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Abstract 

The gas-phase uranyl peroxide dimer, [(UO2)2(O2)(L)2]
2+

 where L = 2,2’-

trifluoroethylazanediyl)bis(N,N’-dimethylacetamide), was synthesized by electrospray 

ionization of a solution of UO2
2+

 and L.   Collision induced dissociation of this dimer resulted 

in endothermic O-atom elimination to give [(UO2)2(O)(L)2]
2+

, which was found to 

spontaneously react with water via exothermic hydrolytic chemisorption to yield 

[(UO2)2(OH)2(L)2]
2+

.   Density functional theory computations of the energies for the gas-

phase reactions are in accord with observations.   The structures of the observed uranyl dimer 

were computed, with that of the peroxide of particular interest as a basis to evaluate the 

formation of condensed phase uranyl peroxides with bent structures.   The computed dihedral 

angle in [(UO2)2(O2)(L)2]
2+

 is 145
o
, indicating a substantial deviation from the planar 

structure with a dihedral angle of 180
o
.   Energies needed to induce bending in the most 

elementary gas-phase uranyl peroxide complex, [(UO2)2(O2)]
2+

, were computed.   It was 

found that bending from the lowest-energy planar structure to dihedral angles up to 140
o
 

required energies of <10 kJ/mol.   The gas-phase results demonstrate the inherent stability of 

the uranyl peroxide moiety, and support the notion that the uranyl-peroxide-uranyl structural 

unit is intrinsically planar with only minor energy perturbations needed to form the bent 

structures found in studtite and uranyl peroxide nanostructures.   
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Introduction 

 The peroxide moiety, O2
2-

, is unusual in naturally occurring minerals.   In 2003, Burns 

and Hughes reported the structure of studtite, [(UO2)(O2)(H2O)2](H2O)2, which consists of 

one-dimensional chains with uranyl moieties, UO2
2+

, linked by peroxides.
1
  A fascinating 

feature of the studtite structure is that the uranyl-peroxide-uranyl dihedral angles—i.e., the 

angles between the two planes defined by adjacent uranyl-peroxide moieties (see Fig.  9)—is 

140
o
, which is far from the 180

o
 planar orientation that might be expected based on 

elementary steric repulsion considerations.   This highly bent structural motif suggested the 

possibility of creating cage-like nanostructures based on uranyl-peroxide-uranyl building 

blocks.   The first “uranyl peroxide nanospheres” resulting from this hypothesis, reported by 

Burns et al.  in 2005, were composed of 24, 28 and 32 uranyl peroxide building blocks that 

form closed cage structures.
2
  Since then, Burns and co-workers have synthesized and 

characterized many nanoscale uranyl peroxide cage and other clusters that incorporate the 

bent uranyl peroxide structural unit.
3-8

  Among these clusters is one that comprises 60 uranyl 

moieties and bears a remarkable resemblance to the prototypical nanostructure 

buckminsterfullerene, C60.
9
  Uranium oxide nanostructure materials are of interest for 

potential relevance to advanced nuclear technology, including processing
10

 and degradation
11

 

of nuclear fuels. 

 There is fundamental interest in understanding the driving forces for the formation of 

the bent uranyl peroxide cage nanostructures, and the nature of the bonding in them.   Several 

computational studies have been performed, with an emphasis on understanding the origins 

of the bent nature of the uranyl-peroxide-uranyl building block that enables the curvature 

necessary to produce closed-cage nanospheres and other distinctive materials.
12-20

  The 

cations employed to achieve charge neutrality in peroxide-rich clusters were found to have a 

substantial effect on the extent of deviation from a 180
o
 dihedral angle.

12-14,19
  Qiu et al.

18
 

concluded that the [UO2
2+

-(O2
2-

)-UO2
2+

] moiety is not rigid and that deviations from a planar 

geometry can be induced with minor energy expenditure.   The most elementary uranyl 

peroxide structures, dimers comprising two uranyl moieties and a single bridging peroxide, 

have been reported in the condensed phase.
21,22

 In addition to dimers, condensed phase uranyl 

peroxide monomers
23

 and trimers
24

 have been reported.  Uranyl peroxide has also been found 

in the ternary carbonate complex UO2(O2)(CO3)2
4-

.
25

  The goal of the present work was to 

approach the topic of uranyl peroxides from an extremely fundamental perspective in gas-

phase dimeric species, by both experiment and theory.   A key attribute of relatively small 

gas-phase species in the absence of perturbations introduced by solvent or extended 

coordination in solids is that they are amenable to particularly accurate computational 

evaluation and can elucidate fundamental aspects of structure and bonding in metal 

complexes.
26,27

  The goal of the present work is to extend understanding of uranyl peroxides 

by studying gas-phase dimers.   Several diamide amine-functionalized ligands have been 

synthesized to study the solution thermodynamics complexation with lanthanide ions.
28

  The 

generic structure of these ligands is shown in Figure 1.   It has been demonstrated that such 

strongly coordinating multidentate ligands can stabilize multiply charged metal cations, 

including UO2
2+

, from solution to gas during electrospray ionization (ESI).
29,30

  In the present 

work, 2,2’-trifluoroethylazanediyl)bis(N,N’-dimethylacetamide) (TFABDMA; Scheme 1) 
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was employed to synthesize a gas-phase uranyl peroxide dimer with a 2+ charge.   The 

chemical properties of this dimer studied experimentally are in good agreement with 

predictions from density functional theory (DFT) computations.   DFT was furthermore 

employed to better understand at a fundamental level the origins of bent uranyl peroxide 

structures. 

 

Experimental Details 

Ligand Synthesis 

 Starting materials and solvents were purchased and used without further purification 

from commercial suppliers (Sigma-Aldrich, Alfa Aesar, EMD, TCI, Cambridge Isotope 

Laboratories, Inc., and others).  5-Methyl-2-(p-tolyl)pyridine (model C,N-ligand) was 

synthesized as described.
31

  Proton nuclear magnetic resonance spectra (
1
H NMR) were 

recorded on a Bruker FT-NMR spectrometer (300 MHz for 
1
H).  Chemical shifts were quoted 

in parts per million (ppm) referenced to the appropriate solvent peak or 0 ppm for TMS.  The 

following abbreviations were used to describe peak patterns when appropriate:  s = singlet, q 

= quartet. Coupling constants, J, are reported in Hertz unit (Hz). 

