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Abstract

Previous work in software/hardware codesign has addressed issues in system modeling, partitioning,
and mized module simulation and integration. Software estimation, which provides software metrics
to assist the software/hardware partitioning, has not been studied. In order to rapidly explore large
design space encountered in software /hardware systems, automatic software estimation is indispensable
in software/hardware partitioning in which designers or partioning tools must trade off a hardware with
a software implementation for the whole or a part of the system under design. In this report we present
a software estimator that provides three software metrics — ezecution time, program-memory size and
data-memory size for a specification executing on a given processor. Ezrperiments have shown that our
estimator has less than 20% estimation errors on different designs spanning from straight line code
to code with branches and loops and even to hierarchical specifications. Ezperiments also show that
our estimator is fast and can provide rapid feedback to the designers or partitioning tools to quickly

evaluate different design alternatives.
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1 Introduction

System design is a set of tasks which convert the system-level specification into a set of completely
specified interconnected modules implementing the specification. Each module could be implemented
in hardware or software on a processor. One of the system design tasks is partitioning of specification
into software and hardware parts. A hardware implementation has better performance whereas a
software implementation has lower cost. shorter development time and allows changes late in the
design cycle. Thus, the most efficient implementation has a minimal amount of costly application-

specific hardware while still meeting the required performance constraints.

Several researchers have described frameworks for modeling, simulation and integration of soft-
ware/hardware designs [SB92][KL92][BV92]. Software/hardware partitioning techniques have been
addressed in [GM92a][EH92]. Gupta and De Micheli [GM92a] propose a partitioning algorithm that
starts with an initial partition where all operations, except for the unbounded delay operations, are
assigned to hardware. The partition is refined by migrating operations from hardware to software
in the search for a lower cost feasible partition. The approach used by Ernst and Henkel [EH92]
starts with a complete software implementation from which those portions that violate the timing
constraints are extracted for hardware implementation. These two approaches start from different
directions but work towards the same goal of minimizing the amount of application-specific hardware
required. This software/hardware partitioning requires a software estimator that will predict the exe-
cution time of the software implementation in order to identify which portion in the specification can
be migrated from hardware to software while not violating the constraints or which portion needs to
be implemented in hardware to satisfy the timing constraints. To our knowledge, no previous work
has addressed the issue of software estimation assisting in the software/hardware partitioning. In the
absence of an automatic estimator, the effect of each partitioning can be evaluated only through actual
implementation which prevents a designer from considering other design alternatives.

In this report we present our software estimator which provides three software metrics — execution
time, program-memory size and data-memory size for a given specification and a given target processor.
The generic model used in our estimator does not require different estimators for different target
processors. Instead a single estimator and a set of technology files for different target Processors
are used. This makes our estimator fast and easy to extend for different target processors. Also,
the probability-based flow analysis technique used for the performance estimation in our estimator
provides further advantages over dynamic simulation [PK90].

The input to our software estimator is a system-level description specified with the executable spec-
ification language — SpecChart. A SpecChart consists of hierarchical concurrent /sequential behaviors

with leaf behaviors specified using the VHDIL language. Details on the language and its constructs
may be found in [NVG91].




In the next section, we present the underlying model used for software estimation. Performance
and memory size estimation for system-level specifications are discussed in Section 3 and Section 4
respectively. The results of our experiments are presented in Section 5 followed by the conclusion in

Section 6.

2 Model for Estimation
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Figure 1: A sample system-level specification

The estimation model we propose is targeted to the system-level specification which consist of hier-
archical concurrent/sequential behaviors. A behavior which is a set of actions and a set of conditions
describing when each action is to occur, can in turn contain sequential or concurrent sub-behaviors.
For example, in Figure 1, behavior TOP consists of two sequential sub-behaviors X and Y. Behav-
ior X in turn contains two concurrent sub-behaviors A and B. Behavior Y contains three sequential
sub-behaviors P, Q, R. Concurrency is represented by the dashed line like the one between behavior
A and B whereas sequencing is represented by those transition arcs. The behavior which does not
contain any sub-behaviors is called leaf behavior. In SpecChart, each leaf behavior consists of a set o
VHDL sequential statements. Behavior A, B, P, Q and R in Figure 1 are leaf behaviors. The dots in
the specification indicate the starting or completion of the behaviors. Our estimators are intended t
estimate the software metrics for any given leaf/non-leaf behavior of the specification as well as an
given partition (a set of behaviors) in the specification. P1 in Figure 1 is a partition which contain
two behaviors QQ and R.

2.1 Estimation Model for Leaf Behaviors

In order to obtain the estimates for leaf behaviors, we need to compile the code in the leaf behavior
into machine instructions of the target processor. For example, if a leaf behavior will be implemente

on an Intel 8086 processor, it needs to be compiled into the 8086 instruction set. Using the timin



and size information associated with each type of instruction such as how many clock cycles the 8086
instruction executes and how many bytes it takes, we can obtain the performance and program size of
the behavior. Similarly, if the leaf behavior is going to be implemented on a Motorola 68000 processor,
it needs to be compiled into 68000 machine instructions. Based on the 68000 instruction timing and
size information, the estimator can obtain the software metrics for the behavior. This model, in
which the estimator is targeted to one specific processor, is called processor-specific model (shown in
Figure 2(a)).

