UC Santa Cruz
UC Santa Cruz Electronic Theses and Dissertations

Title
Statistical Modeling of SRAMs

Permalink
https://escholarship.org/uc/item/7vx9n089

Author
Nichols, Hunter Zachary

Publication Date
2022

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License,
availalbe at https://creativecommons.org/licenses/by/4.0/

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Diqgital Library

University of California

https://escholarship.org/uc/item/7vx9n089
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA
SANTA CRUZ

STATISTICAL MODELING OF SRAMS

A thesis submitted in partial satisfaction of the
requirements for the degree of

MASTER OF SCIENCE
in
COMPUTER ENGINEERING
by
Hunter Nichols

March 2022

The thesis of Hunter Nichols
is approved:

Professor Matthew Guthaus, Chair

Professor Jose Renau

Assistant Professor Heiner Litz

Peter Biehl

Vice Provost and Dean of Graduate Studies

Copyright © by
Hunter Nichols
2022

Table of Contents

List of Figures v
List of Tables vi
Abstract vii
Acknowledgments viii
1 Introduction 1
2 Background 4
2.1 SPICE Characterization o v it 4
2.1.1 Verificationo 5

2.1.2 Simulation Example 5

2.1.3 Analytical Characterization 6

2.1.4 Analytical Examples, 8

2.2 Statistical Delay Modeling o 8

3 Implementation 12
3.1 Analytical Models 12
3.1.1 Static Timing Graph 12

3.1.2 General Model Implementation 15

3.1.3 LE Model Implementation 16

3.1.4 CO Model Implementation 17

3.1.5 Other Graph Applications 21

3.2 OpenRAM Statistical Models 22

4 Results 25
4.1 Delay e 25
4.1.1 Experimental Methods, 25

4.1.2 ACCUTACY . . . v v v vt e e e e e 26

413 Fidelity o e 27

42 POWEr o e 29

il

43 AreaModeling e

4.4 Statistical Model Accuracy and Cost

4.5 Model Tradeoffs

5 Conclusions

A Model Code

A.1 Horowitz delay function adapted from CACTIL.

B Results Configurations

B.1 Nine common configurations selected to train the statistical models.
B.2 Seventy random configurations used to train the statistical models.

Bibliography

v

34

35
35

37
37
37

40

List of Figures

2.1

22

3.1

32
33

34

3.5

4.1

4.2

4.3

4.4

4.5

4.6

4.7

Instead of simulating the entire bitcell array, analytical methods estimate the
wordline and bitline by lumping the capacitance.
Linear regression and neural networks share many of the same functions, but

hidden layers add additional complexity for learning patterns in the inputs. . . .

Example of an OpenRAM buffer graph represented as two inverters. The inter-
nal port net names are discarded and instantiated nets are used instead.
Excluding specified modules prevents false paths in the timing graph.
The bitcell array and peripheral circuitry of a CACTI subarray [12] and Open-
RAM array [7]. o o o e e e e e
II RC model used by CACTI to estimate wire delay more accurately than a
lumped model [12].

Assumed gate layout in CACTI for estimating drain dimensions [12].

SRAM delays of 70 SRAM configurations. The LR model is nearly aligned
with SPICE inthis view. L
Linear regression statistical model resembles SPICE delays with some noise.

Delay correlation between analytical models and SPICE.
Accuracy of LR and LE power models in OpenRAM.

Predicted area from LR model displays good fidelity but poor accuracy in larger

A neural network model almost tracks the SRAM area trend much closer than
LR. . e

Accuracy of the linear regression model saturates around 93%.

18

List of Tables

3.1 Parameters for estimating gate-drain dimensions. 20
3.2 Estimated parameters inthe COmodel. 21
3.3 Inputs to OpenRAM statistical models. 23
3.4 Inputs to OpenRAM statistical models. 24
4.1 Analytical model errors compared with SPICE. 29

vi

Abstract

Statistical Modeling of SRAMs
by

Hunter Nichols

Characterizing static random access memories (SRAMs) is difficult but necessary to under-
stand its properties. Choosing an optimal memory requires critical characteristics such as delay,
power, and area. Characterization can be done accurately using SPICE but is slow. Analytical
models aim to provide quick results to allow for rapid design iterations with the memory. These
models do not require perfect accuracy but must maintain fidelity. This thesis presents the im-
plementation of two Elmore-based models and statistical models for SRAMs. In addition, this

thesis assesses the models’ accuracy, fidelity, speed, and additional costs.

vii

Acknowledgments

I want to thank my parents, grandparents, brother, and significant other for supporting me while
pursuing higher education. I would also like to thank my advisor Matthew Guthaus for sup-
porting and guiding my graduate studies. Lastly, I would like to thank my committee members
Prof. Jose Renau and Assistant Prof. Heiner Litz for reading my thesis and providing invaluable

feedback.

viii

Chapter 1

Introduction

Static random access memory (SRAM) is a standard component in all modern System
on Chip (SoC) and microprocessor designs. Closed source tools and license restrictions have
gated experimentation with SRAMs causing a majority of designs to use a limited set of SRAM
configurations. The advent of open-source memory compilers, such as OpenRAM [8, 9], has
attracted system designers to explore new architectures to measure the impact on design power,
performance, and area (PPA) [3,4]. Characterization of the SRAMs can dictate the turnaround
of these designs, so methods that produce fast, accurate, and faithful results are desired.

Characterization gauges the performance of the SRAM. Delay, power, and slew are
typical measurements from the SRAM during characterization. Multiple sets of these met-
rics are measured for the SRAMs while performing different operations such as read or write.
Characterization is processed around several corners to define its worst-case conditions. Opti-
mization tools use the metrics from characterization to pick memory configurations that best fit
the project’s goals.

Several types of characterizations can produce this information. Silicon characteriza-
tion directly measures a fabricated circuit. SPICE characterization simulates the behavior of an
SRAM given its circuit description, device models, and operation conditions. Analytical char-
acterization uses simplified device models and statically estimates only the critical portions of
the SRAM. Statistical modeling uses previously generated results to create a predictive charac-
terization model.

Each characterization method balances accuracy and cost. Silicon measurements pro-

vide the most accurate characterizations, but the fabrication delay and monetary cost make this
infeasible to rely on solely. SPICE simulation is the second-most accurate characterization
method, but the speed is dependent on the size of the circuit. SRAMs can have a device count
that ranges from tens of thousands to hundreds of thousands which is slow to simulate. In ad-
dition, characterization needs multiple simulations which further slows the process. Analytical
characterization for SRAMs uses simplified models and only evaluates the necessary compo-
nents associated with the operation to reduce the devices modeled significantly. Both impact
the accuracy. The statistical model’s speed is independent of the SRAM size, but the accuracy
and speed depend on the amount of data and model type.

The firmly-established Elmore delay model [6] works well for analytical character-
ization. The fundamental equation only requires the circuit’s load capacitance and output re-
sistance to estimate. Elmore delay is pessimistic but maintains strong fidelity with the actual
delay. The Elmore model needs to be modified or combined with other models for characteri-
zation. The simplicity and applicability of this analytical model has allowed itself to permeate
into many tools.

CACTI [12] is a tool for modeling caches and memories and exclusively uses ana-
lytical models to calculate delay and power. It reduces the characterization size by estimating
several predefined critical paths of the memory and ignoring unrelated devices. The Elmore
delay model is used extensively in CACTI for calculating gate delays but with an alteration to
account for slew.