 The TFABDMA ligand was synthesized as summarized in Scheme 1, in a manner 

analogous to that employed for other diamide amine-functionalized ligands.
28

  Specifically, 

2,2,2-Trifluoroethylamine (5.1 mmol, 0.4 mL), 2-chloro-N-dimethylacetamide (10.5 mmol, 

1.1 mL), K2CO3 (31 mmol, 4.2 g), and KI (6.0 mmol, 1.0 g) were added in a round-bottom 

flask.  The mixture was stirred, and heated to reflux in CH3CN (100 mL) for 2 days.  K2CO3 

and KI were filtered off, and CH3CN was removed under vacuum to yield a yellow liquid.  

The yellow liquid was brought up with about 50 mL water and 150 mL chloroform.  The 

mixture was stirred for about 1 h. The organic layer was separated and dried under vacuum to 

yield a yellow liquid as the product (29.4 % yield). 
1
H NMR spectra (CDCl3, 300 MHz, 

ppm): δ 3.721 (s, 4H); δ 3.427 (q, 2H); δ 2.965 (s, 6H); δ 2.914 (s, 6H). 

Gas-Phase Experiments 

 The general gas-phase experimental approach has been described previously.
32

 The 

di-cationic uranyl dimer with a bridging peroxide and supported by two TFABDMA ligands, 

was produced by ESI of an ethanol solution (~1% H2O) containing 0.1 mM  UO2
2+

 and 0.1 

mM TFABDMA.  The UO2
2+

 reagent was from a stock aqueous solution of 10 mM 

UO2(ClO4)2 (pH = 2).   The 
238

U used in this work is radioactive and must be handled with 

proper controls.
33

 The experiments were performed using an Agilent 6340 quadrupole ion 

trap tandem mass spectrometer with MS
n
 collision induced dissociation (CID) fragmentation 

capability.  Ions in the trap can furthermore undergo ion-molecule reactions at ~300 K 
34

 by 

applying a reaction time of up to 10 s.  Anion mass spectra were acquired using the following 

parameters:  solution flow rate, 60 µL/h; nebulizer gas pressure, 6 psi; capillary voltage offset 

and current, -3200 V and 6.1 nA; end plate voltage offset and current, -500 V and 100 nA ; 

dry gas flow rate, 2 l/min; dry gas temperature, 325 °C; capillary exit, 142 V; skimmer, 26 V; 

octopole 1 and 2 DC, 13.8  V and 3.1 V; octopole RF amplitude, 58 Vpp; lens 1 and 2, -4.8 V 

and -65 V; trap drive, 217.  Nitrogen gas for nebulization and drying was supplied from the 

boil-off of a liquid nitrogen Dewar.  The background water pressure in the ion trap is 

estimated as ~10
-6

 Torr;
35 

reproducibility of hydration rates of UO2(OH)
+ 35 

established that 
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the water pressure was constant to within 10%.  The helium buffer gas pressure in the trap is 

constant at ~10
-4

 Torr.
 

 

Computational Details 

The computations were performed with the Gaussian09 suite of programs,
36

 using the 

B3LYP exchange-correlation functional.
37,38

 Preliminary calculations on the conformational 

space of all three target molecules were carried out with the 6-31+G** basis set.  For U the 

Stuttgart-Cologne small-core pseudopotential (ECP60MWB
39

) was used in conjunction with 

a 14s13p10d8f6g valence basis set contracted to 10s9p5d4f3g (ECP60MWB_SEG
40

).  All 

complexes for which computations were performed have a net charge of 2+ and singlet spin 

multiplicity.  According to test calculations the triplet-states are considerably higher (around 

200 kJ/mol) in energy than the singlets.  The minimum character of the obtained stationary 

points on the potential energy surface was confirmed in all cases by frequency analysis.   

Calculations at a higher level of theory were performed only for the lowest-energy 

conformers.  This higher level included the extension of B3LYP with the D3 version of 

Grimme’s dispersion correction using the original D3 damping function,
41

 the cc-pVTZ and 

aug-cc-pVTZ basis sets
42

 for C, H and N, O, F, respectively, as well as the UltraFine 

integration grid (99 radial shells and 590 angular points per shell).  The study of the bonding 

properties was based on natural bond orbital (NBO) analysis
43

 providing atomic charges and 

Wiberg bond indices,
44

 this latter property giving information on the covalent bond order.  

The NBO analysis was performed by means of the NBO5.9 code
45

 coupled with Gaussian09.  

The thermodynamic data were obtained using the rigid rotor harmonic oscillator 

approximation.  Because of the closed-shell character of the studied complexes the electronic 

contribution could be neglected. 

 

Results and Discussion 

 The synthesis and reactivity experimental studies of the [(UO2)2(O2)(L)2]
2+

 dimer and 

reaction products are described.   The computed structures, bonding and reaction energies are 

then presented; comparison of relevant computed properties is made with the experimental 

observations.   Computational results on a further simplified model gas-phase complex are 

employed to further evaluate the nature of bending in uranyl peroxides. 

 

Synthesis and Reactivity of Gas-Phase Uranyl Dimer Cation Complexes 

 The ESI mass spectrum of the uranyl/L (L = TFABDMA) solution is shown in Figure 

2.   The dominant species are monopositive bare and ligated uranyl(V), as is typical for ESI 

of solutions of dipositive uranyl(VI) using the ESI-QIT/MS employed in this work.
35

  

Although it has been possible to produced dipositive uranyl complexes using this instrument, 

the yields have been low and a stronger coordinating Lewis base than water was necessary to 

stabilize the higher charge-state.
33

  The relatively harsh conditions imposed by this particular 

instrument contrasts with other ESI experiments in which dipositive and tripositive hydrated 

metal ion complexes have been generated and studied.
46,47

 Also apparent in Fig.  2 is a peak 

due to a complex of Na
+
, which is a notoriously ubiquitous metal ion contaminant in 

solutions.   The dipositive species of particular interest in the present study, identified in Fig.  
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2b, is [(UO2)2(O2)(L)2]
2+

, which is formally the uranyl peroxide dimer [(UO2
2+

)2(O2
2-

)(L)2]
2+

.   

