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Theory of Static Structural Properties, Crystal Stability,

o,

and Phase Transformations: Application to Si and. Ge

M. T.‘Yinf”ahd Marvin L. Cohen

Department of Physics, University of California, and
Materials and Molecular Research Division, Lawrence

Berkeley Laboratory,‘Berkeley, California 94720

| " Abstract _
We demonstrate that’not only the
static structural properﬁies»but aiso the
crystal stability and pressure-induced
phase transformations in solids can be
accurateiY.aescribed employing an ég initid
pseudopotential method within the local
density-functional formalism. Using atomic
numbers.of constituent_élements and a sub-
h set éf crystal structures’aé the only input-

information, the calculated structural pro- -

ri

perties of Si and Ge are in excellent

agreement with experiment.
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I. INTRODUCTION
invthis,paper, we present an ab initio microscopic study
of the static structural properties and other important
structural properties including crystal stability and phase | ’

transformation of Si and Ge. Part of the results have been v

°

previously»reported.1 The method is based on a pseudopotential
approach ahd uses the local density-functional approximation2
which has also_beenvused in all—electron calculations of static
structural studies of metals.

We choose Si and Ge as our prototypes since they are the
most studied semiconductors experimentally. Both have the
(cubic) diamond_structure and are found to undergo a semiconductor-
metal phase transformatioh‘under pressure.4 Using the x-
ray diffraction technique, the transformed phases have been
determineds'“to be of the tetragonal g-tin form. These struc-
tural transformations are accompanied by a large volume decrease5
(22.7% for Si and 20.7% for Ge). Because of the difficulty -
in accurate pressure calibration, there has been some scattering
of the data for the transition pressures.6 The transition
pressures were first measured4 to be 150 kbar for Si and 105

"kbar for Ge. The more recent values are 125 kbar for 5i’s8

and 100 kbar for Ge.® | -
In addition to the diamond and B-tin phases, a hexagonal

diamond phase has been madel9 for si at room temperature and

atmospheric pressure using a sequence of high-pressure and

high-temperature treatments. This phase is semiconducting

and has the same density as the (cubic) diamond phase. The
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axiai ratio is 1.65, very close to the ideal value of 1.633.
Since this form has not been found in nature and no large

10 ¢ is metastable with respect

crysﬁals have been prepared,
to the diamond phase. A similarbsﬁrudtural form has not been
found in Ge. There are other metastable phases of si and Ge

(a bcc form. with 16 atoms per unit cell.fqr»Si10 and'Ge:_L1 and

a tetrg‘bonal'form with 12 atoms per unit,céll for Gelz)jvthese
will not be considered in the present study.

There are interesting‘relationé between the general phase
transformation in semiconductors and other crystalline properties.
Jamieson has related5 ‘the transition pressure (Ptv) and the
atomic volume change (AV) in the phase transformation tO'thev
fundamental'energy gap'(Eg), and he,obtained an empirical rule
of Pgﬂhv = Eg/z for_Groué v elements and iso—rovaII—V
compounds. Although‘this rule is lesé accurate when later
refinedveXperimental data is considered, the trend is still
correct. This is consistent with the physical picture that
the bigger the energy gap is, the more stabilized the structure
is. Phillips13 has suggested that ionicity may be an important
parameter in characterizing the phase transformation. He noted
that the rocksalt structure becomés more favorable as the high-
pressure phase with increasing ionicity. The covalenﬁ‘céunﬁerpart
of the rocksalt structure, that is, the simple éubic structure,
is included in the present study.

Pressure-induced phase transformations in tetrahedrally

coordinated semiconductors have previously been studied using

. , ) : 1
information from electronic structures. Van'Vechten observed 4



that the difference in total energy between the semiconducting
diamond phase'and'the metallic B-tin phase is approximately

equal to 1/8 of the difference of the band structure energies

[ ]

between the free-electron gas and the Penn.modells‘evaluated
at the experimental transition volume of the diamond éhase.‘ ¥
This, however, can only be regafded as an empirical relatien.

If accurate eigenvalues:obtained'from self-consistent band

structure calculations are used for the band structure energies,

the aforementioned relation no longer holds. A perturbati?e
pseudopetential theory has been used16 to calculate the thermo-
dynamic parameters involved in the phase transformation. While

good agreement with experiment was found in this approach,

the error in energy incurred in the perturbative treatment

especially when applied to the covalent phase may be of the

order of the energy differences involved - in the phase‘transfor-,
mations (about a few tenths of an eV per atom). Besides, the

theory introduced a potential parameter which is adjusted to

fit the zero-pressure experimental volume. The sensitive depen-

dence of the theory on that parameter is illustrated in a recent
study17 on the pressure-induced phase transformation of ZnSe

using a self-consistent pseudopotential theory. Without adjust—

ment of the potential parameter, the rocksalt structure ef

ZnSe is calculated to be more stable than the zincblende structure )
in contradiction to the experimental observation. The theoretical
results become consistent with experiment only after the parameter

is adjusted to fit the experimental zero-pressure value.

In the following sections, we will first briefly discuss



the ab initio pseudopotentiai a‘pproach18 to the total energy
- o : for ' :

calculations (Sec. II). The procedures ,. pseudopotential

construction and total energy calculation are described in

Sec. III. The results for Si and Ge, which will include (a)

static structural'propertiés, (b) crystal stability, (c) pressure-

induced'phase,transformation,_and (d) electronic structures,

are presented and compared with experiment_in Sec. IV. Final

conclusions are given in Sec. V. We examine the accuracies
of ‘the célculated quantiﬁies with_regardfto various approxima-
tions used in the calculation in the appendices.

II. THEORY

In thé.present study, we use the.gg initio pseudopotential
approach1 ~within the loca;—density—functional formélism.2 This
approach’héé been shown19 to reproduce'all—électron results
faithfully. By focusing attention bn the'valence electrons
which play a dominént role in the determination of structural
propeties, we are spared the computation of core states.

A plane wave basis set is used to represent the (pseudo)
valence wavefunctions. Such a basis set describes thé charge
density in the valence region to the same degree of accuracy
for different;crystal structﬁres. FIn other words, the basisb
is not biased toward a particular crystél structure which is
usually difficult to achiéVe in other choices of basis sets.
Furthermore, the angular dependence of the charge density is
well accounted for, and there is no need for a spherical averag-
ing procedure of the charge density which may introduce appreci-

able error in describing highly directional coValent bonds.



. The structural properties of solids are studied primarily

through comparisons of total energies of systems under investiga-

tion. It is advantageous to perform the total energy calcula-

tions in momentum Space.20 The total energy is given by

) = ] [} [
Etot . Ekin * EeC‘+ EH + Exc[p] + Ecc M (1)

The individualvcontributions can be interpreted as: the elec-
tronic kinetic energy, the eleCtron-cqre interaction energqgy,

the electron-electron Coulomb energy, the electronic exchange
and correlation energy, and the core-core Coulomb energy (the
Ewald energy) respectively. Since the effect of core elec-
trons are ihcluded in the pseudopotentials, the term "electrons"
used in this paper refets to the valence electrons only. The
prime in the second, third, and fifth terms on the right-hand
‘side of Eg. (1) denotes that these terms are reduced finite
quantities: because of charge neutrality, the infinite contri-
butions‘arising from the long-range Coulomb interaction cancel
with one another and, thus, are excluded from these three terms.
Exc[p] is a functional of charge density p(f), In the local

density-functional approximation,

B.olel = [exie, (o(x)ar (2)

where EXC(p(r)) is a function of p(r).

