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The needs for personal travel and shipping freight keep increasing in our modern society. 

As a result, the size of our transportation networks is rapidly increasing, and the number of 

vehicles is also growing quickly. The resulting safety, mobility, and environmental 

sustainability problems are a major concern for the public. Intelligent Transportation 

Systems (ITS), utilizing Intelligent Vehicles (IVs) that possess automation capabilities 

and/or the ability to communicate with other agents, offer a promising solution. This ITS-
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centric approach paves the way for traffic management without adding the cost of 

infrastructure expansion. 

In the foreseeable future, IVs will be a critical component of ITS, and they are expected 

to coexist with conventional vehicles in mixed traffic scenarios. Such a setting demands an 

in-depth understanding of complex inter-vehicle interactions during motion planning. The 

potential for aggressive or overly cautious behaviors from IVs requires an awareness and 

prediction of other road users’ behaviors. 

To understand other road users, behavior modeling is a critical topic. An IV needs to 

model not only its own driver’s behavior for a better user experience, but also other road 

users’ behavior. With the development of sensing, communication, and cloud computing 

technologies, there will be more and more available data that can be shared. To take 

advantage of the abundant data, personalized behavior can be comprehensively studied to 

build a more accurate model. However, there is a concern on current “black box” strategies 

that could impede the acceptance and trust of IVs. Therefore, the need for developing data-

driven, but explainable algorithms is critical. 

This dissertation aims to develop a personalized behavior-aware motion planning 

framework for IV operation. The framework incorporates driver profile modeling, driving 

preference modeling, and interaction pattern recognition as part of behavior modeling. 

Furthermore, the motion planning component of the framework integrates the behavior 

model, thereby adapting to diverse driving styles and preferences in mixed traffic 

scenarios. The end goal is a safer, more efficient, and environmentally-friendly 

transportation system, aligning with the objectives of Intelligent Transportation Systems.  
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1 Introduction 

1.1 Motivation 

Traffic related issues such as safety, efficiency, and environmental sustainability have 

drawn significant attention as transportation is becoming more involved in people’s daily 

lives. Stated by Hedges & Company in 2021[1], there were 1.446 billion motor vehicles 

in-use in the world, and this number will likely grow to two billion within one or two 

decades. Furthermore, according to the latest data from the National Highway Traffic 

Safety Administration (NHTSA)[2], an estimated 42,939 people died in motor vehicle 

traffic crashes in 2021, a 10.1% increase compared to 39,007 fatalities reported in 2020. A 

survey from INRIX showed that traffic congestion cost each American nearly 100 hours 

of lost time at a cost of $1,400 in 2019, an increase of compared to 2017 [3]. Traffic 

congestion also caused 44.3 billion liters of fuel to be wasted worldwide in 2015, according 

to U.S. Department of Energy [4]. With these concerns, it is clear we need to advance our 

current transportation systems. 

As a potential solution, the development of intelligent transportation system solutions 

can enhance traffic management, thereby improving safety, mobility, and reliability 

without the cost of additional infrastructure. Within the field of intelligent transportation 

systems, there has been significant growth in intelligent vehicles (IVs) due to 

advancements in perception, communication, and computation technologies. IVs such as 

automated vehicles, connected vehicles, and connected and automated vehicles are those 

that have certain automation capability and/or can communicate with other entities, as 

shown in Fig. 1-1.  
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Fig. 1-1 Intelligent vehicle with automation and/or communication (adapted from [5]) 

Autonomous vehicle (AV) technology consists of sensing, perception, planning and 

control technologies, allowing operation of the vehicle without direct driver input to control 

the steering, acceleration, or braking. Moreover, the level of automation varies from a 

human-driven vehicle to fully automated vehicle. Defined by SAE International in their 

J3016 [6], six levels of automation are: 0) no automation, 1) driver assistance (longitudinal 

or lateral vehicle motion control), 2) partial driving automation (longitudinal and lateral 

vehicle motion control), 3) conditional driving automation, 4) high driving automation, and 

5) full Driving Automation. 

In addition to automated vehicle technology, connected vehicle (CV) technology further 

strengthens intelligent vehicles, which takes advantage of vehicle-to-everything (V2X) 

communication, allowing vehicles to communicate with other road participants and hence 

conduct more efficient maneuvers. V2X-enabled connected vehicles are equipped with a 

cellular network  and/or Dedicated Short-Range Communications (DSRC) [7], [8], 

allowing for communicating with each other. Representative V2X scenarios include 
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vehicle-to-vehicle (V2V) communication, vehicle-to-infrastructure (V2I) communication, 

and vehicle-to-cloud (V2C) communication. The communication module of a connected 

vehicle can provide additional information that cannot be readily detected by perception 

sensors (if any) and can generally provide information more quickly than through sensor 

detection and processing [9]. Combining automation and connectivity, connected and 

automated vehicles (CAV) can better utilize shared information and optimize system-wide 

performance. 

However, current intelligent vehicle systems face several obstacles that impede their 

widespread adoption and effectiveness. Drivers’ preferences and abilities vary greatly, 

necessitating personalized approaches to motion planning that cater to individual styles and 

behavior patterns. While automation may offer optimal solutions, it must also be cognizant 

of drivers’ preferences, as the acceptance and trust in the black box strategy remain weak 

among users. Moreover, interacting with human drivers poses a significant challenge for 

intelligent vehicles, as the uncertainties surrounding human behavior make it difficult to 

predict and respond appropriately in real-time situations. 

Considering these pressing concerns, this dissertation aims to present a personalized 

behavior-aware motion planning framework for intelligent vehicle operation. By 

integrating behavior-awareness into motion planning algorithms, the framework can 

understand the behavior of human beings and further provide optimal and favorable 

operation strategies that are beneficial to the whole traffic system. 
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1.2 Research Objectives and Contributions 

Studies with respect to IVs (i.e., AVs, CVs, and CAVs) have been conducted for many 

years, and the operation process is commonly divided into sensor fusion, perception, 

motion planning, and control [10]. Among the IV’s operation process, this research focuses 

on the motion planning part. The primary objectives of this research are as follows: 

• Modeling personalized driving behavior: This research aims to integrate the human 

factor into the motion planning framework for intelligent vehicle (IV) operation. 

By considering drivers' preferences, abilities, and behavior patterns, this research 

seeks to develop a comprehensive understanding of personalized driving behavior.  

• Development of human-centric motion planning: A secondary objective of this 

research is to utilize the developed understanding of human behavior and 

preference in the motion planning phase to create a human-centric operational 

strategy. This strategy should account for the variable nature of human driving 

behavior and adapt IV operations to best mimic or cooperate with human road users. 

This objective will ultimately facilitate an increased level of reliability and 

favorability in IV operation, enhancing the real-world applicability and acceptance 

of IVs. 

The specific contributions of this dissertation can be summarized as follows: 

• A systematic framework has been developed to study personalized driving behavior, 

accounting for unique elements such as driver profiles, driving preferences, and 

implicit interaction patterns. 
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• A novel behavior-aware motion planning strategy for IVs has been proposed for 

mixed traffic environments. 

• A vehicle-edge-cloud digital twin platform for real-world implementation and a 

human-in-the-loop co-simulation platform have been devised, enabling 

personalized driving behavior dataset generation, algorithm development and 

validation. 

1.3 Dissertation Overview  

The rest of this dissertation is organized as follows: Chapter 2 provides a literature review 

and background study on driving behavior modeling, motion planning, and experiment 

platforms, offering a broad understanding of the field. Following this, Chapter 3 gives an 

overview of the system structure, discussing the Intelligent Vehicle operation pipeline and 

the integration of behavior modeling. Chapter 4 elaborates on the methodologies employed 

during the research, including platform construction, personalized driving behavior 

modeling, and the development of a predictive behavior-aware planning strategy. Lastly, 

Chapter 5 wraps up the report with a conclusion summarizing the research findings and 

potential future work to fulfill the research objectives. It also includes a list of publications 

related to this dissertation. 

  



6 
 

2 Literature Review and Background 

2.1 Review of Driving Behavior Modeling 

2.1.1 Driver Profile Modeling 

Driver profiles are critical to improving the understanding of driver preferences, which 

could lead to providing personalized products with better suggestions (e.g., advanced 

driver assistant system)  [11],  boosting user acceptance and trust of AV via shared 

personality [12], and predicting the behaviors of other drivers [13]. 

A driver profile is determined by the demographic, physiological, and behavioral 

characteristics of a driver [14]. The majority of driver profile studies focused on behavioral 

characteristics, personality traits, mood states, and driving style are the three most common 

research subjects. Personality traits usually refer to individual differences in characteristic 

patterns of thinking, feeling, and behaving [15]. Meanwhile, mood states are defined as 

emotional state that affects the way people respond to stimuli [16], but unlike mood states 

and personality traits, there is no agreed-upon definition for driving style [17]. Modeling 

behavioral characteristics is more complex as they are associated with a variety of temporal 

factors (e.g., traffic condition, surrounding vehicles, weather, and time of the day) [18]. 

Additionally, the lack of a consistent and controlled environment for data collection may 

result in difficulty modeling and validating the behavioral characteristics. This led to the 

popularity of survey-based studies as a method of choice for recording behavioral 

characteristics. Survey-based methods are popular as the process of their experiments are 

stable and have higher replicability. Among young drivers, Wu et al. [19] found a 

correlation between personality traits and driving styles whilst Zimasa et al. [20] related 
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negative mood states to dangerous driving. Garrity and Demick [21] revealed the 

relationship among personality traits, mood states, and driving style pairwise but the 

driving style evaluation of this study may be biased as it was evaluated subjectively by the 

passengers. 

Survey-based approaches may introduce bias to driving style recognition as drivers may 

not perceive their performance correctly [22]. In the past, studies defined driving style 

based on research goals with objective methods, which utilize selected vehicle operation 

states (e.g., speed, acceleration, and angular speed) from the naturalistic driving dataset 

[23], driving simulators [24], or test vehicles [25]. In addition to the mode of data 

collection, drivers were classified from mild to aggressive [26], driving performance from 

bad to good [27], and by analyzing dynamic demand i.e., sports, moderate, and economical 

driver [25]. 

While driver profiles have been analyzed in previous studies, few researchers have been 

able to systematically research driving style, mood states, and personality traits in 

combination to build driver profiles. As mentioned earlier, past studies assessed the driving 

style subjectively based on surveys or identified it based merely on vehicle operation states 

in an inconsistent environment, which changes from time to time due to uncontrolled 

temporal factors.  

2.1.2 Data-Driven Vehicular Interaction Modeling 

Many vehicle interaction studies have been applied to extract interaction patterns from 

observed vehicle trajectories. Considering limited computational resources in real-time, 

Refaat et al. [28] prioritized surrounding agents for the planning process, based on their 
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influence on the ego vehicle. Also, the attention mechanism is a popular interaction 

encoding method as it can evaluate the similarity or importance between vectorized series 

[29]. To quantify the influence of others on ego vehicle, Leurent and Mercat [30] calculated 

the attention value between ego vehicle and its surrounding agents and hence improved the 

prediction result. In addition to analyzing such influence, interaction study considers the 

mutual effect. Researchers [31]–[33] modeled the vehicle interaction using graph neural 

network (GNN), which can capture the correlation between nodes (i.e., vehicles) and 

encode the interaction intensity in the learnable weights of graph edges. To capture both 

the influence and interaction, graph attention networks (GAT) were adopted to update the 

vehicle features by considering the influence from other nodes [34]. However, supervised 

or semi-supervised methods are limited by data labeling cost, and GNN is not flexible in 

dynamic environments because the graph cannot handle large variations in the number of 

nodes (i.e., agents) [35]. Other researchers explored parametric methods such as social 

value orientation (SVO) [36], [37] and inverse reinforcement learning (IRL) [38], [39] for 

understanding drivers' interaction preference. Although these models are explainable, they 

learn fixed parameters by using historical data and cannot update in real time. Moreover, 

the aforementioned methods cannot explicitly explain the interaction by addressing three 

key questions related to ' who ', ' when ', and ' how '. 

2.1.3 Personalized Driving Preference Modeling 

A personalized driver model is usually learned based on the dataset from a specific driver 

(i.e., learning from demonstration) and is mainly used for prediction, planning, and control 

[40]. Drivers’ preferences in their vehicle states are well-studied. A personalized driving 
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assistant system developed by Lefevre et al. could identify the current driving maneuver 

and predict the steering and acceleration, facilitating control assistance [41]. Considering 

the occupants’ preference for lateral and longitudinal comfort, Bae et al. proposed a 

personalized control system enabling autonomous vehicles to drive like human beings [42]. 

Also, algorithms based on Gaussian Mixture Model and HMM are popular for prediction 

of personalized driving behavior and are deployed in a variety of applications such as 

personalized lane departure prediction [43] and personalized car-following behavior 

prediction [44]. 

Not only the vehicle states but also the surroundings and vehicular interaction should be 

considered in drivers’ preference. To integrate the interaction into behavior modeling, 

Huang et al. included the awareness of the effect of the ego vehicle on the surrounding 

vehicles into the cost function [45]. The driver's preference over vehicle states and 

interactions can be expressed by the cost function recovered by inverse reinforcement 

learning (IRL), which assumed that human behavior was motivated by optimizing the 

unknown reward function [46]. In [47], the interaction behavior under different conditions 

was formulated as a cost function with different linear combinations of features and learned 

by continuous IRL. The cost function with interpretable weights on features opens the 

black box of behavior modeling, by showing the diversity of feature attention in different 

scenarios. Furthermore, the cost function can be adjusted as needed to reflect changing 

driving conditions and can always provide a solution aligning with driver preference in 

unseen scenarios. 
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Collecting a personalized dataset for interaction study is another major limitation in 

interaction modeling and driving personalization study. The difficulty of scenario 

reproduction constrains the driver’s experiences in similar interactive conditions and the 

collection of enough data for model training. 

2.2 Overview of Motion Planning 

Defining the motion planning process is complex because the relationship of planning 

and decision making is highly coupled. Katrakazas et al. defined the planning as a three 

step process: 1) finding a path, 2) searching for the safest maneuver, and 3) determining 

the most feasible trajectory [48]. In this definition, path planning as the first step, is 

responsible for finding geometric feasible paths from an initial state to a given terminating 

state. Then maneuver planning (decision making) selects the desired lane and velocity 

profile, based on driver’s intention and both current and predicted information (e.g., ‘going 

straight’, ‘turning’, ‘overtaking’ etc.). Trajectory planning aims to generate suitable speed 

profiles. Some researchers prefer to combine path planning and maneuver planning 

together [10], [49]. For example, Karl et al. proposed a joint maneuver planning and motion 

planning method, which is not a stand-alone component for solving the motion-planning 

problem, since the model-predictive control (MPC) typically requires a precomputed 

reference trajectory [50]. A more general definition was proposed by Claussmann et al., 

and the maneuver planning and motion planning process is to select one sequence among 

the generated motions, which  are sequences of paths, trajectories, maneuvers, or actions 

[51]. The path planning module and maneuver planning module form a closed loop to find 
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the best maneuver with an optimal path for the vehicle to follow, and then the motion 

planning module is responsible for achieving the selected path with the best trajectory.  

 

Fig. 2-1 Schema of the motion planning components 

A schema overview is shown as Fig. 2-1, which distinguishes the planning and decision 

making into three approaches. In the first two sequential approaches are the commonly 

used, where the behavior layer is an optional component serving as a preference interpreter. 

In approach 1, the path planning module and maneuver decision module form a closed loop 

to find the best maneuver with an optimal path for the vehicle to follow, and then the motion 

planning module is responsible for achieving the selected path with the best trajectory. The 

difference between approach and approach 1 is the order of each module. When the 

consequence of each action or the feasible action is unsure, approach 2 searches the action 

space first and then decides which maneuver is the best.  

When researchers consider the interaction into motion planning, approach 3 is adopted 

to integrate the behavior layer into maneuver planning and trajectory planning, providing 

a maneuver planning model for the next level control. For example, an objective function 

can be used in MPC and reinforcement learning, and the decision model, such as the game 
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theory decision tree that consists of discrete actions that each agent, can provide the best 

action at each time step. In conclusion, these three approaches take the input from sensor 

and communication and provide suitable trajectories for the control module. 

2.2.1 Prediction with Behavior Model for Motion Planning 

Prediction is crucial for motion planning because it allows an autonomous system to 

anticipate and react to future events or changes in the environment. By predicting the future 

state of objects, obstacles, and agents, the system can proactively plan its own actions to 

avoid collisions, achieve its goals, and navigate safely and efficiently. Further, combining 

a driver behavior model with prediction enhances the motion planning process by 

incorporating human-like driving strategies and behaviors, further improving the vehicle's 

ability to navigate complex scenarios.   

Therefore, there is an increasing amount of literature that recognizes the importance of 

combining the driving behaviors model into the prediction. Hidden Markov Model (HMM) 

was widely used to infer the lane-change intention [52]–[54] and is usually integrated with 

the Bayesian network [55] to recognize the lane-change behavior. As lane-change intention 

prediction can be modeled as a classified problem, the multilayer perceptron (MLP) was 

used as a discriminator [56] in long-term lane-change prediction. Moreover, deep learning 

methods, such as Long Short-Term Memory (LSTM) model, achieved a precision of 90.5% 

on time-series problems [57]. To find out relevant features for lane changing in a time 

series, Scheel et al. [58] integrated a temporal attention mechanism with LSTM to improve 

the prediction accuracy to 92.6% and provide understandability on feature importance. 

Besides lane change intention prediction, lane change trajectory prediction is also a critical 
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problem. Based on the beam search technique, Park et al. [59] adopted Seq2seq LSTM to 

produce K most likely trajectories on an occupancy grid map. By adding information on 

traffic level and vehicle types, Xue et al. [60] adopted XGBoost for lane change decision 

prediction and LSTM for trajectory prediction, achieving a Mean Square Error of 6.62m 

for trajectory prediction.  

However, most of the algorithms ignored vehicular interaction with the surroundings. 

Furthermore, supervised learning methods were limited by the lack of enough labeled 

datasets to cover each possible scenario, and very little online validation was carried out as 

well as real-world validation.  

2.2.2 Ramp Merging Planning Strategies for Intelligent Vehicles 

A number of ramp merging strategies have been developed to increase road safety and 

efficiency by leveraging CAV technology [9]. Awal et al. proposed a proactive optimal 

merging strategy based on V2V communication to optimize the on-ramp merging time and 

to reduce merging bottlenecks [61]. Utilizing V2I communication, Scarinci et al. developed 

a cooperative merging assistant control system based on the combination of macroscopic 

and microscopic traffic flow theories to create gaps to allow on-ramp vehicles to merge 

[62]. Lu et al. introduced a concept of virtual platooning and developed a closed-loop 

adaptive longitudinal control algorithm to control the merging speeds of CAVs [63]. Jain 

et al. proposed an adaptive strategy to platoon merging with vehicle engine uncertainty, 

and by considering the bidirectional error, the merging vehicle can interact with both front 

and rear vehicles [64]. 
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Apart from the aforementioned methodologies, game theory has also been widely 

adopted in ramp merging strategies for CAVs. Some researchers adopted game theory for 

decision-making in a complex environment. To get a global perspective and obtain the 

optimal solution, centralized optimization algorithms have been developed to coordinate 

the ramp merging maneuvers. Jing et al. designed a cooperative game-based merging 

sequence coordination system to arrange CAVs into platoons, and used optimal control to 

guarantee the best sequence in terms of mobility and fuel consumption [65]. Ramp merging 

can be seen as a mandatory lane change behavior, and many studies for mandatory lane 

change can be adopted to ramp merging management. To mitigate shockwaves caused by 

merging maneuvers, Akti et al. proposed a game theory-based algorithm to organize the 

longitudinal and lateral movements for merging vehicles, in a fully connected environment 

[66]. Wang et al. combined receding horizon control with game theory to find an optimal 

acceleration control for both lane-changing and car-following [67]. Based on a large 

amount of real-world vehicle trajectories, the game theory-based algorithm becomes more 

powerful with the support of human behavior estimation. By estimating surrounding 

vehicles’ aggressiveness as their utilities, Zhang et al. presented a game theory-based 

model predictive controller to find out the optimal gap to perform mandatory lane-

changing, by searching up to three gaps on the adjacent lane [68]. 

However, the majority of these studies rely on a strong assumption of 100% CAV 

penetration rate, allowing for a centralized complete game approach that can utilize full 

information [69]. In contrast, especially in mixed traffic with low penetration rate, CAVs 

can only form an incomplete game with limited information from the legacy vehicles 
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within the detection range of CAVs. Moreover, the advantage of CAVs’ long-distance 

communication is diminished in the mixed traffic environment since long-distance 

communication includes higher uncertainty of the environment. 

2.3 Experiment Platforms  

2.3.1 Co-Simulation Platform 

Before modeling personalized driving behavior in the real world, algorithm development 

is usually performed in simulation. Simulation is a widely used method to implement and 

evaluate algorithms due to its cost-effective, risk-free, and interactive characteristics. 

Microscopic traffic simulators, such as PTV VISSIM [70], Aimsun [71] ,and SUMO[72], 

provide high fidelity and continuous traffic simulation to model complex vehicle 

interactions in a specific traffic network [73]. In recent years, game engine-based driving 

simulators, such as LGSVL (Unity-based) and CARLA (Unreal-based) [74], have gained 

much momentum and attracted considerable attraction from researchers. They can simulate 

more realistic scenarios with a high degree of freedom, which enables the use of various 

vehicle models, customization of sensor suites and ambient environment, full control of all 

static and dynamic actors, and map generation. 

Currently, each individual simulator has its own advantages and focus arenas. However, 

a single simulator is not enough for modeling and evaluating cooperative automated 

driving system (CADS) design as well as establishing a realistic testing environment. Some 

recent research integrated multiple simulators to leverage their capabilities.  Oh et al. built 

a virtual reality (VR)-in-the-loop simulator by connecting VISSIM and Unity with VR and 

created an immersive driving environment [75]. To further explore the vehicle-to-anything 
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(V2X) communication in large-scale traffic, Jia et al. integrated three popular open-source 

simulators SUMO (traffic simulator), OMNeT++ (network simulator), and Webots (3D 

robot simulator), providing the information of large-scale network in addition to traffic 

simulation [76]. However, compared to the aforementioned game engine-based simulators, 

Webots in this work lacks a high-fidelity simulation environment and vehicle models. 

Biurrun-Quel et al. configured a driver-centric simulator by connecting Unity and SUMO 

through TraCI (Traffic Control Interface) protocol to present a driver view for one of the 

SUMO controlled background vehicles [77], which only allows one-way communication 

from SUMO to Unity. To better simulate the mixed traffic environment and implement the 

algorithm for CAVs, two-way communication needs to be set up.  

Furthermore, human-in-the-loop (HuiL) is a prototype platform for quickly exploring 

novel in-the-loop applications that can enhance the interactions between human beings and 

the physical world [78]. HuiL is widely used in different research topics highly related to 

human interaction with control systems. For example, in the work of rollover prevention 

for sport utility vehicles, the researchers validated the performance of the anti-rollover 

control via HuiL [79].  With HuiL, Li et al. [80] proposed a synthetic approach to solving 

safety-critical interaction problems in the SAE Level 3 automated vehicles which are 

mostly autonomous and only need limited driver intervention. Szalai et al. [81] created a 

mixed reality simulation environment allowing real-world vehicles to interact with virtual 

traffic flow generated by SUMO and to be visualized in Unity. It collected the human 

driving behavior information with real-world vehicles' sensors to serve as a validation 

procedure for autonomous vehicle development. 
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2.3.2 Digital Twin Implementation for Intelligent Vehicles (IVs)  

The recent emergence of digital twin technology has attracted a significant amount of 

attention from both academia and industry. The global digital twin market size was 

reported to be valued at $5 billion in 2020, and will be expanded to $86 billion in 2028, 

with a compound annual growth rate of 43%. Among all end-users like manufacturing, 

energy, and health care, the automotive and transportation industry took one of the largest 

shares in the global digital twin market in 2020 [82]. 

By a widely adopted definition (with some variations), a digital twin is a digital replica 

of a living or non-living physical entity [83]. This concept got to be known by most people 

in the early 2010s, when NASA adopted it as a key element in its technology roadmap [84]. 

During the past few years, digital twins have been applied to different vehicular systems. 

Particularly, Chen et al. developed a “Driver Behavior Twin” to allow driver behavioral 

models to be shared among multiple connected vehicles to predict future actions of 

surrounding vehicles [85]. Although this study did not come up with a solid network 

architecture, its concept did inspire a series of subsequent studies by this dissertation.  

In 2020, the authors first proposed a digital twin paradigm for advanced driver-assistance 

systems (ADAS) with a cloud architecture, which enables the communication between real 

vehicles and their digital twins deployed on the cloud server in real time [86]. This 

cooperative ramp merging ADAS was later validated in a field implementation with real 

passenger vehicles and a private cloud server at University of California, Riverside [87]. 

Later, the authors introduced edge computing to this network architecture by proposing a 

mobility digital twin framework, which includes not only vehicle digital twins but also 
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human and infrastructure digital twins [83]. Some of the detailed aspects of digital twins 

for CAVs have also been studied by the authors, such as how to visualize the digital twin 

information [88], how to leverage the digital twin information for cooperative driving 

scenarios [89], and how to build a simulation environment to model digital twins [90]. 

Many of the aforementioned studies have been summarized in a survey paper, where the 

role of digital twins in CAVs is also compared with the roles of several similar technologies, 

such as iteration, model-based design, and parallel driving [91]. 

2.4 Challenges and Gaps 

To address the traffic problems of safety, mobility and energy consumption, the module 

of decision and planning always serves as a key component. Schwarting et al. [10] pointed 

out several questions to be answered: 1) What informs the decision-making process of 

vehicles regarding their next maneuvers? 2) How do vehicles utilize sensor-gathered data 

in making immediate and future decisions? 3) How does the situation and behavior of other 

vehicles influence a vehicle?4) How can vehicles leverage their past experiences and 

human driving behaviors to enhance their driving skills? 5) What measures can be 

implemented to ensure the reliability and safety of vehicle control and planning systems? 

And 6) What strategies can be used to effectively coordinate multiple vehicles on the road 

simultaneously? Following these questions, we may lay the groundwork for motion 

planning. Nevertheless, there remain substantial challenges. Our traffic systems are far 

from ideal and uniform, encompassing various types of vehicles, drivers, automation 

levels, connectivity capabilities, and diverse human thought processes.  
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The first challenge is the “mixed” traffic conditions. In the near future, the road is 

anticipated to accommodate different types of vehicles. For instance, Intelligent Vehicles 

(IVs) will coexist with traditional vehicles, and among IVs, capabilities and algorithms will 

differ. While many studies on IVs assume a full penetration rate, it is more pragmatic but 

challenging to consider interactions between different vehicle types in such mixed traffic 

situations.  

Similarly, the second challenge is the diversity of drivers. Human behavior must be 

considered due to the vast range of driving styles. Although there has been significant 

research on driver categorization (such as aggressive, normal, cautious), such broad 

classifications are inadequate for effective motion planning. Human beings display varying 

behavior in different situations. Although human drivers are typically assumed to be 

rational, they can exhibit irrational behavior in rare circumstances; for example, driver 

mistakes can be made due to misjudgments or distraction leading to erratic or unpredictable 

driving. In some abnormal traffic conditions (e.g., sudden traffic jams and extreme 

weather), drivers might react unsafely. In these instances, it is important to study 

personalized driver behavior and abnormal situations. 

Moreover, it is critical to incorporate real-world engineering constraints into these 

studies. This represents not only a highly practical approach but also a pressing demand, 

marked as the third challenge. Many researchers focus solely on enhancing IV operation 

as a universal remedy for all complex issues. However, given the complexity of the field, 

this approach proves to be a daunting task. With standardization (such as communication 

protocols) still posing a challenge, IVs require support from both physical and digital (e.g., 
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cloud service) infrastructure. The proposed algorithm needs to be flexible, reliable, and 

scalable, allowing optimization based on different resource constraints. 

Lastly, it is crucial to design vehicles capable of effective human interaction, maintaining 

a human-centric design approach. This demands a thoughtful consideration of the 

equilibrium between personalized and collective behavior. 

To conclude, the research gaps of Intelligent Vehicle (IV) research include: 

• Current automation technologies might be optimal but not necessarily favorable or 

acceptable to all users; 

• The preferences and abilities of drivers vary significantly, which can complicate 

the design and implementation of IV systems; 

• There is a weak acceptance of and trust in “black box” strategies due to their lack 

of transparency; and 

• Interaction with human beings poses a significant challenge for IVs due to the 

unpredictability and complexity of human behaviors. 
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3 Overview of System Structure 

The general architecture of the proposed strategy for IV operation is illustrated in Fig. 

