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Abstract

We introduce the notions of elementary reducing subspaces and elementary irreducible-invariant subspaces—
generated from wandering vectors—of a shift operator of countably infinite multiplicity, defined on a separable
Hilbert spaceH. Necessary and sufficient conditions for a set of shift wandering vectors to span a wandering
subspace are obtained. These lead to characterizations of shift reducing subspaces and shift irreducible-invariant
subspaces, as well as a new decompositidi iofto orthogonal sum of elementary reducing subspaces. Applications
of elementary reducing subspaces to wavelet expansion, and of elementary irreducible-invariant subspaces to wavelet
multiresolution analysis (MRA) will be discussed.
© 2004 IMACS. Published by Elsevier B.V. All rights reserved.

MSC:42C05; 47A15

Keywords:Wavelet; Scale and time-shift details; Shift-wandering subspace decomposition; Shift reducing subspaces
decomposition

1. Introduction

LetU : H — H be alinear bounded operator on a separable Hilbert sigaewith inner product-, -)
and norm|| - ||. A closed subspace’ of H is calledwandering subspader U, or simply,U-wandering
if [4,12],

w1u"™ W, m=>0. (1.1)
If the operatoiU is unitary, ther(1.1) is equivalent to,
U™W LU™W, Vm,m' €Z whenevem # m'. (1.2)

Similarly, w € H is aU-wandering vectoif it spans al/-wandering subspadé1].
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We now recall the “wandering subspace” definition of Hilbert space shift operfdtd®]. Note: by a
“shift” we mean a “bilateral shift”.

Definition 1. A shift U : H — # is a unitary operator for which there is a wandering subspéiceich
that’H admits the “wandering subspace decomposition”

H= @meZUmW' (13)

The wandering subspad# is then calledyeneratingand its dimension is theaultiplicity of U.

In the following we will be dealing with shifts of countably infinite multiplicity. What is interesting is

the fact that the mutually orthogonal subspafE8W)},.cz are neitherU-invariant norU*-invariant.
Moreover, they do not even include abyinvariant orU*-invariant subspace. Hence, they can serve as
building blocks for shift reducing subspaces, as well as for shift irreducible-invariant subspaces. Also,
it is worth noting that a shift wandering subspace cannot be reducing, while a shift reducing subspace
cannot be wandering.

Aninvariant subspace can be uniquely decomposed into direct sum of an irreducible invariant subspace
and a reducing subspapy. In this paper we present an “elementary” characterization of shift reducing
subspaces, as well as that of shift irreducible-invariant subspaces. Our characterizations are elementar
in the sense that they neither rely on the functional calculus of normal op€i&itarsr on the functional
representation of shiffgl], but are based on shift wandering vectors.

LetU : H — H be a shift, and le¥V be aU-wandering subspace. It is easy to see that the subspace

M=\ U"W, (1.4)
m=0

is U-irreducible-invarianf4]. More is true. Halmo$4] has shown that, iM is aU-irreducible-invariant
subspace, then there id/awandering subspadé’ which is such thatm = \/7_, U™W. Similar result
can be stated fot/*-irreducible-invariant subspaces. Our characterization of shift irreducible-invariant
subspaces begins with Halmos’ results. We then show tliatreeducible-invariant subspace can be
represented by elementary irreducible-invariant subspaces—generated-fn@ndering vectors.

Let {y,},ez C H be an orthonormal set and define

W= 5paityluez = \/ ¥n. (1.5)

nez

Itis easy to see that W is U-wandering, then so are the vect¢is },cz. The converse is not true. It turns

out that a sufficient condition for the orthonornialwandering vector$y, },.cz to span a/-wandering
subspacé/V is that the elementary/-reducing subspaces be orthogonal. This is showhhimorem 1
Theorem jives a decomposition of shift reducing subspace into an orthogonal sum of elementary reduc-
ing subspaces. In addition to the familiar wandering subspace decomp¢sigpof #, we show that{

can also be decomposed into an orthogonal sum of elementary reducing subspaces. These are develop
in Section 2while application of shift elementary reducing subspaces to wavelet expansion is taken up in
Section 3 Section 4discusses representation of shift irreducible-invariant subspaces in terms of elemen-
tary irreducible-invariant subspaces. FinaBgction 5connects shift elementary irreducible-invariant
subspaces to shift outgoing and incoming subspaces, as well as to wavelet multiresolution analysis
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(MRA). We then show a decomposition of the wavelet MRA time opergfpinto “elementary” time
operators.

We close the paper with a discussion on advantages of “representation-free” Hilbert space shift operators
which is the “icon” of our paper.

2. Shift edlementary reducing subspaces
LetU : H — H be a shift of countably infinite multiplicity. We begin with the following lemma.

