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Matters arising

Model uncertainty obscures major driver of 
soil carbon

Xianjin He1, Rose Z. Abramoff1,4, Elsa Abs1, Katerina Georgiou2, Haicheng Zhang3 & 
Daniel S. Goll1 ✉

arising from: F. Tao et al. Nature https://doi.org/10.1038/s41586-023-06042-3 (2023).

Understanding the formation and stabilization mechanisms of soil 
organic carbon (SOC) is important for managing land carbon (C) and 
mitigating climate change. Tao et al.1 reported that microbial C use 
efficiency (CUE) is the primary determinant of global SOC storage and 
that the relative impact of plant C inputs on SOC is minor. Although 
soil microbes undoubtedly play an important role in SOC cycling, we 
are concerned about the robustness of the approach taken by Tao 
et al.1. The potential biases in their analyses may lead to misleading, 
model-dependent results.

An important piece of evidence in support of an empirical rela-
tionship between CUE and SOC stems from a meta-analysis based on 
132 paired CUE and SOC measurements. Tao et al.1 applied a linear 
mixed-effects model to this dataset that included CUE, mean annual 
temperature (MAT), soil depth and random effects and explained 55% 
of the variation in the log-transformed SOC (Fig. 2a and Extended Data 
Table 1 in Tao et al.1). In their linear mixed-effects model, C inputs to 
soil were not included despite the authors acknowledging past empir-
ical and theoretical evidence for a major role. To demonstrate that 
C inputs can also drive SOC variation in their dataset, we extracted 
net primary production (NPP) from the globally gridded MODIS2 for 
each soil-sampling location and used it as a first-order proxy for soil C 
inputs following ref. 1. By replacing CUE with NPP in the authors’ linear 
mixed-effects model, we explained a larger proportion of the variation 
in SOC, namely, 71% with NPP compared with 55% with CUE (Table 1). 
This finding suggests that the empirical results of Tao et al.1 may not be 
robust to the inclusion of other variables and raises questions about 
the importance of CUE in explaining SOC variations.

Tao et al.1 further present results from a parameter sensitivity 
analysis of a process-oriented model, which showcase a causal and 
dominant relationship between CUE and SOC (Fig. 4 in Tao et al.1). 
To address uncertainties in model structure and parameters that 
impede robust model predictions, the authors used a comprehensive 
model-data-assimilation approach to calibrate a selection of 23 param-
eters of a SOC model based on a global dataset of SOC measurements. 
The calibrated SOC model was then used to quantify the sensitivity of 
SOC predictions to a selection of potential drivers of SOC, that is, by 
varying their values around the optimal or prescribed values one by 
one. We argue that the omission of C inputs and a microbial parameter 
shown to critically affect the sensitivity of SOC to changes in C inputs in 
microbial-explicit SOC models in the set of optimized parameters raises 
doubts about the robustness of the findings of the sensitivity analysis.

First, Tao et al.1 assumed a model structure that may inherently 
predispose their analyses to suggest a low importance of C inputs 

on steady-state SOC. In particular, the chosen model represents the 
rate of microbial turnover as a linear function of microbial biomass 
(that is, ‘density-independent’, with exponent β = 1; unless other-
wise specified, β refers to the exponent of microbial turnover rate in 
this study), as opposed to a potential super-linear function (that is, 
‘density-dependent’, with β > 1), as suggested in past studies3–5. With-
out this density-dependent microbial turnover, a given change in C 
inputs may result in a proportional change in the microbial biomass 
pool and a consequent insensitivity of the SOC pool. This type of 
model is inconsistent with several empirical and theoretical results 
showing that steady-state SOC pools are sensitive to changes in C 
inputs, and that this can be better simulated using SOC models with 
density-dependent microbial turnover3. Figure 1 shows that a switch 
from density-independent (β = 1) to density-dependent (β > 1) micro-
bial turnover greatly increases the impact of C input to SOC in the 
MIcrobial-MIneral Carbon Stabilization (MIMICS) model6 (Fig. 1a–c) 
and in the Millennial model4 (Fig. 1d–f).
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Table 1 | NPP may explain more variation in SOC storage than 
microbial CUE

log10(SOC)

