electrostatic-sprayers/

[42] Kinsey J and Pendleton F J 1985 Evaluation of charged fog for smoke clearing ship-
board fires defense Technical Information Center, Accession number: ADA165551

[43] Okuda H and Kelly A J 1996 Physics of Plasmas 2191

[44] Ziemer J, Marrese-Reading C, Dunn C, Romero-Wolf A, Cutler C, Javidnia S, Le T,
Vi I, Franklin G and Barela P 2017 Colloid microthruster flight performance results
from space technology 7 disturbance reduction system The 35th International Electric
Propulsion Conference p 20170010216

247

[45] Collins A L, Wright P L, Uchizono N M and Wirz R E 2022 Journal of Electric
Propulsion 1 32 URL https://doi.org/10.1007/s44205-022-00031-w

[46] Breddan M J and Wirz R E 2023 Journal of Aerosol Science 167 106079 ISSN 0021-
8502 URL https://www.sciencedirect.com/science/article/pii/S002185022200115X

[47] Tang H B, Qin C J and Liu Y 2011 Journal of Aerosol Science 42 114–126 ISSN 0021-
8502 URL https://www.sciencedirect.com/science/article/pii/S0021850210002387

[48] no M G 2008 Journal of Fluid Mechanics 604 339–368

[49] Deng W, Klemic J F, Li X, Reed M A and Gomez A 2006
Journal of Aerosol Science 37 696–714 ISSN 0021-8502 URL
https://www.sciencedirect.com/science/article/pii/S0021850205000959

[50] Yang W, Lojewski B, Wei Y and Deng W 2012 Jour-
nal of Aerosol Science 46 20–33 ISSN 0021-8502 URL
https://www.sciencedirect.com/science/article/pii/S0021850211001832

[51] Oh H, Kim K and Kim S 2008 Journal of Aerosol Science 801–813

[52] Jung J H, Oh H and Kim S 2010 Powder Technology 439–444

[53] Grifoll J and Rosell-Llompart J 2014 Journal of Electrostatics 72 357–364 ISSN 0304-
3886 URL https://www.sciencedirect.com/science/article/pii/S0304388614000564

[54] Arumugham-Achari A K, Grifoll J and Rosell-Llompart J 2015 Aerosol Science
and Technology 49 436–448 (Preprint https://doi.org/10.1080/02786826.2015.1039639)
URL https://doi.org/10.1080/02786826.2015.1039639

[55] Grifoll J, Arumugham-Achari A K and Rosell-Llompart J 2011 Numerical simula-
tion of electrospray droplets dynamics V Reunion Esponola de Ciecia y Tecnologia de
Aerosoles (RECTA)

[56] Higuera F J 2013 Journal of Fluid Mechanics 734 363–386

[57] Cui C and Wang J 2020 Simulations of pure ionic electrospray thruster plume neutral-
ization AIAA Propulsion and Energy Forum

[58] Rietveld I, Kobayashi K, Yamada H and Matsushige K 2006 Journal of Physical Chem-
istry B 23351–23364

[59] Hartman R, Borra J P, Brunner D, Marijnissen J and Scarlett
B 1999 Journal of Electrostatics 47 143–170 ISSN 0304-3886 URL
https://www.sciencedirect.com/science/article/pii/S0304388699000340

248

[60] Huh H and Wirz R E 2022 Physics of Fluids 34 112017 (Preprint
https://doi.org/10.1063/5.0120737) URL https://doi.org/10.1063/5.0120737

[61] Huh H 2023 Cone-Jet and Emission Behavior for Electrospray Thrusters via Compu-
tational Analysis Ph.D. thesis University of California, Los Angeles

[62] Enomoto T, Parmar S M, Yamada R, Wirz R E and Takao Y 2022 Journal of Electric
Propulsion 1 13

[63] Parmar S M, Collins A L and Wirz R E 2022 Electrospray plume modeling for rapid
life and performance analysis AIAA Science and Technology Forum and Exposition pp
AIAA 2022–1357

[64] Parmar S M, Collins A L and Wirz R E 2022 A bayesian data-driven model for quanti-
fying electrospray lifetime 7th International Electric Propulsion Conference pp IEPC–
2022–230

[65] Uchizono N M, Collins A L, Marrese-Reading C, Arestie S M, Ziemer
J K and Wirz R E 2021 Journal of Applied Physics 130 143301 (Preprint
https://doi.org/10.1063/5.0063476) URL https://doi.org/10.1063/5.0063476

