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of �; and write�+(�; d; t) (��(�; d; t)) for a solution of (4) with
�(0) = �, #(0) = 0 (#(0) = ��), and disturbanced.

Find an integerK such that"=4 > 2�K+1 and2�K+1 < �=12.
Let x0 = e(6K�2)� , so that�0 = �(e(6K�2)�); and let alsox1 =
e(6K+2)� and�1 = �(x1).

Recall that, by property 2),x1 � r(x1; t) < 1:03x1 andx0 �
r(x0; t) < 1:03x0 for all t 2 [0; �=12]. In particular, for anyt 2
[0; �=12], and withx0 = e(6K�2)� , x1 = e(6K+2)� , bothr(x0; t)
andr(x1; t) will be in the interval[e(6K�2:5)� ; e(6K+2:5)� ]. Then,
by construction of�, both �(�0; t) = �(r(x0; t)) and�(�1; t) =
�(r(x1; t)) will belong to the interval[e6K�

� 2�K; e6K� + 2�K],
so that

�+(�1; t)� �+(�0; t) < 2�K+1; t 2 [0; �=12]:

Therefore, there must exist a positive�0 < 2�K+1 such that ifd0 :=
1[0; � ], then

�+(�1; �0) = �+(�0; d0; �0):

So

�+(�0; d0; �) = �+(�1; �) = �� e(6K+1)� :

Let �2 := ��(e(6K+1)�), �3 := ��(e(6K+5)�).
Next, take a disturbanced1 = 1[�;�+� ], with some�1 < 2�K+1

such that

��(�3; �1) = ��(�2; d1(�+ �); �1):

Then

�+(�0; d0 + d1; 2�) = ��(�2; d1(�+ �); �)

= ��(�3; �) =� e(6K+4)� :

Generally, for eachk � 0, we let

�4k :=� e(6(K+k)�2)�

�4k+1 :=� e(6(K+k)+2)�

�4k+2 :=�� e(6(K+k)+1)�

�4k+3 :=�� e(6(K+k)+5)�

and choose�2k � 2�K�k+1 and�2k+1 � 2�K�k+1 so that

�+(�4k+1; �2k) = �+(�4k; d2k(�+ 2k�); �2k)

and

��(�4k+3; �2k+1) = ��(�4k+2; d2k+1(�+ (2k+ 1)�); �2k+1)

with dl := 1[0; � ].
Finally, letd :=

l
dl. Then

d(t)dt = �l � 4=2K�1 < "

and

lim
t!+1

�+(�0; d; t) =1:
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A Note on Global Output Regulation of Nonlinear Systems
in the Output Feedback Form

Qi Gong and Wei Lin

Abstract—This note shows how the adaptive control method developed
recently for nonlinearly parameterized systems can be used to solve the
problem of global output regulation, for nonlinear systems in the so-called
output-feedback form with unknown parameters and exogenous signals be-
longing to a compact set whose bound is also unknown.

Index Terms—Adaptive nonlinear control, global output regulation,
output feedback.

I. INTRODUCTION AND PRELIMINARIES

In this note, we consider the problem of global output regulation for
nonlinear systems of the form

_x =F (�)x+G(y; !; �) + g(�)u

_y =H(�)x+K(y; !; �)

_! =S!

e = y � q(!; �) (1.1)
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where! 2 IRs is the exogenous signal,x 2 IRn, u 2 IR, andy 2 IR
are the system states, input and output, respectively. The error signale
is the only measurable variable that can be used in feedback design. The
unknown constant� belongs to a compact set} � IRp whose bound is
unknown. G(y; !; �), K(y; !; �) andq(!; �) are smooth functions
of their arguments, not necessarily vanishing at(y; !) = (0; 0). The
exosystem is assumed to be neutrally stable, i.e., all the eigenvalues of
S are simple and lie on the imaginary axis.

