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Robust Deep Sensing Through Transfer Learning in

Cognitive Radio
Qihang Peng, Andrew Gilman, Nuno Vasconcelos, Pamela C. Cosman, and Laurence B. Milstein

Abstract—We propose a robust spectrum sensing framework
based on deep learning. The received signals at the secondary
user’s receiver are filtered, sampled and then directly fed into a
convolutional neural network. Although this deep sensing is effec-
tive when operating in the same scenario as the collected training
data, the sensing performance is degraded when it is applied in a
different scenario with different wireless signals and propagation.
We incorporate transfer learning into the framework to improve
the robustness. Results validate the effectiveness as well as the
robustness of the proposed deep spectrum sensing framework.

Index Terms—Spectrum sensing, deep learning, robustness,
transfer learning, cognitive radio.

I. Introduction

Spectrum sensing enables cognitive radios to discover un-

used spectrum of primary users (PUs) in time, frequency and

spatial domains, such that secondary users (SUs) can access

these unused spectral bands to increase spectral utilization of

the network [1]- [3]. Spectrum sensing is considered of critical

importance for the realization of cognitive radio.

In recent years, deep learning (DL) techniques have

achieved great success on many complex tasks in computer

vision, speech recognition and synthesis, and natural language

processing. Experience in these areas has shown that best

performance is usually obtained with end-to-end models [4]–

[6], where a DL system learns appropriate features for the task

in a data-driven fashion, instead of using engineered features,

hand-crafted by domain experts. Such models may also have

potential in spectrum sensing.

A DL model was proposed in [7] for cooperative spectrum

sensing, where the cognitive radio network (CRN) combines

the individual sensing results from each SU. Measured re-

ceived signal strength (RSS) or binary sensing decisions were

used as the input to a deep neural network (DNN). A recent

work on modulation recognition [8] using raw samples of the

in-phase and quadrature-phase of the received temporal signals

as input to a DNN shows significant gains compared to using

conventional features, for example, higher order moments.

However, deep learning-based approaches require significant

amounts of labeled training data which follows the same

distribution as the test data. In [9] and [10], the authors propose

adversarial generative networks to augment training examples,
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with a limited number of labeled training data, as well as

domain adaptation to switch between signal types.

In this letter, we propose a DL-based spectrum sensing

system, called deep sensing hereafter. Unlike existing DL-

based spectrum sensing using expert features, the proposed

method uses raw signals as inputs to a DNN. We observe that

a DNN trained using data obtained under one set of conditions

may not perform well when wireless conditions change, e.g.,

variations in wireless propagation, different PU signals. To

improve the robustness, we propose to incorporate transfer

learning [11], which uses small amounts of additional data

to adapt the learned models to new communications settings.

Results show that transfer learning significantly improves the

robustness of deep spectrum sensing.

To our knowledge, this is the first attempt at directly using

signal samples rather than expert features for spectrum sensing

with DL in cognitive radio, and this is the first exploration of

transfer learning considering both cases of no labeled training

examples and a small number of labeled training examples,

toward more robust DL-based spectrum sensing. The rest of

this letter is organized as follows. Section II presents the deep

spectrum sensing algorithm and its performance. Robustness is

analyzed, and two transfer learning frameworks are examined

in Section III.

II. Deep Spectrum Sensing

Received radio signals pass through a rectangular bandlim-

ited filter to limit noise, and then are sampled, producing

a discrete-time sequence. A subsequence of N complex-

valued samples, collected during a single sensing interval, is

decomposed as a 2 × N real-valued vector, with the first and

second row being the in-phase and quadrature components

respectively, and forms a single input vector x to a DNN. The

DNN outputs a binary class label y with value y = 1 when the

PU is detected and y = 0 when it is not.

We use a convolutional neural network (CNN) with two

convolutional layers, followed by two dense layers (Table I).