The individual terms (per cell) in Eq. (1) are given by:

3
Mzik.+G|2 (3)
=1 n, |y (k +G) | ——=—
Erin = N i1YiVZi7 2 - 2m

i,G

~

20

~r
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~ k +G k. +G k.+G,k, +G'
B! .=£ Z nw*(l)w V. (~l ~)~l o
ec N TG [ PE A
Ze , '
S f dr] A (4)
f - 2 .
E} = 5% 2 lp(e)|* 21, and (5)
' G#0 =~ G .
SRR z: o . 6
Exc=— p*(G)sc((}) | . - (8)
o= 1 . 2)Am cos[G- T T ]
El. =3 S%,zszs.e L z [IGl ( gt)
. ' G#O .
vIGIZ - . "lerfc (nx)
eXp - = 2 - 2 + z [——-}-{—“n—-]x= l2,+'[ -T "]
4n” /4 n QC % ~ ~8 ~S
_.an ¢ | | . (7)

The symbols n., ki’ and'?i are respectively the occupation

. - .
number, the crystal momentum, and the (pseudo) wavefunction:
in the momentum representatioh of state i. N is the total
number of cells in the system; QC is the cell wvolume, and £ and
zz_,

s
and ZS and T, are the core charge and the position vector for
th

n

9 are the direct and reciprocal lattice vectors. 2
the s atom in the basis. The symbol P (G) is the Fourier

transform of the (pseudo) valence charge density, and Vps(Ei+G’Ei+§')
is the Fourier transform of the superposition of core pseudopo-
tentials in momentum representation. The prime in the % summation
and h is

in Eg. (7) excludes the % = (0 term when Ty = Tgur

a parameter controlling the convergency of the Ewald summations.21

The momentum-space formalism is closely related to the
plane wave method for the calculation of electronic structures.

The Schrodinger equation used in the plane wave method can



be easily derived variationally from the expression for the
total energy in Egs. (1)=-(7). Using the resulting eigenvalues

si's, we obtain an alternative expression for the total energy

_ _]; B ' ! ,.+ ' .
Eiot = X zi: nj€i Eg * A,Exc Eee (8)
where
_ x i AT (9)
AExc Qc g p.(g)[sxc(g) Yxc(g)] :
and
d(pe
v _ (p xc) (10
“xc dp
The double summation over G's in Eg. (4) is absorbed in the
simple summation of the eigenﬁalues of the occupied states.
III. CALCULATIONS
A, PSEUDOPOTENTIAL CONSTRUCTION
The ab initio pseudopotentials of Si (Ge) are generated
' . 22
through the Hamann-Schluter-Chiang method using the 3sz3p0'53d0'5
(4sz4p0'54d0'5) reference configuration. The r. Values (in

a.u.) chosen are 1.17, 1.35, and 1.17 (1.17, 1.36, and 1.36)

for the s, p, and d components of the pseudopotential of Si (Ge).
The reference configuration has a partially filled 4 orbital

for the generation of the 4 pseudopotential. The nonlocal
'(angular—momentum—dependent) pseudopotentials of Si and Ge

are shown in Fig. 1. The d pseudopotential of Ge is more repulsive
than that of Si because the 44 orbital of Ge has one mode and

is more extended than the.3d orbital of Si. The repulsive

d pseudopotential of Ge pushes the d pseudo-orbital away from



the core to simulate this'effect. The Wigner interpolation
formulazé.for the exchange and correlatioh energies is used
. for the preéent study.
| The'pseudopotentials thus generated are examined in the
eatomic_limit. .They are capable:of reproducing the COrresponding
all-electrou excitationvenergies ahd eigenvaiues,to within
a few mRy'and wavefuuctions (outSide the core region) to within
1¢ for atomic configurations over a wide energy range (about
2 Ry) above the7atomic ground state; Examples are given in
Table I and Fig. 2. Such agreement is a prerequisite for the
solid state calculations using the pSeudopotential approximation18
in which the interaction between the valence electrons and
the atomic cores is approximated by pseudopotentials.
B. TOTAL ENERGY CALCULATIONS

For the present study, the total energy as a funetion
of volume waS'calculated for»se&en crystai structures: the
fce, bee, hep, (cubic) diamond (CD), hexagonal diamond (HD), B-tin,
and simple cubic (sc) phases. The first four’phases~encompass
80% of the observed elemental crystal structures. The HD phase
is very similar to the CD phase. The Bf-tin phase is observed
as a high-pressure form for Si and Ge. The simple cubic struc-
ture is a covalent counterpart of the NaCl structure. The
ideal axial retio (c/a = VY873) is used for hcp and the HD structures.
Several c/a ratios are used for the B-tin structure.

For each crystal structure of Si or Ge, we calculate the
total energy at six to fifteen different values of atomic.volume

ranging from 0.55 to 1.13 times the experimental value of
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the diamond phase-(Q ). For each value of atomic volume,

, expt
the one-electron Schrddinger equation is solved iteratively

24 4t which point the input and output

screening potentials are- identical to within 10._4 Ry, and Etot

is stable to within 10—5 Ry. The wavefunctions are expanded

to self-consistently

in a plane wave basis set with a kinetic energy cutdff'(Epw)
of 11.5 Ry. Note that Epw is kept constant for differgnt,atomic
volumes and different crystal structures. 1In this way, the
smallest wavéﬂiéngth of the plane waves used in the finite
plane wave expansion is approximately the same; namely, the
spatial variations of wavefunctions are accounted for to similar
accuracy. Furthermore, /E;; is.avmeasure of the k-space potential
cutoff, that is, the extent to Which the pseudopotential is
sampled in k-space. If Epw is kept constant, thé k—spacé poten-
tial cutoff is practically the same for different atomic volumes
and different crystal structures. This facilitates meaningfulv
comparisons ofvtotal energies.

The number of sampling k.point525 used_in the Brillouin
zone summation of the electronic -density and total energy is

increased until E converges to the desirable accuracy as

tot
described below. For both the CD and HD phases, the calculation

yields semiconducting systems, and the absence of Fermi surfaces

allows fast convergence for E with respect to the number

tot
of sampling k points. Ten (six) special k points25 in the

irreducible Brillouin zone (IBZ) for the CD (HD) phase are

tot”®

sufficient to achieve 0.3 mRy/atom convergence for E
The other five phases are all found to be metallic in

S
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‘our calculation. A large number of k points are needed to

account for the effects of the Fermi surface.‘ The termeost,e
sensitiVe to the finite nuﬁber-of sampling kipoints in the
total energy calculation [Eqg. (é)] is.the-Brillouin'zone summa;
tion of valence eigenValﬁes. A;feﬁ.sampling methods ﬁave.been
examined. They are: (i) the linear tetrahedron.method26 in
which the Brillouin zone is divided into tetrahedra. The eigen-
values are aseumed to ﬁary_linearlygwithin each tetrahedron,
and this enables-an analytic integration inside the tetrahedron.
(ii) the discrete sampling method in which the Brillouin zone
summation is done in a‘straightforward manner using special'
k points.25 (iii) the interpolation method in Which the eigen-
values of a‘set of sampling k points are calculated direetly,
from solving the Schrodinger equation; and the eigenValues
of a much larger set of k éoints are interpolated and used
for the Brillouin zone summatioh. The interpolation can be
carried'out>threugh a Fourier series expansion of the_eigenvalues.
We find that the convergence oflthe.total energy with respect
to the number of sampling k points isbslow using the linear
tetrahedral method. The errors come mainly‘froh the lineariza-
tion assumption.‘ The convergence is fastervifvthe discrete
sampling method is used and even'fester if the interpolation
method is used.

