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of ¥; and writep™ (5, d, t) (p~ (, d, t)) for a solution of (4) with comments. They would also like to thank D. Angeli for bringing to

p(0) = p, 9(0) = 0 (¥(0) = —=), and disturbancd.

Find an integeti’ such that:/4 > 27"+ and2=%+! < #/12,
Let zy = e(5K=27 5o thatey, = A(e®5~27); and let alsar, =
eORED™ andg = A(x).

Recall that, by property 2)y1 < r(x(, t) < 1.03z; andze <
r{wo, t) < 1.03z forall ¢t € [0, m/12]. In particular, for anyt €
[0, 7/12], and withazg = % =27 2y = EK+D7 pothr (g, ¢)
and (1, t) will be in the interval[e(®X =257 ((6K+2:5)7) Then,
by construction of\, both p(&o, t) = A(r(wo, t)) andp(&, t) =
M(r(z1, t)) will belong to the interva[e® ™ — 275, 8™ 4 277,
so that

P+(f1e t) — p+(507 t) < 9= K+1

Therefore, there must exist a positive < 2=~ *" such that ifdy :=
1[0, o], then

t €0, 7/12].

pt (&, 70) = pT (&, do, T0).
So
p (. do, m)=pT (&, m)=—p (C(GKH)W) -

Let 52 — _u(e(GI{-‘rl)r)l &5 1= _#(6(61(-‘,-5)#).
Next, take a disturbanod, = 1, r,,], with somer; < 27 /~H!
such that

p (& m)=p (&, di(- +7), 11).
Then
p+(£07 dU +d1:~ Z‘T) :pi(EZa dl( + 7T>> ﬂ-)
= p (&, 1) =\ (6(67(+4)r) .
Generally, for eaclt > 0, we let
Cap = A (e(G(KJFk)*Q)”)

Caky1 == A (e(G(KJFk)H)”)
I APp— (S(G(I\’+A~)+1)7r)
Eonss = —p1 (6(6(K+k)+a)7r)

and choosey, < 275~ ! andry,y < 27K+ 5o that
p (Garrrs m2k) = p 7t (Eaks dan(- 4 2k7), Tor)
and
0~ (Cakrs, Tort1) = p (Cakv2, dopgr (- 4+ (2 + 1)7), Topt1)

with d; := 1[057.1].
Finally, letd := 3", d;. Then

/d(t)dt => n<4/2" <
and

i g (e 4 0) = .
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A Note on Global Output Regulation of Nonlinear Systems
in the Output Feedback Form

Qi Gong and Wei Lin

Abstract—This note shows how the adaptive control method developed
recently for nonlinearly parameterized systems can be used to solve the
problem of global output regulation, for nonlinear systems in the so-called
output-feedback form with unknown parameters and exogenous signals be-
longing to a compact set whose bound is also unknown.

Index Terms—Adaptive nonlinear control, global output regulation,
output feedback.

|. INTRODUCTION AND PRELIMINARIES

In this note, we consider the problem of global output regulation for
nonlinear systems of the form

i =F(u)r+ Gy, w, 1) + g(p)u
y=H()x+ Ky, w, 1)
w=58w

e=y—q(w, p (1.1
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wherew € IR? is the exogenous signal,€ IR", v € R, andy € R Assumption 4:There exists a global defined smooth functions
are the system states, input and output, respectively. The error signalw, 1) andc(w, p) satisfying the regulator equations

is the only measurable variable that can be used in feedback design. T31e i)

unknown constant belongs to a compact sgtC IR? whose boundis —————= Sw = F(u)m(w, u) + G(g(w, p), w, u) + g(p)c(w, p)
unknownG(y, w, p), K(y, w, ) andg(w, p) are smooth functions v

i i ishindatw) = Aq(w, p .
of their argqments, not necessarily vanlshlng,;_atu) = (0, Q). The q(w, 1) Sw=H(u)m(w, ) + K(q(w, 1), w, p).
exosystem is assumed to be neutrally stable, i.e., all the eigenvalues of 9w
S are simple and lie on the imaginary axis. Under Assumptions 1-3, it has been shown in [9] that there exists
The robustoutput regulation problem is to find a smooth dynami@a parameter-dependent filter transformation such that system (1.1) can