[66] Uchizono N 2023 Secondary Species Emission and Behavior for Electrospray Thrusters
Ph.D. thesis University of California, Los Angeles

[67] Magnusson J M, Collins A L and Wirz R E 2020 Aerospace 7 ISSN 2226-4310 URL
https://www.mdpi.com/2226-4310/7/11/153

[68] Davis M J, Collins A L and Wirz R E 2019 Electrospray plume evolution via discrete
simulation The 36th International Electric Propulsion Conference pp IEPC–2019–590

[69] FRS L R 1879 Proceedings of the London Mathematical Society s1-11 57–72 (Preprint
https://londmathsoc.onlinelibrary.wiley.com/doi/pdf/10.1112/plms/s1-11.1.57) URL
https://londmathsoc.onlinelibrary.wiley.com/doi/abs/10.1112/plms/s1-11.1.57

[70] Rosell-Llompart J and de la Mora J F 1994 Journal of Aerosol Science 25 1093–1119

[71] Cloupeau M and Prunet-Foch B 1989 Journal of Electrostatics 22 135–159 ISSN 0304-
3886 URL https://www.sciencedirect.com/science/article/pii/0304388689900818

[72] Tang K and Gomez A 1994 Physics of Fluids 6 2317–2332 (Preprint
https://doi.org/10.1063/1.868182) URL https://doi.org/10.1063/1.868182

[73] no M G C and Cisquella-Serra A 2021 Phys. Rev. Fluids 6(1) 013701 URL
https://link.aps.org/doi/10.1103/PhysRevFluids.6.013701

[74] Miller S, Ulibarri-Sanchez J, Prince B and Bemish R 2021 Journal of Fluid Mechanics
928 A12

249

[75] Gamero-Castaño M 2002 Phys. Rev. Lett. 89(14) 147602 URL
https://link.aps.org/doi/10.1103/PhysRevLett.89.147602

[76] Feng Z G 2010 Journal of Dispersion Science and Technology 31
968–974 (Preprint https://doi.org/10.1080/01932690903224110) URL
https://doi.org/10.1080/01932690903224110

[77] Tao S, Zhang H and Guo Z 2017 Journal of Aerosol Science 103 105–116 ISSN 0021-
8502 URL https://www.sciencedirect.com/science/article/pii/S0021850216301884

[78] Singh N and Schwartzentruber T E 2016 Heat flux and drag correlations for high
speed flight at any knudsen number 46th AIAA Thermophysics Conference pp
AIAA 2016–3841 (Preprint https://arc.aiaa.org/doi/pdf/10.2514/6.2016-3841) URL
https://arc.aiaa.org/doi/abs/10.2514/6.2016-3841

[79] Banerjee S, Levy M, Davis M and Wilkerson B 2017 IEEE Transactions on Industry
Applications 53 2455–2460

[80] Gamero-Castaño M and de la Mora J F 2000 The Journal of Chemi-
cal Physics 113 815–832 (Preprint https://doi.org/10.1063/1.481857) URL
https://doi.org/10.1063/1.481857

[81] Gomez A and Tang K 1994 Physics of Fluids 6 404–414 (Preprint
https://doi.org/10.1063/1.868037) URL https://doi.org/10.1063/1.868037

[82] Villanueva-Bonay E and Gamero-Castaño M 2019 AIP Advances 9 085204 (Preprint
https://doi.org/10.1063/1.5100964) URL https://doi.org/10.1063/1.5100964

[83] Mehta N A and Levin D A 2019 Phys. Rev. E 99(3) 033302 URL
https://link.aps.org/doi/10.1103/PhysRevE.99.033302

[84] Swope W C, Andersen H C, Berens P H and Wilson K R 1982 The Journal
of Chemical Physics 76 637–649 (Preprint https://doi.org/10.1063/1.442716) URL
https://doi.org/10.1063/1.442716

[85] Uchizono N M, Collins A L, Thuppul A, Wright P L, Eckhardt D Q, Ziemer J
and Wirz R E 2020 Aerospace 7 ISSN 2226-4310 URL https://www.mdpi.com/2226-
4310/7/10/141

[86] Clift R, Grace J and Weber M E 1978 Bubbles, Drops and Particles Dover Civil and
Mechanical Engineering Series (Dover Publications, Incorporated) ISBN 048678892X,
9780486788920

[87] Wang Y, Chen Z, Shima K, Zhong D, Yang L, Wang Q, Jiang R, Dong J, Lei Y, Li X
and Cao L 2022 Journal of Mass Spectrometry 57 e4831