“As a numerical example, the convergent errors (in units
of.Ry/atom) caused by the finite number of sampling k points
in the total energy calculation of the fcc phase of Si at atomic

volume 0.75 Qex are 0.05 Ry/atom using 20 k points in IBZ

pt
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by the linear tetrahedron method and 0.005 Ry/atom and 0.001
Ry/atom using ten k points in IBZ by the discrete sampling

method and the interpolation method respectively. The results

Oy,

presented in the following sections are obtained using the

27 'For a convergence of 0.001 Ry/atom - ' i

discrete sampling method.
in total energy, the number of'sampling_k points in IBZ are
24, 35,'70,,36, and'60’for the B-tin, sc, bcc, hcp, and fcc
phases respectively.
IV. RESULTS
A. STATIC STRUCTURAL PROPERTIES
The static structural properties such as lattice conétant,
cohesive energy, and bulk modulus can be obtained from the
calculated total energies as a function of volume forvthe observed
crystal structure. We have calculated total energies of thei-
cubic diamond structure of Si and Ge for 15 atomic volumes
They are then least-sgqaures

expt’
fitted to Murnaghan's equation ofvstate,zv8

ranging from 0.55 to 1.13 Q

(v) =

- B!
BVl /V)7,
E 0 0
tot

55— * 1} + constant, (11)
o Lo

where B0 and Bé are the bulk modulus and its pressure derivative
at the equilibrium voluem V . This equation of state has been
0

examined and found to be guite accurate for quite a few crystals
28 b

N

under moderate compression. The minimum total enexrgy (Em. ),

in

the equilibrium lattice constant, and the bulk modulus are

readily deduced from the fitted parameters in the equation

29 . . . . :
of state. The cohesive energy is then the difference between
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the crystal energy;Which.is the sum’of_Em. and the zero-point

in
-vibration energy and the total energy of the isolated pseudoatom

30 jncluded.

with spin-polarization effects
The calculated iattice constants,bcohesive'enérgies, and .

bulk moduli are comparea with experimeﬁt3lr32133 in Table II.

The agfeement is very goqd. These resulﬁs also cohpare‘well~

34 Thefe haﬁe aiso been

with other ab initio.calculations.
microscopic calculations of the static structural properties
of Si (Ref. 35) and Ge [Ref,-35(a)].using pseudopotentialé
which are.empirically‘fitted to.thevobserVedvexcitation spectfa._
These results are somewhat sensitive to the fitted pseudopoten-
tial, and the comparisons with experiment are not as good as
thejgg initio ?esults. It is interesting to note that the
band structures of_gg initio calculations within the local
density-functional formalism cannot be used directly to cémpare
with the eXcitétion spectra; for example,. the calculated indirect
gap of Si is smaller than the experimental éap-by a factor
of two (see Sec. IV D). |

The least-squares fit to the Murnaghan's equation of state

4 Ry/atom. Other functional forms

has a rms error of about 10~
of the equation of state such as a polynomial form of the total
energy as a function of the lattice constanﬁ, the volume, or
their reciprocals have also been examined. The equilibrium

lattice constant and Emi are rather insensitive to the functional

n
form of the equation of state. The variations are 10_.3 A and
10-4 Ry/atom respectively. In contrast, the bulk'modulus'(Bo)

has a variation of about 10%, and its pressure derivatiVe (Bé)
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can'vary_by_a factor of_twof  The calculated valges of_Bé are

3.2 for Si and 3.7 for. Ge using Murnaghan equation of state

which compares well with the ekperimental values33 of 4.2 for

Si and 4.6 for Ge in view of the large theoretical uncerﬁainty.

The above results are calculated using a pléne wave kinetic

energy cutoff Epw of 11.5 Ry except for the cohesive energy
 to be discussed later. At this,Epw, the lattice constants

converge to better than 1%, and the cohesive energies and the

bulk modﬁli conVerge to about- 5% (Appendix A). The dependence

of the cohesive energy of Si on.Epwvis.shown in Fig. 3. As
Epw.increases, the Variational freedom of the wavefunctions

becomes larger which gives rise to a lower total energy and

a larger cohesive energy. The cohesiVe energy converges rapidly
when Epw is larger than 10'Ry7 The calculated cohesive energies .
(per atom) for the case.EpW = 11.5 Ry are:4.67 eV and 4.02 eV'

for Si and Ge respectively as compared to the almost fully '
converged values of 4.84 eV and 4.26 eV using Epw = 20 Ry (Table II)f
.The differencesiin cohesiVe energy between theory and experiment

are 0.21 eV for Si and 0.41 eV for Ge. The pseudopotential
approximation18 accounts for errors of the order of 0.05 eV.19
The remaining portion of the errors seems to come'from'the
local-density-functional approximation2 and the functional
form of the exchange-correlation energy, especially for the

36

atomic calculations. Even with the spin-polarization effect

included in the fashion described in Ref. 30 in the atomic
calculations, the calculated ionization potentials of atoms

differ from the experimental values by a few tenths of an eV.30
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Comparison of various energy contributions to the total
energy between an isolated atom and a crystalliﬂe atom for

III _
Si and Ge are given Table‘A . - The term Epot is the sum of

| I v ' : ) v
Eec’ EH’ and ECc [Eg. (15)]. The term Espin is the energy

gain resulting from spin polarizatibn of the atom. It isvcalcuf
lated by taking the totalvenergy difference between the spin-

polarized and the'unpolarized pseudoatoms with the valence
' the
configuration 52p2 where the form ofAexchangefcorrelation enerqgy

30

proposed by.Gunnarsson and Lundqvist ‘is used. The term Evib.

is the zero4point vibrational energy estimated from measured
phonon frequencies.37 As the crystals form, the electrons
become localized to form chemical bonds, which gives rise to

an increase in electronic kinetic energy (Ekin) and decreases
in potential energies'(Ex and E ). We note that both Ex

c pot c

and Epot are essential in stabilizing the crystal. In the

absence of either one, the crystal would become unstable. The

and Evib tend to faVor the isolated

atom, but their effects are not dominant.

contributions from Espin
Shown in Fig. 4 are contour plots of pseudo valence charge
densities of Si and Ge in the (110) plane. Because of the
norm—conserviﬁg property of ab initio pseudopotentials, the
pseudo valence charge distributions are expected to faithfully
reproduce real valence charge distributions outside the core
region, and there is no need for core orthogonalization. The
contour plots for Si and Ge look rather similar.38 The contour

lines in the bonding region are elongated along the bonding

direction, which agrees with the experimental valence charge
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density of Si synthesizea39 from the x-ray data.40

We have calculated the x-ray structural factors of Si
and Ge by adding the core structural factors to the valence.
structural factors obtained in crystalline calculations. The
core structural factors are.obtéined from atomic calculations
with the valence cdnfiguration of szpz. Thej differ from the.
corresponding results using valence configuration sp3bby at
most 0.006 e/cell, which demonstrates the inertness of the
core electrons as the valence configuration éhanges._ A‘compari—
éon between calculated x-ray structural factors with e.=.xperiment40_42
for Si and Ge are given in Tablefz. The agreement is very
good. We note that the (222) reflection, which is forbidden
in a simpie superposition of atomic charge densities, is well
accounted for. Our results agrée well with other ab initio

34b,43-45 The smaller values of the (222) reflection

calculations.
obtained in Ref. 45 may be due to the limited number of Gaussian—
type orbitals used ;n the wa&efunction expansion.
B. CRYSTAL STABILITY

As described in Sec.III? total energies at several different
lattice constants are calculated for seVen crystal structures:
the fcc, bcc, hcp, sc, CD, HD, and B-tin phases. These data
are then least—équares fitted to the Murnaghan equation of

27

state. The fitted total energy curves as a function of atomic

volume for the seven phases of Si and Ge are shown in Figs.

