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Abstract
We have previously shown that high runner (HR) mice (from a line genetically selected for increased wheel-running behav-
ior) have distinct, genetically based, neurobiological phenotypes as compared with non-selected control (C) mice. However, 
developmental programming effects during early life, including maternal care and parent-of-origin-dependent expression of 
imprinted genes, can also contribute to variation in physical activity. Here, we used cross-fostering to address two questions. 
First, do HR mice have altered DNA methylation profiles of imprinted genes in the brain compared to C mice? Second, does 
maternal upbringing further modify the DNA methylation status of these imprinted genes? To address these questions, we 
cross-fostered all offspring at birth to create four experimental groups: C pups to other C dams, HR pups to other HR dams, 
C pups to HR dams, and HR pups to C dams. Bisulfite sequencing of 16 imprinted genes in the cortex and hippocampus 
revealed that the HR line had altered DNA methylation patterns of the paternally imprinted genes, Rasgrf1 and Zdbf2, as 
compared with the C line. Both fostering between the HR and C lines and sex modified the DNA methylation profiles for 
the paternally expressed genes Mest, Peg3, Igf2, Snrpn, and Impact. Ig-DMR, a gene with multiple paternal and maternal 
imprinted clusters, was also affected by maternal upbringing and sex. Our results suggest that differential methylation patterns 
of imprinted genes in the brain could contribute to evolutionary increases in wheel-running behavior and are also dependent 
on maternal upbringing and sex.

Keywords Bisulfite sequencing · Exercise · Cross-fostering · Maternal effects · Parent-of-origin genes · Brain

Introduction

Exercise has powerful effects on neurobiological processes 
such as neurotransmission, cognition, and reward-dependent 
behaviors (Rhodes et al. 2005; Caetano-Anolles et al. 2016; 
Saul et al. 2017). While motivation and physiological ability 
are critical determinants of an individual’s physical activ-
ity levels (Garland et al. 2017), long-term genetic selection 

experiments in laboratory mice have also illuminated genes 
associated with elevated levels of voluntary exercise (Kelly 
et al. 2012; Kostrzewa and Kas 2014; Vellers et al. 2018; 
Aasdahl et al. 2021). RNA (Zhang et al. 2018) and whole 
genome (Xu and Garland 2017; Hillis et al. 2020) sequenc-
ing from mice selected for elevated physical activity levels 
have revealed differential expression of genes associated 
with behavior, motivation, and athletic ability, supporting 
a genetic basis for elevated physical activity. In addition to 
genetic underpinnings, non-genomic, developmental pro-
gramming effects during early life can also substantially 
impact exercise behavior and physical activity (Li et al. 
2013; Baker et al. 2015; Eclarinal et al. 2016; Garland et al. 
2017).

One such developmental programming mechanism 
involves genomic imprinting. Unlike standard Mendelian 
inheritance patterns where genes are biallelically expressed, 
genomically imprinted genes display parent-of-origin and 
monoallelic expression (Bartolomei and Ferguson-Smith 
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2011; Barlow and Bartolomei 2014). Approximately 1% of 
all mammalian genes are thought to be imprinted, with about 
150 imprinted genes identified to date (Barlow and Barto-
lomei 2014; Kalish et al. 2014). Imprinted genes are critical 
for growth and development (Bouschet et al. 2017; Monk 
et al. 2019), cognition (Isles and Wilkinson 2000; Frank-
lin and Mansuy 2010; Zamarbide et al. 2018), and exercise 
(Kelly et al. 2010). Parent-of-origin effects occur through 
several molecular mechanisms. The most well studied 
mechanism is differential DNA methylation (Bartolomei and 
Ferguson-Smith 2011; Barlow and Bartolomei 2014). The 
parental origin frequently determines the methylation sta-
tus, with the paternal or maternal genomes typically exert-
ing counteracting influences on gene expression (Azzi et al. 
2014; Barlow and Bartolomei 2014; Kalish et al. 2014). For 
example, paternally expressed genes (PEG) such as Igf2 and 
Mest generally enhance growth of the fetus, while mater-
nally expressed genes (MEG) such as H19 and Igf2r inhibit 
fetal growth (DeChiara et al. 1990; Leighton et al. 1995; 
Thorvaldsen et al. 1998). Moreover, differentially methyl-
ated regions exhibit variable methylation patterns follow-
ing exposure to various early-life conditions such as diet 
(Waterland et al. 2006; Kovacheva et al. 2007; Heijmans 
et al. 2008; Tobi et al. 2009; Hoyo et al. 2011) and chemical 
exposure (Robles-Matos et al. 2021). Therefore, the meth-
ylation profile of imprinted genes is an appealing target to 
investigate in the context of exercise behavior because the 
expression or silencing of these monoallelic genes is criti-
cally involved in growth regulation and energy balance dur-
ing development (Charalambous et al. 2007; Tunster et al. 
2013; Waterland 2014; Millership et al. 2019) which can 
influence brain function (Perez et al. 2016; Kravitz and 
Gregg 2019).

The developing brain is a known hotspot for allele-spe-
cific gene expression (Perez et al. 2016; Huang et al. 2017, 
2018; Kravitz and Gregg 2019). Imprinted genes in the 
brain encode various proteins and non-coding RNAs, from 
ubiquitination-related proteins to neurotransmitter receptor 
subunits. Similar to their counteracting effects on body size, 
imprinted genes have reciprocal effects on brain size, with 
MEGs enhancing and PEGs reducing brain size, supporting 
a role for imprinted genes in neurodevelopment (Keverne 
et al. 1996, Bouschet et al. 2017). The most substantial evi-
dence for a neurodevelopmental role in humans emerged 
when Angelman syndrome (AS) and Prader-Willi syndrome 
(PWS) were linked to maternally and paternally transmitted 
mutations, respectively, on human 15q11-13. In the case of 
AS, UBE3A is a MEG located among a cluster of imprinted 
genes on chromosome 15 (Albrecht et al. 1997; LaSalle et al. 
2015), and maternally inherited mutations or deletions in 
UBE3A lead to AS (Cassidy et al. 2000). UBE3A imprint-
ing is regulated by the expression of an antisense transcript, 
UBE3A-ATS, which arises from a nearby imprinting control 

