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ABSTRACT OF THE DISSERTATION

Aspects of Dark Matter Dynamics in Stellar and Cosmological Environments

by

Jung-Tsung Li

Doctor of Philosophy in Physics

University of California San Diego, 2021

Professor George M. Fuller, Chair

This dissertation studies the aspects of dark matter and gravitational waves in dense

and compact environments. We consider gravitational waves from supermassive black hole

formation, dark photon production and decay in big bang nucleosynthesis, and millicharged dark

matter acceleration in supernova shock. We begin with a general overview of the three topics

studied in this dissertation.

In Chapter 2, we investigate the formation of supermassive black holes (SMBHs) from the

collapse of high-redshift supermassive stars and study the neutrino burst-generated gravitational

waves (GW). We investigated the GW signatures driven by the neutrino bursts, which create

unique memory GW signals. Our result may provide an intriguing hint toward solving the

xv



problem of the formation of SMBHs in the high redshift universe.

In Chapter 3, we calculate the freeze-in abundance of dark photons and use the code

BURST to trace the evolution of nucleosynthesis numerically from the beginning of weak

decoupling with the presence of late-decay dark photons. Using the 1%-level precision in the

primordial deuterium abundance measurements from quasar absorption lines, our result not only

excludes a range of dark photon model parameters but also identify ranges of dark photon mass

and couplings accessible in future Stage-4 cosmic microwave background experiments.

In Chapter 4, we provide a mechanism for millicharged dark matter (mDM) to scatter

efficiently with Standard Model particles in supernova remnants. Our work reveals that the

supernova shocks could sweep up and thermalize the ambient mDM via plasma instability. We

also address the difficulty of getting Fermi-accelerated mDM owing to an ultra-slow instability

upstream of the shock. Our result implies that the sensitivity for detection of terrestrial ex-

periments for charged DM is, in fact, not strongly affected by supernova shocks, despite prior

claims.

xvi



Chapter 1

General introduction

My graduate research centers around two unsolved problems in astrophysics: how are

the high redshift supermassive black holes formed and what is dark matter made of. Both

problems have remained open for many decades, and yet no definitive theories have been reached.

Fortunately, the recent tremendous progress on the high-precision observations has provided us

increasingly stringent cosmological and astrophysical data for improving our understanding of

the models and testing the new physics.

This thesis investigates the two problems from the perspective of interdisciplinary areas

between particle phenomenology, neutrinos, and plasma physics. We focus on three specific

topics: (1) neutrino burst-generated gravitational wave signals from high-redshift supermassive

stars, (2) dark photon phenomenology in big bang nucleosynthesis, and (3) dynamics of mil-

licharged particles in supernova shocks. For the clarity of the presentation, we will split this

thesis into three groups.

1.1 From supermassive star to supermassive black hole

Supermassive black hole (SMBH) refers to a huge black hole with a mass above 105 M�.

Strong gravitation from these holes powers active galactic nuclei and quasar by accreting

interstellar gas. Almost every massive galaxy contains more than one SMBH at its galactic

center. The SMBH in our Milky Way resides at the region called Sagittarius A* with a mass

1



of 4.1×106 M� [1]. The most massive BH ever discovered is TON 618 quasar with a mass of

6.6×1010 M� [2].

Supermassive black holes aren’t just exclusive to late times. In the past few years, an

increasing number of luminous quasars powered by SMBH of mass of ∼ 109 M� have been

discovered at the redshift z > 6 [3–7]. The oldest known quasar is at z = 7.642, corresponding

to the age of the universe of approximately 690 Myr, with a black hole mass of about 1.6×

109 M� [8]. It’s surprising that BH can grow to such massive mass so rapidly: To get an SMBH

with a mass of 109 M� by z∼ 7, a “seed” black hole would have to start with a mass of, at least,

∼ 103 M� at the time the first luminous objects were formed (z∼ 30) and grow at the Eddington

limit throughout [9].

The discovery of these high redshift quasars invites the question of how the seed black

holes were formed and grown to ∼ 109 M� in less than 1 Gyr after the Big Bang. The flow chart

drawn by Begelman & Rees [10, 11] four decades ago is still an excellent guideline showing

the candidate pathways to SMBH formation. Several of them include the matter accumulation

from the remnants of metal-free Population III stars [12, 13] and the direct collapse of self-

gravitating gas [14, 15], either with or without hydrogen-burning supermassive stars (SMS) as

the intermediate stage.

In this dissertation, we focus on the direct collapse scenario with an SMS collapsing to

an SMBH. The formation of SMS can be obtained either by suppression of fragmentation of a

collapsing primordial gas cloud [14, 16–21], by forming such an object in a dense star cluster

via tidal gas stripping in close stellar encounters [22–25], or by the mergers of massive gas-rich

galaxies at high redshifts [26]. This type of star is high entropy and fully convective configuration,

with stellar mass M? & 5×104 M�. While the bulk of the mass-energy is provided by baryon

rest mass, the entropy and pressure support come from radiation fields [27–30], resulting in

the adiabatic index being close to 4/3 and a star that is unstable to Feynman-Chandrasekhar

instability [31, 32].

During the collapse of SMS, the innermost 25% of the star plunges homologously to a
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BH in about one dynamical timescale, with more than a few percent of the gravitational binding

energy becoming neutrino radiation. For an SMS with a stellar mass of 4×105 M�, the total

neutrino energy emitted during the collapse is ∼ 4×1057 ergs in a timescale of 1−10 seconds.

With such a strong neutrino luminosity from a collapsing SMS, it is tempting to consider

the prospect of the direct neutrino detection. Considering a SMS of the stellar mass of M? =

4×105 M�, the average neutrino energy is about 4 MeV [33]. However, since these neutrinos

are radiated from the SMS at z > 6, their average energy suffering a redshift factor of (1+ z)≈ 7

would have the average energy of only ≈ 0.6 MeV, which does not pass the energy threshold of

Super-Kamiokande experiment (5.5 MeV). Moreover, the neutrinos from the Sun with the average

energy of 1 MeV further reduces the prospect of direct neutrino detection of the collapsing SMS.

The prospect of detecting each individual neutrino by terrestrial neutrino experiments is

dismal. Fortunately, the gravitational wave emitted by a collective of neutrinos is a promising

signal to explore. This aspect is especially encouraged after the success of LIGO/VIRGO has

demonstrated the future potential of laser interferometry for probing unexplored regimes beyond

the reach of the traditional telescopes and neutrino detectors. In Chapter 2, we consider the

gravitational wave signals from a time-changing effective quadrupole moment generated by

the neutrino burst in a collapsing SMS. We also analyze the prospect of detection through the

proposed upcoming space-based laser interferometry like DECIGO [34] and BBO [35, 36].

1.2 Dark matter and dark sector physics

The modern cosmology is based primarily on the ΛCDM model. This model has three

essential ingredients: the cosmological constant Λ governing the expansion of the universe, the

collisionless cold dark matter (CDM) fluid, and the ordinary matter, including baryons, photons,

and neutrinos. This model also assumes the General Relativity describes the universe at large

scales. Under these conditions, the nearly scale-invariant matter and metric perturbations are

amplified by gravitational instability and form the temperature anisotropy of CMB and the
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large-scale structures that we see today.

According to the 2018 Planck Satellite observation of the CMB, the current total mass-

energy in the universe contains approximately 5% ordinary matter and radiation, 27% dark

matter, and 68% dark energy. That is, dark matter constitutes about 84% of the total mass in the

universe today. The dark matter need not be composed of the same particle or object. It could be

a combination of undiscovered elementary particles, the composite objects, or even primordial

black holes. The minimum requirement is dark matter interacts very weakly with radiation and

baryonic matter except through gravity. Before exploring the possible dark matter candidates, we

would like to know how the early universe gives rise to the observed relic dark matter abundance.

In the following paragraphs, we give an overview of the DM production mechanism with the

assumption that the relic DM abundance consists of only one particle DM candidate.

There are two main production mechanisms for particle DM: the thermal freeze-out of

nonrelativistic DM and the freeze-in. In the freeze-out scenario, DM is initially in chemical

equilibrium with the Standard Model thermal bath at high temperatures. As the universe

expands, the DM-DM annihilation rate eventually becomes lower than the Hubble expansion rate.

Subsequently, the DM particles decouple from the thermal bath, and the DM relic abundance

is “frozen out”. To obtain the observed relic abundance, the minimum value for the thermally-

averaged cross-section of DM self-annihilation is 〈σv〉 ≈ 2.2× 10−26 cm3/s [37]. Below it,

the DM particles are not annihilated efficiently enough to reach the observed relic abundance.

Based on this cross-section, the unitarity limit sets the upper bound of the DM mass mχ at

∼ 100 TeV [38]. The lower bound of the DM mass in the freeze-out scenario comes from the

warm dark matter limit of the structure formation, which gives mχ & 10 keV.

One advantage of the freeze-out mechanism is that the DM relic abundance is not sensitive

to the initial conditions at the reheating after inflation. Another merit is that a DM candidate

with TeV-scale mass, together with the SM gauge couplings, naturally gives rise to the desired

annihilation cross-section and does not require new mediators. (A well-studied TeV-scale thermal

DM is weakly interacting massive particle (WIMP), and the merit described above is known
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as the “WIMP miracle”.) On the other hand, the Lee-Weinberg bound [39] suggests that DM

with mχ . GeV and mediated by the weak scale mediators would lead to too low annihilation

cross-section to match the observed relic abundance. As a result, the sub-GeV DM candidates are

often categorized as “light” DM, and new mediators lighter than weak scale mass are warranted.

In the freeze-in scenario [40], DM interacts very weakly with the SM sectors that it never

reaches chemical equilibrium with the thermal bath. While the interaction is feeble, the thermal

bath does produce DM and gradually builds up the DM abundance as the universe expands.

When the temperature T of the thermal bath drops below mχ , there is no more energy to produce

DM. Then, the DM abundance is “frozen-in” from the thermal bath. Considering two SM

particles annihilate to two DM particles via a new mediator, we see that the thermally-averaged

cross-section is 〈σv〉 ∼ αχαSM/T 2, where αχ and αSM are the structure constants of DM and

SM particles, respectively. This cross-section indicates that the thermal bath produces most of

the relic DM at around the “freeze-in” point when T ∼ mχ , and the freeze-in mechanism with a

light mediator (mV � mχ ) is not sensitive to the initial conditions at the reheating.

We note that not all the freeze-in mechanisms require new mediators. A notable example

is resonant and non-resonant sterile neutrino production [41–45]. This model considers a sterile

(right-handed) neutrino state in the electroweak theory and allows a flavor oscillation between

the active and sterile neutrino states through a non-zero active-sterile mixing angle. It has

also been pointed out in Ref. [42] that a non-zero lepton asymmetry in the early universe give

rise to a forward scattering potential of the active neutrinos and enhances the effective mixing

angle between the active and sterile states through the Mikheyev-Smirnov-Wolfenstein (MSW)

effect [46, 47]. The sterile neutrino DM produced by this way typically requires the mass to be

above a few keV to satisfy the structure formation constraints.

In any case, introducing new mediators below the weak scale in both freeze-in and

freeze-out mechanisms leads us to a plethora of DM candidates beyond the traditional WIMP

paradigm. The new mediators allow the interactions between the DM and the SM sectors,

enabling the thermal bath to produce DM. On the other hand, while the new mediators may
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add new interactions within the SM sectors, the couplings must be small enough to satisfy any

precision measurements.

Some of the well-studied portals are (1) neutrino portal with a sterile neutrino coupling

to the SM lepton and the Higgs doublet, (2) Higgs portal with a scalar field coupling to Higgs

doublets, (3) axion portal with a pseudo-scalar field coupling to SM fermions, and (4) kinetically

mixing portal with a dark U(1) field coupling to the SM U(1) hypercharge.

In this thesis, we focus our attention on the kinetic mixing portal for its simplicity and

the potentially rich phenomenology of outcomes. The simplest model for this portal is a vector

dark photon kinetically mixed with the SM photon. An extension to it is introducing a Dirac

fermion as DM that couples to the kinetically mixed dark photon. In the latter case, the Dirac

fermion acquires a small fractional electric charge if the dark photon mediator is nearly massless,

and the Dirac fermion DM in this scenario is called the “millicharged dark matter”.

1.2.1 Dark photon

Dark photon is a new U(1) vector that interacts with SM photons via the kinetic mixing

portal. It acquires mass either from the Stueckelberg mechanism or from a new Higgs mechanism

with new light degrees of freedom. Thermally-produced dark photons can come from the resonant

photon-dark photon conversion or the couplings with the electromagnetic charge currents.

There have been extensive dark photon studies utilizing stellar and cosmological objects

to constraints the model parameters. One example is the dark photon emission enhancement

in the stars. The idea is that the dark photon mixing parameter is modified as the SM photons

acquire the self-energy in the plasma. When the in-medium SM photon mass equals the dark

photon mass, the dark photon production is greatly enhanced. This phenomenon plays significant

roles in the Sun, the horizontal branch stars, and SN1987a, where the cooling rates could be

altered by the in-medium dark photon emission [48, 49].

On the other hand, while the early universe has high density, only . 5% of freeze-in dark

photon abundance is produced from the in-medium enhanced resonant emission. The rest of the
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abundance comes from the non-resonant continuum emission. The reason is that the resonant

emission happens only at a very narrow width of temperature. Thus the resonant emission only

contributes a fraction of the abundance in the expanding universe. It is the non-resonant part that

dominates the total freeze-in abundance of dark photons.

We note that the thermally produced dark photons never constitute a significant fraction

of the DM abundance at any time in the early universe. While so, their production and decay

still alter the Standard Cosmology. Here we consider the late-decay of dark photons during the

weak decoupling epoch and look for the changes in radiation energy density and light element

abundance. The key idea is that a decaying dark photon during weak decoupling releases entropy

back to the SM plasma and neutrino seas which causes an additional entropy flow between the

plasma sector and the neutrinos. This effect alters the time-temperature-scale factor relation and

the phasing of the nuclear reactions involving light elements. The overall results are a more

diluted radiation energy density and a slight change of primordial Deuterium yield.

In Chapter 3, we calculate the freeze-in abundance of dark photons and use the code burst

to trace the evolution of nucleosynthesis numerically from the beginning of weak decoupling with

the presence of late-decay dark photons. We exclude a range of dark photon model parameters

using the 1%-level primordial deuterium abundance measurements from quasar absorption lines.

Moreover, we also identify ranges of dark photon mass and couplings not yet constrained but

perhaps accessible in future Stage-4 CMB experiments.

1.2.2 Millicharged dark matter

Millicharged dark matter (mDM) is a leading DM candidate and has been extensively

searched in terrestrial DM experiments. It possesses a small fractional electric charge and

interacts with the SM particles through long-range electromagnetic force. One motivation for

this candidate is that the observed relic DM abundance can be obtained entirely through freeze-in

of mDM for charges qχ/e∼ 10−11−10−10, which is one or two orders of magnitudes smaller

than the current direct detection bounds, qχ/e& 10−10−10−9 [50, 51].
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The long-range interaction of mDM indicates that mDM interacts with baryons more

strongly at low velocities or low momentum transfer. This feature enhances the DM-nuclei or

DM-electron scatterings in the direct detection experiments. In addition, mDM has received

significant interest following the observation of an anomalous absorption of radio frequency

by the EDGES collaboration [52]. Because mDM interacts more strongly with baryons in the

late times when the particle velocities have become lower, the anomaly could potentially be

explained by the cooling of baryons relative to CMB photons from the mDM-baryon scattering

at the Cosmic Dawn [53].

The discussions thus far are based on the particle-particle interaction of mDM. The

interaction strength between the mDM and the SM sector is limited by their couplings and

number densities. However, astrophysical and cosmological plasmas are often too tenuous to

have any significant particle-particle scattering. Instead, it is the wave-particle interaction (i.e.,

each test particle scatters a collective plasma wave) that governs the dynamics of the plasma and

the phase space of the particles.

In Chapter 4, we study the consequences of the long-range electromagnetic interactions

of mDM in the supernova remnants. We investigate the plasma instabilities generated by the

ambient mDM as the supernova shocks expand. Specifically, we will determine the mDM

parameter space where the galactic mDM can be swept up by supernova shocks.
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Chapter 2

Neutrino burst-generated gravitational
radiation from collapsing supermassive
stars

We estimate the gravitational radiation signature of the electron/positron annihilation-

driven neutrino burst accompanying the asymmetric collapse of an initially hydrostatic, radiation-

dominated supermassive object suffering the Feynman-Chandrasekhar instability. An object

with a mass 5×104 M� < M < 5×105 M�, with primordial metallicity, is an optimal case with

respect to the fraction of its rest mass emitted in neutrinos as it collapses to a black hole: lower

initial mass objects will be subject to scattering-induced neutrino trapping and consequently

lower efficiency in this mode of gravitational radiation generation; while higher masses will

not get hot enough to radiate significant neutrino energy before producing a black hole. The

optimal case collapse will radiate several percent of the star’s rest mass in neutrinos and, with an

assumed small asymmetry in temperature at peak neutrino production, produces a characteristic

linear memory gravitational wave burst signature. The timescale for this signature, depending on

redshift, is ∼ 1 s to 10 s, optimal for proposed gravitational wave observatories like DECIGO.

Using the response of that detector, and requiring a signal-to-noise ratio SNR > 5, we estimate

that collapse of a ∼ 5× 104 M� supermassive star could produce a neutrino burst-generated

gravitational radiation signature detectable to redshift z . 7. With the envisioned ultimate

DECIGO design sensitivity, we estimate that the linear memory signal from these events could
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be detectable with SNR > 5 to z. 13.

2.1 Introduction

In this paper we point out a surprising and serendipitous connection between the weak

interaction physics of supermassive star (SMS) collapse to a black hole, the generation of a

linear memory gravitational radiation signature from the neutrino burst that ensues in such an

event, and the detection of this signature in proposed mid-frequency (∼ 0.1Hz) gravitational

wave observatories like DECIGO [34, 54].

We consider stars with a range of masses which falls into the category of the classic SMS

of Fowler and Hoyle [27–30, 55], i.e., M & 104 M�. These are initially hydrostatic, high entropy,

fully convective configurations, with the bulk of the mass-energy provided by baryon rest mass,

but with the entropy and pressure support stemming predominately from the radiation field. The

result is a star with adiabatic index perilously close to 4/3, trembling on the verge of instability,

and therefore ripe for destabilization by tiny (in this case) nonlinear effects inherent in General

Relativity: the Feynman-Chandrasekhar post-Newtonian instability [31, 32]. There are many

unresolved issues surrounding the formation and existence of such objects, their fate once they

suffer the post-Newtonian instability, and the weak interaction and nuclear reaction history of

the material in the collapsing star and the associated neutrino emission. We will not address

these issues here, except insofar as they impact our key requirement for this work: an ultra-high

entropy star that collapses to a black hole but remains essentially transparent to neutrinos until

nearly the bitter end, when a black hole forms.

First, it must be pointed out that there exists no direct observational evidence, or even an

indirect nucleosynthesis or chemical evolution argument that these stars ever existed. Moreover,

even the question of whether nature could produce such objects remains unanswered. The

existence of supermassive black holes (SMBHs) powering quasars at high redshift is indis-

putable [56–60]. This has long invited speculation on the origin of these SMBHs and about the
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masses of “seed” black holes from which early SMBH could arise via mergers.

Begelman & Rees [10, 11] drafted a flow chart showing the routes to SMBH formation.

Several of these include the formation of a SMS, either by suppression of fragmentation of a

collapsing primordial gas cloud [14, 16–21], or by forming such an object in a dense star cluster

via tidal gas stripping in close stellar encounters or by collisions [22–25]. In the primordial gas

cloud collapse scenario, the outcome may depend on the gas accretion rate. High accretion can

lead to a non-adiabatic configuration, essentially a compact object at the center with a distended

lower density envelope [61, 62]. This will not produce the high entropy, fully convective

(adiabatic) configuration we consider here. It is an open question whether a lower gas accretion

rate, plus fragmentation suppression through heating or reduced cooling, can lead to this result.

Certainly, stellar disruption or collision could produce a high entropy self-gravitating star, but

this object might have relatively higher metallicity and therefore may explode via hot CNO

hydrogen burning rather than collapse to a black hole [55].

Instead, we focus on the classic primordial metallicity hydrostatic SMS, completely

convective, where the density, temperature, and pressure runs with radius are well described by

a Newtonian index n = 3 polytrope, at least initially, prior to the onset of the post-Newtonian

instability. Moreover, we point out here that if such a high entropy hydrostatic SMS did form,

its subsequent collapse and neutrino emission can produce a unique gravitational wave burst

signature, potentially detectable even for a collapse at very high redshift.

Gravitational radiation originating in the collapse of a rapidly rotating SMS to a black hole

has been studied in Ref. [63]. That study found that most of the energy radiated in gravitational

waves in SMS collapse is generated either by the time changing quadrupole moment of the

baryons before trapped surface formation, or subsequent black hole ring down, all depending on

the initial angular momentum content of the star. The gravitational wave signal produced this

way will be a conventional, oscillatory one, well matched to proposed detectors in the mid- to

low-frequency band.

Here we consider something quite different, both in the origin of the gravitational
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radiation in a SMS collapse and in the nature and signature of this radiation in detectors. While

the study in Ref. [63] centered on the effects of the bulk of the mass-energy, the baryons, in these

objects, here we examine a complementary issue, the role of the very sub-dominant neutrino

component in gravitational radiation production. Gravitational waves generated by the neutrino

burst associated with ordinary core collapse supernovae and neutron star production is an old and

well investigated idea [64–69], but these venues are eventually opaque to neutrinos and involve

neutrino emission from a neutrino sphere. By contrast, we examine what happens in a star

with significant neutrino emission, more than a few percent of the gravitational binding energy,

yet has high enough entropy and therefore low enough density to be essentially transparent to

neutrinos until near gravitational trapped surface formation. We will show how, unlike a static

neutrino-transparent configuration, a collapsing but otherwise transparent SMS can “lock in” an

asymmetry in neutrino emissivity and thereby generate a neutrino burst with a time-changing

effective quadrupole moment.

Interestingly, since neutrinos emitted during the collapse are gravitationally unbound,

the accompanying gravitational radiation generated by the neutrino burst will constitute what is

termed gravitational waves with linear memory (GWM) [70–73]. A GWM is a non-oscillatory

gravitational wave that leaves a net change in the gravitational wave strain after the signal has

passed by.

The GWM effect was first discussed in its linear form in the 1970-80s [70–77]. For a

recent review see Ref. [78]. In general, systems with more than one mass component gravita-

tionally unbound to each other can produce gravitational waves with linear memory. Several

such production mechanisms have been discussed, for example, hyperbolic binaries [72, 74],

gamma-ray bursts [79], matter ejecta from supernova explosions [64–69], and anisotropic neu-

trino emission [75, 76]. The prospects for detecting the memory effect have been studied in

Refs. [73, 77, 80].

This paper is organized as follows. In Section 2.2 we discuss the neutrino emission from

SMSs. In Section 2.3 we estimate the strain magnitude of the gravitational wave signals from
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this mechanism in collapsing SMSs and calculate the corresponding waveforms. In Section 2.4

we discuss the prospects for detection of these signals with the next generation space-based

gravitational wave detectors. In Section 2.5 we discuss other possible sources which could

also produce the linear GWM signal with strain magnitude and timescale similar to those

originated from high-redshift SMS collapse. Throughout this paper we adopt geometric and

natural units, G = c = kb = }= 1, and assume ΛCDM cosmology with the closure fraction of the

non-relativistic component chosen as ΩM = 0.3, the vacuum energy contribution to this fraction

taken as ΩΛ = 0.7, and the Hubble parameter at the current epoch in units of 100kms−1 Mpc−1

taken to be h = 0.7.

2.2 Characteristics of SMSs

2.2.1 Total neutrino energy from the collapsing SMS

A hydrostatic, fully convective SMS with stellar mass MSMS & 5×104 M� has a structure

well represented by an n = 3 polytrope. It is radiation dominated and most of its entropy is

carried by photons and electron/positron pairs. The entropy per baryon in units of Boltzmann’s

constant kb is typically s ≈ (M/M�)
1/2 ≈ 300

(
MHC

5
)1/2, where MHC

5 is the homologous core

mass in units of 105 M� [33]. As the SMS gradually radiates away energy and shrinks in radius,

the star eventually suffers post-Newtonian instability and begins to collapse. For MHC ∼ 105 M�,

instability sets in roughly at the onset of hydrogen burning. A fraction, likely a few tens of

percent, of the initial stellar mass may collapse homologously, depending on the history of

neutrino energy loss, nuclear burning and initial angular momentum content and distribution [55].

It’s this homologous core that produces the initial BH.

The gravitational binding energy liberated in the collapse is Es ∼ MHC. Most of this

energy is trapped in the BH, but a small fraction will be radiated as neutrinos. These neutrinos

are produced mostly via electron/positron pair annihilation into neutrino pairs. Since the rate of

the energy emissivity of this neutrino pair production channel is proportional to a high power of
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the temperature, ∝ T 9 [81–83], the bulk of the radiated neutrino energy will be produced very

close to the BH formation point, where the temperature is the highest. Just how high the plasma

temperature gets before redshift associated with gravitational trapped surface formation cuts

off neutrino escape depends on details of SMS evolution, e.g., nuclear burning and convective

timescales during the collapse, and on the collapse rate near BH formation.

Shi & Fuller [33] estimated that the total neutrino energy emitted during the collapse of a

non-rotating SMS as 3.6×1057 (MHC
5

)−0.5 ergs in a timescale ∆τ = MHC
5 s. More sophisticated

hydrodynamic simulations conducted by Linke et al. [84] show that the innermost 25% of the

SMS mass will collapse homologously to a BH, emitting neutrinos on a timescale approximately

11 times longer than estimated by Shi & Fuller. In the mass range 105 M� .MHC . 5×105 M�,

they calculate the total energy emitted in neutrinos to be approximately 3% of what was found

in Shi & Fuller. Though still a substantial amount of energy, this result shows a considerable

discrepancy with Shi & Fuller. The difference between these calculations reflect the different

ways in which neutrino emission and redshift near the BH formation point were calculated. In

turn, this physics is dependent on the treatment of in-fall and collapse timescales, pressure, and the

adiabat of collapse. The Linke et al. calculation likely is more realistic, as it gives a self consistent

calculation of neutrino emission coupled to collapse dynamics and redshift. Nevertheless large

uncertainties remain in the physics “upstream” of the BH formation point. Consequently, we

will consider both calculations in our assessment of the neutrino burst-generated linear memory

gravitational wave signal from SMS collapse.

The calculations in Ref. [33] do not apply for MHC
5 . 0.1, i.e., where neutrinos may be

trapped via scattering on electrons and positrons. For example, a homologous core with mass

MHC
5 = 0.1, close to BH formation, has a neutrino mean free path smaller than the Schwarzschild

radius. We conclude that for MHC
5 . 0.1 the homologous core will be subject to neutrino

scattering-induced trapping and is opaque to neutrinos. It is likely that a significant fraction of

neutrinos will be carried into, and trapped inside, the BH in this case.

At higher SMS masses, a smaller fraction of the SMS rest mass is radiated as neutrinos
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even though the total gravitational binding energy released in the collapse is higher. This stems

from the fact that electron/positron pair annihilation neutrino emissivity scales as the ninth

power of the temperature, whereas the temperature scales as (MHC)−1/2. At large SMS mass the

core will not get hot enough to radiate a significant fraction of Es before BH formation. When

MHC
5 & 10, less than 0.1 percent of the homologous core gravitational binding energy would be

emitted as neutrinos.

Subject to scattering-induced neutrino trapping at low SMS masses, and low neutrino

emissivity at high SMS masses, the optimal mass range of the homologous core for a maximal

fraction of the SMS mass to be radiated in neutrinos is 5×104 M� < MHC < 5×105 M�.

As discussed above, there remain open questions in the evolution and collapse physics of

SMSs. These issues can be relevant for the neutrino burst accompanying SMS collapse. In part,

uncertainties in the characteristics of the eventual neutrino burst arise from the fact that the total

energy, internal plus gravitational, of these objects near their instability points will be very close

to zero. Relatively small changes in nuclear burning history or neutrino emission history may

lead to significant subsequent alterations in the thermodynamic history of collapse. During the

collapse, neutrino emission and escape remove entropy from the star, while nuclear burning in

effect counters this by adding entropy. By far the biggest effect is the former, entropy loss, but

the latter entropy source helps determine the entropy content relevant for peak neutrino emission

just before the BH formation point. The small effect from nuclear burning in making the entropy,

and hence temperature, slightly higher can be significant because the neutrino emission rate from

electron/positron pair annihilation scales as the ninth power of the temperature. Though there is

negative feedback between the competing processes of neutrino engendered entropy loss and

added entropy from nuclear burning, in the end nuclear burning will mean stronger neutrino

emission overall and a larger fraction of the homologous core rest mass radiated as escaping

neutrinos.

That is, as long as the energy production from nuclear burning is not large enough, or not

optimally phased in time or location, so as to cause the thermonuclear explosion and disruption
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of the star! An explosion caused by nuclear burning early in the collapse obviously precludes

production of a BH. The lower end of our considered range of SMS masses may be the most

vulnerable to the uncertain details of the phasing and interplay of nuclear burning, convection,

rotation, and neutrino emission. For example, the calculation reported in Ref. [85] suggested that

for a narrow range of SMS masses around 5.5×104 M� “explosive” helium burning immediately

subsequent to the post-Newtonian instability point would be sufficient to cause an explosion

of the star, even with primordial metallicity at SMS formation. This calculation highlights

the outstanding uncertainties associated with SMS evolution up to the instability point and

subsequently.

2.2.2 Creating an anisotropic neutrino energy flux

There can be another consequence of electron/positron annihilation-generated neutrino

energy emission being proportional to nine powers of temperature [81–83]. Because of this

high sensitivity to the temperature, even a small anisotropy in the temperature can translate

into an order of magnitude larger neutrino emissivity anisotropy. For example, a configuration

with a 2.5% lower temperature at the equator than at the poles will have an approximately 25%

neutrino emissivity asymmetry between volume elements along the equatorial plane and the

polar direction.