Specification

(a) Pro pecific Estimation Model
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Figure 2: ‘Two different estimation models

Instead of using different compilers and estimators for different target processors in the processor-
specific model (Figure 2(a)), we propose a generic estimation model (Figure 2(b)) in which the leaf
behavior specification is converted into a set of generic three-address instructions. After that the
estimator will compute the software metrics for the leaf behavior based on the generic instructions
and the technology files for the target processors. For example, if the leaf behavior is going to be
implemented on an Intel 80286 processor, then the technology file for the 80286 processor will be
used during the estimation. The technology file for a target processor supplies information about how

many clock cycles each type of generic instruction needs and how many bytes it takes if the generic




instruction is executed on that target processor. The technology file for a target processor is derived

from the timing and size information of the processor’s instruction set.

The generic three-address instructions used in our estimation model have the following formats:

1. Arithmetic/logic/relational operation: des — srcl op src2; For unary operations, srcl is empty;

[ 3]

. Move/load/store operation: des — src;

3. Conditional jump operation: if cond goto label;

4. Unconditional jump operation: goto label;

. Procedure call operation: call label;

o

Here des, sre and cond are either constants, registers or memory locations. Memory locations could be
directly addressed like A, B or addressed with offset like A[/] or B[J]. label refers to procedure names
or instruction labels. The three-address instructions also include RETURN and NU LL instructions.

Generic instruction

dmem1 <-- dmem1 + dmem2

8086 instructions / \ 68020 instructions

mov ax, word ptr{bp+offset1] (10) mov a6@(offset1), dO (7)
add ax, word ptr[bp+offset2] (9 + EA1) add a6@(offset2), dO (2 + EA2)
mov word ptr[bp+offset3], ax (10) mov d0, a6@(offset3) (5)
technology file for 8086 technology file for 68020
generic instruction execution time size generic instruction execution time size
dmem3 <-- dmem1 + dmem2 35 dmem3 <-- dmem1 + dmem2 22

Figure 3: Execution time of the generic instruction for different processors

To provide the technology file for a given processor, we need to find out how many clock cycle
each type of generic instruction needs and how many bytes it takes on that processor. Figure 3 show|
the computation for the number of clock cycles for the generic instruction with type of dmem3
dmeml + dmem2. Here, dmem indicates direct memory addressing mode. The generic instructio
is first mapped to a sequence of target processor instructions followed which the total number
clock cycles of the generic instruction is obtained by summing the clock cycles of each individu



instruction in the sequence. EAl and EA2 in Figure 3 are the effective address calculation times
used for displacement memory addressing mode, which are 6 and 8 clock cycles in the 8086 and 68020
respectively. The generic instruction thus will take 35 and 22 clock cycles on the 8086 and 68020
processors respectively. Using a similar approach we can derive how many bytes each type of generic
instruction will take if it is executed on the 8086 or 63000 processor. Presently the technology files
for 8086, 80286, 68000 and 68020 processors are supported in our estimator. The 8086, 80286, 68000
and 68020 technology files are derived from the timing and size information of the their corresponding
instruction sets given in [18086}[180‘286}[1’]68000]{1\-168020]. The technology file for Intel 8086 processor
is shown in the Appendix.

Compared with the processor-specific model, our generic model has the following advantages:

1. In the generic model, we do not need to use different compilers and different estimators for
different target processors. Instead, only a single compiler, estimator and a set of technology

files are required for the estimation.

2. The generic model makes it much easier to apply the estimator to other target processors. The

estimation can be carried out as long as the technology file for the target processor is supplied.

3. The peculiarities of each type of processor is reflected in the technology file for the processor. The
generic three-address instructions are free of instruction idiosyncrasies. Thus it is much easier
and faster to compile the specification into the generic instruction set than those associated with

specific processors.

2.2 Estimation Model for Non-leaf Behaviors and Partitions

Non-leaf behaviors possess hierarchical or concurrent constructs. To evaluate the software implemen-
tation of a given non-leaf behavior or a partition on a specific microprocessor, we must first flatten the
hierarchy and sequentialize/schedule the specification to diminish the concurrency [GM92b] since our
target machine is a uni-processor. In other words, the specification needs to be mapped (flattened/
sequentialized) into a program written in a language which can be directly compiled to the machine
instructions of the given processor. Based on the machine instructions generated, the software metrics
such as performance and memory size for the specification can thus be computed. The software metrics
obtained in such a way are accurate since they are computed from the actual implementation of the
specification on the given processor. However, due to that automatic partitioning tools will evaluate
hundreds or thousands of partitions, this approach is too costly and time consuming since we would
have to actually implement each partition on the given processor through flattening, sequentializing
and compiling process in order to get the software estimates for that partition. To get fast estimates
while not sacrificing too much accuracy, the estimation model we propose combines two different
approaches: an accurate approach for estimating leaf behaviors and a fast approach for estimating
non-leaf behaviors and partitions. Prior to the partitioning process, each leaf behavior is compiled




and estimated using the approach described in the previous section. During the partitioning process,
the software estimates for each partition are constructively computed bottom up from the estimates
of the leaf behaviors. Such a combined approach may be less accurate than the approach based on the
actual implementation of a partition. However it is much faster because it does not involve flattening,
scheduling, compiling for each partition during the design process. It only requires some computation
based on the pre-obtained estimates for the leaf behavior specifications. Therefore this model allows

rapid evaluation of different design alternatives.

\

Partitions Estimates
A/ B,P,QorR known
X func(A, B)
Y func(P, Q, R)
P1 func(B)
P2 func(Q, R)
P3 func(Y)

Figure 4: A sample specChart and its estimates

Figure 4 illustrates our estimation model with a sample SpecChart. Before partitioning process,
the software metrics for leaf behaviors A, B, P, Q, and R are estimated. During partitioning process,
the software metrics for each partition are computed based on the already known estimates of it
constituent behaviors. For example, the estimates of partition P2 is a function of the estimates o

behavior Q and R.