For the two convolutional layers, the stride is 1 and the zero

padding equals 4. Rectified linear (ReLU) activation units are

used as the non-linearity in each layer. Dropout with a rate of

0.50 is used to regularize fully connected and convolutional

layers, to reduce over-fitting. The Adam optimizer is utilized,

and the last layer uses the logistic function. Given a training

set of n sensing interval examples xi and their class labels yi,

denoted D =
{

xi, yi

}n

i=1
, the network parameters are learned by

minimizing the empirical risk

w∗ = argmin
w

1

n

∑

i

L
[

f (xi; w), yi

]

(1)
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where f (xi; w) = p(yi = 1|x = xi; w) and the empirical risk

uses the binary cross-entropy loss function

L
[

f (xi; w), yi

]

= −

(

yi log
(

f (xi; w)
)

+ (1− yi) log
(

1− f (xi; w)
)

)

.

(2)

This is the set of network parameters that maximizes the

likelihood
∏n

i=1 f (xi; w)yi(1 − f (xi; w))1−yi .

The reasons for choosing a CNN are (a) relatively low

complexity, (b) operation of a CNN kernel can be thought of

as related to filtering operations that occur in communications

receivers, and (c) the modulation recognition work by O’Shea

[8] used a CNN.

TABLE I: Deep sensing neural network

Layer Output dimensions # of kernels Kernel size

Input 2 × N

Conv1 256 × 2 × N 256 1 × 9

Conv2 80 × 2 × N 80 1 × 9

Dense1 256

Dense2 2

Output 1

To compare the performance of spectrum sensing using deep

learning, we adopt a setting where an analytical expression

for the optimal sensing algorithm is available. We consider

detecting a narrowband Gaussian-distributed signal in additive

white Gaussian noise (AWGN), in which case the optimal

sensing algorithm according to the log-likelihood ratio is [12]

LLR(x) = 1
2
xT (C−1

z −C−1
x )x (3)

where x is a vector of received samples within one sensing

duration, Cx is the covariance matrix of x, and Cz is the

covariance matrix of the additive noise after the filter.

We compare sensing performance using a narrowband Gaus-

sian PU signal with zero mean, corrupted by AWGN. There

are N = 32 samples in a sensing interval, and the signal-

to-noise ratio (SNR) 10 log10

(

σ2
S
/σ2

n

)

is -4dB, where σ2
S

is

the PU signal variance and σ2
n is the noise variance after the

filter. The PU signal bandwidth is 1/4 of the filter bandwidth.

The network is trained with a training set D of n = 2 × 104

and tested on an independent (but with the same transmitter,

channel and receiver characteristics) test set of the same size.

Fig. 1 shows the ROC curves for optimal and deep sensing

as well as the performance of an energy detector [2]. The

optimal sensing result was obtained with (3). The deep sensing

result was obtained by computing probabilities of detection

and false alarm on the test set, using different thresholds on

the network output. The deep sensing, which does not require

feature extraction of the received samples, outperforms energy

detection (ED) and is close to the optimal.

The optimal scheme for a particular sensing scenario is

only optimal if it has perfect information on the required

parameters. For example, the optimal scheme in Fig. 1 requires

the covariance matrices of the received samples and of the

additive noise after the receive filter. With estimation error in

the required information, the performance degrades. Also, for

different sensing scenarios, the optimal sensing scheme differs,

so a dedicated sensing receiver is required for every scenario,

which is costly.
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Fig. 1: Deep spectrum sensing compared with optimal sensing.

III. Robust Deep Sensing with Transfer Learning

Robustness was shown to be a problem when applying DL

for automatic modulation recognition [13]. We examine deep

sensing robustness by considering different PU signals: nar-

rowband Gaussian signals with zero mean in AWGN with an

SNR of −4dB, and QPSK signals that use a square root raised

cosine filter with a roll-off factor of 0.5 as pulse shaping. The

QPSK signals experience path loss with average SNR between

−2dB and −4dB and frequency-selective Rayleigh fading with

3 discrete paths. The data is obtained from simulations in

MATLAB. Datasets collected under these different characteris-

tics will belong to different, but related, distributions. We say

that these datasets have been obtained in different domains.