In the SMSs we consider here, the bulk of the pressure, P, comes from relativistic par-

ticles, implying that P ∝ T 4. Therefore δP/P = 4δT/T . So a 2.5% decrease in temperature

corresponds to a 10% decrease in pressure. A rotation-driven centrifugal acceleration decreases

the required pressure support in the star’s equatorial plane relative to its polar direction. Interest-

ingly, 10% difference in pressure between the equator and pole on a 2-sphere near the maximum

neutrino emissivity point, in turn, likely would not significantly change the free-fall collapse time

there. For MHC = 105 M�, an angular speed of ω ∼ 0.22 rads−1 at BH formation, corresponding

to dimensionless angular momentum of J/M2 ∼ 0.18, would produce a 25% neutrino energy

emissivity anisotropy.
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If the SMS is both transparent to neutrinos and static, this emissivity asymmetry would

not be imprinted on the neutrinos escaping to infinity. The reason for this is simple: Neutrino

emission from each volume element in the core will produce a symmetric neutrino emission

pattern, radiating neutrinos isotropically, and in a completely neutrino-transparent, spherically

symmetric star where each volume element is at rest, the neutrino radiation seen by distant

observers will be spherically symmetric and static. However, many of these conditions are

violated in a real, collapsing star. A collapsing star, where fluid elements move, will lock-in some

of the temperature variation-created local emission anisotropy discussed above. The mechanism

for this is rooted in the non-equivalence of neutrino directions in the collapsing star and, in

particular, a direction-dependent differential blueshift-redshift akin to the integrated Sachs-Wolfe

(ISW) effect in cosmology [86].

Neutrinos emitted into an inwardly-directed pencil of directions will escape from the

star with significantly less energy flux than they were born with. Of course, that is true for any

redshifted neutrino, but the point here is that the extent of the unbalanced blueshift-redshift

is emission angle-dependent. This breaks spherical symmetry in the neutrino-transparent star.

Neutrinos will gain energy, i.e., experience blueshift, as they stream toward the center of the star

(homologous core or BH) and lose energy, suffer redshift, as they stream away from the center.

However, the key point is that this geometry is not static, and the SMS is collapsing. In the

time frame over which most of the neutrinos are produced, the SMS has significantly collapsed,

causing the gravitational potential well to become correspondingly deeper. Consequently, the

redshift will be larger than the blueshift. This represents a net gravitational redshift, along with

absorption by the BH (the ultimate gravitational redshift) for some neutrino directions, implying

that although the emission from a given incremental volume element is isotropic, the redshift and

absorption of neutrinos produced by this volume element is not. Fig. 2.1 illustrates the geometry

of this differential blueshift-redshift effect. This is how a net anisotropy in the neutrino emission

from the SMS, as observed by a distant observer, can be generated.

In Appendix 2.C, we present an order of magnitude estimate of the transformation of a
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neutrino emissivity anisotropy, η , (caused by, e.g., modest SMS rotation) to a neutrino energy

flux asymmetry, α , as measured by a distant observer, by this ISW-like mechanism. We stress

that the model in the Newtonian treatment in Appendix 2.C is meant to be an order of magnitude

estimate and is not meant to be a detailed analysis of the many general relativistic effects that

may affect the result, which is beyond the scope of this work. Nevertheless, our intriguing results

suggest that such a fully general relativistic study is warranted.

There are two important results from the Newtonian model in Appendix 2.C: that the

neutrino energy flux asymmetry has the opposite sign from the neutrino emissivity asymmetry;

and that is an order of magnitude smaller. If a rotation-created temperature asymmetry resulted

in an η = 0.25 neutrino emissivity asymmetry, where mass elements at the poles emit 25% more

neutrino energy than those at the equator, the ISW-like effect would result in an α ∼ −0.02

neutrino energy flux asymmetry, where the SMS emits roughly 2% less neutrino flux in the polar

direction than the equatorial direction. This assumed number for rotation-induced temperature

anisotropy is chosen for illustrative purposes only, with only the proviso that the rotation speeds

be so modest as to not alter the collapse significantly.

Note that α and η have opposite signs. This is because the more emissive polar regions

(η > 0) will create more neutrino energy flux in the equatorial directions than polar directions.

This is because the inward directed flux will be suppressed by the ISW-like effect. In addition, α

is smaller in magnitude than η because of an averaging effect over outward directed neutrino

trajectories that reduces the size of the asymmetry.

Several factors stemming from the strong gravitational field and relativistic environment

might also alter the neutrino energy flux asymmetry. Direction beaming effects will be most

important when the matter moves at relativistic velocity. This will happen only near the BH

formation point. In spite of that, the redshift will dominate over the beaming effects whenever

the in-falling fluid elements are moving close to the speed of light [87]. As a result, the beaming

contribution to the neutrino luminosity should not be dominant. Another factor to consider is the

deflection of neutrino trajectory in the strong gravitational field regime. Again, reference [87],
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Figure 2.1. Illustration of anisotropic neutrino emission production by the integrated Sachs-
Wolfe-like effect. Neutrinos moving toward the central core may fall into the BH or suffer an
ISW-like differential blueshift-redshift effect driven by the increase of gravitational potential
with time in a collapsing SMS.

studying the neutron star regime, shows that where this effect is significant, redshift is dominant.

Just how significant the null trajectory-bending effect could be in altering the neutrino emission

asymmetry requires a fully general relativistic simulation, which is beyond the scope of this

paper.

2.3 Gravitational waves from anisotropic neutrino emission

Anisotropic neutrino energy transport and emission can radiate gravitational waves

so long as there is a time-changing quadrupole moment in the neutrino flux. This type of

gravitational wave signal was first analyzed by Epstein [75]. Since then the formalism has been

applied to core-collapse supernovae in several studies [64–69].

In this paper, we use the same formalism but deal with a completely different object and

environment. SMSs have mass density several orders of magnitude lower than the density of

core-collapse supernovae. Even at the onset of black hole formation, the density in the center of

the SMSs we consider is no more than 109 gcm−3, while the density of core-collapse supernovae
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reaches nuclear matter density, ∼ 1014 gcm−3, or higher. In core-collapse supernovae anisotropy

in the neutrino emission and outgoing neutrino flux stems from inhomogeneity on the surface of

the neutrino-sphere, roughly the proto-neutron star surface. By contrast, as discussed in the last

section, in the SMS case anisotropy in the neutrino emission and outgoing flux is produced by

temperature anisotropy in the homologous core.

2.3.1 Collapsing SMSs and gravitational radiation

Consider the collapse of a SMS that anisotropically emits a burst of neutrinos with total

energy Eν , loss over a burst time scale ∆t. The gravitational wave strain measured distance d away

from this prodigious neutrino burst can be estimated with the quadrupole moment approximation,

h≈ 2Ï/d. If α represents the polar-equatorial neutrino emission asymmetry, the neutrino mass-

energy density will have an asymmetric component αEν , loss/(4πR2∆t), where R is the radius of

the homologous core. This corresponds to a quadrupole moment I = αEν , lossR3/(15∆t).

The characteristic neutrino burst time is the dynamical timescale of the collapsing

homologous core, which is approximately the light crossing time across the homologous core

near BH formation, ∆t ≈ 2MHC. This is also roughly the free-fall time near BH formation.

Because of the steep temperature dependence of e±-pair annihilation neutrino energy emissivity,

most neutrinos are radiated close to BH formation. Consequently, we take R as the Schwarzschild

radius of the homologous core, 2MHC. Assuming the total energy release in neutrinos is a fraction

β of the homologous core rest mass, the gravitational wave strain can be estimated as

h≈ 6.5×10−20
αβ

(
MHC

105 M�

)(
10 Gpc

d

)
. (2.1)

Note that cosmological redshift will increase the burst duration at the detector. The neutrino

burst time ∆t in the source’s rest frame (including SMS gravitational redshift effects) will be

redshifted to ∆tm = ∆t (1+ z) in the detector’s rest frame. Table 2.1 shows the characteristics

of gravitational wave signals from collapsing SMSs at redshift z = 7 and with a 2% neutrino
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Table 2.1. Gravitational waves from collapse of SMS at redshift 7 with a 2% neutrino emission
asymmetry.

MHC = 1×105 M� Shi & Fuller Linke et al.

Eν , loss 3.6×1057 erg 1.1×1056 erg
Fraction of rest mass β 2×10−2 5×10−4

GW strain h 3.0×10−23 8.3×10−25

emission asymmetry. This table presents these estimates for two different calculations of Eν , loss.

Of course, the strain derived by using Eq. (2.1) is only an order-of-magnitude estimate.

One flaw in this estimate is the approximation of the time-derivative as the inverse of the

characteristic neutrino burst time, which would imply a single-frequency wave. However,

because the neutrinos emitted during SMS collapse are gravitationally unbound, the gravitational

wave generated by the neutrino burst is a GWM with broad-band characteristics. To get the

correct power spectrum of the gravitational radiation, one should include Fourier components

at all frequencies. Nevertheless, Eq. (2.1) serves to capture the GWM strain amplitude to be

expected from the time-changing energy flux and quadrupole moment of the neutrino field

associated with SMS collapse.

2.3.2 Neutrino burst-generated gravitational waves with memory

We follow the formalism in Ref. [75] to calculate the key features of the form of the

gravitational wave with memory (GWM) generated by neutrino emission in SMS collapse. These

results also can be derived via a time-changing quadruple moment approach, as detailed in

Appendix 2.A. The gravitational wave measured at time t by an observer at distance d from

the SMS source was generated by that source at retarded time t ′ = t− d. The corresponding
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dimensionless gravitational wave strain is [65, 75]

∆hTT
+ + i∆hTT

××× =
2
d

∫ t−d

−∞

Lν

(
t ′
)

dt ′

∫
F
(
t ′,Ω′

)
(1+ cosθ)ei2φ dΩ

′
(2.2)

where Lν (t ′) is the neutrino energy luminosity at the retarded time, F (t ′,Ω′) is the emission

angular distribution function and dΩ′ = sinθ ′ dθ ′ dϕ ′ is the solid angle enclosing the source.

The superscript TT denotes the transverse traceless gauge and “strain” is the metric deviation,

which is identical to the trace reverse in this gauge. Here we introduce the detector’s (observer’s)

frame xyz and the source frame x′y′z′, as shown in Fig. 2.5 in Appendix 2.A – the detector is

at a distant location d along the observer’s z-axis in this figure. With the orientation of axes in

this figure, the two gravitational wave polarizations at the detector are hTT
+ ≡ hTT

xx =−hTT
yy and

hTT
××× ≡ hTT

xy = hTT
yx .

To simplify the calculation, we take the emission angular distribution to be time-

independent and axisymmetric about the z′ axis:

F
(
Ω
′)= 1+α cos2 θ ′

4π (1+α/3)
. (2.3)

The angular distribution of neutrino emission is enhanced at the two poles relative to the equator

when α > 0, and in the equatorial plane relative to the poles when α < 0. The scenario that we

describe in Sec. 2.2.2 has α < 0. Because of the φ ′-independence of the emission distribution in

Eq. (2.3), it can be shown that the only relevant polarization in Eq. (2.2) is “plus” polarization,

hTT
+ = hTT

xx =−hTT
yy .

After integration over all solid angles in Eq. (2.2), the gravitational wave strain is:

∆hTT
+ = ∆hTT

xx =−∆hTT
yy =

Eν loss

d
× α sin2

ξ

3+α
. (2.4)

As expected, the gravitational wave strain is zero when the detector is located along the polar
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axis of the source (ξ = 0 or π) and maximal in magnitude when the detector is located in the

source’s equatorial plane (ξ = π/2).

As noted, the gravitational wave signal generated by anisotropic neutrino emission is

a GWM. The “memory” effect is so named because this gravitational wave type results in a

nonzero net strain after the signal has passed the detector. In other words, its passage imprints a

permanent proper displacement between two freely falling masses. The GWM waveform in the

time-domain would look like a DC offset signal, but with a rise time ∆tm:

h(t) =





0 t <−∆tm,

∆hTT
xx (1+ t/∆tm) −∆tm < t < 0,

∆hTT
xx t > 0,

(2.5)

where ∆hTT
xx is calculated in Eq. (2.4).

2.4 The Signal To Noise Ratio

In this section we compute the signal-to-noise ratio of the neutrino burst-generated

gravitational wave signals and we consider the prospects for detecting these signals with

space-based laser interferometry. The sky-averaged squared signal-to-noise ratio is 〈SNR2〉=
∫

∞

0 [hc( f )/hn( f )]2 d f/ f . Here hc ( f ) is the GWM’s characteristic strain at frequency f and is

defined as

hc ( f )mem = 2 f 〈|h̃+( f )|2〉1/2, (2.6)

where h̃+( f ) is the Fourier transform of the GWM plus-polarization strain (metric deviation) in

Eq. (2.5):

h̃+ ( f ) = ∆hTT
xx
−ie−πi f ∆tm

2π2 f 2∆tm
sin(π f ∆tm). (2.7)

The 〈...〉 in Eq. (2.6) denotes the average over the sky position and polarization of the source, i.e.,

the average over ξ . hn ( f ) is the characteristic detector noise amplitude obtained after taking the
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average of sky-location and polarization angle, i.e., hn ( f ) =
√

f Sn ( f )/〈F2
+(θ ,φ ,ψ)〉1/2, where

Sn ( f ) is the detector’s one-sided noise spectral density and F+(θ ,φ ,ψ) is the detector’s beam

pattern function. The value of 〈F2
+〉 for detectors like DECIGO and BBO is 1/5, and 3/20 for

detectors like LISA [80, 88–90].

In the low frequency limit where f � 1/∆tm, Eq. (2.7) becomes h̃( f ) = ∆h/2πi f and the

dimensionless characteristic strain hc approaches a frequency-independent value ∆h/π (here we

use ∆h to denote generically the metric deviation signals referred to above, e.g., ∆hTT
xx , etc.). This

is one of the interesting properties of the gravitational wave memory effect. These low frequency

characteristics of GWM are sometimes referred to as the “zero frequency limit” [71, 76, 91].

In general, detectors with high sensitivity at low frequency are ideal for memory-type

gravitational waves detection. Consider, for example, the pulsar timing array (PTA) [92, 93],

which is most sensitive in the nano-Hertz frequency band. A gravitational wave memory signal

in this band that can be treated as an extreme low frequency wave is potentially “audible” to PTA.

But one important factor that limits the sensitivity of the PTA in detecting GWM signals is the

resolution of the best clock in the world. The pulse arrival time shifted by gravitational waves is

∆t/t ∼ ∆h; on the other hand, the stability of the best clock, which has a strain sensitivity at a

level ∼ 10−15 after integrating the data for 10 years [94], is still far short of what is required to

detect gravitational waves from collapsing SMSs, where we might expect ∆h∼ 10−23.

Fortunately, space-based gravitational wave detectors, for example DECIGO and BBO

[35, 36], with optimal sensitivity to frequencies in the deci-Hertz band, and high peak sensitivity

(hc ∼ 10−24), could be ideal for detecting GWM from neutrino bursts from SMS collapse.

Serendipitously, the SMS homologous core mass range giving the largest fraction of rest mass

radiated as neutrinos also produces GWM with frequencies more or less coincident with the

optimal sensitivity frequency range for DECIGO and BBO.

Figure 2.2 shows a comparison between the Shi & Fuller and Linke et al. integrated

neutrino luminosity results for the sky-averaged characteristic strains of the SMS neutrino burst-

generated GWM signals estimated here. LISA is a gravitational wave interferometry antenna in
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Figure 2.2. Sky-averaged characteristic strain hc as a function of frequency from the neutrino
burst-generated GWM signal accompanying the collapse of SMSs at z = 7, with α = −0.02
and with homologous core masses 5×104 M� (red curve), 105 M� (blue curve) and 5×105 M�
(green curve), as labeled. The panels on the top and the bottom are based on the results for
integrated neutrino luminosity from Shi & Fuller and Linke et al., respectively. The two black
solid lines and the black dash line denote the sky-averaged noise curves for LISA, DECIGO and
Ultimate DECIGO, as labeled.
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Figure 2.3. The vertical axes in the top and bottom panels show sky-averaged signal-to-noise
ratios SNR for DECIGO with the Shi & Fuller result and Ultimate DECIGO with Linke et al.
result for overall neutrino burst characteristics, respectively. Here we take asymmetry parameter
α =−0.02. Each contour line denotes the final homologous core mass of a collapsing SMS, as
labeled.
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Figure 2.4. Contours of detectability redshift z (as labeled) as a function of the neutrino emission
asymmetry and the total energy radiated in neutrinos. These results were calculated assuming an
SMS homologous core mass MHC = 105 M� with neutrino burst time calculated with the Linke
et al. result. Each contour curve shows the redshift for which SNR = 5 for Ultimate DECIGO.

Earth-like solar orbit with arm length 2.5 Gm [95]. With the currently envisioned LISA design

sensitivity, the gravitational wave signal from the collapse of SMSs at z& 0.1 is too weak to be

detected, for both results for overall neutrino emission.

DECIGO is also a gravitational wave interferometry antenna in Earth-like solar orbit,

but with a 1000 km arm length and covering the mid-frequency (∼ 0.1 Hz) gravitational wave

band with hrms ∼ 2×10−24 [54]. Its high sensitivity at f ∼ 0.1 Hz is ideal for the detection of

SMS neutrino burst-generated gravitational wave signals which have characteristic timescale ∼

1 s to 10 s. With the Shi & Fuller result, a GWM signal for an SMS with MHC ≈ 5×104 M�

will be “audible” with DECIGO (here assuming a basic “set” [90] of detectors) at z = 7, and

much higher redshifts for envisioned ultimate DECIGO design parameters [54]. The Linke

et al. result has about a factor of 30 lower total neutrino energy release and a factor of 11

longer neutrino emission time than the Shi & Fuller result. These differences imply a reduction

in strain amplitude and lower signal frequencies relative to results of calculations carried out
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with the Shi & Fuller estimates. With the Linke et al result, a GWM signal for an SMS with

MHC ≈ 5×104 M� is too faint to be seen at z& 0.1 with the basic DECIGO configuration, but

will be detectable with Ultimate DECIGO at z = 7.

Figure 2.3 gives examples of the expected SNR for our estimated SMS neutrino burst-

generated GWM as a function of redshift for a range (contours) of homologous core masses. The

results shown in this figure use both the Shi & Fuller (top panel) and Linke et al. (lower panel)

estimates for overall neutrino burst luminosity. In each of these example calculations we take the

neutrino energy flux asymmetry parameter to be α =−0.02. This figure provides insight into

the prospects for detection of these GWM signals. We show (upper panel) the most optimistic

estimate of neutrino burst luminosity and most favorable (highest) rest frame frequency paired

with the least sensitive version of DECIGO, and the least favorable estimate of neutrino emission

and rest frame frequency range paired with the most sensitive and capable version of DECIGO

planned, i.e., “Ultimate” DECIGO. Based on Shi & Fuller result, the GWM signal for an SMS

with MHC = 5×104 M� and α = −0.02 could be detected by DECIGO with SNR > 5 out to

redshift 7. With the same mass and asymmetry, the GWM signal with Linke et al. result is not

detectable with basic DECIGO, but is detectable by Ultimate DECIGO with SNR > 5 out to

redshift 13.

Figure 2.4 provides insight into detectability of neutrino-burst-generated GWM. In this

figure we show contours of detectability redshift as a function of neutrino emission asymmetry

and the total energy radiated in neutrinos for a SMS with homologous core mass MHC = 105 M�.

Here the contours of redshift “detectability” indicate a SNR≥ 5 in Ultimate DECIGO. The total

neutrino emission for this particular example is 3.6× 1057 ergs, as calculated with the Shi &

Fuller neutrino emission result and approximately 1056 ergs with Linke et al. result. All of these

estimates are intriguing, suggesting that deci-Hertz gravitational wave detectors may be able

to probe massive black hole production and associated physics at redshifts at, and even well

beyond, those of the epoch of re-ionization.

SMS collapse events with a given mass and given neutrino emission asymmetry could
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be detected to even larger distances if nuclear burning prior to, or during, collapse causes the

entropy to increase, in turn causing a larger fraction of SMS rest mass to be radiated as neutrinos.

But nuclear burning and rotation also can decrease the chances for detection of SMS neutrino

bursts.

In this vein, we should emphasize that all of our estimates are rough, and many issues in

SMS physics remain open, as discussed above in Sec. 2.2. For example, the neutrino emission

calculations in both Shi & Fuller and Linke et al. results do not include the possible effects of

nuclear burning on the SMS’s collapse adiabat, nor do they incorporate the phasing of this nuclear

energy input with the post-collapse build-up of infall kinetic energy in the homologous core.

Moreover, if significant pressure or centrifugal support resists the free fall of the homologous

core, more neutrinos can be emitted, as there is more time for emission before the formation of a

trapped surface. As a consequence of this effect, however, peak neutrino emission will be shifted

to a lower frequency because the collapse time will be longer than the free-fall time near the BH

formation point. As illustrated by the examples in Fig. 2.2, shifting the frequency of the neutrino

burst-generated GWM to the low side of the DECIGO peak sensitivity frequency range impairs

that detector’s ability to “see” these signals at the higher redshifts.

On the other hand, the rapid release of nuclear binding energy may destroy the star

in an explosion instead of forming a large remnant BH. Of course, this results in much less

total neutrino emission. The calculation reported in Ref. [85] suggests a possible narrow SMS

mass window, centered around MSMS ≈ 5.5×104 M�, where a non-rotating, primordial (zero)

metallicity SMS could experience rapid, “explosive” helium burning beginning just after the

conclusion of hydrogen burning and in close coincidence with the post-Newtonian instability

point. This could result in thermonuclear explosion, as not much infall kinetic energy will have

been built up prior to the helium burning energy injection. Moreover, the coincidence of the

triple-alpha ignition point and the onset of instability is likely what limits the SMS mass range

for this behavior and targets the lower masses in the range of masses considered here – only the

lower end our mass range would have a stable main sequence.
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SMS produced at later epochs, or in scenarios involving tidal disruption or stellar coales-

cence in a dense star cluster, may have small but non-zero initial metallicity. These could also

experience thermonuclear explosion rather than collapse to a BH. A small initial carbon, nitrogen,

or oxygen (CNO) content could facilitate hydrogen burning via the CNO cycle, and thereby

allow an early break-out into the rp-process. In turn, this break-out would result in a greater rate

at which nuclear energy is added as compared to that in the proton-proton hydrogen burning

regime characterizing the early stages of collapse in initially zero metallicity SMSs. Nuclear

energy addition immediately after the post-Newtonian instability point, before the build-up of an

infall kinetic energy “debt,” enhances the chances for thermonuclear explosion.

Rotation can also enhance these chances. The study in Ref. [96] shows that a rotating

SMS with a mass MSMS ≈ 5×105 M� at initial angular speed & 2.5×10−5 rad/s reduces the

metallicity threshold for thermonuclear explosion to ZCNO ≈ 0.001. Their result for a star that

explodes this way shows a decrease of 10 orders of magnitude in total neutrino loss rate relative

to a model that collapses to a BH. In any case, post-instability thermonuclear explosion of an

SMS will decrease the total energy radiated in neutrinos and, at the same time, increase the

neutrino burst timescale relative to that of a SMS that collapses to a BH. These features decrease

the prospects for detecting a neutrino burst-generated GWM signal.

2.5 Other possible GWM sources

There are several other astrophysical sources which could produce a linear memory

GWM signal with strain magnitude and overall timescale similar to those originating from a

neutrino burst associated with a high-redshift SMS collapse. If a space-based laser interferometer

gravitational wave observatory were to record a signal with characteristics along the lines of what

we discuss above, how would we know it was actually a SMS collapse-generated GWM? Direct

neutrino detection could constitute a confirmation, as the time dependence of the neutrino signal

in principle could tag the event as having a SMS collapse origin [97, 98]. However, the neutrino
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radiation from a high-redshift SMS collapse will be difficult to detect for redshift z& 0.2, though

below this redshift the SMS collapse time template may allow IceCube to extract this signal [98].

Detection of the gravitational-wave ringdown signal associated with the black hole

produced in SMS collapse might be another way to tag the linear memory GWM signal as having

a SMS collapse origin. In fact, the ringdown signal should follow neutrino burst-driven GWM by

no more than one dynamical timescale, ∼MHC
5 s. However, a slowly rotating or a non-rotating

SMS might not generate a gravitational-wave ringdown signal of high enough amplitude to

be detected by the existing or proposed laser interferometers, especially if the SMS is at high

redshift.

A non-detection of the gravitational-wave ringdown signal will force us to examine

other possible sources, for example, conventional core collapse supernovae and hyperbolic

binaries occurring in the local galactic group. A typical core collapse event radiates roughly

∼ 1053 erg in neutrinos in a few neutrino diffusion timescales, . 10 s. A supernova event

occurring in the Andromeda galaxy, approximately 1 Mpc away from earth, could produce a

neutrino burst-generated GWM signal with strain ∼ 10−23 on a timescale ∼ 1 s to 10 s, similar

to the characteristics of neutrino-burst generated GWM from high-redshift SMS collapse.

Fortunately, several other counterpart signals would be expected to accompany the

supernovae GWM signal, for example, the strong gravitational-wave burst without memory from

the motion of the baryonic component in the source, the electromagnetic (EM) radiation, and

the burst of neutrinos. The latter may be problematic to detect if the source is at an appreciable

distance outside the Galaxy. The detection of any of these counterparts could help to distinguish

a GWM signal from local group core collapse supernova events and the GWM signal from a

high-redshift SMS collapse. EM transients associated with conventional compact object sources

should be detectable in most circumstances where their linear memory signals might be confused

with those discussed here. Indeed, it is interesting to speculate on whether the EM signal from

SMS collapse or explosion at high redshift might be detectable – the future prospects for such a

detection are encouraging given the revolution occurring in time domain/transient astronomy
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across the EM spectrum.

There can be other compact object sources of linear memory GWM signals. Among

these are hyperbolic binaries, i.e., two stars in an unbound orbit, in essence “bremss-ing” off

gravitational radiation. Two stars undergoing a close, but unbound encounter, can radiate GWM

signals with strain magnitude 4mA mB/(br) on the characteristic timescale b/v [72]. Here mA

and mB are the masses of the two objects, b is the impact parameter, r is the distance from the

observer to the hyperbolic binary source, and v is the relative velocity between the two objects at

closest approach. Consider two neutron stars in the Andromeda galaxy (assumed 1 Mpc distant

from earth for this example) flying past to each other with a relative speed ∼ 1000 kms−1 and an

impact parameter ∼ 104 km. The gravitational wave strain from this event would be ∼ 6×10−23,

and the timescale over which the amplitude of this gravitational radiation is appreciable is∼ 10 s.

We would expect no significant EM or neutrino signatures from such an event.

However, the polarization of the expected gravitational radiation from a hyperbolic

encounter will be different from the polarization in SMS neutrino burst-generated GWM. As

shown in Ref. [72], the gravitational wave generated in the hyperbolic binary encounter have

both linear and circular polarization, whereas the neutrino burst-generated GWM discussed in

this work would have only linear polarization. A detection of a circularly polarized component

of the GWM generally would indicate that the signal was not produced in the SMS scenario

discussed here. But there is a loophole. Note that at some detector inclinations relative to the

orbital plane of the hyperbolic binary, the observer would receive only the linearly polarized

GWM component and not the circularly polarized one (see Fig. 2 in Ref. [72]). In that case, we

would not be able to distinguish between the GWM signal coming from a hyperbolic binary and

the GWM signal coming from high-redshift SMS collapse.
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2.6 Conclusion

In this paper we point out an intriguing connection between neutrino burst-generated

gravitational waves from the collapse of high entropy, fully convective SMSs at high redshift

and the capabilities of proposed space-based gravitational wave observatories like BBO and

DECIGO to detect linear memory gravitational wave signals with high sensitivity. We have

made simple estimates of the expected linear memory gravitational waves (GWM) likely to

be produced by SMS collapse-generated neutrino bursts and the response of these detectors to

these signals. We conclude that detection of these GWM is possible in some cases and for some

DECIGO detector configurations, even from SMS collapse at high redshift. Detections along

these lines would open a new window on an old, but otherwise mysterious issue in relativistic

astrophysics: the origin of supermassive black holes.

In the scenarios we examined, gravitational collapse of high entropy SMSs engineers

prodigious neutrino production which, in turn, gives rise to a relatively unique gravitational wave

signal, the GWM. The high entropy attendant to a hydrostatic SMS implies that these objects

possess copious electron/positron pairs in electromagnetic equilibrium. This, coupled with the

strong temperature dependence (∝ T 9) of e±-pair annihilation into escaping neutrino pairs of all

flavors, guarantees that SMS collapse constitutes an prodigious engine for neutrino production.

In fact, SMSs with homologous core masses in the range 5×104 M� to 5×105 M� will

radiate an optimal fraction of their rest mass in a burst of neutrinos, mostly produced close to the

black hole formation point because of the T 9 neutrino emissivity dependence. Neutrinos from

lower mass stars will likely suffer scattering-induced trapping, cutting down the amplitudes and

decreasing the frequency of gravitational waves produced, while higher mass SMSs do not get

hot enough to radiate a significant fraction of their mass in neutrinos before black hole formation.

The collapse of a 105 M� SMS is likely accompanied by a few percent of its gravitational binding

energy being radiated as neutrinos, on a timescale ∼ 1 s to 10 s. An asymmetry in the outgoing

neutrino energy flux can create a characteristic GWM signal, observable in the frequency bands
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where DECIGO and BBO are most sensitive.

For example, a modest rotation of the SMS could result in a small temperature and

neutrino emission asymmetry. In an otherwise static and neutrino-transparent SMS, this would

not produce an appreciable quadrupole moment in the neutrino field. However, in a non-

static, collapsing SMS, the neutrino direction symmetry is broken, and a differential blueshift-

redshift effect, much like the integrated Sachs-Wolfe (ISW) effect for photons propagating

through evolving density fluctuations/potential wells in the early universe, serves to imprint any

temperature asymmetry or inhomogeneity on the outgoing neutrino energy flux – this can give a

time-changing quadruple moment in the neutrino mass-energy field and, hence, gravitational

radiation. Using Shi & Fuller’s result for neutrino energy luminosity, the neutrino burst-generated

GWM signal produced from the collapse of an MHC = 5×104 M� SMS could be observed with

SNR > 5 for DECIGO out to redshift 7 and for Ultimate DECIGO out to redshifts of order

∼ 100. Using Linke et al.’s result for the neutrino energy luminosity, they would be observable

with out to redshift z∼ 13 with SNR > 5 in the Ultimate DECIGO configuration. The unique

characteristics of the DECIGO detector response to a linear memory gravitational wave should

allow this detector to tag this signal as a GWM.