controller be put into a lower-triangular form. Indeed, introduce the filter

¢ =al(, e), (eR" € = A€+ Bu

-\ 1 0 --- 0 0 7 [0
u=73(( e 1.2
BG € (12 0 —d 1 - 0 0 0

such that the closed-loop system (1.1) and (1.8)abally boundedor _ €+ "

any initial condition(:z:(0), y(0), ¢(0), w(0)) and anyu € x. More-

over,limi—q e(t) = 0. 0 0 0 - =Xy 1 0
In the absence af and when the vector fields(-) andA'(-) vanish 0 0 0 ... 0 -\ 1

aty = 0, (1.1) is in theoutput feedback formvhose global stabilization - Tt

problem by output feedback has been well studied; see, for instance, (1.3)

[9], [3], as well as the references therein. As for the output regulatigfith \; > 0,1 < i < r — 1, being real numbers, and a parameter-

problem of (1.1), the first global result was reported in [11], under thgapendant change of coordinates

condition that the exogenous signaland the unknown parameter

belong toa priori known compact set. Obviously, this is a restrictive z=wx—D(p)¢ - Ap) (1.4)

assumption, simply because when information of the bounds of exosig- b(p)

nals are changed, the controller should also be changed accordinglywhered () = (F + A1) - (F + XoI),....(F + M\r—11)g(n) and
[13], a universal controller was proposed to remove the restriction fgy( ;) satisfies

a class of uncertain decentralized systems with polynomial nonlineari-

ties, which covered the system in the output feedback form as a special F(u)D(p) = D(p)A =[d(n), 0, ..., 0]
case. g(p) =D(w)o, ....0,1]"
The purpose of this note is to propose an adaptive output regulator H(u)D(p) =[b(p). 0. ..., 0] (1.5)

based on the adaptive control method developed recently for nonlin-
early parameterized systems [8] and the feedback domination desiith the aid of (1.3) and (1.4), (1.1) is transformed into
technique [6], which achieves global output regulation of the nonlinear

system (1.1) without requiring the knowledge of the bounds of the un- F=F)z+ Gy, . )

known parameters and exosignals. Our result provides an interesting G =)z + Ky, w, p) +b(p)&
alternative solution to the problem considered in [13] (in nondecentral- ]

ized case) and, thus, complementing the results obtained in [13]. §=A{+ Bu

Throughout this note, we make the following assumptions that have
been commonly used when dealing with output regulation of nonlinear
systems in the output feedback form. e=y—q(w, p) (1.6)

Assumption 1: System (1.1) has a uniform relative degreg 2.

Assumption 2: For system (1.1), the sign of the high-frequency gaihere

w=5Sw

= d(p) d(p)
b(p) = HGOF "2 (n)ag(p) Gy, w, p) = <F(H) ) H( :)) Tk
is known and satisfief(p)| > bo > 0, with by being a known con- + Gy, w, p) — # K(y, w, i)
stant. ()
Assumption 3:For every p € @, the linear system H(p) =H(p)
(F(p), g(p), H(p)) is minimum phase. — d(p)
Remark 1.1: By Assumption 3, the linear systein = F(u)x + F(p)=F(pn) - o H(p)

g(p)u, y = H(p)x, is minimum phase. This, together with Assump-

tip_n 1, implies that_Assumption 3 is essentially eiquivalfent to the con- Ky, w. p)=H(p) " d(p) y+ K(y, w, o).
dition that the matrix#" (1) — (1/b(p))g(p) H (1) F™~" (1) is Hurwitz b(u) ”

with the restrictionH (u) F* (u)z = 0,i = 0, 1, ..., r — 2. This is
exactly the assumption used in [9], [5], where the global stablllzatlo
problem was studied.

Remark 1.2: System (1.1) is a bit more general than those studied
in [11], [13], for the reason that the vector fields(y, w, 1) and
K(y, w, ) need not to be vanished at= 0. Hence, (1.1) is not  As pointed outin [3], [11], and [12], the problem of output regulation
necessary to be globally minimum phase with respect to the oytputcan be transformed into a stabilization problem under suitable condi-

To ensure the solvability of the output regulation problem, the fotions. In this section, we use the method introduced in [3] to perform
lowing assumption is necessary [4], [11]. such a transformation under the following hypothesis.

rIy construction, it is easy to see tht ) is a Hurwitz matrix for all
€ p.