The source domain is used to train the network, and the target

domain is used for testing. Both training and test sets have size

n = 2 × 104. Results are in Fig. 2, where the probability of

detection (pd) versus the probability of false alarm (p f a) is

plotted. In Fig. 2(left), we use QPSK as source domain and

Gaussian as target domain. The resulting sensing performance,

marked “QPSK→Gaussian”, is significantly worse than the

case where we use 2×104 examples of Gaussian signals to train

and test the network (curve labeled “Gaussian→Gaussian”).

Similar observations can be made from Fig. 2(right), where

the curve “Gaussian→QPSK” is obtained using Gaussian

signals in the source domain and QPSK signals in the tar-

get domain, and the curve “QPSK→QPSK” is plotted for

reference. Figs. 1 and 2 show that when source and target

domains are the same, deep sensing performance can be

close to optimal, whereas when they are mismatched, deep

sensing performance can degrade significantly. As transmitted

signals can vary in several ways (e.g., alphabet sizes, coding

schemes) and signal propagation depends on many factors

(e.g., frequency, terrain profile), getting enough ground-truth

labeled training data across all possible scenarios is difficult.

Experience in other problems such as object recognition shows

that no system is ever robust enough to address all possible

operating conditions. Thus transfer learning procedures are

important.
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Fig. 2: Deep sensing using transfer learning with no labeled data: (left) from QPSK to zero-mean narrowband Gaussian signals;

(right) from zero-mean narrowband Gaussian to QPSK signals.

A. Transfer learning with no labeled data

The transfer approaches in this category are referred to

as unsupervised domain adaptation. Let Xsrc = {xsrci
} and

Xtar = {xtari
} denote the data in the source and target domains.

As shown above, directly applying the neural network (NN)

trained with Xsrc may not work well for Xtar. To leverage the

knowledge learned by the NN from Xsrc, we use the transfer

learning method of [14]. This aims to discover a latent space

described by a kernel-induced feature transformation function

φ such that the marginal distributions of φ
(

Xsrc

)

and φ
(

Xtar

)

are close. A nonparametric distance estimate, referred to as

the Maximum Mean Discrepancy (MMD) [14], is defined by

embedding distributions in a reproducing kernel Hilbert space

(RKHS) and is calculated by
∥

∥

∥

1

n1

n1
∑

i=1

φ(xsrci
)−

1

n2

n2
∑

i=1

φ(xtari
)
∥

∥

∥

2

H
,

where
∥

∥

∥ ·
∥

∥

∥

H
is the RKHS norm. Making the distributions of

the source and target data close is equivalent to minimizing the

MMD distance [14]. Let K =
[

φ(xi)
Tφ(x j)

]

, and Li, j = 1/n2
1

if xi, x j ∈ Xsrc, else Li, j = 1/n2
2

if xi, x j ∈ Xtar, otherwise,

Li, j = −1/n1n2. The MMD distance can then be written as

tr(KL), and the learning problem formulated as [14]

min
W

tr(WT KLKW) + µ · tr(WT W)

s.t. WT KHKW = I
(4)

where tr(·) stands for the trace operation, H = I − (1/(n1 +

n2))11T is the centering matrix, 1 is a (n1 + n2) × 1 column

vector with all 1’s, a regularization term tr(WT W) controls

the complexity of W, µ > 0 is a tradeoff factor between the

MMD distance between distributions and complexity, and I

is the identity matrix. The data in the latent space is WT K,

and the solution of W corresponds to the m (m ≤ N) leading

eigenvectors of (KLK + µI)−1KHK.

We use p f a and pd as the sensing performance metrics.