5 and 6. The minimum total energy per atom (Emin)’ the relative
. _ _ oCD _
total energy difference AEmin (= Emin Emin)’ and the corre

sponding atomic volume (Vm.

ln) for each phase of Si and Ge
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are.given in Table V . We note thét the wvalue of Epw controlling
the plane wave expansion is il.S-Ry. For this ﬁalue,’the differ-
ence AEmin between phases has'already.converged_to 0.001 éV/atom

whilé the absolute magnitude Qf Emi »

VIA . v
eV/atom (Sec. A ). Here we neglect the contribution from the

n converges to only 0.02
zero-point Vibration_which has only small effects on the results
to be reported. |
The values for the B-tin phase given in Table VI .and Figs.
_ : : .5
5 and 6 are calculated using the experimental axial ratio

(0.5516 for Si and 0.5512 for Ge). Total energy calculations

have also been done for B-tin phases of different axial ratios

(to be discussed in detail in the next éubsectioh). From these
calculations of the tdtal.energies of the se&en phases, we
find that the CD phase has thé lowest E in and is,'thgs, the
most stable phase among the seven phases of‘Si and»Ge. This
is in agreement with ekperimental observation.

Compared to the CD phase, the HD phase has similar tetra-
hedral bonding character and differs only in the positions
of the third nearest neighbors. It is expected that total
energies for the two.phases should be very close. Our calcu-
lations are not only consistent With this observation but they
also show that the CD phase is more stable by a small energy
difference (0.016 and 0.015 eV/atom for Si and Ge). The contour

pt
is shown in Fig. 7. The charge distribution is quite similar

plot of valence charge density of the HD phase of Si at Qex

to that of the CD phase (Fig. 4).

For both Si and Ge, the other five phases are metallic
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and have Emin a few tenths an eV per atom higher than the CD

phase. The ordering of phases as Emin increases is B-tin,

sc, becc, hep, and fcc. The V_._'s (normalized to ) of

min . expt

the metallic phases of Ge are larger than those of Si. This
results from the filled 3d bands'iﬁ Ge which exert a Pauli-
type repulsion'on the valence.electrons haviﬁé d-like character
as mahifested by the more repulsive d pseudOpotential of Ge
(Fig. 1). This effect is more appre01able in the metalllc
phases than in the sp3—bonded CD and HD phases.

Values of AEmin of a few metallic phases of Si and Ge
have been estimated from thermodynamical data. They are (in
units of ev/atom) 0.46 and 0.53 for the bcc and hcp phases

of Si46a

Ge 46b respectively. These empirical values compare Very well

and 0.29 and 0.37 for the B-tin and fcc phases of

w1th our results (Table V ). We note that the crystal stabiliﬁy
in Ref. 35c

of Si has been reported A using a pseudopotential empirically
fitted to excitation spectra. The diamond phase was found
to be more stable than the B—tin,.bcc, hcp, and fcc phases.
Hewever, the AEmin's between phases reported in Ref. 35c differ from
the present results and the thermodynamically'deriVed results.46a

Since the structural properties of Si and Ge are qualita-
tively similar, we will concentrate on the results of Si in
the following discussion. The contour plots of valence charge
densities of the CD phase and the five metallic phases of Si
at 0.751 Qexpt are shown in Fig. 8. (The contour plot for

the HD phase is not shown because it is quite similar to that

of the CD phase.) The maximum valence charge density between
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nearest nelghbors is a useful scale to gauge the covalent character:
the CD and HD phases have large values of maximum valence charge
density- and, thus, strongly covalent character, Next come
the B-tin and sc phases. The bce, fcc, and hcp phases have
the leastvcovaIent charactef. Notice the & xistence of prominent
bond charge in the CD (as well as HD), B-tin, and sc phases;

| The valence charge distribution around the atoms in the
- close-packed phases are reminiscent of the valence charge dis-
tribution in the atom. 1In fact, the charge density resulting
from a superposition of atomic valence chargevdensiﬁies has
similar peak positions and values. In Fig. 9, contour plots
of the charge density so obtained4_7 ar2hown in the (110) plane
for the bcc phase of Sivat 0.751 Qexpt and its difference from
the corresponding'self—consistent result (see Fig. 8).. As
the crystal forms, there is small charge pileeup between nearest
neighbors. This effect becomes bigger as the covalent character
increases. We nete in passing that the charge distribution
in the close-packed phases is quite spherically symmetric around
the atoms, and this supports the use of spherical averaging
procedures for close-packed crystals in some band structure
methods such as the augmented—plane—ane method.48

It is instructive to compare the contributions to the total

energy [Eg. (1 )] for different phases. The comparison of
the individual energy contributions between the CD and the
HD phases of Si and Ge at & are shown in Table VI . The

expt

energy terms E! E', and Eéc favor the CD phase while E

kin’ TH’
] 3 1 1 1
and Ecc favor the HD phase. The signs of E!, Ecc, and Eec

XC
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can be explained qualitatively by the observation that the
distance to the third nearest neighbor is longer in the CD
phase than in the HD phase. The values of Eﬁ and Eéc are close,
and they are almost cancelled by_Eéc. A slightly more localized
charge distribution in the HD phase (see Figs. 4 and 7) seems
_ to be the reason for the larger absolute magnitudes of Ekin
and.EXc for the HD phase. (The computational error in the
differences of the various energy contributions and the.total
energies is ébout 0.0003 Ry/atom.): Since the total energy
differences are of the same order as or eVen smaller than the
various energy terms, all energy terms are important in determining
which of the CD and HD phases is more stable.

Incidentally, the structural relation between the cubic
Zns and hexagonal 2ZnS phases of ionic semiconductors is the
same as that between the CD and HD phases of cbvalent semicon-
ductors. The difference in Ewald energy_(Eéc) between the
hexagonal form and the cubic form is reduced (in faVor of the
hexagonal form) by 0.0007 Ry/atom for the III-V compounds and
0.003 Ry/atom for the II-VI compounds with respect to the covaleht
counterpart at the measured Si volume. These Valﬁes are comparable
to the total energy difference between the CD and HD phases
of Si and Ge. The favorable gain in the Ewald energy seems
to be the reason why stable hexagonal ZnS structures are found
in the II-IV compunds, for example, CdS, 2ZnS, and ZnSe.

The individual contributions to the total energy_for the
diamond, sc, B-tin, bcc, hcp, and fcc phases of Si (at 0.751

S1 ) 4nd Ge (at 0.742 C¢

Qexpt expt

) are given in Table VII . Note
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that thevchange of the enérgy cdntributions:betweeh different

phases correlates quite well with the ﬁeérest—neighbor distande,

which in turn‘is closely reléted to the coordination number.

The éoordihation numberS-afe 4, 6, 6,_8;-12,vand.12, and the

relative nearest-neighbor distances at the séme.atomic.volume

are 1, 1.155, l.;59;_i.260,‘1;296,vand 1;296,for.the diamond,

sc, B-tin, bcec, hép, and fcc phases respecti&ely, (The B-tin

phase has four nearest neighbors and two second_nearest neighbors

at a 6% larger distance.) As the céordination number becomes

smaller,bthe néarest—neighbor disténce Qill usualiy become

smaller if the atomic Volume'is kept the samé. This causes

~a larger charge pile—up.between nearest neighbors and a more

localized valence charge distribution (Fig. 7). Thus, E in

and Eﬁ'willvincrease;vEXC and Eéc will decrease; and the-sqm

of these four terms [called the electronic contribution (Ee)l

will decrease. The Ewald contribution.(Eéc);'however, will

usually increase because of the larger electostatic potential

energy between neighboringvatomic cores. In other words, the

electronic contribution faVoré phases of low coordination numbers

while the Ewald contribution favors phases of high coordination

numbers. Here'the-bcc,.hcp, and fcc-phases are regarded as

one entity because their energy contributions are very close.-
The total energiesaof,the phases depend on the detailed

balance between the electronic and the Ewéld contributions.

