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A comparison of two varying coefficient meta-analysis methods
for an average risk difference
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(Received 10 January 2014; accepted 26 May 2014)

Two interval estimation methods for a general linear function of binomial proportions have been proposed.
One method [Zou GY, Huang W, Zhang X. A note on confidence interval estimation for a linear function of
binomial proportions. Comput Statist Data Anal. 2009;53:1080–1085] combines Wilson interval estimates
of individual proportions, and the other method [Price RM, Bonett DG. An improved confidence interval
for a linear function of binomial proportions. Comput Statist DataAnal. 2004;45:449–456] uses an adjusted
Wald interval. Both methods are appropriate in varying coefficient meta-analysis models where the risk
differences are allowed to vary across studies. The two methods were compared in a simulation study under
realistic meta-analysis conditions and the adjusted Wald method was found to have the best performance
characteristics.

Keywords: meta analysis; adjusted Wald interval; risk difference

1. Introduction

The difference between two proportions, referred to as a risk difference, is a useful measure of
effect size in 2-group studies where the response variable is dichotomous. Unless the sample size
in each group is large, a confidence interval for the population risk difference can be unacceptably
wide. A more precise interval estimate of the risk difference can be obtained by combining results
from two or more studies that have each estimated a risk difference for the same response variable.
Methods for combining results from two or more studies, also known as meta-analysis, are used
extensively in public health research.

The classic meta-analysis methods [1] are based on the constant coefficient meta-analysis
model (also known as the fixed-effect model) and the random coefficient meta-analysis model.
The constant coefficient model requires population effect sizes to be identical across studies and
the classic inverse–variance estimator of the common effect size is inconsistent if the homogeneous
effect size assumption is violated. It has been argued that the homogeneous effect size assumption
is unrealistic and that the constant coefficient meta-analysis methods should no longer be used.[2]

The random coefficient meta-analysis model does not require effect size homogeneity. However,
the random coefficient methods assume that the effect sizes from the selected studies represent
a random sample from some definable superpopulation of effect sizes, which is an assumption
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that is difficult to justify.[3, p.41] Furthermore, the variance component of the random coefficient
model is a fundamental parameter to estimate, but interval estimates of the variance component
are hypersensitive to minor and difficult to detect violations of the superpopulation normality
assumption.[4]

Meta-analysis methods for combining risk differences based on a varying coefficient model [5]
do not require the population risk differences to be identical across studies nor do they assume
that risk differences from the selected studies are a random sample from a superpopulation of
effect sizes. The varying coefficient meta-analysis model is attractive in applications where the
assumptions of the constant coefficient and random coefficient models are difficult to justify. Let
�j = p1j − p2j denote the population risk difference estimated in study j(j = 1, 2, . . . , m) , where
pij is the population proportion under condition i(i = 1, 2). A parameter of interest in the varying
coefficient model is the average risk difference � = ∑m

j=1 �j/m, which can also be expressed as
a linear contrast of the population proportions � = c′p where c′ = 1′ ⊗ [1 − 1]/m, 1 is a m × 1
vector of ones, and p is a 2m × 1 vector of population proportions.

Until recently, confidence intervals for linear functions of binomial proportions were obtained
using the Wald method.[6] The traditional Wald confidence interval for a linear function of bino-
mial proportions has been shown to have a coverage probability that can be far below the nominal
level, and an adjusted Wald method referred to here as the PB method, has been shown to perform
substantially better than the traditional Wald method.[7]

Let fij denote the frequency count for the specified dichotomous trait in condition i and study
j. A 100(1 − α)% PB confidence interval for � [5] is given below

�̄ ± zα/2

√
v̂ar(�̄), (1)

where �̄ = m−1 ∑m
j=1 �̂j, v̂ar(�̂) = m−2 ∑m

j=1 v̂ar(�̂j), �̂j = p̂1j − p̂2j, p̂ij = (fij + 1/m)/

(nij + 2/m), and v̂ar(�̂j) = p̂1j(1 − p̂1j)/(n1j + 2/m) + p̂2j(1 − p̂2j)/(n2j + 2/m).
A confidence interval proposed by Zou et al. [8], and referred to here as the ZHZ method,

combines Wilson confidence intervals for each individual proportion. Let pk be the kth element
of the 2m × 1 vector p, and ck be the kth element of the 2m × 1 vector c. A 100(1 − α)% ZHZ
confidence interval for � may be expressed as

L =
2m∑

k=1

ckp̂k −
√√√√ 2m∑

k=1

[ckp̂k − min(cklk , ckuk)]2,

U =
2m∑

k=1

ckp̂k +
√√√√ 2m∑

k=1

[ckp̂k − max(cklk , ckuk)]2,

(2)

where p̂k = fk/nk and

lk , uk =
p̂k + z2

α/2/(2nk) ± zα/2

√
[p̂k(1 − p̂k) + z2

α/2/(4nk)]/nk

1 + z2
α/2/nk

.