3 Performance Estimation

There are two possible ways to find out how many clock cycles a program takes to execute — dynami

simulation and static estimation. Given a set of input data, dynamic simulation actually execute




the program and records the clock cycles used in each execution. Given different sets of input data,
dynamic simulation may obtain different number of clock cycles for that program due to the data
dependent conditional branches and loops. Static estimation, on the other hand, is insensitive to
input data. It just computes the average number of clock cycles needed to execute the program.
Static estimation can yield good results if the number of loop iterations is known and the conditional
branching probability can be predicated correctly. Besides, static estimation has a number of advan-
tages: (1) It takes much less time and space than dynamic simulation. (2) It does not need input data
(test vectors). The probability-based technique and its application to the performance estimation for

system-level specifications are presented in this section.

3.1 Flow Analysis

Flow analysis is a technique used in the static estimation for design with conditional branching (in-
cluding loops). Given a control flow graph G = (V, E) representing a portion of the design, where
V is the set of vertices v;, and E is the set of directed edges e;; connecting vertex v; to v; and in-
dicating sequencing between v; and v;, we wish to determine the execution frequencies of each of its
nodes based on the branching probabilities. By determining the execution frequencies of the nodes,
we can obtain useful information about the design by associating with each node in the graph, weight
representing some design parameters. For example, if each node weight represents the execution time
of a basic block derived from the code of a leaf behavior, then we can use the execution frequency of
the nodes and the weights of the nodes to determine the total execution time for the leaf behavior by

taking a weighted sum of these two quantities.
3.1.1 Determining the Branching Probabilities

Branching probabilities are associated with the edges in the control flow graph. They could be deter-
mined in the following ways:

1. Equal Probabilities : In case of branching, we assign equal probabilities to all the edges
emerging from the node. Thus, if there are n edges emerging from a node, all of them are
assigned a probability of 1/n.

2. Loop Related Probalilities : When the number of loop iterations is known, say n, the exit
edge has a probability of 1/n while the back edge has a probability of (n — 1)/n.

3. User Defined Probabilities : The user may specify the branch probabilities in the SpecChart

description using annotations.

4. Simulation Based Probabilities : For every input data, a record can be kept of the branches
taken during the simulation. From this observed behavior, the probabilities of the branches can
be derived.

Currently the first two approaches have been implemented in our estimator.
9



3.1.2 Determining Node Execution Frequencies

The execution frequency of a node is defined as the number of times on the average that the node will
be executed in a single execution of the graph. We use the branching probabilities between the nodes

to determine the execution frequencies. This is given in the following procedure.

Determining Node Execution Frequencies:

&

2.

Determine the branch probabilities using one of the methods outlined above.

A start node, S, preceding the first node in the graph, is added. Its execution frequency, F(S) is

set to 1 since this node is executed exactly once whenever the control flow graph is executed.

. The execution frequency F(N;) for any node N; depends on the weighted execution frequencies

of all its immediate predecessor nodes. The execution frequency for each predecessor node N; is
multiplied by the branch probability of the edge between N; and N;, P(e;;). For each node in
the graph, we first formulate the equation for the node execution frequency.

FiN;) = %, F(N;) x P(eij) (1)

all predecessor nodes N; of N;

. We then solve the set of equations formulated in step 3 to obtain the individual execution

frequencies. There are a variety of methods such as Gaussian Elimination, LU decomposition,
Chomsky’s method which can be used. We have selected the Gaussian Elimination method in

our estimator.

The procedure is illustrated by an example shown in Figure 5. A control flow graph with the branch

probabilities is shown in Figure 5(a). Figure 5(b) shows the same graph with the added dummy node
5. Figure 5(c) shows the equations for the execution frequency of each node. As an example, conside
node Nj. It has two predecessor nodes Ny and N3. The probabilities of the edges €;2 and e3; are 1.
and 0.8 respectively. Thus the equation for the execution frequency for N, is :

F(N2) = 1.0 X F(N;) + 0.8 % F(N3) (2

Solving the equations in Figure 5(c) yields the following values for execution frequency :

F(N\) =1, F(N;)=5, F(N3)=5, F(Ng)=1

These are the expected execution frequencies returned after probability based analysis of the contr

flow graph.

10
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FS) = 1.0

1.0x F(S)

F(N )
F(Ng) = 1.0x F(N,) + 0.8 x F(Ns)

@~

FiNg = 1.0x F(Np)
FNg = 02xF(Ngy)
0
0
Control Model (b) Control Flow Graph Model (c) Equations for
W with F‘ng':::f branching with dummy start state, S, Execution Frequencies
specrf:o?:.‘“ added

Figure 5: Obtaining a set of linear equations from the control flow graph model

In situations where the edges are also associated with some weights, we may need to know the
execution frequency of each edge F(e;;). It is obvious that the execution frequency of an edge is the

same as that of its target node. Therefore we have F(e;;) = F(N;).
3.1.3 Determine the Performance of Control Flow Graph

For a control flow graph G = (V, E) with each node v € V associated with a weight W(v) and each
edge e € E associated with a weight W(e), if we know the execution frequency of each node F(v) and
the execution frequency of each edge F(e) in the graph, then the performance P(G) of the graph G

can be calculated as follows.