region that is methylated only on the maternal allele. The 
UBE3A-ATS transcript partially overlaps the UBE3A 
gene, blocking UBE3A expression from the paternal allele 
(Albrecht et al. 1997; Yamasaki et al. 2003; Chamberlain 
and Lalande 2010). Reciprocal mutations similar to those 
of AS cause PWS due to the lack of PEG products in the 
15q11-13 chromosomal region (Cassidy et al. 2000). A neu-
rodevelopmental role for genomic imprinting is supported 
further by the widespread expression of imprinted genes in 
the mouse brain and by the extensive neural and behavioral 
phenotypes of mutants of these imprinted genes (Babak et al. 
2008; Wang et al. 2008; Gregg et al. 2010; DeVeale et al. 
2012; Bouschet et al. 2017) including Cdkn1c (Imaizumi 
et al. 2020; Laukoter et al. 2020), Gnas (Mouallem et al. 
2008; Turan and Bastepe 2013), Sgce (Zimprich et al. 2001; 
Asmus et al. 2002; Peall et al. 2013), and Trappc9 (Mochida 
et al. 2009; Babak et al. 2015).

Given the prominent roles of monoallelically expressed 
genes in growth, development, and energy metabolism in the 
brain, this study aimed to distinguish DNA methylation from 
genetic contributions for elevated physical activity in brains 
of mice that have been genetically selected for increased 
wheel-running behavior. In a long-term genetic selection 
experiment using outbred Hsd:ICR mice, four replicate 
high runner (HR) lines were bred for high voluntary wheel-
running behavior and four control (C) lines were bred with-
out regard to their wheel-running (C mice; Swallow et al. 
1998, 1999). Compared with C lines, HR lines run ~ three-
fold more daily revolutions on running wheels. In addition, 
HR mice also demonstrate physiological and biochemical 
adaptations that are consistent with increased physical activ-
ity, including smaller body size, decreased fat composition, 
altered lipid profiles, and increased aerobic capacity (Swal-
low et al. 1999; Malisch et al. 2007; Acosta et al. 2015). 
More recently, early-life studies on HR mice demonstrated 
differential responses to early-life factors of altered juvenile 
diet and exercise opportunity (Acosta et al. 2015; Hiramatsu 
et al. 2017; Cadney et al. 2021a; McNamara et al. 2021).

In the current experiment, four groups were created 
wherein the offspring of non-selected C mice were fos-
tered at birth and were reared by either a C or HR dam. 
Similarly, the offspring of selected HR mice were fos-
tered at birth such that they were raised either by a C or 
HR dam (Cadney et al. 2021b). Using this cross-fostering 
approach, the current study sought to address two ques-
tions. First, do mice from a line genetically selected for 
elevated voluntary physical activity have altered DNA 
methylation profiles of imprinted genes compared to 
non-selected C mice? Second, does maternal upbring-
ing further modify the DNA methylation status of these 
imprinted genes? Cross-fostering experiments are a pow-
erful method to determine maternal effects and possible 
gene × environment interactions (Fish et al. 2004; Weaver 
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et al. 2004; Kessler et al. 2011; Cohen et al. 2015; McCa-
rty 2017). Therefore, to address these questions, we used 
cross-fostered HR and C male and female offspring from 
generation 90 of the HR selection experiment (see Cadney 
et al. 2021b for further methodological details concern-
ing focal mice and their birth and foster parents). Using 
bisulfite sequencing of 16 known imprinted genes, we 
demonstrate altered DNA methylation patterns in the 
cortex and hippocampus for imprinted genes with known 
roles in fetal growth and energy metabolism. Our results 
show for the first time that, in addition to genetic under-
pinnings, differential methylation patterns of imprinted 
genes may also contribute to increased wheel-running 
behavior.

Methods

Experimental mice

The artificial selection experiment began in 1993 with a 
population of 224 mice from the outbred Hsd:ICR strain, 
which was randomly mated for two generations before 
being randomly partitioned into eight lines. Four rep-
licate high runner (HR) lines of house mice were bred 
in the ongoing selection experiment for high voluntary 
wheel-running, based on average wheel revolutions per 
day on days five and six of a six-day running period as 
young adults. Four additional lines were bred randomly 
as Control (C) lines to the four HR lines (Swallow et al. 
1998; Cadney et  al. 2021b). The previous experiment 
used a subset of virgin male and female mice from gen-
eration 89 to produce experimental mice of generation 
90 in the prior study. All mice were fed standard mouse 
chow (Teklad Rodent Diet W-8604) and regular drinking 
water. Pregnant dams were given a breeder diet (Teklad 
S-2235 Mouse Breeder Sterilizable Diet 7004) through 
weaning. All experiments involving animal handling and 
care were approved by the University of California, Riv-
erside IACUC.

For the previous study, one C line (Line 4) and one HR 
line (Line 7) were used because they represented extremes 
in body mass among their respective linetypes (Table 2 in 
Cadney et al. 2021b). As described, it was hypothesized 
that differences in dam body size would lead to differ-
ential cross-fostering effects, including wheel-running 
behavior of the pups at weaning. Thus, using lines with 
different body masses could serve as a positive control 
for offspring body masses at weaning. The wheel-running 
behavior of these lines was representative of their respec-
tive linetypes (Cadney et al. 2021b). The dams used in the 
previous study were typical of other line 4 and 7 breeders 

of the same generation in terms of both wheel-running and 
body mass (Cadney et al. 2021b).

Experimental design

The experimental design has been previously published 
(Cadney et al. 2021b). Briefly, mice from generation 89 were 
sampled randomly to create a total of 60 C line 4 and 60 HR 
line 7 mating pairs, with the constraint that the sample size 
per foster group was equal (Table 1; Cadney et al. 2021b). 
A large number of pairings were made because only pups 
born on the same day could be used for fostering (Cadney 
et al. 2021b).

At birth, litters were standardized to eight pups to avoid 
litter effects. As sex could not be determined at birth, the 
litter sex ratio could not be controlled. Cross-fostering only 
occurred between litters born within 24 h of one another. 
During the 48 h after cross-fostering, fostered pups were 
checked regularly, and none were rejected by their foster 
mother.