Il. PROBLEM TRANSFORMATION
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Assumption5: Supposec(w(t), p) defined in Assumption 4 is a system directly. The reason for doing this is two-fold: 1) Assumption

trigonometric polynomial of the form 4 is necessary for solving the output regulation problem [4]; and 2) it
. is independent of the controller design procedure.
c(w(t), p) = Z i (w(0), p)e®i Now, we are ready to design the internal model and to transform

the output regulation problem to a stabilization problem via a global
change of coordinates. For simplicity, we give only a sketch of the pro-
cedure here. The reader is referred to [10], [11], or [3] for details.

=—1

wherel is a fixed finite integerg; are unknown complex numbers with

¢ = c*itfo” Z,O;il,i :Hk' in which *t sttands forthe complex k¢ step: Picking any controllable pailf, N) with M € R**"

conjugate, anc; = —.—; are xnown constants. aHurwitz matrix andV € IR“*!, one can solve the Sylvester equation
Remark 2.1: The previous assumption simply says th@t(t), u)

as a function of time is a combination of sinusoidal signals and con- T®-MT =NV

stant signals, with fixed known frequencies and unknown amplitudgs . . .
that depend on the unknown parameters and the initial condition %f(ge(tﬂa u)nlgu_e Tonsmgjwzrrem;:ﬁ [irﬂ)lnggt)r]ilcB)(/)IA:(s)umrinarl):ogosrh-
exosignals. Assumption 5, in general, allows only polynomial nonlir%;ni;g th|ﬂs %atct_wit’r{(.z. 1; ,we have 9 poly '

earities.
As shown in [2] and [3], Assumption 5 implies the existence of a(l”) (T(t), p) = a1 - ar (7(t), p) + az - a1 (7(t), p)
global defined mapplng(:ﬂ(f), ") anq a;et of real numbers;, i = 4o toa, - (yg“_l)('r(f), 1)
1, ..., v, for some fixed integer, satisfying -
Let? = T-[ar ((t), ), 62 (7(t), 1), ..., "V (r(8), w)]*. Then
Fw(t), p) =7 .
F=T®T '+
cw(t), ;) =¥ 7 (21) ar(r(t), ) =W, -7
where ai(r(t), p) = - 7
0 10 0 where®, = UT~', 0, = Uy (A I+ T®T™1),i = 2, ... ¢
0o 0 1 --- 0 anda.(7(t), p) = c(w(t), ). Furthermore, it is shown in [3] that
o=1|: = o -t land¥=][1,0,....0] n=Mn+N&
0o 0 0 --- 1 is an internal model for (1.6).
Second Step:Use the following change of coordinates:
Lar az asz --- dy |

1 —#(w, n) = Nb "' (n)e

=

It can be shown that all the eigenvaluestoére simple and located on

the imaginary axis [2], [3], [12]. P=z—<w p)
We show in the next section that Assumptions 1-5 suffice to solve e=y—q(w, pn
the global output regulation problem. To begin with, we first introduce £ =¢— T 1<i<r—1
a useful lemma. A ' - -
Lemma 1: Under Assumptions 1-5, there exists a global defined v=u=
smooth functions(w, 7, p) satisfying and denote
Ie(w, 7o p) O¢(w, T, u)} S 0w Z =[n, 2"
Ow 7 o7 0 @ |r Ct =[Lyu, 0]
= F(p)s(w, 7, ) + Gla(w, p), w. p) Cy =[0, ..., 0. 1]
dq(w, - — —
Ol 1) 5., Gle, w, )+ e =Gile+alwr 1), w, 1) = Gla(w, 1), 0, 1)
= H(p)s(w, 7, p) + K(g(w, p), w, p) +[0(p), 0, ..., O]II7 K(e,w,p)-e=K(e+q(w. p), w, ) = K(q(w, p), w, p)
(2.2) i M b Y(u)NH(p)
whereIl € RU~Y*" is the unique solution of Sylvester equation () = 0 Fu)
Id = A+ [0, ..., 0, 1)1 ¥, N L
Lemma 1 can be easily proved by verifying that Lie. o p) = [b (W(MN - NK(e, w, N))}
(i(/l) / G(e,‘ @y :u’)
s(w, 7y p) = m(w, p) = D)7 — qlw, 1) (2.3) ) ) ) )
b(p) It is easy to check that (1.6) in the new coordinates has the following
is a solution of (2.2). triangular form:
Remark' 2_.2: Note tha; (2.2) is actually the regulator equfitlon 7 =R(u)Z + L(e, w, p)e
for (1.6), if @ = [w, 7]' is treated as a new exogenous signal. o
Therefore, Lemma 1 implies that, under suitable assumptions, é=H(pn)CoZ +b()¥1C1Z
if a solution to the regulator equation of the original system - g
. . + (K(e, w, ) + ¥ N)-e+b
(1.1) exists, so does the regulator equation of the transformed ( te, w, ) ! ) ¢+ bma