This composition and charge state is confirmed by m/z peak separation of 0.5 (i.e., z = 2), 

and by the CID mass spectrum in Fig. 3a, where charge-separation to give the expected 

monopositive fragments is apparent.   An elementary hypothetical reaction that would yield 

the observed dimer is given by equation (1). 

 2(UO2)
+
 + O2 + 2(L)    [(UO2)2(O2)(L)2]

2+
  (1) 

This simple reaction is not established by the results and it is not known at what stage of the 

complex ESI process such a hypothetical association reaction might occur, or if the dimeric 

species is already present in solution.  It was not possible to substantially enhance the yield of 

the peroxide dimer by adjusting the ESI and ion transport conditions to resolve the origins of 

the gas-phase complex.   The solubility of O2 in ethanol at room temperature and atmospheric 

pressure (0.2 bar O2) is ca.  0.1 mM,
48

 which is comparable to the concentration of uranyl and 

L; if the product of equation (1) is sufficiently stable there should thus be adequate O2 in 

solution to account for the observed abundance of the uranyl(VI) dimeric complex, which is 

lower than that of bare and ligated uranyl(V).   A notable aspect of the observation of a 

uranyl peroxide dimer under these conditions is that peroxide was not added to the solution, 

as is typically necessary for formation of uranyl peroxides.   In the case of the mineral 

studtite, the bridging peroxide moieties are considered to derive from peroxide formation as a 

result of alpha-radiolysis of water by uranium.
1
  Hypothetical reaction (1) assumes reduction 

of UO2
2+

 in solution to UO2
+
 during ESI, which is a well-established phenomenon and is 

evidenced by the dominant UO2
+
 peak in Figure 2a.  This reduction is consistent with metal 

ion reduction that is more generally known to occur during ESI.
49

    Reaction (1) corresponds 

to oxidation of UO2
+
 to UO2

2+
 concomitant with formal reduction of O2 to O2

2-
.   Although 

the studied mineral system is substantially more complex than the dimer considered here, it 

should be noted that the U(VI/V) reduction potential in studtite has been reported.
50

  It has 

been demonstrated that in the gas phase O2 is reduced to O2
-
 by one UO2

+
 ion,

35
 such that 

reduction of O2 to O2
2-

 by two UO2
+
 ions is a reasonable hypothesis.  Another key aspect of 

reaction (1) is the retention of a dipositive charge in the peroxide complex—strongly binding 

electron donor polydentate ligands such as TFABDMA are known to stabilize multiply 

charged cations from solution to gas during ESI.
29

   Also apparent in Fig. 2 is a peak due to 

[(UO2)2(O)(L)2]
2+

, which can result from fragmentation of [(UO2)2(O2)(L)2]
2+

, as discussed 

below.  Although peroxide was not deliberately added to the solution, potential sources 

include photolysis
51

 and decomposition of perchlorate in solution.
52

 

 The CID fragmentation results for [(UO2)2(O2)(L)2]
2+ 

are shown in Figure 3a.   The 

fragmentation pathways given by reactions (2) and (3) were observed.
 

 
[(UO2)2(O2)(L)2]

2+
    [UO2(O2)(L)]

+
 +  [UO2(L)]

+
  (2)  [CID] 

 [(UO2)2(O2)(L)2]
2+

    [(UO2)2(O)(L)2]
2+

 + O  (3)  [CID] 

Because the highest accessible uranium oxidation state is U(VI), the two products of the CID 

charge separation reaction (2) are assigned as a uranyl(VI) superoxide
35

 and a reduced 

uranyl(V) complex, respectively; the peroxide moiety, O2
2-

, is evidently oxidized to a 

superoxide, O2
-
, concomitant with reduction of U(VI) to U(V).   The computed reactant and 

product structures and the energy for reaction (3) are discussed below; in essence, the 
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peroxide bridge (formally O2
2-

) is converted to an oxygen atom bridge (formally O
2-

) to yield 

a dimer in which both uranyl moieties remain in the hexavalent oxidation state. 

 A CID mass spectrum for [(UO2)2(O)(L)2]
2+

 is shown in Figure 3b.   The dominant 

product, [(UO2)2(OH)2(L)2]
2+

, also results from the spontaneous reaction of the monoxide-

bridged dimer with background water in the ion trap, as discussed below.   As for CID 

reaction (2), the charge separation products apparent in Fig. 3b, [UO2(L)]
+
 and [UO2(F)(L)]

+
, 

are uranyl(V) and uranyl(VI) complexes, respectively.   Retention of the U(VI) oxidation 

state is achieved by abstraction of a fluoride anion from the ligand, a phenomenon that has 

been previously observed and reflects the high affinity of uranium for fluorine.
53

  In contrast 

to [(UO2)2(O2)(L)2]
2+

, charge-separation into two monopositive fragments comprising all of 

the original constituents is not observed for [(UO2)2(O)(L)2]
2+

.   The absence of [UO2(O)(L)]
+
 

as a CID product can be attributed to the lower stability of the radical atomic oxygen ligand, 

O
-
, compared with the superoxide ligand, O2

-
, in [UO2(O2)(L)]

+
.   The dominant product from 

CID of [(UO2)2(O)(L)2]
2+

 (Fig.  3b) is water-addition to yield [(UO2)2(OH)2(L)2]
2+

, the 

structure of which was computed to be a bridging bis-hydroxide.   This is not a fragmentation 

product but rather the result of chemisorption addition of H2O to [(UO2)2(O)(L)2]
2+

 (see 

below).   As is evident in Fig. 3c, CID of [(UO2)2(OH)2(L)2]
2+

 results almost entirely in the 

reverse water-elimination process to yield [(UO2)2(O)(L)2]
2+

 and H2O.   