Statistical methods are based on fitted data. Supervised models such as linear regres-
sion and neural networks can be used to represent the delay of the SRAM by using prior SPICE
characterization results. These models are accurate enough to predict complete memory char-
acterizations including different loads and process corners. Statistical models provide many
attractive properties with some drawbacks that are not present in traditional Elmore models.
Statistical models have extensive support in many Python packages [2, 13], and little hand-
tuning is required to generate an accurate model. The base models provided in these packages
can be used without modification or adjusted through model hyperparameters such as model
inputs, model type, neural network layers, optimization algorithms, etc. Several works have
begun to explore the use of neural network models in order to speed up SRAM parameter op-

timization [10, 11] with a focus on improving the accuracy by tuning hyperparameters of the

model.

This work aims to evaluate modeling techniques for a memory compiler to provide a
quick and faithful estimation of simulation results. Two Elmore-based analytical characteriza-
tions were added to OpenRAM including a logical effort [14] based delay model and a delay
model based on the CACTI memory modeling tool. Additionally, statistical model characteri-
zation was added and integrated into OpenRAM. This thesis aims to display statistical models
as a competitive method of characterization that can be easily automated. This contribution to

OpenRAM is open-source and available at:

https://github.com/VLSIDA/OpenRAM

The thesis is laid out as follows. Chapter 2 covers background on memory charac-
terization which includes OpenRAM SPICE simulation and analytical characterization, CACTI
delay modeling, and statistical models. Chapter 3 discusses the implementation of the three
models in OpenRAM including the addition of a static timing graph within OpenRAM to facil-
itate these models. Chapter 4 displays the results of analytical characterizations from all three
implemented analytical methods and compares them their fidelity, accuracy, and trade-offs with

SPICE simulation.

https://github.com/VLSIDA/OpenRAM

Chapter 2

Background

Different characterization methods produce results in the same format but in vastly
different ways. The output data from characterization can be represented using a Liberty file
(LIB) [1]. LIB files contain the component’s delay, slew, power, and area and a separate LIB
file exists for each process, voltage, temperature (PVT) corner. SPICE simulation and analytical
Elmore models are highly dependent on the structure of the SRAM for its characterization,
while statistical models are dependent on the characterized SRAMs used to generate its data.
The LIB file is valid as long as it has the necessary information, but there will be accuracy
differences.

SPICE simulation, analytical models, and statistical models are the focus of this the-
sis, with OpenRAM and CACTTI used as primary examples. General background is presented

for statistical models to give insight into how they can be used for characterization.

2.1 SPICE Characterization

SPICE characterization uses SPICE circuit simulations to measure the performance
of the SRAM. There are several available SPICE simulators including the open-source Ngspice
or hspice from Synopsys which requires a license. The simulators will differ in speed, accuracy,
and functionality. A SPICE file and stimulus file are required to simulate the SRAM. The SRAM
SPICE file is the SPICE representation of the SRAM circuit primarily made of transistors but
can include resistors and capacitors to model extracted parasitic elements. The stimulus file

generates inputs to the SRAM SPICE file and defines measurements for the SRAM. These

measurements become the delays, slew, and powers represented in the LIB file.

Designing a stimulus file for characterizing an SRAM requires prior knowledge to
simulate successfully. The stimulus controls the input control signals for the SRAM and input
clock frequency, but the SRAM can fail depending on the settings. The control signals require
knowledge about the SRAM itself, but the clock frequency is unknown and can require succes-
sive simulations to set a working period. The delay and slew of a read operation and powers
of all operations are measured for the LIB file using the maximum frequency. Delays of write
operations are unused in a LIB file but can affect the maximum frequency if the delay is larger

than a read operation.

2.1.1 Verification

Important information regarding the memory is often not included in LIB files but is
helpful to memory designers when understanding memory failures. From the perspective of a
SPICE simulation, any condition that causes a measurement to fail indicates a memory failure.
Most of these failures are solved by increasing the period in the stimulus file. Other failures that
cause this behavior require tedious measurements and inspection of signals within SPICE. Write
failures, read failures, and bit-flips are common SRAM issues that can be detected automatically
with specific measurements in the stimulus file.

SPICE characterization is improved significantly by adding debug measurements. For
example, the stimulus file can have voltage measurements on the bitcell storage nodes to check
the functionality of write operations. These failures cannot be fixed within the stimulus file and
will require changes to the SRAM. Detection of one of these failures will allow the character-
ization to fail quickly. Failure stop points can be defined to prevent infinitely repeating failed
simulations. However, this stop point could consume hours of simulation time to reach. Adding
additional measurements for these failures does not affect simulation time and should always

be done if possible.

2.1.2 Simulation Example

OpenRAM provides SPICE characterization and several SPICE verification tests for
its SRAMs. The memories are tested on several PVT corners to produce the corresponding

LIB files. In addition to debug measurements in characterization, OpenRAM also maintains

functional tests and regression tests to catch errors when the SRAM is updated.

OpenRAM SPICE characterization will perform multiple simulations to get the nec-
essary data for the LIB file. A feasible clock period is determined through simulations which
is used as a starting point in a binary search of simulations to find the minimum clock period.
This minimum clock period is used to find the delay, power, and slew of the SRAM over varying
output load and input slew combinations where each case is a separate simulation. The leakage
power is measured with a short simulation while the SRAM is disabled. Finally, the D flip-flops
(DFF) used on the address, data, and control signals are simulated to find the setup and hold
times using a binary search method.

Each SPICE simulation that measures the power, delay, and slew requires multiple
operations by the SRAM. The largest bit delay is chosen to represent all delays and powers
for the SRAM as shown in Figure 2.1(a). Bitcells not connected to this path can be trimmed
from the SPICE file to reduce simulation time while having a low impact on characterization
accuracy. The fall delay is measured by reading a 0, and the rise delay is measured from
reading a 1. Cycles to write these values to the cell are included along with reads and writes to
neighboring cells to ensure the bitline is cleared of its previous value. Slew is measured in the
same read cycles as the delay. Power is measured for the read and write operations of 0 and 1
to the target cell.

OpenRAM’s functional tests are intended for potential failures that cannot be easily
checked during characterization. The functional tests perform many random reads and writes
to random locations in the SRAM and check if any operation failed. These tests help debug
issues such as cross talk between wordlines and bitlines which can corrupt data between neigh-
boring cells. Only specific bits are written to test the worst-case delay during characterization
as additional SRAM cycles would make characterization even slower.

OpenRAM contains a set of regression tests that run when OpenRAM is updated.
Delay characterization, functional simulations, DRC, and LVS checks are performed during

regression. Any update that causes a failure in the SRAMs is likely to be caught by these tests.

2.1.3 Analytical Characterization

Analytical characterization serves as a faster option than SPICE characterization at

the cost of developing the models. SPICE simulation is accurate but time-consuming, causing

Critical Global Bitcell Array Input
Path

Addr . Control Logic 4 Decoder 4
Port EREE k 5

Local Local Loc
Bitcell Biteell Bitcpl
Array Array Arrdy

Row Decoder

Global Wordline Driver

Local Wordline Driver
Local Wordline Driver

Local Wordline Driver

Wordline
Driver

|
e i

Bitcell

5
2
<

Col. Precharge Array

Decod -
o Column Mux Array

Data

|

Control |
Port

|

|

Logic

Output

I
I
| Sense Amp Array
I

Write Driver Array
—> SA (=
| Col. Addrl Data/Mask In Flops |

y

(a) SRAM with critical path (b) Critical Path Isolated

Figure 2.1: Instead of simulating the entire bitcell array, analytical methods estimate the word-
line and bitline by lumping the capacitance.

characterization to take over 24 hours for large SRAMs potentially. However, running SPICE
simulations only requires defining or acquiring transistor models. Analytical models require
developing a large set of parameters that replicates a simplified SPICE simulation to provide a
fast and faithful characterization.

Analytical characterization first aims to reduce the circuit to only necessary compo-
nents and reduce the complexity of the calculations. Reducing the circuit involves only evaluat-
ing the critical path while accounting for capacitive loads affecting that path. The equations are
simplified from SPICE to reduce calculation time. Elmore delay is a common choice because it
uses minimal parameters and has good fidelity. This model will cause accuracy loss, but this is
accepted as long as fidelity is maintained.

