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Optimization of PET System Design for Lesion
Detection

Jinyi Qi, Member, IEEE

Abstract— Traditionally, the figures of merit used in designing
a PET scanner are spatial resolution, noise equivalent count rate,
noise equivalent sensitivity, etc. These measures, however, do not
directly reflect the lesion detectability using the PET scanner. Here
we propose to optimize PET scanner design directly for lesion de-
tection. The signal-to-noise ratio (SNR) of lesion detection can be
easily computed using the theoretical expressions that we have pre-
viously derived. Because no time consuming Monte Carlo simu-
lation is needed, the theoretical expressions allow evaluation of a
large range of parameters. The PET system parameters can then
be chosen to achieve the maximum SNR for lesion detection. The
simulation study shown in this paper was focused on a single ring
PET scanner without depth of interaction measurement. It can be
extended to multi-ring (2D or 3D) PET scanners and detectors with
depth of interaction measurement.

I. INTRODUCTION

Positron emission tomography (PET) is a powerful functional
imaging tool in clinical diagnosis and biological research. It has
been widely used in detecting and staging cancerous lesions, and
PET scanners are under development to acquire high resolution
images [1], [2], [3]. Traditionally, the figures of merit used in
designing a PET scanner are spatial resolution, noise equivalent
count rate, and noise equivalent sensitivity. These measures,
however, do not directly reflect the lesion detectability using the
PET scanner. Here we propose to optimize PET scanner design
directly for lesion detection. Similar idea has been used in opti-
mization of other imaging systems, e.g. [4], [5].

A general method for measuring lesion detectability in medi-
cal images is the human observer ROC (receiver operating char-
acteristics) study. This method is very time consuming, and is
impossible to carry out in the design phase. As an alternative,
computer observers can be used in place of humans. Computer
observers not only save time in ROC studies but also provide
the possibility of theoretically analyzing the performance of the
imaging system. One requirement of analyzing computer ob-
servers is the knowledge of the lesion response and noise in re-
constructed images. The lesion and noise properties of filtered
backprojection (FBP) reconstruction can be computed based on
linear transform theory. For statistical reconstruction methods
based on the maximum a posteriori (MAP) principle (or pe-
nalized maximum likelihood), it is more difficult because the
algorithms are nonlinear. Recently, progress has been made
in this area [6], [7], [8], [9], [10]. Building on this work, we

This work was supported by the U.S. Department of Health and Human Ser-
vices under grant P01 HL25840, by the National Cancer Institute under grant
R01 CA 59794, and by the Director, Office of Science, Office of Biological and
Environmental Research, Medical Sciences Division of the US Department of
Energy under contract DE-AC03-76SF00098.

J. Qi is with the Center for Functional Imaging, Lawrence Berkeley Na-
tional Laboratory, Berkeley, CA 94720 USA (telephone: 510-486-4695, e-mail:
jqi@lbl.gov).

have derived simplified theoretical expressions for local impulse
response and covariance matrix of MAP reconstructions [11],
[12] and applied these results to theoretically study the lesion
detectability of MAP reconstruction using computer observers
[13]. We derived theoretical expressions of the signal-to-noise
ratio (SNR) for detecting a known lesion in a known back-
ground. These results are useful in comparing algorithms and
optimizing system designs. Here we use these results to opti-
mize PET design for lesion detection. MAP reconstruction is
used because it can extract more information from PET data
than the traditional FBP algorithm [13]. With the development
of fast algorithms and increase in computing power, we can ex-
pect wide use of MAP reconstruction in resolution-noise critical
situations (e.g. early stage cancer detection).

II. THEORY

A. MAP Reconstruction

PET data are well modeled as a collection of independent
Poisson random variables, and the appropriate log-likelihood
function is given by

L(y|x) =
∑

i

(yi log ȳi − ȳi − log yi!) (1)

where x ∈ IRN×1 is the unknown image, y ∈ IRM×1 the mea-
sured sinogram, and ȳ ∈ IRM×1 the mean of the sinogram. The
mean sinogram, ȳ, is related to the image, x, through an affine
transform

ȳ = Px + s + r (2)

where P ∈ IRM×N is the photon detection probability matrix
that models the geometric sensitivity, attenuation, and detector
response, and s ∈ IRM×1 and r ∈ IRM×1 are expectations of
scatter and randoms in the data, respectively.