The robustoutput regulation problem is to find a smooth dynamic
controller

_� =�(�; e); � 2 IRr

u =�(�; e) (1.2)

such that the closed-loop system (1.1) and (1.2) isglobally boundedfor
any initial condition(x(0); y(0); �(0); !(0)) and any� 2 }. More-
over, limt!1 e(t) = 0.

In the absence of! and when the vector fieldsG(�) andK(�) vanish
aty = 0, (1.1) is in theoutput feedback form, whose global stabilization
problem by output feedback has been well studied; see, for instance,
[9], [5], as well as the references therein. As for the output regulation
problem of (1.1), the first global result was reported in [11], under the
condition that the exogenous signal! and the unknown parameter�
belong toa priori known compact set. Obviously, this is a restrictive
assumption, simply because when information of the bounds of exosig-
nals are changed, the controller should also be changed accordingly. In
[13], a universal controller was proposed to remove the restriction for
a class of uncertain decentralized systems with polynomial nonlineari-
ties, which covered the system in the output feedback form as a special
case.

The purpose of this note is to propose an adaptive output regulator
based on the adaptive control method developed recently for nonlin-
early parameterized systems [8] and the feedback domination design
technique [6], which achieves global output regulation of the nonlinear
system (1.1) without requiring the knowledge of the bounds of the un-
known parameters and exosignals. Our result provides an interesting
alternative solution to the problem considered in [13] (in nondecentral-
ized case) and, thus, complementing the results obtained in [13].

Throughout this note, we make the following assumptions that have
been commonly used when dealing with output regulation of nonlinear
systems in the output feedback form.

Assumption 1:System (1.1) has a uniform relative degreer � 2.
Assumption 2:For system (1.1), the sign of the high-frequency gain

b(�) = H(�)F r�2(�)g(�)

is known and satisfiesjb(�)j � b0 > 0, with b0 being a known con-
stant.

Assumption 3:For every � 2 }, the linear system
(F (�); g(�); H(�)) is minimum phase.

Remark 1.1: By Assumption 3, the linear system_x = F (�)x +
g(�)u, y = H(�)x, is minimum phase. This, together with Assump-
tion 1, implies that Assumption 3 is essentially equivalent to the con-
dition that the matrixF (�)� (1=b(�))g(�)H(�)Fr�1(�) is Hurwitz
with the restrictionH(�)F i(�)x = 0, i = 0; 1; . . . ; r � 2. This is
exactly the assumption used in [9], [5], where the global stabilization
problem was studied.

Remark 1.2: System (1.1) is a bit more general than those studied
in [11], [13], for the reason that the vector fieldsG(y; !; �) and
K(y; !; �) need not to be vanished aty = 0. Hence, (1.1) is not
necessary to be globally minimum phase with respect to the outputy.

To ensure the solvability of the output regulation problem, the fol-
lowing assumption is necessary [4], [11].

Assumption 4:There exists a global defined smooth functions
�(!; �) andc(!; �) satisfying the regulator equations

@�(!; �)

@!
S! =F (�)�(!; �) +G(q(!; �); !; �) + g(�)c(!; �)

@q(!; �)

@!
S! =H(�)�(!; �) +K(q(!; �); !; �):

Under Assumptions 1–3, it has been shown in [9] that there exists
a parameter-dependent filter transformation such that system (1.1) can
be put into a lower-triangular form. Indeed, introduce the filter

_� =A� +Bu

:=

��1 1 0 � � � 0 0

0 ��2 1 � � � 0 0

...
...

... � � �
...

...

0 0 0 � � � ��r�2 1

0 0 0 � � � 0 ��r�1

� +

0

0

...

