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ABSTRACT OF THE THESIS

The Wobbling to Swimming Transition of Rotated Helices

by

Yi Man

Master of Science in Engineering Science (Mechanical Engineering)

University of California, San Diego, 2013

Professor Eric Lauga, Chair

A growing body of work aims at designing and testing micron-scale syn-

thetic swim- mers. One method, inspired by the locomotion of flagellated bacteria,

consists in applying a rotating magnetic field to a rigid, helically-shaped, propeller

attached to a magnetic head. When the resulting device, termed an artificial bac-

teria flagellum, is aligned perpendicularly to the applied field, the helix rotates

and the swimmer moves forward. Experimental investigation of artificial bacteria

flagella stability shows that at low frequency of the applied field, the helix axis

ix



does not align perpendicularly to the field but wobbles around that direction, with

an angle which increases as the inverse of the field frequency. We use numerical

computations and an asymptotic analysis to provide a theoretical explanation for

this wobbling behavior. We first build a dynamical model for the locomotion of an

artificial bacteria flagellum based on the mechanical balance of forces and moments

and on resistive-force theory for the hydrodynamics. A numerical solution of the

dynamical system demonstrates the wobbling-to-swimming transition as a func-

tion of the helix geometry and the dimen- sionless Mason number quantifying the

ratio of viscous to magnetic torques. We then employ an asymptotic expansion for

near-straight helices to derive an analytical estimate for the wobbling angle allow-

ing to rationalize our computations and past experimental results. These results

can help guide future design of artificial helical swimmers.
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Chapter 1

Introduction

A significant effort in the fluid mechanics literature has focused on the in-

dividual and collective dynamics of low-Reynolds number swimmers. The original

work in the field, started decades ago, aimed at quantifying the kinematics and

energetics of biological microorganisms such as bacteria, spermatozoa, or plankton

[2, 3]. Recently, fluid mechanical studies have also focused on the dynamics of

artificial microswimmers, motivated in part by potential application of small-scale

locomotion to targeted drug delivery, micro-surgery, or diagnostics [4, 5, 6, 7].

As is now well known, the physics of swimming in Stokes flows is quite dif-

ferent from that of swimming on a human length scale. The oft-cited distinguishing

property is the scallop theorem [8], which states that locomotion by a sequence of

shape which is reciprocal (i.e. identical under a time-reversal symmetry) leads to

zero net propulsion. So, for example, the flapping of the fins of a scuba diver does

not work on small length scales. Biological organisms are able to circumvent the

constraints of the theorem by deforming their bodies or appendages (flagella) in a

wave-like fashion breaking the time-reversibility requirement [9, 10].

Broadly speaking, three different types of synthetic micro/nano swimmers

have been proposed. The first kind exploits chemical reactions on patterned

catalytic surfaces and the flow resulting from phoretic or electrokinetic motion

[11, 12, 13, 14, 15, 16, 17]. The second type, actuated by external (typically mag-

netic) fields, exploits the presence of a nearby surface to escape the constraint of

the scallop theorem under a time-periodic actuation [18, 19, 20]. The final category
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of synthetic swimmer is inspired by the locomotion strategy of flagellated bacteria,

namely the rotation of one or many helical flagella [21]. Flexible, straight, fila-

ments can acquire chirality when actuated in rotation by an external field, leading

to propulsion scaling nonlinearly with the field frequency [22, 23, 24]. Alterna-

tively, the chirality can be built in the design and fabrication of the filament, the

simplest examples of which are rigid helical filaments attached to magnetic heads

which, under an externally rotating magnetic field, rotate as cork-screws and lead

to forward motion [25, 26, 27].

In this paper we focus on the dynamics of such rigid helical propeller, re-

ferred to in the literature as artificial bacteria flagellum (or flagella). Different

experimental protocols have been proposed to design them capable of precise mo-

tion control yet high speed velocities. One method uses a self-scrolling technique

to fabricate a nanobelt-based artificial bacteria flagellum consisting of a helical

metal tail attached to a thin square soft-magnetic metal head [25]. This helix has

a width of 1.8 µm, a wavelength of 10 µm, and is equipped with a square head, of

width 1.8 µm [25, 1], which can alternatively be replaced by a microholder to al-

low cargo transport [28]. A different design was implemented using glancing angle

deposit [26]. The helix in this case is made of silicon dioxide, and has a width of

200− 300 nm and a length of 1− 2 µm [26]. In both cases, the artificial bacteria

flagella possess a magnetic moment perpendicular to the long axis of the helix

and are controlled by an externally-rotating magnetic field generated by triaxial

Helmholtz coils. Under this actuation, the nano-belt based swimmer in Ref. [25]

with four wavelengths is able to swim with velocity ≈ 5 µm/s at an input frequency

of about 10 Hz while the glass (silicon dioxide) helix from Ref. [26] can swim at a

velocity ≈ 40 µm/s at a field frequency of about 150 Hz.

In order for a helical filament to give rise to efficient forward propulsion, the

axis of the helix needs to remain straight and to point in the swimming direction.