A maximum likelihood (ML) estimate of the unknown image
can be found as the maximizer of (1). The most popular ML
algorithm for PET reconstructions is the expectation maximiza-
tion (EM) algorithm [14], [15], [16]. However, the ML solution
is unstable, as the tomography problem is ill-conditioned. Such
problem can be solved by incorporating an image prior in the
reconstruction. Most widely used prior functions have a Gibbs
distribution form

p(x) =
1

Z
e−βU(x) (3)

where U(x) is the energy function, β is the smoothing param-
eter that controls the resolution of the reconstructed image, and
Z is the normalization constant. Here we focus on the quadratic
priors, for which the energy function can be expressed as

U(x) = x′Rx, (4)
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where R is a positive definite (or semidefinite) matrix.
Combining the likelihood function and the image prior, the

MAP reconstruction is found as:

x̂ = arg max
x≥0

[L(y|x)− βU(x)] (5)

Since L(y|x) is a concave function of x, (5) generally has an
unique solution for convex priors.

B. Lesion Detectability

We have studied the lesion detectability of MAP recon-
struction using a “signal-known-exactly, background-known-
exactly” ROC study with two computer observers: the
prewhitening (PW) observer and the non-prewhitening (NPW)
observer [13]. Let f l be the lesion profile and f 0 the back-
ground image. As we are particularly interested in detection of
small lesions, we can assume the lesion is so small that it hardly
changes the noise in the data. Thus the noise in x̂ is indepen-
dent of the presence of the lesion. Let h(f 0 + f l) and h(f0)
denote the mean reconstructions of the image with and without
lesion present, respectively. Then the PW observer computes
the following test statistic

ηPW(x̂) = [h(f0 + f l)− h(f0)]
′
Σ
−1x̂, (6)

where Σ is the ensemble covariance matrix of x̂. A decision
whether there is a lesion or not is then made by comparing this
statistic to a pre-selected threshold. If η(x̂) exceeds the decision
threshold, x̂ is determined to have a lesion. Otherwise, it is not.

The performance of the PW observer can be measured by the
SNR defined as

SNR2
PW =

{ηPW [h(f0 + f l)]− ηPW [h(f0)]}
2

var[ηPW(x̂)]

= z′Σ−1z, (7)

where z ≡ h(f0 + f l) − h(f0). When ηPW(x̂) is normally
distributed, the SNR is related to the area under the ROC curve
by the error function [17]. Therefore, we use the SNR as the
measure of lesion detectability.

Using the first order Taylor series approximation, z can be
expressed as a convolution between the lesion profile f l and the
local impulse response function at the lesion location. Building
on the previous results of approximations of the local impulse
function and covariance matrix [7], [8], [12], we have derived in
[13] that

SNR2
PW ≈ f ′lP

′diag

[

1

ȳi

]

Pf l, (8)

where diag
[

1
ȳi

]

denotes a diagonal matrix with the (i, i)th ele-

ment equal to 1
ȳi

.
The PW observer gives the optimal performance on lesion de-

tection, when x̂ is normally distributed. We have shown in [12]
that the distributions of voxel values in MAP reconstructions
can be approximated by normal distributions in regions where
the activity is not very low. Therefore, the PW observer gives
an upper bound of lesion detectability that is achievable when
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Fig. 1. Configuration of the PET system simulation. The background activity is
a uniform cylindrical source; the lesion is also a uniform cylindrical source
with much smaller diameter. The activity ratio between the lesion and the
background is 2:1. The detectors are closely packed with no dead space
between each other.

all the information is used. In general, however, humans are in-
capable of prewhitening the noise in the image [18]. This has
led to using the NPW or other observer for predicting human
performance. The NPW observer uses a simple matched filter
to compute the test statistic

ηNPW(x̂) = [h(f0 + f l)− h(f0)]
′x̂. (9)

Eq. (9) differs from (6) only by deletion of Σ
−1 that accounts

for the prewhitening operation. Similarly, we have also derived
simplified expression for SNR of NPW observer [13]

SNR2
NPW ≈

(

∑

i

(

λi(j)ζi

λi(j) + βµi

)2
)2

×

(

N
∑

i

λ3
i (j)ζ

2
i

(λi(j) + βµi)4

)−1

, (10)

where {λi(j), i = 1, . . . , N} is the Fourier transform of the lo-
cally shift invariant approximation of P ′D[ȳ−1

i ]P at the lesion
location, {µi, i = 1, . . . , N} is the Fourier transform of R, and
{ζi, i = 1, . . . , N} is the Fourier transform of the lesion profile
f l.

III. PET SYSTEM DESIGN

In this section, we study the performance in lesion detection
of a single ring PET system. In spite of the difference between
PW and NPW observer, we have found in [13] that for the imag-
ing algorithm that has greater SNRPW, the SNRNPW is also
greater. As a result, we here only use the SNRPW in (8) as the
measure of PET system performance. The background was a
uniform activity cylindrical source and the lesion was also a uni-
form cylindrical source with much smaller diameter. The con-
figuration of the simulated PET system is illustrated in Fig. 1.