At the particular atomic volumes of Si and Ge (Table VII'),

the relatiVely high Ewald contribution causes the total energy

of the diamond phase to be larger than those of other phases.
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: Consequently,‘a phase’transformatibn will occur before the
diamohd phase of Si or Ge, which is the most stable phase at
zero pressure, is compressed to such small volumes. This tQpic
will be discussed in the next subsectiop.
C. PRESSURE-INDUCED PHASE TRANSFORMATION
It is a well-known thermodynamintheorem that the phase
transformation occurs when the Gibbs free energy |

) o i - _ | v 12v
G = Etot f PV TS , | (12)

becomes equal between the two phases. By applying this theorem
to the zero-temperature case considered here, it is easily
shown that the pressure-induced phase transformation occurs

along the common tangent line between the E (V) curves of

tot
the two phases under consideration and the negative of the
slope of the common tangent line is the transition pressure -
(Pt).

Although the HD phase of Si or Ge has the second lowest -

E the common tangent between the HD and the CD energy curves

min’
either does not exist or has a slope much largervthan that
between the B-tin and the CD energy curves. Consequently,

the HD phase is not the phase the CD phase will transform to
under pressure. Since the HD energy curve lies slightly higher
than the CD energy curve, the HD phase is a metastable phase
having an equilibrium volume very close to that of the CD phase
(Table V ). The HD phase of Si has been experimentally observed10
to be metastable. OQur calculated equilibrium volume for the

. . . 10 .
HD phase is in excellent agreement with experiment.
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As éan-be seen from Figs;'S and 6, the phase transformation
to the B-tin phase has the smallest transition pressure among
the poésible~pressure—induced.phase transformations from the .

CD phasévof Si or Ge. Thus 6ur ciaéulaﬁions show that under

increasing hydrostatic pressure, the CD phase of s8i or Ge_will'

 transform to the B-tin phase among'the six possible choices

for the transformed phase.

With increasing .applied hydrostatic pressure, the crystals

"of Si and Ge will follow the path 1+2+3+4 as shown in Figs.

5 and 6. Thevphase transformation occurs along the path 2
3. This Segment represents a mixture of these two phases.

o a B
tvand Vt

mined from.the tangent points. ' The calculated transition volumes

The initial and final transition volumes (V ) are deter-

- and transition pressures of Si and Ge are given in Table IX

along withzﬁhe experimental values;5’7f9 - The agreemént

for thevtransitioﬂ volumes are excellent. The differences
bétween theory and experiment are only é few percent. The
transition pressures have a larger discrepancy. While the
calculated tfahsition pressures are for zero-temperature, the
experimental transition pressures were measured at room temper-
ature.’”9 Using the phase diagrams shown in Ref. 49; we
estimate that the transition pressurevmay change by f.ilS%_
from room temperature to 0 K. In addition, possible superstress
effects may cause the'measured value to be higher_thah the
theoretical valuevand the theoretical value itself has a large

uncertainty (Appendix C). Thus, the agreement of the calculated

transition pressures with experiment is considered to be quite
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satisfactory;

‘There is an_interésting structural relationship between
the CD phase and the B-tin phase. Shown.in Fig. 10 is a ball and
stick model of the diaﬁond crystal structure in dashed cubic
cells. A tetragonal unit cell can equally well be chosen to
represent the crystal structure as indicated by solid lines
in Fig. 10. The space lattice of the diamond cryétal structure
is then body-centered tetragonal with an axial ratio (c/a)
of 2. The observed B-tin phases belong to the same lattice
class but with a much smaller axial ratio [0.552 for Si (Ref. 5),
0.551 for Ge (Ref. 5), and 0.546 for the feal B-tin (Ref. 31)].

Célcuiations have been carried out for several R-tin structures
of Si and Ge with axial ratios varied within 20% of the observed
- values. The calculated total enefgy curves of Si for the diamond
phase and the B-tin phases with axial ratibs 0.458, 0,488,
0.552, and 0.621 are shown in Fig; 11. The energy curve with
axial ratio 0.46 lies above the other curves. As the axial
ratio incréases, the energy curve moves downward. After the
axial ratio reaches the wvalue 0.55, the energyvcurves moves
upward again. it is clear from Fig. 11 that.the transformed
B-tin phase under hydrostatic pressure has axial ratio close
to 0.55. When we vary the axial ratio within 5% of the value
0.55, the calculated total enérgy curVes differ from each other
by less than 0.4 mRy/atom and are essentially indistinguishable
from the curve (i) if drawn in Fig. 11. Consequently, the theore-
tical estimate of the axial ratio of the pressure-transformed

B-tin phase of Si is 0.55 % 5%. A similar treatment has also



. =25-

been done for Ge. The calculated axial ratio is also 0.55 ¢ 5%.1
These values agree quite well with the experimental v_alués5
of 0.552 (Si) and 0.551 (Ge).

It is instructivé to_anélyze the‘individﬁal energy contribu-
tidns to the total energy as the axial ratio of the B—tih phase
varies. Figure 12 shéws the individual énergy contributions .
and total energy of the B-tin phase of Si és a function of

the axial ratio at a fixed atomic volume (0.71 Q ). The

expt
minimum of the Ewald energy (Eéc) has an axial ratio of 0.5445
at which the>secoﬁd-nearest—neighbor distance is very ciose’

- to the nearest-neighbor distance and the effective coordination
number is six instead of two or four. It is a rule of thumb
thatvthe Ewald energy favors high coordiantion.numbers and
evenly distributed atoms in the crystal. The total energy

also has a minimum close to the axiél ratio 0.55 and it is

a shallow minimum. We may argue that the Ewald energy Eéc plays
a dominant role in determing the equilibrium axial ratio. The
electronic contribution Ee serves as electronic screening and
reduces the effect of the Ewald contribution. This is supported
by the fact that the observed axial ratios are very close to

the minimum axial ratio of the Ewald energy. We note that

and E! and the maxima of Eéc and Ex are

kin H C

also in the vicinity of axial ratio 0.55, which are related

the minima of E

to the fact that the valence electrons are more uniformly distributed
around that axial ratio.
In contrast, the Ewald contribution does not favor the

diamond phase. Figure 13 plots the Ewald'constant, which is
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proportional to the Ewald énergy for a fixed volume, as a function
of the axial ratio. While the observed g-tin phase is in the
vicinity of a local minimum, the diamond phase corresponds

to a local maximum.50 This unfavorable Ewald contribution

is more than compensated by the electronic contribution (Ee)_

for the diamond phase at Q as indicated in Fig. 14 in which

expt i
we plot the differences between various contributions to the
total energy of the diamond and the B-tin phase (c/a_=,0.552)
of Si as a function of atomic volume. Figure 14 also shows
that Eec and E__ favor the diamond phase and E,;, and E} favor
the B-tin phase. When the atomic volume decreases under pressure, -
the system becomes more metallic and the stabilizing effect
of the electronic contribution (AEe) for the diamond phase -
becomes weaker with respect to the opposing Ewald contribution
(AEéc). At the.transitioﬁ pressure, the gain in Eﬁald energy
becomes so favorable relative to the B-tin phase that the phase
transformation occurs, i.e., the Ewald contribution is the
driving mechanism for this diamond-B-tin phase transformation.
D. ELECTRONIC STRUCTURES

In this subsection, we present the results of electronic

structure calculations for the diamond phase of Si and Ge at

31

expt’ The electronic structures of Si and Ge shown in Figs.