 CID results in endothermic fragmentation, although exothermic reactions with 

background gases in the ion trap, including water-addition as is evident in Fig.  3b, can also 

occur during the CID timescale.   In contrast, isolation of an ion followed by a reaction period 

reveals only spontaneous ion-molecule reactions with background gases, typically O2 and/or 

H2O, that are present in the ion trap.   To fulfill the requirement for conservation of energy, 

reactions observed under non-CID conditions must have energy profiles that do not exceed 

the energy of the separated reactant ion and molecule; these reactions must be exothermic and 

present no barrier above the reactant asymptote energy.  Reactivity results for 

[(UO2)2(O2)(L)2]
2+

, [(UO2)2(O)(L)2]
2+

 and [UO2(L)]
+
 with reactive background gases in the 

ion trap are shown in Figure 4.   Both of the latter species exhibit substantial reactivity with 

water for a reaction time of 50 ms, whereas the [(UO2)2(O2)(L)2]
2+

 complex exhibits no 

reactivity under similar conditions even for a much longer reaction time of 1000 ms.   The 

uranyl peroxide dimer is unreactive with both O2 and H2O, which is an indication of its 

intrinsic stability. 

 The results in Figure 4b and 4c reveal that [(UO2)2(O)(L)2]
2+

 and [UO2(L)]
+
 both 

spontaneously add water.   For the latter, the process is assumed to be simple hydration, as is 

typical for coordinatively unsaturated uranyl cation complexes.
35

  The monopositive U(V) 

complex also exhibits spontaneous addition of O2 to yield [UO2(O2)L]
+
, which in analogy 

with previous results,
35,54,55

 is presumed to be a superoxide in which U(V) is oxidized to 

U(VI).   As discussed below, spontaneous addition of water to [(UO2)2(O)(L)2]
2+

 occurs by 

chemisorption reaction (4). 

 [(UO2)2(O)(L)2]
2+

  + H2O   [(UO2)2(OH)2(L)2]
2+

  (4) 

As noted above and as is apparent in Fig.  3b, CID of [(UO2)2(O)(L)2]
2+

 yields primarily the 

product of reaction (4).  The timeframe of CID is roughly 50 ms, in accord with the similar 

yields of [(UO2)2(OH)2(L)2]
2+

 in Figures 3c and 4b; the somewhat greater yield in the former 
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CID mass spectrum may indicate enhancement of the rate for reaction (4) under hyperthermal 

conditions. 

  

Computed Structures and Energetics:  Comparison with Experiment 

 The first issue to address is the structures of the observed uranyl dimer complexes.  

The main interactions with the terminal neutral TFABDMA ligands are electrostatic and 

donor-acceptor, between UO2
2+

 and the two oxo groups and the central tertiary amine group 

of the ligand.  These interactions introduce constraints on the structure of the TFABDMA 

ligands, but due to rotation of the CF3 group around the C-C bond and the flexibility of some 

torsional angles, a few conformers are possible.  These conformers are very close in energy:  

within 4 kJ/mol for [(UO2)2(O2)(L)2]
2+

 and [(UO2)2(O)(L)2]
2+

, and within 9 kJ/mol for 

[(UO2)2(OH)2(L)2]
2+

.  A result of these small differences in energies is that in the gas phase, 

particularly under the non-equilibrium conditions of the experiments reported here, a mixture 

of conformers is likely.  However, the low-energy conformational changes are expected to 

have only marginal influence on the UO2
2+

-ligand interactions such that the properties of the 

global minima structures adequately characterize the complexes. 

 The optimized (global minimum) calculated structures of the three complex molecules 

are shown in Figure 5 (for clarity the ligand hydrogens are not shown).   Selected structural 

parameters are given in Table 2; the Cartesian coordinates of the three global minimum 

structures are included as SI. 

 The calculated reaction enthalpies (ΔH
298

) in Table 1 confirm that the formation of 

[(UO2)2(O)(L)2]
2+

 from [(UO2)2(O2)(L)2]
2+

 by elimination of an O atom, reaction (3), is 

endothermic.   This is in accord with the observation of this process under CID conditions 

(Fig.  3a), in competition with dissociation of the complex into two monopositive fragments 

according to reaction (2).  In contrast, chemisorption hydrolysis reaction (4) is computed to 

be substantially exothermic; this is in accord with the experimental observation that it occurs 

spontaneously under thermal conditions.   Whereas the peroxide dimer, [(UO2)2(O2)(L)2]
2+

, is 

stable with respect to hydrolysis, [(UO2)2(O)(L)2]
2+

 hydrolytically adds water to yield 

[(UO2)2(OH)2(L)2]
2+

 in which the single bridging O atom has been replaced by two bridging 

OH moieties.   

 The bonding in related model uranyl dimer complexes has been analyzed in two 

previous studies. Miró et al. computed the cationic [UO2]2(-
2
:

2
-O2(H2O)6]

2+
 model and 

analyzed the deformation of four frontier molecular orbitals when the planar D2h structure 

changed to a bent C2v structure.
13

 The energy advantage of bending was attributed to an 

increased orbital overlap between the uranium atoms and the peroxo bridge in the HOMO 

orbital and to decreased interactions between these moieties in HOMO-1. Vlaisavljevich et 

al.
12

 studied the neutral [(UO2)2(O2)5Na6] and [(UO2)2(O2)4(OH)2Na6] complexes. In the 

peroxide [(UO2)2(O2)5Na6] molecule, the O2
2-

 moiety (where 2- is the formal charge) forms a 

bridge between the two uranyls.  The main bonding interaction corresponds to the overlap of 

a π orbital of O2
2-

 with U 6p orbitals.  This important role of U 6p orbitals was explained by 

substantial involvement of the valence U 6d and 5f orbitals in bonding with the uranyl 

oxygens.  In the bridging hydroxyl derivative [(UO2)2(O2)4(OH)2Na6] the two OH
-
 groups (1- 

is the formal charge) are not bonded to each other (hence the π bond observed in the O2
2-
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dimer is absent).  In contrast to the peroxide model complex, no covalent interaction was 

found between U and the OH moieties.  Supported by the large negative partial charge of O 

in OH
-
, the U-O(H) bonding was concluded to be of mainly an electrostatic nature.