250

[88] Sorensen A H 1986 Conf. Proc. C 860915 135 – 152

[89] Sørensen A 1989 URL https://cds.cern.ch/record/367259

[90] Wirz R E, Collins A L, Chen Z, Huerta C E, Li G Z, Samples S A, Thuppul A, Wright
P L, Uchizono N M, Huh H, Davis M J and Ottaviano A 2019 Electric propulsion
activities at the ucla plasma & space propulsion laboratory The 36th International
Electric Propulsion Conference pp IEPC–2019–547

[91] Breddan M J and Wirz R E 2024 Engineering Applica-
tions of Artificial Intelligence 133 108095 ISSN 0952-1976 URL
https://www.sciencedirect.com/science/article/pii/S0952197624002537

[92] Cretel C M and Wirz R E 2024 Ion thruster grid life and performance prediction via
reduced order modeling 38th International Electric Propulsion Conference pp IEPC–
2024–758

[93] Ehsan Taghizadeh Richard A Obenchain L K F and Wirz R 2024 Electric propulsion
facility optimization via reduced order modeling 38th International Electric Propulsion
Conference pp IEPC–2024–558

[94] Feng Z G, Michaelides E E and Mao S 2012 Fluid Dynamics Research 44 025502

[95] BAILEY A B and HIATT J 1972 AIAA Journal 10 1436–1440 (Preprint
https://doi.org/10.2514/3.50387) URL https://doi.org/10.2514/3.50387

[96] Abraham F F 1970 The Physics of Fluids 13 2194–2195
(Preprint https://aip.scitation.org/doi/pdf/10.1063/1.1693218) URL
https://aip.scitation.org/doi/abs/10.1063/1.1693218

[97] Singh N, Kroells M, Li C, Ching E, Ihme M, Hogan C J and Schwartzentruber T E
2022 AIAA Journal 60 587–597 (Preprint https://doi.org/10.2514/1.J060648) URL
https://doi.org/10.2514/1.J060648

[98] no M G C and Hruby V 2002 Journal of Fluid Mechanics 459 245–276

[99] Jaworek A, Sobczyk A, Czech T and Krupa A 2014 Jour-
nal of Electrostatics 72 166–178 ISSN 0304-3886 URL
https://www.sciencedirect.com/science/article/pii/S0304388614000114

[100] Kidd P W and Shelton H 1973 Life test (4350 hours) of an advanced
colloid thruster module AIAA 10th Electric Propulsion Conference pp AA
Paper 73–1078 (Preprint https://arc.aiaa.org/doi/pdf/10.2514/6.1973-1078) URL
https://arc.aiaa.org/doi/abs/10.2514/6.1973-1078

[101] Prince B D, Fritz B A and Chiu Y H 2012 Ionic Liquids in Electrospray Propulsion
Systems (American Chemical Society) chap 2, pp 27–49 ISBN 9780841227637

251

[102] Liu V, Pang S and Jew H 1965 Physics of Fluids 8 788–796

[103] Singh N and Schwartzentruber T E 2016 Heat flux and drag correlations for
high speed flight at any knudsen number 46th AIAA Thermophysics Con-
ference p 55414 (Preprint https://arc.aiaa.org/doi/pdf/10.2514/6.2016-3841) URL
https://arc.aiaa.org/doi/abs/10.2514/6.2016-3841

[104] Rapp B E 2017 Chapter 9 - fluids Microfluidics: Modelling, Me-
chanics and Mathematics Micro and Nano Technologies ed Rapp
B E (Oxford: Elsevier) pp 243–263 ISBN 978-1-4557-3141-1 URL
https://www.sciencedirect.com/science/article/pii/B9781455731411500095

[105] Karniadakis G, Beskok A and NR A 2005 MicroFlows and Nanoflows - Fundamentals
and Simulation (Springer Science+Business Media)

[106] Shaoxian B and Shizhu W 2019 Chapter 3 - isothermal gas lubrica-
tion Gas Thermohydrodynamic Lubrication and Seals ed Shaoxian B
and Shizhu W (Academic Press) pp 37–71 ISBN 978-0-12-816716-8 URL
https://www.sciencedirect.com/science/article/pii/B9780128167168000036

[107] Duan Z and Ma H 2020 Chapter four - pressure drop and heat transfer
in the entrance region of microchannels Advances in Heat Transfer vol 52
ed Abraham J, Gorman J and Minkowycz W (Elsevier) pp 249–333 URL
https://www.sciencedirect.com/science/article/pii/S0065271720300022