P(G)= > (W)xF@) + Y. (W(e)x F(e)) (3)

for all veV for all e€E

3.2 Applying Flow Analysis to Performance Estimation

Figure 6. summarizes the performance estimation for different entities such as partition, behavior
of the specification, basic block of the leaf behavior and generie instruction of the basic block.
The performance of a partition depends on that of its containing behaviors. The performance of a
sequential non-leaf behavior is determined using flow analysis on the performance of its containing

sub-behaviors. The performance of a concurrent non-leaf behavior is the sum of the performance of

11




Entity to be estimated Components of entity Weights of components  Technique to be applied

partition behaviors execution times

of behaviors sum/flow analysis
A on?lgggeb?}'iglvior sub-behaviors o??&”g%?‘gc::fs flow analysis
nonc-(l):acful;:aehn;vior sub-behaviors géfﬂ;%%gc;:rss n
leaf behavior basic blocks ecﬁegau;%g%}m flow analysis
basic block generic instructions execution times sum

of generic instructions

- 3 execution times
genenc instruction specified in the technology file

Figure 6: Performance estimation for different entities

its containing sub-behaviors. The performance of a leaf behavior is determined using flow analysis
on the performance of its containing basic blocks. The performance of each basic block is computed
by summing the performance of its containing generic instructions. The performance of each generic
instruction is taken from the technology files supplied to the estimator.

3.2.1 Performance Estimation for Leaf Behavior

Constructing Basic Blocks from VHDL statements

We divide the VHDL code segment in each leaf behavior into basic blocks. A basic block [ASUS8S] i
a sequence of consecutive VHDL statements in which flow of control enters at the beginning and leaves
at the end without halting or the possibility of branching, except at the end. To determine the basid
blocks, we first determine the set of leaders, the first statement of a basic block. The rules we use td
determine leader statements are: (1) The first statement of the code segment is a leader. (2) All wai
statements and procedure calls are leaders. (3) Any statement which is the target of a conditiona
statement (if, loop, case) is a leader. The target of a conditional statement is any statement to whic
control could possibly be transferred on evaluating the condition. (4) Any statement that immediatel
follows a conditional statement, wait statement, or a procedure call is a leader.

For each leader determined above, its basic block consists of the leader and all statements up t
but not including the next leader (or the end of the given VHDL code segment). A basic block wil

then contain one of the following: (1) a set of assignment statements, or (2) a single wait statement

12




or (3) a single procedure call.

Figure 7 shows how the basic blocks can be constructed from a given set of sequential VHDL
statements. In Figure 7(a), the leaders are denoted by horizontal arrows along with the corresponding
rule number used to determine the leader. Figure 7(b) shows the basic block structure of the VHDL
code. The conditions to be evaluated for the conditional branching are associated with the edges
between basic blocks.

1,2-> read_mem(instr, pc),
4> pc=pc+1;
opcode ‘= instr{1 downio 0];
if (opcode = *00" or opcode = "017) then
3> a2"b+1]=(x+y"2z)/af2"bj;
elsif (opcode = *10° or opcode = "117) then
3> aR*bl=(x+y"z)/a2 " b+1];
endit;
4> x=x+5

(a)

'

B1 l read_mem(instr, pc) ]

!

=pc+1
B2 gcmg__ instr{1 downto 0]

c1:om-m'wmmmdu-'w'o«m-‘ﬂ'

B3 [a@ bet)=(xey2)/aR b | | aR°bj=(xsy/aR be1) | BA
B5I X=X+5 l
!
®)

Figure 7: Building basic blocks from VHDL statements

Obtaining Weights for Basic Blocks and Conditions

Once basic blocks have been determined (Figure 7(b)), we need to find the weight (i.e. execution
time) of each basic block and weight of each condition. The VHDL assignment statements in each
basic block and condition are compiled into our generic three-address instructions. Figure 8(a) shows
the basic block structure of Figure 7(b) after the VHDL code is compiled into generic instructions.
The execution time of each generic instruction can be obtained from the technology file based on its
type. For example, the instruction pe — pc + 1 has the type of dmem — dmem + constant (dmem
means directly memory addressing mode). In Figure 8(a), T'1, T2 and T'3 are temporary variables
which can be considered as type of register or dmem depending on how many general-purpose registers
the target processor has. Suppose after the compilation, m temporary variables T'1,72,...,Tm are
used and the target processor has n general-purpose registers. If n > m, then 71,72,...,Tm will

13



B2 | PC<-pc+1
6 <- instr{1 downt 0]
T1 <- opcode = "01° T1 <- opcode = “10"
C1: T2 <- opcode = "00" . T2 <-opcode = "11"

T2<-T1orT2 " T2<TlorT2
if T2 goto next if T2 goto next

Ti<2*'Db Ti<2'b

T1 <-a[T1) Tl<T14+1

gc-y'grz 1lT%<—a('.1'1]

B3 <X+ <X"y

T3<T2/T1 . T2<-T2+2

T1<2"b T3<-T2/T1

Tl<Tl1+1 Ti<-a'b

a[T1] < T3 a[T1] < T3

.
(a) Basic blocks with generic instructions (b) Control flow graph for (a)

Figure 8: A basic block structure and its corresponding control flow graph

be considered as register type, otherwise, T'1,72,...,Tn will be considered as register type whereas
Tn+1,...,Tm will be considered as dmem type. Temporary variable with smaller index (e.g. T'1)
will be used more heavily than temporary variable with larger index (e.g. 7'9) in the compilation.
Therefore temporary variable with smaller index should have higher priority to be assigned with a
register. In the example shown in Figure 8(a), suppose the target processor has two general-purpose
registers. So T'1 and T'2 will be considered as register type whereas 1'3 will be considered as a memory
type. Thus instruction T'1 «— T'1 + 1 has the type of register — register + constant. Instruction
T3 «— T1/T2 has the type of dmem — register /register. The weight W(B) of a basic block B can b
computed by summing the execution time of each generic instruction in that basic block. The weight
W(C) of a condition C' can be obtained in a similar way.