system (1.6). Furthermore, it is given Ryw, 7, ), c¢(w, p) and
a(r, 1) = [on (1 )y oo oy apq (1, w)]F = 17,
Remark 2.3:1n [11], a condition is imposed on the transformed
system (1.6) requiring that the regulator equation of (1.6) has a global
solution. By Lemma 1, the assumption is imposed on the original fr71 =N\ 1bq — U, NE 4 (2.4)

51 =-M& - U NE + 6



1052 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 48, NO. 6, JUNE 2003

Clearly, if system (2.4) is globally asymptotically stabilized by meaBy the completion of squares, one has
surement feedbadle, &, ..., &—1), the same controller also solves

. 2
the global output regulation problem for the original system (1.1). (r + l)ZTP(H)L(e, w, pe < % Z"7 + M

1 (")041(6)62

Il. MAIN RESULT b(“)F(N)CQZS%ZTZ+ WOE
)i
A main difficulty in stabilizing system (2.4) is due to the unmea- 1
surable exogenous signals and the unknown parameters that enter the eV ChZ < 3 7'z + Z||\IIIC‘1||262
system nonlinearly. In this section, we will demonstrate how to uti-
lize thevariable separation techniqué], combined with théeedback (A(e wop) + T N)e < 9 as(e)e?.

domination desigmethod [6], to globally stabilize system (2.4). Note b(#)
that the result below does not require bounds of the exogenous sigitgl$ the aforementioned |nequaI|t|es it follows that
and the unknown parameters to be known, which has been a common
condition in the literature such as [11], [3]. The following lemma i§;) < . 7% 74 c£, 4¢? ( 1{e)® +° ||<I>1C' Il > (I)l( Ye? — @)
useful when dealing with a nonlinear parameterization problem.
Lemma 2 [7], [8]: For any real-valued continuous functionyhere
f(x, y), wherex € IR™, y € IR", there are smooth scalar functions

o 2
a(z) > 0,b(y) > 0, c(x) > 1 andd(y) > 1, such that pi(e) = @ o (e) + = ane) + o
0
|f (2, v)| <alx)+bly) Clearly, the virtual controller
[f (2, y)| <elx)d(y). & = —pile, O)e := — {7‘ + % |®:1Ch |1 + (:)pl(e)] e

Using this lemma and the feedback domination design method [#,Such that

we can prove the following result. Vo < =177 —re? +ef1 + O (pl(e)g _ @) Y
Theorem 1: Under Assumptions 1-5, global output regulation of the
uncertain system (1.1) is achievable by an error feedback of the formstep 1: Construct the Lyapunov functioi; (Z, e, £,0) =
(1.2). Vo(Z, e, ©) + (1/2)€1. Then
Proof: As discussed in the previous section, one needs only to )
design an adaptive controller for system (2.4) making the closed-lodp < —rZ% Z — re? + ¢, + © (p1(6)62 - (—))
system globally asymptotically stable. By constructifi) is a Hur-
witz matrix. Thus, there is a matriR(;:) = P7 (1) > 0 satisfying + & (=T INE = M& + &) — 51 [_('u)c.zz