It is interesting to note that the PB confidence interval is a generalization of the Agresti-Caffo
confidence interval for �j,[9] and the ZHZ method is a generalization of the Newcombe (method
10) confidence interval for �j.[10] Both the Agresti-Caffo and Newcombe confidence intervals
have been shown to have excellent small-sample performance characteristics and both methods
are options in SAS PROC FREQ.
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The ZHZ method has been compared with the PB method in 3-group and 4-group designs for
several different linear contrasts with very small sample sizes (nj = 5 in at least one group). The
two methods were found to be similar in performance.[8] Some methods described by Tebbs and
Roths [11] were not included in the simulation study of Grizzle et al. [8] because of their poor
worst-case coverage probabilities.

Although the ZHZ and PB methods have similar performance characteristics, the relative per-
formance of the ZHZ and PB methods appears to depend on the specific type of linear contrast and
the number of proportions. The purpose of the simulation study described in the following section
is to compare the ZHZ and PB confidence intervals in meta-analysis designs for risk differences
where the total number of proportions can be large and the contrast coefficients are of the form
c′ = 1′ ⊗ [1 − 1]/m.

2. Simulation study

The PB (1) and ZHZ (2) methods were compared under 4500 different patterns of sample sizes
and pij values for m = 2, 5, 15, 30, and 50. The results are summarized in Table 1. For each row
of Table 1, 500 sets of p1j and p2j values were randomly generated from a uniform distribution

Table 1. Comparison of two 95% varying coefficient confidence intervals for average risk difference.

Average coverage Minimum coverage Average width

p1j p2j ZHZ PB ZHZ PB ZHZ PB

m = 2
.02–.05 .02–.05 .989 .983 .969 .962 .166 .131
.05–.15 .05–.15 .966 .961 .953 .951 .199 .184
.45–.55 .45–.55 .945 .947 .935 .939 .285 .296
.45–.55 .05–.15 .950 .949 .939 .943 .243 .245
.85–.95 .05–.15 .936 .956 .901 .945 .189 .187

.05–.25 .05–.25 .959 .955 .950 .950 .226 .218

.40–.60 .40–.60 .945 .947 .938 .939 .286 .298

.40–.60 .05–.25 .948 .949 .935 .943 .260 .265

.05–.95 .05–.95 .949 .950 .932 .940 .251 .256

m = 5
.02–.05 .02–.05 .992 .969 .975 .955 .106 .076
.05–.15 .05–.15 .969 .953 .956 .949 .128 .115
.45–.55 .45–.55 .942 .946 .930 .938 .182 .191
.45–.55 .05–.15 .947 .947 .940 .939 .157 .159
.85–.95 .05–.15 .924 .950 .903 .945 .122 .118

.05–.25 .05–.25 .960 .950 .948 .943 .144 .137

.40–.60 .40–.60 .942 .946 .930 .938 .181 .191

.40–.60 .05–.25 .945 .947 .936 .941 .161 .164

.05–.95 .05–.95 .948 .947 .922 .937 .160 .163

m = 15
.02–.05 .02–.05 .995 .955 .983 .950 .062 .042
.05–.15 .05–.15 .970 .948 .960 .944 .076 .068
.45–.55 .45–.55 .937 .945 .929 .941 .105 .111
.45–.55 .05–.15 .944 .946 .938 .942 .091 .092
.85–.95 .05–.15 .913 .947 .894 .943 .071 .067

.05–.25 .05–.25 .959 .947 .950 .942 .083 .079

.40–.60 .40–.60 .937 .945 .928 .940 .105 .112

.40–.60 .05–.25 .941 .945 .934 .940 .095 .097

.05–.95 .05–.95 .946 .946 .934 .941 .095 .096

(Continued)
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Table 1. Continued.

Average coverage Minimum coverage Average width

p1j p2j ZHZ PB ZHZ PB ZHZ PB

m = 30
.02–.05 .02–.05 .996 .950 .989 .948 .044 .030
.05–.15 .05–.15 .970 .947 .963 .943 .054 .048
.45–.55 .45–.55 .935 .945 .927 .942 .075 .079
.45–.55 .05–.15 .942 .945 .935 .942 .065 .065
.85–.95 .05–.15 .908 .946 .895 .943 .051 .048

.05–.25 .05–.25 .959 .946 .952 .942 .059 .056

.40–.60 .40–.60 .935 .945 .930 .942 .075 .079

.40–.60 .05–.25 .940 .945 .933 .942 .067 .068

.05–.95 .05–.95 .945 .945 .934 .941 .067 .068

m = 50
.02–.05 .02–.05 .996 .948 .991 .945 .034 .023
.05–.15 .05–.15 .971 .946 .965 .942 .042 .037
.45–.55 .45–.55 .934 .945 .927 .942 .058 .062
.45–.55 .05–.15 .941 .945 .936 .942 .050 .051
.85–.95 .05–.15 .905 .946 .894 .943 .039 .037