Lemmal. Let)WV be as defined bfd.5).

@) If
Wi = U"W=U"\/ . meL, (2.1)
nez
then
W=\ U, mel (2.2)
nez

(i) Moreover if Wis a U-wandering subspac¢hen

U™, L U™ ,y, whenevem #m', Vn,n' €Z. (2.3)
In particular,
U™, L U™y, whenevem #m', VneZ. (2.4)

(i.e, ¥, for n € Z, are U-wandering vectons

Proof.
() Recall that
Umspaiy, tnez = spaiU™ Yl ez, m € Z, (2.5)
and
U spartyluez € Umspany),ez (2.6)
sinceU™ is continuous|[6], Problem 3.46). Moreover,
U"spaiy, },ez, = U"SPai P, }nez 2.7)

becausd/~" is continuous—inverse image of closed sets are closed. Therefof2,8)pnd(2.7),

Umsp_ar{‘/fn}nez - Umspar{‘/fn}nez - Umsp_ar{‘/fn}nez = Umsp_ar{l/fn}neﬂ
Hence
U"spaiy, jnez = U"spaiy, tnez. (2.8)
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It then follows from this and fronf2.5) that

Umsp_ar{wn}neZ = U'"Spamﬂn}nez = Sp_ar{Umwn}nEZ-

Thus(2.2)is proven.
(i) We have

Uy, e U™W, Vm,neZ
by (2.1). Therefore, for arbitrary:, n andm’,
U™, L U™W, whenevem # m',
by (1.2)—sinceWis U-wandering. Hence
Uy, LU y,y, Vn' €Z,
by (2.2). In particular,
U™y, L U™,, wWhenevem #m', VneZ,

(i.e., ¥, areU-wandering vectors). This finishes the proof.

Lemma 2. Define the elementary reducing subspaces
M=\ Uy, nel.

mez

H, L H, wheneven #n,
then
U™, L U"y,y, wWheneven #n', Vm,m' €Z.

Proof. We have by assumption and by definitionfof,
\/ U L\ Uy, wheneven # '
keZ keZ
But, for eachn andn,
U € \/ UMy,
keZ
Similarly, for eachm’ andn’,
U™ Y € \/ Ut
keZ
It then follows that
U™, L U™y, wheneven #n', VYm,m' €Z,

and the lemma is proven.

(2.9)
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We are now ready to prove the following theorem.

Theorem 1. LetU : H — H be a shift of countably infinite multiplicitand{v,, },cz be an orthonormal
setin. LetW be spanned by, },cz, andH,,, n € Z, be spanned byU" ¥, } 2.

(i) If WisaU-wandering subspace then,,n € Z, are U-wandering vectors. Moreovghe elementary
reducing subspaceX,,, n € Z, are mutually orthogonal

(i) If yv,, n € Z, are U-wandering vectorsand H,, n € Z, are mutually orthogonalthen W is a
U-wandering subspace

Proof. The first part of part (i) is already covered bgmma Zii), while orthogonality of the subspaces
H,, n € Z, follows readily from(2.3).

U™, L U™ ,y, whenevem #m’, Vn,n' €Z,

and since form = m’ we already have,, L v,,, whenevemn # n’'.
For part (ii) we first note that, it follows frolnemma 2and from the assumption th@f areU-wandering
vectors,

U™, L U™ Yy, Vn,n' €Z, whenevem # m'.
Therefore,

U™ L\/ U™ Y. VneZ, whenevem #m'.

keZ
Hence,
\/ Uy L \/ U™y, Whenevem # m’,
keZ keZ
or

U"W L U™W, whenevem # m';

i.e., Wis U-wandering. This completes the proofTifieorem 1 O
A consequence ofheorem 1lis:

Theorem 2. Let M, be the closed/-reducing subspace

M= \/ U"W, (2.10)

meZ

where thel/-wandering subspac®/ is spanned by an orthonormal sef, },cz. Then

Mre = @neZHm (2'11)

whereHt,,, n € Z, are the elementary reducing subspaces spanndd’bBy, },.cz, n € Z.
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Proof. First, recall thaiM ¢ in fact reduced/ since it is clearly invariant for every power &of, and since
U* = U~1: thus it is invariant folU andU*, and hence reducés. Now we have

Mee=\/U"w=\/W,=\/ /Uy, (2.12)

mez meZ meZ nel

by Lemma Z1i); see(2.1). Next recall that, sinceé{, L H,, for n # m (Theorem },

\VAVAZAE ( 2.V U’"wn) =D, .\ Uv. =D, H. (2.13)

neZ meZ n=—00 meZ meZ

where= meanaunitarily equivalent Similarly, sinceW, 1L W, for n # m, by (1.2), (2.1)and(2.2), it
also follows that

\VAVAZ = ( >V Umwn) =D, __ N Uv.=D,_ _ W (2.14)

meZ ne’Z m=—00 nez nez

ButU is aunitary operator so thell™ v, } . ncz is an orthonormal basis for the Hilbert spagg ., U™,
according td_.emma ZXii) and Lemma 2 Thus, by unconditional convergence of the Fourier series,

V VU= vv.=\ U (2.15)

meZ ne’z m,nez neZ meZ

Therefore,

@meZWm = Mre = @neZ%n-
This finishes the proof of the theorem by writiagfor =, as usual. O
The next proposition follows at once froiheorems 1 and.2

Proposition 1.