RY () P(n) + P()RGo) < —21. HUNOZ +(E 4 TN)e+ U

By Lemma 2 and the completion of squares, it is easy to show that
Recall that bothu(t) andy are in compact sets whose bounds are un-
; 861

known. By Lemma 2

H(CoZ < ; Lyizy L <aail> o8 (3.3)

PG L(e, w, w)[* <Fr (w0, mas(e) < fr(e)

. - : aa v €T ,
IE (e 0, 1) + WL N|E <, paz(e) < baas(e) AL CEET AT (0 Ol @o
()] < 6 0 )
[b()]* < 84 Ne<ge*+ 3 ( 6g> 2()€10 (3.5)
wherea; (e) > 1, az(e) > 1 are smooth known functions afid > 1, - 8¢ .2 oér -
i = 1, ..., 4, are unknown constants. Dendfe = max{#;, i = de b(n)&r < € +s 51 a0 | T 5516
1, ..., 4} as a new unknown parameter. Without lose of generality, s
one can assu > 0. Now, consider the Lyapunov function 1 (06 A
e 1) yap +5 é < ai] ) e, ©)0. (3.6)
. o r+1 L2 16 - . ,
Vo(Z, e, ©) = 5 ()7 + m 5 6? Substituting (3.3)—(3.6) into (3.2) yields
I

Vi<—(r—1Z"Z—(r-1)"+ 66

where® := © — © and® is the estimation 0®. A direct calculation -
gives ta

de

b(c;) - 82 (/)zé:iz +/)162):|

[H(//)CaZ—l—b(// YW Ch Z+( Ix(r w, (1)+T 1 N)e+b( 11)51] 51 " ) é 27
_@- @)O. (3.1) 51 - (/)251 +pie’ — ) 3.7

Vo <=+ 1)Z"Z+(r+ 1D)Z" P(p)Lie, w, pe +
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N2 2
&Y 1 (9¢ 2
<0c> +3 <—> (L Cul|
1 [ 0ér 1 (01
-1 " 1[99 - A
+2<86> 0'“((?)—'—2(86) pie, ©) +

Observe that the smooth virtual controller

é; (6. éla

where

pa(e, ©) =

l\)l»—t

| —

O)=—(r—1& —e+ U NG + M &

N2 .
1(aé\ - 08 - ,
35 ( 6561 ) &1 — p206 + 62 (szf + p1e’)

renders

Vi < —(r—1)ZY Z—(r—1)e* = (r= 1)+ £ (1 +O) ((,bl - o)
Whel’eul(e 61 “) = 51 (851 /00) Ql((‘ 51 0) = [J251 + pre?
& = & — &. By constructiongs (0, 0, ©) = 0, ¢1(0, 0, ©) = 0
and¢, (0, 0. ©) = 0.
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Therefore, the smooth virtual controller

i—1
EAZ'*H =& —&oi+ N /Ji+1&@
7=1 J
a5; J0; ~
+ % z+1EL % Gi—1+ piv1&iia
renders
V<= =02 2= (r =0 = (r = )€ - 8
— e H Eifi + (W +(:)) (t,f)i - (:)>
where vile, & .: L&.0) = u’»,;_1 + £(08,/00) and
51,.. 6“ éﬁz 1+I)z+1éz-

Using this inductlve argument, we conclude that at stepl, there
are a smooth controller

i =fe(e, E1vnnns &—1. ©) with 3,.(0,...,0,0)=0 (3.9)

and a smooth Lyapunov functioW,_,(Z, e, &1, ..., &—1. ©),
which is positive definite and proper, such that

Inductive Step: Suppose at thé&h step that there is a set of smooth

virtual controllers
E; = ,BJ'(G, 617 ey Ej_lﬂ (:))

with 3;(0, ..., 0, O)—() j =1, 2
functionVi—(Z, e, &i. ..., &1,
proper, such that

Vi < —(r—i+10)Z7Z — (r—i+ 1)’ — (r—i+1)& - &
— @ HEb+ (01 +0) (02— 0) (38

Whereéj = é]' - 571J =12 » 0, 9) =

, , ¢, and; 1 (0,
¢ 1(0,...,0,0)=0,Y0 € R.

At stepi + 1, we prove that (3.8) holds as well. For, consider the

Lyapunov function

‘;(Zv e, 515 fﬂ é)) = "’?—1(Z7 c, 519 éi—h é)) + %g?