As births occurred, entire litters were fostered to another 
dam (no pup was returned to its biological mother). Thus, 
the previous study did not include a “control” group for the 
effects of fostering per se. This design was chosen to maxi-
mize the sample size in experimental groups sufficient to 
address their specific hypotheses (i.e., the effects of cross-
fostering HR and C mice), given logistical constraints on the 
total sample size. In the current study, we wanted to deter-
mine whether rearing by an HR dam might be necessary for 
some proportion of high-running variance in DNA methyla-
tion profiles. This factorial experimental design produced 
four groups (Fig. 1 and Cadney et al. 2021b): C offspring 
raised by cross-fostered C dams (CC), C offspring raised 
by cross-fostered HR dams (CHR), HR offspring raised by 
cross-fostered C dams (HRC), and HR offspring raised by 
cross-fostered HR dams (HRHR). The number of male and 
female mice from each group used in this study is listed in 
Table 1.

Mice were removed from wheel access for one day, 
then sacrificed at seven weeks of age via decapitation 
without anesthesia. After whole brains were extracted, the 

Table 1  Litter parameters for bisulfite sequencing analyses

Cortex and hippocampal tissue were used for DNA methylation anal-
yses. All pups were maintained until sacrifice at 59 days of age

Group Litter Female Male Pups

CC 5 6 5 11
CHR 5 6 6 12
HRC 5 6 6 12
HRHR 5 6 5 11
Total 20 24 22 46
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hippocampus and cortex were dissected and snap-frozen 
on dry ice. Samples were stored at −80 °C until further 
sequencing steps were performed. Because of the reduced 
number of brain samples (N = 46), separate sex models could 
not be analyzed.

In‑silico assay design

Gene sequences were acquired from the Ensembl genome 
browser and annotated. The assay target sequences were then 
re-evaluated against the UCSC mouse GRCm38 genome 
browser for repeat sequences, including LINE, SINE, LTR 
elements, and other DNA repeats. Sequences containing 
repetitive elements, low sequence complexity, high thymi-
dine content, and overall CpG density were excluded from 
the in-silico design process. Forty-two assays were designed 

Fig. 1  Experimental design. Four experimental groups were created 
by cross-fostering between families of C (line 4) and HR (line 7) mice

Table 2  Coordinates, genomic context, and number of CpG sites analyzed for 16 imprinted genes analyzed by bisulfite sequencing

Inheritance indicates parental expression. TSS indicates relative to the ATG transcription start codon. Negative sign indicates a location 
upstream of ATG; positive sign indicates a location downstream of ATG 

Gene Inheritance GRCm38 Coordinates From TSS # Assays Genomic Context # CpG Sites

 Gnas Maternal Chr2: 174,295,026–
174,296,544

10,707 to 12,225 2 Intron 2 13

 Grb10 (Meg1) Maternal (Paternal in brain) Chr11: 12,026,650 10,752 1 Intron 1 1
 H19 Maternal Chr7: 142,582,201–

142,580,501
−4058 to −2358 3 5’ Upstream 22

 Ig-DMR Multiple Chr12: 109,526,596–
109,526,736

73,748 to 73,888 1 Ig-DMR 9

 Igf2 Paternal (Maternal in brain) Chr7: 142,669,731–
142,669,634

−12,235 to −12,138 1 5’ Upstream 9

 Igf2r Maternal Chr17: 12,742,702–
12,742,174

26,963 to 27,491 2 Intron 2 18

 Impact Paternal Chr18: 12,972,743–
12,974,522

821 to 2600 2 Intron 1 14

 Kcnq1ot1 Paternal Chr7: 143,295,509–
143,295,190

1041 to 1360 2 Exon 1 20

 Mest (Peg1) Paternal Chr6: 30,736,749–30,737,751 −1301 to −299 4 5’ Upstream 28
Chr6: 30,738,316–30,738,331 267 to 282 1 Exon 1 4
Chr6: 30,738,352–30,739,354 303 to 1305 2 Intron 1 13

 Peg3 Paternal Chr7: 6,730,600–6,730,506 −179 to −85 1 5’ Upstream 6
Chr7: 6,730,342–6,730,263 80 to 159 1 5’ UTR 9
Chr7: 6,730,247–6,729,420 175 to 1002 3 Intron 1 24

 Plagl1 Paternal Chr10: 13,091,040–
13,091,127

253 to 340 1 5’ Upstream 13

 Rasgrf1 Paternal Chr9: 89,870,292–89,879,770 −39,617 to −30,139 6 5’ Upstream 16
 Sgce Paternal Chr6: 4,749,158–4,747,736 −1982 to −560 2 5’ Upstream 22

Chr6: 4,747,042–4,747,006 135 to 171 1 Exon 1 4
Chr6: 4,746,967–4,746,963 210 to 214 1 Intron 1 3

 Snrpn Paternal Chr7: 60,005,229–60,004,853 −118 to 259 2 Intron 2 17
 Trappc9 Multiple (Maternal in brain) Chr15: 72,809,627–

72,809,272
251,578 to 251,933 2 Intron 16 16

 Zdbf2 Paternal Chr2: 206,273,572–
206,314,427

−10,439 to −9406 4 5’ Upstream 12

Total number of CpG sites analyzed 293
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to cover 293 CpG sites across 16 genes, and the percentage 
methylation of each CpG site was determined in each sam-
ple. A list of the genes, their respective coordinates, and the 
number of CpG sites analyzed in this study are provided in 
Table 2.

Bisulfite sequencing and data analysis

Bisulfite sequencing was performed on 92 samples (46 
hippocampus and 46 cortex) by EpigenDx, Inc. (Hopkin-
ton, MA). Tissue samples were digested using 500 μL of 
ZymoResearch M-digestion Buffer (Zymo, Irvine, CA) and 
5–10 μL of protease K (20 mg/mL) with a final M-digestion 
concentration of 2X. The samples were incubated at 65 °C 
for a minimum of 2 h. 20 µL of the supernatant from the 
sample extracts were bisulfite modified using the ZymoRe-
search EZ-96 DNA Methylation-Direct Kit™ (cat# D5023) 
kit per the manufacturer’s protocol with minor modifica-
tion. The bisulfite-modified DNA samples were eluted using 
M-elution buffer in 46 µL.