There are many pitfalls and unresolved issues in our estimates. We have discussed several

of these, including the effects of nuclear burning and the phasing of this energy input with

hydrostatic SMS evolution, collapse, and neutrino emission. Near BH formation, the collapse

timescale - over which most of the neutrinos are emitted - may be significantly larger than the

free-fall timescale we have employed in our calculations. This could shift the timescale of the

GWM longer and out of the most sensitive frequency range of the detectors like BBO/DECIGO.

Hydrodynamic evolution itself could be impacted by the competing processes of nuclear

burning and neutrino energy loss. For example, radiation pressure will resist the infall of the

homologous core, resulting in a collapse timescale larger than the free-fall timescale. On the other

hand, a more extended collapse time will increase the integrated neutrino emission, and therefore

increase the GWM strain. The coupled nuclear, weak interaction, rotation, and hydrodynamic
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evolution of SMS stars remains a fascinating, if complicated story. How these issues play out in

detail could affect the GWM estimates we make here. Obviously, a key conclusion of our work

here is that more sophisticated calculations including these and other effects are warranted.

It remains an open question whether high entropy, fully convective SMSs form at high

redshifts, and if they do form, whether the BHs they produce are the seeds for the formation of

high redshift SMBHs. For the purposes of this study, we are agnostic on these issues. However,

the detection of GWM signals attributable to the neutrino burst from these high redshift SMSs

may provide an intriguing hint toward solving, or narrowing, the problem of the formation

of SMBHs in the high redshift universe. It is remarkable that the envisioned space-based

gravitational wave observatories like BBO/DECIGO could be poised to probe this physics in a

nearly unique way.
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2.A Quadrupole moment approximation

Epstein [75] has given a rigorous derivation of gravitational radiation generated from a

neutrino burst via direct integration of the linearized inhomogeneous Einstein field equations. In

the following, we derive this result in the weak-field quadrupole moment approximation.

We can break up the neutrino burst into N components and label them by index α = 1, 2,
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3, ..., N. The mass-energy density distribution can be written in the point-mass description:

ρν

(
tr,x′

)
= ∑

α

Mα√
1− v2

α

δ
(
x′− rα

)
, (2.8)

where Mα , vα and rα are the rest mass, velocity and position of the αth neutrino.

Assuming constant neutrino velocity, the second time-derivative of the mass quadrupole

moment tensor becomes

Ï jk (tr) = 2 ∑
α

Mα√
1− v2

α

vα
j vα

k

= 2
∫

ρν

(
tr,x′

) n jnk

1−~N · n̂
d3x′

(2.9)

where ~N is the unit vector between the source and the detector and n̂ is the unit vector of the

neutrino flux directed into the solid angle dΩ′. The second step of Eq. (2.9) assumes neutrinos

travel at the speed of light and we interpret the Mα/
√

1− v2
α to be the αth neutrino’s energy

measured in the detector’s rest frame. The (1−~N · n̂)−1 term comes from the Lienard–Wiechert

solution. Now apply the gravitational wave quadrupole formula and obtain

∆h jk
TT (t,x) =

4
d

∫ t−d

−∞

∫ d2Eν

dt ′dΩ′

[
n jnk

1−~N · n̂

]TT

dΩ
′ dt ′. (2.10)

Here d is the distance from the source to detector; dΩ′ is the solid angle enclosing the source;

Eν is the total energy emitted as neutrinos. Evaluating Eq. (2.10) yields gravitational waves with

linear memory (GWM) from a burst of neutrinos: gravitational wave strain h jk
TT = 0 before the

GWM arrives and accumulates to a nonzero value ∆h jk
TT after the gravitational wave passes the

detectors.

If the emission has spherical symmetry, then there is no gravitational signature – this is

Birkhoff’s theorem; but if there is a small anisotropy in the neutrino emission dEν/dΩ′, then the

integral in Eq. (2.10) is nonzero and therefore the memory strain accumulates to a nonzero value.
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Figure 2.5. xyz and x′y′z′ are coordinate systems of the detector and the source, respectively.
The source is located at the origin and the detector is far out in the ẑ direction. We choose the
neutrino emission distribution to be axisymmetric about the z′ axis. The x− z and x′− z′ planes
are coplanar and differ by a rotation by angle ξ about the y axis.

The function d2Eν/dΩ′dt ′ in Eq. (2.10) can be written as Lν (t ′)F (t ′,Ω′), where Lν (t ′) is the

neutrino luminosity and F (t ′,Ω′) is the emission angular distribution with
∫

F (t ′,Ω′) dΩ′ = 1.

Placing the detector at the transverse direction of the gravitational wave, say along the z

axis in Fig. 2.5, the two polarizations are hTT
+ ≡ hTT

xx =−hTT
yy and h××× ≡ hTT

xy = hTT
yx . Eq. (2.10)

can be written as

∆hTT
+ + i∆hTT

××× =
2
d

∫ t−d

−∞

Lν

(
t ′
)

dt ′

∫
F
(
t ′,Ω′

)
(1+ cosθ)ei2φ dΩ

′ ,
(2.11)

where θ is the angle between the flux going into dΩ′ and the direction to the detector, and φ is

the azimuthal angle with respect to the x axis in the xy plane. From Eq. (2.11) it’s clear that the

rise time for the non-oscillatory gravitational wave memory signal to reach its final strain is the

same as the duration of the neutrino burst in the detector’s rest frame.
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2.B Detector’s response to a GWM signal

The GWM is a non-oscillatory signal which causes a permanent displacement of the

detector’s arm length after this wave train has passed. Its effect on two freely falling masses is a

“DC" offset-like signal, with the rise time equal to the signal burst time ∆ tm. As an example, we

can estimate the strain as a function of detector frame time based on the total neutrino emission

and burst time taken from the Shi & Fuller neutrino luminosity and timescale result. This estimate

results in the solid curve in Fig. 2.6. It shows the full GWM waveform for MHC = 105 M� SMS

collapse at z = 7.

Laser interferometry gravitational wave detectors’ sensitivity curves are frequency de-

pendent, so only a narrow frequency band is “audible” to such detectors. To mimic DECIGO’s

response to the GWM signal, we use a bandpass filter in the frequency band [0.01,1] Hz. The

green dashed curve in Fig. 2.6 represents the response of DECIGO to the GWM signal (the solid

curve). The waveform after the filtering will not resemble a “DC”-like signal because of the

suppression of low frequencies.

2.C Neutrino absorption by BH trapped surface

Local neutrino emissivity (∝ T 9) and overall neutrino luminosity both increase as the

core collapses and the temperature increases. Peak neutrino luminosity will occur very near

where a trapped surface forms and gravitational redshift rather abruptly cuts off neutrino radiation

to infinity. Just what that peak luminosity is and, concomitantly, the amplitude of the GWM

signal both depend on details of relativistic effects near black hole formation. With our nearly

Newtonian treatment, we can make only cogent, order of magnitude estimates, of these effects.

The essence of the problem: The competition between increasing neutrino emissivity and

gravitational redshift implies that most of the neutrinos are emitted at a thin spherical shell

of radius somewhere between 1MHC and 2MHC within the dynamical time scale 2MHC. The

neutrino luminosity calculation from the Shi & Fuller result is based on the assumption that
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Figure 2.6. Estimated gravitational wave time series from a SMS collapse with MHC = 105M�
at z = 7 and the neutrino emission asymmetry α =−0.02. The detector is placed at equatorial
plane ξ = π/2. The blue solid line shows the detector’s arm response to GWM signal. The green
dashed line shows the time series filtered with a 10−2−100 Hz bandpass filter to illustrate the
signal seen by DECIGO.
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Figure 2.7. Illustration of neutrino absorption by BH trapped surface formation. The solid circle
is the trapped surface after the BH is formed. The dashed circle is the radius of neutrino peak
production site. Neutrinos moving toward the core at the angle ψ < ψc will be trapped in the BH
and therefore make no contribution to the neutrino emission asymmetry α .

neutrinos only move radially outward. Yet a significant fraction of neutrinos that move radially

inward will not have enough time to pass through the Schwarzschild radius 2MHC at the onset of

BH formation. The consequences are: (1) the actual neutrino luminosity is smaller than what is

calculated in Shi & Fuller and (2) only the neutrinos that are not trapped in the BH can contribute

the neutrino emission asymmetry via the ISW-like effect.

Assume that peak neutrino emission happens in a thin spherical shell with the radius

rpeak ≈ 1.5MHC within one dynamical time before the BH formation. Neutrinos emitted into an

inwardly-directed pencil of directions with launch angle ψ (relative to radially inward-directed

unit vector) smaller than the critical angle ψc have a time of flight greater than 2MHC and

therefore will be inside the trapped surface when the BH is formed. The critical angle can be

estimated easily in Euclidean geometry: ψc ≈ 68◦ (see Fig. 2.7). As a result, the fraction of
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Figure 2.8. Time evolution of the neutrino luminosity. The solid curve is taken from Shi &
Fuller, which assumes that neutrinos only move radially outward. The dashed curve takes account
the neutrino luminosity loss due to the different time of flight at different emission angles.

neutrino luminosity loss, ε , is approximately

ε =
1

4π

∫ 2π

0

∫
ψc

0
sinθdθdφ ≈ 0.3 (2.12)

Fig. 2.8 shows the time evolution of neutrino luminosity for an observer at infinity. The solid

curve is taken from the Shi & Fuller result, which assumes all neutrinos move radially outward.

The dashed curve is the neutrino luminosity after taking account of the energy loss ε stemming

from different time of flight along trajectories at different emission angles.

Here we show a crude estimate simply to illustrate how the BH trapped surface could

change the neutrino luminosity. Certainly, more sophisticated, fully relativistic 3-dimensional

hydrodynamical simulations together with a numerical spacetime/gravitational wave calculation

are warranted. Nevertheless, throughout this paper, to facilitate a parameter survey and to

illustrate the basic effects we adopt the neutrino luminosity functions taken from the Shi & Fuller

and Linke et al. results.
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Neutrino trapping by trapped surface formation also impacts estimates of the neutrino

emission asymmetry. Neutrino born on trajectories with angle ψ less than the critical angle

ψc will be trapped in the BH. These will not make any contribution to the neutrino emission

asymmetry α . Neutrinos moving on trajectories with angles ψ > π/2 will not experience any

ISW-like effect because they do not stream into the collapsing core. Only neutrinos moving on

trajectory angles between ψc and π/2 can experience the differential blueshift-redshift effect

and still escape to contribute to the neutrino emission asymmetry.

Using the Newtonian picture, a neutrino directed toward the collapsing core of the SMS

will lose a fraction of its energy, δE/E ∼ δM/r, from the ISW-like, angle-dependent, differential

redshift-blueshift effect. The timescale necessary for the neutrino to stream through the core and

back to its initial radius is δ t = 2r cosψ , where ψ is the angle between the neutrino trajectory

and the radial line. The increase in the enclosed mass is δM ∼ ρ̄× (4πr2)× (2r cosψ), where ρ̄

is the average density of the homologous core close to the BH formation. The fractional energy

loss is δE/E ∼ (r/rs)cosψ .

Most of the neutrinos are emitted in a relatively thin spherical shell of radius somewhere

at rpeak ≈ 1.5MHC. Consequently, in this paper, we approximate the fractional energy loss in a

radius-independent form δE/E ∼ 3
4 × cosψ . Note that this function is only meant to represent

the energy loss due to the ISW-like effect. It does not include the absorption accompanying

trapped surface formation.

As a simple model, let the neutrino emissivity in the peak emission shell be parameterized

by Qη (θ) = Q0
(
1+η cos2 θ

)
, where η is the neutrino emissivity asymmetry between volume

elements along the polar direction and the equatorial plane and Q0 is proportional to the volume-

averaged emissivity, 〈Qη〉 = Q0 (1+η/3). To estimate the polar-equatorial neutrino energy

flux anisotropy, we need to estimate the neutrino energy fluxes that experience the differential

blueshift-redshift effect and stream into a solid angle dΩ in the polar direction, along the negative
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z-axis (φ (pol)), and an equatorial direction, along the negative y-axis (φ (eq)):

φ
(pol) =

∫ 2π

0

∫
π/2

ψc

(
1− 3

4
cosθ

)
Qη (θ)sinθ dθ dφ , (2.13)

φ
(eq) =

∫ 2π

0

∫
π/2

ψc

(
1− 3

4
cosθ

′
)

Qη (θ)sinθ
′ dθ

′ dφ
′, (2.14)

where θ is the polar angle from z-direction and θ ′ is the new polar angle measured from y-

direction. Here we take ψc to be 68◦. Parameterizing the polar-equatorial neutrino energy flux

asymmetry, α , as the ratio of the total flux in the polar direction to the flux in the equatorial

directions subtracted by unity, and using η = 0.25, we estimate a neutrino emission asymmetry:

α =
2π〈Qη〉+φ (pol)

2π〈Qη〉+φ (eq)
−1≈−0.02. (2.15)

The emission asymmetry parameter α will depend on the SMS initial rotation speed. A

faster rotation will induce a larger emissivity asymmetry, leading to a larger neutrino emission

asymmetry. But given that the initial state of the SMS is unknown, α should be treated as a free

parameter. Nevertheless, for illustrative purposes we will use α =−0.02 throughout this paper.

2.D An electromagnetic analogue for linear wave memory

In this appendix, we demonstrate a similar wave memory effect from the classical

electrodynamics. We start with comparing the wave equations in General Relativity and classical

electrodynamics. The linearized Einstein equation in a Lorentz gauge, h̄µν
,ν = 0, is given as

�h̄µν =−16πG
c4 T µν , (2.16)

where h̄µν ≡ hµν − 1
2ηµνhα

α is the trace reverse of hµν , �≡−∂ 2/∂ t2 +∇2 is D’Alembertian

operator, and T µν is stress-energy tensor. The inhomogeneous electromagnetic wave equation in
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Gaussian units and the Lorentz gauge, Aµ
,µ , is given as

�Aµ =−4πJµ , (2.17)

where Aµ = (φ ,A) is electromagnetic four-potential and Jµ = (ρ,J) is four-current. Comparing

Eqs. (2.16) and (2.17), we see that Aµ is analogous to hµν and Jµ is analogous to T µν .

From our analysis in the main body of the text of Chapter 2, we learn that a gravitationally

unbounded source can generate a permanent strain h and, consequently, a permanent change of

the proper length between two free-falling masses. The change of proper length can be observed

via the interference of two groups of photons acquiring different phases. Based on a comparison

between Eqs. (2.16) and (2.17), we also expect that an unbounded electric charge current density

J can produce a permanent non-zero vector potential A – it is a memory of vector potential

“imprinted” in space. In principle, this permanent A can be observed via the interference of two

charged particles acquiring two different phases as they propagate along different paths in space.

The solutions for Eq. (2.17) are given as

φ (t,r) =
∫

d3x′
1

|r− r′|

[
ρ
(
t ′,r′

)]

ret
,

A(t,r) =
∫

d3x′
1

c|r− r′|

[
J
(
t ′,r′

)]

ret
,

(2.18)

where t ′ is the retarded time which is defined as t ′≡ t−|r− r′|/c, r is the location of the observer,

and r′ is the charge distribution. The electric and magnetic fields are given as

E(t,r) =
∫

d3x′
R̂

|r− r′|2 ρ
(
t ′,R′

)
ret

︸ ︷︷ ︸
E1

+
∫

d3x′
R̂

c|r− r′|

[
∂ρ (t ′,r′)

∂ t ′

]

ret︸ ︷︷ ︸
E2

+
∫

d3x′
−1

c2|r− r′|

[
∂J(t ′,r′)

∂ t ′

]

ret︸ ︷︷ ︸
E3

,

(2.19)
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and

B(t,x) =
∫

d3x′
−R̂

c|r− r′|2 ×J
(
t ′,r′

)

︸ ︷︷ ︸
B1

+
∫

d3x′
−R̂

c2|r− r′| ×
[

∂J(t ′,r′)
∂ t ′

]

ret︸ ︷︷ ︸
B2

, (2.20)

where we define the unit separation vector R̂ = (r− r′)/|r− r′|.

We consider a charge emitter located at the origin and emitting charged particles moving

at a speed of light. Now, let this emitter emit a positively charged current, I, in the +z direction

and a negative current, −I, in the −z direction. We further assume that the magnitude of the

positive current and the negative current are the same so that the net change of charge density is

zero, i.e., ∂ρ/∂ t ′ = 0. We like to know the E and B fields radiated from the source during the

initial stage of current emission, at which time the size of the charge distribution, r′ ∼ ct ′, is still

much smaller than the distance between the source and the observer. Under these conditions, we

find:

1. E1 is the electrostatic field, which goes as 1/r2,

2. E2 is zero since ∂ρ/∂ t ′ = 0,

3. B1 is the magnetostatic field, which goes as 1/r2,

4. The combination of E3 and B2 forms an electromagnetic radiation generated by the time-

changing charge currents. Furthermore, E3� E1 and B2� B1 when the observer is far

from the source.

As a result, the leading order contribution of E(t,r) comes from E3. Performing the volume

integration, we can write E(t,r) as

E(t,r) =−2ẑ
rc

dQ+ (t ′)
dt ′

, (2.21)

where Q+ (t ′) is the total amount of positive charges emitted out from the source at the retarded
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time t ′.

Suppose the charge emitter emits a total amounts of positive charge Q+,tot and negative

charge −Q+,tot during 0≤ t ′ ≤ ∆t ′. An EM pulse with the width c∆t ′ is then radiated out from

the origin. In the region that has been swept by this EM pulse, the change of the vector potential,

∆A, is given as

∆A(t,r) =−
∫

∆t ′

0
cE
(
t ′,r
)

dt ′ =
2Q+,tot

r
ẑ. (2.22)

From Eq. (2.22), we see that ∆A reaches a constant value after the EM pulse has fully passed by

point r, and the total change of A is proportional to the total charges emitted from the emitter.

The constant A is the “memory” imprinted in the spacetime by the EM pulse. This memory effect

happens when the charged particles are ejected out from the source and become unbounded from

the system.

2.D.1 Interference

In quantum mechanics, a constant vector potential can change the phase angle of the

wavefunction of a charged particle. Two wavefunctions with two different phases could interfere

with each other, causing the quantum interference. This effect allows us to observe the increase

of the constant vector potential in the spacetime. Here we design a thought experiment to

demonstrate how a constant vector potential “imprinted” in the region behind the electromagnetic

pulse can be observed by the quantum interference experiment.

x

y

z

A

B

C

Figure 2.9. Let two charged particles start at point C and set their phases to be the same. Move
one particle to point A and the other to point B, and bring them back to point C after the EM
pulse passes by point C.
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We consider a wavefunction φ (x) of a charged particle that undergoes a U(1) gauge

transformation, φ (x)→ eiΛ(x)φ (x), where Λ(x) follows Aµ (x)→ Aµ (x)+ 1
e ∂µΛ(x).

1. First, we consider a EM pulse moving along +y axis, as shown in Fig. 2.9. Let the

cross-section of the pulse on the xz plane be small enough so that, far from the y-axis, the

E and B can be neglected.

2. Before the EM pulse arrives point C, we prepare two identical particles at point C and let

two particles have equal phases.

3. Bring the first particle along ẑ-direction to point A and the second particle along x̂-direction

to point B.

4. After the EM pulse has passed by point C, the two particles still have equal phases as there

is no EM pulse passing through point A or B.

5. Bring both particles back to point C. Since the second particle moves in the direction

perpendicular to A, the second particle does not gain any additional phase. On the other

hand, the first particle moves in the direction (anti-)parallel to A and acquires an additional

phase −e
∫

∆A ·dz ẑ as it moves from point A to point C. When the two particles meet at

point C again, they have different phases. The difference of the two phases can be observed

through the quantum interference experiment.

From this experiment, we see that the electromagnetically unbound charge currents emit

a unique EM pulse that imprints a constant, permanent vector potential, or memory of EM field,

on the spacetime and changes the quantum phase of the particles. This phenomenon is very

similar to the linear gravitational wave memory effect, in which case the gravitationally unbound

matter emits a particular gravitational wave that imprints a constant change of metric on the

spacetime.
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Chapter 3

Probing dark photons in the early universe
with big bang nucleosynthesis

We perform calculations of dark photon production and decay in the early universe for

ranges of dark photon masses and vacuum coupling with standard model photons. Simultane-

ously and self-consistently with dark photon production and decay, our calculations include a

complete treatment of weak decoupling and big bang nucleosynthesis (BBN) physics. These

calculations incorporate all relevant weak, electromagnetic, and strong nuclear reactions, in-

cluding charge-changing (isospin-changing) lepton capture and decay processes. They reveal a

rich interplay of dark photon production, decay, and associated out-of-equilibrium transport of

entropy into the decoupling neutrino seas. Most importantly, the self-consistent nature of our

simulations allows us to capture the magnitude and phasing of entropy injection and dilution.

Entropy injection-induced alteration of the time-temperature-scale factor relation during weak

decoupling and BBN leads to changes in the light element abundance yields and the total radi-

ation content (as parametrized by Neff). These changes suggest ways to extend previous dark

photon BBN constraints. However, our calculations also identify ranges of dark photon mass

and couplings not yet constrained, but perhaps accessible and probable, in future Stage-4 cosmic

microwave background experiments and future high precision primordial deuterium abundance

measurements.
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3.1 Introduction

The early universe and the increasingly sophisticated observations that constrain its

history together comprise a promising “laboratory” for dark sector physics. Vetting new physics

with this laboratory demands accurate modeling of the effects of this physics on the evolution

of key parameters in the early universe and the impact of those effects on observables. In this

paper we examine in a self-consistent way how dark photons in a specific range of masses and

couplings with the standard model affect neutrino decoupling, associated relic energy density,

and light element abundances.

Weak interaction decoupling and big bang nucleosynthesis (BBN) in the early universe

are protracted and intertwined processes. Together they proceed over many Hubble times,

roughly spanning temperature regimes from T ∼ 10MeV to T ∼ 10keV. In strictly standard

model cosmology, neutrino charged- and neutral-current scattering on electrons and positrons

continues to facilitate energy and entropy transfer to the plasma of electrons, positrons, photons,

and nucleons even down to temperatures near alpha particle formation (T ∼ 100keV), although

the effectiveness of this transfer decreases significantly with falling temperature. Likewise,

charged current weak processes involving neutrinos and charged leptons continue alteration of

the neutron-to-proton (n/p) ratio throughout this epoch [99].

If there are out-of-equilibrium Beyond Standard Model (BSM) particles decaying and

injecting energy and entropy into the plasma during the weak decoupling epoch, then there will

be an extra (over and above the standard model) entropy flow between the neutrino and plasma

sectors. This effect not only alters the n/p ratio from standard model cosmology, but also changes

the phasing of these quantities in time relative to the dynamics of nuclear reactions involving

light elements. In broad brush, these nuclear reactions proceed in the context of a freeze-out from

nuclear statistical equilibrium (NSE). In addition, entropy generation from out-of-equilibrium

particle decay in such BSM scenarios will dilute the neutrino radiation density and decrease

the relativistic degrees of freedom (parameterized by Neff). In principle, these alterations from
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standard cosmology can be calculated with a self-consistent treatment of neutrino energy spectra,

plasma temperature, and the strong, electromagnetic, and weak nuclear reactions. A comparison

of Neff and light element abundances (principally deuterium and helium) emerging from this

epoch with observationally-inferred values of these allows us to explore BSM physics and in

some cases to make constraints on the model parameters of this new physics. This program is all

the more alluring given anticipated high precision Stage-4 cosmic microwave background (CMB)

experiments [100] (Neff and primordial 4He) and the advent of 30-m class telescopes [101, 102]

(deuterium, hereafter D). The possibility of increased precision in these measurements holds out

the promise of better probes of BSM and dark sector physics.

While there are several portals to dark sector physics, we choose to concentrate here

on the kinetic mixing portal of a dark photon [103, 104]. This portal is tractable and relatively

simple, yet possesses a potentially rich phenomenology of outcomes. Exploration of this portal

has gained popularity in recent years. In part, this is because a dark photon could be a dark

mediator between a dark sector and SM particles [105, 106]. This physics may also explain

the muon g− 2 anomaly [107]. Moreover, standard model photons manifest as collective

modes (e.g., plasmons) in medium. These collective plasma effects can enable resonant (e.g.,

enhanced) dark photon-photon inter-conversion. In turn, this could produce unique and fruitful

dark sector signatures in various plasma environments ranging from compact objects to the early

universe [48, 108–121].

For our purposes the dark photon will be a new U(1)′ vector particle that has a kinetic

mixing with the SM photon [103, 104]. Below the electroweak energy scale the relevant low-

energy vacuum Lagrangian we adopt for the dark and standard model electromagnetic sectors

is

L ⊃−1
4

FµνFµν − 1
4

F ′µνF ′µν +
κ

2
FµνF ′µν +

1
2

mA′
2A′µA′µ , (3.1)

where here, and hereafter, vector potential Aµ and field tensor Fµν will refer to the SM photon and

electromagnetic fields, while the primed versions, A′µ and F ′µν , will refer to the corresponding
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dark photon field. Here κ is the vacuum kinetic mixing parameter and mA′ is the dark photon

mass. As for the origin of mA′ , it could come from a new Higgs mechanism with new light

degrees of freedom, or from the Stueckelberg mechanism in which a very heavy dark sector

Higgs boson has been integrated out from the theory. In this work, we will consider only the

Stueckelberg mechanism alternative.

Previous work investigating the effect of dark photon decay on light element synthesis in

the early universe suggested constraints on ranges of dark photon mass and coupling parameter

space [122, 123]. Specifically, the authors in Ref. [122] consider the electromagnetic and

hadronic energy injection from dark photon decay, the subsequent photo-dissociation of light

nuclei, and the creation of a neutron excess. Their abundance-derived bounds are based on the

following features of their calculations: (1) D and 4He are under-produced relative to standard

model cosmology, a consequence of out-of-NSE (“post-BBN”) destruction of nuclei when the

dark photon decays to e+e−; (2) D and 4He over-production stemming from an increase in the

n/p-ratio when the dark photon decays to π+π− or K+K− prior to NSE-freezeout, T > 100keV;

and (3) D over-production from an injection of neutrons facilitated by dark photon decay.

Comparing the calculated yields of D, 3He, and 4He with the precision measurements of the

D/H ratio from the high-redshift quasar absorption systems [124, 125], they exclude several

regions in the model parameter space as shown in figure 3.10.

A more detailed calculation for the fraction of photons induced from dark photon decay

capable of photo-dissociating D and 4He has been shown in Ref. [123]. In that paper, the authors

show that the amounts of photo-dissociated D and 4He nuclei stemming from dark photon decay

are lower than the amounts reported in Ref. [122]. They conclude that demanding that the 3He/D

ratio not exceed the observational limits does not lead to a constraint on the dark photon model

parameter space.

In addition to the dark photon considerations in Refs. [122, 123], a generic scenario of sub-

GeV particles and electromagnetic energy injection from their decays has also been studied, for

example in Refs. [126–129]. In particular, Ref. [127] has included a full electromagnetic cascade
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(photon and electron) to study the photo-dissociation of the primordial light elements abundances

in the post-BBN epoch (T < 10keV). This study suggests constraints on late-decaying particles

with lifetimes larger than 104 sec (i.e., post-BBN epochs). Expanding on Ref. [127], the authors

of Ref. [128] have updated their discussions on electromagnetic injection by taking into account

non-universality in the photon cascade spectrum relevant for BBN. Reference [129] similarly

incorporates an electromagnetic cascade, but additionally evaluates the effects of a non-standard

Hubble rate and baryon-to-photon ratio on the predicted primordial nuclear abundances.

In this work, we follow the general scheme of Refs. [122, 123, 127–129], albeit with

a completely self-consistent treatment of nuclear reactions and temperature-time-scale factor

phasing and entropy flow between the neutrinos and the photon-electron/positron-baryon plasma,

as described above. However, we do not treat the post-BBN epoch (T < 10keV), and we consider

dark photon masses only between 2MeV and 200MeV. In that range of dark photon rest masses,

the dominant decay product is into e−/e+-pairs. We are interested in the range of dark photon

kinetic mixing in which the dark photons are produced abundantly early on and, at the same

time, have a lifetime such that they decay and inject entropy into the plasma at a time which is in

the general time frame of weak decoupling and BBN. In this scenario, the entropy-per-baryon

during the BBN epoch will start out with a lower value compared to the CMB-determined value

measured at a time (e.g., the recombination epoch at T ≈ 0.2eV) well after the end of BBN.

Our calculations are then iterated so that out-of-equilibrium dark photon decay injects the right

amount of entropy into the plasma to give the correct CMB-determined value. The upshot is

that the plasma in the case of dark photon decay starts out “colder” than in the case of standard

cosmology, with entropy added by decay, altering the time-temperature-scale factor relation over

that of standard cosmology. This leads to two consequences, both potentially of use in leveraging

comparisons with observations into better probes of dark photon mass and coupling.

The first is a consequence of entropy generated from the decay of dark photons depositing

energy into the plasma. This phenomenon has an effect in some ways analogous to e+/e−

“annihilation” in the standard cosmology case. In the standard case, where the entropy in a

52



comoving volume (or entropy per baryon) is constant, the disappearance of the e±-pairs in

equilibrium means that the entropy they carried is transferred to the photon-electron-baryon

plasma, but not to decoupled neutrinos. Hence, eventually the “temperature” of the decoupled

neutrino component will be lower than that of the photons. Now consider what happens if

additionally, because of out-of-equilibrium particle decay, the co-moving entropy is not constant.

Entropy generation from dark photon decay dilutes the radiation energy density (as parametrized

by Neff) and makes the relic neutrinos even colder relative to the photons than in the case of

standard cosmology [130]. Some of the calculations we discuss below also include a complete

Boltzmann neutrino transport scheme, similarly self-consistently calculated along with all nuclear

reactions and dark photon decay processes [131]. During the protracted weak decoupling and

BBN epoch, entropy transfer between the plasma and the decoupling neutrinos is effected by out

of equilibrium neutrino scattering on e± pairs, even at temperatures well below T = 1MeV. This

late entropy transfer is a small effect in standard cosmology, but may be larger in non-standard

scenarios, such as the one we consider here.

