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A Near-Optimal Algorithm for a Locality-Maximizing
Placement Problem

Fan Chung, Ronald Graham, Ranjita Bhagwan, Stefan Savage, and Geoffrey M. Voelker

Department of Computer Science and Engineering
University of California, San Diego
{fan, rgraham, rbhagwan, savage, voelker}@cs.ucsd.edu

Abstract. The effectiveness of a distributed system hinges on the manner in which tasks
and data are assigned to the underlying system resources. Moreover, today’s large-scale dis-
tributed systems must accommodate heterogeneity in both the offered load and in the makeup
of the available storage and compute capacity. The ideal resource assignment must balance
the utilization of the underlying system against the loss of locality incurred when individ-
ual tasks or data objects are fragmented among several servers. In this paper we describe this
locality-mazimizing placement problem and show that an optimal solution is NP-hard. We then
describe a polynomial-time algorithm that generates a placement within an additive constant
of two from optimal.

1 Introduction

In recent years, the field of global-scale distributed systems has seen tremendous growth.
For example, peer-to-peer storage systems such as OceanStore [KBCT00], CFS [DKK™*01],
PAST [RDO01] and IVY [MMGCO02] provide persistent data access using globally distributed
and highly heterogeneous storage resources. Similarly, distributed computing efforts such as
the Computational Grid [FK99], SETI@home [Set], Entropia [Ent] and BOINC [Boi] envi-
sion the use of a widely distributed computing platform for a variety of resource-intensive
applications.

In these systems, tasks and data objects are often too large to be assigned to a single
node and the system must fragment them among several servers. As a result, the system
must balance the utilization of the underlying system resources against the loss of locality
incurred when individual tasks or data objects are fragmented. We call this trade-off of
system utilization and resource locality the locality-mazimizing placement problem.

For example, many peer-to-peer storage systems manage very large objects such as
MPEG-encoded movies. However, individual hosts taking part in such systems may not be
willing or able to store such large files in their entirety. Therefore, the system must partition
a movie into separate fragments, each stored on a separate host. However, to recover the
movie in its entirety, the hosts storing all of the fragments need to be available at the same
time. As a result, the availability of a movie decreases as the number of fragments used to



store it increases. To maximize availability, the system must minimize the number of times
files are fragmented, while still assigning all objects to servers.

Distributed computing applications also encounter a similar problem. For many appli-
cations it is important to schedule an application’s tasks to meet a given timing constraint.
However, one or more individual tasks may require more processing power than any sin-
gle hosts can provide. As a result, tasks must be split across hosts to meet the response
time constraint. However, splitting incurs its own costs, such as communication between
the different task fragments, replication of data required for the task to execute across all
hosts, and data aggregation once the task completes. Therefore the system must select a
schedule that makes the minimum necessary number of splits while still scheduling all tasks
successfully.

These problems, instances of a locality-maximizing placement problem, represent a spe-
cific kind of bin-packing problem that can be stated as follows. Given are a fixed set of
bins of varying sizes as well as items of varying sizes that need to be placed into the bins.
The sizes of the items may be too large to fit into individual bins, and so they may need
to be split into fragments to fit into the bins. However, fragmenting of items causes a “loss
of locality” for that item. In the peer-to-peer storage problem mentioned above, the loss of
locality decreases file availability. In the distributed computing problem, it leads to higher
communication and storage overheads. In general, the more fragments for an item, the worse
its locality.

One potential solution to the problem is to find a packing that maximizes the average (or
total) locality of the items, i.e., minimizes the average (or total) number of item fragments.
However, minimizing the average does not bound the worst-case number of fragments of
individual items, and so some items could have a large loss in locality due to extensive
fragmentation.

A more desirable solution of the problem is a packing that maximizes the minimum
locality over all items, or in other words, minimizes the maximum number of fragments
made of any item. This ensures a minimum locality for all the items. In the first example,
the system would fragment and store files such that it maximizes the minimum file avail-
ability. In the second example, the system would minimize the maximum communication
and storage overhead.

In this paper, we show that determining the optimal solution to the locality-maximization
placement problem is NP-hard. We then describe a polynomial-time algorithm that gen-
erates a placement within an additive constant of two from optimal. We also show ex-
perimental results obtained from applying our algorithm to a large number of simulated
systems.

The rest of the paper is organized as follows. Section 2 provides the formal problem
definition, and shows that solving it is NP-hard. In Section 3, we derive a lower-bound for
the optimal solution of the problem. We also state and prove claims that will be used in later



sections in the description and verification of our algorithm. In Section 4, we describe our
algorithm, calculate its running-time, and provide experimental results. Finally, Section 5
summarizes the contributions of this paper.