All bisulfite-modified DNA samples were amplified using 
separate multiplex or simplex PCRs with Qiagen (Gaith-
ersburg, MD) HotStar Taq. All PCR products were verified 
and quantified using the QIAxcel Advanced System. Prior 
to library preparation, PCR products from the same sample 
were pooled and purified using QIAquick PCR Purification 
Kit columns (Qiagen).

Libraries were prepared using a custom Library Prepara-
tion method created by EpigenDx. Library molecules were 
then purified using Agencourt AMPure XP beads (Beckman 
Coulter) and quantified using the Qiagen QIAxcel Advanced 
System. Barcoded samples were then pooled in an equimo-
lar fashion before template preparation and enrichment 
were performed on the Ion Chef™ system (Thermo Fisher) 
using Ion 520™ & Ion 530™ ExT Chef reagents. Follow-
ing this, enriched, template-positive library molecules were 
sequenced on the Ion S5™ sequencer using an Ion 530™ 
sequencing chip (Thermo Fisher).

FASTQ files from the Ion Torrent S5 server were aligned 
to the local reference database using open-source Bismark 
Bisulfite Read Mapper with the Bowtie2 alignment algo-
rithm (https:// www. bioin forma tics. babra ham. ac. uk/ proje cts/ 
bisma rk/; Krueger and Andrews 2011). Methylation levels 
were calculated in Bismark by dividing the number of meth-
ylated reads by the total number of reads, considering all 
CpG sites covered by a minimum of 30 total reads. CpG 
sites with fewer than 30 reads were excluded from analyses.

Statistical analysis

Data were analyzed as mixed models in SAS 9.1.3 (SAS 
Institute, Cary, NC) Procedure Mixed, with REML estima-
tion and Type III Tests of Fixed Effects. Line (selected line 

7 vs. non-selected line 4), foster-line, and sex were fixed 
effects, while dam ID (n = 28) was a random effect nested 
within linetype × foster-line. Separate mixed models were 
created to analyze the percent methylation levels for CpG 
sites across the entire genomic region for each gene (Sup-
plementary Table 1) as well as the percent methylation levels 
for CpG sites within distinct genomic regions (i.e., introns, 
exons, 5’ upstream regions, and 5’ untranslated regions; 
Supplementary Table 2).

In all tables, we present least squares means (L.S. mean) 
and standard errors (S.E.) for each imprinted gene for both 
brain regions (cortex and hippocampus) and the results of 
each F-statistic. Supplementary Tables 1 and 2 also present 
the p-values for the differences in the L.S. means between 
the in-fostered and cross-fostered groups (i.e., the effect of 
cross-fostering between the HR and C lines by sex). Sup-
plemental material can also be referenced for main effects, 
as well as interactions (line × foster-line, line × sex, foster-
line × sex, line × foster-line × sex).

In all analyses, outliers were iteratively removed when 
the standardized residuals exceeded ~ 3. Statistical signifi-
cance was set at p < 0.05. Effect sizes, presented as Hedges’ 
g values, were also calculated for group comparisons (CC vs. 
HRHR, CC vs. CHR, and HRHR vs. HRC; Tables 3 and 4 
and Supplemental Tables 3 and 4). Hedges’ g values greater 
than  + 0.8 and less than − 0.8 were viewed as a large effect 
size, while values between + 0.8 and + 0.5 and between − 0.8 
and − 0.5 were considered to be a medium effect size. 

Results

To address whether mice from a line genetically selected 
for elevated voluntary physical activity have altered DNA 
methylation profiles of imprinted genes compared with non-
selected C mice, we investigated the methylation profile of 
C offspring that were cross-fostered at birth and reared by C 
dams and HR offspring that were cross-fostered at birth and 
raised by HR dams. We also investigated the methylation 
profiles of C offspring cross-fostered at birth and reared by 
HR dams and HR offspring cross-fostered at birth and raised 
by C dams to investigate additional early-life program-
ming effects (i.e., maternal effects) on genomic imprinting 
(Fig. 1). This factorial experimental design allowed us to 
examine the genomic and non-genomic contributions to ele-
vated physical activity. Because the expression of imprinted 
genes varies with tissue type and male and female mice differ 
in wheel-running behaviors, we examined the DNA methyla-
tion profiles in the hippocampus and cortex of both sexes. 
The percent methylation of 16 imprinted genes totaling to 
293 CpG sites were analyzed by bisulfite sequencing and 
are reported in Supplemental Tables 1 and 2. The F-statistic 
and accompanying p-values for those that had p < 0.05 for 

https://www.bioinformatics.babraham.ac.uk/projects/bismark/
https://www.bioinformatics.babraham.ac.uk/projects/bismark/
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a main effect or interaction are further reported in Tables 3 
and 4 for the cortex and hippocampus, respectively, as well 
as Supplemental Tables 3 and 4. Hedges’ g value of effect 
sizes between key groups (CC vs. HRHR, CC vs. CHR, and 
HRHR vs. HRC) for these genes are also reported.

Individual main effects of line and maternal 
upbringing on DNA methylation

When analyzed across the entire genomic region, our 
statistical model revealed several significant individual 

main effects of line (physical activity) and foster-line 
(maternal upbringing) on the DNA methylation profiles 
of the 16 imprinted genes analyzed in this study (Sup-
plemental Table 1). A significant main effect of line for 
Rasgrf1 in the cortex (p = 0.0120; Table 3) and Zdbf2 in 
the hippocampus (p = 0.0306; Table 4) was observed, as 
well as additional trends towards statistical significance 
(p < 0.10) for foster-line for Zdbf2, (p = 0.0727; Table 4) 
in the hippocampus.

When the CpG sites were analyzed within distinct 
genomic regions such as introns, exons, and promoter 

Table 3  Type 3 tests of fixed 
effects for genes in the cortex 
with at least one significant 
main effect and/or interaction 
(Color table online)
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regions, no significant individual main effects of line and 
foster-line on the DNA methylation of the 16 imprinted 
genes were revealed (Supplemental Tables 3 and 4). These 
results suggest that differences in genomic regions do not 
significantly influence the overall methylation profile of 
any of the imprinted genes analyzed.