The second consequence of out-of-equilibrium dark photon decay arises from the changes

in the history of weak, electromagnetic, and strong nuclear reaction rates that accompany entropy

injection and dilution. A beginning (lower) value of the entropy-per-baryon during the BBN

epoch means that the plasma starts out with a higher value of the baryon-to-photon ratio, η ,

compared to the standard cosmology case. As entropy is added by dark photon decay, the

time-temperature-scale factor history is altered relative to that in standard cosmology. Entropy is

a significant determinant of the abundances of the light elements [132], affecting both the NSE

abundance tracks and the course of the nuclear reactions when the system cools to the point

where NSE cannot be maintained and individual nuclear reactions become important. Moreover,

the alteration in time-temperature-scale factor also affects the history of the neutron-to-proton

ratio, n/p. This ratio also influences both NSE and non-equilibrium nuclear reactions. These

effects combine to alter light element abundance yields, especially for deuterium and helium,

relative to those emerging from a standard cosmology.
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The combined effects of dark photon out-of-equilibrium decay may alter each of, for

example, Neff and the primordial 2H and 4He yields in a way characteristic of the dark photon

mass and vacuum mixing with the standard model sector. This could enable a comparison of our

calculations to high precision observations to provide constraints on, or find signatures of, dark

photon physics.

In section 3.2 we discuss the physics of dark photon production and decay in the early

universe, specialized for the range of masses and standard model couplings as outlined above.

Appendices 3.A, 3.B, and 3.C, expand on this physics, with discussions of the polarization tensor,

in-medium effects, and dark photon production rates, respectively. In section 3.3, we begin

with an exposition of the relevant thermodynamics of the early universe and a discussion of

our BBN and neutrino decoupling calculations. We then discuss entropy generation, alterations

of neutrino energy spectra, radiation energy density, and nucleosynthesis that accompany dark

photon production and decay. Conclusions are given in section 3.4. In what follows we will use

the natural units }= c = 1 throughout this paper unless otherwise specified. The electric charge

is e =
√

4πα ≈ 0.303 with α ≈ 1/137 being the fine-structure constant.

3.2 Thermally-produced dark photons in the early universe

In this section we describe our calculations for the production and decay of dark photons

in the early universe. For the ranges of dark photon masses and couplings to the standard model

and the epochs in the early universe we consider here, dark photon equilibrium does not occur.

Instead, competition between out-of-equilibrium dark photon production and decay produces an

ephemeral freeze-in abundance of these particles. Since the time history of this population of

dark photons determines the history of, for example, entropy generation and dilution, and since

our constraints are predicated on alteration of observables stemming from those histories, our

calculations must accurately capture the physical state of the plasma, neutrino, and dark photon

components self-consistently.
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3.2.1 Pair-annihilation in a dense medium

Freeze-in dark photons can be produced coherently via photon-dark photon adiabatic

conversion or incoherently from interactions with electromagnetic (EM) charge currents. While

the former production channel could play an important role in the relic dark photon production at

late times, it is suppressed for the case where mA′ > MeV, with peak production occurring before

or during BBN. This is because the scattering rate between photon and SM charged particles at

the resonance temperature is large enough that the build-up of the relative phase between photon

and dark photon states is strongly suppressed [109] – this is essentially a quantum Zeno effect.

As for the latter production mechanism, there are several possible incoherent production

channels, e.g., Compton-like scattering, lepton-pair annihilation into one dark photon, or the

same annihilation into one dark photon and one SM photon. When T � me, Compton-like

scattering is the dominant channel for dark photon production. When T & me, pair annihilation

into one dark photon is the dominant channel. The same annihilation into one dark photon and

one SM photon is suppressed by a factor α ≈ 1/137 due to an additional vertex which makes

this channel subdominant. In this work we are interested in the dark photons that are produced

abundantly early on, and then decay away during the weak decoupling and BBN epochs. The

ranges of dark photon mass and standard model couplings we consider, together with this target

range of decay lifetime, picks out epochs with T & me where lepton- or quark-pair annihilation

into one dark photon are the dominant production channels.

In general, the conditions of finite temperature and density characteristic of the early

universe plasma will affect the pair-annihilation dark photon production rate [133, 134]. The

origin of these effects can be put into the language of classical physics: the electric field of

the propagating EM wave causes acceleration of free electrons in the medium, altering the

dielectric function (dispersion relation) of the EM wave. This in-medium plasma effect produces

a standard model (SM) photon self energy. If there is dark photon kinetically mixed with SM

photon, then this effect also alters the effective kinetic mixing between SM photon and dark
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photon. A consequence of this is an enhanced dark photon emission rate.

The plasma medium-induced self-energy of a SM photon is described by adding an

additional potential term −1
2AµΠµνAν to the vacuum Lagrangian in equation (3.1), where Πµν

is the EM polarization tensor. Rotating away the kinetic mixing term and projecting the vector

fields onto one single polarization at a time, we obtain the in-medium Lagrangian for polarization

a presented in the mass basis quantities Ãa (or F̃a,µν ) and Ã′a (or F̃ ′a,µν ) as (see appendix 3.B)

LIM,a ⊃−
1
4

F̃a,µν F̃µν
a − 1

4
F̃ ′a,µν F̃ ′µν

a +
1
2

mA′
2Ã′a,µ Ã′µa

+
1
2

πaÃa,ν Ãν
a + e

(
Ãa,µ +

κm2
A′

m2
A′−πa

Ã′a,µ

)
Jµ

em,
(3.2)

where a is either one of the two transverse modes (±T) or the longitudinal mode (L), and Jµ
em is

the electric charge current. The function πa = πa (ω,k) is the EM polarization function for the

polarization state a. Explicit forms for these are given in equations (3.29) and (3.30). From the

last term in equation (3.2), we see that the effective coupling between the dark photon Ãµ

′ and

the standard model electric charge current Jµ
em is

eκeff,a =
eκ m2

A′√(
m2

A′−Re πa
)2

+(Im πa)
2
. (3.3)

Certainly, the physics should be independent of the basis we choose. So in the following

discussion, we will refer to the rotated (mass state) Ã′ as the dark photon and designate this

simply as A′.

The physical meaning of the real and imaginary parts of πa follows from considerations

of finite temperature field theory. The real part can be interpreted as the effective photon mass in

the plasma. With the polarization vectors chosen in equations (3.26) and (3.27), the dispersion

relation for EM waves follows the form ω2 = |k|2 +Re πa for a =±T and L.

The imaginary part of πa describes the rate at which the non-equilibrium dark pho-

ton distribution function evolves toward thermal equilibrium. Quantitatively, it is Im πa =
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Figure 3.1. Contours of constant dark photon life time τA′ (in seconds) as functions of κ and
mA′ .

−ω

(
Γabs

Aa
−Γ

prod
Aa

)
, where Γabs

Aa
and Γ

prod
Aa

denote the absorption rate and spontaneous production

rate, respectively [135]. In a local thermal (steady state) equilibrium, detailed balance would

dictate that Γ
prod
Aa

= e−ω/T Γabs
Aa

.

Specifically, Γ
prod
Aa

in this work denotes the annihilation rate for lepton or quark pairs into

one SM photon and is evaluated as (see appendix 3.C)

Γ
prod
Aa

(ω) =
1

2ω

∫ d3p
(2π)3 2Ep

d3q
(2π)3 2Eq

1
eEp/T +1

1
eEq/T +1

∑
spin
|Mll̄→Aa

|2 (2π)4
δ
(4) (k− p−q) ,

(3.4)

where Mll̄→Aa
is the matrix element for lepton-pair (momenta p and q) annihilation to one vector

boson through a standard EM vertex and the sum is over initial lepton spin states. As a result, the

dark photon emission rate in a dense medium is κ2
eff,aΓ

prod
Aa

. The evolution of the total number

density of dark photons can be calculated from the Boltzmann equation as

ṅA′a +3HnA′a =
∫ d3k

(2π)3 κ
2
eff,a Γ

prod
Aa

(ω)−nA′a τA′
−1, (3.5)
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where H is the Hubble parameter and τA′
−1 is the dark photon decay rate and is given by [122]

τA′
−1 =

1
3

ακ
2mA′

(
1+2

m2
l

mA′
2

)√
1−4

m2
l

mA′
2 , (3.6)

with ml the appropriate lepton rest mass. In figure 3.1, we show the contours of dark photon

lifetime, τA′ , as functions of κ and mA′ .

3.2.2 Resonant vs. continuum production

It is clear from the effective coupling expression in equation (3.3) that the dark photon pro-

duction rate is enhanced when mA′ = Re πa. Satisfying this “resonance” condition is tantamount

to mode matching, requiring a mode solution (ω,k) such that the dispersion relation for the

dark photon is ω2 = |k|2 +m2
A′ and that for in-medium photon mode is ω2 = |k|2 +Reπa (ω,k).

We can explore the range of temperature conditions in the early universe where the resonance

condition can be satisfied by graphically showing the dark photon and in-medium SM photon

dispersion relations. We show these in figure 3.2 for both longitudinal and transverse modes in a

relativistic plasma (T � me). From these plots, we see that: (1) resonant dark photon emission

of the transverse mode occurs in a narrow range of temperature between 8mA′ and 10mA′; and

(2) resonant emission of longitudinal mode occurs at T & 10mA′ , which is much higher than

the temperature condition for the transverse resonance. In both cases, however, the resonant

emission always ceases as T . 8mA′ .

When the kinetic mixing is off-resonance, i.e., |mA′
2−Re πa| � |Im πa|, the effective

coupling constant becomes e2κ2
eff,a = e2κ2mA′

4/
(
mA′

2−Re πa
)2. In the low temperature regime

where Re πa� m2
A′ , the effective kinetic mixing reduces to the vacuum value κ . The continuum

dark photon emission width in this regime is just κ2Γ
prod
a . In the high temperature regime where

Re πa� m2
A′ , the effective coupling reduces to κmA′

4/Re πa
2, so the continuum emission rate

is suppressed by a factor mA′
4/Re πa

2 relative to the rate in the low temperature regime [114].

Moreover, there is always more time to produce dark photons at low temperatures than at high
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Figure 3.2. Dispersion relations of the transverse and longitudinal modes for SM photons in a
relativistic plasma. The solid curves denote the SM photon dispersion relation at various plasma
temperatures. The black dashed curve denotes the dispersion relation of a dark photon model
with mA′ = 100MeV. (top) The transverse SM photon dispersion relation curve crosses the dark
photon dispersion relation curve in the range 8mA′ . T . 10mA′ . Emission of dark photons in
either of the two transverse modes is resonantly enhanced in this temperature range. (bottom)
The longitudinal SM photon dispersion relation curve crosses the dark photon dispersion relation
curve when T > 10mA′ . Emission of dark photons in the longitudinal mode is resonantly
enhanced in this range. (inset) The insets show a restricted range in |k| where the dispersion
relations are close to their asymptotic limits with respect to one another.
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Figure 3.3. Evolution of the ratio of dark photons to baryons plotted against plasma temper-
ature for a model where mA′ = 100MeV and κ = 10−10. Red (blue) lines give the transverse
(longitudinal) mode. For a given mode, dotted lines show the production history if we ignore
plasma effects at all temperatures, i.e., κeff,a = κ . The result of ignoring the plasma effects gives
the continuum contribution. Conversely, solid lines show the complete production history if
we include the plasma effects encapsulated in equation (3.3). The dashed black line gives the
total number of dark photons for the three modes (a = ±T,L) in the full solution. Resonant
production within the plasma occurs at early times (T & 8mA′) while continuum production
dominates at late times (T . mA′).

temperatures because the Hubble expansion rate in these radiation dominated conditions drops

with decreasing temperature, H ∼ T 2/mpl with mpl the Planck mass. As a result, the continuum

dark photon production is always more significant at low temperatures than at high temperatures.

We would like to understand the role of the resonant production channel in contributing

to the overall dark photon yield, and assess its significance relative to continuum production. As

an example, in figure 3.3 we show the dark photon production history for a specific dark photon

mass mA′ = 100MeV. The solid lines show the full solutions for dark photon emission with

in-medium plasma effect included. The solid lines are color coded for longitudinal and transverse

modes. On the other hand, the dashed lines show the production histories when no plasma

effects are included. The rapid rise in dark photon number density in the temperature range

8mA′ < T < 10mA′ , and at T > 10mA′ , is a consequence of resonant production of transverse and
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longitudinal modes. These histories agree with those shown in figure 3.2. For the lepton/quark-

pair annihilation production channel, we can conclude from the calculations shown in the figure

that longitudinal mode resonant production is insignificant relative to resonant transverse mode

production. See, for example, Ref. [48] for a discussion of stellar conditions in the regime where

the dark photon mass is less than the plasma frequency, mA′ < ωp, and where, consequently, the

resonant dark photon emission production of longitudinal modes dominates over the resonant

transverse mode production rate. On the other hand, the continuum production rates for both

transverse and longitudinal modes are initially small at T > 10mA′ as a consequence of the extra

suppression factor mA′
4/Reπa

2, but these eventually dominate the total dark photon emission

when T .mA′ . Comparing the full and continuum solutions, we see that: (1) resonant production

is important only at T & 8mA′; and (2) eventually the continuum production dominates over

the resonant production. Overall, the dark photon yield from the resonant production channels

contributes only O (. 5%) to the total dark photon abundance at T ≈ 0.1mA′ . Our calculations

employ the same thermal effects on dark photon production as in Ref. [122], with similar results.

For the numerical simulations presented in the following sections, we include only the

continuum emission channels for dark photon production in both the transverse and longitudinal

modes. Resonant emission is not included in these calculations.

3.3 Alteration of relic neutrino density and nucleosynthesis
yield

The key result of out of equilibrium dark photon decay will be to add entropy, altering

the time-temperature-scale factor relationship relative to a standard-model-only cosmology. The

final baryon-to-photon ratio of the universe we live in is a measured quantity. We can infer the

entropy per baryon from this quantity. The entropy per baryon, in units of Boltzmann’s constant
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kb, for the plasma of electrons, positrons, and photons is

spl =

(
π4

45ζ (3)

)(
g?S

η

)

≈
(
5.91×109)(g?S

2

)(6.09×10−10

η

)
,

(3.7)

where η ≡ nb/nγ is the baryon-to-photon ratio and g?S is the effective number of degrees of

freedom carrying the entropy [132]. The PLANCK satellite derives ηcmb = 6.09× 10−10 at

the time of recombination (T ∼ 0.2 eV) [136], which yields spl,cmb = 5.91×109. In standard

cosmology with temperature low enough that the baryon number is conserved, spl is a co-moving

invariant. With the presence of entropy injection from dark photon decay, however, the plasma

would start out with a lower value of spl so that its final value at the recombination epoch will

match the CMB-determined value, spl,cmb.

3.3.1 Entropy generation and BBN computation

We use our code BURST [131] to calculate the effects of the production and decay of

dark photons during the weak decoupling and BBN epochs. BURST primarily evolves the plasma

temperature, neutrino energy spectra, and primordial abundances through these epochs. Adding

dark photon physics to this calculation induces three related changes to the standard model case,

namely

1. A different Hubble expansion rate H,

2. A different plasma temperature versus scale factor (and time) history,

3. An evolving baryon-density and spl.

To self-consistently follow the three changes we introduce an energy-density variable for the

dark photons

ρA′ = mA′nA′, (3.8)
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where nA′ is the total proper number density of dark photons as given by the solutions to

equation (3.5). In writing equation (3.8) we have ignored the kinetic contribution to the dark

photon energy density. Therefore, our calculations give underestimates of the effects induced

by the presence of dark photons. Neglecting the kinetic energy content of the dark photon field

makes only small changes, especially where most decays occur for mA′ � Tdecay.

We add ρA′ to the energy densities of the other components to calculate the Hubble

expansion rate H. During dark photon production and decay, we assume the energy density of the

electromagnetic plasma instantly equilibrates, which induces a change in the plasma temperature

time-derivative [137]

dT
dt

=−3H
ρpl +Ppl +

1
3H

dQ
dt

∣∣∣∣
T

dρpl

dT

, (3.9)

where ρpl is the energy density of the plasma (less baryons); Ppl is the pressure exerted by all

plasma components; dQ/dt|T is the rate of heat gain or lost from nuclear reactions, neutrino

scattering/decoupling, and dark photon evolution; and dρpl/dT is the temperature derivative of

the plasma energy density components (including baryons). We model the energy subtraction

(injection) from dark photon production (decay) using the heat sink (source)

dQ
dt

∣∣∣∣
T
=−dQ

dt

∣∣∣∣
nuc

+
dQ
dt

∣∣∣∣
ν

− dQ
dt

∣∣∣∣
A′↔ll

, (3.10)

=−dQ
dt

∣∣∣∣
nuc

+
dQ
dt

∣∣∣∣
ν

+mA′
dnA′

dt
. (3.11)

(3.12)

An injection of heat will raise the entropy per baryon within the plasma spl, which is equivalent to

diluting the baryon number density. Therefore, we start with a low entropy-per-baryon and allow

the dark photon decays to raise the entropy per baryon (or lower the baryon number density) to a

value consistent with photon decoupling, namely spl = 5.91×109 [136]. For each dark photon

model (set of dark photon mass and coupling parameters), we iterate on the starting entropy to
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Figure 3.4. Relative differences from FD [equation (3.14)] for a dark photon model (dotted) and
standard cosmology (solid) versus ε at freeze-out. The parameters for the dark photon model are
mA′ = 10MeV and κ = 2×10−10.

find the final entropy consistent with Ref. [136], spl,cmb.

3.3.2 Neutrino Spectra

As the dark photons decay, they inject heat into the electromagnetic plasma. This heat

flow changes the temperature of the plasma giving a different thermal history for the early

universe as compared to the standard cosmology. For the dark photon masses we consider in this

work, the neutrinos cannot directly partake in this heat flow from dark photon decay. However, a

warmer plasma will precipitate a larger heat flow from the plasma into the neutrino seas during

neutrino decoupling. As a result, dark photon decays do affect the neutrino spectra indirectly.

As an illustrative example, we take a specific case for dark photon rest mass and coupling

to the standard model and calculate in depth how the production and decay of this particle affects

weak decoupling and entropy flow. In particular, we show the neutrino energy spectral distortions

64



10−1100101

Tcm [MeV]

5.4

5.5

5.6

5.7

5.8

5.9

6.0

10
−

9
×
s

spl

sν

Figure 3.5. The plasma (blue) and neutrino (red) entropies per baryon versus Tcm for a dark
photon model. The parameters for the dark photon model are mA′ = 10MeV and κ = 2×10−10.
The black dashed line is the entropy per baryon as inferred from the CMB in Ref. [136].

and the evolution of entropy in figures 3.4, 3.5, and 3.6. For this example case we choose

mA′ = 10MeV, κ = 2×10−10, (3.13)

and use the standard cosmological model (i.e., a zero dark photon density) for a baseline

comparison. We have picked this particular dark photon model in equation (3.13) because of the

associated large change in the entropy per baryon during neutrino decoupling. Figure 3.4 shows

the relative changes in the occupation number from FD (Fermi-Dirac) equilibrium

δ f (ε) =
f (ε)− f (eq)(ε)

f (eq)(ε)
, f (eq)(ε) =

1
eε +1

, (3.14)

plotted against the comoving invariant ε = Eν/Tcm, where Eν is the neutrino energy and Tcm is

a proxy for (inverse) scale factor [138]. Solid curves give the deviations from FD equilibrium

in the case of the standard cosmology, whereas the dotted lines are for the dark photon model
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in equation (3.13). The blue curves are for the electron-flavor neutrino and the red for µ-flavor.

The τ-flavor neutrinos are degenerate with µ-flavor and the antineutrinos are degenerate with

the neutrinos in our model of neutrino transport sans oscillations. The black dashed line at zero

represents FD equilibrium. The dashed and solid lines deviate from one another, showing two

unique histories for neutrino decoupling, one with the dark photon with the assumed parameters,

one without.

As the dark photons decay, the entropy increase in the plasma dilutes the neutrino seas

and changes the thermal history of the early universe. We show the entropic history for the

dark photon decay scenario in figure 3.5. In this figure, entropy is plotted as a function of the

comoving temperature quantity, Tcm. The blue curve gives the entropy per baryon in the plasma,

spl, and the red curve the entropy per baryon residing in the neutrino seas, sν . We calculate the

plasma entropy from equilibrium thermodynamics. The neutrino seas are out-of-equilibrium so

we calculate that entropy using non-equilibrium statistical mechanics, i.e., Boltzmann neutrino

energy transport (see section IV in Ref. [131]). Both quantities count the number of microstates

available to the two subsystems. The dashed black horizontal line in figure 3.5 is the entropy-per-

baryon inferred from Ref. [136]. There is a small increase in sν arising from neutrino transport

and equivalently encapsulated in the dotted curves of figure 3.4 at freeze-out. This small increase

is accompanied by a small decrease in spl which is dwarfed by the large increase in the entropy

from dark photon decay. The phenomenon of dilution is the increase in the ratio of the entropic

quantities from early times to late. The change in the entropy gives a nonstandard thermal history

for the early universe. We can summarize the thermal history using the ratio of Tcm to T at

freeze-out

Tcm

T

∣∣∣∣
f.o.

= 0.7082 mA′ = 10MeV,κ = 2×10−10, (3.15)

Tcm

T

∣∣∣∣
f.o.

= 0.7138 Standard Cosmology (SC). (3.16)
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Figure 3.6. Differential νe number densities scaled by plasma temperature [equation (3.18)]
for a dark photon model (dotted) and standard cosmology (solid) versus ε at freeze-out. The
parameters for the dark photon model are mA′ = 10MeV and κ = 2×10−10.

Figures 3.4 and 3.5 show that the neutrinos experience two competing and opposing

effects: an increase in the heat flow from the plasma to the neutrino seas at the level of a few

percent deviation (figure 3.4); and dilution of the neutrino seas at a level of 20% (figure 3.5).

The former effect raises the number of neutrinos at a given energy bin ε and Tcm, which we write

as a differential number density
dni

dε
= T 3

cm
ε2

2π2 fi(ε), (3.17)

for a given neutrino flavor i. The later effect decreases the number of neutrinos with respect to

photons which we encode in the ratio of Tcm/T . Figure 3.6 encapsulates both effects, showing a

scaled differential number density

1
T 3

dn
dε

=

(
Tcm

T

)3
ε2

2π2 f (ε), (3.18)

plotted against ε . We only plot the scaled differential number densities for electron-flavor
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neutrinos in the dark photon decay scenario (dotted line) and the standard cosmology (solid

line). The µ-flavor quantities are qualitatively identical. The scaled differential number density

is a scale-dependent quantity, so we plot figure 3.6 at the respective freeze-out epochs for each

scenario which would occur at different T and Tcm.

The previous exposition has delved into the details of neutrino transport with dark photons.

For the specific model we considered, the dominant effect on the neutrino number density (and by

extension energy density) was dilution. Energy flow from neutrino transport adds on order an 1%

increase to the total neutrino energy density. The increase is dependent on the particular model

of dark photons. O (1%) contributions may be important in future high-precision modeling of

BSM cosmologies and we emphasize the need for such calculation if/when the data warrant

it. For the purposes of this work, we will focus on dilution when discussing the dark photon

parameter space in its entirety, and discuss sub-dominant transport effects for specific models.

3.3.3 Radiation energy density

The first observable consequence of entropy injection and dilution is decreasing the

neutrino radiation energy density (as parameterized by Neff) compared to the value predicted

in the standard cosmology. In this subsection, we first calculate the dilution effect in the dark

photon model and show the changes in Neff for the full model parameter space; this would be for

the case without including energy transport between neutrinos and the plasma. We then discuss

the effect of neutrino-energy transport on Neff for a few sets of dark photon model parameters

and show the non-linear scaling of the Neff correction with either mA′ or κ .

Sharp neutrino decoupling

The energy density of the neutrino seas is solely a function of Tcm

ρν = 6
(

7
8

)(
π2

30

)
T 4

cm (3.19)
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Figure 3.7. Contours of constant initial-to-final entropy ratios (spl,i/spl, f ) plotted in the κ versus
mA′ parameter space. The contours with values below 1.0 indicate an increase in entropy due to
the dark photon production and decay.

when ignoring out-of-equilibrium contributions. The CMB power spectrum is sensitive to the

radiation energy density, ρrad, of the early universe, which we parameterize using the quantity

Neff and plasma temperature T

ρrad =

[
2+

7
4

(
4
11

)4/3

Neff

]
π2

30
T 4. (3.20)

If we take the radiation energy density to be the sum of the photon and neutrino components, we

find

Neff = 3
(

11
4

)4/3(Tcm

T

)4

. (3.21)

After weak decoupling, dark photon decay injects entropy only into the electromagnetic

plasma. This process results in the dilution of both the baryon number and the neutrino energy

densities. If spl,i is the entropy per baryon in the plasma at an initial epoch, and spl, f is the same
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Figure 3.8. Contours of Neff are shown for values of dark photon mass mA′ and mixing parameter
κ . For reference, we also plot the QED-only prediction of Neff = 3.011 in the absence of
neutrino-energy transport. The blue contour is down from 3.011 by 1σS4 where we quote the
measurement uncertainty 1σS4 = 0.027 from the CMB Stage-4 science book [100].

quantity at a final epoch, then the ratio behaves like the following

spl,i

spl, f
=




2π2

45 g(i)?ST 3
i

2π2

45 g( f )
?S T 3

f



(

nb, f

nb,i

)
=

g(i)?S

g( f )
?S

(
Tiai

Tf a f

)3

=
11
4

(
Tcm

T

)3

f.o.
, (3.22)

where we have selected the initial epoch such that Tcm,i = Ti and the final epoch such that the

ratio Tcm/T has reached a freeze-out value, i.e., all of the plasma entropy resides in SM photons.

Figure 3.7 shows the contours of spl,i/spl, f in the κ vs. mA′ parameter space. All contours are

less than or equal to unity, showing that the physics of dark photons precipitates dilution.

If we compare equation (3.22) to equation (3.21) evaluated at freeze-out, we find

Neff = 3
(

spl,i

spl, f

)4/3

. (3.23)

As a result, we expect contours of Neff to correspond directly to the contours of spl,i/spl, f in

figure 3.7. That is, a smaller value of spl,i/spl, f (a larger dilution effect) would lead to a smaller
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value of Neff (a more diluted neutrino radiation density). Figure 3.8 shows the contours of Neff

as functions of κ and mA′ in the case of dark photon decay. Indeed, the Neff contours do follow

the same general trend of the dilution contours in figure 3.7. For low mA′ , a large value of κ

induces rapid dark photon production and results in a non-negligible abundance. In addition,

peak production occurs in the temperature range 0.1mA′ . Tpeak . mA′ . For the low end of our

mass-range study, peak production occurs after the sharp neutrino decoupling we have instituted

for the parameter space scan. This added entropy from dark photon decay dilutes the thermal

neutrino seas and lowers Neff to a value smaller than 3. At large κ and mA′ & 100 MeV, the dark

photons are both created and decay away before neutrino decoupling, and thus there is little

or no dilution on the neutrino energy density. The difference in the contour patterns between

figures 3.7 and 3.8 is a result of how we calculate the initial entropy. We fix the initial epoch at

T = 30MeV regardless of mA′ . For large mA′ , the entropy is changing in this initial regime and

so the respective contours in figure 3.7 do not meet the criteria used to derive equation (3.23),

and hence diverge from the more precise contours of figure 3.8.

We plot a blue contour at Neff = 2.984 on figure 3.8. This contour uses a 1σS4 = 0.027

uncertainty in Neff from a CMB Stage-4 forecast [100]. The 1σS4 difference is between the

contour level and the QED-only prediction of Neff = 3.011 in the absence of heat flow from

neutrino-energy transport [138]. The specific location in the dark-photon parameter space for

the 1σ contour would be the same if transport were to add an offset to all of the contour levels,

although Neff would take on a value ≈ 3.02 for the 1σ contour in that scenario. However, this

procedure relies on the assumption that the effect of transport is independent of the dark photon

physics. We expand upon this detail in the following section.

Effects from neutrino energy transport

The contours of figure 3.8 are for a model of neutrino decoupling which does not include

energy transport between neutrinos and charged leptons. In this scenario, the baseline QED-only

calculation would yield ∆Neff ≡ Neff−3 = 0.011, where the departure from exactly three is due
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Table 3.1. Table of values related to Neff. First and second columns are the dark photon mass
and coupling, respectively. Third and fourth columns are the value of Neff with only QED effects
and with transport included, respectively. Fifth column is the difference between the fourth and
third columns. Sixth column is that difference scaled by the uncertainty in Neff as forecast by
CMB Stage-4 [100]. The first row gives the values calculated in the standard cosmology with
our code.

mA′ [MeV] κ Neff (QED only) Neff (w/ trans.) Diff Diff/σS4

SC 3.0113 3.0442 0.0329 1.2201
2.0 1×10−12 3.0097 3.0426 0.0329 1.2192
2.0 1×10−11 2.9961 3.0289 0.0327 1.2128
2.0 1×10−10 2.8944 2.9237 0.0293 1.0834
2.0 1×10−9 2.7201 2.7152 -0.0049 -0.1838
2.0 1×10−8 2.6934 2.6838 -0.0096 -0.3560
10.0 2×10−12 3.0101 3.0430 0.0329 1.2188
10.0 2×10−11 2.9983 3.0306 0.0323 1.1970
10.0 2×10−10 2.9012 2.9147 0.0135 0.5009
10.0 2×10−9 2.7110 2.8807 0.1697 6.2866
10.0 2×10−8 2.6656 2.8894 0.2238 8.2284

to finite-temperature QED effects which change the entropy of the plasma [139, 140] (see also

Ref. [141] for a detailed treatment of QED effects in the early universe). In SC calculations of

Neff with neutrino transport, the effect of entropy/energy flow from the electromagnetic plasma

to the neutrino energy seas increases Neff. The sole process of neutrino energy transport yields

0.033 < ∆Neff < 0.035 [142–148]. In general, the effects from transport and QED corrections

cannot be incoherently summed to give the total change to Neff. The QED effects change the

plasma temperature, which changes the rate of heat flow into the neutrino seas, which feeds

back on the plasma temperature. However, in practice, this feedback loop is not important

at the level of uncertainty in Neff [136], and summing the two contributions gives a range

0.043. ∆Neff . 0.046. A possible interpretation of this result is that the correction on Neff from

transport is a constant offset.