3-1, which consists of a physical world and a digital world. In the physical world, there are 

four types of vehicles, Legacy Vehicles or human driven vehicles (LVs or HDVs), 

Connected Vehicles (CVs), Autonomous Vehicles (AVs), and Connected and Automated 

Vehicles (CAVs), all forming mixed traffic. Due to their communication capability, CVs 

and CAVs can share a database and collaborate, making joint decisions through cloud 

services. AVs, relying solely on their sensors, operate as independent entities. They have 

their own database, modeling their behaviors and making decisions autonomously. 

Modeling the behaviors of other road users enhances interaction, while self-behavior 

modeling fosters better self-understanding. 

The digital world is primarily designed for CVs and CAVs, enabling them to upload and 

download information. By bridging the physical and digital worlds, a Digital Twin (DT) 

of each CV or CAV can be created through direct communication. For AVs and HDVs, 

their DT can be built by utilizing information sensed and shared from CVs or CAVs. 

Therefore, in the digital world, each entity has access to a vast amount of data and shared 

knowledge, enabling enhanced cooperative prediction, cooperative motion planning, 

personalized services, and efficient interactions among vehicles, other road users, and 

infrastructure. These capabilities are facilitated by many algorithms, from the behavior 

module and planning module of the shared knowledge. This dissertation aims to realize 

this proposed system and develop the algorithm for IVs operation to improve the safety, 

mobility, and environmental sustainability of the whole traffic system.  
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Fig. 3-1 Personalized behavior-aware motion planning framework for IV at traffic system level 

3.1 Intelligent Vehicle Operation Pipeline 

From a single vehicle perspective, IV is operated in a sequential method shown in Fig. 

3-2, including the communication, perception, localization, sensor fusion, planning, 

control, and actuator components. The IV communication module facilitates reliable, real-

time vehicle-to-everything (V2X) wireless communication. Perception sensors equipped 

on AVs and CAVs serve as the primary data sources for situation awareness of surrounding 

vehicles and road conditions, feeding this information to the sensor fusion component. 

Localization functionality of an IV system integrates two distinct hardware components: 

the global navigation satellite system (GNSS) and the inertial navigation system (INS), 

along with map matching. The sensor fusion stage aggregates and synthesizes information 
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gathered from communication, perception, and localization, providing a holistic and in-

depth understanding of the surrounding environment.  

The planning module is the focus of this dissertation, and it processes all the acquired 

data to perform the necessary tasks (as introduced in Section 2.2) of path optimization, 

motion prediction, decision-making, trajectory planning, and the formulation of safe and 

efficient driving strategies. Also, it is the part where the behavior module (i.e., driver 

modeling and personalization) is incorporated to develop the optimal and favorable 

strategies, tailored to individual driver habits and preferences, enhancing the overall user 

experience and acceptance of the automated driving system. 

The final phase of this sequential process involves the control and actuator modules. The 

control module in an IV system is comprised of both software and hardware elements: a 

controller component that enables the motion control algorithms of the IV, and the physical 

actuators within the IV that execute the longitudinal and lateral commands as directed by 

the controller component. 

 

Fig. 3-2 Operation pipeline of intelligent vehicles with the integration of behavior modeling 
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3.2 Integration of Behavior Modeling  

This section elaborates on the design of a behavior-aware motion planning system for 

IVs in both fully connected traffic and mixed traffic. The proposed system is designed from 

a decentralized agent-based model perspective for IV, allowing vehicles to act 

independently. For algorithm development and verification, we establish a database, a local 

server for real-world algorithms implementation, and a Human-in-the-Loop (HuiL) co-

simulation platform. The strategy workflow is depicted in Fig. 3-3, with each vehicle 

navigating through the modules, represented by solid lines, at every time step. 

1) Driving Behavior Modeling: This module consists of a behavioral layer to understand 

the involved driver’s behavior. Modeling the driver’s behavior is usually an offline process 

and can facilitate the downstream prediction and planning modules in real time, as 

indicated by the red solid lines. 

2) Maneuver and Trajectory Prediction Module: This module uses inputs from the 

behavior module and sensors for predictions. First, this module judges whether conflicts 

exist in the future and identifies the vehicle type of competitor (e.g., CAV, CV, AV, or 

HDV). Then it anticipates the type of maneuver the driver will execute, as well as when 

and where it will occur. Moreover, it predicts the trajectory required to complete the 

anticipated maneuver. 

3) Interactive Planning: This module captures the interaction between the ego vehicle 

and its surroundings. Based on the prediction results and the understanding of the other 

driver’s behavior, this module generates an optimal and favorable trajectory for the control 

module. 
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4) Driving Style Adaptive Planning for Ego Vehicle: As the Interactive Planning module 

deals with the interaction with other road users, this module considers more about the ego 

vehicles. By learning the driving preference of ego vehicle’s driver, it provides suggestions 

to adjust the planning strategy for improving the user experience. Furthermore, this module 

allows extending the algorithm of IV to HDV and will be introduced in Section 4.3.3. 

5) Acceleration Control Module: This module is responsible for ensuring the ego IV runs 

at the desired speed and tracks the lane. It is colored gray because it is out of the research 

scope of this dissertation. 

 

Fig. 3-3 Schema of the proposed personalized behavior-aware motion planning framework for IV at 

vehicle level 
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4 Methodologies 

4.1 Platform Construction 

4.1.1 Vehicle-Edge-Cloud (VEC) Real-World Implementation Platform 

4.1.1.1 Introduction and Background 

To study personalized driving behavior and develop motion planning algorithms for IVs, 

this dissertation deploys a Digital Twin (DT) approach in the real world. A DT of an 

intelligent vehicle is a virtual representation of the vehicle that mirrors its physical 

counterpart in real time. A driver DT (DDT) is a digital replica of a driver with his or her 

naturalistic driving data and driving behavior models. DT enables vehicle-to-everything 

(V2X) communication, driver behavior analysis, personalization, traffic and infrastructure 

planning, etc. The implementation of DT uses real-world data, machine learning, and 

software analytics to simulate, predict, and visualize the vehicle's performance, needs, and 

challenges. 

The realization of DT is achieved by a Vehicle-Edge-Cloud (VEC) platform, which is 

introduced in Fig. 4-1, including key components, hardware for the real-world 

implementation, and the information flow between them. Under this architecture, vehicles 

are considered service consumers who store their personalized dataset on the cloud server 

and share the real-time perception information with the edge server, from which vehicles 

receive driving assistance and support services to facilitate automation. The edge server 

creates the vehicle digital twin and serves as the bridge between the cloud server and 

vehicles. DDT is created on a cloud server by offline modeling algorithms.  
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Based on real-world data, DDT in the virtual world provides both online and offline 

micro-services, e.g., interactive prediction, driving style analysis, etc. In addition, to 

capture the driving preference variation, the evolving driver model will be updated in a 

certain period (e.g., every five new trips) by consuming the driving data from the real-

world vehicle. Supported by the edge server, VEC allows the planning and control of the 

connected vehicles while ensuring real-time computation. However, only using an edge 

server is sometimes insufficient to fulfill the requirements of personalized behavior study, 

such as data storage, modeling, learning, simulation, and prediction. Therefore, behavior 

study in this dissertation is performed on a cloud-edge architecture, leveraging cloud 

computing and personalized profiling, enabling both real-time and bulk-batch ingestion, 

processing, and analytics of personal data. Based on real-world data, VEC in the virtual 

world provides both online and offline micro-services, e.g., interactive prediction, driving 

style analysis, etc. In addition, to capture the driving preference variation, the evolving 

driver model will be updated in a certain period (e.g., every five new trips) by consuming 

the driving data from the real-world vehicle.  
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Fig. 4-1 The vehicle-edge-cloud platform architecture validated in the field experiment 

4.1.1.2 System Setup 

To be specific, the first step of building the vehicle digital twin on the edge server is to 

know the position of each vehicle in the network. After building the connection between 

edge and vehicles, the perception information and GPS coordinates of each vehicle are 

uploaded to the edge server, where the map-matching algorithm updates the vehicle’s 

positions in real time. Furthermore, algorithms for predictions, planning, and control can 

be provided upon request for different purposes. With the connection to the cloud server, 

the edge server receives service requests from vehicles and passes on those requests and 

the unique login information to the cloud. In response to the request, the cloud can feed 

back edge server with personalized driving behavior models of specific drivers. Due to the 

high communication latency between the cloud and vehicles, it is hard to implement real-

time services provided directly from the cloud to customers. To address this problem, an 
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Edge Gateway is adopted to handle the data exchange and provide services to vehicles in 

real time.  

The concern of privacy is also addressed, as only unidentifiable information is 

transmitted. The cloud server is responsible for driver model training, storage of 

personalized data and models, and microservices support (e.g., energy consumption 

analysis). Therefore, we take advantage of the strong computational power, high-speed 

data processing, and secure data storing features of AWS. Historical personal driving data 

are archived in the personal folder and can only be accessed by the personal login 

information. Service consumers can also request post-processed driving behavior reports, 

(e.g., energy consumption analysis, to better understand or improve their driving skills. 

Hardware for the real-world implementation is shown in Fig. 4-2. All three vehicles are 

2012 Corolla LE models, with 1.8-liter internal combustion engines. Each vehicle is 

equipped with a Wi-Fi hotspot (Netgear MiFi) to establish a wireless connection with edge 

server, a GPS unit to collect accurate position information of vehicles, and a portable 

human-machine interface (HMI) device using Galaxy A7 tablet. The U-blox C102-F9R is 

adopted as the GPS unit, which is a multi-band GNSS with Real-Time Kinematic 

positioning (RTK) function and sensor fusion technologies. It can achieve a 2-dimensional 

(horizontal) accuracy of 46.7 cm and 4.0 cm with the “RTK Fixed” mode [87]. The GPS 

unit and the HMI device are connected (wired) with serial communications. The Wi-Fi 

hotspot handles the wireless communications between the tablet and other infrastructures 

such as the base station and edge server. Depending on the request of the driver, the HMI 

device receives and displays the speed guidance or lane-change prediction information 
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from the edge server. Moreover, to enable the RTK function in the U-blox and get high-

accuracy GPS measurements, the HMI device shares the calibration correction message 

received from the base station to its paired GPS unit.  

 

The edge gateway is running on a customized edge server installed at CE-CERT, 

University of California, Riverside, which is 1.2 km away from the testing site. A Dell 

R630 server, with two Xeon 2.4GHz (6-core) CPUs, 64GB RAM, 1TB solid-state drive, 

and 14 TB hard disk drive, is adopted as the edge server in this implementation, as shown 

in Fig. 4-2 (d). 

Moreover, the communication delay and computation time are considered for real-world 

implementation. The back-and-forth communication delays of cloud-edge communication 

 

                       
                                                  (a)                                                  (b) 

                       

(c)                                                 (d) 

Fig. 4-2 Hardware in VEC platform: (a) NETGEAR hotspot (b) U-blox C94-M8P-2 GNSS unit, 

(c) Google Nexus 7, and (d) Dell R630 server 
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(model download), the edge-vehicle communication (speed guidance and online 

prediction), and the computation time are measured and shown, respectively, in Table I. 

 

4.1.1.3 Hidden Markov Model Map Matching  

Map matching is an important component in a field implementation to reduce the effect 

of noisy GPS measurements. Hidden Markov Model (HMM) exploits the road connectivity 

information and time-sequence feasibility to solve the problem. As shown in Algorithm 1, 

we briefly introduce the HMM map-matching algorithm, which was proposed by Newson 

and Krumm [92]. For the HMM map matching process, we first predefine a road network 

with a set of geographical coordinate pairs (i.e., latitude and longitude) of the road 

segments based on the real-world situation. The input is the GPS measurement points from 

the current time step and the last time step. The goal of map matching is to find the best-

fitted road segment from all candidate road segments. The candidate road segments are 

selected by the great-circle distance between the measurement points and projection points 

on the road segments. Among candidates, we find the one which maximizes the product of 

the measurement probability and transition probability. Then we output the projection point 

of the current GPS measurements on the best-fitted road segment as the matching point 

and the distance between them. 

 

TABLE I STATISTIC RESULT OF COMMUNICATION DELAY AND COMPUTATION TIME 

 Average 75th Percentile 99th Percentile Maximum 

Cloud-Edge 800 ms 915 ms 1221 ms 1261 ms 

Edge-Vehicle 80 ms 88 ms 247 ms 3861 ms 

Computation 28 ms 14 ms 36 ms 71 ms 
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The test track consists of a ramp and a mainline, where the mainline spans from the 

intersection of Columbia Avenue and Chicago Avenue to the intersection of Iowa Avenue 

in Riverside, California. The mainline is on an overpass while the ramp is under the 

overpass, which increases the difficulty of ramp merging because the vision of the driver 

is blocked by the construction. The total length of the track is 780 meters, with a merging 

zone of 89 meters long, which is encoded as road segments in GPS points for the usage of 

HMM map matching. 

Algorithm 1:  HMM Map Matching Algorithm 

Input: 1. Current GPS point (𝑧𝑡). 2. Road segments on map (𝑟𝑖) 
Output: 1. Matching point (𝑟𝑏𝑒𝑠𝑡). 2. Distance to road 

1: if (t = 0) Initialize 𝑧𝑡−1 

2: Find candidate road segments (𝑟𝑖) based on 𝑧𝑡 
3: Calculate the projection 𝑥𝑡,𝑖 of 𝑧𝑡 on each 𝑟𝑖 
4: Calculate the probability of the measurement (𝑧𝑡|𝑟𝑖) by 

(𝑧𝑡|𝑟𝑖) =
1

√2𝜋𝜎𝑧
𝑒𝑥𝑝(−0.5(

‖𝑧𝑡 − 𝑥𝑡,𝑖‖𝑔𝑟𝑒𝑎𝑡 𝑐𝑖𝑟𝑐𝑙𝑒
𝜎𝑧

)

2

) 

5: Calculate the transition probability 𝑝(𝑑𝑡) by 

𝑝(𝑑𝑡) =
1

𝛽
𝑒𝑥𝑝(−

|‖𝑧𝑡 − 𝑧𝑡−1‖𝑔𝑟𝑒𝑎𝑡 𝑐𝑖𝑟𝑐𝑙𝑒 − ‖𝑥𝑡,𝑖 − 𝑥𝑡−1,𝑗‖𝑟𝑜𝑢𝑡𝑒|

𝛽
) 

6: Find the best-fitted road segment by  

𝑟𝑏𝑒𝑠𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑖

(𝑝(𝑧𝑡|𝑟𝑖) ∗ 𝑝(𝑑𝑡)) 

7: Find the projection 𝑥𝑡,best of 𝑧𝑡 on 𝑟𝑏𝑒𝑠𝑡 
8: Calculate the distance between 𝑧𝑡 and 𝑥𝑡,best by 

‖𝑧𝑡 − 𝑥𝑡,best‖𝑔𝑟𝑒𝑎𝑡 𝑐𝑖𝑟𝑐𝑙𝑒 

9: Update state for next coming measurement 𝑧𝑡−1 = 𝑧𝑡 

Return 𝑟𝑏𝑒𝑠𝑡 and ‖𝑧𝑡 − 𝑥𝑡,best‖𝑔𝑟𝑒𝑎𝑡 𝑐𝑖𝑟𝑐𝑙𝑒 

Algorithm 1 
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4.1.2 Human-in-the-Loop Co-Simulation Platform 

4.1.2.1 Introduction 

In this dissertation, a human-in-the-loop co-simulation platform[93], is utilized, where 

the real-world test track is programmed in the Unity game engine as a digital replica of the 

physical testbed.  The simulation incorporates a mixed traffic flow generated by SUMO, 

while human input is integrated through the use of a Logitech driving set, as depicted in 

Fig. 4-3. This setup enables drivers to engage in immersive human-in-the-loop simulations 

within a realistic traffic environment, allowing for the evaluation of various scenarios 

involving different levels of connected and automated vehicle (CAV) penetration rates and 

congestion levels. By leveraging this simulation framework, the dissertation aims to 

facilitate comprehensive and accurate modeling of driving behavior, ensuring the 

development of robust and effective algorithms for real-world deployment. 
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Fig. 4-3 Human-in-the-Loop Unity-SUMO co-simulation based on a real-world ramp merging area in 

Riverside, CA 

4.1.2.2 Specifications 

To create a realistic mixed traffic flow for the human-in-the-loop (HuiL) simulation, we 

define three general vehicle types participating in the simulation, which are legacy vehicle 

(background vehicle), IV, and user control vehicle. When SUMO is responsible for legacy 

vehicles, IVs and user control vehicles are using the vehicle model in Unity.  

For longitudinal control, the SUMO controlled legacy vehicles adopts the Krauss car-

following model and IDM [94]. To avoid homogeneous driving behaviors, the imperfection 

parameter is set to be 0.5. In addition, the speed deviation is set to be 10%, resulting in a 

speed distribution where 95% of the vehicles would travel at a speed ranging from 90% to 

110% of the legal speed limit. Besides the car-following model embedded in SUMO, Unity 

provides API allowing the customized algorithm for IV control. 
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For lateral behavior model, the default collision-free lane change model in SUMO 

developed by Erdmann [95] controls the lateral maneuver of legacy vehicles, and the 

default parameters for passenger vehicles are adopted in our simulation. In Unity, lane 

change maneuvers are governed by Unity’s built-in Bezier curve generator. In the 

simulation, each lane has its reference path consisting of waypoints for every CAV to track. 

If gaps are determined to be safe, then CAVs can start their lane changes which can be 

triggered by moving the future waypoints from one lane to another. As shown in Fig. 4-4, 

the CAV just passes Waypoint 23 and is ready to perform a lane change. Based on its 

current speed, it first selects the finishing waypoint (Waypoint 25) of lane change on its 

left (target) lane. Next, the Bezier Curve generator creates Waypoint 24 between Waypoint 

23 and Waypoint 25, and connects those waypoints with a smoothed path. 

 
Fig. 4-4 Bezier curve generator for CAV lane change maneuver. 

Moreover, a customized perception system is equipped on IV in Unity, as shown in Fig. 

4-4. IVs are color-coded in red, while legacy vehicles are in white. The red rays spread 

from the IV indicate the detection range of its onboard radar system, where the long-range 

radar in the front has a 150m detection range and 18-degree field of view, while short-

range radars on the side have a 25m detection range and 70-degree field of view. The 
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characteristics and performance parameters of this onboard radar system are selected based 

on off-the-shelf radar sensors [96]. 

Finally, a two-way communication via UDP Socket connects and synchronizes these two 

simulation platforms in real-time, allowing SUMO to control legacy vehicles while Unity 

controls IVs with the customized algorithm. After each trip, the driving data containing 

information of each vehicle is uploaded to AWS for training and storage. 

4.2 Personalized Driving Behavior Modeling 

This section explores the intricate complexities of individual driving profile and 

emphasizes the importance of understanding and predicting the decisions drivers make 

based on their unique driving preference. The tripartite structure of this section comprises 

an exploration into driver profile, a detailed analysis of interaction pattern, and a deep dive 

into driving preference. Each subsection takes a closer look at the integral components of 

personalized driving behavior and offers insights into how these unique patterns can be 

accurately modeled and incorporated into intelligent vehicular systems to optimize both 

safety and efficiency. 

4.2.1 Driver Profile Modeling Based on Personality, Driving Style, and Mood States 

4.2.1.1 Introduction and Background 

Recent developments in automated driving technologies will result in road interactions 

between automated vehicles (AVs) and human-driven vehicles in the foreseeable future. 

With these advancements, the role of the driver is likely to change. This presents unique 

challenges to driver safety and driver state assessment. To understand the critical safety 

issues that drivers may face in the future, it is essential to understand driver profiles. 
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Compared to the existing literature on prediction and behavior modeling, our study has 

made several contributions: 

• A comprehensive framework to evaluate driving styles and their corresponding 

mood states was developed. The driving simulator provided a controlled 

environment to guarantee all participants experience the same scenarios and well-

defined events.  

• A longitudinal user study was designed, and data collection was conducted to 

integrate the driving style, personality traits, and mood state of each participant into 

a single dataset. 

• Alongside a prediction model for driving style that uses mood states and personality 

traits, an inference model for personality types (obtained by clustering) given mood 

states and driving style was developed and assessed for accuracy. 

The findings from this study are applicable in two major implementations. 1) Driving 

style prediction- A risky driving style can be predicted to adopt a new Advanced Driver 

Assistant System (ADAS) strategy, given the personality traits and mood states of the 

driver, and the mood states can be determined by smart devices and/or a driver-monitoring 

camera. 2) Personality type inference can help personalize the product setup when drivers 

use other mobility anywhere (i.e., Mobility-as-a-Service), by observing users' driving style 

and mood states. In this study, such inference is used interchangeably with prediction.  
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4.2.1.2 Problem Formulation 

Tenets of personality traits, mood states, and driving style were assumed as follows:  1) 

Personality traits are enduring attributions of each participant and consistent during the 

experiment period. 2) Mood states are affected by participants' experience near the 

experiment day, which can be different per experiment session. 3) While each participant's 

baseline driving style (e.g., aggressive) is enduring, it is influenced by mood states.  

In this section, the experimental design, data collection, and metrics used for the analysis 

are discussed. 

4.2.1.2.1 Experiment Design  

A total of 28 individuals between the ages of 21 and 40 (Mean = 27.53 years, SD = 5.06 

years) were recruited in California's San Francisco Bay Area by way of online 

advertisements as well as at physical locations. All participants were male, fluent in 

English, and had a valid U.S. driver’s license. Prior to the user study, each participant took 

a personality traits assessment. During it, they would visit the test site four times altogether 

with a one-week interval between each visit. In every visit, participants experienced two 

driving simulator sessions: an urban city and a highway driving scenario. A mood check 

was required afterwards. For two out of four visits, each participant was asked to write 

down their happy and angry experiences and played an audio track. This was done to 

facilitate mood manipulation as music, imagination, and recall have been found to induce 

mood [97]. A sum of 224 driving session runs was carried out. 
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4.2.1.2.2 Integrated Dataset Construction 

A. Personality Traits. To assess personality traits, the NEO Personality Inventory-3 

(NEO-PI-3) questionnaire developed by McCrae et al. [98] was employed. This test is 

modeled upon the Five-Factor Model [99] as the basis of human personality. The five traits 

(i.e., Big-Five Scores) are Neuroticism, Extroversion, Openness, Agreeableness, and 

Conscientiousness. The evaluation of each personality trait is based on six sub-scores, 

evaluated by eight survey questions. The raw scores of the five factors and their sub-scores 

were calculated based on the survey response, and then for each trait, standardized T scores 

[100] were used. The T score represented the standardized values for each personality trait, 

where a score of 50 represents the mean and a difference of 10 from the mean is the 

difference of one standard deviation. 

B. Profile of Mood States. The mood profile of a driver was assessed using the Profile of 

Mood States 2nd Edition-Adult Short (POMS 2-A Short) survey, developed by Terry et al. 

[101]. This 24-item questionnaire was adopted because of its ability to capture transient 

and fluctuating feelings. The responses of the assessment produced eight factors, including 

scores for six mood clusters: Anger-Hostility (Anger), Confusion-Bewilderment 

(Confusion), Depression-Dejection (Depression), Fatigue-Inertia (Fatigue), Tension-

Anxiety (Tension), and Vigor-Activity (Vigor). Two general scores were also generated: 

Total Mood Disturbance (TMD) and Friendliness. 

C. Driving Simulation. Unlike mood states and personality traits, driving style is 

evaluated objectively from participants' driving behavior. To understand driving style, the 

driving trajectories for each participant were observed using an in-house driving simulator 
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built with AirSim [102], a plug-in for Unreal Engine 4. The participants controlled the 

vehicle using a Logitech G29 steering wheel and pedals. 

 

The driving simulations presented urban city and highway scenarios to participants, as 

shown in Fig. 4-5. In each scenario, drivers experienced five critical events which included 

sudden danger (e.g., sudden cut-in behavior), speed limit signs, a slow preceding vehicle, 

visual distractions, and normal driving. Driving trajectories included vehicle coordinates, 

principal axes (yaw, pitch, rotation in degrees), speed (miles per hour), throttle and brake 

 
(a) Urban scenario 

 
(b) Highway scenario 

Fig. 4-5 Events design for driving style evaluation 
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(0 - no throttle/brake to 1 - full throttle/brake), steering angle (0 to 1), distance from lane 

center (in meters), and the distance from surrounding vehicles (m). Combining driver 

reactions under different events, each session was classified into a certain driving style by 

the proposed fuzzy-logic inference system. 

D. Data Analysis. The driving trajectories in each session were classified into different 

driving styles, and the mood states and personality traits were processed. Principal 

Component Analysis (PCA) was applied for feature selection of the mood data. In 

assessing personality traits, Hierarchical Clustering Analysis (HCA) helped to cluster 

drivers with similar personalities. This was done because initial analysis found (1) 

regression for five-dimensional traits on a small-sample dataset was impractical and (2) a 

large number of combinations of five continuous traits were infeasible for classification. 

Furthermore, data cleaning was executed to filter out unrealistic sessions (e.g., driving on 

the sidewalk in the city scenario) and 201 out of 224 data points remained in the dataset. 

4.2.1.3 Methodology 

In this section, the algorithms for profiling the mood states, personality traits, and driving 

styles of participants are described. As shown in Fig. 4-6, this study consists of a data 

collection phase and a modeling phase. In the data collection phase, each participant 

followed the experimental procedures as their mood states, driving trajectory, and 

personality traits were collected. As the one important part of driver profile modeling, the 

correlation between mood states and personality traits was investigated using their scores. 

In the modeling phase, training and test datasets were split. For the assessment of mood 

states, three principal components from mood states explained 93% of mood states, and 
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based on the contribution to three principal components, five out of eight significant 

features (i.e., Tension, Vigor, Fatigue, Friendliness, and TMD) were selected. Four driving 

styles were determined by the fuzzy logic inference system based on driving trajectories 

and three personality types were clustered by HCA. Eventually, a prediction model was 

trained and validated by random forest, enabling the prediction of (1) driving style with 

mood states and personality traits and (2) personality types with mood states and driving 

style. 

 

Fig. 4-6 System workflow of the driver profile modeling (data collection and modeling) 

4.2.1.3.1 Enhanced fuzzy logic inference system for driving style recognition 

In this study, four driving styles were defined based on definitions given by [24], and 

they were aggressive, anxious, keen, and sedate. Economical type was excluded because 

the behavior based on fuel consumption could not be replicated in a simulator study, also 

participants did not feel time efficiency concerns. The driving styles are not mutually 

exclusive, but there were predominant styles. The recorded 201 sessions were classified 

into one of the four styles. To utilize prior knowledge of driving trajectory, the fuzzy logic 
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inference system was adopted to classify driving styles by interpreting the fuzzy linguistic 

terms given by the definitions. To ensure separation between driving styles, the weights 

used in the fuzzy logic inference systems were optimized. 

Given the driving trajectories collected in the simulator, the fuzzy logic inference system 

estimated the probability of how each trajectory could be classified into a predefined 

driving style. The classification was done based on the highest probability. To be specific, 

the fuzzy logic inference system evaluated drivers' reactions to well-defined events and 

final probability was calculated by the weighted sum of each reaction. For example, an 

average speed of 110 mph in a session would be labeled as Very High, and the probability 

that the driving style is typified as aggressive may increase, and at the same time that the 

probability of it being anxious may decrease. 

Considering the difference in driving trajectories between city and highway scenarios, 

two corresponding sets of fuzzy rules were developed for each scenario type to analyze the 

reactions in events, including normal driving (cruising without surrounding vehicle), car 

following [103], stop sign approaching and departure [24], and lane change [104]. In the 

city scenario, intersections and normal driving accounted for the majority of the scene. To 

TABLE II EXAMPLE FUZZY-RULES FOR HIGHWAY SCENARIO 
  Aggressive Anxious Keen Sedate 

Speed Low NL VL HL L 
 Medium HL HL VL VL 
 High L NL L NL 
 Very High VL NL NL NL 

Brake Light VL HL HL L 
 Medium L NL VL HL 
 High HL VL L NL 

*NL - Not Likely, HL - Hardy Likely, L - Likely, and VL - Very Likely. 
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evaluate how the participants performed on city roads, four key features were selected: 1) 

average speed near speed limit signs, 2) minimum speed at stop signs, 3) maximum 

acceleration after stop, and 4) maximum deceleration when approaching stop signs [105]. 