2 Problem definition

Let I = (I1,1s,...,I,) be the set of items and let B = (By, Bs, ..., B,) be the set of bins.
Also, let |I;| denote the size of item I;, and let |B;| denote the capacity of bin B;. Without
loss of generality, we assume that the cumulative sizes of the bins equals the cumulative
size of the items, i.e., 2, |Li| = >, [Bj|.

We define a packing P as an assignment of every item to the set of bins, given that each
item can be fragmented across multiple bins, and similarly, a bin can hold multiple item
fragments. For a given packing P, we define hp(I;) = h(I;) := number of bins “hit” by I;,
or, in other words, the number of bins that contain a fragment of the item I;. Similarly,
hp(I; U I;) = number of bins hit by I; and I;, etc.

We want to find a packing that minimizes the maximum number of fragments made of an
item, which is equal to the maximum number of bins hit by an item. So, define

PT(I,B) = mi 1,
OPT(I,B) rrgnlg}%xmhp( k)

where P ranges over all packings of (I, B).

2.1 OPT(I,B) is NP-hard

We point out that determining OPT(/, B) in general is an NP-hard problem. To see this,
we consider the following known NP-hard bin packing problem BP ([Kar72], also see page
223 of [GJT75]). We will reduce the problem BP to a special case of our problem, specifically
to the question “Is OPT(I,B) =177

Problem BP
Input : Set S of n positive integers s1, So, ..., S, with sum = 20.
Question: Is there a subset of S with sum = o.

We can use this input data to construct a special case of our problem by defining

I={L,I,...,I,} with |I;| = s;,1 <k <n, and
B = {Bl,BQ} with |Bl| = |BQ| = 0.

Then OPT(Z, B) =1 if and only if the answer to the BP question is yes.



3 Basic facts

Since the locality-maximizing placement problem is NP-Hard, we have developed a polynomial-
time algorithm that provides a solution that is within an additive constant of 2 from the
optimal. In this section, we provide several definitions and prove various facts that are re-
quired for an explanation of our algorithm. We first derive a lower bound to the optimal
solution to the above problem. We then make additional claims that shall be used in future
sections and in the proposed algorithm.

We assume that the items and bins are sorted in non-ascending order, that is (after
relabeling),

0] > 1] > ... >[Il

|B1| > |B2| > ... > | By

We next create the “canonical packing” C' by assigning bins in the sorted order to the
items, also in a sorted order. For example, as shown in Figure 1, By, Bs and B3 are assigned
to I;. The rest of Bs is filled by Iy, and so on. So I; “hits” Bj, Bs and Bs, making h(I;)
equal to 3. Iy hits B3, By and Bj, and therefore h(l3) is also equal to 3. Since I; and
I, together hit By, B, Bs, By and Bj, h(l; U I3) is 5. We can always assume that in
representing the bins into which I; is packed, each bin Bj; is represented by an interval of
I;. The ordering of these bins, or intervals, within [;, is irrelevant.

I I I I,

| |
| | | | | I T TTTIT
By B, By By Bs - -+ + By

Fig. 1. An example problem with 4 items and 13 bins. This shows the canonical packing C with the items
and bins both sorted in non-ascending size order.

For 1 < k < m, we define

(k) = [%h([l U...UL)]

and 7 := maxpT(k)

where h = h¢, and C is the canonical packing.



Going back to the example of Figure 1,

Claim 1 OPT(I,B) > 1.

Proof. We shall show by contradiction that it is not possible for OPT(I, B) to be less than
7, and consequently 7 is a lower bound to the solution of our packing problem. Suppose

OPT(I,B) < T (1)

Let us choose k such that

1
T(k) = [Ehc(h U...Ulg)| =71
Thus, k corresponds to the maximum value of 7(7), which is equal to 7. Let h = h¢(I; U
... UI). Now, from the definition of 7, we can say that there exists I;, i < k, for which

W) > 7 (2)
However, for assumption (1) to hold, the number of bins hit by any item must be less
than 7. To achieve this, we need to change the packing from the canonical packing C.

If we change the ordering of bins within the first £ items, thus obtaining a new packing,
inequality (2) would still hold, since h(I; U...U I}) would remain the same. So for the new
packing, we will need to use some bins for the first k items that have not already been hit
by them in the canonical packing. But since By,...,Bj_1 are the largest h — 1 bins, no
other set of h — 1 bins can hold items I; U...U I. Hence, by changing the ordering, we can
only increase the number of bins hit by the first £ items. Thus, there is no way that we can
satisfy (1), which is a contradiction. O

Claim 2 For the canonical packing C,
hc(Il)—i-...-l-hc(Ik) < hc(Ilu...UIk)+k—1

for 1 <k <m.