In that case, local thrust arising from the fluid drag is everywhere directed along

the helix axis [9]. Therefore, in order for artificial bacteria flagella to be efficient, it

is experimentally important that their axis remain always perpendicular to applied

field, in which case one would then expect a swimming velocity scaling linearly with
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the input frequency [25, 1, 26]. Experimentally, problems are however seen to arise

at both high and low frequencies. When the frequency is larger than a critical value

(step-out frequency), the viscous drag becomes larger than the typical magnetic

torque and the helix can no longer follow the field [1, 27].
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Figure 1.1: Experimental dependence of helix (artificial bacterial flagella) wob-
bling angle as a function of the magnetic field frequency (log-log scale), reproduced
from Ref. [1]. The line in the figure has the slope of −1 showing that the wobbling
angle scales as the inverse of the frequency.

Perhaps more surprisingly, at low actuation frequency, the axis of the arti-

ficial bacteria flagellum is observed experimentally to not to remain straight and

perpendicular to the plane of the magnetic field but instead undergoes a periodic

processive movement at an angle with the (desired) average swimming direction.

This movement, referred to as wobbling, is best characterized by an average wob-

bling angle [1], with straight swimming corresponding to a wobbling angle of zero.

At small frequencies (typically below a few Hertz in the experiments of Ref. [1])

the wobbling angle is observed to increase as the frequency decreases, from zero

up to a maximum of ninety degrees at the lowest test frequency (meaning that,

in this limit, the helix axis actually rotates at a right angle with respect to the

desired swimming direction). Plotting the measured wobbling angle from Ref. [1]

in Fig. 1.1 we see that the wobbling angle, β, scales as the inverse first power of
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the field frequency, β ∼ ω−1. In this paper, we use numerical computations and a

theoretical analysis to provide a physical model for this wobbling behavior.

Our paper is organized along three sections. We first build a mathemat-

ical model of the dynamics of artificial bacteria flagella based on the mechanical

balance of forces and torques together with resistive force theory for the hydrody-

namics. We then employ numerical computations to characterize the steady-state

locomotion of artificial bacteria flagella and demonstrate numerically a transition

from wobbling to swimming with a similar inverse frequency scaling as the one

seen experimentally. We finally employ an asymptotic analysis to provide an ana-

lytical model for the wobbling behavior, recovering in particular the scaling with

the frequency and predicting the geometrical factors affecting it.

Chapter 1, in full, has been submitted for publication of the material as it

may appear in Physics of Fluids, 2013, Man, Yi; Lauga, Eric. The thesis author

was the primary investigator and author of this paper.



Chapter 2

Modeling the dynamics of

artificial bacterial flagella

2.1 Geometry

We model an artificial bacterial flagellum as a rigid helix of circular cross-

section with no head, as illustrated in Fig. 2.1. The geometric parameters are

therefore: the radius of helical body (R), its wavelength along the helix axis (λ),

the helix angle (θ), the radius of the helix cross-section (r) and the number of

wavelength (n). We set up two frames of reference, the laboratory frame, denoted

(e1, e2, e3), and the frame attached to the body, termed (ex, ey, ez). The wobbling

angle, which is the angle between the axis of the helix (ez) and the desired direction

of the forward velocity (e3), is denoted β. In the body frame, the shape of the helix

remains constant and is described by the location vector, xh, of material points

along the helix centerline as

[xh]body = [R cos(καs), R sin(καs), αs]T , (2.1)

where s is the arclength coordinate, κ is the wavenumber, and α = cos θ. In

this paper, we use the subscripts “body” and “lab” when we explicitly give the

components of a vector to denote in which frame of reference these components

are to be understood. We also denote vectors as column vectors and thus use a

transpose sign, T , when the coordinates are written along a row.

5
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Figure 2.1: Geometry of the rigid helix as a model for an artificial bacterial
flagellum. The parameters of the helix are its wavelength λ, the helix angle θ, the
radius R, the diameter of the cross-section 2r, and the number of wavelengths n.
The wobbling angle, which is the angle between the axis of the helix and the mean
forward velocity, is denoted β. The vectors (e1, e2, e3) and (ex, ey, ez) constitute
the laboratory frame and body frame respectively. The magnetic field, B, rotates
in the (e1, e2) plane with frequency ω.

2.2 Dynamics

2.2.1 External torque

The locomotion of the artificial bacteria flagellum is actuated by an external

magnetic field, B, rotating in the (e1, e2) plane with frequency ω and amplitude

B0 as

[B]lab = B0[cos(ωt), sin(ωt), 0]T . (2.2)

Experimentally this magnetic field provides an external torque to the head of

the artificial flagellum and no external force. Since the presence of the head is

not necessary form a hydrodynamic standpoint to obtain wobbling, we ignore it

hydrodynamically in our model. As a proxy for the head’s magnetization we

assume that a constant magnetic moment of magnitude H, is present along the

ey direction in the body frame. The torque imposed by the magnetic field, Lm, is
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then obtained as

Lm = Hey ×B. (2.3)

2.2.2 Hydrodynamics

In the experiments of Ref. [1], the typical rotation frequency of the field

reaches a maximum of tens of Hz and the helix radius is on the order of a few

microns, leading to a typical Reynolds number for locomotion in water much less

than unity. The fluid dynamics for the flow around the artificial bacteria flagellum

is thus well approximated by a solution to the incompressible Stokes equations.