In the highway scenario, driving style was analyzed by its interaction with surrounding 

vehicles and normal driving, and hence four features selected from different events were 

evaluated: 1) average speed near speed limit signs, 2) maximum brake force when another 

vehicle cuts in, 3) minimum time headway to the preceding vehicle [106], and 4) lane 

change rate (i.e., lane change occurrence per mile) [107]. Based on predefined fuzzy rules, 

the inference system quantified linguistic probability (i.e., from not likely to very likely) 

into probability values. Due to article length restrictions, only 7 of 30 example fuzzy rules 

were shown in Table II. 

The probability of each driving style could be expressed as Equation (1), where a weight 

factor 𝑤𝑑𝑠,𝑓 was introduced to define how much a feature (𝑓) contributes to a particular 

driving style [24]:  

𝑝(𝑑𝑠) = ∑  𝑓∈ features 𝑤𝑑𝑠,𝑓 ⋅ 𝑝(𝑑𝑠 ∣ 𝑓)                                           (1) 

where 𝑑𝑠 ∈ 𝐷𝑆 = {𝐴𝑔𝑔𝑟𝑒𝑠𝑠𝑖𝑣𝑒, 𝐴𝑛𝑥𝑖𝑜𝑢𝑠, 𝐾𝑒𝑒𝑛, 𝑆𝑒𝑑𝑎𝑡𝑒}, and ∑𝑤𝑑𝑠,𝑓 = 1. 

To avoid ambiguities in classification between similar driving styles (e.g., aggressive 

with keen, anxious with sedate), Non-Dominated Sorting Genetic Algorithm II (NSGA-II) 

[108] was adopted to optimize the weights 𝑤𝑑𝑠,𝑓. As presented in Equation 2, two objective 

functions were maximized by tuning the weights. 𝐹1 is the sum of the probability difference 

between each pair of driving styles, and 𝐹2  is used to find the probability of the most 
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probable driving style. This optimization process improved classification certainty by 

maximizing both 𝐹1 and 𝐹2. 

{
 
 

 
 
𝐹1 = ∑𝑖=1

3  ∑𝑗=𝑖+1
4  ∥∥𝑃(𝐷𝑆𝑖) − 𝑃(𝐷𝑆𝑗)∥∥2

𝐹2 = argmax
𝑑𝑠∈DS

(∑𝑘=1
𝑁  𝑝𝑘(𝑑𝑠)/𝑁)

𝐹(𝑤) = maximize (𝐹1(𝑤), 𝐹2(𝑤))
s.t.  0 ≤ 𝑤𝑑𝑠,𝑓 ≤ 1

                             (2) 

where 𝑃(𝐷𝑆𝑖) is the combination of probabilities of 𝑖 -th driving style in each session for 

all participants, 𝑃(𝐷𝑆𝑖) = { 𝑃1(𝐷𝑆𝑖), . . . , 𝑃𝑛(𝐷𝑆𝑖)} , 𝑁  is the number of sessions to be 

evaluated, and 𝑝𝑘(𝑑𝑠) is the probability of 𝑑𝑠 at 𝑘-th session. 

4.2.1.3.2 Prediction based on random forest 

For this study, the prediction was formulated as a classification problem with the 

characteristics of the dataset taken into consideration; Random Forest[109] was used as the 

classifier as it could process inputs with categorical variables where input data was a 

synthesis of categorical variables (i.e., types) and continuous variables (i.e., score values). 

Random forest can, moreover, reduce over-fitting in a small-sample dataset with Bootstrap 

Aggregating (Bagging) [110]. Also, because the participants were all young male drivers, 

the dataset was unbalanced with an unequal distribution of mood states and driving styles. 

By weighing each class, random forest can account for unbalanced datasets effectively. 

Additionally, the results from classification are voted by multiple decision trees, thereby 

improving their robustness.  

As shown in the prediction model in Fig. 4-6, when the prediction target was driving 

style, the inputs were personality traits, personality types (obtained from the HCA), and 
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mood states. When predicting personality types, the inputs were driving styles and mood 

states. To improve prediction accuracy, grid search (exhaustive search) with 5-fold cross-

validation was used to tune the hyper-parameter of the random forest model. Specifically, 

three major parameters were tuned: the number of decision trees (𝑛𝑡𝑟𝑒𝑒), maximum depth 

of the tree (𝑑𝑚𝑎𝑥), and the number of features to randomly investigate (𝑛𝑓). As a result, 1) 

for driving styles prediction, 𝑛𝑡𝑟𝑒𝑒  was 100, 𝑑𝑚𝑎𝑥  was 50, and 𝑛𝑓  was 3, and 2) for 

personality types of prediction, 𝑛𝑡𝑟𝑒𝑒 was 42, 𝑑𝑚𝑎𝑥 was 70, and 𝑛𝑓 was 3. 

4.2.1.4 Result 

4.2.1.4.1 Correlation analysis for personality traits and mood state 

Correlations between personality traits and mood states are represented in a heat map 

created from the correlation matrix. As shown in Fig. 4-7, Neuroticism has a positive 

correlation (correlation coefficient > 0.3) with Tension, Fatigue, and Total Mood 

Disturbance (TMD). It, however, also has a strong negative correlation with Vigor (r=-

0.49, p<.001) and Friendliness (r=-0.41, p<.001). Extraversion has a positive correlation 

with Depression, Vigor, and Confusion. Compared with other traits, Conscientiousness is 

associated with all mood states (|coefficients|> 0.3), plus it is positively associated with 

Vigor (r=0.3, p<.001) and Friendliness (r=0.35, p<.001). It also has a strong negative 

correlation with Confusion (r=-0.54, p<.001) and TMD (r=-0.52, p<.001). Not to mention, 

weak correlations (correlation coefficient < 0.3) are detected for Openness and 

Agreeableness with mood states. Openness has a weak positive correlation with Vigor and 

Friendliness but displays a weak negative correlation with Tension, Anger, Fatigue, and 

TMD. Agreeableness has a weak negative correlation with all mood states. 
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Fig. 4-7 Correlation matrix between mood states and personality traits 

4.2.1.4.2 Personality types clustering 

Besides the 28 participants, a total of 92 responses to the NEO-PI-3 personality survey 

were collected online. After applying HCA on personality traits, a dendrogram that 

represented the Euclidean distance between each data point in a tree-based diagrammatic 

representation was obtained. This dendrogram suggested a three-cluster result, as shown in 

Fig. 4-8, where three personality types are colored in orange, green, and red. Notably, not 

all 92 evaluated participants are shown in Fig. 4-8. The participant count was, respectively, 

34, 31, and 27 for the Type 1, Type 2, and Type 3 personality. The average Big-Five 

personality traits for the three types of personality are shown in Fig. 4-9. Compared to the 

other two, Type 1 has the lowest scores for Agreeableness and Openness but its score for 

Neuroticism is high. Type 2 personalities have the lowest Neuroticism scores and high 
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Conscientiousness, Extraversion, and Openness. The scores on Extraversion and 

Conscientiousness are low for Type 3 personalities, who also have high Agreeableness and 

Openness.  

The averages of each mood state for the three personality types are presented in Fig. 

4-10. The difference between mood states for Type 1 is smaller than it is for Type 2 and 

Type 3. Type 2 personalities have the highest scores for Vigor and Friendliness, and the 

lowest scores for Tension, Depression, Anger, Fatigue, Confusion, and TMD. Type 3 

personalities have the lowest scores for Vigor and Friendliness. 

 

Fig. 4-8 Personality type clustering dendrogram using HCA 



49 
 

 

Fig. 4-9 Average scores of three personality types 

 

Fig. 4-10 Average mood states of three personality types 

4.2.1.4.3 Driving style recognition 

The performance of the proposed fuzzy-logic inference system is presented in Fig. 4-11 

and Fig. 4-12, where evaluated features from the different driving styles are compared to 

illustrate the performance of the fuzzy logic system on driving style separation. 

In the city scenario shown in Fig. 4-11, aggressive drivers have a higher maximum 

acceleration after a stop sign and drive 20 mph faster than the speed limit (25 mph) on 
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average; they usually do not perform a full stop at a stop sign, driving at a minimum speed 

of 2.84 mph on average. Anxious drivers tend to drive defensively, 1 mph slower than the 

speed limit on average, and have a low stop sign departure acceleration of 1.59 m/𝑠2 on 

average but brake intensely with a deceleration of 3.96 m/𝑠2  on average. Keen drivers 

drive 6.79 mph on average faster than speed limit, perform complete stops, and have lower 

acceleration and deceleration rates than aggressive drivers. Driving defensively, sedate 

drivers are similar to anxious drivers but focus more on comfort (with the lowest average 

deceleration of 2.60 m/𝑠2) and efficiency, which will be better explained in the highway 

scenario. 

 

Fig. 4-12 illustrates driver performance in the highway scenario. Aggressive drivers 

drive 25 mph faster than the speed limit (65 mph) on average, tend to tailgate their 

 
Fig. 4-11 Features in city driving session: (a) Maximum stop sign departure acceleration; (b) 

Maximum stop sign approaching deceleration; (c) Average speed over the limit (speed - limit); (d) 

Average minimum speed at a stop sign. 

 



51 
 

preceding vehicles with a 0.74s average minimum time headway, and change their lane 

most frequently. Although keen drivers go over the speed limit, they do not threaten their 

surrounding vehicles (with 0.94s average minimum time headway). Sedate drivers drive at 

the speed limit (moving 2 mph faster on average), do not perform hard brakes whilst 

pressing only 32% brake pedal at most, and seldom change lanes (0.21 times per mile on 

average). 

 

 
Fig. 4-12 Features in highway driving session: (a) Average speed over the speed limit; (b) Minimum 

time headway to slow vehicle; (c) Maximum brake force facing cut-in; (d) Lane change ratio of the 

session. 
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The distribution of different personality type clusters across different recognized driving 

styles is presented in Table III. Keen driving was observed to be the most frequent style, 

accounting for 49.8% of all participants while anxious is the least frequent type with only 

2%. Among the three personality types, aggressive driving is more frequent for P-Type 3 

at 35.6%. Sedate driving is more frequent for P-Type 1 at 28.8%. 

Further, during this longitudinal study, many participants showed more than one driving 

style under different personality types. As shown in Table IV, only 4 of 28 participants 

insisted on one driving style, 19 drove in two different ways, and 5 showed three driving 

styles throughout their 8 driving sessions. 

TABLE III PERSONALITY TYPES-DRIVING STYLES DISTRIBUTION 

 Aggressive Anxious Keen Sedate  

P-Type1 
12 1 19 13 

22.5% 
26.6% 2.2% 42.2% 28.8% 

P-Type2 
14 1 29 11 

27.4% 
25.5% 1.8% 52.7% 20.0% 

P-Type3 
36 2 52 11 

50.3% 
35.6% 1.9% 51.5% 10.9% 

 30.9% 2% 49.8% 17.5% 100% 

 

TABLE IV PARTICIPANTS’ NUMBER OF DRIVING STYLES 

# of driving style 𝑃 − Type1 𝑃-Type2 𝑃 − Type3 Sum 

one 1 1 2 4 

two 5 5 9 19 

three 1 1 3 5 

four 0 0 0 0 
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4.2.1.4.4 Prediction results 

To assess the performance of the predictive models, model accuracy and F1-scores were 

evaluated. These indices are commonly used for unbalanced datasets. The definitions of 

these indices are defined as: 

 Accuracy =
TP+TN

TP+FP+TN+FN                                           (3) 

𝐹1Score =
2∗

TP

TP+FP
∗

TP

TP+FN
TP

TP+FP
+

TP

TP+FN

                                              (4) 

where TP is true positive, TN is true negative, FP is false positive, and FN is false-negative 

(predictions). In this study, macro-average scores [111] for these two indices were chosen 

to evaluate the model performance on the whole dataset. 

The random forest predictions, which utilize different data inputs, were compared in 

Table V. For driving style prediction, using only mood states achieved 0.563 Accuracy and 

a 0.431 F1-score; a slightly higher result of 0.592 Accuracy and a 0.531 F1-score was 

obtained with personality traits and types. After combining mood states, personality traits, 

TABLE V PREDICTION RESULT EVALUATION 

Output Inputs F1-score Accuracy 

Driving Style 

Mood 0.431 0.563 

Personality 0.531 0.592 

Mood & Personality 0.678 0.696 

 Mood 0.131 0.356 

Personality Driving Style 0.597 0.612 

 Mood & Driving Style 0.669 0.705 
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and personality types, the Accuracy and F1-score reached 0.696 and 0.678 respectively. 

For personality type prediction, although a high correlation was observed as mentioned in 

Fig. 4-7, Accuracy was merely 0.356 and the F1-score (0.131) was even worse. Using 

driving styles and their probabilities (obtained from the fuzzy-logic system) led to 

increased Accuracy (0.612) and F1-score (0.597); in utilizing driving styles and mood 

states, the greatest result of 0.705 Accuracy and a 0.669 F1-score was acquired. 

4.2.1.5 Discussion 

The goals of this study were to create an integrated dataset for driver profile modeling, 

to predict driving style using mood states and personality traits, and to predict personality 

types using driving style and mood. To the best of our knowledge, prior studies have not 

combined driving style, mood states, personality traits for the prediction of driving style 

and personality types.  

The correlation between personality traits and mood states found that upon separating 

mood states into those that were positive (Vigor and Friendliness) and negative (Tension, 

Depression, Anger, Fatigue, Confusion, and TMD), Neuroticism is positively associated 

with all negative mood states and negatively associated with all positive mood states. This 

result is consistent with the previous study[112], which related Neuroticism with negative 

effects, such as anger, anxiety, irritability, emotional instability, etc. Conscientiousness has 

negative correlations with all negative mood states and positive correlations with all 

positive mood states, which is similar to the findings in [21] where both Conscientiousness 

and Neuroticism showed significant correlation with all mood states. Contrary to [21], 

Extraversion is positively correlated with Confusion in our observations. 
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Furthermore, personality traits are found to be associated with mood states as shown in  

Fig. 4-9 and Fig. Fig. 4-10, illustrated by the comparison between Type 2 and Type 3 

persons, whose major differences in personality traits are Neuroticism and 

Conscientiousness. With lower Neuroticism and higher Conscientiousness, Type 2 

individuals have the highest positive and lowest negative mood states while Type 3 persons 

have the lowest positive mood states.  

The influence of mood states and personality traits on driving style is also reflected in 

Table III; the highest proportion of aggressive drivers is observed in Type 3 personalities, 

who have the lowest positive mood states. A similar result was presented in [19], indicating 

that individuals with negative emotions and stress often drove riskily and fast whilst having 

a low Conscientiousness score. Unlike the big difference between positive and negative 

mood states seen for Types 2 and 3, each mood state score is neutral for Type 1 individuals 

and personality traits are close to the mean value (50 in T-score). With balanced mood 

states and average personality traits, the proportion of sedate drivers for Type 1 is the 

highest. However, it should be noted that these results do not indicate a strong relationship 

between personality traits and driving style, in line with [21]. According to Table IV, 

during the four visits, most of the participants from all three personality types demonstrated 

more than one driving style. This contradicts a past study on the personality-driving style 

relationship [113], which finds that driving styles tend to be stable.  

In this study, the analysis found that mood states were insufficient in the attainment of a 

good prediction result for personality type, even though strong correlations were found 

between the two. Additionally, driver behaviors for the three personality types varied under 
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different mood states, so driving style prediction using just mood states is also insufficient. 

Further, solely using either driving style or personality traits achieved better accuracy than 

using only mood states, but both driving style and personality type predictions can be 

improved significantly by combining the remaining two types of data as the input.  

Limitations. While this study identified the possible prediction of personality traits and 

driving styles using mood states, refining the predictive model can help offer better 

personalization. As the study is limited to male drivers, a lack of sufficient demographic 

representation could constrain the predictive power.  

Besides the sample size issue, mood state assessment relies on a subjective self-report, 

which might not reflect the real mood state of all participants. As we can see, the 

correlations between agreeableness and all mood states are weak. In some extreme cases, 

an agreeable person might not report their feelings but may still experience it. As an 

alternative method, mood states can be objectively assessed by smart devices. 

4.2.1.6 Conclusions 

In this section, a comprehensive framework that considers driver reaction in each 

predefined event for the identification of driving style was proposed. By synchronizing the 

driving style data with mood states, and personality traits data, an integrated dataset was 

developed. Based on the dataset, the correlation between personality traits and mood states 

was discussed. This found that Neuroticism had the strongest negative correlation with 

positive mood states while Conscientiousness had the most negative correlation with 

negative mood states. Three personality types were determined based on clustering, and it 

was discovered that Type 1 personalities had the most average personality traits and mood 
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states. They also demonstrated more sedate driving than the other types. Meanwhile, Type 

2 personalities had the highest positive mood states and completed more keen sessions. 

Type 3 personalities had the lowest positive mood states and drove more aggressively. A 

prediction model was trained based on random forest and validated, showing that (1) 

driving style can be predicted using mood states and personality traits and (2) personality 

types can be predicted using driving style and mood states. 

As one of the first few research projects looking into driving style, mood states, and 

personality traits combined, improvements can be made alongside its continued 

development. Future studies would incorporate different demographics to evaluate the 

predictive model for different population groups. On top of that, it is necessary to examine 

the proposed models in naturalistic environments to assess their stability and usability. As 

we have already modeled the general driver profile, a personalized driver profile will be 

considered in the next step. For this, the Myers-Briggs Type Indicator (MBTI) personality 

assessment, which requires more data from drivers, can be adopted to define personality 

types. 

4.2.2 Personalized Vehicular Interaction Pattern Analysis  

4.2.2.1 Introduction and Background 

4.2.2.1.1 Motivation 

Personalized vehicular interaction pattern analysis reveals a driver's intention to impact 

their environment and demonstrates how they respond to surrounding conditions, which 

involves understanding and predicting an individual vehicle's behavior on the road based 

on historical data. Also, the prediction and decision-making process can be improved by 



58 
 

discovering and encoding the interaction pattern among vehicles to the algorithm, since 

modeling the interaction enables IV to better coordinate with its surroundings in a safer 

and more efficient manner.  

The increasing amount of vehicle trajectory data has led to data-driven methods for 

automatically learning the interaction. Most existing studies encode and learn the 

interaction among agents implicitly as a middle layer of neural networks[114]–[116], 

which undermines the interpretability and transferability of the learned interaction model. 

In this study, we aim to model interaction explicitly and address the questions of who is 

involved in the interaction, when does the interaction occur, and how to quantify it, with 

an interpretable data-driven model. To identify the complex and implicit vehicle interaction, 

this study relies on the definition proposed by Markkula et al. [117], who indicate that in 

an interaction, two or more vehicles should be involved, should be influenced by each other, 

and should have spatiotemporal conflicts with other vehicles.  

Due to its interpretability, Granger causality (GC) [118] is a practical method to analyze 

interactions on a set of time series, especially for systems with nonlinear dynamics. 

Recently, it is widely adopted in many fields, including neuroscience, social media 

analysis, climate science, and econometrics [119], [120]. Similarly, exploring the 

interaction among vehicles based on the trajectory can be considered a problem of 

multivariate time series analysis. Therefore, in this dissertation, a GC-based approach is 

used to explore the interactions among a multi-vehicles system. 

In this section, we claim the following key contributions: 
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• We propose an unsupervised data-driven approach to model the multi-vehicle 

interaction, as one of the first research that implements Granger causality on a 

vehicular motion study; 

• Regularized by social norms and road geometry, the proposed explainable network 

is able to quantify the interaction and can be validated in a reliable manner; and 

• Besides the demonstration on the INTERACTION dataset, the proposed algorithm 

is implemented on a personalized dataset and discovers personalized interaction 

patterns for two drivers. 

4.2.2.2 Methodology 

In this study, we propose a framework to evaluate the multi-vehicle interaction, which 

consists of a vehicle behavior model based on potential field theory and a GC discovery 

process. Similar to the vehicle interaction, movement ecology also considers complicated 

perception, planning, and execution process. By integrating a conceptual ecology 

behavioral model [121], Fujii et al. [122] proposed a GC-based inference framework to 

study the multi-animal interaction, and the performance for GC discovery was validated in 

the labeled synthetic dataset (e.g., nonlinear oscillator and boid model simulation) and real-

world animal dataset. But vehicle movement is more constrained by the social norms (safe 

behavior) of human drivers and road geometry. To include scientific knowledge 

regularization, we apply potential field theory in Frenet coordinate [123] to encode the 

social norms. Overall, as shown in Fig. 4-13, the system inputs are the trajectories of all 

analyzed vehicles, and the two outputs are the coefficient matrices of GC values for 
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interaction intensity evaluation and prediction results of each vehicle provided by 

generalized vector autoregression (GVAR).  

Finally, the interaction intensity is quantified by the strength of GC effect in the 

coefficient matrix, as they explain how the past of other vehicles contributes to the future 

of the evaluated vehicle. 

 

Fig. 4-13 Generalized vector autoregression under self-explaining neural network structure for 

Granger causality discovery 

4.2.2.2.1 GC discovery using GVAR under SENN structure 

4.2.2.2.1.1 Granger causality 

Granger causality was developed in 1969 by Granger [118] and now became one of the 

most popular approaches for temporal causal discovery. This dissertation adopted its 

general form for non-linear systems, and many existing methods can be adapted into this 

form, such as vector autoregression (VAR) [124] and deep learning methods [122], [125].  

Consider observing trajectories from 𝑁 vehicles, and each trajectory contains 𝑃 features 𝑓 

across time span 𝑡 = {1,… , 𝑇}, i.e., 𝑋 = {𝑥<𝑡
1 , … , 𝑥<𝑡

𝑁 }, 𝑥𝑡
𝑖 = {𝑓1, … , 𝑓𝑃} . A non-linear 
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function 𝑔𝑖  (e.g., nonlinear VAR) is used to capture how the past of all 𝑁  vehicles 

influence the 𝑖𝑡ℎvehicle, such that 

𝑥𝑡+1
𝑖 = 𝑔𝑖(𝑥<𝑡

1 , … , 𝑥<𝑡
𝑁 ) + 𝑒𝑡

𝑖                                                      (5) 

where 𝑒𝑡
𝑖 is noise term. If 𝑔𝑖  is independent on other vehicle 𝑥<𝑡

𝑗
, vehicle 𝑥<𝑡

𝑗
 is irrelevant 

in the prediction of vehicle 𝑥𝑖.  Then, the above can be concluded that [120] time series 𝑥𝑗  

is noncausal for time series 𝑥𝑖, if and only if for all {𝑥<𝑡
1 , … , 𝑥<𝑡

𝑁 } and all 𝑥<𝑡
𝑗′
≠ 𝑥<𝑡

𝑗
, such 

that 

𝑔𝑖(𝑥<𝑡
1 , … , 𝑥<𝑡

𝑗
, … , 𝑥<𝑡

𝑁 ) = 𝑔𝑖(𝑥<𝑡
1 , … , 𝑥<𝑡

𝑗′
, … 𝑥<𝑡

𝑝 )                     (6) 

However, false causality may be discovered by only relying on data-driven GC. To 

improve the reliability of the model, expert knowledge of the study field needs to be 

integrated into the model. Moreover, instead of defining the system mechanism [126], GC 

is usually used to investigate complex systems that are difficult to model and to provide a 

system-level perspective of the interaction. 

4.2.2.2.1.2 Self-explaining neural networks (SENN) 

A SENN [127] represents a class of intrinsically interpretable models, and it consists of 

a link function 𝐺(⋅) and interpretable basis ℎ(𝑥), following the form:  

𝑓(𝒙) = 𝐺(𝜃(𝒙)1ℎ(𝒙)1, … , 𝜃(𝒙)𝑘ℎ(𝒙)𝑘)                   (7) 

where 𝑥 are predictors, 𝜃(⋅) is a neural network with 𝑘 outputs. 𝜃(𝑥) is the coefficient for 

𝑥 and is used to explain the contribution of each basis to prediction result 𝑓(𝑥). After 

simplification, Equation 7 can be written as: 
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𝑓(𝒙) = ∑  𝑝
𝑗=1 𝜃(𝒙)𝑗𝑥𝑗                                                (8) 

4.2.2.2.1.3 Generalized vector autoregression 

In a vehicle interaction study, the trajectory of each involved vehicle is considered as a 

basis to predict the target vehicle, and the contribution of each basis 'explains' the influence 

of each vehicle, which is indicated by 𝜃(𝑥) . SENN was applied to infer GC in a 

multivariate system by Marcinkevics and Vogt [124], who extended VAR to generalized 

vector autoregression (GVAR) as the link function, and the GVAR is expressed as 

𝐱𝑡 = ∑  𝐾
𝑘=1 𝚽𝜽𝑘

(𝐱𝑡−𝑘)𝐱𝑡−𝑘 + 𝜀𝑡                                    (9) 

where the 𝚽𝜽𝑘  is a neural network parameterized by 𝜽𝑘 . Then 𝚽𝑡,𝑘
𝑖 = 𝚽𝜽𝑘

(𝐱𝑡−𝑘) is a 

coefficient matrix for lag 𝑘 and time 𝑡, and the element (𝑖, 𝑗) of 𝚽𝑡,𝑘
𝑖  is the influence of 

time step 𝑥𝑘−𝑡
𝑗

 on 𝑥𝑡
𝑖. 

The dash-box in Fig. 4-13 illustrates the calculation for the coefficient matrix 𝚽𝑡
𝑖 and 

prediction result using Equation 9 with an order- 𝐾 GVAR. The matrix 𝚽𝑡
𝑖 captures the 

influence of other vehicle on vehicle 𝑖 at time 𝑡 , with 𝒇𝑅 , 𝒇𝑁 , and 𝒇𝑀  representing the 

regulation, navigation, and movement functions, respectively. These functions are 

introduced in the following subsections. To obtain the whole coefficient matrix for the 

whole group, the generalized coefficient matrix of 𝑁 vehicles are concatenated at each time 

step. 
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Therefore, the strength of the influence (i.e., GC effect [122]) between time series 𝑥𝑖 and 

𝑥𝑗  can be explored by inspecting the generalized coefficient matrix 𝚽𝑡 = 𝚽𝜽𝑘
(𝑥𝑡), as 

Equation 10: 

𝐺𝐶𝑖,𝑗 = 𝑠𝑖𝑔𝑛𝑚𝑎𝑥
1≤𝑘≤𝐾
𝐾+1≤𝑡≤𝑇

{median1≤𝑘≤𝐾
𝐾+1≤𝑡≤𝑇

(𝚽𝜽𝑘
(𝒙𝑡))

𝑖,𝑗
} ∙ 𝑚𝑎𝑥

1≤𝑘≤𝐾
  {median𝐾+1≤𝑡≤𝑇 (|(𝚽𝜽𝑘

(𝒙𝑡))
𝑖,𝑗
|)} 

      (10) 

where 𝑠𝑖𝑔𝑛𝑚𝑎𝑥 function outputs the sign of the number that has the largest absolute value. 

4.2.2.2.1.4 Vehicle movement model 

To avoid problematic results (e.g., linking vehicles that are too far apart) for vehicle 

interaction, the aforementioned knowledge (i.e., social norms) needs to be incorporated 

into the SENN-GVAR model. Instead of relying on one neural network 𝚽𝜽𝑘 in Equation 

9, we decompose the vehicle movement model into three processes to make the movement 

model interpretable and reliable, including social norm regularization, navigation, and 

planning processes (i.e., 𝒇𝑅, 𝒇𝑁, and 𝒇𝑀, respectively, as the yellow blocks in Fig. 4-13 

shows). Thus, the 𝚽𝜽𝑘 in Equation 9 is extended to Equation 11. This subsection discusses 

how each process in the vehicle movement model is formulated and integrated into the 

GVAR model. 

𝚽𝜽𝑘
(𝐱𝑡−𝑘) = 𝑓𝑅𝑘(𝒙𝑡−𝑘) ⊙ 𝑓𝑁𝑘(𝒙𝑡−𝑘) ⊙ 𝑓𝑀𝑘

(𝒙𝑡−𝑘)                   (11) 

A. Regularization Process. The social regularization 𝒇𝑅  is formulated to estimate the 

conflict level with surrounding vehicles based on the region of interest (RoI) of the 

analyzed vehicle. Driving safety is a critical factor in interaction studies, and drivers are 

assumed to pay more attention to the conflicting vehicles that may pose a threat. Since the 
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risk cannot be simply evaluated by Euclidean distance, the potential field becomes a 

powerful tool for social norm encoding [35] and understanding how drivers perceive their 

surroundings. To characterize the driving risk level for ego vehicle, Li et al. [128] proposed 

a potential field equation for vehicle control, whose parameters were calibrated with real-

world data, as shown in Equation 12. In this dissertation, the value of risk level is adapted 

to estimate the RoI of the analyzed vehicle, by proportionally expanding the field based on 

the 3-second rules [129]. 