(i) IftheU-wandering subspadéd’of Theorem 1i) is also generating theim addition to the/-wandering
subspace decomposition

H=ED,umw, (2.16)
andH also admits the elementary reducing subspaces decompgsition

H =D, s, (2.17)
Hence the operatorV admits the decomposition

v=6B" _u. (2.18)

where eachl, := U|H,, is a shift of multiplicityl and whose generating-wandering subspace is
spariy,} =\ ¥

(ii) If, in addition to the conditions oTheorem {ii), the subspace${,, n € Z, span#, then the
U-wandering subspacdd’ is generating
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Proof. If W is U-wandering and generating then the subsp&tg is all of 7. Therefore(2.17)fol-
lows readily fromTheorem 2 while (2.18)is self-evident. FoProposition {ii) we first note that, by
Theorem {ii), Wis alreadyU-wandering. It remains to show that it is generating. Suppése: € Z
spanH, and recall tha#{,, L H,, for n # m. Then

H= @neZHn = @neZ\/ UmWn = \/ UmWn- (219)

meZ n,me

Therefore, as in the proof dtheorem 2
H =D, U W, (2.20)

i.e., Wis aU-generating-wandering subspace, which completes the proof. O

Recall that a unitary operator is a direct sum of infinitely many unitary opergt6fswhich happens
in particular for a (bilateral) shift of infinite multiplicity. Note that this well-known result (see[a.@],
p. 46) is also evident frorf2.18), as summarized below.

Corollary 1. A shift of countably infinite multiplicity is a direct sum of infinitely many shifts of multi-
plicity 1.

It is plain from(2.16)that, each € H can be written as,

h= Z U"w,y,, (2.21)
where
wa €W and ) flwall? = |IR]% (2.22)
m=—00
Therefore,
Uh= > U"Mw,= ) U"ww 1 (2.23)

Let® : H — £%(—o0, 0o; W) be the map defined by
®h = (Wi mez. (2.24)
Then itis plain thatp is unitary, and the shift/ goes into the right shif§, on ¢2(—oo, co; W),
S{wmtmez = {Wm-1}mez- (2.25)
The shift action oV on #, under the decompositiq.17), is transparent since

h= Y h, VheH, (2.26)

n=—oo
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where

h, € H, and i 1112 = 1112 (2.27)
Therefore, _

Uh = i Uh,. (2.28)

n=—oo

Then, since eack,, is reducing, the action dfi takes place oft,. Now let us expand, in terms of the
orthonormal basi§U™ v, },.cz of H,,. We have

o0

Hence,
o0 o0
Uhy = Y (h, UM)U" M = > (e, U™ ) U™ . (2.30)
m=—00 m'=—o0

ThusU|H, := U, goes into the right shif§,,, of multiplicity 1, defined by
Sullhn, U ) mez = (G, U ) dmez, n € Z. (2.31)

Consequentlyl/ goes into the shiffS which is direct sum of infinitely many shifts, of multiplicity
1—on the Hilbert spacé?(—oo, 00; \/ {1, U V) mez), 1 € Z,

s =B _s,. (2.32)

3. Shift elementary reducing subspacesin wavelet expansion
We now turn to application of elementary shift reducing subspates < Z, to wavelet expansion.
Let D denote the dilation-by-2 operator defined on the function sgacg) by
Df=g, g()=v2f2(), f()eLX®). (3.1)

Itis plain thatD is unitary. Moreover, it is a shift of countably infinite multiplicity. Lét-) € £2(R) and
define the functions

VUn() == Y(() —n) =T"Y(), nel, (3.2)
whereT is the translation-by-1 operator @f(R) defined by

Tf=g, &)= f()-D, (3.3)
and it is also a shift of countably infinite multiplicity. Now lét, ,.(-) be “generated” fromy, (-) by

Y () 1= D" () = V2 9,2 () = V2 (2" () — ). (34)

for m, n € Z. We recall the following definition fronfo].
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Definition 2. If the functionsy,, ,(-),m, n € Z, are orthonormal and span the function spa%(é%), then
¥ (-) is called an orthonormal wavelet or, simply a wavelet, @nd,(-) are called wavelet functions—
generated fromy(-).