Q
15 and 16 are calculated using a plane ane basis set with
a kinetic energy cutoff (Epw)_of 11.5 Ry at which point the
overall convergent error of eigenvalues is about 0.05 eV. The

s-like antibonding conduction state F2, has a large convergent

error. It changes from 3.39 eV to 3.29 eV for Si and from
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©1.01 eV to 0.73 eV for Ge when Epw is increased from 11.5 Ry -

to 20 Ry. For Epw = 20 Ry, the overall convergent error of

eigenvalues is 0.01 eV. (The Sehrédinger equetion is solved
self-consistently for each E_..)
_ IX C pw _ :
In Table A we listed the eigenvalues at [, X, and L of
Si and Ge calculated using Epw =.li.5'Ry and 20 Ry. - These

values agree quite well with other ab ‘initio calculations.34¢,45,51-53 "

In particular, the differences in eigenvalue between our results

v,and the all-electron LAPW caldulation52 of Si are only about

0.1 ev.

Since the densityffunctionai formalism was developed .
only for grouﬁd-state properties, the calculated eigenValues
do not correspond directly to elehentary excitaﬁions.v NeVertheless,
a comparison of the calculated values with experimental excitation
spectra may provide eeme clue to‘thevconStructioﬁ of a fundamental
theory fer elementary excitations. The density of states for
Si and Ge are displayed in Figs. 17 and 18. The peak positions
agree guite well with the angle-integrated photoemission spectra.54_56
In Table X , we compare our-resulfs with experiments at critical
points. It seems that the calculated results can explain the
peak positions_in the photoemission spectra rather well with
an overall error of about 0.3 eV. |

On the other hand, the comparison with the optical measurements
shows large errers.v The calculated indirect gaps are 0.48 eV
from I' to 0.85X for Si and 0.47 eV from T to L for Ge. The

experimental values are 1.17 eV57 from T to 0.82X58 for si

and 0.74 eV from T to L59 for Ge. While the calculated positions
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iﬁ the Brillbuinrzone for the valence band maximum and the
conduction band minimum are in good agréement with experiment,
the magnitudes of the energy:gapg are underestimatéd. This
seems to be a general phenomenon in the ab initio density-
functional calculations. The calculated direct gaps are 2.54 eV
(Fye

values are lower than the experimental values of 2.74 eV for

5160

Fls) for si and_0.73 ev,(r25'fr2') for Ge. Again, these

and 0.89 ev for Ge,61 but by a smaller amount (0}2 ev).
IV. CONCLUSIONS |

In summary we present‘an extensive microscopic study of
the structural properties of two group-IV elemental crystals:
Si and Ge, employing an éé_initib pseudopotential method18 within
the local-density-fﬁnctionai formalism.'2  Using atomic numbers
of the constituent elements and a subset of crystal structures
(diamond;.hexagonai diamond, B-tih, sc, bcc, hep, and fcc)
as the only input information, the calculated structural properties
are in excellent agreement with experiment. They included:
(i) the static structural properties such as lattice constants,
cohesive energies, and bulk moduli; (ii) the crystal stability
such as the determination of the-most stable phase; and (iii)
properties of pressure-induced phase transformation.

In particular, our calculations show that the diamond
phase of Si and Ge is the most stable phase among the 'seven
phases under consideration and it will tranform to the B-tin
phase under hydrostatic pressure. The transition Qolumes,
transiton pressures, along with the axial ratio of the final

B-tin phase in the pressure-induced phase transformation agree
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very well with experimeht."We also show that the Ewald energy

is-the driving foreebfor rhis pressure-induced diamond—B-tin

phase transformatioh.' The present results.aiong with the results

of lattice dynamical proﬁerties demonstrate-that not ohly thev

statlc structural propertles of crystals but also the other

1mportant structural propertles of the crystal stablllty, phase

transFormatlon, and lattlce dynamics can be accurately descrlbed

from first principles within the local-density-functional formalism.
ACKﬁOWLEbGMENT

: Thisework was. supported by National Science Foundation

' Grant No;_DMR7822465 and by the Director, Office'of_Energy

Research, Office of Basic Energy Sciences, Materials Sciences
Division of the U.s. Department of Energy under Contract No.

DE-AC03-76SF00098.



-30-

APPENDIX A
In this appendix, we give the results of the convergence
test of the static properties with respect to the kinetic energy
cutoff (Epw) for the plane wave basis set (Table Xf—\). .The
lattice constant converges'quite fast, e.g., it has already
converged to within l%'at-Epw = 4.3 Ry for Si. vAt‘Epw = 11.5 Ry,

the lattice constants converge to better than 1%, and the cohesive

energies and the bulk moduli converge to about 5%.
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APPENDIX B

In this appendix, we discuss the accuracy of the pseudopo-

tential approximation in which an ab initio pseudopotential

is used to simulate the interaction between the valence electrons

and the atomic core. ShoWn in Fig..19vis another~§g initio.

pseudbpotential_of‘si generatedzz'using a reference“configura—

tion of 352320f53§0'5, and r_ values (in a.u.) of 1.35, 1.56,

1.56 for the s, p, and d component of the pseudopotential.

While the pseudopotentials shown.in:Fig. 1(a) and'Fig} 19 are

quite different, the calculated equilibrium lattice constant,

the cohesive energy, and the bulk modulus differ by only 0.5%,

1%, and 2% respectively. We haVe also tested other generation
62

schemes "~ for ab initio pseudopotentials and obtained similar

results. This demonstrates that the structural propérties

do not depend appreciably on the pseudopotential generating

scheme and the parameters used: in the scheme as long as the

generated pseudopotential is capable of reproducing all-electron

atomic results for a wide range of atomic configurations (see Sec.

We also note that the pseudopotential approximation works best
for cases in which the valence wavefunctions do not overlap
appreciably with the core wavefunctions as in the present case.

When the overlaps are not negligible (as in the case of Na),

I1T).

significant errbr will result®3 from the fact that ch(p)'[Eq. (10) ]

is a nonlinear function of the charge density. It has been

shown ©3 that such errors can be eliminated by including core -
charge effects in the treatment of the exchange-correlation -

potential and energy.
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' APPENDIX C

In this appenaig, we examine the variation of the calculated
structural properties with respect to the furictional form of .
Exc[p]. if the‘exchange—cofrelat;on,formv(Efg)propoéed by
Hedin and Lundgvist (HL)Ais-ﬁsed_inthe calculation of the
static properties of Si, the resulting lattice constant decreaées
by 1%, and the cohesive energy and the,bulkvmodulué ianeése
by 5% as compared to the ¢orresponding results using the'Wigner_
form Ezc.

The variations in the lattice constant and the cohesive
energy can be qualitatively explained directly from the different
functiopal forms of Exc[p]f In the 2zeroth-order approximation,
the exchange-correlation contribution to the total energy per
~atom is ZVEXC(B) where'zv is the number of valence electrons.
“and p the average valence charge density. Compared with the
Wigner form of egc, the HL form deqreases faster as p ‘dlncreases,
viz. it favors high charge density and small latticevconstant.
This also leads to a larger cohesive energy calculated using
the HL form because the overall,valenée charge density of the
crystal is larger than that of isolated atoms.

As for the study of crystal stabiiity, AEmin between the

CD and the HD phases varies by less than 1073

ev/atom when
different E_.'s are used. This is because both phases have
almost the same equilibriunm atomic volume and Similar ?alence
charge distributions. The difference AEmin between the other
five phases and the CD phase is lowered by about 0.02 evV/atom

HL

when EXC is used instead Of'EZC. This results from the fact
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‘Ehat these five phases have smaller equilibrium‘atomic volume

~and that Eﬁﬁ favors small atomic volume. VSuChavariations-in
AE,;, 4o not effect our conclusions about the crystal stability.