12
  

 The cationic [(UO2)2(O2)(L)2]
2+

 and [(UO2)2(OH)2(L)2]
2+

 complexes considered in the 

present work exhibit differences from the neutral [(UO2)2(O2)5Na6] and 

[(UO2)2(O2)4(OH)2Na6] model complexes.
12

 The synthesized gas-phase dimer complexes 

have net charges of 2+ and the TFABDMA ligands are essentially neutral, this in contrast to 

the four and five O2
2-

 ions and Na
+ counterions in the two model charge-neutral complexes.   

A result is that in the complexes prepared here the charge separations are smaller and the 

bonding conditions are less ionic.  In addition, in the 2+ complexes there are no 

counterions—these are Na
+
 ions in the above model complexes—which results in different 

steric conditions. 

 The above outlined disparities can lead to differences in the bonding of the 

[(UO2)2(O2)(L)2]
2+

 and [(UO2)2(OH)2(L)2]
2+

 gas-phase complexes as compared to the 

[(UO2)2(O2)5Na6] and [(UO2)2(O2)4(OH)2Na6] model complexes.
12

 One visually recognisable 

difference is the orientation of the OH hydrogens:  in the computed structure of 

[(UO2)2(O2)4(OH)2Na6] the OH hydrogens are in the plane of the U-(OOH)2-U moiety
12

 (due 

probably to steric repulsion with the Na
+
 ions positioned between the uranyl oxygens).  In 

contrast, in the optimized structure of [(UO2)2(OH)2(L)2]
2+

 the OH hydrogens are nearly 

parallel with the uranyl UO bonds.  The distance of the OH hydrogens from the uranyl 

oxygens (2.9 Å) is too large for hydrogen bonding between these atoms, but the parallel 

arrangement facilitates dipole-dipole interactions, likely stabilizing this orientation of the OH 

groups. 

 Selected natural atomic charges and Wiberg bond indices are compiled in Table 3.  

The natural charges of the ligand O and N atoms (which participate in the donor-acceptor 

interaction with U) show only negligible differences in the three complexes.  This suggests 

that the outer-sphere ligand-U interactions are essentially independent from the interactions 

within the di-uranyl core.  This conclusion is supported by the close ligand…U distances 

compiled in Table 2.   

 Inspection of the atomic charges of the uranyl moieties reveals differences up to 0.07 

e and 0.04 e for the charges of U and O, respectively.  The U atom is most ionic in 

[(UO2)2(O)(L)2]
2+

, while least so in [(UO2)2(OH)2(L)2]
2+

.  This correlates well with the net 

charge of the oxygen and OH bridges between the uranyls, where the negative charge of the 

single O in [(UO2)2(O)(L)2]
2+

 is the largest, and that of the (OH)2 moiety is the smallest (the 

large negative atomic charge of O is partly compensated by the positive charge of H in the 

two bridging OH).  These charge differences are, however, quite small and do not introduce 

considerable differences in the bonding between the uranyl and the bridging moieties.  The 

covalent characters of the complexes, as reflected by the Wiberg bond indices in Table 3, are 

also very similar.   Note that the covalent bond order of 1.0 with the single O in 

[(UO2)2(O)(L)2]
2+

 is comparable to twice the 0.5 bond order with O2 and (OH)2 in the other 

two complexes.   Accordingly, none of the other indicated covalent bond orders show notable 

differences in the three complexes.  It is noteworthy that the covalent bond order within the 

O2 bridge is 1.0 and that between O and H in the OH moiety is 0.7, while there is no bond 
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between the two OH moieties.  The weak bond in the O2 bridge is in agreement with the 

longer O-O distance (1.462 Å; see Table 2) as compared with the neutral O2 molecule (1.206 

Å).  This feature can be explained by the occupied anti-bonding orbitals in the negatively 

charged O2 bridge. 

 Selected Kohn-Sham orbitals are shown in Figures 6-8.  The main features of Figure 

6c and 6d agree with those of the respective orbitals presented for the [(UO2)2(O2)5Na6] 
12

 

and [UO2]2(-
2
:

2
-O2(H2O)6]

2+
 
13

 models.  In [(UO2)2(O2)(L)2]
2+

 (Figure 6) the main orbital 

interactions between the UO2 and O2 moieties is between the 6d, 5f and 5f atomic orbitals 

of U and antibonding π* orbitals of O2.  Hence in the dimers the bonding situation is more 

complex than in the simple UO2
+
…O2 model, where the bonding was attributed solely to the 

U 5f - O2 * orbital interaction.
54

 This may partly be due to the bent structure requiring 

hybrid orbital orientations and partly to the effect of ligands polarizing the electron density 

distribution of U. 

 The Kohn-Sham orbitals characteristic of bonding in [(UO2)2(OH)2(L)2]
2+

 (Figure 7) 

are similar to those of [(UO2)2(O2)(L)2]
2+

; the main difference is that the π* of O2 is replaced 

by the individual O p orbitals of the OH moieties. These similar covalent and ionic (i.e., close 

atomic charges, see above) characteristics explain the very similar U…Obr distances in 

[(UO2)2(O2)(L)2]
2+

 and [(UO2)2(OH)2(L)2]
2+

. 