It follows easily from the above that.

Lemma3. Lety(-) € £L2(R) be aT-wandering vectar
T"y(-) L T"y(), wheneven #n', n,n' €Z.

Theny(-) is a wavelet if and only if the orthonormal functiofig(-), n € Z, defined by3.2), span a
generatingD-wandering subspace

W) = \/ v.() = \/ T"¥(). (3.5)

nez nez

It follows at once from this lemma that, for a given wavelgt) there corresponds B-wandering
subspace decomposition of the function spaeeRr),

2®) = Bz D"Ww) = Doz ), (3.6)
where

Wi (¥) = D"W(®W), m e Z. (3.7)
Therefore, anyf(-) € £2(R) admits the orthogonal decomposition

fG) =" D wn(), (3.8)

meZ

where

wy, € W) and Y flwall® = [ £11% (3.9)

meZ

Let Py, ) be the orthogonal projections onto the subspa®gsy), then it follows from(3.8) that

Py, (f()) = D"wy, (1), meZ, (3.10)
since, by definitionD™w,, € W,,(¥). Therefore, sincé is unitary,
W (:) = D™ Py, sy (f(-)), m € Z. (3.11)

From which it follows that

(Wi (), Y () = (D™ Py, py (F()s ¥ ()) = (), P,y (D" ¥ (1))
Therefore,

(Wi (), Yn) = (fO), Ymn (), m,n €, (3.12)
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sinceD" vy, (= Y., (+)) already lives inV,, (). Now, since the orthonormal sgf,, (-)},cz SpansV(y),
we also have

W () =D (W), Yu(NYu(),  m € Z. (3.13)
nez
Therefore, by(3.12)
W () =Y () U (), m € L. (3.14)
nez

This can be rewritten as
wa () = Y (D" fC), Yu(NYu(), m €L, (3.15)

nez

which implies that

Wi () = Py (D™ f()),  m € Z. (3.16)
Therefore, by3.10)
Py, ) (f()) = D™ wy () = D" Py (D™ (), m € Z, (3.17)
or
Py, FO) = D {FO) YUmnO)Wimn () = D" Py (D™ f(),  m € L. (3.18)
nez

In wavelet theonf9], the subspackV,, (v) is called ‘scale2”-time-shift detail subspacewhile Py,
(f(»)) is “scale2™-time-shift detail variations of(-)". The functionD™ f(-)(= V2" f(2"(-)) is referred

to asf(-) at scale2™, while D*" f(-)(= (1/\/§m)f(1/2’"(-))) is f(-) atresolution2=™. We conclude from
(3.20)

Proposition 2. Let (-) € £L2(R) be a wavelet. Then the projectiomy, ;) and Py, are unitarily
equivalentwith D™ acting as the equivalence operator

Pw, ) = D" Py D™, m € Z.
From which it follows that
Pyw,..p) = DPw,, sy D*, m € Z.

In other wordsthe scale2”1-time-shift detail variations of{(-) is equal to the scak®” -time-shift detail
variations at scale 2 of(-)—at resolution2.

We have from(3.10)and(3.16),
=D Vmad¥ma (). (3.19)

meZ nel

This is the “usual” wavelet expansion over all scales of time-shift detail variatiopic 0& £2(R).
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We now turn to another type of expansion which is a consequence of the “elemé&ntaducing
subspaces decomposition” of the function spdéeR). Let y(-) € £L2(R) be a wavelet, then we have,
by Proposition 1

L2®R) = D, = D,z \/ D" ). (3.20)

meZ

Hence,f(-) € £2(R) now admits the orthogonal decomposition,

fO) = ka0, (3.21)
nez
where
hp€H, and Y k) =17 (3.22)
nez
and
ha() = Py, (f()), neL. (3.23)

Here Py, is the orthogonal projection onfd,. Therefore, since the orthonormal $&X" v, (-) },nez SPans
Hn’

ha() =Y (. D" 1) D" () (3.24)
meZ
or, from(3.23),
ha() =D Py, (), D" Y} D" s (). (3.25)
meZ
Therefore, as before,
ha() =Y (f Pp, (D" )} D" (). (3.26)
meZ
Consequently,
() = Py, (f)) = Y (E Vmn) V(). n€Z. (3.27)
meZ

We call the subspack, then-time-shift-scale detail subspaaghile Py, (f(-)) is then-time-shift-scale
detail variations off(-). Now, let us rewritg3.27)as

ha() = Py, (f()) = Y _ Py, (f()) (3.28)
meZ

= (£ D" Y) D" () (3.29)
meZ

=Y D"(D™ fyu)¥u(), neL (3.30)

meZ
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But
(D™ f )Y (0) = Py, (D™ f()). (3.31)
Therefore(3.30)can be rewritten as
Py, (f(-)) = Y _ D" Py, D™ (f()). (3.32)
mez
It then follows from(3.28)and(3.32)that
Py, (f()) = D" Py, D™ (f()), m,neZ, VfeLA(R). (3.33)

We have therefore proved the following proposition.