Fig. 2(left) shows that when QPSK data is used as source

data and Gaussian data as target data, the transfer learning

algorithm improves the sensing, compared to when we directly

use the NN trained on QPSK data for sensing Gaussian PU

signals. However, the improved deep sensing is still worse than

ED. Further, interchanging source and target data, Fig. 2(right)

shows that unsupervised domain adaptation does not improve

performance, although in this case either deep sensing out-

performs ED. These results indicate that this transfer with no

labeled target domain data is not robust.

B. Transfer learning with a small amount of labeled data

When we have a small amount of labeled data, we can

use fine-tuning, the dominant transfer learning procedure in

computer vision [11]. The deep sensing system, trained on

a large source dataset, is a starting point for further training

using data from the target dataset. For training the baseline

network, it is assumed that simulation data is used. For the

transfer learning, we use simulation data also, but in practice

the SU would need to acquire some real labeled data in its

actual environment. One way to accomplish this is through

cooperation between PUs and SUs. With a small loss of

throughput, the PUs could use occasional sensing intervals for

providing ON and OFF periods so that each SU can acquire

labeled data. Alternatively, by listening and comparing across

consecutive sensing and data transmission intervals, an SU

could develop estimates of the labels.

We start with a NN pre-trained using 2 × 104 examples

of QPSK data, and fine tune it using a variable number of

examples of Gaussian signals. The fine tuned network is then

applied for sensing zero-mean Gaussian signals. We also plot

ED performance and the DL-based sensing performance by

training from scratch which initializes the NN randomly and

trains it using a variable number of Gaussian examples. To

account for the stochastic nature of the stochastic gradient

descent optimization with random weight initialization, the

network is trained 10 times and the results are averaged.

Fig. 3(top) shows pd vs. the number of examples of Gaussian

signals, with p f a = 0.1. With no labeled Gaussian data,

pd > 0.55 for the network trained by QPSK data, and

pd < 0.1 for the randomly initialized network, showing that
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QPSK-trained initialization is beneficial. When the number of

training examples is larger than roughly 300, the DL-based

sensing outperforms ED. Fine tuning outperforms the Gaussian

data training from scratch. Given enough training data, the

performance of random initialization approaches that of the

pre-trained network.

Next we interchange the training and test data. We use

Gaussian signals for pre-training and fine tune with a limited

number of examples of QPSK signals. We test by sensing

QPSK signals. As in Fig. 3(top), simulations are re-run 10

times and the results are obtained by averaging. Fig. 3(bottom)

shows pd versus the number of labeled QPSK data, where

p f a = 0.1. We observe a similar pattern as before: when only

a small amount of QPSK training data is available, better

performance can be achieved by fine tuning than random

initialization. Further, fine tuning outperforms ED for the

whole curve, and the DL-based sensing by training from

scratch outperforms ED as well when the number of training

examples exceeds roughly 100.

In addition to the narrowband Gaussian and QPSK signals,

we tested several other signals and channel models. For curves

of the type shown in Fig. 3, the area under the curves over the

x-axis range
[

0, 1000] for both fine-tuning and training from

scratch are in Table II. All results were consistent with Fig. 3,

in that fine-tuning outperformed training from scratch.

TABLE II: Deep sensing performance (Area under curve) for

various signals and channel models. In this table, PL and R

denote path loss and Rayleigh fading.

Source domain → target domain Fine-tune Train from scratch

BPSK +PL → QPSK +PL,R 845.64 673.98

QPSK +PL,R → BPSK +PL 938.72 849.61

QPSK +PL → 16QAM +PL,R 816.55 655.63

16QAM +PL → BPSK +PL,R 870.26 760.05

Conclusion: We demonstrate the application of deep learn-

ing to spectrum sensing. The approach does not require feature

extraction from the received signals at the SU. As deep

spectrum sensing is not robust when applied in a different

communications scenario from the training data, we incorpo-

rate transfer learning to ensure robustness. With no labeled

target data, the transfer is unreliable and depends on whether

QPSK or Gaussian signals are the source or target. When there

is a small amount of labeled target data, fine tuning is shown

to be robust for transferring into a variety of domains.
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