Knowing the SRAM structure is critical to building an analytical model. Using knowl-
edge about the structure, such as array size, allows the analytical model to estimate and reduce
many components in the SRAM. As shown in Figure 2.1, the wordline and bitline in the criti-
cal path of the SRAM. Rather than simulating all unused bitcells connected to the bitline, the
analytical model can reduce them to the equivalent capacitance they impose on the bitline but
requires knowledge of the array dimensions. Additionally, the dimensions of the array will de-

pend on structures within the SRAM such as the column mux sizing. This information about

the structure must be incorporated to maintain the accuracy and fidelity of the analytical model.

2.1.4 Analytical Examples

Prior to this thesis work, OpenRAM used a basic Elmore model for its analytical
delay. The model used Elmore delay for all calculations while considering low-swing bitline
delays and PVT corners. Every module in the SRAM defined a delay function, while the top
module summed the delays along the critical path. A variation of the II RC model is assumed
for the wordline and bitline wire delays. This work details the logical effort based analytical
model that replaced OpenRAM’s original model.

The delay model in CACTI is very similar to OpenRAM’s Elmore delay model. The
CACTI delay model is a modified Elmore model by Horowitz that considers the input slew. The
SA and bitcell are modeled differently from gates to improve the accuracy. Like OpenRAM,
CACTI defines a delay for each module and sums all delays within the critical path. The IT RC

model is used in CACTI for improved accuracy over the lumped wire model.

2.2 Statistical Delay Modeling

Statistical, regression, and supervised machine learning (ML) models use pre-existing
data to train a model to predict outputs of new inputs. Creating a statistical model for SRAM
characterization requires previously characterized results. The training data should span the
potential range of SRAM configuration inputs. SPICE characterization data is chosen for the
most accurate model but can be expensive to obtain.

Choosing inputs for the model to use will depend on the model and task. Linear
regression (LR) creates a prediction with a sum of inputs multiplied by trained weights. The

equation below represents a basic form of LR
y(x,w) = wy + wiz1 + ... + Wy Ty, 2.1

The inputs to the model, x, can be anything that represents the model. For SRAMs, portions
of the configuration are used as inputs such as the number of words and wordsize. The inputs
can include any information assumed relevant including global characteristics such as PVT

corner or configuration-specific inputs such as delay chain size. The number of model inputs

will increase its complexity, size, and prediction speed. The most effective inputs for model
accuracy are chosen, and redundant inputs are trimmed.
The weights are chosen to minimize an objective loss function which is typically the

sum of square errors

1 N
E(w) =2 [y(@n,w) =]’ (2.2)

The loss equation is quadratic, so the derivative with respect to the weight will be linear, and
one solution will exist. This process defines the optimal weights given a set of /N inputs and
output labels, I,,, from a given dataset.

LR is simple but can be used to create accurate SRAM models. Elnaz [5] explored
using LR models as a compact representation of the Pareto-optimal database for SRAM and
cache designs. The data used for their model comes from CACTI. Each configuration generates
many delays and powers, but only a subset near the best energy-delay product is used for the
model. The inputs to the LR model were tuned using logarithms, square root, and polynomial
functions to improve the model’s accuracy. They achieved an average accuracy of 2.99% and a
worst-case of 17.98% when predicting the delay of SRAMs. This thesis explores the accuracy
of LR models built from a limited set of SPICE characterizations.

Inputs can be tuned and scaled to improve the accuracy of LR, but some errors will
always exist because the outputs are non-linear. Quadratic regression or any other polynomial
regression can yield better models but can grow exponentially complex with the number of in-
puts. These models require hand tuning and reducing the polynomial features as they increase
the model complexity while providing minor improvements to the accuracy. For SRAMS,
quadratic regression can produce better results because power and delay are inherently non-
linear. Compilers like OpenRAM add new features and will need new inputs to the statistical
models. Continuously adding inputs to the model may not be maintainable over time, so LR is
used as the default regression model while other options are explored to address more accurately
modeling non-linear outputs.

More complex models such as neural networks can also represent non-linear functions
by adding intermediate layers between input and output. Linear and polynomial regression

can be viewed as having a single input layer and a single output layer. In contrast, neural

(a) Linear Regression (b) Neural Network

Figure 2.2: Linear regression and neural networks share many of the same functions, but hidden
layers add additional complexity for learning patterns in the inputs.

network models have additional layers between the input and output layers. These are referred
to as hidden layers. The number of hidden layers are variable and have their own weights that
determine the output value as shown in Figure 2.2. Models with more than three layers are
referred to as deep neural networks (DNN). The number of hidden layers, number of nodes in
hidden layers, and connectivity of the layers are all hyperparameters left up to the designer to
choose that best fits their desired accuracy and model complexity. Last and Schlichtmann [11]
explored how changing the weights are shared between outputs affects the accuracy in models
predicting SRAM outputs.

These models do not have readily available closed-form solutions. Optimization tech-
niques such a gradient descent can find the minimum to these functions but require iterative
steps. This process is referred to as model training, and the training time is dependent on the
model complexity and the amount of training data.

Statistical models are much faster than SPICE simulation but at the cost of data acqui-
sition. In the case of memory characterization, the data is expensive because SPICE simulation

is slow for large circuits. Therefore, generating the data could be infeasible when a large set

10

of SPICE simulations could potentially take days. However, assuming data collection for the
model is infrequent, the cost is low if there is a long gap between data collecting. The main
benefit of this model is that minimal information about the SRAM internals is needed to create
accurate predictions. The SRAM configuration is presented as inputs to the model such as the
number of words, word size, words per row. The model is trained with the characterization re-
sults from SPICE simulations of those configurations. SRAM configurations can be drastically
different, but as long as enough data is provided to the model, it can learn complex patterns that

are typically directly specified in an Elmore model.

11

Chapter 3

Implementation

This chapter details the implementation of the analytical SRAM models and statistical
models within OpenRAM. The analytical models, Logical effort (LE) and CACTI-OpenRAM
(CO), perform characterization using a combination of static timing and a graph. The statisti-
cal model is maintained in OpenRAM using automated scripts to generate SPICE simulation

training data.

3.1 Analytical Models

The analytical SRAM models implemented for this thesis use a static timing graph.
The graph determines the paths from input to output, and the timing functions implemented per
model statically estimate the delay of each stage in those paths. This section will detail how
the graph is implemented to accommodate the analytical models and enable different features

within OpenRAM.

3.1.1 Static Timing Graph

OpenRAM generates SRAMs using modular structures which can be easily replicated
in a graph. OpenRAM frequently changes the SRAM structure due to improvements in timing
reliability, layout, or added features such as partial word writes to accommodate RISCV ar-
chitectures. These structures are modular to easily incorporate and support the many possible

configuration options OpenRAM offers. A graph can represent any of these configurations and

12

Buffer Instance: Xbuf1

| Xbuf1.int1 |

¢

Figure 3.1: Example of an OpenRAM buffer graph represented as two inverters. The internal
port net names are discarded and instantiated nets are used instead.

Xbuf1.in

Xbuf1.out

only relies on the connections between the modules.

The graph was implemented to support static timing for analytical characterization
and is inspired by SPICE hierarchy. It is a directed graph with wire nodes representing vertices
and edges representing devices as shown in figure 3.1. For example, a graph representing a
2-input NAND gates have three vertices A, B, and Z and two edges from (A,Z) and (B,Z). Any
module that defines a delay function can become part of the graph, or its components must
define delay functions i.e. an AND gate made up of a NAND and NOT gate must either define
its own delay function or delay functions must be defined by the NAND and NOT gates. Higher-
level modules such as the bank or bitcell array do not require a delay definition as long their
component sub-modules define delays.