{
 
 
 

 
 
 𝐸𝑣 = 𝑀𝑖𝜌

𝑒−𝛽1𝑎cos 𝑜0

|𝑘′|
⋅
𝑘′

|𝑘′|

𝑀𝑖 = 𝑚𝑖(1.566 × 10
−14𝑣6.687 + 0.3345)

|𝑘′| = √[(𝑥∗ − 𝑥0)
𝜏

𝑒𝛼𝑣
]
2

+ [(𝑦∗ − 𝑦0)𝜏]2

[
𝑥∗

𝑦∗
] = [

cos 𝜙 sin 𝜙
−sin 𝜙 cos 𝜙

] [
𝑥
𝑦]

                                 (12) 

  

Fig. 4-14 Mapping object in Cartesian coordinate to Frenet coordinate. 
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Besides the social norm, road geometry needs to be included. Therefore, we calculate the 

RoI in Frenet coordinate, instead of Cartesian coordinate. As shown in   

Fig. 4-14, vehicle state (e.g., longitudinal position 𝑠(𝑡) and lateral position 𝑑(𝑡)) in Frenet 

coordinate is calculated based on the reference lane (e.g., the center line of the lane). At 

each time step, Algorithm 2 generates an RoI for each vehicle as shown in Fig. 4-15, where 

the red dot stands for the analyzed vehicle, and blue dash lines and red dash lines are the 

reference lanes. Based on the RoI, the conflict level of other vehicles can be estimated by 

considering road geometry and the analyzed vehicle state. 

B. Navigation and Movement Process. The navigation process 𝒇𝑁 is a sign function to 

capture the car-following behavior between ego vehicle 𝑖 and vehicle 𝑗, and 𝑓𝑁(𝑥
𝑖,𝑗) =
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2𝜎(Δ𝑣𝑖,𝑗/𝑤𝑛) − 1, where 𝜎 is a sigmoid function, Δ𝑣𝑖,𝑗 is the speed difference, and 𝑤𝑛 is 

a learnable coefficient. 𝒇𝑁 > 0 indicates attraction, i.e., the vehicle tries to close the car-

following gap, and 𝒇𝑁 < 0   means repulsion, i.e., the opening gap behavior. The 

movement process 𝑓𝑀
𝑖   is constructed by two-layer MLPs for each order and vehicle. 

 

The loss function for training the whole GVAR consists of mean square prediction error 

(MSE), sparsity-inducing penalty [130] (i.e., ℒ𝑠 = 𝛼∥∥Φ𝑡∥∥1 + (1 − 𝛼)∥∥Φ𝑡∥∥𝐹
2

), and a 

theory-guided regularization term ℒ𝑇𝐺 . ℒ𝑇𝐺  is adopted with the assumption that the vehicle 

 
(a) RoI of the analyzed car in Frenet frame 

 
(b) Conflict level of other vehicles within RoI 

Fig. 4-15 An example of estimating the conflict level of surroundings based on potential field 

theory 
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goes straight following the center line from the current state if no interaction is detected, 

as shown in Equation 13. The whole loss function can be written by Equation 14. 

ℒ𝑇𝐺(𝚽𝑡) = exp (∥∥𝒙𝑡 − 𝒙̃𝑡∥∥2
2/𝜂)∥∥Φ𝑡

′∥∥𝑡
2
                             (13) 

ℒ =
1

𝑇−𝐾
∑  𝑇
𝑡=𝐾+1 (∥∥𝑥𝑡 − 𝒙̂𝑡∥∥2

2 + 𝜆ℒ𝑠 + 𝛾ℒ𝑇𝐺)                         (14) 

C. Permutation Feature Importance for Causality Validation. The cause discovered by 

GC is the potential cause, which needs to be validated. Besides the visualization of GC 

value, we use permutation feature importance (PFI) [109] to validate the proposed data-

driven method without ground truth for interaction. PFI measures a method for determining 

the importance of a feature in a machine learning model, and similarly, it is used to 

understand the contribution of a vehicle to the overall prediction. It works by randomly 

shuffling the values of the trajectory of the target vehicle, and measuring the change in the 

model's performance.  

On the other hand, PFI is a powerful technique to validate the result of GC. Since 

causality discovery relies on temporal information, the permutation process can remove 

chronological information and causal relation between the target vehicle and the rest of the 

system, before re-sending the data into the GC-based network. Also, PFI introduces no 

confounding factor to affect the prediction, as permutation does not change the distribution 

of the dataset. The validation process based on PFI is described in Algorithm 2. 
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4.2.2.3 Case Study and Result Analysis 

In order to validate the proposed GC-based vehicle interaction modeling approach, we 

studied the vehicle interaction in a real-world on-ramp merging scenario, which requires 

the coordination of lateral and longitudinal control from drivers, making it a highly 

interactive and conflicting scenario. In this section, the proposed algorithm reveals how the 

studied vehicle influences others and is influenced in a four-vehicle merging scenario. 

Moreover, the algorithm recognizes the personalized interaction patterns of two drivers 

with different driving styles, using their historical datasets. 

4.2.2.3.1 Vehicular interaction interpretation using INTERACTION dataset 

Among various datasets, we demonstrate the proposed algorithm on the INTERACTION 

dataset [131], which provides HD maps and motions of all vehicles which may influence 

driving behavior. Trajectories of each vehicle include the timestamp, position (𝑥, 𝑦), speed 

(𝑣𝑥 , 𝑣𝑦), and heading angle. The selected ramp merging scenario is presented in Fig. 4-16, 
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where the center lines of the ramp and mainline are extracted from the HD map, and a four-

vehicle group is chosen as the study case. 

 

Fig. 4-16 On-ramp merging scenario from INTERACTION dataset. 

Once 𝚽𝜽𝑘  is trained, the vehicular interaction intensity (𝐺𝐶𝑖,𝑗 ) can be assessed by 

Equation 10. The four-vehicle interaction during the merging process is elaborated in Fig. 

4-17. Fig. 4-17(a) presents four key events during the merging, where the blue and red dash 

lines are the ramp and mainline, respectively. Vehicles are numbered based on their 

appearance order with tails of past 1.5 seconds (15-time steps), and a longer tail implies 

higher speed. The 𝐺𝐶𝑖,𝑗 throughout time is described in Fig. 4-17(b), e.g., (𝑖, 𝑗) graph is the 

influence of vehicle # 𝑖 on vehicle # 𝑗. A positive value means attraction and following, 

while a negative value stands for repulsion and implies that rather than reacting to another's 

action, the agent tends to take the lead. Moreover, in each graph, four vertical dash lines 

mark the four key events in Fig. 4-17(a) correspondingly.  
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Fig. 4-17 Interaction process during a four-vehicle merging. (a) Key moments during the merging 

process. (b) Interaction intensity among vehicles. 

The blue solid line in Fig. 4-17(b) shows that the proposed algorithm can detect the most 

interactive at each time step for each vehicle. At 𝑡 =24, vehicle #4 joins the group with a 

higher speed (longer tail). According to graph (4,1) in Fig. 4-17(b), #4 is significantly 

affected by #1 since it has to slow down and follows #1. Also, #4 competes for the merging 

priority with #3 and tries to lead #3, and this movement is reflected on both graph (4,3) and 

(3,4). At the same time, #2 is taking the lead over #4 and shows a strong will to compete. 

At 𝑡  =108, since #1 speeds up and leaves everyone behind, its influence on others 

decreases, and others have little influence on #1. At the moment, #2 takes #4 as the most 

important competitor and accelerates, while most of #4's attention is on #3. When 𝑡 =171, 

the competition of merging order is settled, so the interaction intensity among vehicles 

becomes more stable, except for #2, which starts merging into the mainline and needs to 

maintain a safe car-following gap to #1. At 𝑡 =221, the last vehicle #3 finishes its merging. 

The answer to who is involved in interaction and when the interaction happens can be 

solved by setting an intensity threshold, based on algorithms that distinguish the difference 

between non-interactive state and interactive state. Besides rule-based methods, there are 
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many algorithms that can be used for unsupervised classification, to name a few, clustering 

methods (e.g., KNN and DBSCAN), volatility analysis and Otus's method. 

As the baseline, GVAR has no information about the road constraint and social norms in 

traffic and generates counterintuitive results, as the orange dash line in Fig. 4-17(b) shows. 

For example, GVAR misjudges that the far upstream vehicles affect #1, as in graph (1,3) 

(1,4) (2,3). In addition, although #3 increases the car-following gap to #2 and switches to 

follow #4 at 𝑡 =108, the effect of #2 on #3 is maintained till the end by GVAR, as in graph 

(3,2). Moreover, GVAR ignores the perception limitation of #3 and identifies an increasing 

effect of #1 on #3 at the end of the graph (3,1), even though there are two vehicles in 

between.  

The contribution of each vehicle to the system prediction is indicated by its PFI value, 

as listed in Table VI. A vehicle's PFI value aligns with its GC value. In other words, if the 

influence (measured by its GC) level is higher over time, its PFI is higher. For instance, #1 

contributes the least, so both values of its GC and PFI are low. On the other hand, the PFI 

values of #4 are the highest since it interacts with both #2 and #3. It should be noted that a 

 

TABLE VI PERMUTATION FEATURE IMPORTANCE (PFI) ANALYSIS 

Vehicles #1 #2 #3 #4 

Influence Level  ∗ 312.18 327.81 390.99 434.45 

Final Epoch Loss 1.39 

Permutation Loss 1.02 1.27 1.73 2.04 

Quotient - PFI 0.66 0.91 1.25 1.46 

*A vehicle's overall influence level is measured by the sum of its GC value over time and GC values of other 

agents, i.e., the influence level of 𝑥𝑖 is ∑𝑗∈𝑁,𝑗≠𝑖
𝑁  ∑𝑡

𝑇  |𝐺𝐶𝑖𝑗| 
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vehicle's GC value does not include its contribution to its own prediction, therefore, there 

is no linear mapping relationship between GC and PFI. 

4.2.2.3.2 Personalized interaction pattern discovery 

Understanding how individuals interact with other vehicles and the interactions differ 

from each other allows engineers to design personalized vehicles that better meet the needs 

and preferences of different drivers. To study the personalized interaction behavior, we 

implement the proposed algorithm on a personalized dataset of two drivers from our 

previous study [132]. The dataset was collected in ramp merging field experiments that are 

carried out at an on/off-ramp section along Columbia Ave., Riverside, CA. The experiment 

created merge interactions between a ramp vehicle and a mainline vehicle and collected 20 

merging trips for each studied ramp driver and an anonymous mainline driver. In the driver 

behavior analysis, Driver 1 was found to be more conservative and usually merged behind 

the mainline vehicle. In contrast, Driver 2 was more aggressive and always accelerated to 

merge in front of the mainline vehicle.  
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Fig. 4-18 illustrates the personalized interaction pattern during ramp merging trips for 

these two drivers. The red line is the average interaction intensity for the studied ramp 

driver, and the blue line is for the conflicting mainline driver. For conservative Driver 1 in 

Fig. 4-18(a), the interaction between two drivers is mild, with a maximum intensity value 

of 0.41. The positive intensity value of Driver 1 shows an attraction to the mainline vehicle, 

which leads to the movement of Driver 1. Compared to Driver 1, Driver 2 involves stronger 

 
(a) Aggregated interaction pattern of conservative ramp car driver 1 

 
(b) Aggregated interaction pattern of aggressive ramp car driver 2 

Fig. 4-18 Personalized interaction pattern analysis in ramp merging scenario 
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interactions in Fig. 4-18(b), where the maximum absolute intensity is 0.92, and the intensity 

variance is much larger than Driver 1's. For most of the time, the interaction intensity of 

Driver 2 is negative, since Driver 2 prefers to take the lead and merge in front. 

4.2.2.4 Discussion 

Implications. The goal of this study is to provide an interpretable data-driven method to 

discover the interaction pattern from observed vehicle trajectories. As a result, the mutual 

influences among vehicles are quantified by the strength of the GC effect, and we are able 

to answer the unsettled questions of who, when, and how for interaction study. The 

proposed method in this dissertation lays a solid foundation for a suite of downstream 

applications, including multi-vehicle trajectory prediction, traffic organization, and motion 

planning. For example, this method can be used as an automatic data labeling tool to encode 

interaction information into the neural networks for prediction purposes. Also, if the 

interaction intensity is too high, traffic control (e.g., ramp metering) can be implemented 

to relieve the competition among vehicles considering safety. Finally, personalized 

interaction can be studied for specific drivers by following this protocol. Knowing the 

personalized interaction preference can help customize the vehicle setup for a personalized 

advanced driver assistance system, enabling the vehicle to interact with others in dynamic 

environments. Moreover, modeling personalized interaction contributes to driving style 

recognition and personality inference [133]. 

Limitations. One obvious shortcoming of using GC is that the VAR-based prediction 

methods cannot capture long-term temporal dependency whenever GC takes advantage of 

VAR's simple structure. Similar to other unsupervised methods, validating the interaction 



75 
 

without ground truth is still challenging. Toward this end, Granger causality is not the real 

cause, and the result may not be the only cause. However, it can be used as an analytical 

tool to reveal the interaction within a system. 

4.2.2.5 Conclusions 

In this dissertation, we quantify the multi-vehicle interaction using an explainable data-

driven approach, which is one of the first implementations of Granger causality on vehicle 

motion study. To improve accuracy and interpretability, the proposed approach integrates 

social norms and road geometry into the network. An on-ramp merging scenario with real-

world data is used to demonstrate the algorithm performance, and permutation feature 

importance is used to validate the result for this unsupervised algorithm. Finally, the 

algorithm is implemented on a personalized driving dataset for personalized interaction 

pattern recognition.  

As the first few GC implementations in the vehicle movement domain, there are many 

future directions worth exploring. For example, the interaction between vehicles and 

infrastructure (e.g., traffic lights and traffic signs) can be considered since the movement 

of vehicles is also influenced by static objects on the road. We will use the proposed method 

as a data labeling tool for network training to enable interaction-aware prediction. 

Discovering personalized interaction patterns for P-ADAS development can be also one of 

our future studies. 
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4.2.3 Personalized Driving Behavior Modeling with Inverse Reinforcement 

Learning 

4.2.3.1 Introduction and Background 

To perform motion planning in complex mixed-traffic, CAVs need to predict human-

driven vehicles’ behaviors, make decisions in response to the actions (in presence or to be 

taken), and execute the right maneuvers through the planner and controller. Particularly, 

the prediction of human-driven vehicles’ behaviors is challenging due to the uncertainties 

of human drivers. As a result, many researchers [11], [133]–[135] include driving behavior 

modeling in the prediction and planning stage, where driver type classification and 

identification play an important role. Nevertheless, the improvement of integrating the 

collective driving behavior is limited, because driving behavior can be diverse among 

different drivers. 

After studying vehicular interaction, we can quantify the influence among vehicles and 

find out the most critical surrounding agents. However, the reasoning process behind 

interaction is more complex, considering the varied driving preference. To facilitate the 

motion planning, in addition to the high-level behavior modeling, driving preferences at 

maneuver level (i.e., longitudinal and lateral behavior) need to be discovered. 

To study personalized driving behavior, this section deploys the Driver Digital Twin 

(DDT) in the real world. DDT is a digital replica of a driver with his or her naturalistic 

driving data and driving behavior models. Based on real-world data, DDT system in the 

virtual world provides both online and offline micro-services, e.g., interactive prediction, 

driving style analysis, etc. In addition, to capture the driving preference variation, the 
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evolving driver model will be updated in a certain period (e.g., every five new trips) by 

consuming the driving data from the real-world vehicle.  

As a typical example of personalized driver behavior that can be modeled by DDT, lane 

changing is a fundamental but challenging task in our daily driving, especially in 

mandatory lane change situations (such as ramp merging) where the open areas are very 

limited and levels of risk are higher, compared to discretionary lane changes. In these 

situations, it is particularly important to accurately predict lane change intention as well as 

when and where the lane change occurs, because the lane change maneuver will have a 

significant impact on the safety and efficiency of the road network.  

In this section, learning-based algorithms for personalized behavior modeling are 

developed, and field implementations are carried out on a customized vehicle-edge-cloud 

platform under the digital twin framework. In the field implementation, the cloud (i.e., 

Amazon Web Services) analyzes the personalized behavior of human-driven vehicles with 

connectivity (e.g., by cellphone) and stores the learned driver models and historical data. 

This section has the following main contributions:  

• A hierarchical learning-based system is developed for personalized driving behavior 

modeling, 

• Under the digital twin framework, a vehicle-edge-cloud platform is constructed and 

demonstrated, enabling real-world data collection and algorithms development. 

• Personalized driver models are trained and validated using the vehicle-edge-cloud 

platform, as one of the first real-world deployments of Driver Digital Twin in 

transportation. 
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Fig. 4-19 Personalized driving preference modeling by recovering cost function.  

4.2.3.2 Methodology 

This personalized behavior modeling algorithm is first developed in a simulation 

environment and then improved to be a real-world implementable version. As shown in 

Fig. 4-19, the personalized driving behavior for each driver is learned in a offline phase 

based on the personalized dataset collected from the specific driver. For each driver, a 

neural network structure sequence-to-sequence (Seq2seq) structure [136] based on LSTM 

is adopted to predict the lane-change intention, learning the lane change driving behavior 

implicitly. To model the driver preference explicitly, the cost functions inferring the driver 

preference are learned by IRL for supporting the prediction. In this section, we focus on 

the driving preference modeling by IRL, while the implicit driving maneuver modeling by 

Seq2SeqLSTM will be discussed in Section 4.3.1, along with the prediction. 

4.2.3.2.1 Continuous IRL 

Driving preference are usually represented by the cost function, and rational drivers are 

assumed to behave for optimizing their cost functions. Considering the continuity of the 

trajectory space, this study adopts Continuous IRL with Locally Optimal Examples [13], 

[137] to recover this unknown cost function from expert demonstrations. 
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The cost function is a linear combination of a set of features, i.e., 𝐶𝑖(𝜃𝑖 , 𝜉) = 𝜃𝑖
𝑇𝑓𝑖(𝜉), 𝑖 =

𝑎change , 𝑎keep ,  where 𝜃𝑖
𝑇  is the weights vector emphasizing the features, 𝑓𝑖(𝜉) =

∥∥𝑓𝑖(𝑠1, 𝑠2, … , 𝑠𝑡)∥∥2 , and trajectory sequence 𝜉 = (𝑠1
𝑖 , … , 𝑠𝑡

𝑖). The goal of the IRL is to 

figure out the optimal weights 𝜃𝑖
∗ to describe each driver’s preference, which maximizes 

the likelihood of the driver’s historical trajectories Ξ = {𝜉𝑘}, shown in Equation 15: 

𝜃𝑖
∗ = arg 𝑚𝑎𝑥

𝜃𝑖
 𝑃(Ξ ∣ 𝜃𝑖)                                         (15) 

According to the principle of maximum entropy, as shown in Equation 16, a trajectory 

with a low cost has a higher probability, which is proportional to the exponential of its cost, 

which is proportional to the exponential of its cost. 

𝑃(𝜉 ∣ 𝜃𝑖) =
𝑒−𝐶𝑖(𝜃𝑖,𝜉)

𝑍(𝜃)
=

𝑒−𝜃𝑖
𝑇𝑓𝑖(𝜉)

∫ 𝑒−𝜃𝑖
𝑇𝑓𝑖(𝜉̃)𝑑𝜉̃

                               (16) 

where 𝑍(𝜃) = ∫ 𝑒−𝜃𝑖
𝑇𝑓𝑖(𝜉̃)𝑑𝜉 is the partition function integrating all arbitrary trajectories 

𝜉. To handle the computational complexity in solving the partition function, the continuous 

IRL approximates 𝐶𝑖(𝜃𝑖 , 𝜉)  using the second-order Taylor expansion around the 

demonstrated trajectory 𝜉, as in Equation 17. As a result, the partition function is now a 

Gaussian integral and becomes analytically solvable.  With combining Equation 15, the 

problem is reformulated to a minimization of − log 𝑃(Ξ ∣ 𝜃𝑖), as in Equation 18: 
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𝐶(𝜉) ≈ 𝐶(𝜉) + (𝜉 − 𝜉)𝑇
𝜕𝐶

𝜕𝒖
+
1

2
(𝜉 − 𝜉)𝑇

𝜕2𝐶

𝜕𝜉2
(𝜉 − 𝜉)                     (17) 

𝜃𝑖
∗ = arg𝑚𝑖𝑛

𝜃𝑖
 ∑  𝐾
𝑘=1

1

2
𝐠𝜃𝑖
𝑇 (𝜉𝑘)𝐇𝜃𝑖

−1(𝜉𝑘)𝐠𝜃𝑖(𝜉𝑘)  −
1

2
log |𝐇𝜃𝑖(𝜉𝑘)|

                                                           
           (18) 

where 𝐠𝑇  and 𝐇 are the gradient and Hessian, respectively. This formula indicates that 

along the expert demonstration, the recovery cost function should have small gradients and 

large positive Hessians. 

4.2.3.2.2 Cost function feature selection 

The selected features present the vehicle state in an interpretable way and can capture 

the preference of the driver. We select the following features to calculate the cost function, 

based on the available Inertial Measurement Units (IMU) and Global Navigation Satellite 

Systems (GNSS) information. 

a) Car-following risk: the time headway to the leading vehicle, 

𝑓risk 𝑓
= 1 − tanh (ℎ𝑒𝑣/𝐻min ), ℎ𝑒𝑣 = 𝑑headway /𝑣lon                    (19) 

where 𝐻min  is the minimum safe time headway based on the 3-second rule [129], ℎ𝑒𝑣 is 

the time headway of ego vehicle to leading vehicle, and 𝑑headway  is the distance to the 

leading vehicle. 

b) Lane-change risk 𝑓𝑡ℎ𝑤: ego vehicle is projected to its adjacent lane and calculates the 

time headway to its potential leading vehicle and the time headway from its following 

vehicle. 



81 
 

𝑓𝑟𝑖𝑠𝑘𝑙𝑐 =
1−tanh (ℎ𝑒𝑣

′ /𝐻𝑚𝑖𝑛)+1−tanh (ℎ𝑓𝑣
′ /𝐻𝑚𝑖𝑛)

2
                           (20) 

where ℎ𝑒𝑣
′  is the project time headway of ego vehicle to potential leading vehicle, and ℎ𝑓𝑣

′  

is the time headway from the potential following vehicle. 

c) Lane-change urgency 𝑓𝑢𝑟𝑔𝑒: If the ego vehicle needs to perform a mandatory lane 

change, the remaining time distance should be considered. 

𝑓urge =
[1+tanh (

𝐿widh 
2

−𝑦)][1+tanh (
(𝑋𝑚−𝑥)

(𝑣lon ⋅𝐻𝑚𝑖𝑛)
)]

𝑚𝑎𝑥(𝑓urge )
                             (21) 

where the 𝐿widh  is the width of the lane, 𝑋𝑚 is the longitudinal location of the midpoint of 

merging area, 𝑥 and 𝑦 are the locations of ego vehicle, and the 𝑚𝑎𝑥(𝑓urge ) is the maximum 

of 𝑓urge , for normalizing the feature. 

An example surface of this feature is shown in Fig. 4-20, which illustrates how this 

feature varies within a 200m lane-change area, with a lane width of 4m. As the vehicle 

comes closer to the end of the lane-change area without changing the lane, the urgency 

increases. But once the lane change is completed, the urgency will decrease to zero shortly. 

 

Fig. 4-20 The urgency for a mandatory lane change. 
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c) Mobility 𝑓𝑚: Drivers have different preferences on mobility. The difference between 

current speed and the speed limit (𝑣𝑙𝑖𝑚) is used to evaluate this preference. 

𝑓𝑚 = 1 − 𝑒−(𝑣𝑙𝑖𝑚−𝑣𝑙𝑜𝑛)
2
                                             (22) 

d) Comfort 𝑓𝑐1 and 𝑓𝑐2: The absolute value of the longitudinal acceleration 𝑎𝑙𝑜𝑛 and the 

yaw rate 𝜔 is used to gauge comfort preference. 

𝑓𝑐1 = |𝑎𝑙𝑜𝑛|, 𝑓𝑐2 = |𝜔|                                               (23) 

e) Lane deviation 𝑓𝑑𝑒𝑣: We also include lateral distance into the cost function to evaluate 

the imperfection of driving along the centerline of the lane even in the lane-keeping stage. 

𝑓𝑑 = |𝑦 − 𝑌𝑐|                                                       (24) 

where 𝑌𝑐 is the location of the centerline of the lane, 𝑦 is the lateral position of the ego 

vehicle. 

Considering the driver’s focus may be different in each scenario (e.g., a driver may care 

about the lane-change risk and the remaining distance when changing the lane, but not 

when keeping the lane), we select two groups of features: {𝑓risk 𝑓
, 𝑓risk 𝑙𝑐

, 𝑓urge , 𝑓𝑚, 𝑓𝑐1} for 

lane-change maneuvers, and {𝑓risk 𝑓
, 𝑓m, 𝑓c1 , 𝑓𝑐2, 𝑓𝑑} for lane-keep maneuvers, respectively. 

4.2.3.3 Experiments and Results 

4.2.3.3.1 Personalized dataset collection 

To validate the proposed algorithm in real world, a personalized dataset for each ramp 

vehicle (RV) driver and its paired anonymous mainline vehicle (MV) drivers is collected, 

as shown in Fig. 4-21. In total, for each driver, 20 trips entering the mainline and 20 trips 
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driving off-ramp are used for behavior modeling. The average duration of each trip is 35 

seconds, with an average update rate of 5 Hz. In each time step, both the trajectories of 

mainline vehicle and ramp vehicle are recorded and synchronized at edge server, and the 

dataset on the cloud server is updated at the end of the trip. 

 

Fig. 4-21 Personalized dataset collection using the Vehicle-Edge-Cloud digital twin platform 

4.2.3.3.2 Cost function and driving pattern analysis 

Personalized models are trained using drivers’ own datasets (i.e., 19 trips collected from 

Driver 1 and 20 trips from Driver 2). For two drivers, a general model is trained using the 

aggregated dataset from both drivers, standing for collective driving behavior. The weights 

in the cost functions can reflect drivers’ preference when large weights penalize high 

values, as shown in Table VII. For lane change maneuvers, Driver 1 cares more about 

longitudinal comfort and penalizes large acceleration with 0.696 on  

𝑓𝑎, compared with 0.425 for Driver 2. Driver 2 prefers a smaller time gap during lane 

change as he/she puts a larger weight on 𝑓risk 𝑙𝑐
 than driver 1 to penalize the time headway. 

Driver 1 does not care about the mobility 𝑓𝑚 and drives slower than the speed limit, while 
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Driver 2 prefers to drive faster with a weight of 0.182. For lane-keeping maneuvers, two 

drivers show the same preference for longitudinal comfort 𝑓𝑐1 but significant differences 

in lateral comfort and mobility. Driver 1 tends to keep the vehicle stable (i.e., putting a 

large weight on 𝑓𝑐2   penalizing unstable yaw movements) and drives slowly. On the 

contrary, Driver 2 pays little attention to the stability of the vehicle pose and seeks high 

speed. According to the analysis of cost function weights, Driver 1 is more likely to be a 

cautious driver while Driver 2 tends to be more aggressive. For lane changing, the general 

model puts the least weight on urgency 𝑓𝑢𝑟𝑔𝑒 and penalizes large time headway. For lane 

keeping, the general model is sensitive to lane deviation 𝑓𝑑𝑒𝑣 the most. 

 

TABLE VII WEIGHTS OF RECOVERED COST FUNCTIONS 

Scene Driver 𝑓𝑐1 𝑓risk 𝑙𝑐
 𝑓𝑑𝑒𝑣 𝑓𝑐2 𝑓𝑚 𝑓𝑢𝑟𝑔𝑒 

LC 

#1 0.696 0.151 0 0 0.023 0.126 

#2 0.425 0.240 0 0 0.182 0.151 

General 0.529 0.284 0 0 0.179 0.008 

LK 

#1 0.388 0 0.246 0.348 0.017 0 

#2 0.323 0 0.222 0.043 0.412 0 

General 0.356 0 0.311 0.309 0.023 0 
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Besides the cost function analysis, the driving pattern can also be recognized via the 

overall lane change behavior, as shown in Fig. 4-22.  