.05–.25 .05–.25 .958 .946 .952 .942 .046 .043

.40–.60 .40–.60 .934 .945 .927 .942 .058 .062

.40–.60 .05–.25 .939 .945 .934 .942 .052 .053

.05–.95 .05–.95 .944 .945 .936 .942 .052 .053

an1j = n2j = 10 to 100.
bThe entries are based on 500 conditions with 75,000 trials per condition.
cZHZ, Zou–Huang–Zhang method; PB, Price–Bonett method.

for the specified range of pij values, and 500 n1j = n2j values were randomly generated from a
uniform distribution with a range of 10–100. For each of the 500 conditions within each row of
Table 1, 75,000 sets of 2m binomial random variates were randomly generated. Within each of
the 500 conditions, the coverage probability and mean confidence interval width were estimated
for 95% PB and ZHZ confidence intervals. Within each row of Table 1, the mean and minimum
coverage probabilities across the 500 conditions are reported along with the average of the mean
confidence interval widths. The results in Table 1 show that the PB method has an average coverage
probability that is closer to .95 than the ZHZ method in almost every condition. More importantly,
the minimum coverage probability of the ZHZ method within each set of 500 conditions can be far
below the nominal .95 level. The worst-case coverage probability for the ZHZ method was .894
while the worst-case coverage probability for the PB method was .937. Although the minimum
coverage probability is substantially larger for the PB method than the ZHZ method, the average
confidence interval widths of the two methods are similar. In meta-analysis applications where
the sample sizes typically differ across studies and the pij values are unknown, it is important
that a confidence interval method perform properly regardless of the patterns of sample sizes and
unknown population proportions. For the wide range of conditions examined in this study, the PB
method is clearly superior to the ZHZ method. We found a similar pattern of results for 90% and
99% confidence levels.

3. Example

The computation of the PB and ZHZ confidence intervals will be illustrated in a meta-analysis
of m = 11 studies of antibiotic treatment on urinary tract infection described by Kulinskaya
et al.[12] The sample data are reported in Table 2 with sample sizes that range from 19 to 50. The
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Table 2. Eleven studies of antibiotic treatment to prevent
recurrent urinary tract infection.

Trial Drug Placebo 95% Agresti-Caffo CI

1 1/23 17/22 [−0.8733, −0.4667]
2 8/21 17/19 [−0.7152, −0.2165]
3 2/15 4/13 [−0.4564, 0.1427]
4 1/20 8/21 [−0.5332, −0.0676]
5 0/11 10/13 [−0.9229, −0.3898]
6 4/18 13/17 [−0.7611, −0.2126]
7 1/13 5/6 [−0.9625, −0.2708]
8 3/25 15/25 [−0.6731, −0.2157]
9 1/20 13/23 [−0.6978, −0.2404]

10 1/13 5/7 [−0.8861, −0.1806]
11 2/16 9/11 [−0.8891, −0.3160]

95% PB confidence interval for these data is [−0.6335, −.4703] indicating that the population
proportion of patients who would develop a urinary tract infection would be .4703 to .6335
smaller under the antibiotic treatment compared to a placebo. Note that this confidence interval
is substantially narrower than any of the single-study confidence intervals in Table 2. The 95%
ZHZ confidence interval is [−0.6159, −0.4561]. However, the results in Table 1 suggest that a
95% ZHZ confidence interval could have a coverage probability that is considerably less than .95
and so the PB confidence interval is a more trustworthy result.

4. Concluding remarks

Meta-analysis has been used in literally thousands of studies over the last 30 years and the
frequency of its use has increased dramatically in recent years. Virtually all of the published
meta-analyses have used statistical methods based on either the constant coefficient model or
random coefficient model. Both models require restrictive assumptions and statistical methods
based on the varying coefficient model are useful alternatives to the classic methods. Previous
simulation studies with 3-group and 4-group designs suggest that the PB and ZHZ methods
have similar performance characteristics. The results of our simulation study for the average risk
difference with 2m groups (m = 2, 5, 15, 30, and 50), which represents a typical meta-analysis
design, showed that the PB method performs considerably better than the ZHZ method. When
reporting a meta-analysis of risk differences, it is informative to also report confidence intervals
for the risk difference in each study and display the results in a forest plot. Methods 10 or 11 of
Newcombe [10] or the Agresti-Caffo confidence interval have good performance characteristics
and are recommended alternatives to the traditional Wald confidence interval for a single-study
risk difference.
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