Proof. There are a total of k — 1 boundaries between I; and I; 11, 1 <4 <k — 1, and these
items share at most one common B; across the boundary. So the total number of shared
bins is at most k£ — 1. O

For any packing P, we now define a “deviation” d; for each I; by d; = hp(l;) — 7. We
denote the sequence (dy,...,dy) of deviations by D.

Claim 3 For the canonical packing C, for 1 <k <m ,
k
ddi<k-1 (3)
i=1
Proof.

k
> di =Y he(l) —kr
=1

i<k
<hc(liu...UL)+k—-1—kr by Claim 2
1
1
Sk([EhC(IlU...UIkﬂ ) +k—-1
sk—1 by def. of T

Claim 4 Suppose for any packing P, D = (dy,ds, ..., dy,) satisfies (3), and let
D' = (di,do,...,dj_1,dj11,...,dy) = (dy,d5,...,d,, ) be formed from D by deleting
some term d; > 1. Then D' satisfies (3).

Proof. For k < j — 1, we have
ddi=> di<k-1
i<k i<k

by the hypothesis on D. For k£ > j, we have

Modi= > di+ > dj

i<k i<j-1  j<i<k

=Y di+ > di—d

i<j-1  j<i<k+l

= > di—d;

i<k-+1
<k—d;
<k-1

by the hypothesis on D. O



4 The algorithm

We now give a packing algorithm that will give a near-optimal solution requiring at most
7+ 2 bins for each I;. In the next subsection, we describe a procedure referred to as “cross-
splicing”, which will be used by the algorithm. The description of the main procedure of
the algorithm follows.

4.1 Cross-splicing

Let us say that the sequence of deviations D is reduced if d; ¢ {1,2} for any . Suppose for
some ¢ < j,

h(Iz) =7 -—aq, h([j) =7+b
where ¢ > 0,6 > 3.
Let us line up I; below I; (see Figure 2) and define the following function:
A(s) = h{Lj,) = h(l;,a)

where h(I,z) := number of different bins that I; has hit up to z (with h(f;,z) defined

| B, B B, B, B; B,
I; | — I B
| | |
L M1 T 11 1111
B’ B, B'; 4 B's <+ B
0 x i)

Fig. 2. Lining up I; and I;

similarly). By convention A(0) = 0 (If we want, we can imagine that bin intervals are of
form (...], i.e., semi-open intervals closed on the right.)

Note that A(z) only changes as z crosses a bin boundary, and consequently, it can
change (up or down) by at most 1. If I; and I; have a common boundary value at some
point zg, then A(z) does not change as x goes through xy. Also note that

A(L]) 2 a+b



This follows from the fact that since ¢ < j, then |;| > |I;|. Thus, h(I;,|1;]) is less than or
equal to 7 — a.

For an arbitrary value ¢, 0 < ¢ < a+0b, let g be the first bin interval right-hand endpoint
with A(zg) = c. A cross-splice at xy is the following modification: The portion of I; and I;

Bl B2 B3
| |
I; | — T T T T T 1
I
| ! |
I T oTala Wl T TTT1
J By B,B’; B, B's,
1
Xy
By B2’y B's B's Bs |
1 — T T T 1
1
1
! |
I; T T T T1

Fig. 3. Cross-splicing at zo

for 0 < z < zy are interchanged, as shown in Figure 3. In this example, ¢ = 2. The first
right-hand endpoint of a bin interval, for which zy = 2, is that of Bf. Hence, B{ through
Bi are interchanged with Bj, Bg, and part of Bs. Of course in doing so, we have split bin
B3 between I; and I;.

This obviously changes the values of h(1;) and h(1;). Normally, z¢ will not be a boundary
point for I;, and in this case, we see that

W(L) = (L) + c+1
W(I;) = h(L;) — ¢
In the example of Figure 3, I; initially hits 6 bins, and I; hits 10 bins. After the cross-splicing,
I; hits 9 bins, and I; hits 8.
Otherwise, if z( is also a boundary point for ; then
h'(L;) = h(L;) +c
h'(1;) = h(l;) —c

Thus, the D sequence goes from (di,do,...,diy...,dj, ... dy)
to (dl,dQ,...,di—}—C—l-l,...,dj—C,...,dm)



4.2 The main procedure

We begin with the canonical (decreasing) packing C' explained in Section 3. Let the D
sequence for the packing be (dy,dy,...,d;,...,d;,...,d;,), which satisfies (3) and which we
can assume is reduced (i.e., no d; = 1 or 2). Let j be the least index such that d; > 3. If
there is no such index, then the algorithm completes, and all the items have A(l;) less than
or equal to 7 + 2, which is what the algorithm set out to guarantee. By putting £ = 1 in
equation (3), we have d; < 0. Thus, j > 2. Hence, we have two candidates, I; and I, that
we use for cross-splicing.