The graph is first generated as a representation of the SRAM. A graph can be gener-
ated starting from any module, but generating a graph from the SRAM module is needed for
characterization. The module recursively calls a graph formation function on its submodules.
Inputs, outputs, and intermediate signals become vertices on the graph, while connections be-
tween modules define the graph’s edges. By default, every input is connected to every output,
and the module must override this function if it does not match its behavior.

False paths in the graph are handled prior to their formation. Modules unrelated to

13

int1

A— int2
B —

C x int3

Module Excluded

(a) Original Circuit

©
n Y
o

(b) Without exclusion (c) With exclusion

Figure 3.2: Excluding specified modules prevents false paths in the timing graph.

the read delay are excluded from the formation process, as shown in Figure 3.2, to prevent false
paths in the timing such as the precharge circuitry which connects the complementary bitlines
in each column. Precharging occurs before the SRAM read operation is possible and cannot
be part of the critical path. Path exclusion is handled on a case-by-case basis as excluding too
many modules can affect paths of interest.

After the graph has been generated, paths can be generated between an SRAM input
and output to the graph. The graph performs a depth-first search and records every path that

14

connects the input and output. For the purpose of characterization, the timing from clock to
target output bit will be used to define the SRAM delay. The graph returns a list of nodes in the
path, and edge delays of these nodes can be queried to determine the total path delay.

3.1.2 General Model Implementation

Implementing an analytical model with the static timing graph requires at least defin-
ing delay and load for all base modules i.e. a module that does not contain any submodules.
These modules are the parametrized gates (pgates) and custom cells. The graph provides exter-
nal loads to the model’s delay function by querying the input load of the modules connected to
the current stage. Analytical models can override the minimum requirements and add more if
needed.

Pgates are gates in OpenRAM that generate an automated layout, and this information
also helps build its delay function. Each model in OpenRAM defines delay and load functions
for the NAND, NOR, and NOT pgates. Single transistors like those used for pass gates also
have a delay defined. OpenRAM generates pgates automatically, so all dimensions of the gates
and transistor sizes can easily be queried within the module to define these functions.

In OpenRAM, there are a collection of handmade gates that are required by each
technology. These gates either have a significant effect on the delay or area of the SRAM
and would be too inefficient to be generated parametrically. These include the bitcells, replica
bitcells, dummy bitcells, sense amplifiers, tri-gates, DFFs, and write drivers. The bitcells must
be created by hand to optimize for area which causes the dimensions of the bitcells to ripple to
other gates and in the SRAM enforcing that they stay within specific dimensions relative to the
bitcells. The non-bitcell modules affected are the SA, tri-gates, and write drivers. These devices
are placed vertically below (or above) the bitcells requiring widths matching the bitcells. The
bitcells in OpenRAM are as thin as possible, making the other devices too challenging to design
parametrically.

Custom cells require a more explicit definition in this scheme because the correspond-
ing modules do not define and generate these cells. OpenRAM maintains modules for these cus-
tom cells, but they are skeletons that calculate the dimensions of the provided GDS to provide
layout information to the other OpenRAM modules i.e. no information about the transistors is

maintained in the module. Therefore, each technology needs to specify information about the

15

custom cells to create their delay functions. Each custom cell relevant to the critical path has
parameters defined in corresponding technology files. These are almost entirely the transistor

sizes of the cells but depend on what the model needs.

3.1.3 LE Model Implementation

Implementing the LE model using the graph requires defining each base module’s
input capacitance and delay. The LE model delay function uses the gate’s electrical effort,
logical effort, and parasitic delay. These can primarily be derived by using values within each
module or requires definitions within the target technology file. The latter is required for all
custom cells in OpenRAM.

The logical effort of a gate is dependent on its function. The LE model implements

C’in

this as sizexCipy

. Cin 1s dependent on the size of the gate, so that is factored away, and scaling by
the capacitance of the minimum sized inverter is by the definition of logical effort. Non-CMOS
circuits in OpenRAM, such as bitcells or sense amplifiers, use estimated values for logical effort
parameters.

The LE model also depends on the parasitic delay of the gates. All gates in the LE
model have parasitic delays as multiple of the minimum sized inverter parasitic delay. These are
the same as provided by Sutherland [14]. Estimates are made for all other circuits not defined
here. The minimum sized inverter parasitic delay is measured in SPICE for each technology in
OpenRAM.

The LE model uses 7, time units for all calculations. 7, is defined as the delay of
an ideal inverter with no parasitic delay driving another ideal inverter. This delay is measured
in SPICE for each technology in OpenRAM. 7, is measured by finding the total delay of the
circuit then subtracting the parasitic delay.

PVT corners and slews are not directly incorporated into the LE model delay calcu-
lations. Instead, all corners are applied linearly to the model’s delay as a difference from the
nominal. For example, the nominal voltage for the SCMOS technology is 5 Volts, and the cor-
ner being characterized is 4.5 Volts or a 10% difference. This factor is applied multiplicatively
to the final delay in addition to temperature and process differences. Slew is not used in logical
effort, so it is not used in this model. This provides a reasonable corner model without many

parameters needed for each technology.

16

The LE model only produces the information needed to generate a correct LIB file
for the SRAM. Many of the debugging statements included in SPICE characterizations are not
modeled here, and the critical path is assumed to be along the decoder-bitline path and the SA

enable (SAE) timing is not considered.

3.1.4 CO Model Implementation

The CO model is an adaption of the CACTI delay model within OpenRAM. Adding
the model to OpenRAM allows comparison against SPICE as CACTI does not generate a SPICE
file for the memories it models. CACTI is a well-established modeling tool, so OpenRAM
benefits from including a model that is thoroughly documented and maintained. The LE and CO
models do not supersede each other, so both models are made available when using OpenRAM’s

analytical characterizer.

Memory Structure

The CO model is only based on a portion of the architecture modeled by CACTI. The
arrays are made of banks that contain subbanks. A subbank is then made of multiple mats.
OpenRAM currently does not support multi-banking, so a CACTI mat with one subarray best
represents the SRAMs produced by OpenRAM. Figure 3.3 shows both the CACTI subarray
and OpenRAM array. They closely resemble each other, except OpenRAM has options for

local arrays and does not offer column muxing after the SAs.

Delay Characterization

Within a mat, the CO model only considers a subset of available paths that are equiv-
alent to OpenRAM’s architecture. The following is how CACTI compares the delays of critical

paths to calculate a maximum delay:

Tmat = maX(T’row-decoder—patha Tbit—mux—decoder—patha Tsenseamp—decoder—path) (31)

T‘row-decoder-path = T’row-predec + T;'ow-dec-driver + Tbitline + Tsenseamp (32)
Tbit—mux—decoder—path = Tbit—mux—predec + Tbit—mux—dec—driver + Tsenseamp (3-3)
Tsenseamp—decoder—path = Tsenseamp—mux—predec + Tsenseamp—mux—dec—driver (3-4)

17

Global Bitcell Array

Precharge and Equalization Addr
Port

Local
Bitcell
Array

Local
Bitcell
Array

Local
Bitcell
Array

Row Decoder
Global Wordline Driver
Local Wordline Driver
Local Wordline Driver
Local Wordline Driver

=
<

z
4

Row Decode Gates
Wordline Drivers
I

Col. Precharge Array

Decode]

|

Control |
Logic I Sense Amp Array

|

Port

|
Column Mux Array | Data

|

|

Write Driver Array

te Mux and

| Col. Addrl Data/Mask In Flops |

(a) CACTI Subarray (b) OpenRAM Array

Figure 3.3: The bitcell array and peripheral circuitry of a CACTI subarray [12] and OpenRAM
array [7].