SincevEgg favors small atomic volume, the Calculated transi-

tion pressure for the diamond-g-tin phase transformation using
Efg_iSJIO%”smallér than that using E

W

c The transition volumes

have only small-variations, they decrease by 1% when Egg_is

used instead of Ez

o

 Other functional forms30'of‘Eg¢[p]~have_also been examined,
the results are similar to those discussed above. It.should
be noted that'the expression of Exc[p]vin Eg. (2 ) is itself

an approximation (the local-density-functional approximationz);'
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TABLE I. Eigenvalues and excitation energies of the pseudoatom for different atomic
configurations of Si and Ge. Energies are in Rydbergs. The method in Ref. 22 is
employed to generate the pseudopotentials using szp0'5d0'5 reference configuration
and Wigner correlation.23 The values in parentheses are deviations from the corre-
sponding all-electron results. :

Configuration Eigenvalues Excitation energy (AEtot)
s P ' d
si
2. 2 | |
3s%3p ~0.7994  -0.3126 | 0
© (-0.0014) (-0.0006) - |
3s13p3 -0.8538  -0.3543 | 0.4932
(-0.0008) (-0.0004)  (0.0006)
3s13p2-93q0-° -1.0226  -0.5048 -0.0380 0.7030
(-0.0008) (-0.0006)  (0.0001) (0.0009)
3523p0-°39%-° ~1.4851  -0.9420 -0.3364 (0.0009)
(0.0000) (0.0000) (0.0000) (0.0000)
3s23p° : ~2.0948  -1.5154 . © 1.7640
(0.0028)  (0.0024)  (0.0005)

Continued on the following page.



.8350
.0015)

.9202
.0001)

.2155
.0017)

.1342
.0030)
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0.3061

(-0.0008)

0.3533

(-0.0006)

0.6075
(0.0003)

1.4745
(0.0026)

0.0607
(0.0000)

.5582
.0000)

.0238
.0004)

.7218
.0002)
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TABLE II. Comparison of calculated and measured

static properties of Si and Ge.

Lattice - Cohesive Bulk
constant - energy modulus
(2) (eV/atom) (Mbar)
si
calculation 5.451a 4.84b 0.98c
experiment 5.429 4.63 0.99
Ge
calculation 5.655a 4.26b 0.73c
experiment 5.652 ’ 3.85 0.77
a

Ref. 31 (0 X)

Pref. 32 (0 K)

Ref. 33 (77 K)
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TABLE III. Comparison of various energy
contributions (in units of Ry/atom) to
the total energy between the (pseudo)
atom and the crystal for Si and Ge.

atom .. crystal =~ diff.

- S1 _
Ep 2.518 3.015 0.497
i -1.926 -2.381 ~0.455

Eoot ~9.095 -8.555  -0.460

Bepin 0058 0 ~ 0.058
Egip 0 ©0.005 - 0.005
Eor -7.561 -7.916  =0.355
Ge

Eypin 2.511 2.844 10.333

E,. ~1.910 -2.312 ~0.402

E ot -8.135 -8.438 -0.303

E__. -0.056 0 0.056

spin
E,ip 0 0.003 0.003
E -7.590 -7.903 -0.313




TABLE IV. Comparison of calculated x-ray structure

factors for Si and Ge with experiment (in units of

electron per primitive cell).

Ge
a b
Theory Expt. Theory Expt.
000 28.00 (28.00) 64.00 (64.00)
111 15.13 15.19 38.85 39.42
220 17.23 , 17.30 47.26 47.44
311 11.28 . 11.35 31.24 31.37
222 0.34 0.38 0.28 0.27
400 14.76 14.89 40.47 40.50
331 10.11 10.25 27.37 27.72
422 13.22 13.42 35.84 36.10
333 8.92 9.09 24.26 24 .50
511 8.96 9.11 24.28
440 11.88 12.08 32.14 32.34

@Refs. 40 and 41

bRef. 42



TABLE V . The volumes at the minimum structural enefgies (Vm

-45~-

, hormalized to measured

min

in
. ) _ di 4 R
free volume), the minimum energies (Emin)’ and AEm. (= Emin - Emiimgn ) for the seven
plausible structures of Si and Ge. :
: Hexagonal ,
Diamond Diamond B-tin sc bcc hcp fcc

Si

Vmin 1.012 1.015 0.773_‘ 0.808 0.736 0.723 0.733

Emin (Ry) —7.9086‘ ~-7.9074 -7.889 . -7.883 -7.870 -7.868 -7.867

AE . (eV) 0 0.016 0.27 0.35 0.53: 0.55 0.57

min

Ge

Vmin 1.003 1.003 0.802 0.839 0.795 0.805 0.816

Emin (Ry) -7.8885 ~7.8874 -7.870 -7.866 -7.856 —7,855 -7.854

AE_ . (eV) 0 0.015 0.25 0,31 0.44 0.45 0.46
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TABLE VI . Comparison between various contributions to the total energy of the

cubic diamond (CD) and the hexagonal diamond (HD) phase at @

expt

(Ref. 31).

The

energies are in units of Ry/atom. Ee is the electronic contribution which is the

] ]
sum of Ekin’ Exc’ EH' and Eec'
Si Ge
CD HD CD-HD CD HD CD-HD

E in 3.0001 3.0007 ~0.0006 2.8295 2.8311 -0.0016
E, -2.3782 -2.3784 0.0002 -2.3096 -2.3100 0.0004
El 0.5322 0.5435 -0.0113 0.5471 0.5587 -0.0116
. -0.6632 -0.6861 0.0229 -0.8920 -0.9156 0.0236
E, 0.4909 0.4797 -0.0112 0.1750 0.1642 -0.0108
123 -8.3995 -8.3871 -0.0124 -8.0634 ~8.0516 -0.0118
E -7 ~7.9074 -7.8884 -7.8874 . -0.0010

tot

.9086

-0.0012
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TABLE VII . Comparison of various contributions to the total energy (Eg. 1 )

for the diamond, sc, B-tin, bcc, hcp, and fcc phases of Si (at 0.751 Q

Si

expt)

Ge

and Ge (at 0.742 Qexpt

). The energies are in units of Ry/atom. Ee-is the -

electronic contribution, which is the sum of E .
; ‘ kin XC

. ' L 1 ]
E 'ZEH' and Eec.‘

diamond

B-tin

.Continued on the following page.

sc bcc hep fcc
i (0.751 g , ,) | |
B . 3.4195 3.1081 3.0674 2.9896 2.9855 2.9855
E,_ -2.5366  -2.4379 —2.4283 ~2.4037 -2.4033 -2.4035
E! .4200 1121 .0842 .0332 .0351 .0356
B 0.073 1.0698 1.1928 1.4199 1.4229 1.4235
E_ 1.3764 1.8520 1.9162 2.0390 '2.0397 2.0412
' ~9.2394 ~9.7330 ~9.8046 ~9.9085 ~9.9075 ~9.9079
B, -7-8630 ~7.8809 ~7.8884 ~7.8695 -7.8678  -7.8667



Ge (0.742 Q
I e

Ekin
E
Xc

L}
EH

EO
ec

'
ECC

tot

3.