Given the slenderness of the helical geometry, it is appropriate to use resistive-

force theory to describe the distribution of forces and moments on the moving

helix [29, 30, 31, 9]. The basic assumption of resistive-force theory is that the

hydrodynamic forces acting on the slender helix moving through the fluid per unit

length, dFv, is locally proportional, albeit in an anisotropic fashion, to the relative

velocity, U, between the helix and the surrounding fluid. Given the unit tangent

vector along the helix, t = dxh/ds, and the shear viscosity of the fluid, µ, this

linear relationship is written as

dFv = −ξ‖U‖ − ξ⊥U⊥, (2.4)

where U‖ = (U · t)t and U⊥ = U−U‖ are the components of velocity along the

tangential and normal directions respectively and ξ‖ and ξ⊥ are the corresponding

viscous drag coefficients [29]

ξ‖ ≈
2πµ

ln(2λ/r)− 1/2
, (2.5a)

ξ⊥ ≈ 2ξ‖. (2.5b)

Resistive force theory is the leading-order term in a systematic expansion of the

flow around slender bodies in powers of ∼ (lnL/r)−1, where L is the total length

of helix [30, 31, 32, 33, 9]. The next-order terms in the case of rotated helices can

be estimated to be about 0.1 smaller than the leading-order term, which is thus

sufficient to qualitatively describe the physics of wobbling.
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With the force distribution, dFv, known everywhere along the helix, it is

straightforward to calculate its contribution to the net moment per unit length

acting on the helix as xh × dFv. An additional contribution to a torque on the

helix arises from its instantaneous rotation around its centerline, described by a

moment density dLr = 4πµr2(Ω · t)t where Ω is the helix rotation rate [34] . This

term is typically of order ∼ (r/L)2 smaller than the torque arising from resistive-

force theory and can usually be disregarded, but it becomes important when the

helix is a near-rod as it prevents its viscous mobility matrix to become singular.

We therefore keep it in our formulation and write the net hydrodynamic torque

per unit length acting on the helix as

dLv = xh × dFv + dLr. (2.6)

Integrating Eqs. (2.4) and (2.6) along the flagellum finally leads to a linear

relationship relating the total hydrodynamic force, Fv, and torque, Lv, to the

rigid-body velocity, U, and rotation rate, Ω, of the swimming helix as[
Fv

Lv

]
= D

[
U

Ω

]
· (2.7)

The 6× 6 viscous resistance tensor, D, has constant coefficients in the body frame

of the helix. The calculation for its components is straightforward but tedious,

and the final nondimensionalized results are given in Appendix A.

2.2.3 Force and torque balance

The dynamics of the helix is governed by the balance of force and torque

as

Fv = 0, (2.8a)

Lv + Lm = 0. (2.8b)

Since the viscous resistance tensor, D, has constant coefficients when expressed

in the body frame, it is necessary to enforce Eq. (2.8) in the body frame. The

dynamics of the body frame is described by the three vector equations

dex
dt

= Ω× ex,
dey
dt

= Ω× ey,
dez
dt

= Ω× ez. (2.9)
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The combination of Eq. (2.7), Eq. (2.8), and Eq. (2.9) has a total of 15 unknowns

(6 kinematics components and 9 components of the rotating frame coordinates)

together with a 6×6 linear system (Eqs. 2.7, 2.8) and a 9×9 ODE system (Eq. 2.9)

leading to a closed system.

2.3 Nondimensionalization

In order to nondimensionalize the problem we use the wavelength Λ cal-

culated along the helix centerline as length scale (Λ = λ/cos θ) and the inverse

of magnetic field frequency, ω−1, as the characteristic time scale. Geometrically,

there are three independent dimensionless parameters describing the helix, namely

the helix angle θ, the number of wavelengths n, and the dimensionless radius of

the flagellum, which we denote γ. The viscous drag coefficients are nondimension-

alized by the fluid viscosity and thus we have, using bars to denote dimensionless

quantities,

ξ̄‖ =
ξ‖
µ

=
2π

ln(2 cos θ/γ)− 1/2
,

ξ̄⊥ =
ξ⊥
µ

= 2ξ̄‖.

(2.10)

UsingB0 as the scale of the magnetic field we have therefore [B̄]lab = [cos t̄, sin t̄, 0]T ,

where t̄ is the dimensionless time, t̄ = ωt. The dimensionless version of the force

and torque balance, Eq. (2.8), is given by

µωΛ2F̄v = 0, (2.11a)

µωΛ3

HB0

L̄v + L̄m = 0. (2.11b)

Inspecting Eq. (2.11b) we observe that a dimensionless group appears in the torque

balance. It is termed a Mason number, Ma = µωΛ3/HB0, and quantifies the

typical ratio of hydrodynamic to magnetic torque. If we write the resistance tensor

in the body frame, D̄, as composed of 4 sub-tensors

D̄ =

[
D̄a D̄b

D̄bT D̄c

]
, (2.12)
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then the final dimensionless equations to solve are given by the system

D̄aŪ + D̄bΩ̄ = 0, (2.13a)

Ma(D̄bT Ū + D̄cΩ̄) + ey × B̄ = 0, (2.13b)