Proposition 3. Lety(-) € £L*(R) be a wavelet. Then the projectioRs, , and P, are unitarily equiv-
alent, with D™ acting as the equivalence operator

Pwm,u = Dm P‘ﬂo,n D*nl’ m E Z’

wherey , (-) == ¥((-) — n) = ¥, (-). Therefore
Py,.., =DPy, D", meZ.

In other words the scale2”+1-time-shiftn detail variation of f(-) is equal to the scak@”-time-shiftn
detail variation at scale 2 of{(-)—at resolution2~1.

This proposition is an analog &froposition 2 We will have more to say about the projectioRs;,
andPy, , in Section 5
It follows from (3.21)and(3.27)that

SO =0 V) ¥ma (). (3.34)

neZ meZ

This shows that, with respect to a wavalgt), a functionf(-) € £2(R) is summation of all its time-shift-
n-scale detail variations, as well as what we have seen above, summation of all its"stiahe-3hift
detail variations.

Now, for eachm € Z and each: € Z,

Win () N1y (Y) = {Ym.n}- (3.35)

Then, since the orthogonal complement$wyf, ,,} in W, (¥) and inH,, (), respectively, are orthogonal,
we have

Py, . JC) = Pw, ) Pr,con SC) = Py Pws, o SC)- (3.36)

This implies that, forf(-) € £?(R), its “detail-variations at scale”2and time-shifta” can be obtained
in two ways. Either by projecting its “time-shift-detail-variations” onto the “scale?2time-shift detail
subspace,” or by projecting its “scal&-2ime-shift detail variations” onto the “time-shift-scale detalil
subspace.” These explain the existence of the two wavelet expaii8i@tyand(3.36)

Preliminary results of this section were reported@h
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4. Shift elementary irreducible-invariant subspaces

We now turn to shiftirreducible-invariant subspaces. We begin by recalling Halmos’ ig§uttgyether
with their “adjoint” version.

Proposition 4. LetWbe aU-wandering subspagthen the subspackt; (respectivelyM., ;) defined by

. -1
M=\ U"W (respectively M= \/ U’"W) (4.1)

m=0 m=—00

is U (respectively U*)-irreducible-invariant. Converselyif M (respectively M,) is U (respectively
U*)-irreducible-invariant then there exists &-wandering subspac® so thatM = \/ >~ U"W
(respectively M, :=\/-1 U™ W).

m=—0o0

Let M. be U-irreducible-invariant and I8tV be the corresponding-wandering subspace. Suppdse
is spanned by an orthonormal $é#t,},cz. Then,

M=\ U'w=\/\/ U"¥.. (4.2)
m=0

m=0neZ

Therefore, as in the proof dfheorem 2we have

M=\ U=\ U"¥n (4.3)

m=0neZ neZ m=0

Define the subspaces

o
How =\ U"¥n. nel (4.4)
m=0
Here the subscrigD) means that the integer on the right hand side ranges from 0 onward. It is evident
that the subspacé® o) . }.cz areU- irreducible-invariant. Moreover, they are also mutually orthogonal,
Hoy.n L Ho).w, Wheneven # n’. Therefore, as in the proof Gheorem 2

M = @neZH(O),n- (4.5)
In exactly the same way we obtain for th&-irreducible-invariant subspacet.;,
M*ir = @neZHil_l), (46)
where
-1
HP =\ UV net, (4.7

and the superscrigt-1) indicates that the upper boundmis —1. Moreover, thé/*-irreducible-invariant
subspacegH "V}, are also mutually orthogonal.
Halmos' results can now be restated as.
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Theorem 3. AU (respectivelyU*)-irreducible-invariant subspac#;; (respectively M., ) admits the
orthogonal decomposition

M = @nez'H(o),n (respectively M.,ir = @%ZH’E—D> ’

where

0 -1
Hopn = \/ U (respectively H = \/ U’”x/x,,) , nez,

m=0 m=—00

are orthogonal elementary/ (respectivelyU*)-irreducible-invariant subspaceand {i, },cz is an or-
thonormal basis of th&/-wandering subspac@/.

Sequences d@f andU*-irreducible-invariant subspaces can be generated gpand M., respectively.
Such sequences play a key role in wavelet multiresolution analysis as will be seen in the next section.

5. Shift elementary irreducible-invariant subspacesin wavelet multiresolution analysis (MRA)

We begin by recalling the “incoming—outgoing subspaces” definition of shifts, see for in$td el
the references therein.