Equations 3.3 and 3.4 represent the delay of the bitline mux decoding and delay of
the SA mux decoding path, respectively. The SA mux is an optional structure in CACTI that is
used if the maximum size of the bitline mux is not sufficient to achieve the desired words per
row. OpenRAM does not have a SA mux, so equation 3.4 is unused. In addition, OpenRAM
access time is dependent on the start of the negative edge of the clock. However, decoding is
assumed completed before the clock’s negative edge, causing equation 3.3 to be irrelevant. The

CO simplifies the delay to

Tinat = Trow—decoder—path (3.5)

Wire Delay

Wires in the CO model are either ideal or non-ideal. Ideal wires have zero resistance
and capacitance, while non-ideal wires have finite capacitance and resistance. Most wires within
the CACTI are considered ideal, while the wordline and bitline are modeled as non-ideal wires.
The CO model uses the the IT RC model to estimate wire delays as shown in Figure 3.4.

The CO model does not estimate the unit capacitance and resistance from technology

18

Rwire

Figure 3.4: II RC model used by CACTI to estimate wire delay more accurately than a lumped
model [12].

parameters like CACTI. This information is sometimes provided by the technology in a Liberty
Exchange Format (LEF) file and is true in the case of OpenRAM’s available technologies:
FreePDK45 [15] and scn4m_subm. RPERSQ and CPERSQDIST within the LEF define the
unit resistance and capacitance, respectively. To translate these to unit length of the wire, the
RPERSQ is divided and CPERSQDIST is multiplied by the wire minimum width the assumed

layer.

Gate Delay

The CO model uses a Horowitz based delay function for all modules by default (Ap-
pendix A.1). This is an extension of Elmore delay but includes factors for the input slew. The
equation is dependent on the 7, slew time, and charging thresholds. 7 refers to the RC time
constant of the stage. The charging threshold is the percentage voltage charge expected at that
state and is typically 50%. The bitcell and SA stages have do not use Horowitz delay and have
specialized delay functions.

The CO model calculates 7 at each stage requiring each base module to define func-
tions for on-resistance ([R,), drain parasitic capacitance, and gate capacitance. R, is calcu-

lated in the CO model by calculating the effective current per width of the gate. This process is

19

detailed in CACTI and measured in SPICE for each technology using the following equations:

I I
I = % (3.6)
B B _ Vop
Iy =Ips(Vas = Vpp, Vps = T) (3.7)
V

I = Ips(Vas = Vbs = 5~ Vs = Vo) (3.8)
Ron—min—width = VDD/Ieff (3.9
Ron = stack * Ron_min-width/Width (3.10)

A minimum-sized transistor is used in each simulation with a nominal corner. R, is then
calculated in the module based on the width of the transistor and stack size. Stack size is the
number of transistors in series within a gate. For example, a 2-input NAND would have a stack
size of two because of the two NMOS gates in the pull-down network.

Capacitances in the CO model are estimated based on CACTI’s process for calculat-
ing drain dimensions from layout design rules. The two cases distinguished in the CO model
are for folded and non-folded transistors. OpenRAM transistors increase in the vertical dimen-
sion when increasing transistor width. Folded transistors increase their width in the horizontal
dimension for cases where the module cannot exceed a specific height.

The CO model uses several DRC rules to re-create these capacitance estimations.
Table 3.1 describes the DRC rules and values within the OpenRAM technologies. Only the
parameters used to estimate the diffusion dimensions were adapted from CACTI as displayed
in Figure 3.5. The CO model uses OpenRAM’s backend to query the height of the gate and

does not require estimation.

Table 3.1: Parameters for estimating gate-drain dimensions.
Weontact Contact Width
Lpoly to_poly Minimum poly-to-poly spacing
Lactive contact to_gate | Minimum poly-to-contact spacing

Sources of Error

The CO model contains many parameters re-created from CACTI. Many parameters

have detailed instructions in CACTI’s documentation while others have little to none. These pa-

20

Lactive_contact_to_gate

Lpoly_to_poly Weontact

N-Diffusion

Figure 3.5: Assumed gate layout in CACTI for estimating drain dimensions [12].

rameters are estimated from CACTI and are a potential source of error when comparing the CO
model against SPICE. Table 3.2 lists these parameters, their value in OpenRAM’s scn4m_subm

technology, and a description of the parameter.

Table 3.2: Estimated parameters in the CO model.

Parameter Value | Description
ion_p 0.000108 A/um | On current of PMOS. Calculated based
on documentation but not used in CACTI.
n_to_p N/A | Tuning parameter to estimate PMOS
eff_curr_drv_ratio on current in CACTI. Not re-created in CO.
nmos_effective N/A | Tuning parameter for NMOS on
resistance_multiplier current in CACTI. Not re-created in CO.
eps_ox 0.00859¢-14 F/um | Estimated from CACTI 180nm tech.
c_fringe 0 F/um | Not defined in scn4m_subm.
cpolywire 0 F/um | Defined as 0 in CACTIL
Vdsat 0.256 V | Estimated from CACTI 180nm tech.

3.1.5 Other Graph Applications

The graph provides an interface for the SPICE characterization to probe specific
points in the SRAM. Using SPICE to debug common issues for SRAMs, such as write failures,
requires probing the voltage of the bitcell storage nodes and comparing it with the operation
that occurred within that cycle. The main barrier to debugging is knowing the names of nodes

within the SRAM SPICE file as the SPICE stimulus file only knows input and output names to

21

the SRAM. The graph can be used to determine any SPICE name as all node names in the graph
are equivalent to the node names in the SPICE file.

The graph is then queried for the nodes of interest. This process requires some as-
sumptions, but they are much more general and do not pertain to large structures in the SRAM.
To get the bitcell internal storage nodes: the timing graph is generated, the bitcell module in the
critical path is isolated, and the SPICE name for the storage node is queried from the bitcell.
The only assumption here is that the bitcell is part of the critical path which is enforced in the
regression tests for OpenRAM. A similar process is repeated to add SAE timing checks and

communicate changes to the SRAM’s delay line.

3.2 OpenRAM Statistical Models

Several statistical models are implemented in OpenRAM which provide complete
characterization with equivalent output to SPICE simulation or Elmore analytical models. These
models require occasional SPICE data collection, but generating and maintaining the model
requires little to no knowledge of underlying SRAM mechanics. The models are implemented
in OpenRAM by generating a large set of SPICE simulations of many different configurations,
parsing OpenRAM’s output for what is relevant to the model, and using that data to train models
and generate predictive delays for the LIB file.

OpenRAM often updates, so many minor updates or a single significant update can
cause the model accuracy to drift and requires regenerating the data. Regression tests are present
within OpenRAM which test the accuracy of the statistical models and will fail if accuracy dips
below the threshold. The makefile can be run at this point to regenerate the data.

A series of scripts were added to OpenRAM to generate and collect SPICE data.
OpenRAM expects a directory of configuration files that will have SPICE simulation performed.
The configuration file expects setting at least word_size and num_words, and the rest can be
automatically generated. The model itself uses the inputs described in Table 3.3. All training
configurations define words_per_row and local_array_size, while OpenRAM’s characterization
automatically sets the PVT corners, input slew, and load. These can also be overridden in the
configuration, but since all characterizations use these inputs, we want the model to represent
the predetermined ranges better. OpenRAM provides a makefile to generate the model data.

The data is then extracted and saved within the target technology’s directory in OpenRAM.