 The [(UO2)2(O)(L)2]
2+

 complex deviates from the other two in that there is only one 

oxygen bridging the two uranyl moieties.  The most striking structural difference is the 

perpendicular orientation—i.e., a torsional angle of ca. 90
o
—of the two UO2 moieties, as well 

as of the coordinating TFABDMA  ligands.  This geometry can be explained on the basis of 

the molecular orbitals in Figure 8.  All three O 2p orbitals participate in orbital interactions 

with the UO2 moieties.  Most stabilizing is the (lowest-energy) σ bond (Figure 8a) with U 6d 

orbitals.  The other two O 2p orbitals overlap with a π* anti-bonding orbital of each UO2 

moiety (e.g. Figure 8b) explaining the longest uranyl U=Oyl bonds found in [(UO2)2(O)(L)2]
2+

 

among the three complexes.  The orthogonal character of these two latter O 2p orbitals 

requires a perpendicular relative orientation of the two UO2 moieties for the optimal 

interaction.  The situation is similar in Figure 8c, where the O 2p atomic orbital interacts with 

U 5f.   For [(UO2)2(O)(L)2]
2+

 the ligand…UO2 interactions result in a slight 13
o
 bending of 

the U…Obr…U angle, to ~167
o
.  The steric strain in this structure is reduced by the 

perpendicular orientation of the two uranyl moieties. 

 As mentioned above, the characteristic geometrical parameters of the complexes 

compiled in Table 2 support the bonding features discussed above.  Both the U=Oyl bond 

distances and the ligand…U distances differ only marginally in the three complexes.  Larger 

differences can be seen in Table 2 for the parameters within the di-uranyl core due to the 

three different bridging moieties:  O2/O/(OH)2. 

 

An Evaluation of the Relative Energies of Bent Uranyl Peroxides  

 The most characteristic, intriguing and relevant structural feature of the studied 

complexes is the bent U…O2…U interaction in [(UO2)2(O2)(L)2]
2+

.   This substantially bent 

structure, to a dihedral angle of 145
o
, is in accord with similarly bent geometries in 

compounds and nanostructures  containing the (UO2)2O2 moiety,
18

 and is in contrast to the 
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considerably less bent arrangement in [(UO2)2(OH)2(L)2]
2+

.  In the [(UO2)2(O2)4(OH)2Na6] 

model complex the U…(OH)2…U moiety is planar (i.e., the dihedral angle is 180
o
).

12
 On the 

basis of their model calculations, Vlaisavljevich et al. explained the bent feature in the 

[(UO2)2(O2)5Na6] model as due to the presence of Na
+
 counterions interacting with the 

[(UO2)2(O2)5]
6-

 complex anion:  the position of the bridging peroxide was proposed as 

ensuring the maximum Coulomb interaction between the uranyl oxygens and the Na
+
 

counterions.
12

  

 In [(UO2)2(O2)(L)2]
2+

 and [(UO2)2(OH)2(L)2]
2+

 there are no counterions between the 

partially negatively charged uranyl oxygens.  Hence, instead of a Coulomb attraction, a 

repulsion is expected.  Yet, [(UO2)2(O2)(L)2]
2+

 has the same (145°) U…O2…U dihedral angle 

as was computed for [(UO2)2(O2)5Na6].  The U…(OH)2…U dihedral angle in 

[(UO2)2(OH)2(L)2]
2+

 is somewhat larger (162°), with the structure substantially closer to 

planar.   The two close-lying uranyl oxygens—those facing down in the Fig. 5 top and bottom 

structures—are at a distance of 3.3 Å from each other in both [(UO2)2(O)(L)2]
2+

 and 

[(UO2)2(OH)2(L)2]
2+

.  This distance is somewhat larger than the sum of the van der Waals 

radii of the two oxygen atoms (3.04 Å).
56,57

  

 The O2 bridge in [(UO2)2(O2)(L)2]
2+

 cannot induce dihedral bending because the main 

orbital interactions are established by the planar π* orbital (see Figure 6).  In addition, the 

Coulomb interactions would prefer a symmetric D2h arrangement for the (UO2)2(O2) moiety.  

This hypothesis was evaluated by computations on the elementary model [(UO2)2(O2)]
2+

 

complex that does not have the terminal TFABDMA ligands that are necessary to stabilize 

the dipositive charge complex from solution to gas in the experiments.  The optimization 

converged to a D2h structure with a U…(O2)…U dihedral angle of 180° and uranyl O…O 

distances of 4.57 Å; the structure is shown in Figure 9.  The peroxide moiety is essential for 

bridging the otherwise strongly repulsive (2+ charged) U atoms.  The UO2 moieties are 

slightly bent away from each other with the two Oyl=U=Oyl angles being 172
o
.  The torsional 

angle defines the staggering between the negatively-charged Oyl atoms on the two uranyls, as 

defined in SI Figure S2:  eclipsed O-atoms on the two uranyls corresponds to a torsional 

angle of 0
o
.  

 

 It is concluded that the dihedral angle in [(UO2)2(O2)]
2+

 is 180
o
 (i.e., planar) whereas 

that in [(UO2)2(O2)(L)2]
2+

 is 145
o
 (i.e., bent by 35

o
); this latter value is comparable to the 

degree of bending (140
o
) in studtite and also in several uranyl cage structures.

1,58
  To evaluate 

the inherent flexibility of the elementary uranyl peroxide moiety, the energetics of the very 

simple model complex, [(UO2)2(O2)]
2+

, were assessed as a function of the dihedral angle.   

The structure of [(UO2)2(O2)]
2+

 was constrained as C2v and the relative energy was computed 

as the U…O2…U dihedral angle deviates from the value of 180
o
 found in the lowest-energy 

structure.   The results, shown in Figure 9 (and Fig. S1), reveal that the energy does not 

increase significantly (< 1 kJ/mol) for deviations from planarity of up to 20
o
 (dihedral angles 

down to 160
o
) and the energy increase remains minor (<10 kJ/mol) for bending of up to 40

o
 

(dihedral angles down to 140
o
, which is that found in studtite).   The energy increase is only 

~5 kJ/mol for a dihedral angle of 145
o
, which is that computed for the [(UO2)2(O2)(L)2]

2+
 

complex.   It is apparent that the structure of the uranyl peroxide moiety is inherently planar 

but that substantial deviations from planarity, which enables the formation of cage structures, 



11 

 

can occur due to only minor energy perturbations, such as may be introduced by counterions, 

neutral ligands or crystal packing.  This was also evident in the small [UO2]2(-
2
:

2
-

O2(H2O)6]
2+

 model evaluated by Miró et al.,
13

 where the H2O ligands stabilized the bent 

structure by 2 kJ/mol. 