We ask the question as to whether transport provides an offset to Neff in the BSM scenarios

with dark photons. In Table 3.1, we show various values of Neff with and without transport for a
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selection of dark photon masses and couplings. For the models with mA′ = 2.0MeV, we see that

Neff decreases with increasing κ whether transport is included or not. The difference between the

two calculations also decreases with increasing κ , but for κ ≥ 10−9, the difference between the

two calculations is negative. For these two models, the cooling of the plasma from dark photon

production occurs during weak decoupling and induces an entropy flow from the neutrino seas to

the plasma – the reverse of the process in the SC case. When dark photons begin to decay and

warm the plasma, weak decoupling has nearly ceased and the neutrino seas do not partake in the

increase in radiation energy density. For the models with mA′ = 10.0MeV, we see that transport

always increases Neff for the range of values of κ in Table 3.1. The difference between the two

calculations decreases with increasing κ , until κ = 2×10−10, which also is the model studied in

detail in section 3.3.2. For models with κ ≥ 2×10−9, transport precipitates larger heat flows

than the baseline case of the SC, as shown in the first data row of Table 3.1. Although we only

show full neutrino energy transport calculations for a small region of the parameter space in

figure 3.8, it is clear that corrections from transport scale non-linearly with either mA′ or κ and

cannot be treated as an offset at the level of future precision. Lastly, we note Ref. [149] also

considers the effects from neutrino energy transport in the dark photon decay scenario. Their

Neff result is qualitatively similar to ours.

3.3.4 Nucleosynthesis

Another observable consequence of entropy injection and dilution is the alteration of

light-element abundance yields. As discussed before, an entropy injection from dark photon

decay requires the plasma to start with a lower value of entropy per baryon such that dilution

causes spl to rise to the CMB-determined value, namely spl,cmb = 5.91×109. From the scaling

shown in equation (3.7), we see that a lower spl translates to a higher η , i.e., the primordial

nucleosynthesis environment starts with more baryons in the plasma for the same T than in the

case of standard cosmology. This alteration changes the nuclear reaction rates of light-element

species relative to the standard cosmology case as the reactions freeze out from the NSE.
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Figure 3.9. Same parameter space as figure 3.8, except here we give the percentage change
of the primordial deuterium abundance yield in the dark photon model, D/H, as compared to
our calculated standard model physics and standard cosmology result, (D/H) |sc = 2.64×10−5.
The red contour is down from our standard model value by an assumed 1% uncertainty, i.e.,
σ = 2.64×10−7. The coarseness of the contour at 0% is a numerical artifact.

At temperatures above 100keV, the deuterium abundance is in NSE with the free protons

and neutrons. Once the free neutron abundance drops (principally from abrupt alpha particle

formation) , deuterium departs from the NSE trajectory. At this point, the evolution of D/H

proceeds out-of-equilibrium via the nuclear reactions, including but not limited to n(p,γ)d,

d(p,γ)3He, d(d, p)t, and d(d,n)3He. A precise determination of the freeze-out (and hence

primordial) ratio D/H requires data and calculations from ab initio [150, 151], lattice-QCD

[152], experimental [153], and phenomenological [154–157] sources. The results of those efforts

can be integrated into a BBN nuclear reaction network at the appropriate time to yield high-

precision absolute BBN predictions. For the dark photon parameter space we study here, we

anticipate that changes to D/H from updated reaction networks will not depend on the dynamics

of dark photon decay, i.e., the effect of an updated network is to linearly perturb a baseline value.

As a result, we give our D/H results as relative differences from a baseline instead of absolute

abundance predictions.
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Figure 3.9 shows the contours of primordial deuterium abundance yield as functions

of mixing parameter and dark photon mass in the case of dark photon decay. The plot is

presented as the percentage change of the primordial deuterium abundance in the dark photon

model, D/H, as compared to our calculated standard model and standard cosmology result,

(D/H) |sc = 2.64×10−5. At large κ and low mA′ , dark photons are created abundantly and their

decay happens during BBN. That is, the plasma would start out with a lower value of spl (or

higher value of η) at the BBN epoch than in the case of standard cosmology. This alters the final

deuterium abundance yield. At large κ and mA′ & 100 MeV, dark photons are both created and

decay away too early (well before BBN) to have impact on primordial nucleosynthesis.

We use D/H as the diagnostic for BBN in figure 3.9 because it is well measured and

is a priori the most sensitive to changes in entropy. Complementary to D/H, the helium mass

fraction, YP, is also well measured and sensitive to the neutron-to-proton ratio n/p. The rates

of the neutron-to-proton inter-conversion processes dictate the evolution of n/p down to low

temperatures. These rates are sensitive to the distributions of neutrinos, anti-neutrinos, electrons,

and positrons. In particular, four of these rates are sensitive to the dynamics of dark photons,

namely

νe +n↔ p+ e− (3.24)

e++n↔ p+νe. (3.25)

As dark photons begin to decay, the temperature of the plasma increases. The Pauli blocking

factors for the charged leptons suppress the forward rate in equation (3.24) and also the reverse

rate in equation (3.25). Conversely, the FD occupation factors for the charged leptons enhance

the reverse rate in equation (3.24) and the forward rate in equation (3.25). However, the two

enhanced charged-lepton capture rates numerically differ from one another because of the mass

threshold needed for the reaction to occur, specifically the electron in the reverse reaction in

equation (3.24) must have enough kinetic energy (& 0.8MeV) to change the proton into a neutron.
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Increasing the temperature increases the phase space for the electron, implying a larger rate

for the reverse reaction in equation (3.24). The net effect on n↔ p inter-conversion is a slight

decrease. We can make a similar argument with respect to the neutrino-capture rates, where the

anti-neutrino in the reverse reaction of equation (3.25) has a threshold of ∼ 1.8MeV, implying

that a suppression in the individual rates leads to a net increase in n↔ p inter-conversion. These

two effects (along with a change in the Hubble expansion rate) cancel with one another, and n/p

in the dark photon scenarios evolves similarly to the SC. There is a net decrease in YP, but this

decrease is at most 1 part in 103 and is dwarfed by the change in D/H.

Our argument above relies on equilibrium FD distributions for the charged leptons and

neutrinos. We showed in Table 3.1 that transport can induce changes in Neff larger than 5%.

The neutron-to-proton inter-conversion rates are sensitive to the out-of-equilibrium neutrino

energy distributions, so the possibility exists that transport can induce larger changes. Indeed,

the changes in YP from transport are an order of magnitude larger than those calculated with

equilibrium spectra alone. However, this change is only for the most extreme models in our

parameter space, is less than 1%, and still remains smaller than the relative changes in D/H.

3.3.5 Summary of results

The main results of this work are summarized by the two solid lines in figure 3.10.

The blue line shows the Neff value that is 1σS4 down from our baseline SC calculation of

Neff = 3.044. Here we quote a measurement uncertainty 1σS4 = 0.027 from CMB Stage-4 [100].

Our following conclusion includes the effect of neutrino-energy transport as a constant offset

to the dilution physics from dark-photon decay. We caution against applying such an offset to

all models. However, Table 3.1 shows that applying an offset is problematic for large values

of κ which the 1σ contour largely avoids, i.e., the top-left portion of figure 3.8. We suggest

the following interpretation of the blue contour in figure 3.10. Suppose future CMB Stage-4

experiments measure Neff within 1σS4 down from the SC-predicted value, Neff = 3.044. From

this outcome, we cannot conclude there is entropy generation and dilution from late decay of
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Figure 3.10. The color-shaded regions show existing bounds on dark photon mass and mixing
parameters (as in figures 3.8 and 3.9). These bounds, obtained in previous studies, include:
SN1987a cooling bound (dark grey) [49]; progenitor envelope bound from core-collapse SN
(light grey) [158]; non-observation of γ-rays from SN1987a (green) [159]; and BBN bounds
derived from photo-dissociation and neutron excess (orange, red, blue) [122]. (Note the D/H and
3He/D bounds have been updated in Ref. [123].) Dark photon parameters lying along the blue
line give deviations in Neff which are 1σS4 (where the uncertainty is the CMB Stage-4 science
book value, 1σS4 = 0.027) below our baseline SC-calculated result with neutrino transport,
Neff = 3.044. Likewise, the red line shows the dark photon parameters giving a 1% deviation
of our calculated deuterium yield from our standard model and standard cosmology result,
105× (D/H) |sc = 2.64. The blue dotted line denotes the location of the upper value of the dark
photon mass range, 2MeV≤ mA′ ≤ 200MeV, studied in this work.

dark photons during weak decoupling. In that case, we can exclude the narrow range of the

model parameter between the blue line and the light grey region (labeled as “SN explosion”)

from the dark photon model since that range of parameter space reduces the Neff by more than

1σS4. As an alternative, suppose CMB Stage-4 experiments measure Neff more than 1σS4 down

from Neff = 3.044. In that case, it suggests there may be late decay of dark photons that cause

the dilution of thermal neutrinos during the weak decoupling epoch.

The red line in figure 3.10 shows the deviation of the primordial deuterium abun-

dance yield corresponding to a value of D/H that is down from our calculated standard model

physics and standard cosmology value, (D/H) |sc = 2.64×10−5, by an assumed 1% uncertainty,
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i.e., σ = 2.64× 10−7. This 1%-level determination of the primordial deuterium abundance

has nearly been obtained via the observation of quasar absorption lines [160], which gives

(D/H) |obs = (2.527±0.030)×10−5. The mismatch of the deuterium abundance between our

calculated standard model physics result and the measurement reported in Ref. [160] is due to

the uncertainties in our nuclear reaction network which we do not claim as a source of tension.

This source of uncertainty restricts us from making constraints on the model parameters with the

absolute value of D/H. However, we project that uncertainties from the nuclear reaction network

will be overcome in the near future (as discussed in section 3.3.4) and that the D/H from the

standard model physics and standard cosmology calculation can eventually be directly compared

to the observations. Under that assumption, we can make a potential bound by applying an

assumed 1%-level uncertainty to the deuterium abundance yield in our calculation: for the model

parameters circled by the red contour line (i.e., the region at the top-left portion of figure 3.10),

the predicted primordial deuterium abundance with the indicated dark photon parameters is

under-produced, that is, down by more than 1% from our standard model value. Hence, these

dark photon parameters could be potentially ruled out.

We note that while our potential deuterium bound overlaps with the existing supernova

bounds [49, 158], it is obtained from a self-consistent treatment of weak decoupling and BBN

physics in the early universe environment. Therefore, our result provides a complementary

verification of the supernova bounds derived from the stellar cooling argument.

In figure 3.10, we also show the existing constraints on the dark photon model as the

various color-shaded regions. The dark grey region, labeled as “SN cooling”, is the bound

derived from the anomalous cooling of SN1987a due to the emission of dark photons [49]. The

light grey region, labeled as “SN explosion”, is the bound derived from the energy deposition in

the progenitor stellar envelopes via emission of dark photons in the proto-neutron star core [158].

The green region shows the bound on the non-detection of gamma-rays, which are produced from

the decaying dark photons in supernovae [159]. These are the dark photon bounds based on an

energy argument; they show the constraints on dark photon model parameters for mA′ . 100MeV.
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Also included in figure 3.10 are the collected BBN bounds from Ref. [122] based on the photo-

dissociation of light nuclei and the creation of a neutron excess; they are labeled as 4He, 3He/D

and D/H.

3.4 Conclusion

Several conclusions can be drawn from the results of our calculations of dark photon

production and decay in the early universe. First, our treatment of these dark photon processes

allows for simultaneous, self-consistent calculation of electron-positron-photon-baryon and

neutrino physics throughout the weak decoupling and BBN epochs. Dark photons decaying

out of equilibrium during this extended period will inject entropy into the medium, leading to

time-dependent dilution that modifies how temperature depends on time and expansion, and may

modify charged current isospin-changing reactions and the neutron-to-proton ratio history as

well. Any such alteration of the time-temperature-scale factor relation from the standard model

prediction can result in a concomitant alteration in light element abundance yields and Neff.

(Note, unlike Refs. [122, 123], we do not treat cascade nucleosynthesis but only thermal BBN,

and therefore cannot constrain the effects of dark photon decays for temperatures T < 10 keV.)

Exploiting this fact allows us to identify ranges of dark photon mass and couplings with standard

model photons that are not currently constrained, but that may be subject to constraint, or probes,

with future high precision cosmological data. In particular, CMB Stage-4 measurements promise

significant improvements in the precision (∼ 1%) with which the primordial helium abundance

and Neff can be measured. Likewise, the primordial deuterium abundance arguably is already

known to high precision (∼ 1%), and the advent of 30-m class telescopes promises to increase

the confidence in this result.

Key uncertainties in BBN physics remain, for example, in the nuclear reaction rates

associated with deuterium production and destruction, and in the effects of quantum kinetic

evolution of neutrino flavor during weak decoupling [161]. Calculations of absolute light
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element abundances and Neff cannot yet attain the projected precision of the observational data.

Consequently, we have presented here deviations of these quantities relative to our baseline

standard model calculations for ranges of dark photon properties. In the end, our results suggest

how to extend current limits on these, or even how to look for the “fingerprints” of dark photons.

The latter would be patterns of deviations in deuterium, helium, and Neff unique to particular

ranges of dark photon mass and standard model coupling that are not otherwise constrained.

However, our calculations have revealed an issue which complicates high accuracy

calculations of the effects of dark photon production and decay in the early universe. One set of

calculations we did, the dark photon parameter survey calculations, are done self-consistently but

with an assumption that the neutrino component is completely decoupled. However, neutrinos

do not decouple abruptly at the beginning of the weak decoupling epoch, ∼ 10MeV. The

process of out of equilibrium scattering of neutrinos on e±-pairs continues to transfer entropy

from the plasma into the decoupling neutrino seas, introducing small distortions in the relic

neutrino energy spectra. This is a small effect in standard model cosmology, but can be bigger

in non-standard ones. For a set of selected dark photon mass and coupling parameters we have

performed fully self-consistent simulations that include full Boltzmann neutrino transport to

capture the effects of out of equilibrium neutrino scattering.

As described above, the results of the full transport calculations are sobering. For some

ranges of dark photon coupling and mass (the larger values in the ranges we consider) we find

that transport can alter the calculated deviations in D/H and Neff from our decoupled-neutrino

estimates by of order the projected CMB measurement uncertainties in these quantities. This

means that looking for the subtle fingerprints of dark photons (generally lower Neff and D/H but

no change in primordial helium) by comparing observational data with calculations will require

that those calculations include full scattering-induced neutrino energy transport.

Probing a conjectured dark sector is an alluring prospect, but questions arise. How unique

are the fingerprint signatures revealed by the calculations discussed above? Conceivably, a

particle other than a dark photon could decay in a way that mimics the entropy injection and
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dilution history that accompany the production and decay history of a dark photon. Moreover,

we have assumed that the dark photon decay is entirely into standard model particles which

instantly thermalize. What if the dark sector is rich enough in structure that the dark photon has

decay branches into other, presumably lighter, dark sector particles? Were that the case, our

calculations would be over-estimates of the entropy injection. Likewise, what if the dark photon,

or other dark sector particle, decays during the weak decoupling epoch into standard model

neutrinos? Again, entropy injection would be altered but could be tractable with the Boltzmann

neutrino transport code described above.

In any case, the weak decoupling and BBN epochs and are promising laboratories

for vetting new possibilities for dark sector and BSM physics. Future CMB and deuterium

measurements may provide tantalizing clues about a putative dark sector. Here we have shown

some of what must be done on the calculation side to translate those clues into insights into new

physics.
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3.A Electromagnetic polarization tensor

In this appendix we review the calculation of the transverse and longitudinal photon

polarization functions. Our discussion follows that in Refs. [133, 134].

For a photon field Aµ propagating in the z direction with the four-momentum kµ =
(
k0,k

)
= (ω,0,0, |k|), we choose the basis vectors of the transverse (±T) and longitudinal

polarization directions, respectively, as

êµ

±T =
1√
2
(0,1,±i,0) , (3.26)

êµ

L =
|k|√

ω2−|k|2

(
1,0,0,

ω

|k|

)
. (3.27)

Each basis vector is normalized, that is, êa
µ êaµ = −1 for a = ±T or L. We parametrize the

photon polarization tensor in an unmagnetized and isotropic plasma as

Π
µν (K)≡ ∑

a=±T,L
πa (ω,k) êµ

a ê∗νa , (3.28)

where πT and πL are transverse and longitudinal polarization functions, respectively. The leading

order of Πµν is obtained by evaluating the one-loop photon self-energy insertion and taking the

average over the fermion distributions. Approximating the momentum integral by evaluating it

at the characteristic fermion velocity, v∗ ≡ ω1/ωp, the analytic forms for polarization functions

to O (α) can be approximated as

πT (ω,k) =
3ω2

p

2v2∗

(
ω2

|k|2 −
ω2− v2

∗|k|2
|k|2

ω

2v∗|k|
ln

ω + v∗|k|
ω− v∗|k|

)
, (3.29)

πL (ω,k) =
3ω2

p

v2∗

(
ω2−|k|2
|k|2

)(
ω

2v∗|k|
ln

ω + v∗|k|
ω− v∗|k|

−1
)
, (3.30)
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where

ω
2
1 ≡

4α

π

∫
∞

0
d p

p2

E

(
5
3

v2− v4
)[

fl (E)+ fl̄ (E)
]
, (3.31)

ω
2
p ≡

4α

π

∫
∞

0
d p

p2

E

(
1− 1

3
v2
)[

fl (E)+ fl̄ (E)
]
. (3.32)

With the conventions used in equations (3.27) and (3.30), the dispersion relation is written in the

form ω2 = |k|2 +πa (ω,k) for a =±T and L modes, and ωp is the plasma frequency. In these

expressions, fl and fl̄ are the lepton and anti-lepton occupation probabilities, respectively.

The electrons and positrons in equilibrium in the high entropy-per-baryon plasma of

the early universe plasma are relativistic when T � 1MeV and these particles have negligible

chemical potentials (i.e., T � |µe+|, |µe−|). In this limit, all electrons and positrons have velocity

v = v? = 1 and the plasma frequency is ωp =
√

4παT 2/9.

In the limit of a non-relativistic and neutral electron-proton plasma (e.g., the plasma in

the sun), the transverse and longitudinal photon polarization functions are given as

πT (ω,k) = ω
2
p

(
1+ v2

th,e
|k|2
ω2

)
, (3.33)

πL (ω,k) = ω
2
p

(
ω2−|k|2
|k|2

)( |k|2
ω2 +3v2

th,e
|k|4
ω4

)
, (3.34)

where vth,e ≡
√

T/me is related to the electron thermal speed. The plasma frequency in this limit

is ωp =
√

4παne/me.

We note that another popular convention for the longitudinal basis vector is

êµ

L =

(
1,0,0,

ω

|k|

)
, (3.35)

and its corresponding longitudinal polarization function takes the form

πL (ω,k) =
3ω2

p

v2∗

(
ω

2v∗|k|
ln

ω + v∗|k|
ω− v∗|k|

−1
)
. (3.36)
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With this convention, the dispersion relation for the longitudinal mode is |k|2 = πL. However,

throughout this paper we follow the convention used in equations (3.27) and (3.30).

3.B In-medium effect to dark photon couplings

The effective couplings of a massive dark photon depends strongly on the properties

of SM photon polarization in the dense medium. In this appendix we review the in-medium

Lagrangian and the conditions required for resonant dark photon emission [162].

The self energy of the photon field Aµ in a dense medium is described by including

an additional potential term −1
2AµΠµνAν in the vacuum Lagrangian in equation (3.1). After

making a field redefinition Aµ→Aµ +κA′µ to rotate away the kinetic mixing term, the in-medium

Lagrangian of the relevant terms to O (κ) becomes

LIM⊃−
1
4

FµνFµν− 1
4

F ′µνF ′µν +
1
2

mA′
2A′µA′µ− 1

2
AµΠ

µνAν−κAµΠ
µνA′ν +e(Aµ +κA′µ)J

µ
em.

(3.37)

Next, we project the photon and dark photon fields onto transverse (±T) and longitudinal (L)

directions and consider only one polarization at a time. This can be done by decomposing a

given vector field V µ into its three polarization states as

V µ = ∑
a=±T,L

Vaêµ
a ≡ ∑

a=±T,L
V µ

a , (3.38)

where again each basis vector satisfies êa
µ êa,µ =−1. As a result, the in-medium Lagrangian of

one given single polarization state a is

LIM,a ⊃−
1
4

Fa,µνFµν
a − 1

4
F ′a,µνF ′µν

a +
1
2

mA′
2A′a,µA′µa

+
1
2

πaAa,νAν
a +κπaAa,µA′µa + e(Aa,µ +κA′a,µ)J

µ
em.

(3.39)

The mixing between the photon and dark photon fields can be rotated away by making another
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field redefinition,

Aa,µ = Ãa,µ +
κπa

m2
A′−πa

Ã′a,µ ,

A′a,µ = Ã′a,µ −
κπa

m2
A′−πa

Ãa,µ .

(3.40)

Eventually, we arrive at the in-medium Lagrangian of the polarization state a presented in the

mass basis as1

LIM,a ⊃−
1
4

F̃a,µν F̃µν
a − 1

4
F̃ ′a,µν F̃ ′µν

a +
1
2

mA′
2Ã′a,µ Ã′µa

+
1
2

πaÃa,ν Ãν
a + e

(
Ãa,µ +

κm2
A′

m2
A′−πa

Ã′a,µ

)
Jµ

em.
(3.41)

It is clear from equation (3.41) that the effective coupling between Ã′a and Jem is

eκeff,a =
eκmA′

2
√

(mA′
2−Re πa)

2
+(Im πa)

2
, (3.42)

and the dark photon emission rate will be enhanced when Re πa approaches mA′
2.

3.B.1 Example: resonant dark photon emission in a nonrelativistic
plasma

References [48, 108, 112] have pointed out the importance of plasma effects in the dark

photon emission rate in the sun and in horizontal branch stars when mA′ < 10 eV. Here we use

the plasma dispersion relation to interpret these results.

In compact objects, the electron plasma frequency is many orders of magnitude higher

than electron cyclotron frequency. As far as the ordinary electromagnetic (transverse) and

electrostatic (longitudinal) modes are concerned, the plasma in such conditions can be treated as

unmagnetized and isotropic. A SM photon propagating in this environment would then acquire

an effective in-medium mass, Reπa, where the general form of πa is given in equations (3.29) and

(3.30). With the presence of a dark photon with mass mA′ , dark photon resonant emission occurs

1We note that the form of effective kinetic mixing presented in equation (3.41) works for all three polarization
states since they satisfy the same form of normalization, êµ

a êa,µ =−1.
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when mA′
2 = Reπa. This statement is equivalent to saying that the resonance happens when

there is a solution of (ω,k) that satisfies both the dispersion relations for the dark photon, ω2 =

|k|2+m2
A′ , and for in-medium SM photons, ω2 = |k|2+Reπa (ω,k). While these two dispersion

relations are similar in structure, they dictate quite different behavior in a nonrelativistic plasma

such as that in the sun or in horizontal branch stars.

In figure 3.11, we take the sun as an example of the nonrelativistic plasma environment

and show the dispersion relations for in-medium photons and for a dark photon. We consider a

range of radius r from the center of the sun to 95% of the solar radius, r ≤ 0.95R�. Electrons

and protons in the sun are nonrelativistic. The dispersion relation for longitudinal EM oscillation

in such an environment is ω ≈ ωp when |k|. 1/λD, where λD denotes Debye screening length.

This behavior is evident for the solid lines in the left plot of figure 3.11. When mA′ is less than the

plasma frequency at around the edge of the sun, ωp|r=0.95R� ∼ 1eV, the dispersion relation curve

for the longitudinal EM oscillation may cross the dispersion relation curve for the dark photon at

any given radius. That is, nearly the entire sun could radiate longitudinal dark photons resonantly.

On the other hand, the transverse dark photon dispersion relation curve never intersects the dark

photon dispersion relation curve, as is evident in the right plot of figure 3.11.

3.C Dark photon emission rate

In this appendix, we calculate the lepton-pair annihilation rate and the relevant corre-

sponding matrix elements. Here we follow the discussion of this physics in appendix B of

Ref. [122].

The Γ
prod
Aa

shown in equation (3.4) is the annihilation rate for the processes ll̄→ Aa or

qq̄→ Aa. In the following, we take the lepton-pair annihilation case as an example. Denoting p

and q as the four-momenta of two annihilating leptons, and k = p+q as the four-momentum for
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Figure 3.11. Dispersion relations for the transverse (bottom) and longitudinal (top) modes of
SM photons in the sun. (top) The red and blue solid curves denote the dispersion relations of
the longitudinal mode at the center and at the edge of the sun, respectively. The black curve
shows the dispersion relation for a dark photon in a model with mA′ = 10−1 eV. Dark photon
resonant emission can occur when the SM photon longitudinal dispersion curve intersects the
dark photon dispersion curve. This can happen for the range of |k| values bounded between the
intersection points (circles) on the red and blue curves. We note that the longitudinal plasma
wave for |k|& 1/λD in a nonrelativistic plasma suffers strong Landau damping as shown by the
dashed lines. (bottom) The colored solid curves denote the dispersion relations for the transverse
mode in the sun. The red (blue) dotted curve is the difference between red (blue) solid curve and
the black dark photon curve for each |k| value. The dispersion relation curve for SM photons in
the transverse mode never intersects the dispersion relation curve for a dark photon.
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Aa, the annihilation rate for the process ll̄→ Aa is

Γ
prod
Aa

(ω) =
1

2ω

∫ d3p
(2π)3 2Ep

d3q
(2π)3 2Eq

(2π)4
δ
(4) (k− p−q) fl (Ep) fl̄ (Eq)

∣∣Mll̄→Aa

∣∣2

=
1

16πω

∫ |p|2d|p| d cosθ

EpEq
fl (Ep) fl̄ (Eq) δ (ω−Ep−Eq)

∣∣Mll̄→Aa

∣∣2,
(3.43)

where θ denotes the angle between the three-vectors k and p. Using the identity δ (g(x)) =

∑i δ (x− xi)/|g′(xi)|, we write the Dirac delta function shown in equation (3.43) as

δ (ω−Ep−Eq) = ∑
i

δ (cosθ − cosθi)

/∣∣∣∣
|p||k|√

m2
l + |p|

2 + |k|2−2|p||k|cosθi

∣∣∣∣, (3.44)

where cosθi =
2ωEp−mA′

2

2|p||k| . Since cos2 θi ≤ 1, we obtain the maximum and minimum values of

Ep,

Ep,max =
ω

2
+
|k|
2

√
1−4

ml
2

mA′
2 , and Ep,min =

ω

2
− |k|

2

√
1−4

ml
2

mA′
2 . (3.45)

(Note that Ep,min ≥me.) Integrated over θ , the annihilation rate for lepton pairs in equation (3.43)

becomes

Γ
prod
Aa

(ω) =
1

16πω|k|
∫ Ep,max

Ep,min

dEp fl (Ep) fl̄ (ω−Ep)
∣∣Mll̄→Aa

∣∣2. (3.46)

The calculation of the annihilation rate for free quarks-pairs is the same as the above calculation

for the annihilation rate of lepton-pairs.

The effective coupling of A′a to Jµ
em shown in equation (3.2) indicates that the dark photon

emission rate, Γ
prod
A′a

, is a factor κeff smaller than Γ
prod
Aa

. As a result, the integrated dark photon

emission rate in a dense medium is given by

Γ̄
prod
A′a

=
∫ d3k

(2π)3 κ
2
eff,a Γ

prod
Aa

(ω) . (3.47)
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The matrix element in equation (3.46) is

Mll̄→Aa
= v̄(pl)(−ieγ

µ)u(ql̄)ε
∗
a,µ (k) , (3.48)

where ε
µ
a is the external polarization state of photon Aµ . The squared matrix element for the

transverse mode is evaluated by summing over the initial lepton spin states and the two final

transverse photon states. This gives

∑
ll̄ spins,±T

∣∣∣Mll̄→A±T

∣∣∣
2
= 4e2 Tr

[(
/q−m

)
γ

µ
(
/p+m

)
γ

ν

]
(0,1,1,0)

µν ,diag

= 16πα
(
mA′

2−2|p|2 sin2
θ
)
.

(3.49)

The squared matrix element for longitudinal mode is evaluated by summing over initial lepton

spin states. This gives

∑
ll̄ spins

∣∣∣Mll̄→AL

∣∣∣
2
= 4e2 Tr

[(
/q−m

)
γ

µ
(
/p+m

)
γ

ν

]




k2 0 0 −ωk

0 0 0 0

0 0 0 0

−ωk 0 0 ω2




µν

= 16πα

[
1
2

mA′
2− 2

mA′
2 (|k|Ep−ω|p|cosθ)2

]
.

(3.50)
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Chapter 4

Dynamics of millicharged dark matter in
supernova remnants

Dark matter could have a small electromagnetic charge, provided the charge-to-mass

ratio is much less than that of electrons or protons. This candidate, commonly known as

millicharged dark matter (mDM), would form a plasma and interact with the interstellar medium

and electromagnetic fields within galaxies. In general, understanding the dynamics of mDM

requires consideration of collective plasma effects. It has been proposed that mDM can be

accelerated in supernova remnants, forming a dark cosmic ray population that would leave

distinct experimental signatures. In this work, we study a microphysical model where mDM is

shocked by a supernova remnant and isotropized in the frame of the expanding fluid. We find that

for |qχ/mχ |& 10−13e/MeV, the isotropization length for electromagnetic plasma instabilities is

much shorter than the size of the supernova remnant. This is a necessary, though not sufficient,

first step for formation of a Fermi-accelerated mDM component, and determining the size of this

component requires further study. We discuss additional implications of mDM interactions in

supernova remnants.

4.1 Introduction

An important open question is whether dark matter (DM) has nongravitational interactions

with Standard Model (SM) particles. In traditionally favored classes of DM candidates such as

90



the WIMP, axion, or sterile neutrino, the DM typically has short-range interactions with the SM

through mediators at the weak scale (or heavier). Such candidates and interactions are being

actively searched for in indirect detection, direct detection and collider experiments.

If DM has long-range electromagnetic (EM) interactions with the SM, there can be

dramatic effects on astrophysical and cosmological scales. Consider particle DM that has mass

mχ and a small electromagnetic charge |qχ |, with equal parts +qχ and −qχ components. We

will refer to this candidate by the often-used nomenclature of millicharged DM (mDM), although

possible values of |qχ | range many orders of magnitude.1 For sufficiently small charge-to-mass

ratios interactions, this DM candidate could have been undetected thus far. For instance, there

are strong bounds from considering the scattering of mDM with the ionized plasma in the early

universe, which leads to damping in the CMB anisotropies and matter power spectrum [165–167].

Current bounds [168–170] require that |qχ |/e . 10−6(mχ/GeV)1/2, assuming DM mass mχ

below a GeV and that this candidate forms 100% of the observed relic abundance.