22

Table 3.3: Inputs to OpenRAM statistical models.

num_words Number of words in SRAM
word_size Number of bits per word
words_per_row Column mux size
local _array _size Divisions of bitcell array along wordline
Process Transistor model corner (slow, fast, nominal)
Voltage Voltage corner (between +-10% of nominal)
Temperature Temperature corner (between 0-100 Celsius)
Slew Input slew to SRAM
Load Output load on SRAM data bits

Different packages were tested, but scikit-learn [13] was chosen to create the model
for OpenRAM. The package has extensive model variety, a small footprint, and is open-source.
A drawback of this package is the inability to design precise models and training algorithms,
but the models provided can attain accuracies well within OpenRAM’s other models. Scikit-
learn is also very small compared to packages such as TensorFlow, where loading the package
typically takes more time than the training and predictions. The analytical models can typically
generate characterizations under 1 second, so OpenRAM aimed to maintain that similar time
frame with the statistical models.

OpenRAM maintains two statistical models: LR and multi-layer perceptron (MLP).
LR is simple to set up, simple to use, and generates accurate results in most cases. However, de-
lays and powers of the SRAM tend to be non-linear, so the model cannot be perfectly accurate.
The MLP model is a neural network that uses the perceptron as an activation function between
layers. The number of layers and hidden nodes per layer was adapted from Last and Schlicht-
mann [11] where they achieved a good accuracy by using 8x the number of model inputs and
four hidden layers. However, each output is maintained by a separate model, and nodes are not
shared as described in their work.

The main goal of the statistical models is that they are fast like the other analytical
models. The runtime of characterization depends not only on the type of model but also on
the amount of training data. A large model such as a convolutional neural network for image
processing can take days to train even with state-of-the-art hardware. These models may contain
gigabytes of internal parameters, and input sizes can be in the order of megabytes. Models that
require large inputs were not considered for this reason.

Data from 79 configurations was added to OpenRAM for the statistical models. Of

23

these 79 configurations, 9 are common configurations surveyed from related works, and 70
are random configurations. The configurations were randomized based on four variables de-
tailed in Table 3.4. The inputs num_words and word_size are independently picked from their
ranges while words_per_row cannot reduce the numbers of rows below 16, and local_array_size

cannot be larger than the number of columns. The OpenRAM configurations are detailed in

Appendix B.
Table 3.4: Inputs to OpenRAM statistical models.
Parameter Description Range
num_words Number of words in SRAM 16-1024 bits
word_size Number of bits per word 1-32 bits
words_per_row Column mux size 1,2,4,8, 16 bits
local_array_size | Divisions of bitcell array along wordline 0-512 bits

The number of random configurations was chosen through model cross validation
where a portion of the available data is used train a model and the remaining data was used
to test the model. Enough models were added, so the worst-case accuracy of the statistical
model’s delay was within 25% of SPICE measured delay. The data amount can be configured
and changed later in cases where specific corner configurations are not well incorporated into
the model.

OpenRAM benefits from maintaining a relatively small set of training data. Accuracy
mainly depends on the data amount, but the time cost of simulating the data cannot be ignored.
From the OpenRAM random configurations, an average characterization will take 24 minutes.
Small SRAMs may only require 15 minutes to characterize, while large SRAMs need nearly
two hours. OpenRAM currently assumes the data can be simulated within roughly eight hours,
and eight simulations can be run in parallel. These assumptions are chosen from the perspective
of an average developer. The time implies data can be generated every day, and the hardware

that can allow eight parallel simulations is modest and does not require a specialized setup.

24

Chapter 4

Results

This section first compares the accuracy and fidelity of the models. Delay and power
are evaluated with all the analytical models. Area is modeled using two different statistical
models. Good fidelity and speed are more desirable in these models than accuracy. Faithful
models allow can be used to compare many SRAMs, and SPICE is used when high accuracy is
needed on select SRAMs.

The results are concluded with a discussion on the cost of maintaining statistical mod-
els for SRAM characterization. Analysis of the necessary data amounts for an accurate model

and a cost discussion on getting this data is also presented.

4.1 Delay

Delay is one of the most critical characteristics of SRAMs. Accurate models for delay
are preferred, but the model must at least maintain fidelity to be useful. The models’ accuracy

and fidelity are calculated and compared against SPICE.

4.1.1 Experimental Methods

The random configurations detailed in section 3.2 are used to evaluate the accuracy of
each model. This totals 70 SRAM configurations detailed in Appendix B.2. The configuration
under evaluation is not included in the training set of the statistical model for that evaluation.

Slew, load, and PVT are not included in this randomization, and the OpenRAM nominal corner

25

—— SPICE
40 4 LE
— CO
— LR
30 A
w
=
>
o
T 204
(=]
N fﬁ_—-ﬁ’f}
0_

0 10 20 30 40 50 60 70
Configurations

Figure 4.1: SRAM delays of 70 SRAM configurations. The LR model is nearly aligned with
SPICE in this view.

is always chosen because its the most common choice for characterization. Nine slew/load
pairs, dependent on technology, are chosen for each configurations. All SPICE simulations

were run using hspice.

4.1.2 Accuracy

SPICE simulation is the golden characterization and sets the standard of accuracy for
all models. The accuracy of the Elmore based models is compared with SPICE as detailed in
Figure 4.1. The SPICE delay is sorted from least to greatest while maintaining the respective
delay of the model along the x-axis. The delays are sorted to identify the model’s trend with
SPICE as the delay increases. The CO model tends to overestimate SPICE while the LE model
underestimates SPICE. Some configurations exhibit noise in the LR model, but each model
tracks SPICE simulation well. The absolute error relative to SPICE is shown and is bounded
between 260% and 408% for CO, while the error for LE is bounded between 11% and 40%.
LE is the clear winner in accuracy between these two Elmore models. Neither model accu-

rately replaces SPICE, but this was expected of the models. Knowing the accuracy gives an

26

understanding of how to interpret the analytical models.

This comparison shows that the CO model is extremely pessimistic with SPICE. This
significant difference could come from tuning parameters used in CACTI but is absent in the
CO model. For example, CACTI contains tuning parameters for the transistor current which
were not included in the CO model due to lack of documentation. Table 3.2 details potential
parameters that could have resulted in accuracy loss.

The delay of the statistical model is displayed in Figure 4.2 and is closely aligned
with the SPICE delay. The error is bounded between 0.08% and 25% which is the lowest of
any model. The model is trained using SPICE data which allows for this accuracy but requires

costly simulations.

9] — SPICE

Delay (ns)
(]
\‘_

5
,/’j
4 __//
[
3 A
_f‘"’-j
2 A
0 10 20 30 40 50 60 70

Configurations

Figure 4.2: Linear regression statistical model resembles SPICE delays with some noise.

4.1.3 Fidelity

The Elmore delay models shown in the previous section were less accurate than the
statistical model, but accuracy is not the only metric of interest. In addition to speed, fidelity to
the SPICE model is expected of the analytical models.

Fidelity, or faithfulness, of two datasets tells us how well they trend together i.e. if
one increases, the other increases and vice versa. The differing slopes of the datasets do not
affect the fidelity but is measured by the accuracy. Pearson’s correlation ranges between -1 to 1,

and the positive correlation range represents the desired fidelity behavior. Negative correlation

27

40 e
7 - /
35 /
6 e
7 * G 30 ./l
< " 4 £
P 7 % P
) & T 25 -
g H)
= [v]

SPICE Delay (ns) SPICE Delay (ns)

(a) LE model (b) CO model
o]
°] ’
7]
99

ge ”

£ PA

5 2 b 4
]
N
2]

2 3 4 5 6 7 8 9
SPICE Delay (ns)

(¢) LR model

Figure 4.3: Delay correlation between analytical models and SPICE.

implies the datasets increase and decrease inverse to each other which is not desired in the
models. Negative and zero correlation is considered unfaithful when comparing the models to
SPICE.