Obtaining Weight of Basic Block With a Wait Statement

The weight of a basic block with a wait statement is decided as follows:

1. Wait : In the absence of a timeout clause, the execution time is set to a very large number lik

MAXINT, the largest integer supported by the host machine.

2. Wait on 5;,...5, until Cy,....Cy for T ns : The execution time for a wait statement with onl
a timeout clause (i.e. for clause) is equivalent to the smallest multiple of the clock period highe
than T. The effect of conditions (e.g. C1) and an event on signals in the sensitivity list (e.g. S1

are ignored.




3. Wait on 5y,...5, until ¢, ...C; : i.e wait statement without a timeout clause. If the wait
statement has a sensitivity list or condition clause but no timeout clause then the wait statement
requires at least one control step to be executed. The effect of conditions (e.g. C1) and an event
on signals in the sensitivity list (e.g. S1) are ignored.

Currently the estimation used for the wait statement is very primitive. Further work is needed to
obtain better estimation for the wait statement by considering the input rate of the signals in the

sensitivity list.

Obtaining Weight of Basic Block with a Procedure call

The third type of basic block is one which has a single procedure call. The execution time for the
procedure can be determined by treating the body of the procedure declaration as a leaf state. This

time is then used as the execution time of the basic block which contains the procedure call.

Computing Performance for Leaf Behavior

The basic block structure of a leaf behavior is mapped to an equivalent control flow graph G.
Figure 8(b) shows the corresponding control flow graph of Figure 8(a). Each basic block B; is mapped
to a node N; in G. Each edge connecting two basic blocks B; and B; is mapped to an edge connecting
node N; and N; in the graph. Each node N; in G has a weight which is the same as W( B;). Each edge
in G has a weight which is the same as the weight of the condition associated with the corresponding
edge in the basic block structure. Applying the flow analysis and using the weights obtained for the
nodes and edges, the average execution time for the leaf behavior can be computed using equation 3

in section 3.1.3.
3.2.2 Performance Estimation for Non-leaf Behavior

Once execution times have been estimated for each of the leaf behaviors as shown above, we can merge
the performance estimates of the leaf behaviors to yield the the performance estimate of the next
higher behavior in the hierarchy. The approach adopted is similar to that of merging the performance
estimates of basic blocks to obtain performance estimates for the leaf behaviors. At any level of the
hierarchy, we will first determine the performance estimates of the child behaviors and then combine

these estimates to determine the performance estimate of the parent behavior.

To estimate the performance for a non-leaf behavior with sequential sub-behaviors, Bparent, we
create a control flow graph G = (V, E) for its child behaviors whose performance estimates are already
known. For each of the sub-behaviors, Bj, of Bpgrent, there exists a corresponding vertex v; in the
graph G. For every transition arc between the two sub-behaviors B; and Bj, the set E has a directed
edge e;; from vertex v; to vertex v; in G. After the control flow graph model has been constructed
for the sub-behaviors, we can apply the flow analysis (section 3.1.3) to obtain the performance of the

parent behavior Bparen:-



In case a behavior at any level of the hierarchy has concurrent sub-behaviors, the execution time of
that behavior is computed as the sum of that of its child behaviors. It must be mentioned here that a
non-leaf behavior may have a descendant sub-behavior which does not have a stop dot in SpecChart.
In this case the behavior will never finish executing and consequently the execution time returned for
that behavior is an arbitrarily large number.

4 Memory Size Estimation

Given a behavior, memory size estimation is to determine how much program-memory (i.e. bytes used
to store the compiled program representing the behavior) and how much data-memory (i.e. bytes used
to store the data manipulated by the behavior) are needed.

4.1 Program-memory Size Estimation

The size of each type of generic instruction is specified in the technology file for target processor. For
example, the size of the generic instruction with type of dmem — dmem + dmem is 9 bytes in the
technology file for the 8086 processor and 6 bytes in the technology file for the 68020 processor. Based
on the size of each generic instruction, the program-memory size of each basic block is the sum of that
of all generic instructions in that basic block. The program-memory size of a leaf behavior in turn is
the sum of that of all its basic blocks. Analogously, the program-memory size of a non-leaf behavior

is the sum of that of all its sub-behaviors.

4.2 Data-memory Size Estimation

The data-memory size is determined based on the data declaration parts in the specification. Th
data-memory size DM S(D) of a declaration D is determined by the size of D’s base type and th
number of base type elements in D. For example, the base type of the declaration ‘variable a: integer
is integer and the number of base type elements is 1. For declaration ‘variable b: bitvector [9 downt
0]’, the base type is bitvector and the number of base type elements is 10. The data-memory size
a declaration D is computed as follows:

DMS(D) = DMS(BT(D))x N (4
where, BT'(D) is the base type of the declaration D. N is the number of base type elements in D.

The data-memory size of each base type is specified in a configuration file. The information cu

rently used in the configuration file is shown in Figure 9.
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Base Type Data Memory Size (bytes)

Bit 1

Bitvector ['nm -| where n is the number of bits in the vector.
Boolean 1

Character 1

Integer
Natural
Positive
Real
String

& b O & b b

Time

Figure 9: Size of the base type

After obtaining the data-memory size of each declaration, The data-memory size of a leaf behavior
can be computed by summing that of each declaration in its declaration part. The data-memory size

DM S(B) of a non-leaf behavior B is given as follows:

DMS(B) = > DMS(B;) + > DMS(D;) (

all sub—behaviors B; of B all declaration D; in Decl(B)

wn
~—

5 Results

Given a SpecChart description and a leaf behavior name in the SpecChart, our estimator will output
the estimates for each basic block in the leaf behavior and the execution frequency of each basic
block as well as the total estimates for the leaf behavior. In this way, designers who are not only
interested in the estimates of the whole behavior but also interested in the estimates of a loop body
or some basic blocks can easily find out estimates of any part of the specification. Similarly, given
a SpecChart description and a non-leaf behavior name, our estimator will output the estimates and
execution frequency for each sub-behavior in the non-leaf behavior as well as the total estimates of
the non-leaf behavior.