[B̄]lab = [cos t̄, sin t̄, 0]T , (2.13c)
dex
dt

= Ω̄× ex,
dey
dt

= Ω̄× ey,
dez
dt

= Ω̄× ez. (2.13d)
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Figure 2.2: Example of a straight swimming artificial bacteria flagellum. Veloc-
ity (left) and rotation rate (right) in the body frame (top) and laboratory frame
(bottom) with n = 4 wavelengths, a helix angle of θ = π/4, and Ma = 0.4. In the
body frame, both the velocity and rotation rates reach steady values, while in the
laboratory frame the velocities in the e1 and e2 directions oscillate around a zero
mean. The wobbling angle in this case is β ≈ 0.9◦ which is almost zero and thus
the helix essentially swims in a straight line. The four panels display the variation
with the dimensionless time of: (a) velocity in the body frame; (b) rotation rate
in the body frame; (c) velocity in the laboratory frame; (d) rotation rate in the
laboratory frame.

Chapter 2, in full, has been submitted for publication of the material as it

may appear in Physics of Fluids, 2013, Man, Yi; Lauga, Eric. The thesis author
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Chapter 3

Numerical Results

To address wobbling we first turn to numerical simulations of the system

in Eq. (2.13). To be relevant to the the experiments in Ref. [1], we fix the number

of wavelengths, n, to be 3 or 4 and we pick γ = 2.3 × 10−3. We vary the helix

geometry by addressing four different helix angles, namely ( π/10, π/6, π/4, π/3),

and we let the Mason number, Ma, range from 0.001 to 0.1. The system is solved

using a Crank-Nicolson method where, at each time step, the rotation rate is

obtained from the linear system, Eqs. (2.13a)-(2.13b), with the information from

the location of the body frame from the previous step.

Our numerical simulations demonstrate the experimentally-observed tran-

sition from wobbling at low Mason number to directional swimming at high Mason

number. To illustrate this transition we plot in Figs. 2.2 and 3.1 the dynamics,

both in the body frame (top) and the laboratory frame (bottom) of two helices

displaying qualitatively different behaviors. In Fig. 2.2 we show the velocity (left)

and rotation rate (right) of a helix with n = 4 wavelengths and a helix angle of

θ = π/4 at a Mason number of Ma = 0.4. The helix is seen to swim straight

(small wobbling angle β ≈ 0.9◦). In contrast we show in Fig. 3.1 the kinematics

for the same helix at a smaller Mason number of Ma = 0.0063. In that case, as

can clearly be seen in Fig. 3.1c, the components of the helix velocity in the plane

perpendicular to the average swimming direction are time-periodic and of ampli-

tude large compared to the average swimming speed along the third direction.

This is an indication of wobbling with a large angle (here, β ≈ 35◦). Wobbling

12
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Figure 3.1: Same as Fig. 2.2 but with a Mason number decreased to Ma = 0.0063.
In this case significant wobbling is obtained with β ≈ 35◦. Compared to Fig. 2.2 the
mean velocity in the forward direction has decreased while the velocity amplitudes
in other two directions have increased. In addition, the rotation rate in the ex
direction is no longer zero.

can also be seen by comparing the values of the rotation rates in the body frame

in Fig. 2.2b and Fig. 3.1b. When no wobbling occurs and the helix is swimming

straight, the body-frame rotation rate includes only a component in the direction

of the helix axis (z direction). In contrast, for a helix with significant wobbling,

a component of the rotation rate perpendicular to the direction of the axis helix

exists (x direction), of the same order as the axial rotation rate.

To further quantify wobbling, we perform simulations where we measure

the time-variation of the wobbling angle. The results for n = 3 are illustrated in

Fig. 3.2 for two values of the helix angles. For all values of the Mason number, we

observe convergence of the wobbling angle to a steady value. The dependence of

that long-time, steady value on the Mason number is shown in Fig. 4.1 for n = 3

(left) and n = 4 (right) and for four values of the helix angle. For every helix, the
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Figure 3.2: Dependence of the wobbling angle β (in degrees) on the dimensionless
time, ωt, for a helix with n = 3 wavelengths and an angle of θ = π/6 (a) and
θ = π/4 (b).

wobbling angle is 90◦ for small Ma number while it decreases to zero as β ∼ Ma−1

for large values of the Mason number. This dependence with Ma is reminiscent

of the inverse frequency behavior seen experimentally in Fig. 1.1 [1]. For a fixed

Mason number, the wobbling-to-swimming transition is also affected by the helix

geometry. Specifically, directed swimming happens sooner for helices with larger

number of wavelengths (n) and smaller helix angles (θ).

Chapter 3, in full, has been submitted for publication of the material as it

may appear in Physics of Fluids, 2013, Man, Yi; Lauga, Eric. The thesis author

was the primary investigator and author of this paper.