The imposition of C2v symmetry in our computations for [(UO2)2(O2)]
2+

 mandates that 

the torsional angle between the uranyl moieties be 0
o
 (i.e., an eclipsed geometry with the 

minimum Oyl…Oyl distance). To assess the propensity for deviations of the torsional angle 

from 0
o
 as a means to reduce Oyl…Oyl repulsion, this angle was initially set at 10

o
 for a large 

dihedral angle of 120
o
.  This structure relaxed to the lowest energy structure with a torsional 

angle of 0
o
.  Somewhat surprisingly, the torsional angle does not deviate from 0

o
, at least not 

for U…O2…U torsional angles down to highly bent 120
o
.  The minimum character this 

structure is supported by the lack of any computed imaginary frequency. 

We conclude that the bent structure of [(UO2)2(O2)(L)2]
2+

 originates from interactions 

with the TFABDMA ligands.  From the two donor-acceptor interactions, that with C=O is 

expected to favor a planar arrangement due to the orientation of the O lone pairs.  The lone 

pair of N, however, is not in this plane and its orientation depends on the torsion of the 

ligand.  Another ligand…UO2 interaction in [(UO2)2(O2)(L)2]
2+

 and [(UO2)2(OH)2(L)2]
2+

 is  

weak hydrogen bonding between the uranyl downward oxygens and the close lying (2.6 Å) 

two NCH2 hydrogens; there are also repulsive interactions between the upper uranyl oxygens 

and the CF3 group.  The latter interaction is absent in higher-energy conformers with CF3 

turned away, but the bent character (though with somewhat larger dihedral angle) is 

preserved. 

 The computed relative energies for [(UO2)2(O2)]
2+

 as a function of dihedral angle 

(Fig.  9) indicate that an interaction of only ~5 kJ/mol between the TFABDMA ligands in 

[(UO2)2(O2)(L)2]
2+

 could induce the substantial bending to a dihedral angle of 145
o
.   The 

conclusions from the present work are in accord with those from Qui et al.
18

, who studied 

several uranyl peroxide dimers and concluded that only minimal energy perturbations—on 

the order of 10 kJ/mol—induced by counterions and other effects are needed to induce the 

observed bending of the dihedral angle.   The present results demonstrate the inherently 

planar nature of the simplest [(UO2)2(O2)]
2+

 dimer, and the substantial deviation from 

planarity introduced by the addition of terminal neutral ligands. 

  

Summary 

 A gas-phase uranyl peroxide dimer, [(UO2)2(O2)(L)2]
2+

, was synthesized by ESI.   The 

mechanism for the formation of this novel gas-phase dimer is uncertain.  It is notable that this 

species forms without addition of peroxide to the ESI solution.  This suggests a sufficiently 

high stability that the dimer is formed by reaction with molecular O2.  The high stability of 

the peroxide dimer is further indicated by its unreactive character towards O2 or H2O in the 

gas phase.  CID of the dimer results in endothermic O-atom elimination to produce 

[(UO2)2(O)(L)2]
2+

, which undergoes spontaneous exothermic chemisorption of H2O to yield 

the hydroxide dimer, [(UO2)2(OH)2(L)2]
2+

.   The energetics for the experimentally observed 

processes are in accord with DFT computations.   The computed structure of 

[(UO2)2(O2)(L)2]
2+

 features a bent uranyl-peroxide-uranyl moiety, with a dihedral angle of 
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145
o
 between the planes defined by the two U-O2 linkages.   To evaluate the intrinsic 

structure and energetics required for bending of uranyl peroxides, computations were also 

performed for [(UO2)2(O2)]
2+

, which is the most elementary of the model gas-phase uranyl 

peroxide complexes.   The results reveal that the inherently most stable geometry is planar, 

with a dihedral angle of 180
o
, and that substantial deviations from planarity, up to 40

o
, are 

induced by energy perturbations of 10 kJ/mol or less.   This finding is in accord with previous 

conclusions that stable uranyl peroxide cage structures are not formed due to an inherently 

bent nature of the uranyl-peroxide-uranyl moiety, but rather result from the minor energy 

needed to distort this moiety from intrinsic planarity, such as by interactions with 

counterions.   The results reported here represent the first synthesis and reactivity studies of a 

gas-phase uranyl peroxide dimer.   The agreement between observed gas-phase reactivity and 

DFT predictions provide validation of the latter, and confidence in other computed properties. 

 

Supporting Information 

Elaborated version of Figure 9; definition of the torsional angle in uranyl dimers; Cartesian 

coordinates of computed structures for the three dimer structures shown in Figure 5. 
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Table 1.  Calculated  reaction energies (kJ/mol). 

 H
0
 H

298
 G

298
 

Reaction (3) / Elimination of O from [(UO2)2(O2)(L)2]
2+

 228.9 232.8 189.2 

Reaction (4) / Addition of H2O to [(UO2)2(O)(L)2]
2+

 -133.1 -137.5 -86.5 

 

 

 

 

Table 2.   Selected calculated geometrical parameters. 

Parameter
a
 [(UO2)2(O2)(L)2]

2+
 [(UO2)2(O)(L)2]

2+
 [(UO2)2(OH)2(L)2]

2+
 [(UO2)2O2]

2+ 

U=Oyl 1.774,
b
 1.757 1.767,

b
 1.782 1.762, 1.777

b
 

1.757, 1.771
b
 

1.723 

Obr-Obr 1.462 - 2.749 1.460 

Oyl…Oyl 5.464,
b
 3.322 4.75 4.389,

b
 3.291 4.572 

U…Obr 2.330, 2.333 2.108 2.357, 2.362 

2.352, 2.356 

2.299 

U…Obr…U 129.9, 130.0 166.7 106.7 172.6 

U…Obr-Obr…U 145.4 - 162.1 180.0 

Oyl=U-U=Oyl 0.0° 91.4° 0.8° 0.0° 

U…O=Clig 2.378, 2.402 2.376, 2.400 2.391, 2.415 

2.397, 2.418 

- 

U…Nlig 2.807 2.798 2.863, 2.872 - 

Obr-H - - 0.964 - 

Oyl…H-Obr - - 2.9  - 
a
The indexes 'br' and 'lig' indicate bridging and coordinating groups of the TFABDMA ligand, respectively. Oyl 

denotes a uranyl oxygen atom. In [(UO2)2(O2)(L)2]
2+

 there is a slight asymmetry because of the CF3 orientation.  