In the simulations, each crystal was treated as an individual
detector with no dead space between each other. The sinograms
were calculated analytically with modeling of depth-dependent
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Fig. 2. SNR for detecting a round lesion at two different radial locations inside
a 50cm diameter uniform background. The diameter of the lesion is (a)
2mm and (b) 4mm. The “+”s correspond to the lesion at center and the
squares correspond to the lesion at radial offset of 24cm. The curves for
each lesion, from top to bottom, correspond to detector size of 1.13mm,
2.25mm, 4.50mm, and 9.0mm, respectively.

solid angle, object self-attenuation and crystal penetration ef-
fects. The attenuation coefficients of the object and detector
crystal were 0.01mm−1 and 0.1mm−1, respectively. The de-
tector positioning error was simulated using a Gaussian blurring
function with FWHM of 1.5mm. Other physical effects, such as
positron range, photon non-collinearity, detector energy resolu-
tion, are ignored.

The parameters that we studied here are detector ring diame-
ter, crystal transaxial width, and crystal radial length. They are
studied with different size of the background and lesion. For all
the configurations, the axial crystal size is considered as fixed
and independent of the transaxial width. We will first ignore
randoms and scatters in the data, and will return to them in Sec-
tion III-D.

A. Whole Body Scanner

To simulate whole body scan situation, we set the background
diameter to 50cm. The scanner ring diameter was varied from
82.5cm to 57cm, where the largest one is similar to that of a
EXACT HR+ scanner (CTI PET system, Knoxville, TN). The
detector transaxial sizes were 1.13mm, 2.25mm, 4.50mm, and
9.0mm. The radial length of detector crystal was varied from
4mm to 40mm.

In Fig. 2 we plot the SNR for detecting a 2mm and a 4mm
diameter round lesions each at two different radial locations: ra-
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Fig. 3. SNR of detecting a 4mm lesion at different radial locations in a 50cm
diameter uniform background as a function of detector ring diameter. The
total number of true events is 1M when ring radius is 41.3cm.

dial center and radial offset of 24cm. The activity ratio between
the lesion and the background was 2:1. The mean of total num-
ber of detections was 1M. The PET ring diameter in this case
was 82.5cm. The plots look similar for all the other ring di-
ameters that we studied, although the absolute SNR values are
different. Eq. (8) shows that SNR is linearly proportional to the
contrast of the lesion, and to the square root of total count, so
the SNR curves for lesions with different contrast and different
count level can be easily generated from Fig. 2.

Clearly, the SNR is much higher for detecting a lesion at
boundary than for a lesion at radial center because of the pho-
ton attenuation. For the center lesion, the SNR monotonically
increase as a function of crystal radial length with all detec-
tor sizes. For the radial off-center lesion, however, the SNR
reaches the maximum at a certain length of crystal because of
the stronger crystal penetration effect for longer crystals. The
optimum crystal length is dependent on the detector size and le-
sion size. The larger the detector size or lesion size, the longer
the optimum crystal length. We also found that the smaller the
ring diameter, the shorter the optimum crystal length.

For all lesion locations, we found that SNR increases as de-
tector transaxial size decreases, while the improvement of SNR
becomes less as the detector size becomes smaller. With con-
sideration of the cost of manufacturing small detectors and the
dead space between crystals, the optimum detector size is about
half of or equal to the targeted lesion size.

In Fig. 3, we plot the SNR for detecting a 4mm lesion at dif-
ferent radial locations as a function of detector ring diameter.
Here the detector transaxial size was 2.25mm, and radial length
was 32mm. The plots for all the other situations look similar. It
shows that the SNR monotonically increases as the ring diam-
eter decreases in the absence of randoms and scatters. For the
center lesion, the SNR is inversely proportional to the square
root of the ring diameter, while for the lesion at 24cm radial
offset, the rate is greater. This indicates that to achieve highest
SNR for lesion detection in the absence of randoms and scat-
ters, we need to build PET scanner with smallest ring diameter
as possible provided that we accurately model the photon detec-
tion process.
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Fig. 4. SNR for detecting a round lesion at two different radial locations inside
a 20cm diameter uniform background. The diameter of the lesion is (a)
2mm and (b) 4mm. The “+”s correspond to the lesion at center and the
squares correspond to the lesion at radial offset of 9cm. The curves for each
lesion, from top to bottom, correspond to detector size of 1.13mm, 2.25mm,
4.50mm, and 9.0mm, respectively.