We have compared the estimation results for different target processors including 8086, 80286,
68000, 68020 with those results obtained by flattening (this step is not needed in the first two designs)
and compiling the designs directly into the instruction set of the target processors. Since there is no
VHDL compiler available for those target processors, we first manually convert the VHDL code to its
equivalent C code. Following that we compiled the C code into the instruction set of 8086, 80286,
68000 and 68020 processors. Based on the machine instructions generated from the C compilers and
the instruction timing and size information provided in [I8086][I80286](M68000][M68020], we have
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manually computed the actual performance and program-memory size for the designs. Those actual
results were then compared with the estimates based on the generic three-address instruction compiler

supplemented by corresponding technology files for the target processors.

The first two descriptions we choose were the fifth order elliptical filter and the differential equation
example adopted from [DR92]. The behavior of the elliptical filter consists of an infinite loop. We
estimated only the loop body. In the differential equation example, there are three basic blocks and
one of them is a loop. The loop body can be executed any number of times depending on the external
parameters. In our experiments, we have assumed that the loop body would be executed 10 times.
The performance results are shown in Figure 10 while program-memory sizes are shown in Figure 11.
The data-memory size estimated for the elliptical filter example is 90 bytes. The data-memory size
estimated for the differential equation example is 21 bytes.

Application J:; B Por?oc:um.aineo PE.rngr:rrdioo E'g""‘::‘m
(In clock cycles) (in clock cycles)
Eliiptic filter 8086 2569 2488 3.2%
Elliptic filter 80286 712 662 -7.0%
Elliptic filter 68000 1692 1632 -3.5%
Elliptic filter 68020 924 888 -3.9%
Dxf,':hf‘::' 8086 9446 10586 12.1%
Di:m:] 80286 2244 2304 2.7%
Do cao00 = sox
D;r:zr:hpct,i:l 68020 3416 3676 7.6%

Figure 10: Performance estimation

Generally, compilers optimize the object code by using different optimization techniques such a
global optimization, loop optimization, register allocation, optimization for speed or space. User
can invoke those optimizations by passing special flags to the compiler. In previous experiments
we have disabled those optimizations during the C compilation since our generic compiler does no
use optimization heuristics. Therefore our estimates are for those non-optimized code. In order t
estimate for the optimized code, we need to know the optimization ratio of the compiler to be used b
the designer to generate the machine instructions. The performance-optimization ratio a is define
as performance of the optimized code over the performance of the non-optimized code. The siz
optimization ratio, 3, is defined similarly. To obtain the optimization ratio for each compiler, we ha
performed several experiments and obtained average optimization ratios for the four compilers use

in our experiments (Figure 12).
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After knowing the performance and size optimization ratio e and /3, the estimates for the optimized
code can be obtained by multiplying the estimates of the non-optimized code (obtained from our

estimator) with a or 3. Figure 13 compares our estimates with the actual performance of the optimized

code compiled from the designs.

Application i s I8 e Y oY E"E’r’:_‘::"’“
(In clock cycles) (in clock cycles)
Elliptic fiter 8086 1984 1841 -7.2%
Elliptic filter 80286 483 450 -6.8%
Elliptic fiter 68000 1020 881 -13.6%
Elliptic filter 68020 449 435 -12.9%
D;l:zr;.ng':l 8086 9282 7834 -15.6%
ngf 80286 1690 1567 -7.3%
D;r::r:ﬁrgi:l 68000 3986 3484 -12.6%
D::lm:l 68020 1970 1801 -8.6%

Figure 13: Performance estimation of optimized code

The next design we experiment is the real-time medical system used to measure a patient’s bladder
volume described in [Wu85]. The SpecChart description of this medical system is shown in Figure 14,

There are two timing constraints imposed on this medical system. One is associated with th
behavior DATA_ACQUISITION, which requires that acquisition and conversion of 1000 data point
take place in less than 1 ms. The other is associated with behavior ONE_SCAN, which require
that the maximum time between two scans, i.e. the time used to execute MOTOR_CONTROL2
DATA_ACQUISITION, VOLUME_COMPUTATION and DATA STORAGE, is 1 second. We hav
estimated behavior DATA_ACQUISITION and behavior ONE_SCAN using our estimator. The es
timates are compared with the actual results obtained from the (non-optimized) target machine in

structions (Figure 15).

Since ONE_SCAN is a non-leaf behavior, we need to flatten it into a leaf behavior first. Followin
that the VHDL code is manually translated into C and compiled into the target machine instruction
For DATA_ACQUISITION, the flattening step is not needed since it is a leaf behavior by itself. Durin
the translation from VHDL to C, wait statements were substituted with dummy procedure calls. Whe
we computed the actual performance from the machine instructions, we substituted the performanc
of those dummy procedure call portions with the performance of the corresponding wait statemen

obtained from our estimator.