The interaction with the mainline vehicle can be reflected by the longitudinal speed of 

the lane change process in Fig. 4-22(a), which displays the median speed at each location. 

The observable point (at 320m) is 100 meters before the lane change point, where mainline 

and ramp drivers can see each other for the first time during the lane change. After 

observing the conflict with MV, Driver 1 chooses to slow down and yield to MV for lane 

change behind, but Driver 2 accelerates to surpass in order to cut in front of MV. The lane 

change urgency in Fig. 4-22(b) is used to measure how the driver deals with a mandatory 

 
(a)                                                                 (b) 

 
(c)                                                              (d) 

Fig. 4-22 Driving pattern comparison during a lane change process: (a) longitudinal speed of 

ramp vehicle (b) mandatory lane change urgency (c) lateral behavior and (d) fuel consumption. 
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lane change. The urgency value grows when RV comes closer to the end of the lane-change 

area without changing the lane. Once the lane change is completed, the urgency will 

decrease shortly. Driver 1 has a smaller peak value than Driver 2 for lane change urgency; 

however, the urgency pattern of Driver 2 is more consistent, as the urgency variation (red 

area) is smaller than the one of Driver 1 (blue area). 

The lateral movement preference is captured by the lateral deviation shown in Fig. 4-22 

(c), where the lane change is completed once the lateral deviation reaches 4m or above. 

Although two drivers have different preferences for lane change sequences, their lane 

change starting points are close to each other. Moreover, two types of slopes (i.e., lane 

change speed) in the blue line are observed during the lane change process of the driver. In 

the first segment, Driver 1 merely crosses the lane separation line, and in the second 

segment, he/she approaches the center line slowly after confirming safety. 

A similar conclusion to cost function analysis can be made that Driver 1 is more cautious 

than Driver 2. As a result, as shown in Fig. 4-22 (d), the average fuel consumption of Driver 

1 (28.2g) is 28.9% less than the one of Driver 2 (39.7g), in each lane change. 

4.2.3.4 Conclusions and Future Work 

This section introduced a personalized driving behavior modeling algorithm based on 

inverse reinforcement learning, based on the real-world personalized dataset collected on 

the vehicle-edge-cloud Digital Twin platform. The recovered cost functions distinguish 

conservative driver1 and aggressive drive2, aligning with the results of driving pattern 

analysis. The recovered cost function represents the driving preference of the driver and 

will be used for the downstream prediction and motion planning module. 
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4.3 Predictive Behavior-Aware Planning Strategy 

In order to navigate complex and dynamic traffic scenarios effectively, IV must possess 

the ability to anticipate and predict the behavior of other road users. This necessitates the 

development of a predictive behavior-aware planning strategy, wherein vehicles integrate 

human behavior into the motion planning module. By incorporating predictive capabilities 

into the planning process, intelligent vehicles can proactively make decisions that enhance 

safety, efficiency, and overall driving experience.  

In this section, we explore the methodologies underlying the predictive behavior-aware 

planning strategy, showcasing its potential to transform autonomous driving and foster a 

more cooperative and harmonious transportation ecosystem. We begin with "Prediction for 

Driver Intention and Vehicle Trajectories," followed by an examination of "Ramp Merging 

Strategy with Feedforward Planning and Feedback Control." Lastly, we discuss "Driving 

Behavior Adaptive Advanced Driving Assistance System," which offers driving style 

adaptive speed suggestions, highlighting the application of this predictive strategy in 

practical, real-world scenarios. 

4.3.1 Prediction for Driver Intention and Vehicle Trajectories 

4.3.1.1 Introduction and Background 

Our transportation systems cannot achieve full automation/connectivity in the short 

future, where CAVs have to interact with human-driven vehicles in a mixed traffic 

environment. Lane change behavior, especially for mandatory lane change, is a typical 

example of personalized driver behavior that needs to be modeled and be predicted. Lane 

change is one of the trickiest since it requires the tacit cooperation of lateral control and 
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longitudinal control from the driver. Therefore, compared with the prediction of 

longitudinal maneuvers such as car-following, which is heavily correlated with the gap 

between the ego vehicle and the leading vehicle, the prediction of lane change is much 

more complicated and challenging. The online lane-change prediction of human drivers 

becomes essential for IV since it provides inputs to the downstream motion planners and 

controllers and hence allows IV to better cooperate with surrounding human-driven 

vehicles. By building the personalized lane change model, CAVs can have a better 

understanding of the specific human drivers and provide a more accurate prediction. 

This section presents a learning-based algorithm for online lane change prediction 

utilizing personalized behavior modeling. Field implementations are carried out on a 

customized vehicle-edge-cloud platform under the digital twin framework. In the field 

implementation, the cloud (i.e., Amazon Web Services) analyzes the personalized behavior 

of human-driven vehicles with connectivity (e.g., by cellphone) and stores the learned 

driver models and historical data, while the edge (i.e., local server) is responsible for the 

computation of online lane change prediction. 

Compared to the existing literature on prediction and behavior modeling, this study has 

the following main contributions:  

• A hierarchical learning-based system is developed for personalized driving behavior 

modeling, online lane change prediction, and trajectory likelihood estimation. 

• Under the digital twin framework, a vehicle-edge-cloud platform is constructed and 

demonstrated, enabling real-world data collection and algorithms development. 
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• Based on density-based spatial clustering of applications with noise (DBSCAN), we 

develop an unsupervised data labeling method by adding temporal information to 

relate adjacent data points in a time series. 

• To validate the proposed algorithm in the field experiments, a portable vision-based 

human-machine interface (HMI) system is designed to provide prediction 

information to the driver supported by edge computing and cloud computing. 

4.3.1.2 Specifications and Assumptions 

In this section, the target predicted vehicle is a connected human-driven vehicle, whose 

historical/real-time data and the trained driver model are accessible through the digital 

twin. When other connected vehicles detect and recognize this target vehicle, they can 

download the driver model of the target vehicle to assist in the prediction. Specifically, our 

prediction algorithm is designed for the on/off-ramp scenario to predict the maneuver and 

trajectory of the on-ramp vehicle. 

To expedite field implementation, some reasonable specifications and assumptions are 

made in the current stage of online lane change prediction and personalized driving 

behavior modeling, as follows:  

• When the target vehicle comes into view, if the ego vehicle is able to recognize it 

(e.g., by computer vision or V2X communications), the associated driver model is 

then acquired from the cloud server (with permission). Before the target vehicle is 

recognized, a general driver model will be used instead. 

• The driving preference of the same driver is assumed to be long-lasting and will not 

be affected by the mood on the testing day. 
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• As designing the perception system (e.g., LiDAR, radar, and camera) is outside the 

scope of this dissertation, the necessary vehicle information (e.g., location and yaw 

angle) is uploaded by the target vehicle and shared by the edge server. 

4.3.1.3 Methodologies 

The proposed system for lane-change behavior prediction is shown in Fig. 4-23. The 

system consists of an offline learning process and an online validation process. In the 

offline learning process, based on the dataset collected on the Vehicle-Edge-Cloud digital 

twin platform, a personalized Seq2Seq LSTM model is trained to predict the lane-change 

decision, and the cost function (as discussed in Section 4.2.3) inferring the driver 

preference is learned by the Inverse Reinforcement Learning (IRL).  

 In the online validation process, at each time step, the vehicle states will be analyzed by 

the Seq2Seq LSTM network to recognize the maneuver and select a proper cost function. 

Next, the cost function evaluates the confidence of possible trajectories provided by the 

trajectories generator. Finally, the outputs including the most probable trajectory and lane 

change probability are visualized and sent back to the edge server, and the major results of 

each phase are highlighted with red boundary.  
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Fig. 4-23 Personalized lane change behavior modeling: offline learning and online prediction 

4.3.1.3.1 Lane-change maneuver prediction 

In order to analyze the trajectory in detail, we need to recognize the driver’s intention. 

We assume that before planning the trajectory, the human driver first considers high-level 

tasks (e.g., lane change and lane keeping). Therefore, the lane-change intention prediction 

is formulated as a time-series classification problem, which predicts vehicle states in future 

time steps, i.e., either lane change or lane keeping. That is to classify the future T-step 

actions 𝐴𝑡:𝑡+𝑇 into {𝑎change , 𝑎keep } , given historical vehicle states and the map information. 

To model long-term temporal dependencies among time series, LSTM network is chosen, 

as its time series prediction capability is validated in many existing studies, e.g., [138]–

[140]. Since each vehicle state in the time series is highly correlated with its adjacent time 

steps, the Seq2seq neural network using two LSTMs [141] is adopted for a multi-step and 

multivariable prediction.  
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The prediction model for a driver is built based on the historical trajectories Ξ =

{𝜉𝑘}, 𝑘 = 1,… , 𝐾 , and a trajectory contains vehicle states at every time step, i.e., 𝜉 =

(𝑠1, … , 𝑠𝑡), where 𝑠𝑡 is a vector and denotes the vehicle state at 𝑡 timestep. The vehicle 

states consist of the information of ego vehicle and its surrounding environment, which can 

reflect the operation and the perception of the driver.  

The structure of our network is shown in Fig. 4-24. The neural network input is a 

trajectory sequence 𝜉 = (𝑠𝑡−𝑇+1
𝑙𝑠𝑡𝑚 , … , 𝑠𝑡

𝑙𝑠𝑡𝑚) of the last T steps, and the vehicle states 𝑠𝑡 

consists of yaw angle, lateral speed, longitudinal speed, and remaining distance for a 

mandatory lane change. The output is the predicted lane-change action sequence 

(𝐴𝑡+1, … , 𝐴𝑡+𝑇+1) for the next T steps. The network consists of two LSTM layers (each 

followed by one dropout layer) and two fully connected layers (with ReLu and Softmax 

layer as their activation layers). The labeled dataset is split into the training set, validation 

set, and test set. Since the units of vehicle state features are different, the whole dataset is 

normalized to the range of [0,1]. 

 

Fig. 4-24 Structure of the proposed neural network for lane-change decision prediction 
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4.3.1.3.2 Unsupervised data labeling based on modified DBSCAN 

To predict the lane-change maneuver, we need to recognize those lane-change moments 

among the dataset, so labeling each time step for the dataset is the first step of data 

processing. The raw trajectory data is integrated with the map information to create a 

dataset that contains features potentially affecting driver's lane-change decision making, 

and these factors include vehicle speed, position, distance to surrounding vehicles, speed 

of surrounding vehicles, deviation from the lane centerline, remaining distance to the 

mandatory lane-change point (if any), and speed limit.  

We separate the trajectories that contain lane-change maneuvers from the whole dataset, 

by monitoring the accumulated lane deviation. Then those trajectories are further processed 

for recognizing the decision of the driver at each time step. Inspired by [142], we applied 

DBSCAN to label lane-change and lane-keep maneuvers for each vehicle state at each time 

step. The lateral speed (𝑣lat ) and lateral acceleration (𝑎lat ) are used as two input features 

for DBSCAN, and the outputs are two clusters of vehicle states, e.g., lane change or lane 

keep.  

However, DBSCAN does not consider temporal relation among the data points and hence 

cannot guarantee the continuity of the lane-change maneuver. To eliminate the noise of the 

labeled time series, a morphological operation [143] is applied to the dataset after 

DBSCAN clustering, as described in Algorithm 3. For example, in this study, we apply 

𝑀𝑡 = [1 … 1]1×5, as we assume the lane-change maneuver is continuous in a short 

period and at least lasts for 0.5 seconds with an update rate of 10 Hz. 
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4.3.1.3.3 Trajectory evaluation 

To execute the decision of lane change or lane keeping, planning the trajectory is 

essential. Considering the real-time performance, instead of exploring arbitrary trajectory, 

we adopt a polynomial trajectory generator [45] to plan the candidate trajectories 𝜉𝑘, As in 

Fig. 4-25, at each time step, this trajectory generator takes the vehicle's state 

{𝑥, 𝑦, 𝑣, 𝑎, 𝑦𝑎𝑤}, as inputs and generates multiple trajectories within a prediction window. 

With integrated vehicle kinematics, the trajectory generation ensures that the prediction 

result is realistic and reachable. In this study, we set the planning time window as 4 seconds. 
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Fig. 4-25 Polynomial trajectory generator 

Based on Equation 25, the cost function 𝐶𝑖(𝜃𝑖 , 𝜉𝑘) is used to evaluate the probability of 

each possible trajectory 𝜉𝑘, and select the most probable trajectory. The probability of the 

lane change maneuver prediction is evaluated by Equation 26, i.e., the probability of lane 

change equals the sum of the probabilities of all sampled lane-change trajectories. 

𝑃(𝜉𝑘 ∣ 𝜃𝑖
∗) =

𝑒−𝐶𝑖(𝜃𝑖
∗,𝜉𝑘)

∑  𝐾
𝑘=1 𝑒

−𝑐𝑖(𝜃𝑖
∗,𝜉𝑘)

                                            (25) 

𝑃(𝑎̂𝑖) = ∑  𝐾
𝑘=1 𝑃(𝜉𝑘 ∣ 𝜃𝑖

∗)                                               (26) 

4.3.1.3.4 Algorithm validation in simulation 

Before modeling the personalized driving behavior in the real world, the prediction 

capability of the proposed algorithm is validated on a general driving behavior model in 

simulation. In the human-in-the-loop co-simulation (as discussed in Section 4.1.2) 

platform, a real-world test track is programmed in the Unity game engine as the digital 

version of the real-world on/off ramp area in the Vehicle-Edge-Cloud digital twin testbed  

(as discussed in Section 4.1.1). In the simulation, a mixed traffic flow is generated by 

SUMO, and human input is consumed by Unity with Logitech driving set, allowing various 
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drivers to conduct human-in-the-loop simulations in an immersive traffic environment, 

where drivers can experience mixed traffic with different CAV penetration rate and 

congestion levels. To model the general lane-changing and lane-keeping behavior, 59 trips 

are collected from ramp drivers within the on-ramp/off-ramp area, under a volume-to-

capacity (V/C) ratio of 0.6. 

To be specific, in this study, 37 trips with lane changes and 22 trips without any lane change 

within the on-ramp/off-ramp area are collected. The average duration of each trip is 30 

seconds, with an update rate of 10 Hz. This data is processed by DBSCAN as shown in 

 

(a) Clustering result 

 

(b) Data labeling for each time step 

Fig. 4-26 Trajectory labeling based on DBSCAN 
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Fig. 4-26 (a), and an example of labeled trajectory is shown in Fig. 4-26 (b), indicating that 

the lane-change segment is well labeled.  

The real-time predicted lane change probabilities and trajectories are visualized in Fig. 

4-27, and the proposed algorithm recognizes the lane change maneuver in 3 seconds before 

the vehicle crosses the lane separation line. At each time step, the current vehicle state is 

sent into the LSTM network for decision prediction, where look-backward and prediction 

windows are both 3 seconds (30-time steps). The decision prediction result guides the 

system to the corresponding cost function which will be used to evaluate all the trajectory 

candidates. Based on Equation 25, we select the most probable trajectory as our prediction, 

and it can be projected into the simulation platform, where the probability of lane change 

is also estimated based on Equation 26. 

 

Fig. 4-27 Algorithm validation on UCR’s human-in-the-loop co-simulation platform: predictions for 

lane change and most probable trajectory. 

Fig. 4-28(a) presents the whole prediction process of the same trip of Fig. 4-27. Each 

time step of the ground-truth trajectory is labeled by LSTM in real time as lane keep (red 

dots) or lane change (blue dots). This prediction result shows that the lane-change decision 
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is recognized in 3 seconds (30-time steps) before the vehicle crosses the borderline. Also, 

the visualized comparison of the 4-second horizon predicted trajectory (in green dash line) 

with the ground truth is shown in the zoom-in subfigure. Fig. 4-28(b) depicts the 

probability estimation of lane change and lane keep during a trip containing a lane-change 

maneuver, reflecting the intention of the driver. In addition, Fig. 4-29 displays a trip 

without any lane-change behavior, and the confidence of the prediction increases as the 

vehicle gets closer to the end of the lane-change area. 

 

 
(a) The whole process of lane-change prediction 

 
(b) Predicted Lane change probability over time 

Fig. 4-28 Online lane-change prediction of a trip with one lane change event 
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Moreover, the Mean Euclidean Distance (MED) [144] is used to quantify the accuracy 

of trajectory prediction. At time step 𝑡, the predicted trajectory𝜉𝑡(𝐿) = {𝑥𝑦̂𝑡 , … , 𝑥𝑦̂𝑡+𝐿} is 

compared with the ground truth 𝜉𝑡(𝐿) = {𝑥𝑦𝑡, … , 𝑥𝑦𝑡+𝐿}  within the same horizon L and 

the same sampling rate, as shown in Equation 27, where 𝑥𝑦 = (𝑥𝑡, 𝑦𝑡). 

𝑚MED(𝜉𝑡, 𝜉𝑡) =
1

𝐿
∑  𝐿
𝑙=1 ∥∥𝑥𝑦̂𝑡+𝑙 − 𝑥𝑦𝑡+𝑙∥∥2                             (27) 

In our online test, this general model achieves a mean MED of 0.39 m on average within 

a 4-second prediction window for 10 test trips, outperforming the IRL-based prediction 

method in [13], which achieves a mean MED of 0.62 m in a 3-second prediction window. 

More importantly, we validate our methodology in an online fashion that allows drivers to 

test the system in human-in-the-loop simulations, while most other literature only did this 

in an offline fashion by running numerical simulations. In the field implementation, we 

further study how the personalized model improves prediction. 

 
(a) The whole process of lane-change prediction 

 
(b) Predicted Lane change probability over time 

Fig. 4-29 Online lane-change prediction of a trip without any lane change event 
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4.3.1.4 Description of Field Operational System 

The field implementation is carried out on the vehicle-edge-cloud digital twin platform, 

as introduced in Fig. 4-1, while its hardware is explained in Fig. 4-2.  The real-world 

implementation is conducted by three passenger vehicles (as in the vehicle level of the 

vehicle-edge-cloud platform), which are mainline vehicle 1 (MV1), mainline vehicle 2 

(MV2), and ramp vehicle (RV), respectively. Specifically, RV is the target predicted ramp 

vehicle, MV1 is the conflicting vehicle with RV. While MV2 drives behind MV1 and is 

potentially affected by the lane change maneuver of RV, MV2 observes and predicts the 

whole lane change process, as described in Fig. 4-30. To ensure MV1 and RV can 

encounter each other, speed guidance is provided to MV1 only before reaching an 

observable point, from which MV1 and RV can see each other for the rest of the trip. The 

speed guidance [87] is calculated by edge server, where RV has its virtual projection on 

the mainline, and MV1 is assigned to follow the virtual projection without an intervehicle 

gap. By following the speed guidance, MV1 can reach the observable point at the same 

time as RV, and for each experiment, nearly the same condition of merging conflict is 

guaranteed. Unlike MV1, to collect naturalistic driving data of the RV driver, RV receives 

no interference from the system during the whole trip. During the conflict creation process, 

MV2 is not involved since it plays the role of an observer and has no impact on the lane 

change. If MV2 successfully detects and recognizes RV, MV2 sends a request and 

downloads the driver behavior model of RV from the cloud to facilitate the lane change 

prediction.  
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Fig. 4-30 The field implementation plan for lane change prediction. 

To meet the above demands, the HMI guides MV1 with speed guidance which shows 

the current speed on the left and the target speed on the right as shown in Fig. 4-31 (a). For 

MV2, we leverage the benefits from TensorFlow Lite Object Detection, an open-source 

Android application, to detect the RV and visualize the predicted lane-changing probability 

with a user ID on the top of a bounding box as indicated in Fig. 4-31 (b). 
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Before starting the vehicle, each driver logs in with a unique ID and password to access 

his/her personalized digital twin. In addition, to obtain personalized services, drivers need 

to agree with sharing information with edge server. 

A bird-eye view Android application is designed for visualizing the vehicle Digital 

Twins running on the edge server. MV1 and RV are the orange vehicles and the blue 

vehicle respectively in Fig. 4-32. Moreover, the lane changing probability and the predicted 

trajectory of RV are provided for a better understanding of the entire field implementation 

process. 

    

                                                        (a)                                              (b) 

Fig. 4-31 Vehicle HMI design. (a) Speed guidance, and (b) detection for lane changing prediction 
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4.3.1.5 Result Analysis 

As presented in Fig. 4-33, the online prediction combines probability estimation and 

trajectory prediction. In stage 1 see Fig. 4-33(a), RV enters the interacting zone and is 

recognized by MV2 (observer). At the same time, MV2 sends a request to edge server, and 

then edge server receives the driver model from the cloud. Then, the driver ID and lane 

change probability are visualized on both observer’s view and edge. Meanwhile, the lane 

change probability shown above the blue bounding box is low, and the predicted trajectory 

(visualized on edge in red dash line) is straight, indicating the lane-keeping maneuver. In 

stage 2 see Fig. 4-33(b), RV slows down to yield MV1, which is captured by MV2. At the 

moment, the predicted trajectory points to the lane separation line, and the lane change 

probability increases with the color of the bounding box changing from blue to red for 

warning of a potential lane change. In stage 3 see Fig. 4-33(c), Driver 1 perceives that the 

gap is large enough, and the lane change begins. MV2 is more certain about the prediction, 

showing a high probability and a predicted trajectory pointing to the center of the mainline. 

Fig. 4-33(d)(e)(f) present a similar process for Driver 2’s lane change. One noticeable 

 

Fig. 4-32 The bird-eye’s view application interface: digital twin of vehicles running on the edge 

server in real time. 
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difference from Driver 1’s model is that Driver 2’s personalized model pays attention to 

speeding up rather than slowing down. 

 

Fig. 4-34 elaborates on the whole prediction process of the same trips in Fig. 4-33. 

Specifically, Fig. 4-34 (a) presents the prediction result of one lane change performed by 

Driver 1. The top subfigure depicts the prediction result and probability estimation of lane 

change during a trip, reflecting the intention of the driver. In the bottom subfigure, each 

time step of the ground-truth trajectory is labeled by the neural network in real time as lane 

change (red dots) or lane keeping (blue dots), when the predicted trajectory of each time 

step is shown in the green line. 

 

(a)                                                       (b)                                                      (c) 

 

(d)                                                    (e)                                                      (f) 

Fig. 4-33 Field implementation for online lane change prediction with visualization on camera and 

edge server: (a)(b)(c) Prediction for Driver 1, changing the lane behind MV1. (d)(e)(f) Prediction for 

Driver 2, changing the lane in front of MV1. 

 



105 
 

The maneuver prediction can be corrected by probability estimation. In the top subfigure 

of Fig. 4-34 (b), when the lane change has been completed, lane change is still predicted 

by LSTM (orange dash line) for the time steps from 177 to 180, but the probability of lane 

change (blue solid line) is estimated only 20%. According to the bottom subfigure, Driver 

2 has completed the lane change at the 177th step, and the cost function-based probability 

estimation corrects the neural network prediction.  

Personalized models can only be used on a specific person. Fig. 4-34 (c) illustrates how 

will the prediction result be when the model is mismatched (using Driver 1’s model on 

Driver 2’s trip), where the predictions are not accurate for lane change probability, action, 

and trajectory. 

The prediction needs to be evaluated for both maneuver and trajectory. For lane change 

intention recognition, the predictive capability can be quantified as the time between the 

moment of recognizing the lane change intention and the moment of the vehicle crossing 

the lane separation line. The personalized model of Driver 1 recognizes the lane change 

intention in 6.08 seconds on average, with a 1.96-second standard deviation (STD), while 

Driver 2’s model achieves an average of 3.73 seconds with an STD of 1.29 seconds. In this 

study, output of intention recognition layer can be corrected and modified by the 

downstream probability estimation. Therefore, we propose a heuristic method to evaluate 

accuracy of intention recognition based on the lane change probability. It should be noted 

that the accuracy can be evaluated in a more sophisticated way. If the probability of the 

moment when the vehicle touches the lane separation line (𝑃𝑠) is significantly larger than 

the probability during lane keeping (𝑃𝑘), i.e., σ ∙ 𝑃𝑠 > 𝑃𝑘, the lane change is successfully 
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predicted. The significant factor σ can be chosen as 0.5. The proposed general model 

predicts 90.4% lane change events, while the personalized model for Driver 1 exhibits an 

even higher level of performance with a prediction accuracy of 95.2%. 
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For trajectory prediction, the Mean Euclidean Distance (MED) is measured to analyze 

the accuracy. Although we cannot decouple the GPS error and prediction error, the model 

 

(a) Online prediction process for Driver 1 

 

(b) Online prediction process for Driver 2 

 

(c) Offline prediction using a mismatched driver model 
Fig. 4-34 Prediction result analysis of using personalized models 
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achieves a good result. The quantitative evaluation is shown in Table VIII, which presents 

the MED of baseline, general model, and personalized model. Inspired by [59], we adopt 

Seq2seq LSTM as the baseline model for the entire pipeline, while the proposed method 

employs the Seq2seq LSTM solely for the intention recognition part in the overall pipeline. 

Within a 4-second prediction window, the general model of the proposed algorithm 

outperforms the baseline. 

Using either a general or personalized model, the prediction of Driver 1 is better than 

Driver 2. The MEDs between the predicted trajectory and GPS points are 1.03 m (STD: 

0.4 m) for Driver 1 and 1.48 m (STD: 1.05 m) for Driver 2 in a 4-second prediction window. 

Compared to results from the general model, the personalized model improves Driver 2’s 

results the most, by 27.8% on average. Since Driver 1 is more predictable, the improvement 

of using a personalized model is limited (by 1.9%), but the prediction variation is reduced 

by 42%. 

 

4.3.1.6 Conclusions and Future Work 

This dissertation has proposed an online lane change prediction algorithm based on 

personalized driving behavior modeling, which is validated on a vehicle-edge-cloud 

TABLE VIII PREDICTION ACCURACY COMPARISON IN A 4-SECOND PREDICTION 

WINDOW 

MED (m) 
Seq2seq 

LSTM 
General  Personalized 

Improvement 

in the general 

model 

Driver 1 
Mean 6.76 1.05 1.03 1.9% 

STD 1.16 0.69 0.4 42% 

Driver 2 
Mean 8.28 2.05 1.48 27.8% 

STD 1.99 1.17 1.05 10% 
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testbed under the Driver Digital Twin (DDT) concept. Specifically, a sequence-to-

sequence LSTM neural network has been used to predict the lane change intention, and 

personalized driving behaviors have been modeled for different drivers, whose preferences 

are learned and analyzed by inverse reinforcement learning based on the historical data 

stored on the cloud server. Supported by personalized models, an online lane change 

prediction system has been developed and validated with real-world field implementation. 

The system is able to recognize the target driver’s lane change intention at 6.08 seconds 

before the vehicle crosses the lane separation line, and the Mean Euclidean Distance 

between the predicted trajectory and ground truth (based on the measurements from an 

RTK-enabled GPS unit) is 1.03 m within a 4-second prediction window. Using a 

personalized model can improve the prediction accuracy by 27.8%. 

As one of the first few research projects looking into personalized driving behavior, there 

are still some limitations of this implementation, and improvements can be made alongside 

the future development. The prediction algorithm is specifically designed for on/off-ramp 

mandatory lane changing. The mechanism behind discretionary lane changing maneuvers 

can be different, which requires adjustment on feature selection of the cost function. 

Another major constraint on studying personalized behavior is data availability, which can 

be relieved by transferring the model learned from simulation. Besides the research on 

personalized behavior modeling, incorporating personalized prediction with planning is 

also an important future step, as it allows CAVs to drive like human-driven vehicles, and 

improve their user acceptance and trust. 
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4.3.2 Ramp Merging Strategy with Feedforward Planning and Feedback Control  

4.3.2.1 Problem Statement 

Building upon the previous research on lane change prediction based on personalized 

behavior modeling, we seek to expand our understanding and analysis to encompass the 

complex dynamics of on-ramp merging. By studying the intention and trajectory of 

vehicles during on-ramp merging, we can gain valuable insights into the decision-making 

processes of drivers, their interaction with surrounding traffic, and potential risk factors 

involved. In this section, we expand the behavior study to traffic level, and explore an 

agent-based planning algorithm to coordinate the on-ramp mering.  

Near the on-ramp merging area, each vehicle needs to identify whether the merging 

conflict exists and adjust the speed to ensure a smooth and safe merging process while 

maintaining the overall flow of traffic. After predicting the merging behavior of 

surrounding vehicles and knowing the conflict cannot be avoided, a game between a 

mainline vehicle and a ramp vehicle is played in each time step whenever a conflict exists 

[145]. The game starts when the conflict emerges and ends until this conflict is solved. 