B. Brain Scanner

For brain scanner simulations, we set the background diame-
ter to 20cm. The ring diameter was varied from 82.5cm to 26cm.
The detector transaxial size and radial length were in the same
range as those for whole body scanner in Section III-A.

In Fig. 4 we plot the SNR for detecting a 2mm and a 4mm
diameter round lesions each at two different radial locations: ra-
dial center and radial offset of 9cm. The activity ratio, total
number of detections, and the PET ring diameter were the same
as those in Fig. 2. Again, the SNR is higher for detecting a le-
sion at boundary than for a lesion at radial center because of
the photon attenuation, but the difference is less than that of the
whole body scanner because the attenuation for the center le-
sion is smaller. Except for case of the 2mm lesion at boundary
with 1.13mm detector size, the SNR increases monotonically as
crystal radial length increases with all transaxial detector sizes.
Unlike the whole body scanner, the optimum crystal length ap-
pears to be 40mm for the lesion larger than 2mm in diameter
at all locations. The similar relationship holds for all other ring
diameters that we studied.

For all lesion locations, the SNR also increases as detector
transaxial size decreases, which is the same as that in whole
body scanner.

In Fig. 5, we plot the SNR for detecting a 2mm lesion at dif-
ferent radial locations as a function of detector ring diameter.
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Fig. 5. SNR of detecting a 2mm lesion at different radial locations as a function
of detector ring diameter in a 20cm diameter uniform background.

The detector transaxial size and radial length were the same as
those in Fig. 3. Again, the SNR monotonically increases as the
ring diameter decreases in the absence of randoms and scatters.

C. Small Animal Scanner

There has been great interest in building PET scanner dedi-
cated for small animal imaging. These small animal scanners
have higher resolution and sensitivity than the human scanners.
We simulated such small animal scanner by setting the back-
ground diameter to 10cm and varying the ring diameter from
17.2cm to 11.5cm. The detector transaxial sizes were .5mm,
1.0mm, 2.0mm, and 4.0mm. The radial length was varied from
4mm to 40mm. For reference, the microPET scanner [1] has
ring diameter of 17.2cm and detector size of 2.0mm (transaxial)
× 10mm (radial).

Fig. 6 shows the plots of SNR for detecting a 1mm and a 3mm
diameter round lesions each at two different radial locations: ra-
dial center and radial offset of 45mm. The activity ratio between
the lesion and the background was 2:1; the total number of de-
tections was 1M; and the PET ring diameter was 17.2cm.

Unlike the whole body or brain situation, the SNR of the 1mm
lesion at center is greater than that of the same lesion at 4.5cm
radial offset (or is close to for the 3mm lesion). This is due to
the reduced attenuation for the center location in a small object.
Similar to the brain scanner, SNR increases monotonically as
crystal radial length increases with the optimum crystal length
to be 40mm. The SNR also increases as detector transaxial size
decreases, which is the same as that in whole body and brain
scanners.

Fig. 7 shows the plots of SNR for detecting a 1mm lesion at
different radial locations as a function of detector ring diame-
ter. The detector transaxial size was 1mm and radial length was
32mm. Again, the SNR monotonically increases as the ring di-
ameter decreases in the absence of randoms and scatters.

D. Effects of Randoms and Scatters

In the above simulations, we have been ignoring randoms and
scatters. Here we examine some of their effects on PET design.
For simplicity, we used the simple random and scatter model
derived in [19]. The model assumes the source activity is con-
centrated along the axis of the scanner. We further assumed
that the random sinogram and scatter sinogram are uniform. Al-
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Fig. 6. SNR for detecting a round lesion at two different radial locations inside a
10cm diameter uniform background. The diameter of the lesion is (a) 1mm
and (b) 3mm. The “+”s correspond to the lesion at center and the squares
correspond to the lesion at radial offset of 4.5cm. The curves for each lesion,
from top to bottom, correspond to detector size of .5mm, 1.0mm, 2.0mm,
and 4.0mm, respectively.
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Fig. 7. SNR of detecting a 1mm lesion at different radial locations as a function
of detector ring diameter in a 10cm diameter uniform background.

though these assumptions do not strictly hold here, nonetheless,
this simple model can provide us some insight on the effects of
randoms and scatters.