SYSTEM Declarations:
port x_step, y_step: in integer; port start: in bit;

[ iNmALZATION |
Y
NUL_ BEHAVIOR |
[ .
¥y <y_step other

MOTOR_CONTROL1 J L VOLUME_QUTPUT |
N

NULL_BEHAVIOR |-

ONE_SCAN

"~

L MOTOR_CONTROL2

| DATA_ACQUISITION J

| VOLUME_COMPUTATION |

\
[ DATA_STORAGE |

\.___._../

Figure 14: SpecChart of a medical system

In this experiment, equal branching probability are assumed for all the branches in the behaviors.
The number of loop iteration in DATA_ACQUISITION were 1000 which is the number of data needed
to be sampled in each scan. The loop iteration numbers in the VOLUME_COMPUTATION were set
to 200 for computing the flat level of the bladder, 400 each for computing the anterior wall and the
posterior wall of the bladder. The number of loop iteration in DATA_STORAGE were the same as
number of data fetched, which is 1000.

If the behavior DATA_ACQUISITION is going to run on an 8086 microprocessor with 12 MHZ clock
rate, the estimator predicated 71004 clock cycles which is equivalent to 5.9 ms in this case. Therefore
the timing constraint (1 ms) imposed on DATA_ACQUISITION were violated. And thus custom hard-
ware must be designed for this behavior. The timing constraint of 1 second imposed on the behavior of
ONE_SCAN has not been violated since it only requires 12.8 ms (153641 clock cycles) to execute all be-
haviors in ONE_SCAN on the chosen microprocessor. If behavior DATA_ACQUISITION is extracted
out and implemented by some faster design, the execution time for behavior ONE_SCAN can be ex-
pected to be less than 12.8 ms. Therefore all behaviors in ONE_SCAN except DATA_ACQUISITION

can be implemented using the code running on the microprocessor.




Application Jarget Pactarmmion Parfocmance Estimation
(in clock cycles) (in clock cycles)
Acglmgfﬂou 8086 82015 71004 -13.4%
AGS&E?nON 80286 27056 24002 -11.3%
Acga.'s'?ﬁon 68000 92089 88012 -4.4%
Acgljlg?ﬂON 68020 44044 41006 -6.9%
ONE_SCAN 8086 189914 153641 -19.1%
ONE_SCAN 80286 65931 55580 -15.7%
ONE_SCAN 68000 198665 175620 -11.6%
ONE_SCAN 68020 98982 84531 -14.6%

Figure 15: Performance estimation

6 Conclusion

In this report we have presented techniques for estimating from executable specification the perfor
mance and memory size of software code running on a given processor. The experiments has show
that our estimator has an average error of 7.4% and has a maximum error of 19.1% on designs span
ning from straight line code (elliptic filter) to code with branches and loops (differential equation an
DATA_ACQUISITION module) and even to hierarchical specification (ONE_SCAN module).

Since the generic three-address instructions and the technology files can only characterize the targe
machine instructions to some extend, there is always difference between the estimation obtained fro
our estimator and the results obtained directly by compiling to target machine instructions. Currentl
our technology files are primitive. We expect smaller estimation errors with more accurate technolog
files.

Another thing is that our generic instruction set has limited formats, especially in terms of memor
addressing modes. If we can incorporate more memory addressing modes in our compiler to clo
the gap between the generic instructions and the target machine instructions, we can expect bett
estimation results. However this may increase the complexity of the generic instructions. Increasi
complexity of the generic instructions may increase the compiling time and hence increase the who
estimation time. Therefore more studies are needed to investigate what makes a suitable gener

instruction set.

In conclusion, our software estimator provides rapid feedback to the designers or partitioning to
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and enable them to evaluate different design alternatives quickly. It takes 0.64, 0.33, 1.97 and 7.09
seconds on a Sund4 system to estimate the performance of the elliptic filter, differential equation,
DATA_ACQUISITION and ONE_SCAN modules respectively for the 8086 technology file. On the
contrary, it takes several days to manually compute the same information. Such instant feedback
enables the designers or partitioning tools to rapidly explore larger design space, which may lead to

faster and/or cheaper designs.
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A Technology Files

## Anything after ‘#’ are comments.
This is the technology file for 8086 processor.
DirectMem means direct memory addressing.

##
##
##
#

IndirectMem means indirect memory addressing.
DESTINATION

oP

ALU
ALU
ALU
ALU
ALU
ALU
ALU
ALU
ALU
ALU
ALU
ALU
ALU
ALU
ALU
ALU
ALU
ALU
ALU
ALU
ALU
ALU
ALU
ALU
ALU
ALU
ALU
ALU
ALU
ALU
ALU
ALU
ALU
ALU
ALU
ALU
ALU
ALU
ALU
ALU

Register
Register
Register
Register
Register
Register
Register
Register
Register
Register
Register
Register
Register
Register
Register
Register
DirectMem
DirectMem
DirectMem
DirectMem
DirectMem
DirectMem
DirectMem
DirectMem
DirectMem
DirectMem
DirectMem
DirectMem
DirectMem
DirectMem
DirectMem
DirectMem
Register
Register
Register
Register
DirectMem
DirectMem
DirectMem
DirectMem

SOURCE1
Constant
Constant
Register
Register
DirectMem
Constant
DirectMem
Register
DirectMem
IndirectMem
Constant
IndirectMem
Register
IndirectMem
DirectMem
IndirectMem
Constant
Constant
Register
Register
DirectMen
Constant
DirectMem
Register
DirectMem
IndirectMem
Constant
IndirectMem
Register
IndirectMem
DirectMem
IndirectMem
Empty
Empty
Empty
Empty
Empty
Empty
Empty
Empty

SOURCE2
Constant
Register
Constant
Register
Constant

DirectMem
Register

DirectMem

DirectMem
Constant

IndirectMem
Register
IndirectMem
DirectMem
IndirectMem
IndirectMem
Constant
Register
Constant
Register
Constant