Interaction of line and maternal upbringing on DNA 
methylation

When assessed for line and foster-line interaction across the 
entire gene, there were significant main effects for Ig-DMR 
(p = 0.0045) and Mest (p = 0.0216) in the cortex (Table 3). 
The hippocampus had a significant main effect for line and 
foster-line for Peg3 (p = 0.0126; Table 4). When the CpG 
sites were analyzed by genomic context, there were addi-
tional line × foster-line interactions (Supplemental Tables 3 
and 4). In the cortex, there was a significant line × foster-
line interaction for the exon (p = 0.0063) and promoter 
(p = 0.0483) regions of Mest (Supplemental Tables 3). In 
the hippocampus, there was a significant line × foster-line 
interaction for the intron region of Peg3 (p = 0.0062; Sup-
plemental Tables 4).

Influence of sex and the interaction of sex, line, 
and maternal upbringing on DNA methylation

When analyzed across the entire genomic region, sex 
produced an individual main effect on Snrpn in the hip-
pocampus (p = 0.0461; Table 4). A trend for a significant 
main effect of sex for Rasgrf1 (p = 0.0857) and Ig-DMR 
(p = 0.0746) in the cortex (Table 3) and Igf2 (p = 0.0671) 
in the hippocampus (Table 4) were also observed. When 
assessed for a three-way line, foster-line, and sex interaction, 
there were significant main effects for Rasgrf1 (p = 0.0397) 
in the cortex (Table 3) and Igf2 (p = 0.0212) and Impact 
(p = 0.0175) in the hippocampus (Table 4). The Sgce intron 
region within the hippocampus also revealed an additional 
three-way interaction (p = 0.0168; Supplemental Tables 4).

Analyses of effect size between CC vs. CHR, CC vs. 
HRHR, and HRHR vs. HRC groups revealed large effect 
sizes with Hedges’ g values of greater than + 0.8 and/or less 
than − 0.8 for Rasgrf1, Ig-DMR, Mest, Gnas, Grb10, and 
Trappc9 in the cortex (Table 3 and Supplemental Tables 3) 
and Zdbf2, Peg3, Igf2, and Impact in the hippocampus 
(Table  4 and Supplemental Tables  4), indicating nota-
ble effects of line and foster-line, despite non-significant 
line × foster-line interactions for these genes.

Table 3  (continued)

Line, foster-line, sex, line × fline, line × sex, fline × sex, line × fline × sex were included as terms in 
all models. Separate models were run for each gene. F-statistic and associated p-values for each gene 
are reported. Hedges’ g value from select comparisons is also reported (CC vs. HRHR; CC vs. CHR; 
HRHR vs. HRC). Values ± 0.8 or greater (indicated in red) were viewed as large effect sizes. Values 
between ± 0.5 and ± 0.8 (indicated in blue) were considered as a medium effect size
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Discussion

The DNA methylation status of genes is an attractive con-
duit for early-life effects that can persist into adulthood. 
Moreover, alterations in DNA methylation can interact with 
other early-life influences and amplify across successive 
generations (Yin et al. 2013; Short et al. 2017; Yeshurun 
et al. 2017; McGreevy et al. 2019). Here we analyzed DNA 
methylation patterns for 16 imprinted genes in a genetically 
selected line of mice (HR) and a non-selected line (C) whose 

offspring were cross-fostered in a full factorial experimental 
design. Our results shed light on non-genomic contributions 
to elevated physical activity. The results from our statistical 
model, which accounted for the influence of sex, line, and 
foster-line, showed that lines differed in DNA methylation 
patterns of Rasgrf1 in the cortex (Table 3) and Zdbf2 in the 
hippocampus (Table 4). These results support the hypoth-
esis that the genetic inheritance of elevated physical activ-
ity can potentially lead to altered expression of imprinted 
genes in the brain. Furthermore, early-life effects through 

Table 4  Type 3 tests of 
fixed effects for genes in the 
hippocampus with at least one 
significant main effect and/or 
interaction (Color table online)
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cross-fostering modified the methylation status of other 
imprinted genes involved in fetal growth and energy metabo-
lism, including Ig-DMR, Mest, and Peg3. Finally, the sexes 
differed in DNA methylation for the paternally expressed 
genes Snrpn, Rasgrf1, Igf2, and Impact.

Below, we first discuss the significance of the imprinted 
genes, Rasgrf1 and Zdbf2, given that the methylation pat-
terns of these genes were significantly affected by wheel-
running. We then discuss the methylation status of additional 
imprinted genes modified with cross-fostering and by sex 
and the implications of these genes on neurodevelopment.

The HR line and genomic imprinting of Rasgrf1 
and Zdbf2 in the brain

Our most notable finding was alterations in DNA methyla-
tion in the paternally imprinted genes, Rasgrf1 and Zdbf2, 
in the cortex and hippocampus, respectively, in the HR line 
(Tables 3 and 4). In mice, Rasgrf1 (Ras protein-specific gua-
nine nucleotide releasing factor 1) is a paternally methylated 
and paternally expressed imprinted gene located on chromo-
some 9 (Plass et al. 1996; Yoon et al. 2002; Dockery et al. 
2009). All 16 CpG sites assayed for this gene were located 
approximately 30 kb to 40 kb upstream of the transcrip-
tion start site, where the Rasgrf1 differentially methylated 
region (DMR) is located (Shibata et al. 1998; Dockery et al. 
2009). The methylation status of the Rasgrf1 DMR directly 
influences Rasgrf1 expression in the brain. The Rasgrf1 
DMR contains CTCF binding sites, which have been shown 
to function as enhancer blockers at maternally imprinted 
loci, including H19, Igf2, and KvDMR1 (Bell and Felsen-
feld 2000; Hark et al. 2000; Yoon et al. 2005; Holmes et al. 
2006; Fitzpatrick et al. 2007). CTCF binds to the unmeth-
ylated Rasgrf1 DMR, which functions in cis to silence the 
maternal allele (Yoon et al. 2005; Fitzpatrick et al. 2007). 
Experimental conditions that prevent methylation of the 

paternal DMR result in silencing the normally expressed 
paternal allele in the brain, consistent with the model that 
the unmethylated DMR binds CTCF, blocking expression 
of the Rasgrf1 allele in cis (Yoon et al. 2002, 2005). Add-
ing an enhancer between the DMR and Rasgrf1 overrides 
the enhancer-blocking activity of the CTCF-bound DMR, 
implicating enhancers located upstream of the DMR in the 
regulation of Rasgrf1 in the brain (Yoon et al. 2005; Holmes 
et al. 2006).