-2.

xpt

)
2103

4651

.4237

.1138

. 0551
.9034

.8483

. 9414
.3713
.1266

.8225

.5191
.3791
.8600

~48~

.9035
.3507
.0955

.9421

.5803
.4481
.8678

.8468
.3378
. 0451

.1395

.6935
.5482

.8546

.8470
.3380
.0477

.1373

.6940
.5472

.8532

2.8456
-2.3377
.0477

1.1401

- 1.6957

-9.5476
-7.8518
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"TABLE VIIT. Comparison of the calculated and measured

transition volumes (V
their ratios (V£S/th)’ and the transition pressures (P

for Si and Ge.

t

zero-pressure volumes.

d/8) of the diamond and B-phases,-

e)

The volumes are normalized to the measured

Ref. 9

a B B . .
Ve Ve Ve /Vt Pt (kbar)

s

calculation - 0.928 0.718 0.774 99

experiment 0.9182 0.7102 0.773% 125P
- deviation 1.1 1.1% 0.1% -20% -
Ge

calculation 0.895 0.728 0.813 96

experiment 0.8752 0.694% 0.793%2 100°
-deviation 2.3% 4.9% 2.5% -4%
aRef. 5

bRefs. 78

C
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TABLE IX. Eigenvalues of Si and Ge in eV at r, X, and

L calculated'using Epw ='11.5 Ry and 20 Ry which cor-

respond to about 180 and 400 plane waves'respectively.

The ehergies in eV are measured from the valence band

maximum (P25

).

Ge

si

E 11.5 Ry 20 Ry 11.5 Ry 20 Ry
Ty 11.95 ~11.93 -12.48 - -12.48
Toe 0 0 0 0

ris - 2.54 2.53 2.53 2.55
IS, 3.39 3.29 1.01 0.73
r{ 7.66 7.63 6.45 6.41
X, -7.80 ~7.78 -—8,58 -8.57
X, -2.92 -2.88 -3.08 - -3.04
xi 0.62 0.61 0.71 0.73
X5 9.99 9.97 9.53 9.54
L,, -9.57 -9.52 -10.39 -10.36
L, -7.01 ~7.00 -7.42 -7.41
Ly, -1.23 -1.20 -1.41 -1.39
Li 1.52 1.48 0.51 0.47
Lg 3.37 3.31 3.67 3.70
LS 7.48 7.48 6.96 6.99
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TABLE X . _Comparisdn of the peak positions in the calcu-

lated valence-band'density_of'states with those in angle-

integrated photoemission spectra. Energies in eV are

measured from the

valence band maximum.

S1 Ge
Theory Experiment " Theory Experiment
_ : a : ' a
Ty -11.93  -12.4 £ 0.6; -12.48  -12.6 * 0.3p
~12.5 + 0.6° -12.8 + 0.4
Ly, -9.52  -9.3 £ 0.4°  -10.36 -10.6 # 0.95°
| | -10.5 * 0.4
L, -7.00 -6.4 t 0.4 -7.41 ~7.7 % 0.22
| -6.8 + 0.2 -7.4 % 0.2
I -4.52  -4.7.+ 0.23'P.  _4.51  -4.5 + 0.22'P
1 4.4 | |
X, -2.88  -2.5 % 0.3° ~3.04 3.2 + 0.2°
Ly, -1.20 -1.2 + 0.2 -1.39 -1.1 + 0.2%
| -1.4 + 0.2°
8Ref. 55
Pref. 54
CRef. 56
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TABLE XI . Convergent test of the static. pro-
perties of Si and Ge with respect to the kinetic

energy cutoff (Epw) of the plane wave basis set.

Epw (Ry) lattice cohesive bulk
constant energy modulus
. ,
(a) - (eV/atom) (Mbar)
Si
3.5 5.467 1.84 1.76
4.3 5.386 2.56 1.29
6.0 5.394 3.45 0.97
8.0 5.439 4.11 1.01
11.5 5.451 4.67 0.98
Expt.2 5.429 4.63 0.99
Ge
6.0 5.551 2.41 - 0.89
8.0 ' 5.599 ‘3.24 0.79
11.5 5.655 4.02 0.73
Expt.2 5.652 3.85 0.77

qRefs. 31, 32, and 33
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Fig. 2
Fig. 4
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Figure Captions
Ab initio core pseudopotentials of (a) Si and (b, Ge

generated22 using the teference valence configura-.
2_0.5.0.5

~tion of sp d . The letters s, b, and d denote

the nonlocal’pseudopotential for angular momenta'

2 = 0, 1, and 2 respectively. The dashed line de-
notes the COulomb_petential of a (fictitious) point-
like atomic core. | |

The comparison betweeh the pseudo (solid lines) and

the corresponding all-electron (dashed lines) radial.

wavefunctions for the configurations 3523p2 and

3513p23dl ef si.

Convergence test of the calculated cohesive energy

(E ) of Si with respect to the kinetic energy cut-

coh

fo (Epw) ef the plane wave basis set.(pr'ls the

‘approximate number of the plane waves in the basis

set) .
Contour plots of the valence cha:ge density in the
(110) plane of the cubic diamond (CD) phase of S:

and Ge at 0 (Ref. 31). The charge density is¢ in

expt
units of electrons per atomic volume with a contour
steé of 1. The black dots denote the atomic posi-
tions and straight lines denote the atomic chains.
Total energy curves of the‘seﬁen phases of Si as a
function of the atomic volume normalized to Qexpt

(Ref. 31). The dashed line is the common tangent.

of the energy curves for the diamond phase and the
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Fig.

Fig.
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Fig.

Fig.

Fig.
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11

12

function of the atomic volume normalized to Q
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S—tin phase (c/a = Q.552).

Total energy curves of the‘seven phases of Ge as a
expt
(Ref. 31). The dashed line is the common téngent of
the energy'curves for the diamond phase apd the B8-
tin phase (c/a = 0.551).

Cbntour plot 6f the (valence) charge density in the
(2110) plané'of the hexagonal diamond phése of Si at-
Qexpt.(conventions of Fig. 4). |

Charge density contour plots of six phases of Si at

0.751 Qexpt (conventions of Fig. 4).

"(a) Contour plot of the charge density of the bee

phase of Si at 0.751 @ constructed from a super-

expt
position of pseudoatomic charge densities. (b) Con-
tour plot of the difference between Figs.‘8(d)-and
9(a) (conventions of Fig. 4). |

The ball-and-stick model for the diamond crystal
structure.- The dashed lines denote the cubic unit
cells and the solid lines denote the tetragonal unit
cell. |

Total energy curves of the diamond phase and the 8-
tin phases with axial ratios (i) 0.552, (ii) 0.621,
(iii) 0.488, and (iv) 0.458 as a function of the

atomic volume normalized to 2 The dashed line

expt "
is the common tangent of the energy curves for the
diamond phase and the g-tin phase (i).

Individual energy contributions of the B-tin phassz
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Fig.
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Fig.

Fig.
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Fig.
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17.

18
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of_Si as a function of the axial ratio at a fixed

atomic volume of 0.71 © (The ContribUtibﬁf”

expt’

El, has a constant 2.285 subtracted out.)
EwaldvconStant of the B-tin phase as a'functionvof'zj
axial ratio (c/a).

Differences between various contributions to the

total energy of the diamond phase and the g-tin .

phase (c/a = 0.552) of Si as a function of atomic

volume (normalized to @ ).

_ expt -
Electronic structure of Si. The numbers refer to
the conventional indices for symmetry group repre-

sentations. Energies are measured from the valence

band maximum (FZS).

. Electronic structure of Ge. Conventions of Fig. 15.

Density of states of Si in units of state/éV—atom.'
Energies arevmeasﬁred from the valence band maximum.
Density‘qf states of Ge. Conventions of Fig. 17.
éé‘iniéié_pséudopotential of Si génerated22 using
1.35, 1.56, and 1.56 a.u. for Yo values of s, p, and

d components.
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