Chapter 4

Asymptotic Analysis

Our numerical computations demonstrate the wobbling-to-swimming tran-

sition. We saw in particular in the transition region an inverse linear relationship

between wobbling angle and Mason number. In this section we present an analyt-

ical description of the helix dynamics and recover the β ∼ Ma−1 scaling. In order

to proceed we take advantage of the fact that if the helix angle is zero, θ = 0,

the helix turns into a rod which does not swim but for which the steady state

dynamics can be solved exactly. We therefore examine the dynamics analytically

in the small-θ limit.
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Figure 4.1: Dependence of the long-time wobbling angle β (in degrees) on the
Mason number, Ma, for four different helix angles, π/10, π/6, π/4, π/3, and a
number of wavelengths n = 3 (left) and n = 4 (right). Results are plotted on a
log-log scale demonstrating a β ∼ Ma−1 relationship in the wobbling-to-swimming
transition.

We consider the dimensionless dynamical system given by Eq. (2.13) and

15



16

drop the bars for notation convenience. We pick the number of wavelengths, n, to

be an integer in order to simplify some of the algebra (although our procedure re-

mains valid for non-integer number of wavelengths). First off, in order to facilitate

the expansion, we write Eq. (2.13) component by component as

(DaijUj +DbijΩj) ei = 0, (4.1a)

Ma (DbjiUj +DcijΩj) ei + εmnleynBlem = 0, (4.1b)
dei
dt

= Ω× ei = εjkpΩkeipej = εijkΩkej. (4.1c)

In Eq. (4.1), in order to differentiate between base vectors in the laboratory

vs. body frame we use the following convention: vectors with subscripts (m,n, l)

are in the laboratory frame (therefore 1, 2, 3) while those with with subscripts

(i, j, k, p) are in the body frame (therefore x, y, z). As a consequence, the terms

eyn in Eq. (4.1b) and eip in Eq. (4.1c) are different: the first one refers to the

components in the laboratory frame of the vector ey while the latter refers to the

pth components of ei in the body frame, i.e. δip. In the body frame we write

U = Uxex + Uyey + Uzez and Ω = Ωxex + Ωyey + Ωzez, and similarly for each

components of the tensor D. The advantage of using the body frame is that, in

it, the components of D are all constant. The components of each body frame

vector, ei, in the laboratory frame are written as [ei]lab = [ei1, ei2, ei3]
T , for any i

is in (x, y, z).

Aiming at solving Eq. (4.1) order by order, we expand all variables in powers

of θ as

{Ui,Ωi, Dij, [ei]lab, ξ‖} = {U (0)
i ,Ω

(0)
i , D

(0)
ij , [ei]

(0)
lab, ξ

(0)
‖ }

+θ{U (1)
i ,Ω

(1)
i , D

(1)
ij , [ei]

(1)
lab, ξ

(1)
‖ }

+ . . . , (4.2)

for any i, j in (x, y, z). In the body frame, the coefficients of the tensor D, written

under matrix form as Dbody, are given in Appendix A. They involve the helix ge-

ometry and the viscous resistance coefficient, ξ‖. The expansion for that coefficient
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is

ξ‖ =
2π

ln(2 cos θ/γ)− 1/2
= 2π

[
ln

2

γ
− 1

2
− θ2

2
+ o(θ2)

]−1
=

2π

ln(2/γ)− 1/2
+

πθ2

[ln(2/γ)− 1/2]2
+ o(θ2). (4.3)

We therefore obtain ξ
(0)
‖ = 2π/[ln(2/γ)− 1/2], ξ

(1)
‖ = 0, and ξ

(2)
‖ = π/[ln(2/γ)− 1/2]2.

Using the expressions in Appendix A, it follows that

[D]
(0)
body = ξ

(0)
‖



−2n 0 0 0 −n2 0

0 −2n 0 n2 0 0

0 0 −n 0 0 0

0 n2 0 −2n3

3
0 0

−n2 0 0 0 −2n3

3
0

0 0 0 0 0 4πγ2

ξ
(0)
‖
n


(4.4)

and

[D]
(1)
body = ξ

(0)
‖



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 n
2π

0

0 0 0 0 0 0

0 0 n
2π

0 0 − n
2π2

0 0 0 0 − n
2π2 0


. (4.5)

4.1 Zeroth order solution

At zeroth order, the helix becomes a rigid rod. In that case, Eq. (4.1)

becomes (
Da

(0)
ij U

(0)
j +Db

(0)
ij Ω

(0)
j

)
e
(0)
i = 0, (4.6a)

Ma
(
Db

(0)
ji U

(0)
j +Dc

(0)
ij Ω

(0)
j

)
e
(0)
i + εmnle

(0)
ynBlem = 0, (4.6b)

de
(0)
i

dt
= εijkΩ

(0)
k e

(0)
j . (4.6c)
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The obvious steady solution to Eq. (4.6) is then given by

U (0)
x = U (0)

y = U (0)
z = 0, (4.7a)

Ω(0)
x = Ω(0)

y = 0, Ω(0)
z = 1, (4.7b)

[ex]
(0)
lab = [sin(t+ ψ0),− cos(t+ ψ0), 0]T , (4.7c)

[ey]
(0)
lab = [cos(t+ ψ0), sin(t+ ψ0), 0]T , (4.7d)

[ez]
(0)
lab = [0, 0, 1]T , (4.7e)

where ψ0, satisfying

sinψ0 = 4πγ2nMa, (4.8)

is the phase delay between the applied field and the rotation of the rod. At leading

order, the rod simply is aligned with, and rotates around, the axis perpendicular

to the plane of the applied field with no wobbling.