[108] Breddan M J D, Curry D R, Sharma M R, Richmond M O, Collins A L and Wirz
R E 2022 Electrospray plume modeling: Study on drag influence AIAA Science and
Technology Forum and Exposition pp AIAA–2022–1358

[109] Ouyang H, Larriba-Andaluz C, Oberreit D R and Hogan C J J 2013 Journal of the
American Society for Mass Spectrometry 24 1833–1847

[110] Larriba C and Hogan C J J 2013 The Journal of Physical Chemistry A 117 3887–3901

[111] Fernández-García J and Fernández de la Mora J 2013 Journal of the American Society
for Mass Spectrometry 24 1872–1889

[112] Peach K, Wilson P and Jones B 2011 The British Journal of Radiology 84 Spec No 1
S4–S10

[113] Beacham J, Burrage C, Curtin D, Roeck A D, Evans J, Feng J L, Gatto C, Gninenko
S, Hartin A, Irastorza I, Jaeckel J, Jungmann K, Kirch K, Kling F, Knapen S, Lamont
M, Lanfranchi G, Lazzeroni C, Lindner A, Martinez-Vidal1 F, Moulson M, Neri N,
Papucci M, Pedraza I, Petridis K, Pospelov M, Rozanov A, Ruoso G, Schuster P,
Semertzidis Y, Spadaro T, Vallée C and Wilkinson G 2019 Journal of Physics G:
Nuclear and Particle Physics 47 010501

252

[114] Dolovich M B and Dhand R 2010 Lancet 377 1032–1045

[115] Tang K and Gomez A 1994 Journal of Aerosol Science 25 1237–1249 ISSN 0021-8502
URL https://www.sciencedirect.com/science/article/pii/0021850294902127

[116] Narayan K and Subramaniam S 2015 Nature Methods 12 1021–1031

[117] Ali M, Hung W and Yongqi F 2010 International Journal of Precisions Engineering
and Manufacturing I 11 157–170

[118] Konopliv M F, Chaplin V H, Johnson L K and Wirz R E 2023 Plasma Sources Science
and Technology 32 015009 URL https://dx.doi.org/10.1088/1361-6595/acb00b

[119] Walker M L R, Victor A L, Hofer R R and Gallimore A D 2005 Journal of Propulsion
and Power 21 408–415 URL https://doi.org/10.2514/1.7713

[120] Boyd I D 2001 Journal of Spacecraft and Rockets 38 381–387

[121] Jacobson D, John J, Manzella D and Peterson P 2012 An overview of
hall thruster development at nasa’s john h. glenn research center 41st
AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit pp
2005–4242 (Preprint https://arc.aiaa.org/doi/pdf/10.2514/6.2005-4242) URL
https://arc.aiaa.org/doi/abs/10.2514/6.2005-4242

[122] Collins A L, Uchizono N M, Huh H and Wirz R E 2022 Three-dimensional microscopy
and analysis of the emission cone meniscus for electrospray thrusters 37th International
Electric Propulsion Conference pp IEPC–2022–228

[123] Yang S, Wang Z, Kong Q and Li B 2022 International Jour-
nal of Multiphase Flow 146 103851 ISSN 0301-9322 URL
https://www.sciencedirect.com/science/article/pii/S0301932221002731

[124] M A Gallis D J R and Torczynski J R 2004 Aerosol Science and Technology 38 692–706

[125] Magnani M and Gamero-Castaño M 2024 Journal of Fluid Mechanics

[126] Tang K and Smith R D 2001 Journal of the American Society for Mass Spectrometry
343–347

[127] Taflin D C, Ward T L and Davis E J 1989 Langmuir 376–384

[128] Davis E and Bridges A M 1994 Journal of Aerosol Science 1179–1199

[129] de la Mora J F 1996 Journal of Colloid and Interface Science 209–218

[130] Crandall P and Wirz R E 2024 Miniature rf gridded ion thruster for air-breathing ep
38th International Electric Propulsion Conference, Toulouse, France, IEPC-2024-259.