Then

Vi <- (T—1+1)ZT —(7—I—|—1)E —(r—z—i—l)gl
- 5141 + 51—1&, + (iz1 + O) ((D,_1 — @)

+ éz‘é#l éi/\'éz' - éz l‘Nél
3 3 Bi S 0 Bi A
_g < Bi, O q i (_)> '
Je 51 0&i—1 00

, ¢, and a smooth Lyapunov
) Whlch is positive definite and

Viei < 2T 2?2 L2 (e 4 O) ((m_] —é)).

Therefore, the controller (3.9), together with the adaptive law

0= 0’)7"71(ﬁ= fl ‘e 51‘717 é) (310)

is such that
— &

In other words, the closed-loop system (2.4)—(3.10) is globally stable.
Furthermore, by LaSalle’s invariance principle and the properties of
the virtual controllerg;;, it is easy to see that

Vi1 <-Z2"Z - = -6~

M ([ ZI° + e + & 4+ &) = 0.
This, in turn, implies that in the original coordinates, all the states
@y, &, 4 = 1,...,r —1, and© are all globally bounded and
lim¢—. e(t) = 0, i.e., global output regulation of (1.1) is achievad.

We conclude this section with a simple example that demonstrates
the application of Theorem 1. Consider the planar system with the
three-dimensional exosystem

1= —z1+ (x2 + p1)e™ +u w1 =0
d2 = a1 + pora + wh with We = ws (3.11)
€ = Ty — W1 L';Jg = —Wa.

Note that this system is not minimum-phase with respect to the

Using an argument similar to the ones in the previous step, we havgyutputy = ., and involves a nonpolynomial nonlinearity. It is easy

Vi<—(r—0Z"Z—(r—e* = (r— &

— & - =&+ &ibin
. . . =3, <
&[G = TING = NG =Y G+ pin&i©
j=1 0¢;
% piviél — 8’(:) Di—1 — Pi+1£i'¢'i—1:|

;OB 4 o2 A
+ (a g e +o) (pZH& + iy o)

where

2 1 1o 4
ywann+§ax@+§pm&00.

(Y 3,1
Pt =\ e 4

to check that (3.11) satisfies Assumptions 1-5 with
m(w, i) = [—powr — w3, wi]’

c(w, p) = —powr — (p1 + wi)et — 2wawy — wﬁ

Following the procedure described in Sections Il and Il1, we can design
the dynamic controller

0o 1 0 0
0= 0 0 1{n+]0]¢
-1 -3 -3 1
f=—+u

O =py? +palé — )
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Fig. 1. Transiwnt response of the error signal of (3.11).

>

6 L L |

Fig. 2. Transient response of the states of (3.11).

where

u=E"—y+3(E—m+ne —3n)
— (124 0)(E—m +n2 — 303 — £ )p2

o 2 2 J
% (E=m+mn2—3n3) —pry(pry” +p2(E =€ )z)

4+ =2+ 33

+

po=1445(e"+1)7 & =-8y—pyb

N N 2
6—- =—-8 — p1 6 — 9;1;(3)((3"’ + %) p2 = 0.25 % .
dy dy
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IV. CONCLUSION

Using the variable separation technique (Lemma 2) and the nonlinear
adaptive control method proposed in [7] and [8], we have presented a
solution to the problem of global robust output regulation for a class
of uncertain nonlinear systems driven by a linear, neutrally stable ex-
osystem. The merit of our method is that it can deal with the case where
the bounds of the exogenous signals and parameters are unknown, and
thus removing the common requirement in the literature, i.e., the un-
known parameters and exogenous signals must b&moeancompact
set.
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Figs. 1 and 2 show simulation results when = 0.05, u2 = 0.2,

the disturbance signal»(t) = 0.3sin(t) and the reference
signal wy(#) = 1. The initial conditions argx1(0), 22(0)) =

(1, 0). 7(0) = 0, £(0) = 0 and®(0) = —1. Fig. 1 is the error signal
which converges to zero and Fig. 2 shows that all the states of the
closed-loop system, i.e(.¢1, @2, 7, &, @), are bounded.
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