4.2 First order solution

At order O(θ), Eq. (4.1) become

0 =
(
Da

(0)
ij U

(1)
j +Db

(0)
ij Ω

(1)
j +Da

(1)
ij U

(0)
j +Db

(1)
ij Ω

(0)
j

)
e
(0)
i

+
(
Da

(0)
ij U

(0)
j +Db

(0)
ij Ω

(0)
j

)
e
(1)
i , (4.9a)

0 = Ma
(
Db

(0)
ji U

(1)
j +Dc

(0)
ij Ω

(1)
j +Db

(1)
ji U

(0)
j +Dc

(1)
ij Ω

(0)
j

)
e
(0)
i

+ Ma
(
Db

(0)
ji U

(0)
j +Dc

(0)
ij Ω

(0)
j

)
e
(1)
i + εmnle

(1)
ynBlem, (4.9b)

de
(1)
i

dt
= εijk

(
Ω

(0)
k e

(1)
j + Ω

(1)
k e

(0)
j

)
. (4.9c)

The system of equation for the first-order unknowns in Eq. (4.9) is linear

and can thus be solved exactly. Using Eq. (4.9a), the number of unknowns can be

decreased by three

U (1)
x = −n

2
Ω(1)
y , U (1)

y =
n

2
Ω(1)
x , U (1)

z = 0. (4.10)

Then using Eq. (4.9b) and combining it with Eq. (4.10), the rotational components

can be obtained as the function of the components of body frame vectors expressed
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in the laboratory frame as

Ω(1)
x = − 6

ξ
(0)
‖ n3Ma

[
e
(1)
y3 cosψ0 − e(1)z1 sinψ0 sin(t+ ψ0) (4.11a)

+e
(1)
z2 sinψ0 cos(t+ ψ0)

]
,

Ω(1)
y = − 3

π2n2
+

6 sinψ0

ξ
(0)
‖ n3Ma

[
e
(1)
y3 + e

(1)
z1 cos(t+ ψ0) (4.11b)

+e
(1)
z2 sin(t+ ψ0)

]
, (4.11c)

Ω(1)
z = −e(1)z3 +

1

sinψ0

(e
(1)
y2 cos t− e(1)y1 sin t). (4.11d)

Finally substituting Eq. (4.11) into Eq. (4.9c), we obtain the full order-one solution

as

Ω(1)
x =

18 cosψ0

π2ξ
(0)
‖ n5Ma

(
1 + 24πγ2

ξ
(0)
‖ n2

) , Ω(1)
y = − 3

π2n2
, Ω(1)

z = 0, (4.12a)

[ex]
(1)
lab =

0, 0,
18 cosψ0

π2ξ
(0)
‖ n5Ma

(
1 + 24πγ2

ξ
(0)
‖ n2

)

T

, (4.12b)

[ey]
(1)
lab =

[
0, 0,− 3

π2n2

]T
, (4.12c)

[ez]
(1)
lab = −

√
[Ω

(1)
x ]2 + [Ω

(1)
y ]2 [cos(t+ ψ0 − ψ1), sin(t+ ψ0 − ψ1), 0]T ,(4.12d)

with tanψ1 = Ω
(1)
x /Ω

(1)
y .

4.3 Wobbling angle

With the knowledge of both the zeroth and first-order solution we can

now calculate our prediction for the wobbling angle, β. It is defined as sin β =√
e2z1 + e2z2. Since the zeroth-order solution shows no wobbling, we have β = O(θ)

and thus can use the approximation sin β ≈ β. Given Eq. (4.12d) we therefore
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obtain β ≈ θ

([
Ω

(1)
x

]2
+
[
Ω

(1)
y

]2)1/2

which, using Eq. (4.12a), becomes

β ≈ 3θ

π2n2


 6 cosψ0

ξ
(0)
‖ n3Ma

(
1 + 24πγ2

ξ
(0)
‖ n2

)


2

+ 1


1/2

. (4.13)

Our model, Eq. (4.13), predicts that the wobbling angle decreases with

the Ma number, increases with the helix angle, and decreases for large number of

wavelengths n, which are that the three main observations from our computational

results. In addition, for low values of Ma we get from Eq. (4.13) the approximate

angle

β ≈ 18θ cosψ0

π2ξ
(0)
‖ n5Ma

(
1 + 24πγ2

ξ
(0)
‖ n2

) · (4.14)

This can be further simplified by noting that cosψ0 =
√

1− 16π2γ4n2Ma2 ≈ 1 at

low Ma. In addition, 24πγ2/ξ
(0)
‖ n2 ≈ 12γ2[ln(2/γ)− 1/2]/n2 � 1 for γ � 1. Our

approximation, Eq. (4.14), can therefore be further simplified as

β ≈ 18θ

π2ξ
(0)
‖ n5Ma

≈ 9[ln(2/γ)− 1/2]

π3

θ

n5Ma
· (4.15)

The theoretical approach allows therefore to recover the β ∼ Ma−1 scaling observed

experimentally and numerically in the wobbling-to-swimming transition.