In some cases average distances can be used because the difference is very small; for [(UO2)2(O2)(L)2]
2+

 the 

optimisations stopped at a slightly asymmetric structure because of the low forces and no application of 

symmetry constraints.  
b
Distances involving Oyl atoms with up orientation in Figure 5. 
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Table 3.   Selected results from the NBO analysis. 

Parameter
a
 [(UO2)2(O2)(L)2]

2+
 [(UO2)2(O)(L)2]

2+
 [(UO2)2(OH)2(L)2]

2+
 

n(U) 1.99 2.03 1.96 

n(Oyl) -0.62,
b
 -0.55 -0.62, -0.56 -0.59,

b
 -0.61 

n(Obr) -0.41 -0.85 -0.92 

n(Obr)2, n(ObrH)2 -0.82 - -0.76 

n(Hbr) - - +0.54 

n(Olig) -0.66 -0.66 -0.65 

n(Nlig) -0.54 -0.54 -0.53 

W(U=Oyl) 2.0,
b
 2.1 2.0,

b
 2.1 2.1,

b
 2.0 

W(U…Obr) 0.5 1.0 0.5 

W(Obr-Obr) 1.0 - - 

W(Obr-H) - - 0.7 

W(U…Olig) 0.4 0.4 0.4 

W(U…Nlig) 0.2 0.2 0.2 
a
The indexes 'uranyl', 'br' and 'lig' indicate uranyl, bridging and coordinating groups of the TFABDMA ligand, 

respectively. Oyl indicates a uranyl O atom.   n is the natural atomic charge.   W is the Wiberg bond index. 
b
Distances involving Oyl atoms with up orientation in Figure 5. 

 

 

 
Scheme 1.   Synthesis of the TFABDMA ligand (H atoms are not shown). 

 

 

 

 

  

Diamide amine-functionalized ligand

R = CH2CF3

 
 

Figure 1.   The generic structure of diamide amine-functionalized ligands.   For the 

TFABDMA ligand (L) employed in the present work, R = CH2CF3 and the net formula is 

C10H18N3O2F3 with a mass of 269 Da. 
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Figure 2.   (a) ESI mass spectrum for the uranyl/L solution (L = TFABDMA).  (b) Expansion 

of the peaks in the green box in (a).   The assignments of charge state z are based on m/z 

separations of 1 for z = 1+ ions and 0.5 for z = 2+ ions.   The assignments are confirmed by 

the CID mass spectra (Fig.  3). 
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Figure 3.   CID mass spectra of complexes identified in red.   The nominal CID voltages of 

(a) 0.6, (b) 0.5 and (c) 0.25 were selected to identify the dominant pathways, not to evaluate 

the fragmentation energies. 
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m/z  
Figure 4.   Mass spectra acquired after isolation of the complexes indicated in red for (a) 1000 

ms, (b) 50 ms and (c) 50 ms.   The observed reactions are with background H2O and O2 in the 

ion trap; the background reactant pressures are constant to within 10%. 
 



18 

 

 
 

Figure 5.   Computed lowest energy dimer structures:  (a) [(UO2)2(O2)(L)2]
2+

; (b) 

[(UO2)2(O)(L)2]
2+

; (c) [(UO2)2(OH)2(L)2]
2+

.  Red = O; dark blue = N; light blue = U; lightest 

blue = F; grey = C; shaded = H.   The H atoms on the organic ligands are not shown.  The 

dihedral angle in (a) and (c) is that between the planes defined by the U…O2 coordination. 

(a) 

(b) 

(c) 
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Figure 6. Selected Kohn-Sham orbitals for [(UO2)2(O2)(L)2]
2+

: (a) UO2 + U…*O2; (b) 

U…*O2 + C=O…U; (c) minor U…*O2; (d) *O2…U. 
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Figure 7. Selected Kohn-Sham orbitals for [(UO2)2(OH)2(L)2]
2+

: (a) U…Obr + UO2; (b) 

U…Obr + UO2; (c) UO2 + U…Obr. 
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Figure 8. Selected Kohn-Sham orbitals for [(UO2)2(O)(L)2]
2+

: (a) U…Obr; (b) UO2 + 

U…Obr; (c) U…Obr. 
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Figure 9.   Computed energies of the [(UO2)2(O2)]
2+

 complex, which is the observed 

[(UO2)2(O2)(L)2]
2+ 

ligated complex shown in Figure 5, but without the terminal organic 

ligands L.   The energy is shown as a function of the dihedral angle, where 180
o
 corresponds 

to a planar U…O2…U structure shown in the middle.  The structures corresponding to bent 

dihedral angles of 128
o
 and 232

o
 are also shown; these two geometries (and their relative 

energies) are the same except for inversion of the dihedral angle.  The computed dihedral 

angle of the ligated complex studied in the experiments is 145
o
.  
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A bent uranyl peroxide dimer

 
 

 

A gas-phase uranyl peroxide dimer coordinated by two polydentate electron-donor ligands 

was synthesized by electrospray ionization, and its reactivity was assessed.  The dimer 

provides an elementary model to evaluate bonding and structures in bent uranyl peroxides, 

including nanospheres.  Computations indicate that the uranyl peroxide structural motif is 

inherently planar with a dihedral U…O2...U angle of 180
o
, but that minor energetic 

perturbations can induce substantial bending, to 145
o
 in the synthesized gas-phase complex. 