The correlation of SPICE delays and model delays are performed and shown in figures
4.3(a), 4.3(b), and 4.3(c) for LE, CO, and the statistical model respectively. The LE model with
an average error of 22.6% has a correlation of 0.979, the CO model with an average error of
345.4% has a correlation of 0.984, and the LR model with an average error of 7.3% has a
correlation of 0.970. Each model displays strong fidelity to SPICE simulation. CO with the
most significant error which was about 15x worse than the LE model has a similar correlation
as LE. This displays that the models are faithful and track SPICE well even when the accuracy is

poor, and therefore, any of the three models are helpful when designing and comparing SRAM

28

designs.

Both the CO and LE models contain estimates that are slightly off the expected trend
in the graph. These values generated the apparent noise in the accuracy graphs. Both models
overestimate the delay of the wordline and bitline. The models incorporate non-ideal wire
delays for these portions, while the SPICE simulation does not contain extracted parasitics. The
parasitic capacitance is not a significant portion of the delay in this technology, so fidelity is
not affected significantly. The statistical model does not make this mistake because it does not

explicitly model individual portions of the SRAM.

Table 4.1: Analytical model errors compared with SPICE.
’ Model \ Mean Error (%) \ Worst Error (%) \ Std Dev. (%) \ Fidelity

LE 22.6 39.1 6.4 979
CO 3454 407.8 33.3 984
LR 7.3 24.8 54 970

Table 4.1 summarizes both the accuracy and fidelity of the analytical models. LR has
the best accuracy, CO has the best fidelity, and LE is between both in accuracy and fidelity.

4.2 Power

Power is difficult to model as it is to simulate. OpenRAM supports several different
SPICE simulators including Ngspice, hspice, and Xyce. Each simulator will output slightly
different results. The difference in delay between the simulators is often much smaller than dif-
ferences in power. For example, OpenRAM maintains separate regression tests for its different
simulators, and there is a 0.1% difference between the Ngspice and Xyce delays while there is a
66% difference in dynamic power. There are explicit models for dynamic power, but modeling
switching probabilities and unintended power consumption like glitch power makes it difficult
to produce accurate and faithful results. Modeling delay is often easier because focus can be
put on the critical paths while ignoring the majority of the SRAM, while power concerns the
entire circuit. This makes power an excellent candidate to predict with statistical models.

Figure 4.4 shows the accuracy of power models compared to SPICE. Characterization
with LE and CO uses the same power model, so only LE represents the Elmore models here.

LR tracks SPICE while the LE model fails to capture the trend. Both display spikes in power.

29

6004 —— SPICE
LR
— LE
500

400 /

Power (mW)
w
o
o
-

T T T T T T T T
0 10 20 30 40 50 60 70
Configurations

Figure 4.4: Accuracy of LR and LE power models in OpenRAM.

The LE model assumes a linear dependence on the number of devices and power consumption,
which is why power is poorly tracked.

The statistical model should only use data from the same simulator. The simulator
can have a wide variance in power, so using a consistent simulator to produce data is essential
when improving accuracy. More complicated neural network models may be able to consider

the simulator used such that any data can be provided, but that is left to future work.

4.3 Area Modeling

Area modeling is helpful even in tools, like OpenRAM, which create layouts for their
memories. CACTI only models the area based on estimates of individual modules and using
assumed floorplanning. Generating the layout can be slow for larger SRAMs as routing com-
plexity increases. OpenRAM does not contain area modeling but allows layout to be disabled
if not needed. Area modeling requires many assumptions about the layout and can take a sig-
nificant amount of time to develop and maintain. Statistical models can provide an easy way to
implement an area model that is accurate and maintains good fidelity.

A linear regression model was trained using the log of the SRAM area, and predictions
were generated on 65 of the random configurations as five failed to create a layout. As shown in

Figure 4.5. The model has an average error of 29.4% with the worst case of 114.5% accuracy but

30

4000000 A

3500000 +

3000000 4

2500000

2000000

1500000

Predicted Area (mm™2)

1000000 A

500000

04

T T T T T T
0 1000000 2000000 3000000 4000000 5000000
Actual Area (mm~™2)

Figure 4.5: Predicted area from LR model displays good fidelity but poor accuracy in larger
SRAMs.

8000000

7000000

6000000 -

5000000 4

4000000

3000000 4

Predicted Area (mm~2)

2000000

1000000

0

T T T T T
0 1000000 2000000 3000000 4000000 5000000
Actual Area (mm~™2)

Figure 4.6: A neural network model almost tracks the SRAM area trend much closer than LR.

has a fidelity of 0.909. The area grows quadratically, so linear regression is not expected to have
good accuracy. A neural network model that uses the same hyperparameter configuration as the
delay models for OpenRAM was also tested. This model achieves 12.9% error with a worst-case
accuracy of 64.5%. This model also maintains good fidelity with 0.948 as shown in Figure 4.6.
Just changing the model results in nearly doubling the accuracy of the area predictions created
by statistical models. Further hyperparameter exploration could help improve the worst-case

error, but the fidelity is sufficient for comparing configurations.

31

Data vs Accuracy

it M@@ 19pege

0.8 1

o
=]
L

Average Accuracy
o
B
L

o
%]
L

0.0

— T T T T T T T T T T T
32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70
Configurations

Figure 4.7: Accuracy of the linear regression model saturates around 93%.

4.4 Statistical Model Accuracy and Cost

Statistical models are the most accurate among the discussed analytical models. How-
ever, this model requires training data from SPICE characterizations. While the type of model
can play a role, the accuracy is dependent mainly on the amount of training data. Figure 4.7
details the average accuracy of the model during 10-fold cross validation. This uses 90% of the
dataset to train the model while 10% is used to test against and is repeated 10 times across the
dataset. The process was repeated 50 times for each data slice. The x-axis represents how many
random configurations were combined with OpenRAM’s common configuration data, and the
y-axis displays the accuracy range for the validation steps of that random slice. This plot gauges
the accuracy of the model at varying amounts of data. At 32 configurations, the model has an
extreme range of accuracies while the worst case and average accuracy begin to level around 58
configurations. Configurations can be continually added to improve the accuracy, but the gains
quickly taper.

Each training set has an associated time cost that cannot be ignored when choosing
the amount of training data. OpenRAM makes frequent changes to its memories which warrants
replacing the existing training data, so the time to generate this data matters. SPICE characteri-
zations of the random configurations take between 12.5 to 100.2 minutes depending on the size

of the SRAM. The average characterization took 24.6 minutes in the 70 configurations. The

32

average simulation time of each model can be estimated based on the number of configurations
and number of parallel characterizations allowed.

The model’s amount of data will depend on the desired accuracy and maximum total
simulation time. The assumptions from section 3.2 require the worst-case accuracy to be 25%
on an 8 hour time budget with at most 8 parallel simulations. All simulations were performed
in hspice, and individual simulations were not explicitly made parallel. The sum of simulation
time of the 70 configurations was 28.67 hours, so eight parallel simulations could reduce this to
3.58 hours in the best case. The nine common configurations have a simulation time of 36.02
hours which can be reduced to 4.5 hours at best. The best-case total time is 8.08 hours which is
near the expected budget, so nearly all the random data can be included. The model can main-
tain the minimum accuracy with at least 58 configurations, so trimming 1-2 configurations from
the 70 maximum still stays within this range. Although perfect parallelization was assumed, the
longest simulation within the common configurations required 13.7 hours to simulate. Addi-
tional parallelization within that simulation or removal of this configuration would be required

to meet the time budget.

4.5 Model Trade offs

A difficult metric to quantify between the analytical models is their maintainability
or maintenance cost. All three models presented here are designed to be low maintenance to
consider OpenRAM’s frequent updates. The majority of maintenance required by LE and CO
models add delay, capacitance, and resistance estimations to new custom models or pgates.
These changes are infrequent but commonly happen when OpenRAM is ported to a new tech-
nology. New technologies require an entirely new set of custom cells, and their characteristics
need to be identified within OpenRAM’s technology file for these models to function. Statisti-
cal models are arguably much easier to maintain. While they may require more frequent data
collection, large changes to OpenRAM would only result in a data collection as well. Compli-
cated additions to OpenRAM such as changing custom cells or new technologies would only
require re-collecting data, but the model itself does not need to be changed. The only changes

to OpenRAM that would warrant changing the model is low accuracy or new model inputs.