4.4 Time-averaged swimming velocity

Using our model, we can beyond the prediction for the wobbling angle and

calculate the time-averaged swimming velocity of the helix at leading order. The

swimming speed is written as U = Uiei in the body frame, which can be expended

as

U = U
(0)
i e

(0)
i + θ

(
U

(0)
i e

(1)
i + U

(1)
i e

(0)
i

)
+ θ2

(
U

(0)
i e

(2)
i + U

(1)
i e

(1)
i + U

(2)
i e

(0)
i

)
+ ...

(4.16)
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where i is in (x, y, z). The forward velocity of interest is the component U3 along

the direction perpendicular to the applied magnetic field. With the information

from Eqs. (4.7), (4.10), and (4.12), we get the velocity in the laboratory frame.

U1 = −θn
2

√[
Ω

(1)
x

]2
+
[
Ω

(1)
y

]2
sin(t+ ψ0) + o(θ), (4.17a)

U2 =
θn

2

√[
Ω

(1)
x

]2
+
[
Ω

(1)
y

]2
cos(t+ ψ0) + o(θ), (4.17b)

U3 = o(θ), (4.17c)

and therefore we have to go to the next order in θ to obtain the leading-order

behavior for U3. At order O(θ2) we have

U(2) = U
(0)
i e

(2)
i + U

(1)
i e

(1)
i + U

(2)
i e

(0)
i , (4.18)

and given that we know that U
(0)
i = U

(1)
z = e

(0)
x3 = e

(0)
y3 = 0, and e

(0)
z3 = 1, we obtain

U
(2)
3 = U (1)

x e
(1)
x3 + U (1)

y e
(1)
y3 + U (2)

z = U (2)
z , (4.19)

which means we only need to solve for U
(2)
z . At second order, Eq. (4.1a) becomes(

Da
(0)
ij U

(2)
j +Db

(0)
ij Ω

(2)
j +Da

(1)
ij U

(1)
j +

Db
(1)
ij Ω

(1)
j +Da

(2)
ij U

(0)
j +Db

(2)
ij Ω

(0)
j

)
e
(0)
i (4.20)

+

(
Da

(0)
ij U

(1)
j +Db

(0)
ij Ω

(1)
j +Da

(1)
ij U

(0)
j +Db

(1)
ij Ω

(0)
j

)
e
(1)
i

+

(
Da

(0)
ij U

(0)
j +Db

(0)
ij Ω

(0)
j

)
e
(2)
i = 0. (4.21)

Combining the solutions in Eqs. (4.7), (4.10) and (4.12), we obtain the

simplifications (
Da

(0)
ij U

(0)
j +Db

(0)
ij Ω

(0)
j

)
e
(2)
i = 0, (4.22a)(

Da
(0)
ij U

(1)
j +Db

(0)
ij Ω

(1)
j

)
e
(1)
i = 0, (4.22b)(

Da
(1)
ij U

(0)
j +Db

(1)
ij Ω

(0)
j

)
e
(1)
i = 0. (4.22c)

As we have Da
(1)
ij = U

(0)
i = 0, the corresponding terms cancel out, and Eq. (4.21)

simplifies to (
Da

(0)
ij U

(2)
j +Db

(0)
ij Ω

(2)
j +Db

(1)
ij Ω

(1)
j +Db

(2)
ij Ω

(0)
j

)
e
(0)
i = 0. (4.23)
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The second order expansion of [Db]body is

[Db]
(2)
body = ξ

(0)
‖


− 3

8π
n 3

4
n2 0

−3
4
n2 − 1

8π
n 0

0 0 n
2π

+ ξ
(2)
‖


0 −n2 0

n2 0 0

0 0 0

 . (4.24)

Substituting Eq. (4.24) into Eq. (4.23), we obtain

−nU (2)
z +

n

2π
Ω(1)
y +

n

2π
= 0. (4.25)

With Eq. (4.19), this finally leads to the leading-order expression for the time-

averaged swimming speed in the laboratory frame as

U
(2)
3 =

1

2π

(
1− 3

π2n2

)
· (4.26)

Note that we have U3 = O(θ2), while both U1 and U2 are O(θ), and thus for a

small helix angle the forward swimming velocity is much smaller then the velocities

perpendicular to the average swimming direction.

Chapter 4, in full, has been submitted for publication of the material as it

may appear in Physics of Fluids, 2013, Man, Yi; Lauga, Eric. The thesis author

was the primary investigator and author of this paper.



Chapter 5

Discussion

Motivated by experimental work on artificial bacterial flagella driven by ex-

ternal magnetic fields we address theoretically in this paper the dynamics of rigid

helices under time-periodic torques. Using numerical computations we obtain, in

agreement with experimental results, that driven helices do swim in a directed

fashion at high Mason number but wobble around their mean swimming direction

for lower values of the Mason number. During the wobbling-to-swimming transi-

tion, the wobbling angle varies as the inverse of the Mason number. The shape of

the helix also affects this transition and helices with larger number of wavelengths

or smaller helix angle are seen to swim sooner. We then use an asymptotic anal-

ysis of the helix dynamics in the near-rod geometric limit to derive analytically

an estimate for the wobbling angle. Our prediction, Eq. (4.15), shows the same

inverse Ma dependence as in our computations and in past experimental work, and

quantifies the strong influence of the helix geometry on the swimming behavior.