Definition 3. A shift U : # — H is a unitary operator for which there is an outgoing (respectively,
incoming) subspac®® (respectivelyV') satisfying the following conditions:

(i)° UV C V° (respectively, (U*V' c V'),

(i) Mo Umvel = {0};

(i) U,,__ UV =H;

where, in (i) and (iii), V%' can be eithe#’° or V'.

We must note thaDefinition 3 was, originally, the Lax—Phillips definition of anutgoing subspace
(respectivelyjincoming subspagefor a unitary operatol/ [7]. However, sincel is actually a shift,
Definition 3can simultaneously serve as that of a Hilbert space shift opdBtdrhus, it is appropriate

to refer to it as “incoming—outgoing definition” of shifts.
We now recall some basic facts relating incoming, outgoing, and wandering subspaces of shifts.

Proposition 5. LetU : H — H be a shift and let V° (respectively V') be U-outgoing(respectively
U-incoming. Then[7],

- -1
VO .= @:TZOU’"W (respectively V= @m:ooU’”W) ;

where the subspace

W:=V°S UV (respectively W:= V' o U*V")
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is U-generating-wandering. Moreover® (respectivelyV') is alsoU-irreducible-invariant(respectively
U*-irreducible-invarian) [4].

An easy consequence of the above is:

Lemmad4. LetU : H — H be a shift andV, be a closed subspace #f. Let{V,} .z be the subspaces
generated fronV; by

Vpor1 = UV, (respectively V,,1 =U"V,), peZ.

Then{V,} <z satisfies the following properties

() Vpsa CVp, peZ

(i) MpZeo Vo = {0k
(i) Upe Vo =H;
if and only if Vy is U-outgoing(respectivelyU-incoming. Similarly, if condition (i) is replaced by
() V, C Vo p e,
then{V,} ez satisfieq(i’), (ii), (iii) if and only if Vg is U-incoming(respectivelyU-outgoing.

It follows from this lemma thaDefinition 3 can be restated in terms of the sequences of subspaces
{U™V°} ez Or {U™V"),,.cz as follows.

Definition 4. A shift U : #H — H is a unitary operator for which there is an outgoing (respectively,
incoming) subspac®® (respectivelyV') satisfying the following conditions:

()° U™tive c U™ VO (respectively, (YU V' c U*m+1vi);

(i) Mmoo U™ VO = {0}

(i) U, U™V =%;

where, in (i) and (iii), V%' can be eithe#’® or V'

The wandering subspace definition of shifts (iBefinition 1) can be restated, in the spirit DEfinition 4
as follows.

Definition 5. AshiftU : H — H is a unitary operator for which there is a generating wandering subspace
W satisfying the following conditions:

oY v wW LU"W, m,n € Z;

(i) Moo U"W = {0};

(i) U, U"W="H.

Remark 1. ComparingDefinitions 4 and 5wve see that the subspadés” V°},,cz or (U™ V'}mez, and
{U™ W} ez differ only in properties (i)' and (i}Y. These two properties show the difference between
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outgoing subspack® or incoming subspack', and the generating wandering subspaceEquivalence
between the two definitions are evident frélroposition 5

To proceed, we now recall the definition of wavelet multiresolution angl9kisvhich plays an important
role in wavelet theory.

Definition 6. A sequence of dpproximation subspacesV,,(¢)}mecz of the function spac€?(R) is a
wavelet MRA, withscaling functionp(-), if the following conditions hold:

(0) {¢((-) — n)},ez is an orthonormal basis of the subsp3iép);
() Vin(§) C Vinta(9),m € Z (01, Vyuia(9) C Viu(9), m € Z);
(i) M=—oo Vi (®) = {O};
(i) Up—ocVin (@) = LX(R);
(V) v() € V(@) & v(2() € Vins1(P), m € Z (01, v(-) € Viu(P) & v(1/2(-)) € Vipt1(§), m € Z).
Remark 2. Definition §i)—(iii) can also be expressed in terms of the projectigpsrom £2(R) onto

the subspace®,, (¢). This was pointed out by Antoniou and Gustafg§dh We will have more to say
about this later—in connection with the time operator of wavelet MRA.

We must note thdDefinition §0) is “particular” to wavelets and has nothing to do with the shift operator
D. It was introduced as a mechanism for constructing a waveletfrom a given scaling function(-).
Also, Definition §iv) can be expressed in terms bfand D* as follows.