Rasgrf1 is detected mainly in the brain (Plass et al. 1996; 
Yoon et al. 2002; Holmes et al. 2006; Fernandez-Medarde 
and Santos 2011), and its expression changes from exclu-
sively paternal before weaning to preferentially paternal 
after weaning (Drake et al. 2009). Mice with Rasgrf1 pater-
nal deletions are normal at birth but display retarded growth 
by weaning (Itier et al. 1998), and loss of Rasgrf1 imprint-
ing increases growth and weight after birth (Drake et al. 
2009). Synchronization of growth in the developing brain 
relies on the secretion of growth hormone (GH)-releasing 
hormone and somatostatin, which stimulate and inhibit GH 
and IGF1 secretion, respectively. Levels of both GH and 
IGF1 decrease or increase when Rasgrf1 is deleted or over-
expressed, respectively.

Rasgrf1 also mediates oxidative stress and inflamma-
tory responses and can be upregulated with chronic exer-
cise (Table 3; Moreland et  al. 2020) and stress (Cheng 
et al. 2020). Rasgrf1-deficient mice display lower levels of 
reactive oxygen species, protection against oxidative stress, 
reduced body size, and improved motor coordination with 
age (Borras et al. 2011). It is possible that the alteration of 
Rasgrf1 methylation in HR mice results in a shift in oxidant 
and anti-oxidant factors and could contribute to the neuro-
biological alterations observed in these mice. Supporting 
this, Rasgrf1 is expressed in the postsynaptic densities of 
neurons and is an intrinsic mediator of brain derived neu-
rotrophic factor-induced small GTPase R-Ras activation, 

Table 4  (continued)

Line, foster-line, sex, line × fline, line × sex, fline × sex, line × fline × sex were included as terms in 
all models. Separate models were run for each gene. F-statistic and associated p-values for each gene 
are reported. Hedges’ g value from select comparisons is also reported (CC vs. HRHR; CC vs. CHR; 
HRHR vs. HRC). Values ± 0.8 or greater (indicated in red) were viewed as large effect sizes. Values 
between ± 0.5 and ± 0.8 (indicated in blue) were considered a medium effect size



290 Behavior Genetics (2022) 52:281–297

1 3

R-Ras-mediated axonal morphological regulation (Umeda 
et al. 2019), and is involved in memory formation (Brambilla 
et al. 1997).

We also observed a significant main effect of selective 
breeding for elevated physical activity for 12 CpG sites 
located 10 kb upstream of the Zdbf2 transcription start site 
(Table 4). The Zdbf2 (DBF-type zinc finger-containing 
protein 2) gene encodes for a protein containing DBF4-
type zinc finger domains but has no known function. Like 
Rasgrf1, Zdbf2 is also paternally methylated and pater-
nally expressed (Kobayashi et al. 2009) and controls the 
paternal-specific expression of Zdbf2 isoforms during early 
development (Duffie et al. 2014). The Zdbf2 locus is pater-
nally imprinted, with three intergenic paternally methylated 
DMRs located between 8.5 kb and 16 kb upstream of the 
Zdbf2 transcription start site. However, additional work sug-
gests that the Zdbf2 DMR locus may also be under transient 
maternal imprinting control during specific developmental 
periods (Kobayashi et al. 2012; Proudhon et al. 2012; Duffie 
et al. 2014), likely due to multiple promoters (Duffie et al. 
2014). Because the function of Zdbf2 is unknown, it is diffi-
cult to estimate the functional consequences of altered Zdbf2 
methylation in the hippocampus of our HR mouse model. 
However, studies have shown that aberrant hypermethyla-
tion of the maternal Zdbf2-DMR has been observed in some 
patients with Beckwith-Wiedemann Syndrome (Maeda et al. 
2014), an imprinting disorder characterized by body over-
growth and enlargement of internal organs. Investigating the 
functions of the Zdbf2 gene in exercise behavior may provide 
further information about how Zdbf2 expression may control 
fetal growth and metabolism.

Because the two genes that were significantly altered 
by selective breeding are paternally methylated and pater-
nally expressed genes, our results support a hypothesis that 
paternal imprinting of genes in the brain may be a conduit 
through which exercise behavior influences nervous system 
development and function (Radford et al. 2011; Li et al. 
2013; Baker et al. 2015; Eclarinal et al. 2016; Garland et al. 
2017). In addition, given the well-characterized changes in 
allele frequencies for genes associated with elevated levels 
of exercise (Xu and Garland 2017; Hillis et al. 2020), it is 
also plausible that genetic and epigenetic factors interact 
with each other to modify DMR methylation profiles, as has 
been noted for human IGF2R (Xu et al. 1997; Sandovici 
et al. 2003) and IGF2 (Sandovici et al. 2003) genes. This 
possibility remains to be tested in future studies.

Influence of maternal upbringing on genomic 
imprinting in the brain

The early family life environment shapes human neurodevel-
opment and behavioral outcomes well into adulthood (Heim 
et al. 2002; Apter-Levy et al. 2013). In rodents, naturally 

occurring variations in maternal care shape the offspring’s 
neuroendocrine stress reactivity, anxiety, and depression-like 
behavior (Meaney 2001; Schroeder and Weller 2010; Kes-
sler et al. 2011; Cohen et al. 2015). Dams exhibiting differ-
ent social behaviors also demonstrate variations in maternal 
care (Clinton et al. 2007, 2010), and cross-fostering their 
offspring shifts their adult phenotype, leading to greater 
social interaction and reduced anxiety-like anxiety behav-
ior. Anxiety-like behavior effects are accompanied by gene 
expression changes in the amygdala that emerge in early 
postnatal life and persist through adulthood, revealing how 
an early-life manipulation such as cross-fostering can change 
brain development and ultimately impact adult behavior.