We hope our results will help guide the future design of artificial bacterial

flagella. Two factors important for the practical operation of micro-swimmers are

that they remain stable while being efficient energetically. Energy efficiency is

bound to play an important role since any external source of power not converted

to useful propulsive work will be dissipated in the surrounding fluid, leading to

heating which is possibly problematic in biological environments. As is well known,

a rotating rigid helix is most efficient when its helix angle, θ, is around 40 degrees

[9]. Stability was addressed specifically in our paper, and we now understand the

23
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dynamic and energetic factors impacting it. From Eq. (4.15), we have β ∼ θ/n5Ma

and we see that, with the value of θ fixed, stability of swimming (i.e non-wobbling)

will be obtained for large values of n and Ma. Recalling that Ma = µωΛ3/HB0, we

get a wobbling angle scaling as β ∼ θHB0/µωn
5Λ3. Perhaps-counter-intuitively,

wobbling is avoided when small magnetic field and magnetic moments are used.

Low frequencies should also be avoided. In addition, given that the total helix

length is L ∼ nΛ, we see that long helices, with many wavelengths, are preferable.

Of course the work considered here only addressed the case of a single ar-

tificial bacterial flagellum, and it could be that swimmers composed or more than

one helices would be more stable. For example, two identical parallel and counter-

rotating helices are stable in the plane containing the two helix axis, which would

therefore constraint potential wobbling to the plane perpendicular to it. A combi-

nation of such helix pair with its mirror image would be stable and always swim

along a straight line, but such elaborate geometry would probably require infinite

ingenuity to be implemented in practice. Decreasing length scales even further to

design nanometer-scale swimmers will further complicate the dynamics by intro-

ducing thermal fluctuations. The hunt for the ultimate stable and efficient artificial

low-Reynolds swimmer is still open.

Chapter 5, in full, has been submitted for publication of the material as it

may appear in Physics of Fluids, 2013, Man, Yi; Lauga, Eric. The thesis author

was the primary investigator and author of this paper.



Appendix A

mobilities

All 21 terms of the symmetric viscous resistance matrix, [D̄]body = ξ̄‖M,

are given below; the remaining 15 terms can be found using M = MT . We use the

notation α = cos θ, 2πη = sin θ, φ = 2πn, and n is any positive number.
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M11 = −π
2
η2 sin 2φ− 2(1− π2η2)n (A.1a)

M12 = −π
2
η2(1− cos 2φ) (A.1b)

M13 = −αη(1− cosφ) (A.1c)

M14 = −παη2n
(

1 +
cosφ

2

)
+

3

8
αη2 sin 2φ (A.1d)

M15 = παη2n

(
nπ − sinφ

2

)
+

3

8
αη2(1− cos 2φ)− αn2 (A.1e)

M16 =
η

π
(1− 2π2η2)(1− cosφ) (A.1f)

M22 =
π

2
η2 sin 2φ− 2(1− π2η2)n (A.1g)

M23 = αη sinφ (A.1h)

M24 = −παη2n
(
nπ +

sinφ

2

)
+

3

8
αη2(1− cos 2φ) + αn2 (A.1i)

M25 = −παη2n
(

1− cosφ

2

)
− 3

8
αη2 sin 2φ (A.1j)

M26 = −η
π

(1− 2π2η2) sinφ (A.1k)

M33 = (α2 − 2)n (A.1l)

M34 = −α2ηn sinφ− 4πη3(1− cosφ) (A.1m)

M35 = α2ηn cosφ+ 4πη3 sinφ (A.1n)

M36 = 2παη2n (A.1o)



27

M44 =
3

4
α2η2n cosφ+

(
η2

4π
+
π

2
α2η2n2 − 5

16π
α2η2

)
sin 2φ− (A.2a)(

1− α2

2

)
η2n− 2

3
α2
(
1− π2η2

)
n3 +

8π3γ2

ξ̄‖
η2
(
n− sin 2φ

4π

)
(A.2b)

M45 =
1

4
α2η2n sinφ+

(
η2

4π
+
π

2
α2η2n2 − 3

16π
α2η2

)
(1− cosφ) (A.2c)

+
π

2
α2η2n2 − 2π2γ2

ξ̄‖
η2 (1− cos 2φ) (A.2d)

M46 =
αηn

π

(
1− 2π2η2

)
sinφ− α3η

2π2
(1− cosφ)− 4πγ2

ξ̄‖
αη (1− cosφ)(A.2e)

M55 = −3

4
α2η2n cosφ−

(
η2

4π
+
π

2
α2η2n2 − 5

16π
α2η2

)
sin 2φ (A.2f)

−
(

1− α2

2

)
η2n− 2

3
α2(1− π2η2)n3 +

8π3γ2

ξ̄‖
η2
(
n+

sin 2φ

4π

)
(A.2g)

M56 = −αηn
π

(1− 2π2η2) cosφ+
α3η

2π2
sinφ+

4πγ2

ξ̄‖
αη sinφ (A.2h)

M66 = −2η2n(1− 2π2η2) +
4πγ2

ξ̄‖
α2n (A.2i)
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