Vm+l(¢) = Dvm(¢) (or, Vm+l(¢) = D*Vm(¢))a m € 7. (51)
Therefore, ifV,,,1(¢) = DV,,(¢), thenDefinition &i) becomes
D*Vy(9) C V() (or, DV, (9) C Viu(9)), meZ; (5.2)

i.e., Viu(¢) is D*-invariant (or, D-invariant). Similarly, ifV,,11(¢) = D*V,,(¢), then Definition i)
becomes

DV (¢) CVu(9) (or, D'Vyi1(9) C Vinra(9)), m € Z; (5.3)
i.e.,V,(¢) is D-invariant (or,D*-invariant).
We therefore conclude fromefinition 6andLemma 4
Proposition 6. A wavelet MRA—with scaling functionp(-)—is a sequence of decreasingly-nested
spectivelyincreasingly-nestedsubspaces$V,, (¢)}mez of L2(R); i.e.,
V(@) C Viny1(¢)  (respectively V,11(@) C Viu(9)), m € Z,
generated, either from
() a D-incoming subspac®'(¢) by
Vo(@) i=V'($), V(@) = D"V($) & Voy1(d) = DV (9), m € Z, (5.4)
(respectivelyby V,.(¢) = D*"V'(¢) < V,11(¢p) = D*V,.(¢), m € Z), or from,
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(i) a D-outgoing subspack®(¢) by
Vo(@) :=V0(9), Vi (@) = D" V(@) & Vins1(9) = DVu(9), m € Z, (5.5)

(respectivelyby V,,(¢) = D"™V(¢) < Viui1(d) = DV, (¢), m € Z), whereV'(¢) or V°(¢) are
spanned by the orthonormal basis((-) — 1) },ez.

We shall refer to a wavelet MRA generated from an incoming subspace (respectively, an outgoing sub-
space) as an incoming wavelet MRA (respectively, an outgoing wavelet MRA). From now on, without
lack of generality, we only consider incoming wavelet MRA.

Assumption 1. Let{V, (¢)}.cz be anincoming wavelet MRA—with incoming subsp&é(azp) generated
from a scaling functiom (-)—satisfying,

Vo) :=V'(¢) = \/ ¢(() —n), (5.6)
nez
Vini1(@) = DV, (¢) = D" MVo(¢), m € Z, (5.7)
and
Vm (¢) C Vm-i—l((b)v m € Z (58)

We have, byPropositions 5

Vo(@) = V'(9).
Then, byProposition 6
. -1
Vo(@) 1= V'(¢) = D,__ . DWW, (5.9)

where, as before, thB-generating-wandering subspad& ) is spanned by the orthonormal wavelet
functions{v,,(-) := ¥((-) — n)},ecz—generated from a wavelgt(-),

W) = \/ ¥(() —n). (5.10)

nez

It then follows that
m—1

Vn(¢) = D"Vi(¢) = D,_" . .D'Ww). (5.11)

Remark 3. We must note thaEq. (5.9—without the functiong (-) and(-)—is the “usual” represen-
tation of an incoming subspace for a shift operator which, in our case, is the dilation-by-2 ogerator
However, with the shift operatdp and only wheny(-) is an orthonormal wavelet, théfvis characterized
by (5.10) As a consequence, (6.9)the incoming subspadg, is now “depending” ony(-) and is rep-
resented by the orthogonal subspa@@8W ()} o< ,<—1. However, withEq. (5.6) or Definition 0),

the subspac®) is also required to be spanned by the orthonormajgs@t) — n)},cz. Thus, in wavelet
theory, the incoming (or, outgoing) subspagedepends on both a wavelgt-) and a scaling function
¢(-). This is the key idea which resulted in a procedure for constructing a wayélefrom a given
scaling functiorp(-) [9].
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We now obtain an alternate representation for the approximation subsfag€s},.cz. First, by
Lemma 1i), (5.9)can be rewritten as

. -1
Vo) = Vi) = D,__.\/ DPw() —n). (5.12)
nez
Then, sincevi(¢>) is D*-irreducible-invariant, it follows fronTheorem 3hat
Vo) = V(@) = D, V), (5.13)

where, as before,
-1

1AW = \/ D'y(()—n), nel (5.14)
p=—00
Next, we have fron{5.7),
V(@) = D"Vo(¢) = D,z D" HS P (), m e Z. (5.15)
But, by (5.13),
-1 m—1
D"H YWy = \/ D" —my = \/ D'W()—n), mnel. (5.16)
p=—00 V=—0

Let us define thé*-irreducible-invariant subspaces

H V) = D"HTY (Y) = ni/l D"y (()—n), m,neZ. (5.17)
p=—00

Then it follows from this(5.16) and(5.15)that

V@) = Dzt D), mer. (5.18)
Now it is plain that, for each fixed, the subspace${"™ ()} .z are also nested,

H™ () c H" V), m e Z. (5.19)
Moreover, by(2.9), they are subspaces of the elementary reducing subgfjace

M, = \/ D"Y(()—n), neL (5.20)

pEZ

which we have referred to aszatime-shift-scale detail subspacEherefore the subspa@é™ () can
be called ar-time-shift-scale2” detail subspacelt is easy to see that, for each fixedthe subspaces
{H")},,cz—o0f H,— also inherit the wavelet MRA properties of the original wavelet MBA, (¢)} <z
on L2(R).