253

[131] Konopliv M F, Johnson L K and Wirz R E 2024 Cathode species contributions to
hall thruster plume dynamics 38th International Electric Propulsion Conference pp
IEPC–2024–488

[132] Cowan R W, Biswas S, Franz L K, Cretel C M, Obenchain R A and Wirz R E 2024
Hall thruster krypton sputtering effects on vacuum facility materials 38th International
Electric Propulsion Conference pp IEPC–2024–549

[133] Biswas S, Obenchain R A, Cowan R W and Wirz R E 2024 Review of pmi data for het-
induced erosion of facility surfaces 38th International Electric Propulsion Conference
pp IEPC–2024–532

[134] Wenninger J 2015 Comptes Rendus Physique 16 347–355 ISSN 1631-0705 highlights of
the LHC run 1 / Résultats marquants de la première période d’exploitation du GCH
URL https://www.sciencedirect.com/science/article/pii/S1631070515000560

[135] Franz L and Wirz R E 2024 Xe-c scattering, implantation, and sputtering analysis for
ep systems 38th International Electric Propulsion Conference pp IEPC–2024–552

[136] Breddan M J D and Wirz R E 2024 Coulomb dominance in electrospray plume expan-
sion 38th International Electric Propulsion Conference pp IEPC–2024–514

[137] Wang F, Elbadawi M, Tsilova S L, Gaisford S, Basit A W and
Parhizkar M 2022 Materials & Design 219 110735 ISSN 0264-1275 URL
https://www.sciencedirect.com/science/article/pii/S0264127522003574

[138] Iwano T, Yoshimura K, Inoue S, Odate T, Ogata K, Funatsu S, Tanihata H, Kondo T,
Ichikawa D and Takeda S 2020 British Journal of Surgery 107 632–635 ISSN 0007-1323

[139] Margulis K, Zhou Z, Fang Q, Sievers R E, Lee R J and
Zare R N 2018 Analytical Chemistry 90 12198–12206 pMID:
30188683 (Preprint https://doi.org/10.1021/acs.analchem.8b03410) URL
https://doi.org/10.1021/acs.analchem.8b03410

[140] Chung W Y, Correa E, Yoshimura K, Chang M C, Dennison A, Takeda S and Chang
Y T 2020 American Journal of Translational Research 12 171–179 pMID: 32051746

[141] Goodacre R, York E V, Heald J K and Scott I M 2003 Phy-
tochemistry 62 859–863 ISSN 0031-9422 plant Metabolomics URL
https://www.sciencedirect.com/science/article/pii/S0031942202007185

[142] Zhou Z and Zare R N 2017 Analytical Chemistry 89 1369–1372 pMID:
28194988 (Preprint https://doi.org/10.1021/acs.analchem.6b04498) URL
https://doi.org/10.1021/acs.analchem.6b04498

254

[143] Mayhew A W, Topping D O and Hamilton J F 2020 ACS Omega 5 9510–
9516 pMID: 32363303 (Preprint https://doi.org/10.1021/acsomega.0c00732) URL
https://doi.org/10.1021/acsomega.0c00732

[144] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M,
Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher
M, Perrot M and Édouard Duchesnay 2011 Journal of Machine Learning Research 12
2825–2830 ISSN 1532-4435

[145] Chen T and Guestrin C 2016 Xgboost: A scalable tree boosting system Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining KDD ’16 (New York, NY, USA: Association for Computing Machinery)
p 785–794 ISBN 9781450342322 URL https://doi.org/10.1145/2939672.2939785

[146] Ke G, Meng Q, Finley T, Wang T, Chen W, Ma W, Ye Q and Liu T Y 2017
Lightgbm: A highly efficient gradient boosting decision tree Advances in Neural
Information Processing Systems vol 30 ed Guyon I, Luxburg U V, Bengio S, Wal-
lach H, Fergus R, Vishwanathan S and Garnett R (Curran Associates, Inc.) URL
https://proceedings.neurips.cc/paper/2017/file/6449f44a102fde848669bdd9eb6b76fa-
Paper.pdf

[147] Thuppul A, Collins A L, Wright P L, Uchizono N M and Wirz R E 2019 Spatially-
resolved mass flux and current measurements of electrospray plumes The 36th Inter-
national Electric Propulsion Conference pp IEPC–2019–571

[148] Yang W, Duan H, Li C and Deng W 2014 Phys. Rev. Lett. 112(5) 054501 URL
https://link.aps.org/doi/10.1103/PhysRevLett.112.054501

[149] Ryan C, Smith K and Stark J 2012 Journal of Aerosol Science 51 35–48 ISSN 0021-8502
URL https://www.sciencedirect.com/science/article/pii/S0021850212000651

[150] Duby M H, Deng W, Kim K, Gomez T and Gomez A 2006
Journal of Aerosol Science 37 306–322 ISSN 0021-8502 URL
https://www.sciencedirect.com/science/article/pii/S0021850205001175