During the merging process, complex conflict can be summarized with three types of 

scenarios, including the interactions between 1) two legacy vehicles, 2) two CAVs, and 3) 

a CAV and a legacy vehicle. This chapter will only discuss the CAV(s) involved conflicts 

since the conflicts between two legacy vehicles cannot be coordinated directly by CAVs. 

Hereafter, this section will analyze the merging strategy from the perspective of the ego 

vehicle (CAV). 
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4.3.2.2 Introduction and Background 

Traffic-related issues such as safety, efficiency, and environmental sustainability have 

drawn significant attention as transportation is more involved in people’s daily lives. 

Among the factors leading to traffic congestion and accidents, ramp merging has a 

significant amount of impact [146]. Vehicles merging near the ramp area have been a major 

concern that generates numerous potential conflicts, due to the chaotic nature of driving 

behaviors and the lack of coordination in the merging area. The difficulty arises for drivers 

of ramp vehicles along the on-ramp, where drivers must discern to accelerate/decelerate to 

enter the mainline safely without a clear line of sight regarding the mainline traffic. 

Meanwhile, drivers of mainline vehicles may have to modify their vehicle speeds to permit 

the entrance of ramp vehicles, thus affecting upstream traffic flows and consuming 

excessive energy.  

The emergence of connected and automated vehicle (CAV) technology brings about 

solutions to ramp merging issues. By taking advantage of vehicle-to-everything (V2X) 

communications, vehicles can communicate with other road participants. As a typical 

example of CAV technology implementation, the cooperative merging of vehicles at ramp 

has been studied and applied by various researchers around the globe, where connected 

vehicles communicate with vehicles coming from the other lane directly or through 

roadside infrastructure, and hence conduct cooperative merging maneuvers in a safe and 

smoothed manner [147]–[149]. 

Since CAVs are supposed to share the road with legacy vehicles in the short future, 

considering the mixed traffic environment is more pragmatic, though more challenging in 
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terms of regulating the entire traffic stream. The well-planned operation for CAVs may be 

interrupted by legacy vehicles, hence the interaction between CAVs and legacy vehicles 

should not be ignored. Specifically, CAVs need to understand human-driven vehicles' 

behaviors, make decisions dynamically regarding the actions to be taken, and execute such 

actions through the planner and controller. Therefore, many researchers incorporate driving 

behavior modeling into their planning and control design [11], [150], [151], recognized as 

the driver behavior-aware system.  

In this section, a decentralized feedforward/feedback planning algorithm based on 

game theory is proposed to coordinate the on-ramp merging, providing the optimal merging 

sequence and associated speed trajectory for each CAV in the mixed traffic. Compared to 

other recent studies on cooperative ramp merging, the major contributions of this study are 

as follows: 

• For the mixed traffic scenario, a synthetic agent-based ramp merging strategy with both 

lateral and longitudinal control is proposed, including functions of conflict prediction, 

conflict avoidance, merging sequence determination, acceleration, and lane change 

control.  

• A game theory-based ramp merging sequence decision-making method for CAVs is 

developed by considering different costs, such as safety, mobility, and comfort. 

Moreover, cooperative and non-cooperative games are formed for different types of 

interaction.  

• A traffic flow level simulation is carried out on a uniquely developed Unity-SUMO co-

simulation platform to validate the algorithm and analyze the result. 
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4.3.2.3 Methodology  

This section presents the proposed ramp merging strategy for CAVs in mixed traffic. The 

system architecture and strategy workflow are introduced in the first subsection, followed 

by the elaboration of the game theory algorithm and decision-making process.  

4.3.2.3.1 Strategy workflow 

Our strategy is designed from a decentralized agent-based model perspective, allowing 

vehicles to act independently. The strategy workflow is shown in Fig. 4-35, where every 

vehicle goes through this process at each time step. Six major modules are functioning to 

support the strategy. 
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Fig. 4-35 System workflow of the mixed traffic ramp merging strategy for CAVs 

a) Conflict Prediction Module: Based on the information from the radar system or other 

CAVs, this module projects the ego vehicle and its surrounding vehicles into the future to 

see whether conflicts exist in the next time step. As Fig. 4-36 illustrates, when the projected 

surrounding vehicle 𝑉𝑗
′ is out of the safe distance of the projected ego vehicle 𝑉𝑖

′, there is 

no conflict; otherwise, this surrounding vehicle will be classified as a potential conflict and 

added to the conflict list. The analytical form of projection and conflict prediction can be 

expressed in Equation 28. As the conflict state can be an instant condition and be too 
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sensitive, a hysteresis controller considering historical information is implemented to filter 

the conflict state results [152]. 

𝑁𝑜 𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡,  {

𝑣𝑖  × ∆𝑡 + 𝐷𝑠𝑎𝑓𝑒 − 𝑑𝑖𝑗 ≤ 𝑣𝑗 × ∆𝑡
𝑜𝑟

𝑣𝑖  × ∆𝑡 − 𝐷𝑠𝑎𝑓𝑒 − 𝑑𝑖𝑗 ≥ 𝑣𝑗 × ∆𝑡

 
𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡,                   𝑒𝑙𝑠𝑒

                        (28) 

where 𝑣𝑖 is the predicted speed of ego vehicle; 𝑣𝑗  is the predicted speed of its surrounding 

vehicle, and these predicted speeds are from the lane change prediction algorithm discussed 

in Section 4.3.1. 𝑑𝑖𝑗 = 𝑥𝑖 − 𝑥𝑗  is the current clearance; ∆𝑡  is the simulation time step 

length; 𝐷𝑠𝑎𝑓𝑒  is the safe clearance, which is a speed-variant term depending on both the 

minimum static clearance and safe time headway of the ego vehicle. 

 

Fig. 4-36 Conflict prediction module 

b) Conflict Avoidance Module: Avoiding conflict is the preferred option taken by 

mainline vehicles, who can change to another lane to avoid conflict with ramp vehicles. 

This module takes time-to-collision (TTC) and inter-vehicle gap into account, urging 

mainline vehicles to change lanes for larger inter-vehicle gaps and TTCs. When mainline 

vehicles cannot avoid conflict by changing lanes, mainline vehicle activates the Game 

Formation Module and initiates the game for determining the merging sequence with ramp 

vehicles. 
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c) Role Identification Module: This module is developed to classify ego vehicle’s 

potential competitors into either CAV or legacy vehicle, which determines the game type 

in Module d). Basically, the vehicle type (CAV or legacy vehicle) can be identified based 

on the signal association from both the radar detection and wireless communication.  

d) Game Formation Module: The game formulation process is triggered once it receives 

a conflict notice from Conflict Prediction Module, where ego vehicle forms an individual 

(two-player) game with each of its competitors (i.e., each potentially conflicting vehicle). 

If the competitor is CAV, the game will be a cooperative one. Otherwise, it is a non-

cooperative game. In each game, each player may choose to be a follower or a leader. The 

corresponding expected acceleration and costs are calculated for each leader-follower 

combination, and the acceleration rates are computed by Acceleration Control Module to 

be introduced later. To dynamically adapt to the mixed traffic environment, a game is 

played in each time step, if a conflict exists. The game starts when the conflict emerges 

and ends until this conflict is solved.  

e) Merging Sequence Determination Module: The merging sequence determination 

module is the last part of the game theory-based algorithm. The purpose of this module is 

responsible for coordinating the merging sequence dynamically by utilizing results from 

the game formation module. Each vehicle will obtain its role with respect to its competitor 

(i.e., leader or follower), as well as an optimal longitudinal acceleration that satisfies the 

safety constraints. If two competitors are both CAVs, they will share respective costs with 

each other and make a game-wise optimal decision together. Details of the game theory-

based algorithm will be introduced in the next subsection.  
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f) Acceleration Control Module: This module is responsible for two main goals. The first 

one is to ensure ego vehicle can run at the desired longitudinal speed and track the lane. 

The second one is to perform the lane change maneuver safely, once the lane change 

condition is satisfied [132]. We formulate the vehicle longitudinal motion with a standard 

vehicle kinematic model as Equation 29, where the longitudinal acceleration is used as the 

control input. 

[
𝑠(𝑘 + 1)

𝑣(𝑘 + 1)
] = [

1 ∆𝑡
0 1

] [
𝑠(𝑘)

𝑣(𝑘)
] + [∆𝑡

2 2⁄
∆𝑡

] 𝑎(𝑘)                    (29) 

where 𝑠, 𝑣 and 𝑎 represent the displacement, speed, and acceleration of the vehicle, 

respectively.  

Once the ego vehicle confirms its target vehicle and the associated states, the consensus 

control algorithm [153] from our previous research is adopted to compute the acceleration. 

This allows the ego vehicle 𝑖 to maintain a desired inter-vehicle gap and the same speed 

with its target vehicle 𝑗: 

𝑎𝑟𝑒𝑓(𝑘 + 1) = −𝛼𝑖𝑗𝛽𝑖𝑗 ⋅ [(𝑠𝑖(𝑘) − 𝑠𝑗(𝑘) + 𝑙𝑗 + 𝑣𝑖(𝑘) ⋅ (𝑡𝑖𝑗
𝑔
(𝑘) + 𝜏𝑖𝑗(𝑘))) + 𝛾𝑖 ⋅ (𝑣𝑖(𝑘) − 𝑣𝑗(𝑘)] 

(30) 

where 𝛼𝑖𝑗  denotes the value of adjacency matrix; 𝛽𝑖𝑗  and 𝛾𝑖  are control gains; 𝜏𝑖𝑗(𝑡) 

denotes the time-varying communication delay between two vehicles; and 𝑡𝑖𝑗
𝑔
(𝑡) is the 

time-varying desired time gap between two vehicles. 

The string stability of this algorithm is well discussed in [153]. For a platoon of CAVs, 

this consensus-based control algorithm guarantees that the error signals are not amplified 

upstream along with the platoon, ensuring the string stability in a pure CAV environment. 
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4.3.2.3.2 Game theory-based merging sequence determination 

During the merging process, complex conflict can be summarized with three types of 

scenarios, including the interactions between 1) two legacy vehicles, 2) two CAVs, and 3) 

a CAV and a legacy vehicle. This dissertation will only discuss the CAV(s) involved 

conflicts, since the conflicts between two legacy vehicles cannot be coordinated directly 

by CAVs. Hereafter, this dissertation will analyze the merging strategy from the 

perspective of the ego vehicle (CAV). Assumptions and specifications that are generally 

common in related literature are made as below: 

• The proposed algorithm aims to control the longitudinal speed to provide a safe 

merging space, and low-level control of the steering angle is outside the scope of 

this dissertation. 

• All CAVs that are involved in conflicts act cooperatively to achieve an optimal 

goal. 

• The communication module and perception system of CAVs in the platform are 

assumed to be ideal. Therefore, no communication delay and packet loss are 

considered, and CAVs are capable of acquiring perfect information.  

• The proposed algorithm guarantees the string stability within a pure CAV platoon 

instead of the whole mixed traffic flow. Since the string stability of mixing two car-

following models is a complicated problem, it is still an open topic and out of our 

research interest. 
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4.3.2.3.2.1 Game formulation 

When a potential conflict exists in the merging area, at least one of mainline vehicles and 

ramp vehicles needs to adjust its speed for a certain merging sequence. For the decision-

making purpose, Game Theory is adopted for CAVs to evaluate their situation and then 

figure out the optimal merging strategy. A two-player non-zero-sum game is used in this 

dissertation to handle each conflict by providing a merging sequence for each player in the 

game.  

 In such a game, ego vehicle is named Player 1 (hereafter “P1”), while its competitor is 

named Player 2 (hereafter “P2”). Both P1 and P2 can choose either to be a leader or a 

follower, with the action set given as: 

𝐴(𝑃1) =  {1: To be the leader, 2: To be the follower}, 

and 𝐴(𝑃2) = {1: To be the leader, 2: To be the follower}.  

The motivations of mainline vehicles and ramp vehicles may be different: mainline 

vehicles attempt to drive safely without compromising in travel speed, while ramp vehicles 

have to worry about the remaining distance to the end of merging area. As the remaining 

distance decreases, the merging intention of ramp vehicles may grow, and this anxiety can 

be expressed as the risk value in the cost function.  

4.3.2.3.2.2 Cost function 

Safety is always the first priority to be considered. For each action of ego vehicle in the 

game, a corresponding suggested acceleration 𝑎̂ is calculated by the control algorithm. 

Therefore, we can predict the time-to-collision (TTC) in the next time step of each action. 
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From the perspective of ego vehicle, the predicted TTC for any pair of players can be 

formulated in Equation 31, 

𝑡̂𝑇𝑇𝐶 = [𝑑𝑔𝑎𝑝 + ∆𝑑̂𝑔𝑎𝑝] [𝑣𝑓 + ∆𝑣𝑓 − (𝑣𝑝 − ∆𝑣𝑝)]⁄ ,   𝑖𝑓 𝑣𝑓 + ∆𝑣𝑓 > 𝑣𝑝 − ∆𝑣𝑝    (31) 

where 𝑣𝑓, and ∆𝑣𝑓 are the current speed and the predicted speed change of the following 

vehicle, respectively; 𝑣𝑝 and ∆𝑣𝑝 are the current speed and the predicted speed change of 

the preceding vehicle, respectively; 𝑑𝑔𝑎𝑝  is the current inter-vehicle gap;  ∆𝑑̂𝑔𝑎𝑝  is the 

predicted gap change.  

In the “two CAVs” scenario, these predicted values in Equation 31 are shared with each 

player because of the vehicle communication. For the “a CAV and a legacy vehicle” 

scenario, the predicted values of legacy vehicles can be assumed to be unchanged during a 

small time interval ∆𝑡 (0.02s in the simulation), allowing CAV to estimate legacy vehicles’ 

action. For example, in Equation 31, if the following vehicle is a legacy vehicle, the 

predicted speed change ∆𝑣𝑓 = 0. 

However, using only TTC is not enough to quantify the safety risk [154]. For example, if 

the preceding vehicle is faster than the following vehicle, TTC will be negative. Moreover, 

if the difference between the following vehicle and the preceding vehicle is small, it will 

generate a huge TTC indicating safety even though the inter-vehicle gap is small. By 

combining predicted TTC (𝑡̂𝑇𝑇𝐶) and predicted time headway of ego vehicle (ℎ̂𝑒𝑣). The 

cost of rear-end collision risk (𝐽𝑟𝑖𝑠𝑘
𝑐 ) for each action can be evaluated below as in Equation 

32: 



121 
 

𝐽𝑟𝑖𝑠𝑘
𝑐 = {

(
[1 − 𝑡𝑎𝑛ℎ(𝑡̂𝑇𝑇𝐶 𝐻𝑚𝑖𝑛 ⁄ )] +

[1 − 𝑡𝑎𝑛ℎ(ℎ̂𝑒𝑣 𝐻𝑚𝑖𝑛 ⁄ )]
) 2⁄ ,   𝑡̂𝑇𝑇𝐶 ≥ 0

[1 − 𝑡𝑎𝑛ℎ(ℎ̂𝑒𝑣 𝐻𝑚𝑖𝑛⁄ )] 2⁄ ,  𝑡̂𝑇𝑇𝐶 < 0

           (32) 

ℎ̂𝑒𝑣 = [𝑑𝑔𝑎𝑝 + ∆𝑑̂𝑔𝑎𝑝] (𝑣𝑓 + ∆𝑣𝑓)⁄                                   (33) 

where 𝐻𝑚𝑖𝑛 is the minimum safe time headway based on the 3-second rule [129],  ℎ̂𝑒𝑣 is 

the predicted time headway of ego vehicle. 

To consider the merging urgency of a ramp vehicle, the distance to the end of merging 

area should be added to the risk value of ramp vehicle, as shown in Equation 32. The closer 

to the end of the merging area, the higher cost vehicles should pay. The risk of merging 

(𝐽𝑟𝑖𝑠𝑘
𝑚 ) can be formulated as follows: 

𝐽𝑟𝑖𝑠𝑘
𝑚 = [1 − 𝑡𝑎𝑛ℎ(ℎ̂𝑟𝑣 𝐻𝑚𝑖𝑛⁄ )] 2⁄                                    (34) 

ℎ̂𝑟𝑣 = [𝑑𝑟 + ∆𝑑̂𝑟] (𝑣𝑒 + ∆𝑣𝑒)⁄                                       (35) 

where ℎ̂𝑟𝑣 is the predicted remaining time headway to the end of merging area for ramp 

vehicle; 𝑑𝑟  is the remaining distance of merging area;  ∆𝑑̂𝑟  is the predicted remaining 

distance; 𝑣𝑒  and ∆𝑣𝑒  are the current speed and predicted speed change of ego vehicle, 

respectively. 

To summarize, the risk for mainline vehicles and ramp vehicles used in this study can be 

expressed in Equation 36: 

𝐽𝑟𝑖𝑠𝑘 = {
𝐽𝑟𝑖𝑠𝑘
𝑐  ,                   𝑀𝑎𝑖𝑛𝑙𝑖𝑛𝑒 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠
(𝐽𝑟𝑖𝑠𝑘
𝑐 + 𝐽𝑟𝑖𝑠𝑘

𝑚 )/2 , 𝑅𝑎𝑚𝑝 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠
                   (36) 

As aforementioned, saving travel time may be another target for players in the game. In 

addition, if we only consider safety in the cost function, players in the game will incline to 

more conservative behaviors (e.g., encouraged to be followers or to decelerate), resulting 
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in unnecessary congestion along with the upstream. Therefore, adding a mobility term 

would help CAVs find the balance between safety and speed, and improve the traffic 

efficiency at the same time. Both mainline and ramp CAVs are encouraged to take actions 

with minimum speed drop, if the safety performance is not compromised. As shown in 

Equation 37, the mobility cost function puts more penalties on deceleration maneuvers. 

The term 𝑡𝑎𝑛ℎ(∆𝑣𝑒 𝑣𝑒⁄ ) is more sensitive when the speed of ego vehicle is slow, as this 

algorithm cares more about mobility for low-speed driving, but safety for high-speed 

driving.  

𝐽𝑚𝑜𝑏𝑖𝑙𝑖𝑡𝑦 = 1 − 𝑡𝑎𝑛ℎ(∆𝑣̂𝑒 𝑣𝑒⁄ ) 

37 

where ∆𝑣𝑒 is the ego vehicle speed difference of either being a follower or a leader in the 

game, compared to the current speed. 

To improve the driving comfort, hard braking and drastic acceleration are penalized with 

a cost as shown in Equation 38. 

𝐽𝑐𝑜𝑚𝑓𝑜𝑟𝑡 = {
𝑎̂ 𝑎𝑐𝑐𝑙𝑖𝑚⁄  , 𝑎̂ ≥ 0

𝑎̂ 𝑑𝑒𝑐𝑙𝑖𝑚⁄  , 𝑎̂ < 0
                                  (38) 

where 𝑎̂ is the acceleration of ego vehicle in next time step, 𝑎𝑐𝑐𝑙𝑖𝑚 > 0 is the acceleration 

limit, and 𝑑𝑒𝑐𝑙𝑖𝑚 < 0 is the deceleration limit. 

To summarize, the overall cost (𝐽)̅ is:  

𝐽 ̅ =  𝛼1𝐽𝑟𝑖𝑠𝑘 + 𝛼2𝐽𝑚𝑜𝑏𝑖𝑙𝑖𝑡𝑦 + 𝛼3𝐽𝑐𝑜𝑚𝑓𝑜𝑟𝑡                         (39)  
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where 𝛼𝑖 ≥ 0, 𝑖 = 1,2,3, is the weight for each term in the cost function, and ∑ 𝛼𝑖 = 1𝑖 . In 

this study, we choose  𝛼1 = 0.4 ,  𝛼2 = 0.4  and  𝛼3 = 0.2 . A more detailed sensitivity 

analysis is presented in the Section 4.3.2.4.4. 

4.3.2.3.2.3 Non-cooperative game and cooperative game 

After estimating the cost of each player’s action, the optimal result can be obtained from 

a decision table, which depends on the game type, either non-cooperative or cooperative 

game.  

In this study, a game can be only initiated by an equipped CAV. Once the CAV recognizes 

a potential conflict, it sends out a cooperation invitation and keeps waiting for a reply. If 

the CAV receives no response from the other party, a non-cooperative two-player game 

will be formed. In this type of game, the CAV will adopt a selfish strategy, since it can 

only rely on the information from the radar system and optimize its own cost. The decision 

table of the non-cooperative game is shown in Table IX.  

 

To avoid collision, ego vehicle will not choose to play the same role with its competitor 

at the same time. Therefore, the costs for both players being the leaders or followers 

simultaneously are set to be infinite (or very large values). At each time step, ego vehicle 

will choose the option with the minimum expected cost, as described in Equation 40. 

TABLE IX DECISION TABLE FOR NON-COOPERATIVE TWO-PERSON GAME 

 Competitor 

Ego vehicle 

Role Leader Follower 

Leader ∞ 𝐽𝑙̅𝑒𝑎𝑑 

Follower 𝐽𝑓̅𝑜𝑙𝑙𝑜𝑤 ∞ 
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𝐴𝑐𝑡𝑖𝑜𝑛 = 𝑚𝑖𝑛
𝑎𝑐𝑡𝑖𝑜𝑛𝑠

{𝐽𝑙̅𝑒𝑎𝑑, 𝐽𝑓̅𝑜𝑙𝑙𝑜𝑤}                                     (40) 

The game between two CAVs would be a cooperative one, where players can make 

decisions together. The decision table of the cooperative game between two CAVs is 

shown in X. Unlike a non-cooperative algorithm which can provide the optimal solution 

only for ego vehicle regardless of system conditions, a cooperative game can optimize the 

total cost (based on the information shared via vehicle-to-vehicle communication) for both 

CAVs. 

 

As described in Equation 41, both CAVs will take the action to achieve the system 

optimum.  

𝐴𝑐𝑡𝑖𝑜𝑛 = 𝑚𝑖𝑛
𝑎𝑐𝑡𝑖𝑜𝑛𝑠

{𝐽𝑓̅𝑜𝑙𝑙𝑜𝑤
𝑒𝑔𝑜

+ 𝐽𝑙̅𝑒𝑎𝑑
𝑝 ,   𝐽𝑙̅𝑒𝑎𝑑

𝑒𝑔𝑜
+ 𝐽𝑓̅𝑜𝑙𝑙𝑜𝑤

𝑝 }                       (41) 

where 𝐽𝑓̅𝑜𝑙𝑙𝑜𝑤
𝑒𝑔𝑜

 and 𝐽𝑙̅𝑒𝑎𝑑
𝑒𝑔𝑜

 are the costs of being a follower or a leader for ego vehicle, 

respectively; 𝐽𝑓̅𝑜𝑙𝑙𝑜𝑤
𝑝

 and 𝐽𝑙̅𝑒𝑎𝑑
𝑝

 are the costs of being a follower or a leader for its partner, 

respectively. 

4.3.2.3.2.4 Disturbance filtering 

Although our system is designed to adapt to any environment dynamically, the game 

result should not be too sensitive to the small environmental disturbance. Hence, the 

hysteresis controller [152] is adopted to filter the game results and prevent unwanted rapid 

TABLE X DECISION TABLE FOR COOPERATIVE TWO-PERSON GAME 

 Partner 

Ego vehicle 

Role Leader Follower 

Leader ∞ 𝐽𝑙̅𝑒𝑎𝑑
𝑒𝑔𝑜

+ 𝐽𝑓̅𝑜𝑙𝑙𝑜𝑤
𝑝

 

Follower 𝐽𝑓̅𝑜𝑙𝑙𝑜𝑤
𝑒𝑔𝑜

+ 𝐽𝑙̅𝑒𝑎𝑑
𝑝

 ∞ 
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state switching as aforementioned. By taking recent system history into account, hysteresis 

can filter signals so that the output reacts less rapidly. 

As shown in Fig. 4-37, the system history can be logged by a counter, ranging from -𝑁 

to 𝑁 , which will increase when the cost of being the leader is greater than being the 

follower, which will increase/decrease when the cost of being the leader is greater/smaller 

than being the follower. Specifically, when the counter is greater than n, the output action 

is “being the follower”. It will not switch to being the leader immediately when the counter 

drops below n. Only when the counter decreases below -n, the output action will switch to 

being the leader. 

 

Fig. 4-37 Hysteresis controller for disturbance filtering. 

4.3.2.4 Case Study and Results Evaluation 

On the customized Human-in-the-Loop Co-simulation Platform in Section 4.1.2, a traffic 

flow level simulation is carried out under different CAV penetration rates and congestion 

levels. The simulation results are analyzed in terms of safety, mobility and fuel efficiency. 
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4.3.2.4.1 Unity-SUMO co-simulation 

A real-world traffic network is coded in the simulation, spanning from the intersection 

of Chicago Avenue to the intersection of Iowa Avenue along Columbia Avenue in 

Riverside, California. It consists of a single-lane on-ramp and a segment of multi-lane 

mainline (Google Maps view is shown in Fig. 4-38(a). The integrated simulation 

environment is shown in Fig. 4-38(b), where the upper part with terrain details is the Unity 

environment, and the lower part is the corresponding SUMO network. SUMO controls 

legacy vehicles while Unity controls CAVs with the proposed algorithm. CAVs are color-

coded in red, while legacy vehicles are in white. As shown in Fig. 4-38(c), the red rays 

spread from the CAV indicate the detection range of its onboard radar system.  
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4.3.2.4.2 Simulation design  

Default car-following and lane-changing models of SUMO are used to generate the 

legacy traffic flow as the baseline. Then, the proposed algorithm is evaluated in a mixed 

traffic simulation under different penetration rates. 

 
(a) 

 
(b) 

 
(c) 

Fig. 4-38. Unity-SUMO integrated simulation based on a real-world ramp merging area in 

Riverside, CA: (a) View from Google Maps at the real-world ramp; (b) User interface of the 

Unity-SUMO co-simulation platform; (c) A CAV (in red) with radar system and a legacy vehicle 

(in white). 
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To generate a more realistic mixed traffic environment and carry out a fair evaluation, 

the parameters are carefully selected as shown in TABLE III. In addition to the car-

following and lane change model discussed in the platform introduction Section 4.1.2, 

more details are elaborated below. 

To be specific, both the desired time headway and reaction time is set to be 1 second, 

based on the Krauss parameters calibration [155] and real-world data fitting [156]. To 

generate the traffic flow as close to the real-world situations as possible in SUMO, Bjärkvik 

et al. [157] well-tuned the parameters of the Krauss car-following model, such as the 

minimum desired time headway (tau), acceleration, deceleration, and the result was 

verified with collected traffic data in the real-world. In this study, the speed limit of 20m/s 

is chosen based on the speed limit of the specific road segment of the testbed. As a result, 

parameter distributions of the car-following model in our simulation are well aligned with 

the suggested values in Bjärkvik et al.’s work. Moreover, the car-following model of CAV 

comes from the one in our previous study, as shown in Equation 30. 

As shown in Fig. 4-38(b), vehicles are running on a two-lane mainline segment and a 

ramp, so mainline vehicles on the right lane can avoid the conflict with ramp vehicles by 

changing to the left lane. As Table XI shows, the proposed algorithm is evaluated in three 

congested levels, including light traffic with the volume-to-capacity (V/C) ratio of 0.35, 

moderate traffic with the ratio of 0.6, and congested traffic with the ratio of 0.85, where 

traffic demands are 1400, 2400 and 3400 vehicles per hour, respectively. The ratio of ramp 

demand to mainline demand is 1:2. In addition, to assess the system performance of the 

proposed algorithm in various mixed traffic scenarios, four levels of CAV penetration rate 
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(i.e., 0%, 30%, 70%, and 100%) are evaluated in the simulation. Moreover, to statistically 

analyze the simulation results, 3 random seeds are selected for each of 12 scenarios (i.e., 3 

congestion levels and 4 penetration rates). Therefore, a total of 36 simulation runs are 

carried out in this study. Based on these preset traffic demands, a traffic stream generator 

schedules the itinerary for each vehicle, which is modeled as a Poisson process. Therefore, 

vehicles’ departure times follow an exponential distribution. The simulation only 

terminates when the last vehicle leaves the network to guarantee fair comparison across 

different strategies. 