Variations in maternal care can also alter the expression 
of imprinted genes. It has been suggested that paternally 
expressed imprinted genes increase offspring size and sur-
vival. Mutations affecting the paternally expressed Mest 
(Lefebvre et al. 1998) and Peg3 (Li et al. 1999; Curley et al. 
2004) genes result in a striking lack of maternal care, sup-
porting the notion that genomic imprinting is associated 
with the evolution of social behaviors. Targeted mutation 
of paternally expressed imprinted genes influences sev-
eral aspects of fetal and postnatal development. Mutation 
of Peg3 in offspring reared with wild-type mothers, and 
vice versa, significantly increases offspring mortality, with 
the combined mutation in mother and offspring exhibiting 
near 100% lethality (Curley et al. 2004). Moreover, Peg3 
mutant mothers exhibit decreased nurturing behaviors, 
including nest-building, crouching, and pup retrieval, as 
well as reduced numbers of oxytocin-producing neurons in 
the hypothalamus (Li et al. 1999). Inactivation of Mest in 
embryonic cells also resulted in abnormal maternal behavior 
directly impacting the feeding behavior of newborns (Lefeb-
vre et al. 1998). These data suggest that paternally imprinted 
genes are critical for maternal care. Consistent with these 
data, we observed alterations in the methylation status of 
four paternally expressed genes, Mest, Peg3, Ig-DMR, and 
Impact, in cross-fostered HR mice (Tables 3 and 4). These 
genes have been shown to promote the growth of body size 
but inhibit the growth of the brain (Keverne et al. 1996, 
Bouschet et al. 2017). Given that these genes play critical 
roles in fetal growth and metabolism, these data support the 
hypothesis that DNA methylation may be a mechanism to 
explain the persistence of developmental programming influ-
ences on exercise behavior.

Although the observed changes in DNA methylation lev-
els in the current study may directly influence wheel-running 
behavior, this hypothesis is challenging to assess. In Cadney 
et al. (2021b), HR pups raised by HR dams weighed less 
than C pups raised by C dams and continued to have reduced 
body masses as adults. As expected, adult HR mice also ran 
approximately threefold more than their C counterparts, and 
females ran more than males. However, cross-fostering had 
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no statistical consequence on any aspect of wheel-running 
behavior, including running distance, duration, or maxi-
mum speed. In addition, with body mass as a covariate, HR 
mice had higher  VO2max than C mice, and males had higher 
 VO2max than females, but cross-fostering had no effect. 
Related to the brain, female HR pups raised by C dams had 
significantly larger brains than female HR pups raised by 
HR dams (Cadney et al. 2021b). Because cross-fostering had 
no effect on adult exercise levels, future studies focusing on 
the methylation profiles of other tissues relevant to exercise 
physiology (e.g., skeletal muscle, heart, liver) are not likely 
to reveal important effects of cross-fostering on voluntary 
exercise behavior in these lines of mice. However, potential 
epigenetic effects induced by other early-life environmental 
factors, such as altered diet and/or exercise (Li et al. 2013; 
Desai et al. 2014a, 2014b; Meek et al. 2014; Acosta et al. 
2015; Hiramatsu et al. 2017; Cadney et al. 2021a, 2022), 
remain an important area of focus for additional study.

The methylation profiles at most of the imprinted gene 
DMRs analyzed in the current study had a baseline level of 
methylation close to the theoretical 50% expected for loci 
whose methylation status is differentially established on 
parental alleles. However, two genes, Igf2 and Ig-DMR, had 
almost 100% methylation in the cortex and hippocampus 
(Supplemental Table 1 and Tables 3 and 4). These unex-
pected findings prompted us to consider the identity and 
nature of such early-life effects that may be capable of shift-
ing gene methylation profiles. Many developmental expo-
sures have been demonstrated to shift the DMR methyla-
tion profile for Igf2, including maternal cigarette smoking 
(Murphy et al. 2012a), maternal stress (Vangeel et al. 2015), 
anti-depressant medications taken during pregnancy (Soubry 
et al. 2011), prenatal nutrition (Kovacheva et al. 2007; Hei-
jmans et al. 2008; Tobi et al. 2009; Hoyo et al. 2011), post-
natal nutrition (Waterland et al. 2006; Hoyo et al. 2011), and 
chemical exposure (Robles-Matos et al. 2021). Such devia-
tions in DMR methylation are likely functionally significant, 
given that imprinted genes are critical for cellular differen-
tiation (Zhang et al. 1997), prenatal and postnatal growth 
(Bouschet et al. 2017), neurobiological function (Isles and 
Wilkinson 2000; Perez et al. 2016; Huang et al. 2017; Krav-
itz and Gregg 2019), and maternal behaviors (Lefebvre et al. 
1998; Li et al. 1999).

The imprinting of Igf2 (Gregg et al. 2010; Harper et al. 
2014; Ye et al. 2015), Dlk1 (Croteau et al. 2005), Grb10 
(Monk et al. 2009; Garfield et al. 2011), and Peg1/Mest (Shi 
et al. 2004) DMRs in the brain may also not be as strictly 
maintained in other tissues. Such epigenetic heterogeneity 
may be partially explained by the relaxation of epigenetic 
control for genes whose monoallelic expression is not essen-
tial for brain function. However, this is an unlikely interpre-
tation because Igf2 and Ig-DMR are critical for neurode-
velopment. An alternative and more probable interpretation 

is that variation between monoallelic and biallelic expres-
sion of imprinted genes in the brain may be directly related 
to brain function and may reflect a response to changes in 
environmental cues, such as the maternal environment. In 
one study, Igf2 was shown to be abundantly expressed in 
the hippocampus and prefrontal cortex of adult rats and, in 
contrast to peripheral tissues, was maternally expressed (Ye 
et al. 2015). Given the established role of imprinted genes in 
maternal behavior and neurobiological processes (Lefebvre 
et al. 1998; Li et al. 1999), it is reasonable to conjecture that 
increased plasticity of imprinting in the brain may contribute 
to complex and heritable behavioral phenotypes, including 
exercise behavior. Additional insights are further discussed 
below.

Sexual dimorphism in parental imprinting 
in the brain

Earlier studies show that when provided access to a run-
ning wheel, females run significantly more, for more 
extended periods, and at higher average speeds than males 
(Swallow et al. 1998). This was also seen when offspring 
of HR females ran significantly longer distances, spent 
more time running, and ran at higher maximum speeds 
than the offspring of HR males (Kelly et al. 2010). As a 
result, females were also smaller and had lower percentage 
of body fat (Swallow et al. 1999) and generally regulated 
energy balance more precisely than males (Swallow et al. 
1999). In the current study, sex further modified DMR 
methylation levels for Rasgrf1 in the cortex (Table 3) and 
Snrpn, Igf2, and Impact in the hippocampus (Table 4), all 
of which are paternally imprinted. These findings were 
expected, given the numerous sex-specific effects observed 
in the previous cross-fostering study, with cross-fostering 
increasing brain mass of female, but not male, HR mice 
(Cadney et al. 2021b).