As shown in (2) and (8), the expectations of randoms and scat-
ters appear in the denominator in the diagonal matrix. Hence,
the SNR decreases as randoms and scatters increase. For the
simplified system that was studied here, we assumed that the
fraction of randoms and scatters is independent of the crystal
length and crystal size, and focused on the change of randoms
and scatters as a function of ring diameter. When the ring di-

28 30 32 34 36 38 40

0.2

0.3

0.4

Ring Radius (cm)

S
N

R

(a)

28 30 32 34 36 38 40 42

0.1

0.2

0.3

0.4

Ring Radius (cm)
S

N
R

(b)

Fig. 8. SNR for detecting a 4mm lesion at the center of a whole body scan-
ner as a function of detector ring diameter with different level of randoms
and scatters: (a) without out-of-FOV activity; (b) with out-of-FOV activity.
The random and scatter levels of each curve are, from top to bottom, 0%,
5%, 10%, and 20% of the true events, respectively, when the ring radius is
41.3cm.

ameter is reduced, the randoms and scatters will be increased by
the following two factors: (i) increased solid angle; (ii) reduced
side shielding that blocks out-of-FOV photons.

Firstly let us consider the situation where all activity is inside
the FOV. In this case, the fraction of randoms and scatters is
solely affected by the change of the solid angle. The total num-
ber of true events is roughly proportional to 1/d, while the to-
tal numbers of randoms and scatters are roughly proportional to
1/d2, where d is the diameter of the PET detector ring. Fig. 8(a)
shows the plots of SNR for detecting a 4mm lesion at the center
of a whole body scanner as a function of detector ring diameter
with different level of randoms and scatters. The PET system
configurations were the same as those of Fig. 3. Fig. 8(a) shows
that as the random and scatter levels increase, the PET system
with smaller ring diameter become less and less appealing be-
cause the increase in sensitivity is more and more offset by the
increase in randoms and scatters.

Secondly we study the effect of the out-of-FOV activity. In
order to reduce the events from out-of-FOV activity, the PET
system should be built with the maximum amount of side shield-
ing, where the lead shielding extends from the detector ring to
the patient port. For a fixed size patient port, the smaller the ring
diameter, the less the side shielding (and hence more randoms
and scatters from the outside). From the results in [19], we ob-
tained the following approximate formulae for the total number
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of detections:

Trues ∝
1

d
(11)

Scatters ∝
1

(d− p)d
(12)

Randoms ∝
1

(d− p)2
(13)

where p is the diameter of the patient port. These formulae as-
sume that the activity is concentrated along the axis of the scan-
ner and is very long. They are less accurate when d−p is small.

Fig. 8(b) shows the plots of SNR for detecting the same lesion
as that of Fig. 8(a) with out-of-FOV activity. Here we set the
patient port to be the same size as the background disk (p =
50cm). By comparison, the SNR of the PET system with smaller
ring diameter drops much faster in Fig. 8(b) as the random and
scatter levels increase because of the out-of-FOV activity.

Therefore, when designing a PET system, if the anticipated
random and scatter levels are low and there is no out-of-FOV
activity, a small ring diameter may help lesion detection by in-
creasing sensitivity; otherwise, it is better to have large ring di-
ameter and large side shielding to reduce randoms and scatters.

IV. CONCLUSION AND DISCUSSION

We have developed an approach for optimizing PET system
design for lesion detection. The SNR of lesion detection can be
easily computed using the theoretical expressions that we have
previously derived. Because no time consuming Monte Carlo
simulation is needed, the theoretical expressions allow evalua-
tion of a large range of parameters. The PET system parameters
can then be chosen to achieve the maximum SNR for lesion de-
tection.

In this paper, we have studied a single ring PET scanner. The
parameters are ring diameter, detector transaxial size and radial
length. The results show that (i) the optimum ring diameter de-
pends on the random and scatter levels: when the random and
scatter levels are very low, the SNR of lesion detection increases
as the ring diameter decreases; when random and scatter levels
are high, especially with out-of-FOV activity, large ring diame-
ter with large side shielding is better. (ii) The optimum detector
transaxial size is the smallest possible. However, this would not
be true if the dead space between detectors is significant com-
pared to the size of the detectors. (iii) The optimum detector
radial length depends on the crystal material, the size and lo-
cation of the target lesion, and the size of the background. We
can either optimize the crystal length for a target lesion based on
the specific PET application, or optimize the average SNR for a
range of lesion sizes and locations.

In the analysis, we used the “signal-known-exactly,
background-known-exactly” observer task. This is a highly sim-
plified scenario compared to real clinical detection tasks. More
realistic modeling of the lesion and background will be helpful
in improving the method. In addition, we have not modeled any
error in the detection probability matrix P and the expectations
of randoms and scatters, i.e. we assumed that the forward model
(2) is exact. However, in the real world there are always errors
in the model. A more ill-conditioned system is more suscep-
tible to the errors in the model. Therefore, when such errors

are large, they will have some impact on the results. We plan
to study these issues and extend the method to 3D scanners in
future work.
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