Given such stringent constraints, what motivates our interest on the possibility of DM

with fractional charge? First, it provides a simple model where the DM relic abundance can

be obtained through only EM interactions. For charges |qχ/e| ∼ 10−11−10−10 it is possible

to obtain the observed relic abundance through freeze-in [171, 172], where the DM is never

in thermal equilibrium with the SM thermal bath. (Note the constraints on |qχ | exclude the

possibility that 100% of the DM came from thermal freeze-out of mDM.) This small fractional

electric charge could be generated if DM has a small fractional hypercharge, or if the DM is

charged under a nearly massless dark photon which has a kinetic mixing with the SM photon

(see for example Ref. [173]).

The key idea is that even with such tiny charges, long-range EM interactions can give rise

to observable signatures in experiments or in astrophysical environments. For instance, mDM

has sizeable scattering rates in direct detection experiments, particularly through DM-electron

1A DM candidate which is much heavier than the proton and where |qχ |/e is an O(1) number is more often
referred to as a charged massive particle (CHAMP) [163, 164].
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scattering [174]. Because the long-range interactions are enhanced for low momentum transfer

scattering, a low-threshold experiment could probe values of |qχ | where mDM is produced

by freeze-in (or even smaller |qχ |). Direct detection experiments are now employing newly

developed methods and technologies to search for this candidate and closely related models [175].

In addition, mDM has been of interest following the reported observation of an anomalous

absorption in radio frequencies by the EDGES collaboration [52]. The observation has been

interpreted as a 21cm absorption trough due to DM-baryon scattering at cosmic dawn; since DM

is typically much colder than baryons at these redshifts, this would cool the baryons relative

to the CMB. Investigations have focused on a long-range Rutherford-type interaction such as

that from mDM, since the scattering is larger at late times [53, 176–178]. For mDM comprising

100% of the relic abundance, CMB bounds exclude the required charges to match the EDGES

observation; however, there remain viable scenarios where mDM is only a fraction of the total

DM [168, 179].

While the signatures discussed thus far focus on particle-particle interactions of mDM,

the implications may be even more striking if we account for wave-particle interactions of

mDM in galactic EM fields. Because of the tiny charges, mDM generally is not found in

bound states and instead forms a dark plasma. In supernova remnants (SNR), this dark plasma

can interact with the shock front and it has been suggested [164, 180] that there is an mDM

component that undergoes diffusive shock acceleration (DSA), also known as first-order Fermi

acceleration [181, 182]. Implicit in this scenario is the assumption that mDM efficiently scatters

against the turbulent magnetic fields generated in a SNR. If this is the case, it was argued that

the accelerated mDM is evacuated from the disk [180] (which would hinder their detection

on Earth) or alternatively that there is a flux of the accelerated component at Earth [183, 184]

(which would aid in their detection). Mergers of mDM halos could result in the formation

of collisionless shocks through plasma instabilities, which would impact galaxy formation as

well as observations of cluster mergers such as the Bullet cluster; a related scenario where

DM has long-range dark photon interactions was studied in Refs. [185, 186]. Finally, it has
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also been pointed out that the interactions of halo mDM passing through the magnetic field

of the Milky Way disk would lead to angular momentum exchange and result in spin-down of

the disk [187]. Clearly, understanding such signatures and possible constraints is needed to

determine the viability and detectability of mDM as a DM candidate.

Our goal is to study the consequences of the long-range electromagnetic interactions of

mDM in the environment of supernova remnants. Specifically, in this work we will determine the

mDM parameter space where mDM can be swept up by SNR and discuss possible implications.

Previous work assumed that mDM can efficiently undergo DSA in remnants similar to proton

cosmic rays (CR) [180, 183, 184], but did not provide a microphysical justification or model. In

fact, there are a number of stages for mDM dynamics in the SNR before they could be considered

as undergoing DSA. The interaction of mDM with shocked ISM gas is a first necessary step,

whereby the ambient mDM is swept up to 3/4 of the shock speed and isotropized in the frame of

the expanding fluid. Our approach is to develop a microphysical model for this process, where

we can analyze the sweep-up timescale in the linear regime.

The basic idea is the following: viewed from the frame of the expanding SNR, the

mDM plasma has a large bulk velocity and free energy, a configuration which is unstable to the

generation of EM fields. If the growth times for these plasma instabilities are sufficiently fast,

the bulk motion of the mDM is slowed down and it can become isotropized in the expanding

remnant. Note that we will focus on the dynamics of the bulk of the mDM. After the mDM is

swept up by the SNR, it is possible that a small fraction of the mDM could cross the shock front

multiple times and start the DSA process. However, obtaining a robust quantitative prediction

for the fraction and spectrum of accelerated mDM requires additional techniques beyond the

scope of this work.

A summary of the main results can be found in the remainder of this introduction. In

Sec. 4.2, we provide a review of supernova shock waves and acceleration of proton cosmic rays,

make a comparison for mDM, and describe the plasma instabilities that we analyze. The detailed

numerical results for the growth times are covered in Sec. 4.3 for electrostatic instabilities and
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Figure 4.1. In this work, we only consider the parameter space below the red dashed line
where |qχ |/mχ < 10−3(e/mp). Above the colored bands, the mDM charge fraction |qχ/e| is
sufficiently large for it to be swept up by the SNR. The blue band gives the minimum |qχ/e| for
mDM diffusion due to CR proton-driven turbulence in a quasiparallel shock. Above the orange
and green bands, there are mDM-driven plasma instabilities in parallel (‖) and perpendicular
(⊥) shocks, respectively. The upper (lower) boundary of each band is for shock velocity
vsh = 1500 km/s (300 km/s). The dark gray shaded region combines bounds on production of
mDM in accelerator experiments [188–191], in stars [192, 193], in SN1987a [194], and during
BBN [192, 195, 196]. The lighter shaded regions are reported direct constraints on mDM that
assume standard density and velocity distributions, which may be impacted by mDM wave-
particle interactions. These include combined direct detection bounds [50, 51], from XQC [197],
and from CMB bounds on DM-baryon scattering [169].

in Sec. 4.4 for electromagnetic instabilities. We then discuss some consequences for the mDM

distribution in the Milky Way and for the evolution of SNRs in Sec. 4.5, and conclude in Sec. 4.6.

Appendix 4.A briefly reviews the derivation of the linear response and growth rates in a plasma.

4.1.1 Summary of results

The main result of this work is illustrated in Fig. 4.1. We have assumed here that mDM is

100% of the total DM relic abundance. We will only consider the parameter space below the red
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dashed line, where the mDM charge-to-mass ratio is at least 103 times smaller than that of the

proton, |qχ |/mχ < 10−3(e/mp). Under this condition, the mDM Larmor frequency is at least

103 times smaller than the proton Larmor frequency, so we can safely assume that mDM crosses

the supernova shock front undeflected and that mDM does not change the dispersion relation of

existing plasma waves in the Milky Way at a noticeable level. Our conclusions are:

1. For quasiparallel shocks (i.e., the angle between ambient magnetic field and shock normal

is less than 45◦) and |qχ |/mχ above the blue band, it is possible for mDM to undergo

pitch-angle scattering off CR-driven turbulent magnetic fields. As discussed in Sec. 4.2.2,

this is possible when the mDM Larmor radius does not exceed the maximum wavelength of

CR-driven turbulence. A fraction of mDM particles might undergo Fermi acceleration by

repeated scattering off the CR-driven turbulence upstream and downstream of the shock.

2. For quasiparallel shocks and |qχ |/e between the blue and orange bands, there is a mDM-

driven plasma instability. In this region, the mDM Larmor radius is sufficiently large

that we approximate the magnetic fields as uniform. Then there is a plasma instability

due to the large relative motion of the mDM and the expanding ionized fluid, which will

act to reduce that relative velocity. In this part of the parameter space, the growth of the

instability is sufficiently fast such that it saturates within one tenth of the SNR radius, and

we treat the mDM as being effectively isotropized. A fraction of mDM particles could

undergo Fermi acceleration by scattering off the mDM-driven turbulence.

3. For quasiperpendicular shocks, there is no Fermi acceleration of mDM. Similar to CR

protons, the mDM cannot cross the shock multiple times in this case. However, above the

green band, there is still a mDM-driven instability which affects the bulk dynamics of the

mDM.

While the strength of the plasma instability depends on the density of mDM and shock

properties, roughly speaking the growth rate can be approximated by the Larmor frequency
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Ωχ . The condition that the instability saturates within the SNR can therefore heuristically be

given as vsh/Ωχ � Rsh, where Rsh and vsh are the shock radius and velocity, respectively. This

can be rewritten as the condition that the mDM Larmor radius is much smaller than the shock

size, rL,χ � Rsh, in agreement with naïve expectation. Our analysis demonstrates this condition

robustly and takes into account the dependence of the instability on shock properties and ambient

mDM density. In comparison to the wave-particle interactions, we note that everywhere below

the red dashed line, i.e., |qχ |/mχ < 10−3(e/mp), the mDM trajectory in the SNR would not be

significantly altered by particle-particle Coulomb interactions. We can see this by writing the

mean free path (mfp) of mDM-proton Coulomb scattering in the SNR [198],

mfp =
m2

χV 4
0

8πniq2
χe2 lnΛ

≈ 8100 pc
(

10−3

Ωχ/Ωi

)2( vsh

300 km/s

)4(1 cm−3

ni

)(
25

lnΛ

)
, (4.1)

where V0 = 3vsh/4 is the relative velocity between DM and shocked ISM, ni is the proton number

density, and lnΛ is the Coulomb logarithm. This is much larger than the maximum SNR radius,

which is . 100 pc.

The darker gray shaded regions in Fig. 4.1 show collected bounds on production of

mDM, which do not make any assumption on its relic density. There are bounds on emission

of mDM in stars, which would lead to anomalous cooling; we show limits from horizontal

branch, white dwarf, and red giant stars for mχ . 100 keV [192, 193] and from SN1987a for

mχ . 100 MeV [194]. For mχ .MeV, mDM can thermalize with the SM thermal bath, leading

to changes in BBN abundances and the effective number of light degrees of freedom; these

bounds come from Refs. [192, 195]. Also included are collected accelerator bounds [188–191].

The lighter shaded regions show constraints which make an assumption on the mDM density

and/or velocity distribution. We show bounds assuming mDM is 100% of the DM content from

direct detection [50], searches for charged DM with the XQC satellite [197], and the effect of

DM-baryon scattering on the CMB [169]. The solid line gives values of |qχ |/e where 100% of

the DM relic abundance is comprised of mDM that is produced through freeze-in [171, 172];
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values below this line lead to mDM that is a fractional component of DM, while larger |qχ |/e

requires additional interactions beyond EM.

Finally, in this paper we focus on a fermion mDM candidate with only EM interactions.

As mentioned above, there are also models that generate the millicharge via a kinetically-mixed

dark photon. DM interactions with the dark photon can lead to phenomenological differences in

constraints and DM interactions with charged SM particles. This possibility deserves study, but

will not be considered any more here.

4.2 Proton vs. millicharged dark matter dynamics in a
supernova collisionless shock

In this section, we will overview the interaction between the supernova ejecta and the

interstellar medium (ISM) and explain how mDM interacts differently with the supernova shock

compared to the case of ISM gas. We will lay out the motivation and strategy for the plasma

instabilities which we study in detail in Sec. 4.3 and 4.4. Throughout this work, “ion” refers to

“proton” unless otherwise specified.

4.2.1 The visible sector: Protons and the supernova shock

A supernova explosion is one of the most violent events in galaxies. A typical Type

Ia supernova can expel 1 M� ejecta with kinetic energy ≈ 1051 erg (i.e., with initial speed

∼ 104 km/s).2 Because the pressure in the ejecta is significantly higher than the pressure in

the ambient interstellar medium, the ejecta will propel a shock wave to the ambient ISM. The

ordinary matter bounded by this expanding shock wave–the ejecta from the explosion and the

interstellar material swept up by the shock wave–is referred to as the supernova remnant. As

the interstellar gas is swept up by the shock, entropy is generated and the ordered bulk kinetic

energy of the gas in front of the shock is converted to thermal energy.

2Type II core-collapse supernova can expel 10− 20 M� debris with kinetic energy as high as 1052 erg. For
simplicity, we only consider Type Ia events in this work as a representative case.
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Figure 4.2. Schematic diagram for a supernova shock wave propagating in the interstellar
medium (ISM). Just behind the shock front, the ISM has been shocked and moves at 3/4 of the
shock speed, whereas the mDM gas is at rest. The relative motion between the shocked ISM and
the unshocked mDM provides the free energy to drive a plasma instability. If the instabilities
occur, the mDM will be isotropized in the frame of the shocked ISM gas and be swept up by the
expanding supernova remnant.

Figure 4.2 is a schematic representation of a shock wave. The cooler, unshocked region

ahead of the shock front is called upstream and the hotter, shocked region is called downstream.

The shock transition zone is where the dissipation happens, and it requires the particle velocity

distribution be isotropized in the downstream frame. We can determine the downstream fluid

speed, density, and temperature from the Rankine-Hugoniot (RH) jump conditions, which relate

the upstream and downstream states assuming the conservation of mass, momentum and energy

in an one-dimensional flow. For a high Mach shock wave propagating in the monatomic gas, the

downstream fluid speed in the frame of the background ISM is 3/4 of the shock speed vsh. The

number density and the magnetic fields of the shocked gas in the downstream are 4 times the

number density and the magnetic fields in the upstream.

As for the downstream temperature, we take a somewhat more realistic case. Including

helium, with a ratio of helium number density to hydrogen number density of 0.1, the downstream

ion temperature is T2i ≈ 3µv2
sh/16, where µ = 1.27mp denotes the mean mass per ion (Hydrogen

and Helium nuclei) and mp is the proton mass. Thus, the proton thermal speed in the downstream

is vth,i ≡
√

2T2i/mp ≈ 0.69vsh. We note that electrons have different temperature from ions just

behind the shock front. This is because the ion-ion and electron-electron Coulomb scattering only

leads ions and electrons to each relax to their own Maxwellian velocity distributions. The ion-

electron relaxation time is much greater than ion-ion and electron-electron relaxation times, so
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the final temperature equilibration between ions and electrons happens at the deeper downstream.

Our discussion thus far requires the kinetic energy of the upstream ISM bulk flow to be

converted into heat at the shock transition zone. For a supernova shock in interstellar space, it is

collective plasma effects involving ions and plasma waves at the shock transition zone that cause

the dissipation of the incoming ISM flow. This type of shock is referred to as a collisionless

shock [199–201]. The formation and structure of the collisionless shock is complex as it involves

several types of plasma instabilities and compression of the magnetic fields at the shock front.

But in a broad brush, the collective plasma waves come from instabilities excited by a fraction

of the ions reflected at the shock front. The thickness of the supernova collisionless shock is

approximately a few ion Larmor radii, though it could be much larger if the ambient magnetic

field is parallel to the shock normal [199].

In the following, we briefly review the evolution of supernova shocks and the generation

of cosmic-ray protons. These will be important to understand the amount of mDM that can be

affected by the shocks as well as the strength of preexisting turbulence in the downstream fluid.

A brief history of a supernova remnant

In the early evolution of the supernova remnant, the shock wave propagates radially

outward along with the supersonic ejecta at nearly constant speed, ∼ 104 km/s. This stage is

called the free-expansion phase. As the shock wave sweeps up more and more ambient gas,

the swept-up mass eventually exceeds the ejecta mass and begins to govern the shock wave

dynamics. Taking the number density of molecules in the ISM as 0.25 cm−3, this happens about

∼ 330 years after the explosion.

Subsequently, the shock starts to slow down, and the kinetic energy of the ejecta is

transferred to the shocked matter. The shock now enters the Sedov-Taylor phase. During

this stage, the shock velocity and the distance it has traveled at time t after the explosion are

governed by the initial kinetic energy of the ejecta, ESN, and the mass density of the swept-up

gas, ρISM. Without considering the radiative losses and ambient gas pressure, the variables t,
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Figure 4.3. Typical expansion history for a Type Ia supernova remnant. The solid and dashed
lines correspond to shock speed, vsh, and remnant radius, Rsh, respectively. The free-expansion
phase ends at ≈ 330 years after the explosion.

ESN and ρISM should be the dominant quantities that control the dynamics of the shock. Using

dimensional analysis, we can construct the time evolution of the shock radius and velocity

as Rsh (t) = κE1/5
SN ρ

−1/5
ISM t2/5 and vsh(t) = 0.4κE1/5

SN ρ
−1/5
ISM t−3/5, respectively. For a monotonic

gas, numerical calculations give κ ≈ 1.17 [202]. In Fig. 4.3, we show the history of a Type Ia

supernova remnant. Eventually, at even later times, radiative losses become important and the

SNR merges with the ISM.

Diffusive shock acceleration of cosmic-ray protons

The standard picture for acceleration of cosmic-ray protons in the supernova shock relies

on the presence of the interstellar magnetic field. This acceleration process is characterized

by the angle θ between the shock normal and the background magnetic field. When θ is less

(greater) than 45◦, the shock is said to be quasiparallel (quasiperpendicular). For the special case

of a shock with θ = 0◦ (90◦), we call it a parallel (perpendicular) shock.

In a quasiparallel shock, a small fraction3 of the charged particles can undergo the

3Knowing the fraction of ions that are injected into the DSA process is one of the most difficult problems in
cosmic ray physics. The standard acceleration theory utilizes the diffusion-convection equation [203]. It requires
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DSA process and be Fermi-accelerated to relativistic speeds. They scatter on the magnetic

irregularities upstream and downstream and diffuse across the shock multiple times, gaining

energy in each crossing. However, these magnetic irregularities are not preexisting, rather they

are self-generated by the accelerated particles. The energetic cosmic rays streaming ahead of the

shock have a highly anisotropic velocity distribution and therefore drive plasma instabilities [208]

and excite Alfvén waves in the upstream of the shock. The waves drifting at the upstream move

slower than the shock front and are later advected to the downstream and amplified by the shock.

The downstream is expected to be highly turbulent. On the other hand, DSA is not operative in

quasiperpendicular shocks because the charged particles do not propagate more than one thermal

ion Larmor radius ahead of the shock front. As a result, there is very little magnetic turbulence

generation, and the downstream magnetic fields are expected to be uniform in quasiperpendicular

shocks. Such features have been seen in observations of SN 1006 [209] as well as in hybrid

simulations of ion acceleration [210, 211].

The characteristic lengths and amplitudes of the magnetic irregularities upstream and

downstream can be inferred from the maximum energy of cosmic-ray protons. The observed

cosmic-ray proton momentum spectrum is a power law with a nearly constant spectral index up

to the “knee” energy, 106 GeV, which indicates that cosmic-ray protons are Fermi-accelerated

by one mechanism in each acceleration site–the DSA mechanism in supernova remnants [212].

However, it was shown that considering the spatial dependence of the upstream diffusion

coefficients and the finite lifetime of supernova remnants, the maximum energy of cosmic rays

undergoing the DSA process is only 104 GeV [213]. This result is obtained with the assumptions

that (1) the upstream magnetic irregularities are driven by streaming instability and (2) the

diffusion coefficient at the downstream is the Bohm-type, i.e., δB/B∼ 1. Since the turbulent

isotropic pitch-angle distributions of the accelerated particles at the upstream and downstream of the shock and only
works for particles with speed significantly greater than the shock speed [204]. The difficulty of determining the
injection fraction is that the kinematics of low energy ions is extremely complicated as one has to simultaneously
consider how the downstream thermal ions enter the upstream (or how the upstream ions are reflected by the
potential barrier at the shock front [205]), drive a streaming instability, scatter at pitch angle, gain energy for the first
few shock-crossings, escape the backstreaming Alfvén waves, and eventually diffuse across the shock front multiple
times, all before being advected to the far downstream [206, 207]. This challenge is known as injection problem.
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magnetic fields are excited by cosmic rays, we expect the characteristic wavelengths of the

excited waves should be comparable to the Larmor radius of the cosmic-ray protons. So the

largest scale turbulence has a wavelength of approximately one Larmor radius of 104 GeV

cosmic-ray protons. Assuming a downstream magnetic field of 10 µG, the downstream magnetic

turbulence in quasiparallel shocks is present for length scales up to ≈ 10−3 pc with turbulence

strength δB/B∼ 1.

To accelerate cosmic-ray protons to the knee energy in the supernova remnants, the

diffusion coefficient has to be increased beyond the Bohm limit. This can be achieved if

the turbulent magnetic fields are amplified to the level δB/B∼ 10−100. Such large magnetic

turbulence likely is achieved by nonresonant hybrid instability in fairly young supernova remnants

(R . 1 pc) [214]. However, younger supernovae cover less volume and so their impact in

sweeping up mDM (which we will discuss in Sec. 4.2.2) is relatively small compared to the

older remnants. For simplicity, we will only consider magnetic turbulence driven by cosmic-ray

protons with energy up to 104 GeV.

4.2.2 The dark sector: mDM plunging into the downstream plasma

The standard picture of the shock wave described above is restricted to the ions and

electrons. We will take this as the leading dynamics for the supernova shock and treat mDM as

test particles. Now we consider the dynamics of mDM particles as they enter the shock front.

We will always work in the parameter space below the red dashed line in Fig. 4.1 so that the

mDM Larmor radius is always several orders of magnitude larger than the ion Larmor radius,

rLχ/rLi� 1.

Unlike the ion and electron flows which are dissipated at the shock transition zone

through collective plasma effects, the mDM flow would not be isotropized in the same region.

This is because the mDM Larmor radius is much larger than the width of the shock transition

zone (about a few ion Larmor radii). Instead, the mDM should pass through the shock transition

zone undeflected and plunge into the downstream ion-electron plasma. In the following, we will
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study how mDM particles interact with the downstream plasma so that they can be swept up

by the supernova remnant. We will consider the possibility that mDM scatters on the magnetic

turbulence driven by cosmic-ray protons as well as plasma waves driven by mDM particles.

The diffusion of mDM in quasiparallel shocks

In the presence of magnetic irregularities driven by cosmic rays in the quasiparallel shock,

mDM particles can undergo pitch-angle diffusion, which permits the mDM to be deflected by

an O (1) angle and thus be swept up by the supernova remnant. The diffusion happens when

the mDM Larmor radius, rLχ = mχcV0/|qχ |B, is comparable to the wavelength of the magnetic

irregularities, λ . Here V0 = 3vsh/4 denotes the speed of the mDM flow in the rest frame of the

downstream fluid. The associated mean free path for mDM pitch angle scattering4 through 90◦

is [217]

Lmfp ≈
rLχ

(δB/B)2 . (4.2)

To sweep up ambient mDM, (1) the pitch angle diffusion condition has to be satisfied, i.e.,

rLχ ≈ λ , and (2) the mean free path cannot exceed the size of the supernova remnant.

As we discussed previously, turbulent magnetic fields driven by cosmic-ray protons in

a quasiparallel supernova shock exist for wavelengths up to λmax ∼ 10−3 pc with turbulence

strength δB/B∼ 1. Thus, mDM with rLχ < 10−3 pc can diffuse in the quasiparallel shock and

Lmfp is approximately rLχ , in which case Lmfp does not exceed the size of the supernova remnant.

As a result, the condition that mDM can scatter with the magnetic turbulence and be swept-up by

the quasiparallel shock is given as

(
300 km/s

vsh

)( |qχ |/e
8.4×10−11

)(
MeV
mχ

)
> 1, (4.3)

4Note that the pitch angle diffusion and the sweep-up of mDM discussed here are restricted to the downstream of
the quasiparallel shock. It is possible that the a small fraction of the charged particles can diffuse in the cosmic ray
driven turbulent environment, cross the shock front multiple times, and start the DSA process. This idea has been
applied to the dust grain acceleration in the supernova shocks [215, 216], and it could be a potential mechanism for
cosmic-ray mDM acceleration.
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where we assume the downstream magnetic field is 10 µG.

Plasma instabilities in supernova remnants

As discussed above, mDM cannot undergo pitch angle scattering off cosmic-ray driven

turbulence in some scenarios: (1) if the mDM Larmor radius is larger than 10−3 pc in a

quasiparallel shock, or (2) for any mDM Larmor radius in a quasiperpendicular shock, where

there is little turbulence generated from cosmic-ray protons. For these cases, we will show

instead that the mDM bulk flow can self-generate plasma waves and thus be swept-up by the

expanding supernova remnants. Since in both cases the mDM Larmor radius is larger than

any magnetic irregularities in the downstream plasma, we can approximately treat the mDM as

experiencing an ordered background magnetic field. The bulk of this work will then be devoted

to analyzing possible mDM plasma instabilities in a homogeneous magnetic field.

In this section, we summarize the possible plasma instabilities that would allow a su-

pernova shock to sweep up ambient mDM particles. In the frame of the shocked gas, we can

treat the incoming mDM particles as a beam of charged particles moving with the bulk speed

V0 = 3vsh/4 and with the internal thermal speed approximately the Milky Way virial speed,

vth,χ = vvir ≈ 220 km/s [218]. The relative motion between the mDM beam and the shocked

interstellar material then provides the free energy to drive plasma instabilities and excite plasma

waves. Once the waves are excited, they will back-scatter on the mDM particles and slow down

the mDM beam in the expanding fluid. That is, the mDM particles interact with the downstream

fluid through wave-particle scattering. We assume the velocity distribution of the mDM particles

becomes isotropized in the downstream frame when the instability saturates, and there is no

more free energy to drive a plasma instability.

Unfortunately, there is no observational evidence guiding us as to which plasma waves

and instabilities would be excited by mDM. For example, we do not know a priori the wave

frequency, wavelength, and the propagation direction (parallel or perpendicular to B0). Nor do

we know about the wave polarization (electrostatic vs. electromagnetic). In addition, there are
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several dozens of plasma waves and more than 50 kinds of plasma instabilities. As a starting

point, here we will consider some of the most representative waves and instabilities that occur in

the formation of astrophysical shocks [219–225] as well as the anomalous heating in the pinch

experiments [226–229].

Table 4.1. The plasma instabilities studied in this work. Here B0 and k denote the ordered
magnetic field in the downstream and the wave vector, respectively. The abbreviation ES and EM
stand for electrostatic (longitudinal polarization) and electromagnetic (transverse polarization),
respectively.

Instability Type Beam direction Wave direction Frequency Instability
Ion-acoustic ES V0 ‖ B0 k ‖ B0 < ωpi No
Langmuir ES V0 ‖ B0 k ‖ B0 > ωpe No
Lower-hybrid ES V0 ⊥ B0 k⊥ B0 ∼

√
|ΩiΩe| No

beam-firehose EM V0 ‖ B0 k ‖ B0 . |Ωχ | Yes
Weibel EM V0 ⊥ B0 k ‖ B0 . |Ωχ | Yes

In Table 4.1, we list the plasma waves and instabilities studied in this work. As a

simplified model, we will take the downstream as a spatially homogeneous plasma immersed

in an ordered magnetic field B0 = B0ẑ. We also assume the growth time of any mDM-driven

instability in the supernova remnant is much greater than the dissipation time of interstellar

protons and electrons at the shock front so that the mDM is treated as a beam drifting through

the fully ionized hot proton/electron gas. With these assumptions, we find that the electrostatic

waves are not excited because (1) the ion Landau damping dissipates the ion-acoustic and

lower-hybrid waves, and (2) the mDM beam velocity is lower than the velocity threshold for

exciting the Langmuir waves. On the other hand, electromagnetic waves may be excited in the

low frequency regime (.Ωχ ). This is because the ion cyclotron frequency, Ωi, is much higher

than the frequency of the mDM-driven electromagnetic waves, and thus ion cyclotron damping

is avoided. Each of these instabilities is described in detail in Sec. 4.3 and 4.4.

We conclude this overview of mDM dynamics by providing a table of the notation used

frequently throughout this work, Table 4.2. We will present equations in CGS-Gaussian units
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where the electric charge e =
√

α}c = 4.8×10−10 statC. The relevant physical quantities for a

particles species j are the number density n j, electric charge q j, magnetic field strength in the

shocked matter B0, mass of the particle m j, velocity of the particle v j, temperature Tj, and mass

density ρ j.

Table 4.2. Notation used frequently in this work. We adopt CGS-Gaussian units and set kb = 1.

plasma frequency ωp j ≡
√

4πn jq2
j/m j Larmor frequency Ω j ≡ q jB0/m jc

Larmor radius rL j ≡ m jcv j/q jB0 Debye screening length λD j ≡
√

Tj/4πn jq2
j

thermal speed vth, j ≡
√

2Tj/m j Alfvén speed vA ≡ ∑ j B0/
√

4πρ j

4.3 Electrostatic waves and instabilities

In this section, we study the possible electrostatic (longitudinal polarization) instabilities

driven by an mDM beam. We will take a perturbative approach, where the mDM beam is treated

as a perturbation to the remnant plasma, and determine the linear response. This approach is

justified because the mDM plasma frequency is negligible compared to ion and electron plasma

frequencies due to the small mDM electric charge. Given the parameter space we consider in

this work, |Ωχ/Ωi|< 10−3, we are always working in the limit of small mDM plasma frequency,

ωpχ/ωpi < 10−3
√

ρχ/ρi� 1. With this assumption, the mDM does not change the dispersion

relation of existing plasma waves in the Milky Way at a noticeable level.

While there are many kinds of electrostatic waves and instabilities, we choose three

representative candidates as the most likely mDM instabilities: the ion-acoustic and Langmuir

waves for k ‖ B0 propagation and lower-hybrid waves for k ⊥ B0 propagation. The reason

we choose these three is motivated by their critical roles in the formation of astrophysical

collisionless shocks (e.g., solar dust grain plasma [219], earth bow shock [220], colliding stellar

winds [221]) as well as the notorious turbulence heating in the theta-pinch experiments [226–

229]. However, while many astrophysical shocks have high beam velocity, the mDM beam
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Figure 4.4. The environment in the downstream plasma frame, and our setup for a parallel
shock where B0 = B0ẑ is parallel to shock normal. In this frame, the shock front propagates
with velocity (vsh/4)ẑ and the ambient mDM is treated as a weak beam flowing with velocity
V0 ≡−(3vsh/4)ẑ. The ion-acoustic and Langmuir waves driven by the mDM beam propagate
parallel to B0.

velocity is similar to the downstream ion thermal velocity, which leads to an unavoidable strong

Landau damping. As a result, we show below that these electrostatic waves are not excited by

the mDM beam.