We use the same symbols as in the previous subsection, dy = —a,d; = b,a > 0,0 > 3.
Now, there are two cases:

Case (i) b > a. Then we cross-splice I; and I; using ¢ = a +1 < a + b. This produces
D'=(2,....b—a—1,...,dp), ie, d| =2,dj =b—a— 1. Then we reduce D' to D" =
(d2,ds,...,d},djt1,. .., dp) by removing the entry dj = 2.

Case (i) b < a. In this case we cross-splice /; and I; using ¢ = b—2 < a +b. This produces
D'=(b-a-1,...,2,...,d,) which we reduce to D" = (b—a—1,...,dj_1,djq1,...,dm)
by removing the entry d; = 2.

Claim 5 The resulting reduced sequence D" satisfies (3).
Proof. We shall first prove this for Case (i) described above. For 1 < k < j — 2,
D” = (d2,...,dj_1,b—a— 1,dj+1,...) = ( lll, ,21,)

Since by definition, j was the least index such that d; > 2, then dy < 0,...,d; 1 < 0. We
recall that they cannot be equal to 1 or 2 since the sequence is assumed to be reduced.
Thus, >, . df <0<k—-1.

For k > 5 — 1 we have

Jj—1 k
Yodi=>di+b—a-1+) df
2 i=j

i<k
J k+1

= Z di — 1+ Z d;
i=1 i=j+1
k+1

=> di—1
=1

<k-1



Now, if b — a — 1 equals 1 or 2, then we remove dj_; from the sequence D" to get a new
sequence D"’ which, by Claim 4, still satisfies (3).

We shall now prove that (3) holds for Case (7). In this case, we have
D" = (b_a_ 17d27"'7dj717dj+17"') = ( ,1’7 ,2,7)
Since b < @ in this case then as before, df <0,...,d;—1 <0, so that for k¥ < j —1,

}:ﬂgogk—l

i<k
If k£ > j, then
k
Sa- Y de Y
i<k i<l iz
j—1 k+1
:b—a—l'l‘Zdi-i- Z d;
i=2 i=j+1
k+1
=> di—1
1=1
<k-1
by (3). a

We note that (3) = d; < 0. So now the algorithm can iterate on the new sequence D"
or D"'. Thus, by cross-splicing, we can reduce the number of d; # 1 or 2 by at least one at
each step. Strictly speaking, we cross-splice and delete the 2 to get a sequence D" which
(still) satisfies (3). Values of d; = 1 or 2 correspond to I; which are “happy”, i.e., they do
not have to be processed any further. Therefore, in at most m — 1 steps we have a stable
sequence D* with all entries < 0 (or which is empty). At this point, the algorithm halts.

4.3 Running time

There are two main parts to the algorithm. The first is the sorting of I and B to yield
the canonical decreasing packing C, which takes O(nlogn) time. The second involves the
iterative cross-splicing phase. The number of iterations is at most m — 1. Within each
iteration, finding candidate items for cross-splicing takes at most m steps, while computing
A values at bin endpoints will take O(n) time. Thus, the running time of this part of the
algorithm is O(mn). Hence overall, the time complexity of the algorithm is O(n(m+logn)).



T T+1 T4 2
No cross-splicing reqd. 237 7474 25296
Cross-splicing reqd. 0 0 66993

Table 1. Results obtained from experimental evaluation of our algorithm on 100,000 simulated systems.

4.4 Experiments

We performed an experimental evaluation of this algorithm, by simulating a system with
100 items and 6000 bins. The item sizes followed a uniform random distribution with a mean
of 1000 units, and the bin sizes followed a Zipf distribution with o = 1 and a maximum size
of 50 units.

We ran the simulation 100,000 times, each time with different sets of item and bin sizes.
The first row of Table 1 shows the number of simulated systems that did not require any
cross-splicing, ¢.e., the canonical packing provided a solution within 7+ 2. This is subdivided
into the number of systems for which the solution was exactly 7, 7+ 1, and 7+2. The second
row provides the same information for the number of systems that required the iterative
cross-splicing phase.

The numbers show that cross-splicing always provides a solution that is exactly 7 + 2.
This is because each iteration of cross-splicing always creates at least one item that hits
T + 2 bins.

5 Summary

In this paper, we have defined a specific bin-packing problem, that of “locality-maximizing
assignment”, which is relevant to current distributed applications. We have shown that
obtaining the optimal solution is an NP-hard problem, but that an efficient near-optimal
algorithm exists. We describe one such algorithm and prove that it provides solutions within
an additive constant of 2 of the optimal solution. Finally, we provide empirical data obtained
from the experimental evaluation of the algorithm.
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