Several reasons could account for sex differences in DNA 
methylation. First, the timing and duration of methylation 
marks are different in the male versus the female germlines 
(Bourc'his and Proudhon 2008). At the time of fertiliza-
tion, paternal imprinting control regions are methylated in 
spermatozoa versus unmethylated in the oocyte. In contrast, 
maternal imprinting control regions are methylated in the 
oocyte but not in spermatozoa. Second, the developmental 
stage in which gametic methylation imprints are acquired 
is also sex-specific, with de novo methylation being initi-
ated earlier in the male germline compared to the female 
germline. Methylation is acquired very early during sper-
matogenesis, in precursors of the self-renewing spermatogo-
nial stem cells. Because of this, paternally methylated CpGs 
endure more replication cycles in spermatogonial stem cells 
and proliferating spermatogonia and persist several weeks to 
several years before the production of mature spermatozoa 
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(Eichenlaub-Ritter et al. 2007). On the contrary, maternal 
methylation patterns are established just before ovulation. 
The longer duration of paternal methylation patterns and the 
higher number of replication cycles during gametogenesis 
may favor the erasure of paternal ICRs, while the shorter 
longevity of methylation patterns in the female germline 
may be better conserved. Third, while the total number of 
paternally and maternally imprinted genes is approximately 
even, most of the primary methylation marks acquired in 
the germline are of maternal origin. More than 15 imprinted 
clusters are dependent on ICRs harboring maternal germline 
methylation, while only three imprinted loci are controlled 
by paternal germinal marks: H19/Igf2, Gtl2/Dlk1, and A19/
Rasgrf1 (Reik and Walter 2001). The rest of the paternally 
imprinted genes are controlled through the production in 
cis of a non-coding RNA, silencing itself on the maternal 
allele by DNA methylation inherited from the oocyte. Lastly, 
the maternal genome is required for the development of the 
embryo, while the paternal genome promotes the devel-
opment of extraembryonic structures such as the placenta 
(Barton et al. 1984; McGrath and Solter 1984). However, it 
is difficult to address the specific influence of maternal and 
paternal germline imprints on the neurodevelopment of the 
offspring. Regardless, it is reasonable to deduce that sex-
specific observations such as those found in our study may 
be informative when designing future studies to evaluate 
links between parent-of-origin genes and sexually dimorphic 
effects on wheel-running behavior.

Limitations and concluding remarks

The current study provides new insights into potential epi-
genetic mechanisms underlying the developmental origins 
of exercise and physical activity. However, some limitations 
will need to be addressed in future studies. First, the cross-
fostering experimental design did not include non-fostering 
controls such that C offspring were reared by their biologi-
cal C dam, and HR offspring were reared by their biological 
HR dam. This limitation was intentional, as the inclusion 
of such controls was not necessarily relevant to the experi-
mental aims of the previous study. Additionally, resource 
constraints and early pandemic restrictions on in-person 
research were also concerns. Consequently, the current 
experimental design was limited to 20 litters. Second, the 
DNA in this study was extracted from hippocampal and cor-
tical tissue made up of a heterogeneous collection of cells. 
DNA methylation can vary by cell type, so this must be care-
fully considered in future studies (Davies et al. 2005; Kravitz 
and Gregg 2019). Cell-type-specific imprinting effects are 
especially intriguing because they could serve as potential 
markers for novel subpopulations of brain cells control-
ling a particular neural circuit or behavior pattern. Third, 
we did not assess the ability of DNA methylation status to 

modulate gene expression; therefore, gene expression studies 
are needed to assess gene activity. Lastly, bisulfite sequenc-
ing does not differentiate between 5-methylcytosine and 
5-hydroxymethylcytosine. This is critical because 5-hydrox-
ymethylcytosine is enriched in the brain and is regulated 
during development (Kinney et al. 2011; Sherwani and Khan 
2015). In the future, it will be essential to determine whether 
alterations in DNA methylation associated with physical 
activity and other early-life programming factors are medi-
ated by enzymes that add not only 5-methylcytosines, but 
also 5-hydroxymethylcytosines.

Although we have observed line and sex-specific changes 
in DNA methylation patterns of several imprinted genes, it 
is prudent to question the relevance and potential functional 
consequences of small percentage changes in DNA methyla-
tion like those measured in this study (Breton et al. 2017). 
Indeed, several studies have found that small changes in CpG 
methylation are correlated with differential gene expression 
(Murphy et al. 2012b; Kile et al. 2013; Argos et al. 2015; 
Maccani et al. 2015; Montrose et al. 2017). Therefore, it is 
possible that even small shifts in DNA methylation that pro-
duce large effect sizes can directly impact the transcription 
and expression of these genes.

Because epigenetic marks can “drift” over time, it will 
also be critical to assess offspring later in life (Kochmanski 
et al. 2017) to determine whether DNA methylation changes 
are maintained, possibly amplify with age, and/or transmit-
ted across generations. The expression of imprinted genes 
can also be regulated by additional epigenetic mechanisms, 
such as histone modifications, alternative promoter usage, 
and post-transcriptional processes (Jouvenot et al. 1999; 
Landers et al. 2004; Kim et al. 2018). Investigating the con-
tribution of additional epigenetic mechanisms in the regula-
tion of wheel-running behavior is also warranted.

In conclusion, using a cross-fostering paradigm to investi-
gate non-genomic contributions to increased physical activ-
ity, we show that a line of mice selectively bred for high vol-
untary wheel-running behavior has stable alterations in DNA 
methylation levels of imprinted genes with known functions 
for fetal growth, development, and metabolism. These dif-
ferential methylation patterns were also shaped by maternal 
upbringing and sex, supporting the hypothesis that genomic 
imprinting in the brain can contribute to complex and her-
itable behavioral phenotypes, and is further influenced by 
developmental programming factors during early life.
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