Predictors Estimates CI P

(Intercept) 1.37 1.24–1.50 <0.001

NPP 0.25 0.19–0.32 <0.001

MAT −0.10 −0.16 to −0.04 0.002

Depth −0.14 −0.19 to −0.09 <0.001

Random effects

σ2 0.05

τ00 Source 0.05

ICC 0.50

NSource 15

Observations 121

Marginal R2/conditional R2 0.417/0.709

We performed the same mixed-model regression analyses as in Tao et al.1 but also explored 
the importance of NPP (g C m−2 year−1) as a first-order proxy for C inputs to the soil. In both this 
study and in Tao et al.1, the linear mixed-effects model also includes MAT (°C) and soil depth 
(cm), and the study sources were added as the random effects. To ensure the comparability  
of coefficients across all three explanatory variables (that is, NPP, MAT and depth) in the results, 
we applied standardization using the Z-score method, which maintains the explanatory 
power of the model. CI and P indicate 95% confidence interval and statistical significance, 
respectively, and ICC is the intraclass correlation coefficient.
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Although Tao et al.1 explored the potential need for a sub-linear 
exponent on the rate of enzyme production—that is, enzyme pro-
duction ≈ (microbial biomass)βenz, in which 0 < βenz < 1—in their SOC 
model (here ‘βenz’ is used to distinguish it from the exponent β), 
this modification is functionally and theoretically distinct from the 
density-dependent microbial turnover with β > 1 proposed in earlier 
work3. We conducted a sensitivity analysis7 to determine whether SOC 
behaved the same if an exponent was assigned to enzyme produc-
tion (0 < βenz < 1, as in ref. 1) versus microbial turnover (1 < β < 2, as in 
ref. 3). We found that the sensitivity of SOC to a variation of +/−10% 
of CUE is equal to 1.3 when β and βenz are both equal to 1 but is much 
less when the exponents are not equal to 1: 0.48 and 0.73 for a 50% 
change in βenz and β on turnover, respectively. On the other hand, 
the sensitivity of SOC to a variation of +/−10% of C input is equal to 0 
when β and βenz = 1, 0.52 when βenz is modified by 50% and 0.34 when 
β on turnover is modified by 50%. This indicates that the results of 
Tao et al.1 are very contingent on the assumed model structure. If β 
associated with turnover is not found with observations to be mostly 
1 (as for enzyme production), then a lower sensitivity of SOC to CUE 
and a greater sensitivity of SOC to C input may have been observed. 
Besides, the exploration of the exponent βenz by Tao et al.1 is only in 
the reply to the reviewers and there is not a sufficient description of 
how the results were obtained.

Second, Tao et al.1 approximated C inputs to the soil using NPP from 
predictions of a land surface model. NPP is a notoriously uncertain C 
flux and it is not clear to what extent NPP from land surface models 
actually reflects C inputs to soil and its spatial variations8. The use of 
the interannual variation in NPP from a single land surface model to 
characterize uncertainty in C inputs, as done in the optimization in 
this study, falls arguably short to characterize the true uncertainty. Its 

implications for the outcome of the study remain elusive, represent-
ing a source of uncertainty. The inclusion of C input9 as a parameter 
for optimization at the site scale rather than the inclusion of NPP as 
an environmental driver for the global extrapolation1 of site-specific 
optimized parameters could be a way forward.

In summary, we highlight several statistical and process-based model 
assumptions that may have biased the overarching conclusion that 
CUE is the dominant control on spatial variation of SOC. We argue 
that changes in soil microbial CUE itself are influenced by environ-
mental factors, including C inputs as well as the quality of litter10,11. 
The findings of Tao et al.1 contradict numerous empirical studies that 
report that changes in plant inputs substantially alter SOC (for exam-
ple, refs. 12–14). We believe that further examination of statistical and 
process-based model structures is needed to demonstrate the robust-
ness of the conclusions presented. Moreover, future research efforts 
should be allocated towards investigating several mechanisms of SOC 
stabilization and loss, rather than solely focusing on CUE.
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Fig. 1 | Sensitivity of the CUE–SOC relationship to the inclusion of density- 
dependent microbial turnover in process-based soil models. a–f, Predicted 
SOC stocks at steady state from the MIMICS (a–c) and Millennial (d–f) microbial- 
explicit SOC models using a range of density-dependent microbial turnover 

exponent (β) values, NPP and microbial CUE. Simulations for a mean annual 
temperature of 20 °C, soil clay content of 20% and litter lignin-to-nitrogen ratio 
of 10. The SOC values in each plot were standardized using the Z-score method 
to ensure comparability.
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Reply to: Model uncertainty obscures major 
driver of soil carbon