33

Chapter 5

Conclusions

This thesis presents several analytical models that were implemented in OpenRAM
including two Elmore delay based models and a statistical model. The well-established memory
and cache modeling tool, CACTI, was used as a basis for one of these models. The process of
adapting it to OpenRAM using a static timing graph was detailed in this thesis. This thesis
also displays the use of a statistical model to generate characterizations, and unlike the Elmore
models, it requires little knowledge about the memory as a whole to create. The statistical
model achieved the highest accuracy to SPICE while being fast and maintaining strong fidelity.
Statistical models present an attractive option to model SRAMs because they can be easily
automated and maintain good model properties. The main drawback is the data collection
needed for the model which will have a variable cost depending on desired accuracy and how

often the model needs to be re-generated.

34

Appendix A

Model Code

A.1 Horowitz delay function adapted from CACTI.

def horowitz (self ,

inputramptime , # input rise time

tf # time constant of gate

vsl, # threshold voltage

vs2, # threshold voltage

rise): # whether input rises or fall
if inputramptime == 0 and vsl == vs2:

return tf = (—math.log(vsl) if vsl < 1 else \
math.log(vsl))

a = inputramptime / tf
if rise == True:
b = 0.5
td = tf % math.sqrt(math.log(vsl)smath.log(vsl) +\
2xaxbx(1.0 — vsl)) +\
tf x(math.log(vsl) — math.log(vs2))

35

else:
b = 0.4
td = tf * math.sqrt(math.log (1.0 — vsl) =\
math.log (1.0 — vsl) +\
2xaxbx(vsl)) +\
tf x(math.log (1.0 — vsl) — math.log(1.0 — vs2))

return td

36

Appendix B

Results Configurations

B.1 Nine common configurations selected to train the statistical

models.

’ Word size \ Number of words | Words per row | Local array size

8 256 8 No Local Buffers
8 512 8 No Local Buffers
8 1024 16 No Local Buffers
32 256 4 No Local Buffers
32 512 4 No Local Buffers
32 1024 8 No Local Buffers
32 2048 8 No Local Buffers
64 1024 4 No Local Buffers
128 1024 4 No Local Buffers

B.2 Seventy random configurations used to train the statistical mod-

els.

37

Word size | Number of words | Words per row | Local array size

2 16 1 2
3 32 1 2
3 1024 2 3
4 16 1 4
4 32 2 5
4 64 4 14
5 256 16 75
5 512 2 8
6 16 1 1
6 32 1 1
6 128 4 8
7 16 1 3
7 64 2 10
7 256 4 25
8 128 4 22
8 256 1 1
9 128 1 4
9 256 4 15
10 64 4 21
12 16 1 1
12 16 1 7
12 16 1 8
12 128 4 38
12 256 8 17
12 256 8 83
12 256 16 186
12 512 4 20
14 16 1 0
14 32 2 23
15 32 1 11
15 512 8 85
16 16 1 9
16 128 8 2
16 512 1 14
16 512 16 107

38

Word size | Number of words | Words per row | Local array size
16 1024 16 40
17 32 1 13
17 256 16 49
17 1024 16 86
18 32 1 18
18 128 2 7
19 16 1 5
20 16 1 5
20 32 2 5
20 32 2 13
20 128 8 90
21 128 2 10
21 1024 4 54
22 512 16 249
23 32 1 2
23 1024 16 118
24 16 1 23
26 32 1 23
26 64 4 23
26 512 1 14
27 128 1 5
27 256 4 2
27 256 8 191
27 512 4 60
27 1024 4 89
28 16 1 8
28 32 1 14
28 128 8 61
28 1024 2 53
30 1024 4 58
31 64 4 81
31 1024 16 49
32 32 1 31
32 128 2 17
64 512 4 No Local Buffers

39

Bibliography

[1]

(2]

[9]

Liberty User Guides and Reference Manual Suite, 2020.

Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean,
Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow:
A system for large-scale machine learning. In /12th {USENIX} symposium on operating
systems design and implementation ({OSDI} 16), pages 265-283, 2016.

Khalid Al-Hawaj et al. Towards a reconfigurable bit-serial/bit-parallel vector accelerator

using in-situ processing-in-sram. In ISCAS, 2020.

A. de Gennaro et al. Design and implementation of reconfigurable asynchronous pipelines.
TVLSI, 28:1527-1539, March 2020.

Elnaz Ebrahimi. Pareto-optimal methodology for cache and SRAM modeling. University
of California, Santa Cruz, 2011.

William C Elmore. The transient response of damped linear networks with particular

regard to wideband amplifiers. Journal of applied physics, 19(1):55-63, 1948.

Matthew Guthaus, Hunter Nichols, Jesse Cirimelli-Low, Joseph Kunzler, and Bin Wu.
Enabling design technology co-optimization of srams through open-source software. In

2020 IEEE International Electron Devices Meeting (IEDM), pages 41-7. IEEE, 2020.

Matthew R. Guthaus et al. OpenRAM: An open-source memory compiler. In ICCAD,
2016.

Matthew R. Guthaus et al. OpenRAM. https://github.com/VLSIDA/OpenRAM, 2020.

40

https://github.com/VLSIDA/OpenRAM

[10]

[11]

[12]

[13]

[14]

[15]

Felix Last, Max Haeberlein, and Ulf Schlichtmann. Predicting memory compiler perfor-
mance outputs using feed-forward neural networks. ACM Transactions on Design Au-

tomation of Electronic Systems (TODAES), 25(5):1-19, 2020.

Felix Last and Ulf Schlichtmann. Partial sharing neural networks for multi-target re-
gression on power and performance of embedded memories. In 2020 ACM/IEEE 2nd
Workshop on Machine Learning for CAD (MLCAD), pages 123-128. IEEE, 2020.

Naveen Muralimanohar, Rajeev Balasubramonian, and Norman P Jouppi. Cacti 6.0: A

tool to model large caches. HP laboratories, 27:28, 2009.

Fabian Pedregosa, Gaél Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand
Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent
Dubourg, et al. Scikit-learn: Machine learning in python. the Journal of machine Learning

research, 12:2825-2830, 2011.

Robert F Sproull and Ivan E Sutherland. Logical effort: Designing for speed on the back
of an envelope. IEEE Advanced Research in VLSI, 9:219, 1991.

James E Stine, Ivan Castellanos, Michael Wood, Jeff Henson, Fred Love, W Rhett Davis,
Paul D Franzon, Michael Bucher, Sunil Basavarajaiah, Julie Oh, et al. Freepdk: An open-
source variation-aware design kit. In 2007 IEEE international conference on Microelec-

tronic Systems Education (MSE’07), pages 173-174. IEEE, 2007.

41

	List of Figures
	List of Tables
	Abstract
	Acknowledgments
	Introduction
	Background
	SPICE Characterization
	Verification
	Simulation Example
	Analytical Characterization
	Analytical Examples

	Statistical Delay Modeling

	Implementation
	Analytical Models
	Static Timing Graph
	General Model Implementation
	LE Model Implementation
	CO Model Implementation
	Other Graph Applications

	OpenRAM Statistical Models

	Results
	Delay
	Experimental Methods
	Accuracy
	Fidelity

	Power
	Area Modeling
	Statistical Model Accuracy and Cost
	Model Trade offs

	Conclusions
	Model Code
	Horowitz delay function adapted from CACTI.

	Results Configurations
	Nine common configurations selected to train the statistical models.
	Seventy random configurations used to train the statistical models.

	Bibliography