[151] Hartman R, Brunner D, Camelot D, Marijnissen J and Scarlett B
2000 Journal of Aerosol Science 31 65–95 ISSN 0021-8502 URL
https://www.sciencedirect.com/science/article/pii/S0021850299000348

[152] Dastourani H, Jahannama M R and Eslami-Majd A 2018 InternationalJournal of Heat
and Fluid Flowing 70 315–335

[153] Gamero-Castaño M and Magnani M 2019 Journal of Fluid Mechanics 859 247–267

[154] Huh H and Wirz R E 2019 Numerical simulation of electrospray thruster extraction
The 36th International Electric Propulsion Conference pp IEPC–2019–565

255

[155] de la Mora J F and Loscertales I G 1994 Journal of Fluid Mechanics 260 155–184

[156] Gañán-Calvo A, Dávila J and Barrero A 1997 Jour-
nal of Aerosol Science 28 249–275 ISSN 0021-8502 URL
https://www.sciencedirect.com/science/article/pii/S0021850296004338

[157] Gañan-Calvo A M 2004 Journal of Fluid Mechanics 507 203–212a

[158] Gomez A 1993 The electrospray: Fundamentals and applications Experimen-
tal Heat Transfer, Fluid Mechanics and Thermodynamics 1993 Elsevier Se-
ries in Thermal and Fluid Sciences ed Kelleher M, Sreenivasan K, Shah R
and Joshi Y (Amsterdam: Elsevier) pp 270–282 ISBN 978-0-444-81619-1 URL
https://www.sciencedirect.com/science/article/pii/B9780444816191500289

[159] Abdar M, Pourpanah F, Hussain S, Rezazadegan D, Liu L, Ghavamzadeh
M, Fieguth P, Cao X, Khosravi A, Acharya U R, Makarenkov V and
Nahavandi S 2021 Information Fusion 76 243–297 ISSN 1566-2535 URL
https://www.sciencedirect.com/science/article/pii/S1566253521001081

[160] Camporeale E, Chu X, Agapitov O V and Bortnik J 2019 Space Weather 17 455–475
(Preprint https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2018SW002026)
URL https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018SW002026

[161] Psaros A F, Meng X, Zou Z, Guo L and Karniadakis G E 2023
Journal of Computational Physics 477 111902 ISSN 0021-9991 URL
https://www.sciencedirect.com/science/article/pii/S0021999122009652

[162] Demmons N, Hruby V, Spence D, Roy T, Ehrbar E, Zwahlen J, Martin R,
Ziemer J and Randolph T 2008 St7-drs mission colloid thruster development 44th
AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit p 4823

[163] Roudnev V A, Merts S P, Nemnyugin S A and Stepanova M M 2020 Journal of Physics:
Conference Series 1479 012043 URL https://iopscience.iop.org/article/10.1088/1742-
6596/1479/1/012043

[164] Abidi H, Boveia A, Cavaliere V, Furletov D, Gekow A, Kalderon C W and Yoo S 2022
Charged particle tracking with machine learning on fpgas (Preprint 2212.02348)

[165] Våge L H 2022 Reinforcement learning for charged-particle tracking Connecting the
Dots Workshop (CTD) pp PROC–CTD2022–37

[166] Newby J M, Schaefer A M, Lee P T, Forest M G and Lai S K 2018 Proceedings of the
National Academy of Sciences of the United States of America (PNAS) 115 9026–9031
URL https://www.pnas.org/doi/full/10.1073/pnas.1804420115

[167] Barnes J and Hut P 1986 Nature 446–449

256

[168] Carrier J, Greengard L and Rokhlin V 1988 SIAM Journal on Scientific and Statistical
Computing 9 669–686

[169] Keller S, Cavelan A, Cabezon R, Mayer L and Ciorba F 2023 Cornerstone: Oc-
tree construction algorithms for scalable particle simulations Proceedings of the
Platform for Advanced Scientific Computing Conference PASC ’23 (ACM) URL
http://dx.doi.org/10.1145/3592979.3593417

[170] Narayanan R K and Madduri K 2017 Parallel particle-in-cell performance optimiza-
tion: A case study of electrospray simulation 2017 IEEE International Parallel and
Distributed Processing Symposium Workshops (IPDPSW) pp 1158–1167

[171] Brieda L 2020 Plasma Simulations by Example (CRC Press) chap 4

257