Feng Tao1,2, Benjamin Z. Houlton1,3, Serita D. Frey4, Johannes Lehmann5, Stefano Manzoni6, 
Yuanyuan Huang7, Lifen Jiang5, Umakant Mishra8,9, Bruce A. Hungate10,11, 
Michael W. I. Schmidt12, Markus Reichstein13, Nuno Carvalhais13,14, Philippe Ciais15, 
Ying-Ping Wang16, Bernhard Ahrens13, Gustaf Hugelius6, Toby D. Hocking11, Xingjie Lu17, 
Zheng Shi18,19, Kostiantyn Viatkin5, Ronald Vargas20, Yusuf Yigini20, Christian Omuto20, 
Ashish A. Malik21, Guillermo Peralta20, Rosa Cuevas-Corona20, Luciano E. Di Paolo20, 
Isabel Luotto20, Cuijuan Liao2, Yi-Shuang Liang2, Vinisa S. Saynes20, Xiaomeng Huang2 ✉ & 
Yiqi Luo5 ✉

replying to: X. He et al. Nature https://doi.org/10.1038/s41586-023-06999-1 (2024).

In the accompanying Comment1, He et al. argue that Tao et al.2 overes-
timated the role of microbial carbon use efficiency (CUE) in global soil 
organic carbon (SOC) storage because carbon inputs were neglected in 
our data analysis. They also suggest that our big data analysis could be 
biased and model-dependent. Their argument is based on a different 
choice of independent variables in the data analysis and sensitivity 
analysis of two process-based models without being informed by obser-
vations other than that used in our study. We agree that both carbon 
inputs and outputs (as mediated by microbial processes) matter, and 
their influences on SOC could vary in models with different structures. 
By fusing big SOC data with models, the data-assimilation approach 
used by Tao et al.2 reconciles inter-model disagreements and reveals 
converging results in assessing the relative contributions of different 
processes to global SOC storage. Thus, the claims of He et al. need to 
be taken as an alternative, unproven hypothesis until empirical data 
support their specific parameterization. Here we show that another 
assessment of global data products does not support He et al.’s argu-
ments and further study is essential.

The higher explanatory power of carbon input than microbial CUE 
for SOC storage envisaged by He et al. does not hold at the global scale 
when more data are considered (Table 1). He et al. proposed that carbon 
input is potentially more important than microbial CUE by using the net 
primary production (NPP) as carbon input to explain the spatial varia-
tion of SOC at the 132 datasets used in our meta-analysis. However, the 
statistical models in Tao et al.2 were not applied to evaluate the relative 
importance of either CUE or NPP for SOC but to determine whether 
microbial CUE is positively or negatively correlated with SOC. This issue 
raised by He et al. might become relevant if NPP obscures the CUE–SOC 
relationship to the extent of changing its direction. In Supplementary 
Table 3, Tao et al.2 showed that including NPP in a mixed-effects model 
does not influence the positive CUE–SOC correlation.

Moreover, NPP may have high explanatory power for SOC across 
these 132 local sites but not at the global scale. We used data prod-
ucts from different sources to test the CUE–SOC and NPP–SOC rela-
tionships at the global scale. We extracted global maps of NPP from a 
MODIS-based product3 and CUE from PRODA-retrieved results (Fig. 3b 
of Tao et al.2). To avoid potential influence derived from data assimila-
tion that may inherently strengthen the CUE–SOC relationship, we 
did not use the SOC map retrieved by PRODA but instead five other 
independent products, namely, SoilGrids250m4, WISE30sec5, HWSD6, 
NCSCD7 and FAO-GSOC8. Because NCSCD only has the SOC map for per-
mafrost regions, we gap-filled regions outside permafrost for NCSCD 
with WISE30sec data. We found that CUE explains more spatial vari-
ation of SOC (21%) than NPP (4%) at the global scale (Table 1). Indeed, 
the notion that NPP is a small factor in explaining SOC dynamics and 
spatial variation at regional and global scales has been well documented 
in the literature9–11.

Process-based models can theoretically generate a range of patterns 
and predictions, as correctly argued by He et al. and well documented 
in the literature. However, models yield realistic predictions only after 
they are constrained by observations. He et al. used two models to 
examine varying sensitivities of SOC storage in response to changes 
in a parameter (β) that represents the density dependence of micro-
bial mortality12, arguing that SOC storage could be more sensitive to 
changes in NPP than microbial CUE under certain parameterizations. 
Indeed, generating such a pattern does not necessarily require intro-
ducing new parameters. The microbial model used by Tao et al.2 could 
generate similar sensitivities for SOC storage in response to NPP with 
assuming that mortality is not density-dependent (β = 1; Fig. 1). SOC 
storage could show no response to doubled NPP when the turnover 
time (τ) of both enzyme (ENZ) and microbial biomass (MIC) is very 
short (for example, τENZ,decay = 0.05 years and τMIC = 0.2 years; Fig. 1a). 
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Alternatively, SOC storage could also dramatically increase with dou-
bled NPP when the turnover time of either of these two pools is higher 
(for example, τENZ,decay increases from 0.05 years to 0.50 years (Fig. 1a–c) 
or τMIC increases from 0.2 years to 1.5 years (Fig. 1d–f)). Nevertheless, 
after assimilating the SOC data with the microbial model, microbial CUE 
emerged to be more important than NPP for global SOC storage. It is the 
Bayesian framework used in our study by means of data assimilation 
that identified the most probable mechanism among these diverse 
alternatives. Thus, an analysis in which data assimilation is conducted 
to estimate the most realistic β value is essential before claiming that 
such a parameter could overrule the importance of microbial CUE for 
SOC storage.