4.3.1 Parallel shock (ion-acoustic and Langmuir waves)

We first consider the parallel shock scenario, defined as B0 ‖ V0, where V0 is the relative

drift velocity between the mDM and the downstream electron-proton plasma. The setup is shown

in Fig. 4.4. We examine the possibility of an mDM beam driving ion-acoustic and Langmuir wave

instabilities. We choose these two representative electrostatic plasma waves for the following

reason. In a parallel shock, the electrostatic waves are most easily excited when k ‖ V0 and we

therefore restrict to the case of parallel propagation, k ‖ B0. Then the motions of the charged

particles (e−, i+ and χ±) associated with this wave excitation/perturbation are parallel to B0, and

the magnetic field does not alter the trajectories of these particles. As a result, electrostatic waves

with k ‖ B0 propagation would have dispersion relation identical to that of electrostatic waves
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in a (magnetic)field-free plasma [230]. The two electrostatic waves for the field-free plasma

are ion-acoustic waves in the low frequency regime (ω < ωpi) and Langmuir waves in the high

frequency regime (ω > ωpe), and so we study these waves.

Here we consider an mDM beam flowing through a background plasma consisting of

Maxwellian electrons and protons. The normalized velocity distribution of each species is

F0 j (v) =
(

m j

2πTj

)3/2

exp
(
−m j|v|2

2Tj

)
, j = e−, i+, (4.4a)

F0χ (v) =
(

mχ

2πTχ

)3/2

exp
(
− mχ

2Tχ

(v−V0)
2
)
. (4.4b)

We take the mDM thermal velocity to be the virial speed of Milky Way halo, i.e., vth,χ =
√

2Tχ/mχ ≈ vvir ≈ 220 km/s.

We take the standard approach for a linear stability analysis, wherein we determine the

dielectric function in the presence of these species and study the imaginary part induced by the

mDM beam. In Appendix 4.A.1, we provide a detailed derivation of the dispersion relation

for electrostatic waves (that is, longitudinal polarization with k ‖ δE) and parallel propagation,

k ‖ B0. Electrostatic waves have a dispersion relation determined by the poles of the dielectric

function,

0 = D(ωr + iγ,k) = 1+
2ω2

pi

k2v2
th,i

[
1+ξiZ (ξi)

]
+

2ω2
pe

k2v2
th,e

[
1+ξeZ (ξe)

]
+

2ω2
pχ

k2v2
th,χ

[
1+ξχZ

(
ξχ

)]
,

(4.5)

where we have written the frequency in terms of real (ωr) and imaginary (γ) parts, and ξi, ξe and

ξχ are defined by

ξi =
ωr + iγ
kvth,i

, ξe =
ωr + iγ
kvth,e

, ξχ =
ωr−k ·V0 + iγ

kvth,χ
, (4.6)

with k ·V0 = kV0 and vth, j =
√

2Tj/m j. The function Z
(
ξ j
)

is referred to as the plasma

dispersion function, and defined explicitly in Eq. (4.37). The first three terms in Eq. (4.5) support
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standard ion-acoustic and Langmuir waves. The last term, the dark matter contribution, can

be neglected in determining the real oscillation frequency ωr of the plasma waves because we

are working in the limit of ωpχ/ωpi� 1. However, it is essential to include this term when

calculating the growth rate γ of the plasma waves, since the mDM beam is the only source of

excess kinetic energy for driving an instability. Both the physics and approach here is reminiscent

of the well-studied bump-on-tail instability where an electron beam drifting with high velocity

excites a Langmuir wave. In the following, we consider the possibility of having an instability in

the ion-acoustic and Langmuir wave frequency regimes.

Ion-acoustic waves

The ion-acoustic wave is a type of longitudinal oscillation in an unmagnetized plasma

or in a magnetized plasma when k ‖ B0. Its oscillation frequency is so low that the electrons

are essentially locked to the oscillation of ions. The phase speed of the ion-acoustic wave is

approximately ω/k ∼
√

(Te +Ti)/mi, which is due to the restoring force of electron and ion

thermal pressures. If Te ∼ Ti, the phase velocity is close to thermal ion velocity which suggests

that a large fraction of ions can experience nearly constant electrostatic fields from the waves

– as if ions are “surfing” on them. Moreover, there is a large negative slope in the ion velocity

distribution at the phase speed: physically, there are more thermal ions that are moving a bit

slower than the phase speed, which takes away energy from the waves, compared to thermal

ions moving slightly faster than the phase speed, which would give energy to the waves. The net

effect is that the waves suffer from rapid energy loss due to ion Landau damping. On the other

hand, if Te� Ti then the phase speed is on the tail of the ion distribution function, ω/k� vth,i.

Then there would be far fewer thermal ions “surfing” on the waves, and there is a reduced slope

in the velocity distribution at the phase speed. The damping from ions is greatly suppressed in

this case.

In a supernova shock environment, the electron and proton fluids are each isotropized

after they cross the shock front. Each species has the same initial velocity in the downstream
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frame, which implies Te/Ti ≈ me/mi ≈ 1/1836 just behind the shock. The electrons are then

heated to several tenths of Ti through plasma instabilities [231, 232], but the final electron-ion

temperature equilibration is caused by the electron-proton Coulomb scattering and the process

takes about ∼ 100 years [198]. However, the fact that Te . Ti suggests ion-acoustic waves suffer

strong ion Landau damping. It is therefore not possible for mDM to excite any ion-acoustic

waves in the supernova shock environment.

In the following discussion, we will demonstrate the problem of strong ion Landau

damping by taking the case Te� Ti. Although this does not correspond to the temperature ratio

in the SNR, it allows us to obtain an analytic result and see that Landau damping prevents an

mDM instability even in a scenario where reduced damping is expected. In the Te� Ti limit,

the phase velocity is in the range vth,i� ωr/k� vth,e which corresponds ξe� 1 and ξi� 1.

Using the asymptotic expansions for Z(ξ j) given in Eqs. (4.38) and (4.39), the real part of the

dispersion relation in Eq. (4.5) becomes

0 = DRe (ωr,k)≈ 1−
ω2

pi

ω2
r
+

1
k2λ 2

De
, (4.7)

where λDe ≡
√

Te/4πnee2 is the electron Debye length. (The mDM contribution to Dr is

neglected since we are working in the limit ωpχ/ωpi� 1.) The phase velocity is

ωr

k
≈
√

Te/mi

1+ k2λ 2
De

, (4.8)

where
√

Te/mi ≡ cs is the ion sound speed. The real oscillation frequency ωr ranges from kcs

for k2λ 2
De� 1 to ωpi for k2λ 2

De� 1.5

Next, to evaluate the growth rate for a wave with k ‖ B0, we take the limit |γ/ωr| � 1

5Note that the assumption of ωr/k� vth,i breaks down when k2λ 2
De & Te/Ti, and the ion Landau damping

becomes strong again. In the limit k2λ 2
De� Te/Ti where the phase velocity ωr/k� vth,i,vth,e, there is no collective

electrostatic plasma waves since the thermal ions and electrons can travel for significantly more than one wavelength,
k−1, within one period, ω−1

r . That is, any formation of electrostatic plasma waves will be “washed out” immediately.
In the following discussion we always work in the limit k2λ 2

De < Te/Ti.
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and use Eqs. (4.44) and (4.46). Then the damping rate from electrons plus ions, γe+i, is

γe+i

|ωr|
≈ −

√
π

8

( |ωr/k|
ωpiλDe

)3[√me

mi
exp

(
−ω2

r /k2

v2
th,e

)
+

(
Te

Ti

)3/2

exp
(
−ω2

r /k2

v2
thi

)]

≈−
√

π

8
1

(
1+ k2λ 2

De

)3/2

[√
me

mi
+

(
Te

Ti

)3/2

exp

(
− Te

2Ti
(
1+ k2λ 2

De

)
)]

,

(4.9)

and the growth rate from mDM, γχ , is

γχ

|ωr|
≈
√

π

(
ωpχ

ωpi

)2 ∣∣∣∣
ωr/k
vth,χ

∣∣∣∣
3( V0

ωr/k
−1
)

exp

(
−(ωr/k−V0)

2

v2
th,χ

)
. (4.10)

The total growth rate is γ = γe+i + γχ . From Eq. (4.10), we find that the necessary condition to

get γχ > 0 is V0 > ωr/k. Rewriting the beam speed as V0 = 3vsh/4≈ 1.1vth,i, and using Eq. (4.8),

we can simplify this condition as k2λ 2
De > Te/2.4Ti− 1. For plasmas with Te/Ti < 2.4, all k

modes have γχ > 0. For plasmas with Te/Ti > 2.4, only the modes with kλDe >
√

Te/2.4Ti−1

have γχ > 0.

Figure 4.5 shows the damping rate from electrons plus ions, γe+i, and the growth rate

from mDM, γχ . We assume ωpχ/ωpi = 10−3 and vsh = 500 km/s, and consider plasmas with

Te/Ti = 5 and 10. (Note that γχ is only plotted in the k range where γχ > 0.) It is clear from

Fig. 4.5 that damping dominates over growth at all kλDe, due in part to the strong suppression

of the mDM contribution by (ωpχ/ωpi)
2 < 10−6. We have checked the same conclusion is

also true for shocks at the beginning of supernova explosion (vsh ∼ 104 km/s) to the end of the

Sedov-Taylor phase (vsh ∼ 200 km/s). As a result, the mDM would not be swept up by the SNR

via an ion-acoustic wave instability.

Langmuir waves

We now consider the Langmuir waves that exist in the large frequency regime (ω > ωpe).

Langmuir waves, also known as electron plasma oscillations, are a type of fast-oscillating

longitudinal wave in an unmagnetized plasma or in a magnetized plasma when k ‖ B0. The
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Figure 4.5. The damping of ion-acoustic waves from thermal ions (solid lines) from Eq. (4.9),
and growth from mDM (dashed lines) from Eq. (4.10). Here we assumed ωpχ/ωpi = 10−3 and
vsh = 500 km/s. The dotted lines correspond to the regime k2λ 2

De > Te/Ti where Eq. (4.9) breaks
down and there are no collective plasma oscillations. The damping rate from ions is significantly
higher than the growth rate from mDM at all kλDe. We have checked the same conclusion is true
for shocks from the beginning of the supernova explosion (vsh ∼ 104 km/s) to the end of the
Sedov-Taylor phase (vsh ∼ 200 km/s).

oscillation is so rapid that the thermal ions are not able to catch up with the waves, and ions are

essentially a static background, mi→ ∞ and |ξi| → ∞. As a result, the dispersion relation of the

Langmuir waves is exclusively dictated by electrons.

Similar to the discussion for ion acoustic waves, in order to avoid electron and ion Landau

damping we require that the phase velocity ωr/k� vth,e, vth,i. This corresponds to ξe,ξi� 1,

and in this limit the real part of the dispersion relation in Eq. (4.5) is given by

0 = DRe (ωr,k) = 1−
ω2

pe

ω2
r
−3k2

λ
2
De

ω4
pe

ω4
r
+ · · · , (4.11)

where again the mDM contribution is negligible in the limit ωpχ/ωpi� 1. Solving Eq. (4.11)
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gives the real wave frequency,

ωr = ωpe

√
1+3k2λ 2

De + · · ·. (4.12)

Note that these equations are only valid for kλDe � 1, which is required by the condition

ωr/k� vth,e, and that Langmuir waves with kλDe ∼ 1 suffer strong electron Landau damping.

The growth rate from mDM has the same form as Eq. (4.10), but with the replacement

ωpi→ωpe and with ωr from Eq. (4.12). And so again the condition for γχ > 0 is V0 > ωr/k. The

phase speed in the regime kλDe . 1 is approximately ωr/k & ωpeλDe = vth,e/
√

2. As discussed

earlier, the electrons are heated up to several tenths of Ti behind the shock front due to plasma

instabilities [231, 232], corresponding to vth,e ∼
√

mi/me vth,i ∼ 10vsh. Then the phase speed is

much larger than the mDM beam velocity in the downstream frame, V0, and the condition for

getting γχ > 0 is not satisfied. Therefore, the mDM would not be swept up by the SNR via a

Langmuir wave instability.

4.3.2 Perpendicular shock (lower-hybrid wave)

For the perpendicular shock (B0 ⊥ V0), we choose lower-hybrid (LH) waves as the most

likely candidate for an electrostatic wave driven by the mDM beam. The lower-hybrid wave

instability is the high-frequency (ω � |Ωi|) electrostatic wave driven by the cross-field plasma

beam (i.e., moving perpendicular to the magnetic field B0 = B0ẑ) and the waves propagate very

nearly perpendicular to B0. The free energy is provided either from the initial kinetic energy of

the beam or from inhomogeneities in plasma density, temperature or background magnetic field.

In this work, we only consider the first case since we do not expect the induced E and E×××B

from local electron/proton charge separation to have significant effects on the mDM trajectories

near the shock front. (The latter case, also known as lower-hybrid-drift instability, is the major

driver and free energy source for the anomalous heating in the theta pinch experiments as well as

a dissipation mechanism in astrophysical shocks.)
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Figure 4.6. The environment in the downstream plasma frame, and our setup for a perpendicular
shock where B0 is perpendicular to shock normal. In this frame, the shock front propagates with
velocity (vsh/4)ŷ and the mDM is treated as a weak beam flowing with velocity V0≡−(3vsh/4)ŷ.
The lower-hybrid waves driven by the mDM beam propagate perpendicular to B0.

The initial plasma configuration is illustrated in Fig. 4.6, and described as follows. We

consider an mDM beam moving across the downstream magnetic field B0 = B0ẑ with the beam

velocity V0 =V0ŷ in the downstream frame. We focus on wave perturbations with k2
y � k2

x and

kz = 0. Our choice is guided by the extensive parameter study of lower-hybrid-drift instability

and modified-two-stream instability in Ref. [229] where the author shows that the maximum

instability growth of the LH waves occurs for k2
y � k2

x , kz = 0 and k2
yr2

Le ≈ 1 when Te ≈ Ti. For

simplicity, we write the wave vector as k = kŷ.

The typical frequency of the LH waves is around ωr ∼ ωLH ≡ ωpi/
√

1+ω2
pe/Ω2

e . For

ω2
pe�Ω2

e , which is satisfied in the supernova downstream plasma, we have ωLH =
√

mi/me|Ωi|

≈ 43|Ωi|. The LH wave instability is characterized by magnetized electrons where the wave

vector k satisfies k2r2
Le ≈ 1 [228]. Since the thermal ion Larmor radius, rLi ≈ 43rLe, is larger than

the characteristic wavelength of this instability, 1/k ≈ rLe, we treat the ions as unmagnetized.

The same argument applies to mDM. As a result, the dispersion relation is given as [221, 228]

0 = D(k,ω) = 1+
2ω2

pi

k2v2
th,i

[
1+ξiZ (ξi)

]
+

ω2
pe

Ω2
e

1− I0 (b)e−b

b
+

2ω2
pχ

k2v2
th,χ

[
1+ξχZ

(
ξχ

)]
, (4.13)
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Figure 4.7. The ratio of ion damping to mDM growth rate for lower hybrid waves, |γi/γχ |, as
a function of shock speed. The various lines correspond to different fixed values of the ratio
ωr/kvth,i. The curves are calculated under the assumption ωpχ/ωpi = 10−3. All the curves have
|γi/γχ | � 1, which indicates that the ion Landau damping will suppress any mDM beam-driven
LH wave instability.

where b = k2r2
Le/2, ξi = ω/kvth,i, ξχ = (ω− kV0)/kvth,χ and I0 (b) is the modified Bessel

function of the first kind of order zero. Note that I0(b) is real and the magnetized electrons do

not contribute to damping.

Because ions behave as an unmagnetized thermal gas within one LH wavelength, the ion

Landau damping to the LH waves is non-negligible. Our goal is to determine whether the ion

Landau damping will stabilize the plasma or if the mDM beam can successfully excite the LH

waves. Utilizing Eqs. (4.44) and (4.46b), the ratio of ion Landau damping to the mDM instability

growth rate for LH waves is given as

γi

γχ

=
Di

Im (k,ωr)

Dχ

Im (k,ωr)

=−
(

ωpi

ωpχ

)2(vth,χ

vth,i

)3(
ωr/k

V0−ωr/k

)
exp

(
−ω2

r /k2

v2
th,i

+
(ωr/k−V0)

2

v2
th,χ

)
.

(4.14)

Note that the necessary condition for γχ > 0 is ωr/k <V0 = 3vsh/4≈ 1.1vth,i, so we will always
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work in that condition. Taking the characteristic frequency of the LH wave, ωr ∼ ωLH ≈ 43|Ωi|,

and the characteristic wave vector of the maximum growth rate of the LH wave instability,

k ∼ 1/rLe ≈ 43/rLi, the characteristic phase velocity is approximately vth,i. Of course, ωr/k can

be higher or lower than vth,i, as long as ωr/k < 1.1vth,i. In Fig. 4.7, we show |γi/γχ | as a function

of shock speed at various values of ωr/kvth,i, assuming ωpχ/ωpi = 10−3. Note that decreasing

ωpχ/ωpi would only raise the curves of |γi/γχ |, meaning a weaker growth rate from the mDM

beam. Therefore, we find ion Landau damping is dominant over the growth rate from the mDM

beam, and we do not expect mDM to be swept up by the supernova remnant via a LH wave

instability.

4.4 Electromagnetic waves and instabilities

In this section, we investigate the possibility of mDM exciting transverse electromagnetic

(EM) waves in the downstream plasma, in the presence of a background magnetic field B0. We

will show that an instability could occur with growth rate γ ∼ |Ωχ |. While the EM waves can,

in general, propagate along arbitrary directions, we restrict our attention to wave propagation

along B0 (k ‖ B0). Our choice is motivated by abundant observations of the enhanced magnetic

fluctuations in the solar winds, which indicate that the dominant and the fastest growing EM

instability modes propagate approximately parallel or antiparallel to B0 [233–236]. In that

case, there are a variety of kinetic waves and associated instabilities, e.g., Alfvén waves with

the firehose instabilities, ion cyclotron waves with the ion cyclotron instability, and electron

cyclotron waves with the electron Whistler instability. Here we focus on transverse-polarization,

parallel-propagating EM waves in a supernova shock. We then consider two limiting cases: a

beam-firehose instability in a parallel shock (V0 ‖ B0) and a Weibel instability in a perpendicular

shock (V0 ⊥ B0).

Similar to the approach of the previous section, here we solve for the linear dispersion

relation for a transverse EM wave propagating along B0 = B0ẑ with wave vector k = kẑ. Then
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Figure 4.8. The environment in the downstream plasma frame, and our setup for a parallel
shock where B0 = B0ẑ is parallel to shock normal. In this frame, the shock front propagates
with velocity (vsh/4)ẑ and the ambient mDM is treated as a weak beam flowing with velocity
V0 ≡−(3vsh/4)ẑ. The excess of kinetic energy along B0 can drive a beam-firehose instability
and excite EM waves.

the electric field perturbation can be written as δE = δExx̂+δEyŷ and the general form of the

linear dispersion relation can be expressed as [237]

0 = D± (k,ω) = c2k2−ω
2 +∑

j
ω

2
p j

∫
d3v

(ω− kvz)F0 j− 1
2kv2
⊥
(
∂F0 j/∂vz

)

ω− kvz±Ω j
. (4.15)

The superscript of D± and the ± sign in front of Ω j denote the right-handed (+, δEx =−iδEy)

and left-handed (−, δEx = iδEy) EM waves. A cylindrical coordinate system for the velocity

space is used and the integration is over the range
∫

d3v =
∫

∞

0 2πv⊥dv⊥
∫

∞

−∞
dvz.

4.4.1 Beam-firehose instability in a parallel shock

In the case of a parallel shock, we will show that the excess of kinetic energy from the

mDM beam in the direction parallel to B0 can enhance EM perturbations and drive a beam-

firehose instability.6 An illustration is shown in Fig. 4.8. Physically, the firehose instability is

6Note that the instability studied here is slightly different from the classical firehose instability [238]. In most of
the literature, the firehose instability refers to the instability of the transverse EM waves propagating parallel or
antiparallel to B0 in a two-temperature Maxwellian plasma system with Tj‖ > Tj⊥ (where the subscripts ‖ and ⊥
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caused by the back-reaction of the centrifugal force from charged particles moving along the

curved magnetic lines B = B0 +δB. A small perturbation δB will cause charged particles to be

redirected due to the Lorentz force, and a drift current is produced in the same direction as ∇×××B.

This drift current induces magnetic fields transverse to B0 and tends to increase the curvature of

B. The magnetic perturbations will enhance exponentially in time as the process is a coupled

nonlinear feedback between the curved magnetic lines and the induced currents. This mechanism

is reminiscent of a swinging firehose: when the water flow passes through the bent section of

the hose, the centripetal force exerted on the hose tends to amplify the curvature and the bent

section becomes even more curved. The process leads to an exponential growth of the wave

amplitude [239].

Now we consider the mDM beam flowing along B0 = B0ẑ with a beam velocity in the

downstream plasma frame written as V0 =−(3vsh/4)ẑ. The dispersion relation in this scenario

is obtained by substituting the velocity distributions in Eqs. (4.4a) and (4.4b) into the EM linear

dispersion relation in Eq. (4.15), which gives

0 = D± (k,ω) = c2k2−ω
2− ∑

j=i+,e−
ω

2
p j

(
ω

kvth, j

)
Z
(
ξ j
)
− ∑

s=χ+,χ−
ω

2
ps

(
ω− kV0

kvth,χ

)
Z (ξs) ,

(4.16)

where ξ j =
(
ω±Ω j

)
/kvth, j and ξs = (ω− kV0±Ωs)/kvth,χ and Z(ξ ) is again the plasma

dispersion function defined in Appendix 4.A.1. Assuming equal number density of χ+ and χ−,

we have n0χ+ = n0χ− = n0χ/2 and consequently ω2
pχ+ = ω2

pχ− = ω2
pχ/2. For V0 = 0, there is no

free energy to drive an instability and Eq. (4.16) supports only stable solutions with γ ≤ 0. Here

we show that in the presence of the mDM beam with nonzero V0, it is possible to excite unstable

modes of a beam-firehose instability with characteristic wave frequency |ω|.Ωχ .

We first focus on the electrons and ions, which we assume to be strongly magnetized

with |ω| � |Ωi|, |Ωe|. In the long wavelength and low frequency limit that we are interested in,

refer to the directions relative to B0). The excited waves are in the Alfvén wave frequency regime, |ω| � |Ωi|. On
the other hand, the beam-firehose instability phrased in this work refers to a beam of mDM plasma flowing along
B0 and driving an EM wave instability.
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we have |ξi|, |ξe| � 1. Then we can approximate Z
(
ξ j
)
≈−1/ξ j for j = i+,e− and simplify the

ion and electron terms in Eq. (4.16):

∑
j=i+,e−

ω2
p jω

ω±Ω j
≈ ω

[
ω2

pe

±Ωe

(
1− ω

±Ωe

)
+

ω2
pi

±Ωi

(
1− ω

±Ωi

)]
=−ω

2 c2

v2
A
, (4.17)

where the charge neutrality of proton-electron plasma is used. The standard Alfvén speed vA is

defined as vA ≡ B0/
√

4π (ρi +ρe) and has a typical value

vA ≈ 22 km/s
(

B0

10 µG

)(
1 cm−3

npost,i

)1/2

, (4.18)

where npost,i denotes the proton number density in the supernova downstream fluid.

The relevant source of damping for EM waves propagating in a homogeneous plasma

is cyclotron damping. For the case studied here, the cyclotron damping from thermal ions and

electrons is negligible. This is because for very low frequency and long wavelength EM waves

(|ω| � |Ωi|, |Ωe| and |ξi|, |ξe| � 1), the exponential function in the plasma dispersion function

Z
(
ξ j
)

which contributes the damping is exponentially suppressed. Physically, it means the ions

and electrons do not rotate at the same rate as the circularly polarized EM waves, so the waves

do not undergo a cyclotron resonance. The ion (electron) cyclotron damping only becomes

important when ω →Ωi (Ωe), in which case the ions (electrons) can absorb a significant amount

of the energy from the electric fields of the EM waves.

In the presence of the mDM beam, the dispersion relation of right-handed EM waves

becomes

0 = c2k2−ω
2
(

1+
c2

v2
A

)
−

ω2
pχ

2

(
ω− kV0

kvth,χ

)[
Z
(
ξχ+

)
+Z

(
ξχ−
)]

. (4.19)

The left-handed EM waves have an identical form since Ωχ+ = −Ωχ− . We solve Eq. (4.19)

numerically assuming B0 = 10 µG and npost,i = 1 cm−3. The results are shown in Fig. 4.9. In

the left panel of Fig. 4.9, we show the real oscillation frequency |ωr| and the growth rate γ as a

function of ck/ωpχ for different shock speeds, assuming ρDM = ρχ = 1 GeV/cm3. The value of
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Figure 4.9. Beam-firehose instability in a parallel shock. (top) Plot of the real oscillation
frequency (solid lines) and the growth rate (dashed lines) of the right/left-handed EM waves
in units of |Ωχ |. The curves are plotted assuming ρDM = ρχ = 1 GeV/cm3. (bottom) Plot of
the maximum growth rate as a function of shock speed. The numbers on the curves denote the
fraction of the DM abundance comprised of mDM, ρχ/ρDM, assuming ρDM = 1 GeV/cm3.

k at which the maximum growth occurs is a decreasing function of the shock speed vsh = 4V0/3.

This is because the instability is most effective when the crossing time of the beam through one

wavelength, ∼ 1/kV0, is comparable to one gyration time of 1/Ωχ , i.e., the beam is resonant
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Figure 4.10. An illustration of the Weibel instability driven by the mDM beam in a perpendicular
shock. The shock front faces toward the x̂ direction. An initial magnetic fluctuation, δB, is
assumed to be perpendicular to B0 and lies in the y− z plane. The incoming χ±s are deflected
by δB and induce current sheets pointing in opposite directions in layers I and II. The magnetic
perturbations are then amplified via Ampère’s Law.

with the excited EM waves. This also justifies the assumption made above that |ξi|, |ξe| � 1

since |ξi|= (ω±Ωi)/kvth,i ∼ |Ωχ/kV0||Ωi/Ωχ | ∼ |Ωi/Ωχ | � 1 and the same argument applies

for the electrons as well. In the right panel of Fig. 4.9, we plot the maximum growth rate γmax as

a function of vsh for various values of ρχ/ρDM, assuming ρDM = 1 GeV/cm3. The maximum

growth rate γmax is an increasing function of vsh and ρχ/ρDM, but γmax starts to saturate at high

vsh. For the optimal scenario where all DM is made up of mDM, we find γ ∼ 0.5|Ωχ | for all

shock speeds in the Sedov-Taylor phase (vsh & 200 km/s).

4.4.2 Weibel instability in a perpendicular shock

In the case of a perpendicular shock, we will show that an excess of kinetic energy from

the mDM beam in the direction perpendicular to B0 can drive a Weibel instability [240] and

excite EM waves. The Weibel instability is a transverse EM instability driven by a plasma

with anisotropic velocity distribution. The instability can occur even in the absence of external

magnetic field. The EM waves driven by the Weibel instability is nonresonant with the particles.

A simple physical picture of the Weibel instability is given in Ref. [241] where the author treats
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a two-temperature Maxwellian gas as two counterstreaming cold plasmas. The same mechanism

also applies to a single beam. In the following, we briefly describe the physical picture of the

Weibel instability driven by the mDM beam, along the lines of the description in Refs [241, 242].

We consider a neutral mDM beam consisting of equal numbers of χ+s and χ−s and

with beam velocity V0 =−(3vsh/4)x̂ in the downstream plasma frame. An illustration is shown

in Fig. 4.10. Now consider an EM perturbation with k ‖ B0 and δB⊥ V0. The Lorentz force

qχ±V0×××δB deflects the mDM trajectories as shown by the dashed curves in Fig. 4.10. At layer

I, the χ−s congregate and χ+s disperse away, resulting an induced current sheet pointing in the x̂

direction. The layer II has an opposite result, with the current sheet pointing in the −x̂ direction.

The magnetic fluctuations are then amplified via Ampère’s Law. Note that the fluctuations arising

from this mechanism are aperiodic, i.e., ωr ' 0.

We determine the growth rate via the linear stability analysis. The dispersion relation

in the perpendicular shock is obtained by the same method as the previous subsection, with the

exception that V0 ⊥ B0. The result is expressed as

0 = D± = c2k2−ω
2− ∑

j=i+,e−
ω

2
p j

(
ω

kvth, j

)
Z
(
ξ j
)

− ∑
s=χ+,χ−

ω
2
ps

[(
ω

kvth,χ

)
Z (ξs)+

(
V0

vth,χ

)2

(1+ξsZ (ξs))

]
,

(4.20)

where ξ j =
(
ω±Ω j

)
/kvth, j and ξs = (ω±Ωs)/kvth,χ . The factor V0/vth,χ quantifies the de-

viation of a plasma away from an isotropic gas. For V0 = 0, there is no free energy to drive

the instability and Eq. (4.20) supports only stable solutions with γ ≤ 0. The ions and electrons

are again strongly magnetized (|ω| � |Ωi|, |Ωe| and |ξi|, |ξe| � 1) under the condition of small

mDM Larmor frequency, |Ωχ/Ωi|< 10−3, and the low frequency, long wavelength EM waves

that we are interested in. Thus, the thermal ions and electrons do not resonate with the EM

waves and the cyclotron damping is exponentially suppressed. As a result, the sum of the ion and

electron terms in Eq. (4.20) is reduced to −ω2c2/v2
A following the same reasoning discussed in
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Figure 4.11. Weibel instability in a perpendicular shock. (top) Plot of the real oscillation
frequency (solid lines) and the growth rate (dashed lines) of the right/left-hand EM wave as a
function of wave vector, assuming ρDM = ρχ = 1 GeV/cm3. We note that one feature of Weibel
instability is an aperiodic wave, i.e., ωr ' 0, which explains the vanishingly small values of ωr
for the unstable k modes. (bottom) The maximum growth rate as a function of shock speed. The
numbers on the curves denote ρχ/ρDM, assuming ρDM = 1 GeV/cm3.

Sec. 4.4.1.