4.3.2.4.3 Simulation result analysis 

To evaluate the performance of the proposed algorithm, we analyze the processes for two 

types of games, and their influence on the traffic flow. For the traffic flow level evaluation, 

TABLE XI SIMULATION SETUP PARAMETERS  

Vehicular Parameters 

Vehicle type CAVs Legacy vehicles 

Control platform Unity SUMO 

Initial speed (adaptive to traffic) ramp: 15 m/s; mainline: 20 m/s 

Minimum inter-vehicle gap 5 m 

Acceleration range -5 ~ 3 m/s2 

Desired speed (speed limit)  20 m/s 

Desired minimum time headway 1 s 

Initial distance to merging point ramp: 250 m; mainline: 280 m  

Emergency braking -9 m/s2 

Simulation Environment Parameters 

Penetration rate of CAVs 0%, 30%,70%,100% 

Congestion level (v/c ratio) 0.35, 0.60, 0.85 

Traffic demand (veh/hr) 1400, 2400, 3400 

Merging zone length 89 m 

Speed limit 20 m/s 

Simulation time step  0.02 s 
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mobility, energy efficiency and driving volatility are analyzed in each traffic scenario for 

mainline and ramp vehicles, respectively. 

 

4.3.2.4.3.1 Game process 

Two merging conflicts are selected from the simulation for illustrating how the game 

evolves. Fig. 4-39 shows an example of a non-cooperative game between a CAV and a 

legacy vehicle. In Fig. 4-39 (a), as circled in yellow, an on-ramp CAV (in red) encounters 

a mainline legacy vehicle (in white), and a non-cooperative game is formed. In Fig. 4-39 

(b), the game is settled with the merging order determined, and the CAV finds a slot with 

    
(a)                                                    (b)  

 
(c) 

Fig. 4-39 Game process of a non-cooperative game: (a) An on-ramp CAV and a mainline legacy 

vehicle compete for merging; (b) Merging order is determined; (c) the whole process of the game. 
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ensured safe longitudinal merging gap. Fig. 4-39 (c) presents the whole process of the 

game, starting from 29.98s and ending at 35.24s. The CAV first decides to be the follower 

when the conflict emerges. At 32.96s, two vehicles drive in parallel, and when the legacy 

vehicle slows down, CAV decides to be the leader. However, the legacy vehicle does not 

mean to yield and keeps running at a high speed. Therefore, CAV’s decision flips back to 

being a follower.  

 

Fig. 4-40 shows how two CAVs solve a similar conflict with a cooperative game. The 

actions of two CAVs are exclusive, with one being the follower and the other one being 

    
 (a)                                                                       (b) 

 
(c) 

Fig. 4-40 Game process of a cooperative game: (a) Two CAVs compete for merging; (b) Merging 

order is determined; (c) the whole process of the game. 
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the leader. In Fig. 4-40 (c), before the conflict starts, the on-ramp CAV accelerates to reach 

the mainline speed. At the instant of two CAVs encountering each other, the merging 

sequence is decided. In case of any unexpected emergency braking of one CAV due to 

preceding legacy vehicles, however, the game still exists until the CAV solves its conflicts 

or leaves the merging area. Compared with the non-cooperative game, the decision of two 

CAVs is stable, and the mainline vehicle does not need to change its speed. Moreover, the 

cooperative game takes only 2.86 s to solve the conflict, which is much faster than 5.26s 

in non-cooperative game. 

4.3.2.4.3.2 Mobility 

Fig. 4-41 (a) and Fig. 4-41(b) present the average speeds (i.e., the ratio between vehicle-

meter-traveled and vehicle-second-traveled) of mainline vehicles and ramp vehicles, 

respectively. The error bars (one standard deviation) indicate the result variability. As 

shown in the figures, the variance is reduced when the penetration rate grows, or the 

congestion level decreases. It can be observed that the proposed algorithm improves not 

only the average speed of mainline vehicles, but also the one of ramp vehicles.  
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In Fig. 4-41, the solid line indicates the most significant improvement made by the 

proposed algorithm, compared with the baseline (i.e., 0% penetration rate). The largest 

improvement of average speed is gained in congested traffic, i.e., 210% for ramp vehicles 

and 72.4% for mainline vehicles, compared with the baseline. When the penetration rate 

grows, the average speed increases significantly because the proposed algorithm for each 

CAV can coordinate the merging maneuvers (including the sequence) implicitly, which 

helps mitigate the congestion. It is noted that in scenarios with 100% penetration rate of 

 
(a) 

 
(b) 

Fig. 4-41 Speed of traffic flows: (a) Average speed of mainline vehicles; (b) Average speed of on-

ramp vehicles. 

 



134 
 

CAVs, average speeds for both mainline vehicles and ramp vehicles are close to the free 

flow speed (20 m/s), regardless of congestion levels. This means that the proposed 

algorithm can effectively regulate the traffic under different traffic demands when the 

penetration rate of CAVs is high.  

 

4.3.2.4.3.3 Energy efficiency 

We also analyze the energy efficiency of the proposed strategy with the open-source 

MOVESTAR fuel and emission model [158]. Fig. 4-42(a) and Fig. 4-42(b) present the fuel 

 
(a) 

 
(b) 

Fig. 4-42 Average fuel consumption: (a) Fuel consumption of mainline vehicles; (b) Fuel 

consumption of on-ramp vehicles. 
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consumption of mainline vehicles and ramp vehicles, respectively, under the assumption 

that all vehicles in the simulation are passenger cars powered by gasoline. The variance of 

energy results shows the same pattern as the speed results. As expected, the results show 

that the proposed algorithm can considerably reduce the fuel consumption for both 

mainline and ramp vehicles, where the most significant reduction of fuel consumption 

happens in the congested traffic scenario for ramp vehicles. As the improvement in Fig. 

4-42 shows, up to 53.9% of fuel consumption can be saved since vehicles can merge in a 

coordinated manner and minimize speed changes that might generate shock waves. 

4.3.2.4.3.4 Driving volatility 

Driving volatility is defined as the deviation from the norm, reflecting the stability of the 

vehicle’s movement. As the higher driving volatility is associated with higher risk [159], 

it can also be used as one of the surrogate measures for safety. In this study, we adopt the 

“percent of extreme values” method to evaluate the speed volatility which can quantify the 

driving risk and comfort. This performance index captures driving volatility by counting 

the number of observations beyond a defined threshold-band, where any hard brake or 

drastic acceleration will increase the volatility. 

The speed volatility (𝑉%) can be defined in Equation 42: 

𝑉% =
1

𝑡
∑ 𝐼{𝑥(𝑖) > T𝑢𝑝𝑝𝑒𝑟, 𝑥(𝑖) < T𝑙𝑜𝑤𝑒𝑟}

𝑡−1

𝑖=0
                      (42) 

where 𝐼{⋅} denotes the indicator function, which equals 1 if the mathematical expression 

“statement” is true, and otherwise, it equals 0; 𝑥(𝑖) is the observed value at time step 𝑖; and 
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𝑡  is the total time steps of the observations. The upper and lower thresholds,  T𝑢𝑝𝑝𝑒𝑟 

and T𝑙𝑜𝑤𝑒𝑟, can be defined in Equation 43: 

{
T𝑢𝑝𝑝𝑒𝑟 = 𝑥 + 2 × 𝑆dev

T𝑙𝑜𝑤𝑒𝑟 = 𝑥 − 2 × 𝑆dev

                                          (43) 

where 𝑥 is the mean of observations, and 𝑆dev is the standard deviation. 

 

Fig. 4-43(a) and Fig. 4-43(b) show the speed volatility of mainline and ramp vehicles, 

respectively. As the CAV penetration rate increases, the speed volatility decreases 

 
(a) 

 
(b) 

Fig. 4-43. Average driving volatility: (a) Speed volatility of mainline vehicles; (b) Speed volatility 

of on-ramp vehicles. 
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significantly. The most remarkable improvement is obtained in 100% CAV penetration 

rate scenarios, where the outliers or extreme values (due to hard brake or drastic 

acceleration) are completely eliminated.  

4.3.2.4.4 Sensitivity analysis on weights 

In cost functions Equation 39, the weights  𝛼1 , 𝛼2  and 𝛼3  represent how much the 

algorithm would value safety, mobility, and driving comfort, respectively. Tuning these 

weights can generate different driving behaviors for CAVs, thus affecting the traffic flow 

in different ways. To better understand the impacts of these weights, we carry out 

simulations for 10 different combinations (see Fig. 4-44), and analyze the results of 

mobility, energy efficiency, and driving volatility, respectively. Because  ∑ 𝛼𝑖 = 1 𝑖  

and 𝛼𝑖 ≥ 0, we set 𝛼3 = 1 − 𝛼1 − 𝛼2, and select 𝛼1 and 𝛼2 in the domain of 𝛼1 + 𝛼2 −

1 ≤ 0. As shown in Fig. 4-44, 10 red dots representing 10 different weight combinations 

are evenly distributed within the domain.  

 

TABLE XII SENSITIVITY ANALYSIS FOR CAV PERFORMANCE MEASUREMENT 

𝛼1 𝛼2 𝛼3 

Avg. 

Fuel 

(g/km) 

Avg. 

Speed 

(m/s) 

Speed 

Volatility 

(%) 

Acc. 

Volatility 

(%) 

0.125 0.125 0.75 130.22 18.71 0 4.5 

0.375 0.125 0.5 124.31 18.69 0.02 4.44 

0.625 0.125 0.25 127.37 18.67 0.02 4.84 

0.875 0.125 0 127.03 18.69 0.07 5.06 

0.125 0.375 0.5 129.84 18.59 0.06 4.46 

0.375 0.375 0.25 125.18 18.91 0.03 4.49 

0.625 0.375 0 126.98 18.76 0 4.84 

0.125 0.625 0.25 126.05 18.83 0 4.55 

0.375 0.625 0 125.12 18.83 0.03 4.71 

0.125 0.875 0 125.34 18.88 0.05 4.85 
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We analyze the direct influence of weight tuning only for CAVs rather than the whole 

traffic flow, because the weights determine the behavior of the CAV, and the influence of 

the weight on legacy vehicle is indirect. Simulation results of sensitivity analysis are shown 

in Table XII and Fig. 4-45. The fuel consumption varies from 125.83 to 131.64 g/mi. The 

top 3 lowest values are located in area 2, 6 and 9 (Fig. 4-44), with the weight combinations 

of (0.375, 0.125, 0.5), (0.375, 0.375, 0.25) and (0.375, 0.625, 0), respectively. According 

to the results in Fig. 4-45(a), the average fuel consumption shows a decreasing trend as 𝛼1 

and 𝛼2 grow, and at 𝛼1 = 0.375, it reaches a local minimum. 

As Fig. 4-45(b) shows, the average speed increases as 𝛼2 increases since 𝛼2 is the weight 

for mobility. The speed volatility ranges only from 0 to 0.07%, which is trivial. Thus, the 

acceleration volatility is further considered. As Fig. 4-45(c) shows, in the area where both 

 𝛼1 and  𝛼2 are small, the value of acceleration volatility is small, since the cost function 

emphasizes more on the comfort term. As  𝛼3 = 1 − 𝛼1 − 𝛼2 decreases, the acceleration 

volatility increases. 

 

Fig. 4-44 Weight selection for sensitivity analysis 
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(a) 

 
(b) 

 
(c) 

Fig. 4-45 Sensitivity analysis for CAV performance measurement: (a) Average fuel consumption, 

(b) average speed, and (c) average acceleration volatility. 
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4.3.2.5 Conclusions and Future Work 

In this study, a game theory-based ramp merging strategy has been proposed for CAVs 

in the mixed traffic environment. The system has been developed, implemented, and 

evaluated in a customized co-simulation platform, which fuses a game engine-based 

simulator (Unity) and a microscopic traffic simulator (SUMO). Compared with the 

baseline merging algorithm of SUMO, the proposed algorithm can significantly improve 

system mobility (by up to 210%) and reduce fuel consumption (by up to 53.9%) under 

different traffic demands and CAV penetration rates. 

As one of the few ramp merging algorithms developed for mixed traffic, some challenges 

need to be addressed along its future development pathway: 1) Human-machine interaction 

in the game theory-based algorithm needs further investigation, since the modeling of 

human behaviors is still challenging; 2) With the development of Unity-SUMO co-

simulation platform, human-in-the-loop (HuiL) simulation tests can be carried out to obtain 

valuable data for more in-depth human behavior research; and 3) In addition to safety, 

mobility and driving comfort, environment-related factors can be considered in the design 

of game functions to build an eco-friendly ramp merging system. 

4.3.3 Driving Behavior Adaptive Advanced Driving Assistance System 

4.3.3.1 Introduction and Background 

4.3.3.1.1 Motivation 

In the rapidly evolving world of transportation, the presence of intelligent vehicles (IV) 

on the road is increasing. However, human-driven vehicles still hold a significant market 

share. To build a harmony traffic system, empowering human-driven vehicles with 
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advanced technologies has become a significant goal. By extending the algorithms of 

intelligent vehicles, we can empower human drivers to excel like never before. As the 

previous chapter discussed, these advanced algorithms analyze data, model driving 

behavior, adapt to situations, and enhance decision-making. They enable drivers to 

navigate confidently, learn from each experience, and contribute to a more efficient and 

collective transportation system. Let us embrace this opportunity to unlock the true 

potential of human-driven vehicles and shape a brighter, empowered future on the road. 

As an enabler of intelligent vehicles, advanced driver-assistance systems (ADAS) aim to 

support drivers by either providing warnings or advisory information to reduce risk 

exposure, or to relieve drivers' burden by automating some of the driving tasks[160]. Many 

studies with respect to ADAS have been conducted over the past decades, such as 

pedestrian detection [161], vehicle overtaking [162], forward collision avoidance, and 

adaptive cruise control [163]. 

Advisory speed assistance (ASA) is a typical example of ADAS, which usually creates 

recommended speed limits to bound the vehicle speed on highways, or generates suggested 

speed profiles for the human driver to track on signalized arterials [164], [165]. The 

advisory information is delivered to the driver via a driver-vehicle interface (DVI), 

allowing him/her to control the longitudinal speed profile to gain safety, mobility, and/or 

environment benefits. 

However, such ASA systems inevitably introduce human tracking errors, since it is 

impossible for a driver to track the suggested speed perfectly. It was concluded by one of 

our previous studies that, the human tracking errors may contribute to as high as 12% 
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degradation in system performance of the target ASA [166]. Therefore, how to model an 

individual driver's driving behavior and how to compensate for them in a customized way 

for advisory information delivery are critical to the design of an ASA system. 

4.3.3.1.2 Summary and contribution 

In summary, this section presents an innovative approach to extending the algorithms of 

intelligent vehicles to human-driven vehicles through the development of an Advisory 

Speed Assistance (ASA) system. The ASA system utilizes the game theory-based ramp 

merging coordination algorithm to coordinate traffic near on-ramp merging areas. Instead 

of relying fully automation, the ASA system provides speed guidance to human drivers 

through a head-up display (HUD) for human driven vehicles. To enhance the effectiveness 

of the ASA system, a learning-based approach is proposed to build a driver behavior model, 

predict human tracking errors, and compensate the speed suggestion. The ASA system is 

evaluated using the HuiL (human-in-the-loop) co-simulation platform, allowing volunteer 

drivers to participate in simulations and provide feedback on HUD design. Furthermore, 

the ASA system is implemented and tested in real-world scenarios using the vehicle-edge-

cloud test bed. The results of this research contribute to the advancement of intelligent 

transportation systems and the integration of human drivers with intelligent algorithms. 

Compared to many previous studies on driver behavior modeling, the major 

contributions of this study are listed below: 

• Personalized advisory: By adopting the learning-based approach with a nonlinear 

autoregressive (NAR) neural network, the proposed system can classify different drivers 

into certain types and provide personalized advisory information. To this end, the 
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accuracy and effectiveness of the proposed ASA system can be greatly improved, 

compared to existing systems that only provide general advisory information to all 

drivers. 

• Integrated vehicle system: Instead of only focusing on predicting driver behavior, we 

designed an integrated vehicle system which includes a motion planner, controller, a 

learning model, and user interfaces (both HUD and HMI). This integrated vehicle system 

is also presented by two proofs of concept. 

• Multi-platform online validation: Different from some existing work that validate their 

driver behavior models using synthetical data with numerical simulation, we design an 

ASA system with HUD in the game engine and invite various volunteer drivers to 

conduct the human-in-the-loop simulation on the driving simulator platform, so the 

improvement of the proposed driver behavior model can be observed in real time. 

Furthermore, we validate the effectiveness of our driver behavior model using a real 

passenger vehicle. This study allows various drivers to participate and test the proposed 

model on two different platforms, so the results will be more convincing than any 

previously proposed studies which simply conduct computer simulation. 

• Wide applicability: Although only a specific cooperative merging scenario is considered 

in this study, the proposed learning-based driver behavior model can be applied to 

various traffic scenarios, as long as the advisory speed is helpful for human drivers.  
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Fig. 4-46 System architecture of the proposed learning-based driver behavior modeling system 

4.3.3.2 Methodology 

4.3.3.2.1 Overview 

The general architecture of the driving behavior ASA is shown in Fig. 4-46. The whole 

system can be broken down into four different phases, including the online actuation phase, 

the online calculation phase, the online learning phase, and the offline training phase. In 

the offline training phase, by learning the behavior of different drivers based on historical 

data, we cluster drivers into N types and train N neural networks. In the online learning 

phase, a driver will be classified into one of the preset types and assigned to the associated 

neural network according to his/her driving style within a certain time horizon. In the 

closed loop, once the neural network takes the speed tracking errors as inputs, it predicts 

the driving error in the next time step. Then the advisory speed calculated by the merging 
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algorithm can be compensated by the error prediction module, thus shown on HUD, as 

presented in Fig. 4-47. 

 

For use case, the Advisory Speed Assistance (ASA) system proves invaluable in 

improving driver behavior during the chaotic process of ramp merging. By providing speed 

guidance and coordinating drivers' actions, ASA ensures smoother and safer merging 

maneuvers, reducing the likelihood of accidents and traffic congestion. During a ramp 

merging, once the merging sequence is determined by Equation 40 or 41, the reference 

 

(a) Suggested speed on head up display (HUD) in simulation 

 

(b) A driver is tracking suggested speed in a real passenger vehicle 

Fig. 4-47 Human machine interface of speed suggestion in simulation and real-world vehicle 
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acceleration 𝑎𝑟𝑒𝑓  for each driver is calculated by Equation 30. The advisory speed 

displayed on ASA system can be computed as: 

𝑣𝑖(𝑡 + 𝛿𝑡) = 𝑣𝑖(𝑡) + 𝑎𝑟𝑒𝑓(𝑡 + 𝛿𝑡) ⋅ 𝛿𝑡                               (44) 

where 𝑣𝑖(𝑡 + 𝛿𝑡) is the advisory speed shown to the driver, and 𝑣𝑖(𝑡) is the current speed 

of the ego vehicle. 

While the driver cannot follow the exact speed suggestion, we need to model and predict 

the driver’s tracking error for improving the speed suggestion. 

4.3.3.2.2 Learning-based driver error modeling 

We invite 17 volunteers with real-world driving experience to participate in this human-

in-the-loop ramp merging simulation, as in Fig. 4-48. The drivers are guided to try their 

best to follow ASA during the simulation, so that the ego vehicle can perform the 

cooperative merging maneuvers in a smoother way compared to the scenario when no ASA 

is provided.  

 

Fig. 4-48 One of the cooperative merging scenario at on-ramp built in Unity. 
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To reduce any system biases in the simulation results, volunteers are chosen from various 

backgrounds: 1 senior driver (age > 50), 2 mid-age drivers (30 < age <= 50), and 14 young 

drivers (age <= 30); 15 male drivers and 2 female drivers.  

At the very beginning, each volunteer drives the vehicle on the simulator multiple times 

to collect data for training. Note that two different merging scenarios are developed in 

Unity, where the driver is randomly asked to drive either the ramp vehicle or the mainline 

vehicle. Additionally, only one volunteer at a time is allowed to enter the room of the 

simulator. Therefore, the volunteer will not have any prior knowledge regarding the traffic 

scenario, so his/her driving behavior totally depends on how well he/she can track the 

HUD-based ASA. 

4.3.3.2.2.1 Driver type clustering and classification 

To cluster the test subjects into different types according to the similarity of their driver 

behavior, for the observation of speed, four variables are measured during each run.  

• The variance of speed (𝜎𝑣) describes the stability of the driving. 

• The mean error of speed (𝜇∆𝑣) is the average difference between the advisory speed 

and actual speed, which evaluates the execution ability of the driver. Also, it 

distinguishes the driver who is always slower than the advisory speed from the driver 

who always exceeds the advisory speed. 

• The absolute mean error of speed (|𝜇∆𝑣|) avoids misclassifying the driver who has a 

small mean error of speed, but actually drives pretty aggressively. 

• The variance of the speed error (𝜎∆𝑣) is the variance of the difference between the 

advisory speed and the actual speed, implying the stability of the driver’s execution. 
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Similarly, five variables in the observation of acceleration are also measured, 

including: 

• The variance of acceleration (𝜎𝑎). 

• The mean error of acceleration (𝜇∆𝑎). 

• The absolute mean error of acceleration (|𝜇∆𝑎|). 

• The variance of the acceleration error (𝜎∆𝑎). 

• The mean of acceleration (𝜇𝑎). 

Since the number of driver type is not strictly defined in this study, an unsupervised 

learning approach is used to cluster the driver. The pseudocode of this HCA is stated as 

Algorithm 1. The Euclidean distance and Ward linkage method, which are both HCA 

methods, are adopted to create a hierarchical cluster tree for clustering. 

We combine each driver’s data as a matrix 𝑋, 𝑋= {𝑋1,..., 𝑋𝑖,..., 𝑋𝑛}, where 𝑋𝑖 = {𝜎𝑣, 

𝜇∆𝑣 , |𝜇∆𝑣|, 𝜎𝛿𝑣 , 𝜇∆𝑎 , 𝜇𝑎, |𝜇∆𝑎|, 𝜎𝑎, 𝜎∆𝑎}, and compute the Euclidean distance matrix 𝐷 as 

 

𝐷 =

[
 
 
 
 
0 𝐷12 ⋯ 𝐷1𝑛−1 𝐷1𝑛
𝐷21 0 … 𝐷2𝑛−1 𝐷2𝑛
⋮ ⋮ ⋱ ⋮ ⋮

𝐷𝑛−11 𝐷𝑛−12 … 0 𝐷𝑛−1𝑛
𝐷𝑛1 𝐷𝑛2 ⋯ 𝐷𝑛𝑛−1 0 ]

 
 
 
 

  

45 

 

where 𝐷𝑖𝑗 = ∥∥𝑋𝑖 − 𝑋𝑗∥∥2
2
. 
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As explained in Algorithm 4, when the dendrogram is generated based on the similarity 

of each data sample, we cut the dendrogram by the median Euclidean distances among the 

samples to obtain the final clusters. After filtering out the outlier samples, all valid samples 

in the driver dataset are clustered into four major types. We adopt the Multidimensional 

Scaling (MDS) to display the driver type clustering result in 3-D space, which is shown in 

Fig. 4-49. Note that if more data samples are obtained, we might cluster them into more 

than these four types to achieve better performance. 

Once the clustering is finished, we need to explore useful features from the data to obtain 

a more precise model. For instance, to compensate for the human tracking errors, we 

identify the most contributing variables as the object for the neural network to predict. 

Moreover, in high dimensions, there is little difference between the nearest and the farthest 

neighbor for the k-nearest neighbors (k-NN) classification using Euclidean distance 

because of “the curse of dimensionality”, so we reduce the input variables for classification. 

As stated in Algorithm 5, PCA is used to transform these nine correlated variables into a 
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set of linearly uncorrelated variables, which are called principal components. Note PCA is 

not utilized before the driver clustering since the computational burden is not bottlenecked 

by the clustering, and all the original variables are potentially helpful for the clustering. 

 

Fig. 4-49 HCA cluster visualization in 3-D space 

As stated in the 𝑛 × 9 matrix of driver’s data, we have nine types of features and 𝑛 data 

samples. Specifically, we propose Algorithm 2 to identify the important variables to predict 

the speed tracking errors. According to the analytical results of PCA, the first component 

solely contributes 74.76%, and the second one solely contributes 18.85%. Several criteria 

for deciding how many components should be chosen are given in [167]: (a) the “elbow” 

in visual interpretation plot, (b) meaningful percentage of variance (80-90%), and (c) 

interpretable components. To meet these three criteria, we keep the first two components. 
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According to the correlation results, the variance of the speed errors (𝜎∆𝑣) has a good 

correlation with the first principal component, where 𝜎∆𝑣  ranks the highest in the 

correlation, and the variance of speed (𝜎𝑣) stands out among the others. Having a higher 

correlation with the first two principal components, speed-related variables contribute 

much more than the acceleration on the driving behavior, so predicting and compensating 

for the speed errors can have a significant improvement in the execution of the advisory 

speed. We also notice the variance of the acceleration errors (𝜎∆𝑎) and the variance of 

acceleration (𝜎𝑎) play important roles, which can be considered as another two variables 

in the classification. 

Once we obtain these different clusters by HCA and find out the important features by 

PCA, we can classify drivers into those clusters based on their driving behaviors during 

the time horizon of 𝑡𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑦. By proposing the k-NN algorithm (as stated in Algorithm 6), 

we classify the driver into the same type as those that share the similar driving behavior. 
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4.3.3.2.2.2 Training the nonlinear autoregressive (NAR) neural network 

Once all historical data generated by various drivers are clustered, neural networks are 

trained to predict driver behavior. The speed errors generated from the driver when tracking 

ASA can be considered as a time series with high variations. Since it is generally difficult 

to model a time series using a linear model, we adopt the NAR neural network [168] in this 

study. It has been proved by Lapedes and Farber [169] that, time series can always be 

modeled by the following NAR model 

𝑦̂(𝑡 + 𝛿𝑡) = 𝑓{𝑦(𝑡), 𝑦(𝑡 − 𝛿𝑡), 𝑦(𝑡 − 2𝛿𝑡),… , 𝑦(𝑡 − (𝜏 − 1) × 𝛿𝑡)}       (46)  

where 𝛿𝑡 denotes a time step, and the speed tracking error 𝑦 at time 𝑡 + 𝛿𝑡 is predicted 

using 𝜏 past values of the series. The structure of the NAR network can be seen as 0. To 

approximate the unknown function 𝑓(⋅), the neural network is trained by means of the 

optimization of network weights 𝑤’s and neuron biases 𝑏’s. The numbers of hidden layers 
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and neurons per layer are completely flexible, which can be optimized through a trial-and-

error process. Note that more neurons may complicate the system, but less neurons may 

restrict the generalization capability and computing power of the network. 

 

Fig. 4-50 Structure of NAR neural network 

In this study, to train the series of speed error data, we set the number of hidden layers 

as 2, and the number of hidden neurons as 10. The number of delays 𝜏 is set to 2, which 

means a total of 3 values of the speed tracking errors are used to predict the value at the 

next time step. The Levenberg-Marquardt backpropagation procedure (LMBP) is 

implemented as the learning rule of this NAR network [170] LMBP is considered one of 

the fastest backpropagation-type algorithms, since it was designed to approximate the 

second-order derivative without computing the Hessian Matrix. The training process is 

conducted on the Windows desktop with processor Intel Core i7-7700K @ 4.20 GHz and 

64.0 GB memory. 

We evaluate our training result using the Mean Squared Error (MSE), which is the 

average squared difference between predictions and targets, and the Regression (R) value, 

which is a measurement of the correlation between output predictions and targets. For 
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MSE, a lower value stands for a better result where zero means no error. A higher R value 

means a stronger correlation between the prediction and target, while zero stands for a 

random relationship. We pick two biggest clusters out of those four shown in 0, and split 

70% for training, 15% for validation, and another 15% for testing. The Table XIII shows 

example results for two driver cluster, where two neural networks are trained with high 

performance. These two networks’ MSE values are lower than 0.02 and R values are higher 

than 0.99. 

 

Once the neural networks are completely trained, they can be implemented in an online 

manner as shown in Fig. 4-46. At every time step, the trained neural network (configured 

as a MATLAB script) takes multiple inputs through the UDP socket from either the game 

engine or the vehicle, computes the predicted speed error at the next time step, and sends 

it back through the UDP socket. Once the predicted speed error is received, it will then be 

compensated for the original advisory speed algorithm Equation 46 by 

𝑣𝑖(𝑡 + 𝛿𝑡) = 𝑣𝑖(𝑡) + 𝑎𝑟𝑒𝑓(𝑡 + 𝛿𝑡) ⋅ 𝛿𝑡 + 𝑦̂(𝑡 + 𝛿𝑡)                    (47) 

where 𝑦̂(𝑡 + 𝛿𝑡) is the predicted error term compensated for the advisory speed. This 

compensated advisory speed 𝑣𝑖(𝑡 + 𝛿𝑡) is the value that is eventually displayed to the 

driver. 