Diverging simulations by structurally different models could largely 
be reconciled by applying data assimilation with the same datasets. In 
the Peer Review File of Tao et al.2, results from data assimilation using 
three structurally different models (one first-order kinetic model, 
that is, CLM5, and two microbial models) all showed that estimated 
parameters related to microbial CUE are more important than NPP in 
determining global SOC. Among these models, the first-order kinetic 
model (CLM5) simulates the strongest possible sensitivity of SOC to 
carbon input (that is, a 1% increase in NPP leads to a 1% increase in SOC 
storage). However, changes in the estimated transfer coefficients, which 
are conceptually related, at least partially, to microbial CUE, exhib-
ited more predominant effects on SOC simulations than carbon input. 
Although uncertainties still exist among structurally different models 
even after data assimilation, our study showed the possibility that using 

Table 1 | Microbial CUE explains more spatial variation of SOC 
storage than NPP at the global scale

Intercept CUE or NPP

log (SOC) CUE (1 Data product)10 ≈ + ; variance explained by mixed model: 21%

Fixed effects Estimates 1.26 0.18

Standard error 0.044 8.24 × 10−4

t-value 28.68 220.93

P <0.0001 <0.0001

Random effects Standard deviation 0.098 –

log (SOC) NPP (1 Data product)10 ≈ + ; variance explained by mixed model: 4%

Fixed effects Estimates 1.26 0.020

Standard error 0.044 9.09 × 10−6

t-value 28.50 22.06

P <0.0001 <0.0001

Random effects Standard deviation 0.099 –

We included five independent global SOC data products (that is, SoilGrids250m, WISE30sec, 
HWSD, NCSCD and FAO-GSOC) to assess the CUE–SOC and NPP–SOC relationships. We 
standardized CUE from the PRODA-retrieved global maps (Fig. 3b in Tao et al.2) and NPP from 
remote-sensing data. Statistics shown in the table are standardized coefficients of CUE–SOC 
and NPP–SOC relationships in a mixed-effects model. CUE or NPP was set as the fixed effect to 
predict SOC content. SOC data-product sources were set as the random effect. We assumed 
random intercepts in all regressions. The total sample size nsample = 222,646 and the random 
effect size ndata product = 5.
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Fig. 1 | Varying sensitivity of SOC storage to doubled NPP under different 
combinations of parameter values with the microbial model used by Tao 
et al.2. a–f, We chose different values for the turnover time (in years) for 
enzyme (τENZ,decay) and microbial biomass (τMIC) carbon pools in the microbial 
model used by Tao et al.2 at one site and doubled the magnitude of NPP (red 

curves) in the model simulation for each set of parameterizations. Different 
panels in this figure present how the relation of CUE and SOC storage changed 
with increased NPP. The SOC values were standardized using the Z-score 
method to be comparable with the results shown in He et al.1.
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Matters arising
big data to inform models can reconcile SOC simulations of different 
models and gain a converging understanding of the soil carbon cycle.

Estimates of NPP by different process-based models and data prod-
ucts indeed remain uncertain, as pointed out by He et al. Although 
the uncertainty in NPP might influence CUE–SOC relationships, our 
analysis showed that variation from −10% to +10% of the NPP values 
had much less effect on SOC than microbial CUE (Fig. 4b of Tao et al.2. 
Nevertheless, we greatly appreciate the suggestion to include carbon 
input in data assimilation for parameter optimization. We thus encour-
age the scientific community to conduct data-assimilation studies to 
constrain all parameters, including mortality-related and NPP-related 
ones, that may influence the CUE–SOC relationships. In the future, a 
better understanding of the global soil carbon cycle will be gained by 
investigating several processes, such as carbon input, SOC stabiliza-
tion and loss, as well as microbial processes. Meanwhile, it is critical to 
test various processes represented by structurally different models 
against observational data. A tool such as PRODA will help reconcile 
field observations and theoretical understanding as encoded in models 
and quantitatively assess the relative importance of various processes 
across different scales.
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