The numerical solution of Eq. (4.20) is shown in Fig. 4.11 with the assumption B0 =

10 µG and npost,i = 1 cm−3. Both EM helicities have the same form of the dispersion relation. In

the left panel of Fig. 4.11, we show |ωr| and γ as a function of ck/ωpχ for various vsh, assuming
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ρDM = ρχ = 1 GeV/cm3. Among the unstable k modes, we find ωr ' 0. This indicates that the

excited EM waves (left- and right-handed) are aperiodic and they barely propagate in space. The

superposition of both helicities with the same phase then gives linearly polarized EM waves with

ωr ' 0, which agrees with the features of the EM waves driven by the Weibel instability. We note

that all curves of γ eventually drop to zero or negative values as k→ 0 due to the fact that the free

energy driving the instability is contained in the term
(

V 2
0 /v2

th,χ

)
[1+ξsZ (ξs)], which vanishes

as k→ 0 (ξs→ ∞). In the right panel, we show the maximum growth rates as a function of vsh

with various values of ρχ/ρDM assuming ρDM = 1 GeV/cm3. The maximum growth rate γmax

is an increasing function of vsh and ρχ/ρDM, and it is approximately proportional to V0/vth,χ .

For the optimal scenario where ρχ/ρDM = 100%, we find γ & |Ωχ | for all shock speeds in the

Sedov-Taylor phase (vsh & 200 km/s).

We emphasize that while ωr/k→ 0 among the unstable k modes shown in the left panel

of Fig. 4.11, the result does not suggest the kinetic waves in the plasma have zero phase speed.

For the unstable EM fluctuations excited by the instability, the linear stability analysis performed

here only contains the information about γ and ωr at a given k mode as they are created. It does

not provide information regarding the evolution and propagation of the fluctuations during the

late stage of the instability. On the other hand, the kinetic plasma waves are the stable collective

oscillations from tiny perturbations on an equilibrium plasma. Therefore, the phase speed of

the growing fluctuations from instabilities should be distinguished from the phase speed of the

kinetic waves propagating in the equilibrium plasma.

4.4.3 Condition for sweeping up mDM

We have shown that a mDM beam can drive the firehose and Weibel electromagnetic

plasma instabilities, assuming a simplified model for the downstream plasma and magnetic field

in a SNR. If the maximum growth rate is γmax, then the instability will be saturated in a timescale

≈ γ−1
max. Consequently, for a shock of speed vsh, the saturation length in the downstream plasma

is ≈ 3vshγ−1
max/4, where the mDM beam velocity is V0 = 3vsh/4. That is, it takes about a distance
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scale of 3vshγ−1
max/4 to saturate the instability and make the mDM velocity distribution isotropic

in the downstream frame. Since the majority of shocked ISM gas resides in the outermost shell

with thickness ≈ 0.1Rsh [198], we require that 3vshγ−1
max/4 < 0.1Rsh in order for the mDM to be

swept up and isotropized in an expanding SNR.

The colored bands in Fig. 4.1 show the resulting condition on the mDM charge and

mass. We take the downstream ion density as npost,i = 1 cm−3 and the ambient mDM mass

density as ρχ = 1 GeV/cm3. Above the orange (green) band, the mDM charge fraction |qχ/e| is

sufficiently large for it to drive a plasma instability and be swept up by the supernova in a parallel

(perpendicular) shock. The upper and lower boundaries of each band are for vsh = 1500 km/s

and 300 km/s, respectively, where we have used the appropriate value of the remnant radius Rsh

for that shock speed (see Fig. 4.3).

4.5 Implications

In this section, we turn to some consequences of the mDM interaction in the SNR.

Having seen that mDM can be swept up for sufficiently large charge fractions, we next discuss

the eventual fate of the mDM velocity distribution once the shocked ISM gas undergoes adiabatic

decompression and the supernova shock dies out. We comment on the possibility and challenges

of generating a Fermi-accelerated mDM component in Sec. 4.5.2. Finally, the total mass swept

up by the SNR can increase if mDM is accounted for, and we discuss how this could impact the

Sedov-Taylor phase.

4.5.1 Adiabatic decompression and the mDM velocity distribution

When the mDM-driven plasma instabilities occur, a significant fraction of the ordered

kinetic energy of the mDM beam is transferred to the disordered kinetic energy of the mDM

particles moving isotropically. The mDM is “shocked” and heated up. For supernova shocks at

the early and mid stages of the Sedov-Taylor phase, the swept-up mDM has bulk velocity (in the

Milky Way frame) and velocity dispersion that are significantly larger than vth,χ ≈ 220 km/s,
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which would apparently have a large impact on terrestrial dark matter detection. However, it

is not easy for these shocked mDM particles to stream out directly from the remnant for the

following reason. After the instabilities have saturated, the mDM particles continue to scatter

on the EM waves and are trapped in the supernova remnant. Consequently, we expect that the

trapped mDM particles lose energy through adiabatic decompression as the shocked ISM gas

returns to the ambient ISM state. At the same time, the bulk of the shocked mDM would slow

down with the remnant and eventually come to rest in the Milky Way frame after the supernova

shock has died out.

We first consider the effect of adiabatic decompression on the mDM velocity dispersion

in the downstream frame. As a simplified model7, here we assume that (1) all the kinetic energy

of the mDM beam measured in the downstream frame is transferred to the heat of random mDM

motion, (2) the process is instantaneous, i.e., the growth time is neglected, and (3) the shocked

mDM particles follow a Maxwell-Boltzmann distribution after the instabilities have saturated.

Then for a group of mDM particles shocked and swept up by the supernova shock wave with

speed vsh, the resulting velocity dispersion is given as v′dis,χ (vsh) =
√

v2
th,χ +3v2

sh/8. (Note that

groups of mDM particles entering the shock at different shock speeds will have different velocity

dispersion after being swept up. Since the different groups of mDM do not thermalize via

Coulomb interactions for the parameters we study in this work, we use velocity dispersion here

to mean the dispersion for a given group of particles.)

Because the shocked ISM has a higher gas pressure than the ambient pressure, its volume

expands. At the same time, the trapped mDM particles lose kinetic energy through adiabatic

decompression. If the volume of the shocked ISM gas expands by a factor Λ−3, then each

mDM particles’ speed is decreased by a factor Λ. That is, for a group of mDM particles swept

up by the shock with speed vsh, the final velocity dispersion after decompression is given as

v′′dis,χ (vsh) = Λv′dis,χ (vsh). Here we follow Ref. [243] to specify the decompression factor Λ in

7The exact mDM velocity distribution as well as the kinetic energy distribution between the shocked mDM
particles and the mDM-driven waves can be obtained from the quasilinear theory or hybrid simulation.
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two limits.

Density argument: decompression stops once the shocked ISM gas is returned from

its downstream density, ρ2, to the ambient ISM density, ρ1. According to the RH condition,

ρ2 = 4ρ1 for a high shock number. Thus, the decompression factor is

Λd =

(
ρ2

ρ1

)−1/3

= 4−1/3 ≈ 0.63. (4.21)

Pressure argument: decompression stops once the shocked ISM gas is returned from its

downstream pressure, P2, to the ambient ISM pressure, P1. With the assumption that the shocked

ISM gas is an ideal fluid and expands adiabatically, the decompression factor is

Λp =

(
P2

P1

)−1/5

=

(
5M2−1

4

)−1/5

, (4.22)

where M ≡ vsh/cs denotes the Mach number and cs is the ambient ISM sound speed. For ISM

temperature T1 = 104 K and adiabatic index γa = 5/3 for a monatomic gas, the ISM sound speed

is cs =
√

γaT1/mi ≈ 12 km/s.

In Fig. 4.12, we show the effect of adiabatic decompression on the shocked mDM

particles. The orange and blue lines in the subplot denote Λd and Λp, respectively. The

decompression effect from the pressure argument is significantly stronger than the effect from

the density argument. This is because the downstream pressure (∼ ρ1v2
sh) is easily larger than

the ambient ISM pressure (∼ ρ1c2
s ) by few orders of magnitude for high Mach shocks whereas

the downstream density is always approximately 4 times the upstream density. The difference

between the two arguments leads to a big contrast to the mDM velocity dispersion. In the main

plot, the red dashed line represents the mDM velocity dispersion, v′dis,χ , for the group of mDM

particles entering the shock with the speed vsh. The orange and blue lines represent the final

velocity dispersion, v′′dis,χ , of the same group of mDM particles that have undergone Λd and Λp,

respectively. Note that v′dis,χ always drops ≈ 40% with the density argument whereas it can drop
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Figure 4.12. The effect of adiabatic decompression on the mDM velocity dispersion, in the
frame of the downstream fluid. (main plot) The red dashed line is the velocity dispersion, v′dis,χ ,
for a group of mDM particles which have isotropized in a shock with speed vsh. Note that v′χ
does not include any adiabatic decompression effect. The orange and blue lines are the mDM
velocity dispersion after decompression, v′′dis,χ (vsh) = Λv′dis,χ (vsh), with Λ given by a density
(Λd) or pressure (Λp) argument, respectively. The actual velocity dispersion after decompression
should lie between the orange and blue lines. (inset) Decompression factors Λd and Λp.

as much as & 80% with the pressure argument for shocks in the Sedov-Taylor phase. A more

realistic v′′dis,χ within a galactic supernova remnant should lie between the orange and blue lines.

The mDM particles do not just free-stream out from the supernova remnant after adiabatic

decompression has stopped. In the case of a quasiparallel shock, the mDM particles continue to

scatter on the magnetic irregularities driven by the mDM beam or cosmic-ray protons. In the

case of a quasiperpendicular shock, the mDM particles are confined in the downstream or near

the shock front since the ordered upstream magnetic fields prohibit mDM streaming more than

one Larmor radius. (Note that the latter case is independent of whether or not the trapping comes

from mDM scattering with mDM-driven plasma waves.) In both scenarios, the shocked mDM

particles remain trapped in the supernova remnant and the bulk velocity would slow down with

the remnant. As a result, the velocity distribution of the shocked mDM in the Milky Way frame,
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dN/dvχ , is given as

1
nχ

dN
dvχ

=
∫ 104 km/s

300 km/s
4πR2

sh
dRsh

dvsh
Fshell

(
vχ ,vsh

)
dvsh, (4.23)

where we have normalized by the ambient mDM number density, nχ , we have used

4πR2
shdRsh/dvsh = 2.94ESNρ

−1
ISMv−3

sh , (4.24)

and

Fshell
(
vχ ,vsh

)
=

4√
π

v2
χ

(v′′dis,χ)
3 e−v2

χ/(v
′′
dis,χ )

2
. (4.25)

Here as a conservative estimate in Eq. (4.23), we only consider the supernova shock speed from

104 km/s to 300 km/s, which is the region where mDM can drive plasma instabilities and be

shocked in the case of 100% dark matter content as mDM. (For vsh . 300 km/s, mDM beam

does not drive EM plasma instabilities, as we have shown in Sec. 4.4.)

In Fig. 4.13, we show the velocity distribution in the cases with and without adiabatic

decompression. The red curve does not include any decompression which means v′′dis,χ = v′dis,χ .

The orange and blue curves include adiabatic decompression with the density argument and the

pressure argument, respectively. The black dashed curve is for mDM that has not interacted

with any SNR. The tail of the red curve comes from the swept-up mDM in the early phase

of the Sedov-Taylor phase where the shock speed is high. It does not result from the DSA

mechanism. The decompression from density argument only decreases the tail of high-speed

particles moderately since the shocked ISM density is only 4 times the ambient ISM density and

the bulk of the fluid is not decompressed much. On the other hand, the decompression from the

pressure argument can cool down the shocked mDM significantly, even colder than the ambient

mDM. We expect that the shocked mDM should lie between these limits. These arguments

suggest that, after being shocked and cooled by decompression, the bulk of the mDM velocity

distribution ends up qualitatively similar to the initial ambient mDM distribution.
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Figure 4.13. The velocity distribution of the shocked mDM in each supernova event. We
only consider mDM particles entering the supernova shock of speed between 104 km/s and
300 km/s. The black dashed curve is the ambient (unshocked) mDM distribution. While
decompression according to the density argument only moderately cools down the shocked
mDM, decompression from the pressure argument can make the majority of the shocked mDM
colder than the ambient mDM.

4.5.2 Challenges for generating dark cosmic rays

We have shown that mDM can be shocked and swept up by the supernovae. A natu-

ral question one might ask is whether mDM also undergoes the DSA process and is Fermi-

accelerated to relativistic speeds in the same way cosmic-ray protons are accelerated. Having

relativistic mDM particles in the Milky Way would have a significant impact on terrestrial dark

matter detection [183, 184]. However, there is no consensus on the flux of Fermi-accelerated

mDM in the Milky Way. Reference [184] considers (1) the possibility of getting pre-accelerated

mDM from one shock and injecting them into the DSA process in another shock, as well as

(2) the possibility that mDM particles with the virial velocity larger than the shock speed can

undergo Fermi acceleration in one shock if they are never thermalized with the ISM gas. On the

other hand, Ref. [183] assumes that the mDM can be injected into the DSA process in just one

shock if the mDM particles have the same rigidity as some of the Fermi-accelerated protons in the
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same shock. Because the two works assume very different acceleration processes, the resulting

Fermi-accelerated fluxes are incompatible. Nevertheless, there are still several critical issues that

must be answered. In this section, we bring up the challenges of getting Fermi-accelerated mDM

taking into consideration plasma waves and adiabatic decompression.

The standard acceleration theory utilizes the diffusion-convection equation in a quasi-

parallel shock. It requires that (1) the accelerated particle speed be much higher than the shock

speed and (2) the phase space distribution of the accelerated particles in the local fluid frame is

isotropic. Then in the steady state, the diffusion-convection equation gives the isotropic part of

the phase space distribution in the downstream, f+, in terms of the isotropic part of the phase

space distribution in the far upstream, f−, in the following form [206, 244, 245]

f+ (p) = sp−s
∫ p

d p′ f−
(

p′
)

p′s−1 +C/ps, (4.26)

where s = 3r/(r−1) decides the slope of the Fermi-accelerated spectrum and r ≈ 4 denotes the

compression ratio of the flow given by the Rankine-Hugoniot conditions. The first term on the

right-hand side (rhs) of Eq. (4.26) provides the spectrum of the Fermi-accelerated particles in the

downstream when the preexisting energetic particles in the far upstream are advected through

the shock front and undergo the DSA process. The second term represents the spectrum of the

particles that are directly injected from the downstream particles into the DSA process. The

constant C is determined by matching the spectrum of the injected particles at the supra-thermal

regime8 with the power-law spectrum.

In Ref. [184], the authors use the first term on the right-hand side of Eq. (4.26) to obtain

a Fermi-accelerated mDM spectrum. The proposed physical origins are the following: (1) the

mDM with mχ/q2
χ < 3×106 GeV/e2 are thermalized with ISM. To Fermi-accelerate them, two

shocks are required. The moving magnetic fields near the shock front of the first supernova

8Supra-thermal regime is the transition zone where the distribution of the downstream thermal particles is joined
to the power-law distribution of the Fermi-accelerated particles.
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shock reflect mDM particles and accelerate them to the shock speed. Among the reflected mDM,

all the particles moving faster than 200 km/s can then undergo DSA in a second shock with

vsh = 200 km/s. This process is referred as two-stage injection in Ref. [184]. (2) The mDM with

mχ/q2
χ > 3×106 GeV/e2 are not thermalized with ISM and therefore have the velocity of the

Milky Way virial velocity (taken as 220 km/s). On encountering a shock with vsh = 200 km/s,

all mDM particles are Fermi-accelerated because they move faster than the shock. Here we

revisit both mechanisms, taking into consideration plasma waves.

We first review the idea of particle reflection at the shock front from the standard cosmic

ray acceleration theory. It was known that a fraction of upstream protons may be reflected by the

potential barrier at the shock front due to the shock reformation [205, 246, 247]. However, heavy

ions with mass-to-charge ratio larger than protons are not reflected by the shock barrier; instead

they penetrate to the downstream [248]. Since the mDM we study here has mass-to-charge ratio

significantly larger than the ratio of protons, we also expect mDM impinge to the downstream

directly, which represents the first difficulty for the two-stage mechanism. The mDM particles

flow into the downstream fluid and are swept up by the SNR. After that, they likely still remain

trapped in the downstream fluid due to the wave-particle scattering. They will undergo adiabatic

decompression and slow down along with the expanding SNR. The number density of the

energetic mDM (say with speeds significantly higher than 200 km/s in the Milky Way frame)

from the first shock will be reduced after taking into consideration these effects, as shown in

Fig. 4.13.

This leads to the second challenge of getting DSA in the two-stage injection process.

For the second supernova shock with vsh = 200 km/s, the first term on the rhs of Eq. (4.26)

operates exclusively to preaccelerated particles with speeds at least several thousand km/s. Such

high speeds can be achieved only if mDM enters the first supernova shock at the free-expansion

phase or the very early stage of the Sedov-Taylor phase so that the catastrophic energy loss from

the adiabatic decompression is overcome. Consequently, the total number of these high-speed

mDM from the first supernova shock which might undergo standard acceleration in the second
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shock would certainly be several orders of magnitude lower than the total number of the mDM

particles covered within Rsh (200 km/s) of the first supernova shock. Taking all these issues into

consideration, we find it challenging to get Fermi-accelerated mDM from multiple supernova

shocks.

The direct injection of the downstream mDM particles to the DSA process is another

possibility to get dark cosmic rays, as proposed in Refs. [183, 184]. However, studying this

mechanism from first principles is a difficult problem, and generally simulations are required

to determine the constant C in Eq. (4.26). (Ref. [184] assumes an O (1) injection fraction.)

There are multiple stages to obtaining the injection rate. Here we only qualitatively discuss three

challenges/issues, while much more work is required before obtaining a self-consistent picture of

the mDM injection rate. The very first thing to figure out is the exact mDM velocity distribution

in the downstream, since it controls the number of downstream mDM particles that can return to

upstream after they have passed the shock for their first time. In this work, we merely use linear

stability analysis to understand the timescale for mDM to be swept up by the SNR. The mDM

velocity distribution can be obtained by utilizing quasilinear theory, which describes the phase

space evolution and the beam relaxation back to a marginally stable state [249].

The second challenge is understanding the dynamics of the mDM particles that return

back to the upstream from the downstream. In the case of proton cosmic ray acceleration, it is

believed that the protons returning to the upstream from the downstream (or reflected at the shock

front back upstream) scatter on self-generated Alfvén waves propagating along the ambient

magnetic fields in the (quasi)parallel shock. Those protons are then isotropized in the upstream

frame and can return downstream again. While the same strategy can be applied to mDM, it is

not clear how the injection process is altered due to the ultraslow instabilities of mDM particles

compared to that of cosmic-ray protons.

The third issue is that the Alfvén waves excited in the upstream will eventually cross the

shock front and trap a fraction of mDM particles trying to escape to the upstream. This effect

reduces the odds that particles can gain energy from multiple crossings at the shock front and be
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injected to DSA process [201, 250]. Different velocity distribution functions will lead to different

probabilities that particles can evade the trapping. It is therefore important to understand how the

downstream mDM with a non-Maxwellian distribution responds to the particle-trapping from the

upstream Alfvén waves. Addressing all these questions is needed to determine the normalization

and slope of any Fermi-accelerated mDM component.

4.5.3 Sedov-Taylor phase of the supernova remnant

If the mDM particles are swept up by the supernova remnant, the total mass density of the

swept-up fluid, ρ0, is increased. Then we expect the shock wave to propagate slower and travel a

shorter distance than the case in which only the ISM is swept up. In principle, we can determine

this slowing-down effect by measuring Rsh, Ṙsh and R̈sh of the younger Type Ia supernovae,

which are at the early stage of the Sedov-Taylor phase and where the dynamics of expansion is

predominantly governed by the swept-up mass. We can infer the effect of deceleration from the

swept-up mDM once the E/ρ0 is obtained, where E is the initial kinetic energy of the ejecta.

A simple estimate shows that it is not easy to make an observable prediction, however.

The typical ISM mass density is ρISM∼ 1 GeV/cm3. In the optimal case where mDM constitutes

all of the DM, the mDM mass density at few kpc away from the Galactic Center (GC) is also

ρχ ∼ 1 GeV/cm3. Thus, the total swept-up mass ρ0 = ρISM +ρχ is at most a few times larger.

On the other hand, the kinetic energy of the ejecta from a Type Ia supernova is approximately

1−2×1051 erg – which is also uncertain by a factor a few. With these uncertainties from the

mass density and the ejecta kinetic energy, it is challenging to quantify the effect of deceleration

from the swept-up mDM or make any constraints on the local mDM density. Lastly, we note that

while the volume within a few hundred pc from GC has ρDM > 10 GeV/cm3 and is an ideal site

to test the deceleration effect, there are no observed supernovae in that region within the past 1000

years. The lack of events is due to the fact that the molecular clouds in the central molecular zone

(inner ∼ 200 pc) is subject to disruptive shear which suppresses the star formation rate [251].
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4.6 Conclusion

We have shown that it is possible for mDM to be swept up by supernova remnants

and to become isotropized in the expanding fluid through plasma instabilities. A few of the

most representative plasma waves and instabilities are considered: ion-acoustic, Langmuir, and

lower-hybrid wave instabilities of electrostatic waves, and beam-firehose and Weibel instabilities

of electromagnetic waves. While there is a tremendous amount of free energy from the relative

motion between the ambient mDM and the supernova remnants, we find that the electrostatic

waves are never excited due to the fact that mDM with |qχ |/mχ � e/mp is not able to drive the

growth fast enough to overcome ion Landau damping. On the other hand, electromagnetic waves

can be excited by mDM because the wave frequency is much smaller than the ion cyclotron

frequency and thus the ion cyclotron damping is avoided.

We find that for |qχ/mχ | & 10−13e/MeV, mDM can be isotropized in the expanding

supernova remnants at the Sedov-Taylor phase by driving electromagnetic beam-firehose and

Weibel instabilities in parallel and perpendicular shocks, respectively, provided that mDM

constitutes all the DM content in the Milky Way. If mDM makes up only a fraction of the total

DM, then mDM might not able to drive electromagnetic plasma waves at the late stage of the

Sedov-Taylor phase since the mDM beam velocity threshold for the instability increases as the

density of mDM decreases.

Finally, we emphasize that the plasma waves prevent the majority of the shocked mDM

particles from free-streaming out the supernova remnant via wave-particle interactions. Moreover,

the mDM particles undergo significant energy loss from adiabatic decompression as the remnant

expands. Both effects play important roles in the final velocity distribution of the shocked

mDM in the Milky Way, and our analysis suggests that the bulk of the shocked mDM ends up

with a velocity distribution qualitatively similar to the unshocked distribution. Further study

of mDM wave-particle interactions is needed to determine to what extent mDM undergoes

Fermi-acceleration and its subsequent Galactic dynamics.
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4.A Review of unmagnetized linear response function

In this Appendix, we follow closely the derivations in Refs. [230, 252] to briefly review

the dispersion relation for an unmagnetized plasma with no magnetic fields present. The

derivation of the linear response for a magnetized plasma is similar, and can be found in many

plasma physics books, e.g., Refs [230, 237, 252, 253].

We start with the collisionless Vlasov-Maxwell equations

(
∂

∂ t
+v ·∇+

q j

m j
E · ∂

∂v

)
f j (x,v, t) = 0, Vlasov equation,

∇ ·E = ∑
j

4πq j

∫
f j (x,v, t)d3v, Gauss Law,

(4.27)

where E = E(x, t) is the electric field, and q j, and m j are the charge and mass of species j. In

the present analysis, we consider longitudinal waves with small amplitude propagating through a

system near equilibrium. We consider a spatially homogeneous plasma with no external electric

and magnetic fields, i.e., E0 = B0 = 0. Define a normalized particle distribution function of the
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species j as

Fj (x,v, t)≡
f j (x,v, t)

n0 j
, (4.28)

where f j (x,v, t) is the density in (x,v) phase space and n0 j is the ambient number density.

Both E(x, t) and Fj (x,v, t) can be written as the sum of their equilibrium values plus small

perturbation terms:

E(x, t)→ δE(x, t) ,

Fj (x,v, t)→ F0 j (v)+δFj (x,v, t) .
(4.29)

The analysis is greatly simplified if we apply the Fourier-Laplace transform on δE and δFj,

δE(x, t) =
∫

d3k eik·x
∫

ω0+i∞

ω0−i∞

dω

2πi
eωt

δ Ẽ(k,ω) ,

δFj (x,v, t) =
∫

d3k eik·x
∫

ω0+i∞

ω0−i∞

dω

2πi
eωt

δ F̃j (k,v,ω) ,

(4.30)

where ω0 =Re(ω) is chosen large enough so that the reverse integrals
∫

∞

0 δ Ẽ(k,ω)exp(−ωt)dt

and
∫

∞

0 δ F̃j (k,v,ω)exp(−ωt)dt converge. Rewriting the linearized Vlasov-Maxwell equations

in (k,ω) space, then

−i(ω−k ·v)δ F̃j (k,v,ω) =
q j

m j
δ Ẽ · ∂F0 j (v)

∂v
, (4.31)

ik ·δ Ẽ(k,ω) = ∑
j

4πn0 jq j

∫
δ F̃j (k,v,ω)d3v. (4.32)

It is straightforward to show from Eqs. (4.31) and (4.32) that

ik ·δ Ẽ(k,ω)

[
1+∑

j

ω2
p j

k2

∫ k ·∂F0 j (v)/∂v
ω−k ·v d3v

]
= 0, (4.33)

where ω2
p j = 4πn0 jq2

j/m j. Equation (4.33) applies for the longitudinal component of δ Ẽ. The
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requirement for a nontrivial solution of Eq. (4.33) is

D(k,ω)≡ 1+∑
j

ω2
p j

k2

∫ k ·∂F0 j (v)/∂v
ω−k ·v d3v = 0, (4.34)

Equation (4.34) is the definition of the unmagnetized plasma dielectric function, D(k,ω), and

the associated dispersion relation.

4.A.1 Plasma dispersion function

In many plasma environments, each species is modeled as a gas in thermal equilibrium. It

is therefore useful to further simplify the dispersion relation in Eq. (4.34). A drifting Maxwellian

gas of species j has the distribution function given by

F0 j (v) = π
−3/2 v−3

th, j exp

(
−
(
v−V0 j

)2

v2
th, j

)
, (4.35)

where V0 j and vth, j =
√

2Tj/m j are the drift velocity and the thermal velocity of the species j,

respectively. Using Eq. (4.35) in Eq. (4.34), the dispersion relation of the unmagnetized plasma

is expressed as

0 = D(k,ω) = 1+∑
j

2ω2
p j

k2v2
th, j

[
1+ξ jZ

(
ξ j
)]
, (4.36)

where ξ j =
(
ω−k ·V0 j

)
/kvth, j and

Z
(
ξ j
)
≡ 1√

π

∫
∞

−∞

e−x2

x−ξ j
dx. (4.37)

Here we examine some important properties of the plasma dispersion function widely used in

the literature of plasma physics. The asymptotic expansion of Z
(
ξ j
)

for small and large values

of |ξ j| are given as [254]

Z
(
ξ j
)
= i
√

π exp
(
−ξ

2
j
)
−2ξ j +

4
3

ξ
3
j −

8
15

ξ
5
j + · · · , for |ξ j|< 1, (4.38)
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and

Z
(
ξ j
)
= i
√

π exp
(
−ξ

2
j
)
− 1

ξ j
− 1

2ξ 3
j
− 3

4ξ 5
j
+ · · · for |ξ j|> 1. (4.39)

Also, differentiating Z
(
ξ j
)

with respect to ξ j and applying integration by parts, we obtain

Z′
(
ξ j
)
=
−2√

π

∫
∞

−∞

xe−x2

x−ξ j
dx =−2

[
1+ξ jZ

(
ξ j
)]
. (4.40)

As an example to show the application of Eqs. (4.36), (4.38) and (4.39), consider Lang-

muir waves propagating through a neutral electron-proton plasma at equilibrium with zero drift

velocities. Landau damping is avoided if we require that ωr/k� vth,e� vth,i, i.e., |ξe| � 1 and

|ξi| � 1. The dispersion relation in Eq. (4.36) becomes

0 = D(k,ω) = 1−
ω2

pe

ω2
r
−3k2

λ
2
De

ω4
pe

ω4
r
−

ω2
pi

ω2
r
+ · · ·

≈ 1−
ω2

pe

ω2
r
−3k2

λ
2
De

ω4
pe

ω4
r
+O

(
ω

6
pe

)
,

(4.41)

where λDe ≡
√

Te/4πnee2 is the electron Debye screening length. The ion contribution is

neglected because ω2
pe � ω2

pi in the neutral plasma. In the limit k2λ 2
De � 1 where electron

Landau damping is avoided, we obtain the dispersion relation for stable Langmuir waves,

ωr = ωpe

√
1+3k2λ 2

De. (4.42)

Note that the Landau damping contribution comes from the term i
√

π exp
(
−ξ 2

j

)
in

Eqs. (4.38) and (4.39). In the regime where ξ j ∼ 1, the exponential term is not negligible, and

the waves suffer strong Landau damping from the species j. To get the damping rate, one can

numerically solve Eq. (4.36) or use the technique shown in the following subsection.
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4.A.2 Weakly damped or growing waves

In this section, we provide some useful results on the growth rate for the weakly damped

or growing waves. Expanding D(k,ωr + iγ) in the limit |γ/ωr| � 1, we obtain

0 = D(k,ωr + iγ) = DRe (k,ωr)+ iDIm (k,ωr)+ iγ
∂DRe (k,ωr)

∂ωr
, (4.43)

where we have separated D(k,ωr + iγ) into real and imaginary parts and assumed higher order

terms are small. The real part of Eq. (4.43), DRe (k,ωr) = 0, determines the real oscillation

frequency. Setting the imaginary part to zero then gives the damping or growing rate,

γ =
−DIm (k,ωr)

∂DRe (k,ωr)/∂ωr
, (4.44)

where γ < 0 and γ > 0 correspond to damping and growing waves, respectively.

On the other hand, the dielectric function D(k,ωr + iγ) can be directly decomposed into

its real and imaginary components by utilizing the Plemelj formula,

1
ωr−k ·v+ iγ

∣∣∣∣
|γ|�ωr

= P
1

ωr−k ·v − iπδ (ωr−k ·v) , (4.45)

with P denoting the Cauchy principle value. We obtain

DRe (k,ωr) = 1+∑
j

ω2
p j

k2 P
∫

k · ∂F0 j (v)
∂v

1
ωr−k ·vd3v, (4.46a)

DIm (k,ωr) =−π ∑
j

ω2
p j

k2

∫
k · ∂F0 j (v)

∂v
δ (ωr−k ·v) d3v. (4.46b)
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