TABLE XIII TRAINING RESULT OF NAR NEURAL NETWORK 

Data Set Catalog Target Values MSE R 

Driver 

Type 1 

Training 20512 0.0147 0.9906 

Validation 4396 0.0067 0.9959 

Testing 4396 0.0073 0.9956 

Driver 

Type 2 

Training 8330 0.0166 0.9929 
Validation 1785 0.0140 0.9939 

Testing 1785 0.0191 0.9953 
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4.3.3.2.3 Result of human-in-the-loop simulation 

As stated in the previous section, 17 volunteer drivers were invited to train the NAR 

neural network in the offline training phase, so the data they generate are considered as 

“historical data by various drivers” in Fig. 4-46. However, since the proposed driver 

behavior modeling methodology is for unknown drivers, we invite another five drivers to 

test the system in the online actuation phase. Each driver conducts eight simulation trips, 

so a total of 40 runs are recorded for evaluation. 

Two out of those 40 speed trajectories generated by human-in-the-loop simulation runs 

are selected to conduct an illustrative comparison in Fig. 4-51, and a better tracking of the 

advisory speed is observed after implementing the proposed model in general. Note for all 

speed trajectory figures in this study including Fig. 4-51 (a) (b): At the same time step, the 

advisory speed is first generated, the compensated advisory speed is the second (if there is 

one), and the actual speed is the last. They are not generated at the same time, as illustrated 

in the system workflow in Fig. 4-46. 
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As shown in Fig. 4-51(a), there is a large speed difference (which indicates a poor speed 

tracking behavior) at the beginning of the 30-second simulation run, when there is no error 

prediction model. During this whole run, the red solid line and the dark blue dashed line 

 
(a) 

 
(b) 

 
(c) 

Fig. 4-51 Speed error comparison in the game engine-based simulation 
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are not well aligned with each other, indicating that the actual speed generated by the driver 

deviates from the advisory speed generated all the time. 

However, as shown in Fig. 4-51(b), the light blue dotted line denotes the compensated 

advisory speed calculated by Equation 47 which predicts driver behavior based on his/her 

previous driving inputs. For example, at time 7 s, the actual speed (23 m/s) is lower than 

the advisory speed (21 m/s), so the speed tracking error is -2 m/s. This value along with 

the values of two previous time steps are the time series inputs of the neural network. The 

neural network then outputs the prediction speed tracking error at the next time step, which 

is -3 m/s. This predicted error is added to the advisory speed at time 8 s, so the compensated 

advisory speed at 8 s is (20 – 3 =) 17 m/s. With the help of the compensated advisory speed, 

the speed errors are shown to be attenuated during 6-10 s. 

In general, with the compensated advisory speed calculated by the error prediction 

model, the driver can track the advisory speed more precisely than without it, since the red 

line and the dark blue line are generally closer and less fluctuated in Fig. 4-51 (b) than Fig. 

4-51 (a). As shown in Fig. 4-46, the compensated advisory speed is only adopted in the 

loop for display purpose, where the speed tracking errors are still calculated by the 

difference between the actual speed and the advisory speed. 

As for the quantitative comparison, we evaluate three different indexes for all 40 runs 

(with and without the error prediction model) conducted by five drivers. Those three 

indexes include the mean speed error 𝜇𝛿𝑣 , the mean value of the absolute speed error |𝜇𝛿𝑣|, 

as well as the variance of the speed error 𝜎𝛿𝑣 . As shown in Fig. 4-51 (c), the mean speed 

error benefits the least from implementing the error prediction model compared to the other 
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two indexes, with a 23.4% reduction of this index. However, if we take an absolute value 

of the speed error first, a 36.2% reduction of the index can be observed, which outperforms 

the previous one. The underlying reason is that the absolute calculation filters out the 

situations when the speed errors are bouncing up and down, and positive values offset 

negative values so the mean values turn out to be relatively small. 

As a matter of fact, the speed error variance results in Fig. 4-51 (c) prove the effectiveness 

of the proposed driver behavior model in an even better way. As shown in the results, the 

speed error variance is 9.6464 before the error prediction model is implemented and is cut 

by half to 4.5661 after the implementation. This 52.7% drop in speed error variance shows 

that drivers are capable of tracking the advisory speed more closely after the driver 

behavior model is implemented. 

Additionally, we also utilize the U.S. Environmental Protection Agency’s MOtor 

Vehicle Emission Simulator (MOVES) model to perform analysis on the environmental 

impacts of the proposed model based on all human-in-the-loop simulation runs [158]. As 

can be seen from Table XIV, the pollutant emissions can be reduced by up to 6.3% after 

implementing the driver behavior model, and the energy consumption can be reduced by 

2.5%, respectively. 

 

TABLE XIV ENERGY CONSUMPTION AND POLLUTANT EMISSION RESULTS OF HUMAN-

IN-THE-LOOP SIMULATION (ALL VALUES ARE ON A KILOMETER BASIS) 

 
CO 

(g) 

HC 

(g) 

NOX 

(g) 

CO2 

(g) 

Energy 

(KJ) 

Baseline 2.54 0.0175 0.05721 275.1 3867 

Proposed 2.43 0.0167 0.05359 268.2 3770 

Reduction 4.3% 4.6% 6.3% 2.5% 2.5% 
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4.3.3.2.4 Cooperative ramp merging based on ASA: system design and field implement 

After the successful simulation and evaluation of the Advisory Speed Assistance (ASA) 

system in the HuiL co-simulation platform, the next crucial step is to move towards real-

world implementation. Transitioning from simulations to field implementation enables us 

to assess the system's performance under real driving conditions and evaluate its 

practicality and effectiveness. In this section, we present the details of the field 

implementation process and describe the vehicle-edge-cloud test bed that was utilized for 

deploying the ASA system. Through this field implementation, we aim to gather real-world 

data, validate the system's performance, and gain insights into the challenges and 

opportunities that arise in a live driving environment.  

In the previous section, we develop a method to provide accurate speed suggestion to 

connected vehicle drivers for coordinating the ramp merging in simulation, but to 

implement the cooperative merging and speed error compensation algorithms in real-

world, there are still two major issues waiting to be addressed. 

• The major method, Dedicated Short-Range Communications (DSRC), is not a 

suitable method for the scenario where different vehicles are not on the same 

altitude, or there are major obstructions between two DSRC On-Board Units (OBU). 

• Driving behavior modeling needs a large amount of data, and online behavior 

analysis requires real-time update from vehicles. 

Therefore, vehicle-to-cloud (V2C) communication comes to our sight. Compared with 

DSRC method, the V2C method improves the scalability of vehicle communication, 

provides a larger data storage which enables data driven human behavior modeling, and 
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breaks the constraint of computational power. In this study, we adopt 4G/LTE-based 

vehicle-to-cloud communication to design our cooperative ramp merging system, 

supported by the Vehicle-Edge-Cloud (VEC) real-world implementation platform. 

 

Fig. 4-52 V2C-based cooperative merging scenario at on-ramp 

4.3.3.2.4.1 Real world ASA implementation specifications 

The objective of this study is to design a V2C-based ramp merging coordination system 

using the aforementioned ASA, so drivers can drive those vehicles with the help of this 

ASA system to conduct safe and smooth merging maneuvers with other merging vehicles 

cooperatively. The proposed system can be simply illustrated as Fig. 4-52, where all 

relevant merging vehicles are assumed to have access to the server through V2C 

communication. The server processes the data received from various vehicles in real time, 

and also sends advisory information back to the relevant vehicles with certain updating 

frequency. 

This implementation mainly utilizes the edge server layer and vehicle layer of the VEC 

platform (Fig. 4-1). As a realization of the “Vehicle Digital Twin” concept, a flexible 
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cloud-based CAV system framework has been developed and demonstrated. Real-world 

field implementation of the proposed ramp merging system has been conducted with three 

passenger vehicles. As the prototype of the simulation road network, the test track consists 

of a ramp and a mainline, where the mainline spans from the intersection of Columbia 

Avenue and Chicago Avenue to the intersection of Iowa Avenue in Riverside, California. 

In the Vehicle Digital Twin framework presented in Fig. 4-53, onboard devices upload the 

data to the cloud server through the 4G/LTE cellular network. The server creates Digital 

Twins of vehicles and drivers whose parameters are synchronized in real-time with their 

counterparts in the physical world, processes the data with the proposed models in the 

digital world, and sends advisory information back to the vehicles and drivers in the 

physical world. Fig. 4-53 shows how the speed guidance is shown in a uniquely built user 

interface, where the key modules on the server are introduced.  
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Fig. 4-53 General architecture of the real-world cooperative ramp merging ASA system 

There are four main modules on the server, 

1) Map matching module: 

The main functions of the map matching module are position synchronization and geo-

fencing. A pre-built map of the test field is available on the cloud server, with information 

such as the road type, road length, road ID, waypoints, direction, road speed limit, merging 

zone, and interacting zone. For position synchronization, vehicles’ coordinates (i.e., 

longitude, latitude, and altitude) received from the GNSS will be uploaded to the cloud at 

each time step and be matched to the pre-built map by the proposed map matching 

algorithm (Based on the position given by the map matching algorithm, a geo-fencing 
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function is defined to check the positions and conditions of the vehicles at each time step, 

so associated actions can be conducted accordingly. 

             

(a)                                                 (b) 

          

(c)                                                 (d) 

Fig. 4-54 Merging scenarios: (a) merging into a vehicle string, (b) merging after a vehicle or string, 

(c) merging in front of a vehicle or string, and (d) merging to an empty mainline 

2) Motion planning module:  

Motion planning module is designed to cooperatively plan the motions of three merging 

vehicles, with two vehicles on mainline and one on ramp. In each merging, module will 

recognize the scenario and assign each vehicle its role. Considering the succinctness of 

description, with regard to the initial state, we name the first vehicle on mainline as “MV1”, 

the second vehicle on mainline as “MV2”, and the vehicle on ramp as “RV”, hereafter. 

Shown as Fig. 4-54, there are different ramp merging scenarios, including 1) merging into 

a vehicle string (of two or more vehicles), 2) merging after a vehicle or string, 3) merging 

in front of a vehicle or string, and 4) merging to an empty mainline. In Fig. 4-54(a), merging 

to a busy mainline and cutting into a string is the most challenging case for human drivers 

among these scenarios. Therefore, the following analysis will be based on this 

representative case, with two mainline vehicles and one ramp vehicle. Note that the overall 
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system designed in this study can handle all these four cases by the game theory-based 

merging sequence determination algorithm [145]. 

3) Control module: 

The motion controller on the cloud server generates the raw advisory speed of the ego 

vehicle. The inputs of the controller are the speed and lane-level position of the ego vehicle 

and its preceding (virtual) vehicle, where the preceding vehicle is decided by the motion 

planner in our previous research [145]. 

4) Human behavior module: 

Given the fact that a driver cannot track the advisory speed shown on the HMI perfectly, 

a speed tracking error is always compensated at every time step, as introduced in the last 

Section 4.3.3.2.2. As shown in Fig. 4-55, the information displayed on the HMI include 

current speed (the left number), advisory speed (the right number), speed limit, and some 

other additional messages (e.g., latitude and longitude, IP address). Besides visual 

information, audio notification is also embedded in this HMI. For example, along with 

showing the yellow text in Fig. 4-55(b), an audio warning is played to driver of MV2 when 

the ramp vehicle is approaching. 
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The test track consists of a ramp and a mainline, where the mainline spans from the 

intersection of Columbia Avenue and Chicago Avenue to the intersection of Iowa Avenue 

in Riverside, California. The mainline is on an overpass while the ramp is under the 

overpass, which increases the difficulty of ramp merging because the visions of both 

 

 

(a) 

 

(b) 

Fig. 4-55 Perspectives of (a) ramp vehicle driver and (b) mainline vehicle 2 driver while 

conducting the cooperative ramp merging 
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mainline and ramp drivers are blocked by this overpass. The total length of the track is 780 

meters, with a merging zone of 89 meters long. 

 

 
(a) 

 
(b) 

 
(c) 

 
 

(d) 

Fig. 4-56 V2C-based cooperative merging stages 
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As shown in Fig. 4-57, the cooperative merging consists of four stages. On stage 1 in 

Fig. 4-57(a), MV2 is assigned to follow MV1 and enters the interacting zone with a 

constant speed. At the same time, RV receives the countdown information from the 

approaching MV1. On stage 2 in Fig. 4-57(b), RV is assigned to follow MV1 and starts to 

accelerate based on the speed suggestion. On stage 3 in Fig. 4-57(c), MV2 is assigned to 

follow RV when RV satisfies the requirement. RV is ready to merge, while MV2 is notified 

to slow down and generates a gap for the merge. On stage 4 in Fig. 4-57(d), given enough 

inter-vehicle gap, RV merges into the vehicle string. The implementation setups are listed 

in TABLE I, including the preset initial states, constraints, desired states, and the 

parameters in control algorithm. The control gain of each vehicle will be changed at certain 

time steps as the merging process goes along. For RV, 𝐾𝑟  is given by the feedforward 

lookup table based on the initial condition when RV and MV1 are hooked up. For MV2,  

𝐾𝑚1 depends on the initial condition when MV1 and MV2 are bonded; 𝐾𝑚2 depends on 

the initial condition when MV2 switches its leader from MV1 to RV. 

At every time step, the localization coordinates and speed provided by the GNSS units 

will be read by the HMI device on each vehicle and transmitted to the cloud server. On the 

cloud, the map matching module utilizes the GNSS data to locate these three vehicles and 

compute the relative distance and speed among them. With the map matching result, the 

real-time advisory speed for each vehicle can be calculated. More specifically, to smooth 

the speed and facilitate the following of traffic rules in the test site, an internal acceleration 

limit for the ramp vehicle is set in the control algorithm with a range of (−3, 3) m/s2, and 

the speed display on HMI is bounded by the real-world’s speed limit 45 mph 
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(approximately 20 m/s). It should be noted that, when the advisory speed given by the 

consensus algorithm exceeds the speed limit, it will not be displayed on the HMI, but only 

increases the possibility of the HMI deactivation in the background. 

4.3.3.3 Result Evaluation 

The results evaluation in this section is conducted by the “Performance Evaluation” 

module, which is executed on the cloud server as shown in Fig. 4-53 in real time. With a 

certain update frequency, this module evaluates the speed and distance trajectories, as well 

as the fuel consumption and pollutant emissions of all connected vehicles. The evaluation 

results are sent to the drivers to provide them with real-time feedback, and therefore 

recommend safer or more fuel-efficient driving behaviors. Show as Fig. 4-57, an app is 

designed to visualize vehicle Digital Twins running on the cloud server, which have the 

same parameters (position, speed, etc.) as the vehicles in the real world. Speed advisories 

for drivers of all three vehicles are also updated in real time. In field experiments, two 

inspectors, one in the passenger seat, another one stay beside the server PC, monitor the 

whole process using this app. 

A baseline implementation is designed and carried out to validate the benefit of the 

proposed cooperative merging. Since an unbiased comparison requires the same merging 

scenario, a low-grade HMI with only partial function is adopted in the baseline scenario. 

To ensure the three vehicles encounter each other, the HMI provides speed guidance to RV 

only before RV reaches a “deactivate” point. The point is set at 85 meters before the 

observable point, where the driver of RV drives “blindly” (without HMI or line-of-sight of 
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other merging vehicles) within that 85 meter range. Without speed guidance, MV2 will not 

create gap for RV in advance. 

In our field implementation, four cooperative merging trips and four baseline trips are 

carried out, respectively. In this section, we present one typical cooperative merging trip 

that was carried out at 12:19:57 p.m. on September 27th, 2019. The proposed vehicle-to-

cloud based cooperative merging system is compared with the baseline system in terms of 

safety, fuel and emission.  Moreover, an implementation is conducted to investigate V2C 

communication.  

 

Fig. 4-57 Digital Twin of vehicles running on the cloud server in real time 

4.3.3.3.1 Safety results  

As can be seen from the cooperative merging implementation results, Fig. 4-58(a) shows 

the speed trajectories, and Fig. 4-58 (b) shows the distance to merge of the three vehicles. 

The observable point is 100 meters before the merging point, where mainline and ramp 

drivers can see each other for the first time during merging. In this trip, drivers rely more 

on the HMI for longitudinal speed control because they have no visual information about 

the merging condition. After passing the observable point, when they have line-of-sight to 
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other merging vehicles, they would usually trust more in what they see and make their own 

decision, instead of relying on the HMI.  

 

During 0 – 8 seconds in Fig. 4-58, RV accelerates to close its gap with the string on the 

mainline, and MV1 and MV2 keep a relative constant speed. During this period, both RV 

and MV2 consider MV1 as their leader. At 8 seconds, MV2 switches its leader from MV1 

to RV and decelerates. During 8 – 15 seconds, the gap between MV1 and MV2 has been 

 

 

(a) 

 
(b) 

Fig. 4-58 Cloud-based cooperative merging scenario at on-ramp 

 



171 
 

generated for RV to merge in. During 15 – 20 seconds, the speed of RV and MV2 converge 

to the speed of MV1, which means the cooperative longitudinal speed adjustment of three 

vehicles has already been completed before they actually conduct the lane change 

behaviors. 

There are many approaches to measuring driving safety, such as time-to-collision, time-

exposed time-to-collision, time integrated time-to-collision, crash index, headway, time-

to-accident, and post-encroachment time to name a few. However, these methods are not 

applicable in this implementation because they require all the vehicles to be driven on the 

same lane with potential conflicts. In this implementation, MV1 is not affected by the 

merging behavior that happened behind, while MV2 and RV are initially on different lanes 

without direct conflict. Thus, we adopt speed variance as an alternative safety measurement 

method. Since the accidence rates increase with increased speed variance for all classes of 

roads, a safe merging environment can be created by reducing the speed variance. The 

speed variance of MV2 between the “deactivate” point and the merging point is an 

indicator of how upstream traffic safety is affected by the merging behavior. 

During the normal merging process, both mainline drivers and ramp driver have to 

modify their speed, hence the speed variance of the involved vehicles will increase. The 

average speed variances of MV2 of during four baseline trips is 2.163, while the value is 

decreased to 0.705 in the four cooperative merging trips. The results show a reduction of 

67.41% in terms of average speed variance, proving that the cooperative merging approach 

is safer than the baseline scenario. 
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4.3.3.3.2 Fuel and emissions results 

For every trip, the fuel and pollutant emissions are analyzed by this Performance 

Evaluation module on the cloud server with the open-source “MOVESTAR” fuel and 

emission model [158]. To minimize the biases, MV1 is excluded in this estimation since it 

tracks a constant speed during the whole merging process and has no significant impacts. 

The average fuel consumption and pollutant emissions of involved vehicles are 

calculated for both baseline and the proposed cooperative merging method, which is shown 

in Table XV. A reduction up to 31.21% in pollutant emissions and a reduction of 7.45% in 

fuel consumption can be obtained after implementing the proposed model comparing to 

the baseline, respectively. 

 

4.3.3.3.3 Communication results 

A comprehensive test is conducted to measure the delay of 4G/LTE-based V2C 

communication. In the test, in order to measure only the communication time, all the 

algorithms are wiped out on the server with only the communication module remained to 

eliminate the computation time.  

The communication delay is defined by a back-and-forth time differences of a 

“handshake” message. First, the ego vehicle sends the message to the target vehicle and 

records the current time 𝑡1. Since the target vehicle is designed to reply immediately, when 

TABLE XV ENERGY CONSUMPTION AND POLLUTANT EMISSION RESULTS 

 
CO 

(g/km) 

HC 

(g/km) 

NOX 

(g/km) 

CO2 

(g/km) 

Fuel 

(g/km) 

Baseline 0.88 0.0088 0.031 242.8 76.038 

Proposed 0.61 0.0056 0.025 224.7 70.375 

Reduction 31.21% 35.71% 20.00% 7.46% 7.45% 
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the ego vehicle receives the reply message and at time 𝑡2, the communication delay is 

calculated as 𝑡2 − 𝑡1. 

A total of 17717 communication delay samples are recorded during the field 

implementation from five different trips. Fig. 4-59(a) shows the distribution of 

communication delay under its 99th percentile. The majority of the value (65%) is located 

in the range of 54-81 ms, where this 27 ms span only takes up 12.6% of the whole span. 

Shown in Table XVI, the 99th percentile of communication delay is 247 ms, which is 

smaller than the update frequency of the HMI (3 Hz, 333 ms). Since the computation of 

the algorithm takes only 30 ms, 99% of the V2C communication is quicker than HMI 

update timeframe and will not undermine the performance of the algorithm. 

According to Fig. 4-59(b), delay surges appear occasionally, and this 1% of high delay 

cannot be neglected since the highest delay reaches 3861 ms. Bringing in a Kalman filter 

or simply keeping the original speed suggestion are the solutions to handle this problem. 
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(a) 

 

(b) 

Fig. 4-59 Communication delay results: (a) Time series of communication delay and (b) 

Distribution of communication delay under its 99th percentiles 
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Additionally, we also intend to conduct a comparison test regarding the communication 

methods, i.e., 4G/LTE-based V2C communication versus DSRC-based V2V 

communication. We install two DSRC OBUs (Savari MobiWAVE 1000) on two of the 

vehicles (i.e., MV1 and RV), and allow them to send information to each other while the 

vehicles are conducting the cooperative merging. However, during the merging process, 

there is a major period of time (more than 5 seconds) that the information cannot be 

successfully transmitted between these two OBUs. That period mostly happens when MV1 

is on the top of the overpass while RV is on the ground (which can be roughly shown as 

Fig. 4-56(a)). As a similar phenomenon is reported by [171], a box trailer will likely 

“block” the DSRC signal broadcast since it requires line-of-sight for reception. Such 

performance shows that DSRC-based V2V might not be a good communication method 

for scenarios like this, when different vehicles are not on the same altitude, or there are 

major obstructions between two OBUs.  

DSRC-based V2I communication might be a good alternative to solve the non-line-of-

sight issue of V2V communication, but V2I communication with roadside units also have 

disadvantages of transmission range, computation power, and data storage compared to 

V2C communication with cloud computing. In this study, computation power and data 

storage are essential to conduct human behavior modeling. 

TABLE XVI STATISTIC RESULT OF COMMUNICATION DELAY 

Average Minimum Maximum 75th Percentile 99th Percentile 

80 ms 36 ms 3861 ms 88 ms 247 ms 
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4.3.3.4 Conclusions and Future Work 

In this study, to extend the algorithm of intelligent vehicles to human driven vehicles, a 

cooperative ramp merging ASA system has been developed using a V2C Digital Twin 

approach. Field implementation in the real world has been conducted with three typical 

passenger vehicles, which shows the proposed system improves the current ramp merging 

scenario in terms of safety and environmental sustainability. Specifically, compared with 

the baseline scenario with no advisory information during the merging process, the 

proposed system reduces the average speed variance by 67.41%, reduces the pollutant 

emissions by up to 31.21%, and reduces the fuel consumption by 7.45%, respectively. 

As the first few real-world implementations of Digital Twin in the automotive domain, 

numerous research questions need to be solved along its future development. To name a 

few, what is the required update frequency of the Digital Twins on the cloud server, so it 

can tolerate the uncertainties brought by V2C communication delay and packet loss. 

Additionally, what other modules can be designed and placed on the cloud server, so the 

functionality of the Digital Twin architecture can be fully utilized. Implementing the 

proposed V2C Digital Twin approach to other traffic scenarios besides cooperative ramp 

merging is also one of our future studies. 
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5 Conclusions and Future Work 

5.1 Conclusions 

In the concluding remarks of this dissertation, we reflect on the significant strides made 

in the exploration and implementation of personalized behavior-aware motion planning 

framework of Intelligent Vehicles. In this dissertation, three main contributions are made, 

including the construction of platforms, driver behavior research, and the development of 

behavior-aware motion planning algorithms. 

• We have successfully created a vehicle-edge-cloud digital twin platform for real-

world implementation and a human-in-the-loop co-simulation platform, which 

constituted the first step towards understanding personalized driving behavior. 

These platforms, working in conjunction, enable the generation of driving behavior 

datasets and facilitate the development and validation of advanced algorithms. Such 

an integrative and systematic approach has notably improved the practical 

realization of intelligent vehicle applications.  

• Our study further formulated a systematic framework to investigate personalized 

driving behavior. This included an examination of various aspects such as driver 

profiling, driving preferences, and implicit interaction patterns. Through this 

framework, we were able to model unique driving behavior and develop 

individualized models that would feed into the intelligent vehicle systems. This 

integrative approach provided a more nuanced and accurate understanding of 

driving behavior, enabling the design of more effective and favorable autonomous 

driving systems. As a result, the system can recognize the target driver’s lane 
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change intention at 6.08 seconds on average before the lane change, and the 

predicted trajectory is 1.03 m within a 4-second prediction window. Using a 

personalized model can improve the prediction accuracy by 27.8%, as in Section 

4.3.1. 

• Finally, we proposed a behavior-aware motion planning strategy for intelligent 

vehicles operating in mixed traffic environments. This strategy brought several 

significant benefits to the transportation system, including improved safety 

(reduces the average speed variance of the traffic by 67.41%, as in Section 4.3.3), 

efficiency (improve system mobility by up to 210%, as in Section 4.3.2), 

environmental sustainability (reduce fuel consumption by up to 53.9% and 

pollutant emissions by up to 31.21%, as in Section 4.3.3) and user experience 

(eliminated the extreme speed values, as in Section 4.3.2). The strategic integration 

of behavioral awareness in motion planning enabled vehicles to respond more 

adaptively to dynamic traffic conditions, enhancing the overall functionality of the 

transportation system. We also extended the algorithm for Intelligent Vehicles to 

benefit human-driven vehicles, utilizing simple, portable, and easily installable 

hardware. This extension ensures that the benefits of our research reach even 

beyond IVs, fostering an inclusive and optimized transportation system for all.  

In conclusion, our research has laid the groundwork for an in-depth understanding of 

personalized driving behavior and its application to intelligent vehicles. We anticipate that 

the insight from this work will continue to facilitate the development of IV technology and 

contribute to a safer, more efficient, and user-centric eco-friendly transportation system. 
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ramp merging design and field implementation: A digital twin approach based on vehicle-

to-cloud Communication,” IEEE Transactions on Intelligent Transportation Systems, vol. 

23, no. 5, pp. 4490–4500, 2021. 
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[11] X. Zhao, X. Liao, Z. Wang, G. Wu, M. Barth, K. Han, and P. Tiwari, “Co-simulation 
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5.3 Future Work and Discussion 

Moving forward, there are still several intriguing paths for further exploration and 

research in the field of intelligent vehicles.  
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• First, the concept of a human-centric system, rooted in behavioral modeling, 

presents a compelling area for potential investigation. The cornerstone of this 

approach would be the development of optimal and favorable automation 

technologies that are explicitly designed to align with drivers' preferences and 

abilities. To further improve the human-centric system, the modeling of 

relationships and interactions in multi-agent and human-vehicle contexts could 

prove invaluable. Additionally, a key focus should be placed on enhancing the 

acceptance and trust in automation technologies by developing explainable 

methods. 

• In addition to refining individual vehicle behaviors, we should also consider 

extending our planning strategies to encompass a broader traffic perspective. This 

includes improving the scalability of our algorithm to optimize traffic flow and 

creating more robust and efficient transportation systems. 

• Lastly, it is crucial to address the gap that exists between academic research and 

practical implementation. By collecting more comprehensive and naturalistic 

personalized driving datasets, we can develop models that better reflect real-world 

driving behavior. Further, considering engineering problems associated with the 

Digital Twin framework can bring us a step closer to seamless and efficient 

implementation of intelligent vehicle technologies, such as addressing the 

computational demand allocation, communication latency, driver model update, etc. 

Along with the aforementioned clear future work, there are still some open questions 

related to the personalized IV applications worthy discussing: 
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• Balance between personalization and generalization: Is more personalization 

always better? What level of personalization is sufficient, and how do we decide 

this? Is there a risk of indulging drivers too much with personalized features? 

Where should we set the limit? 

• Robustness of Personalized Models: How robust are personalized products? Given 

that personalization might lead to overfitting, how well will our models perform in 

rare or unseen scenarios? 

By addressing these points of discussion, we aim to delve deeper into the complexity and 

challenges of personalized behavior modeling in the context of intelligent vehicles. 
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