DirectMem
Register

DirectMem

DirectMem
Constant

IndirectMem
Register
IndirectMem
DirectMem
IndirectMenm
IndirectMem
Constant
Register
DirectMem
IndirectMem
Constant
Register
DirectMem
IndirectMem
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time(clock

cycles)
4
T
6
5
7
18
16
16
27
20
21
19
19
30
30
33
15
21
20
19
31
32
30
30
41
34
35
33
33
G
44
47
4
5
16
19
21
19
30
33

size(bytes)
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Register
Register
Register
Register
Register
Register
Register
Register
Register
Register
Register
Register
Register
Register
Register
Register
DirectMem
DirectMem
DirectMem
DirectMem
DirectMem
DirectMem
DirectMem
DirectMem
DirectMem
DirectMem
DirectMem
DirectMem
DirectMem
DirectMem
DirectMem
DirectMem
Register
Register
Register
Register
Register
Register
Register
Register
Register
Register
Register
Register
Register
Register
Register
Register

Constant
Constant
Register
Register
DirectMem
Constant
DirectMem
Register
DirectMem
IndirectMem
Constant
IndirectMenm
Register
IndirectMem
DirectMem
IndirectMem
Constant
Constant
Register
Register
DirectMem
Constant
DirectMem
Register
DirectMem
IndirectMem
Constant
IndirectMem
Register
IndirectMem
DirectMem
IndirectMem
Constant
Constant
Register
Register
DirectMem
Constant
DirectMem
Register
DirectMem
IndirectMem
Constant
IndirectMem
Register
IndirectMem
DirectMem
IndirectMem

Constant
Register
Constant
Register
Constant
DirectMem
Register
DirectMem
DirectMem
Constant
IndirectMenm
Register
IndirectMem
DirectMem
IndirectMem
IndirectMem
Constant
Register
Constant
Register
Constant
DirectMem
Register
DirectMem
DirectMem
Constant
IndirectMem
Register
IndirectMem
DirectMem
IndirectMem
IndirectMem
Constant
Register
Constant
Register
Constant
DirectMem
Register
DirectMem
DirectMem
Constant
IndirectMem
Register
IndirectMem
DirectMem
IndirectMen
IndirectMem

26

74
72
135
83
)
146
146
157
86
82
149
149
160
160
163
15
88
86
149
97
93
160
160
171
100
96
163
163
174
174
s 7 47

89

92
164
103

94
175
175
186
106

97
178
178
189
189
192
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DIV
DIV
DIV
DIV
DIV
DIV
DIV
DIV
DIV
DIV
DIV
DIV
DIV
DIV
DIV
DIV
CMP
CMP
CMP
CMP
CMP
CMP
CMP
CMP
CMP
CMP
CMP
CMP
CMP
CMP
CMP
CMP
CMP
CMP
CMP
CMP
CMP
CMP
CMP
CMP
CMP
CMP
CMP
CMP
CMP
CMP
CMP
CMP

DirectMem
DirectMem
DirectMem
DirectMenm
DirectMem
DirectMen
DirectMenm
DirectMem
DirectMem
DirectMem
DirectMem
DirectMem
DirectMem
DirectMem
DirectMem
DirectMem
Register
Register
Register
Register
Register
Register
Register
Register
Register
Register
Register
Register
Register
Register
Register
Register
DirectMem
DirectMem
DirectMem
DirectMem
DirectMem
DirectMem
DirectMem
DirectMem
DirectMem
DirectMem
DirectMem
DirectMem
DirectMem
DirectMem
DirectMen
DirectMem

Constant
Constant
Register
Register
DirectMem
Constant
DirectMem
Register
DirectMem
IndirectMem
Constant
IndirectMem
Register
IndirectMem
DirectMem
IndirectMem
Constant
Constant
Register
Register
DirectMem
Constant
DirectMem
Register
DirectMem
IndirectMem
Constant
IndirectMem
Register
IndirectMem
DirectMem
IndirectMem
Constant
Constant
Register
Register
DirectMem
Constant
DirectMem
Register
DirectMem
IndirectMen
Constant
IndirectMem
Register
IndirectMem
DirectMem
IndirectMem

Constant
Register
Constant
Register
Constant
DirectMem
Register
DirectMem
DirectMem
Constant
IndirectMem
Register
IndirectMem
DirectMem
IndirectMem
IndirectMem
Constant
Register
Constant
Register
Constant
DirectMen
Register
DirectMem
DirectMem
Constant
IndirectMem
Register
IndirectMem
DirectMem
IndirectMenm
IndirectMem
Constant
Register
Constant
Register
Constant
DirectMem
Register
DirectMem
DirectMem
Constant
IndirectMem
Register
IndirectMem
DirectMem
IndirectMem
IndirectMem

27

15
103
106
178
117
108
189
189
200
120
111
192
192
203
203
206

a ~N

17
18
16
16
27
20
21
19
19
30
30
33
15
21
20
19
31
32
30
30
41
34
35
33
33
44

47

10

10
10
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MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
NOP
CJUMP
JUMP
RET
CALL

Register
Register
Register
Register
DirectMem
DirectMem
DirectMem
DirectMem
IndirectMem
IndirectMem
IndirectMem
IndirectMem
Empty
Empty

Empty

Empty

Empty

Empty
Empty
Empty
Empty
Empty
Empty
Empty
Empty
Empty
Empty
Empty
Empty
Empty
Empty
Empty
Empty
Empty

Constant
Register
DirectMem
IndirectMem
Constant
Register
DirectMem
IndirectMem
Constant
Register
DirectMem
IndirectMem
Empty

Empty

Empty

Empty

Empty

13
16
15
14
27
27
18
s 1
30
33

16
24
17
37
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