We summarize the above in the next proposition.

Proposition 7. Let{V,,(¢)}.cz be an incoming wavelet MRA satisfyiAgsumption 1Then the approx-
imation subspace®’,, (¢)}..cz admit the orthogonal decomposition

Vn(@) = \/ D"¢(() =) = D,z VW), m ez, (5.21)

nez



C.S. Kubrusly, N. Levan/Mathematics and Computers in Simulation xxx (2004) XXX—XXX 19

where the elementar®*-irreducible-invariant subspacdﬂﬁlm)(w)}mez, are defined by5.17)

m

HP@) = \/ D'Y()—n). m.nel. (5.22)

p=—00

Moreovet for each fixed:, the subspace{"™},,.z form an“elementary wavelet MRA on the elemen-
tary reducing subspacs,,.

We close the paper with adecomposition of the time operator of wavelet MRA. First, recBltinaition 6
is equivalent tq1].

Definition 7. Let {V,,(¢)}mez be closed subspaces of the function spgé€R), and let P,, be the
projections ontd/,, (¢). Then{}V,,(¢)}.cz is a wavelet MRA, wittscaling functiorp(-), if the following
conditions hold:

(0) {¢((-) — n)},ez is an orthonormal basis of the subspagép);
(") P < Ppsa;

(”/) P =Ilim, . P, =0;

(”I/) Pioo = IimmﬁJrooPm =1

(iv') Pny1=DP,D*.

(In (i) < means inclusion of ranges; in’jiand (iii') we have strong convergence.)

Antoniou and Gustafsof2] have shown that this definition not only defined a wavelet MRA, but it also
allowed them to define the time operator of wavelet MRA, as the self-adjoint opéfatith dense
domainD(T),

Ti=Y m(Pus1— P (5.23)

meZ

We have seen iRropositions 2 and that the projectiong)y, () and Py, also have property (iy of
Definition 7,

Pw,..vy = DPw, yD*, m € Z. (5.24)
and

Py,.., =DPy, D", meL. (5.25)
These suggest th#,, ,) and Py, . should, somehow, be “related” to the time opergtoindeed, since

Pni1— P = Pw, s (5.26)

and since each subspaxg, () is spanned by the orthonormal $ét,, ,(-)},<z, it follows from (5.23)
that[2],

T =) MP,(f0),  f() € LAR), (5.27)

mez
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=D m Y (O Vi OV Wi ), (5.28)
meZ,  neZ

=) m) Py, (fO) (5.29)
meZ nez

Egs. (5.27) and (5.29rovide connections to the time operafoof the projectionsPy, (v) and Py, .
More is true. As in the proof ofheorem 2the right-hand side d6.28)can be rewritten as

T =) Y mlfO) YN V(). f() € L2XR), (5.30)
neZ meZ
or,
TH) = Do T 10, (5.31)
where7, are defined by
Tof() =D m( ) YOV Wma() = Y_MPy £(). (5.32)
meZ meZ

We therefore conclude that:

Proposition 8. The time operatofl of wavelet MRA admits the decomposition

T= BT (5.33)
where7,—called"elementary time operators—are defined orH,, by
Toi=» mP,, . nel (5.34)
mez

Consequentlyeach wavelet functiott,, , (-) is age-eigenvectd®] of 7,.

We note that the time operat@} agrees with the fact that, froRProposition 7the subspace${"™},,cz
form a wavelet MRA oriH,,.

We refer tg1] and[2] for further results on time operator of wavelets, and connections between wavelet
theory and wandering subspace theory, and other parts of mathematics.

Finally, we must note that our approach to shifts is “non-conventional”, in the sense that, instead of
dealing with specific shift representation &i{—oo, co; W) such as that of2.25)

S{wmtmez = {Wm-1}mez,

we deal with the shifl/ on # first, via its wandering subspac#®g,, then via its elementary reducing
subspace®{,. An advantage of this “representation-free” approach, of course, is the fact that we can get
back tosS;, via the vectord/™v,,, which are actually “age eigenvectors” of the associated time operator
7. Our key results Theorem land Proposition } are clearly consequence of the representation-free
approach. These results cannot be derived from the represer(aid) even thougts; is related ta/

via the unitary operato® defined by(2.24) This is due to the fact that the conventional approach does
not allow one to connect shifts with time operator or with wavelets, since it has nothing to do with the
age eigenvector8™y,, which, in the case of wavelets, are precisely the wavelet functigng-).
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