0

1

u

(1.3)

with �i > 0, 1 � i � r � 1, being real numbers, and a parameter-
dependant change of coordinates

z = x�D(�)� �
d(�)

b(�)
y (1.4)

whered(�) = (F + �1I) � (F + �2I); . . . ; (F + �r�1I)g(�) and
D(�) satisfies

F (�)D(�)�D(�)A = [d(�); 0; . . . ; 0]

g(�) =D(�)[0; . . . ; 0; 1]T

H(�)D(�) = [b(�); 0; . . . ; 0]: (1.5)

With the aid of (1.3) and (1.4), (1.1) is transformed into

_z =F (�)z +G(y; !; �)

_y =H(�)z +K(y; !; �) + b(�)�1

_� =A� +Bu

_! =S!

e = y � q(!; �) (1.6)

where

G(y; !; �) = F (�)�
d(�)

b(�)
H(�)

d(�)

b(�)
y

+G(y; !; �)�
d(�)

b(�)
K(y; !; �)

H(�) =H(�)

F (�) =F (�)�
d(�)

b(�)
H(�)

K(y; !; �) =H(�)
d(�)

b(�)
y +K(y; !; �):

By construction, it is easy to see thatF (�) is a Hurwitz matrix for all
� 2 }.

II. PROBLEM TRANSFORMATION

As pointed out in [3], [11], and [12], the problem of output regulation
can be transformed into a stabilization problem under suitable condi-
tions. In this section, we use the method introduced in [3] to perform
such a transformation under the following hypothesis.
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Assumption5:Supposec(!(t); �) defined in Assumption 4 is a
trigonometric polynomial of the form

c(!(t); �) =

l

i=�l

ci(!(0); �)e
j!̂ t

wherel is a fixed finite integer,ci are unknown complex numbers with
c�i = c�i for i = 0; �1; . . . ; �l, in which “�” stands for the complex
conjugate, and̂!i = �!̂�i are known constants.

Remark 2.1: The previous assumption simply says thatc(!(t); �)
as a function of timet is a combination of sinusoidal signals and con-
stant signals, with fixed known frequencies and unknown amplitudes
that depend on the unknown parameters and the initial condition of
exosignals. Assumption 5, in general, allows only polynomial nonlin-
earities.

As shown in [2] and [3], Assumption 5 implies the existence of a
global defined mapping� (!(t); �) and a set of real numbers,ai, i =
1; . . . ; v, for some fixed integerv, satisfying

_�(!(t); �) =� � �

c(!(t); �) =	 � � (2.1)

where

� =

0 1 0 � � � 0

0 0 1 � � � 0

...
...

...
. . .

...

0 0 0 � � � 1

a1 a2 a3 � � � a�

and	 = [1; 0; . . . ; 0]:

It can be shown that all the eigenvalues of� are simple and located on
the imaginary axis [2], [3], [12].

We show in the next section that Assumptions 1–5 suffice to solve
the global output regulation problem. To begin with, we first introduce
a useful lemma.

Lemma 1: Under Assumptions 1–5, there exists a global defined
smooth function&(!; �; �) satisfying

@&(!; �; �)

@!
;
@&(!; �; �)

@�

S 0

0 �

!

�

= F (�)&(!; �; �) +G(q(!; �); !; �)

@q(!; �)

@!
S!

= H(�)&(!; �; �) +K(q(!; �); !; �) + [b(�); 0; . . . ; 0]��

(2.2)

where� 2 IR(r�1)�� is the unique solution of Sylvester equation
�� = A� + [0; . . . ; 0; 1]T	.

Lemma 1 can be easily proved by verifying that

&(!; �; �) = �(!; �)�D(�)�� �
d(�)

b(�)
q(!; �) (2.3)

is a solution of (2.2).
Remark 2.2: Note that (2.2) is actually the regulator equation

for (1.6), if ! = [!; � ]T is treated as a new exogenous signal.
Therefore, Lemma 1 implies that, under suitable assumptions,
if a solution to the regulator equation of the original system
(1.1) exists, so does the regulator equation of the transformed
system (1.6). Furthermore, it is given by&(!; �; �), c(!; �) and
�(�; �) = [�1(�; �); . . . ; �r�1(�; �)]

T = �� .
Remark 2.3: In [11], a condition is imposed on the transformed

system (1.6) requiring that the regulator equation of (1.6) has a global
solution. By Lemma 1, the assumption is imposed on the original

system directly. The reason for doing this is two-fold: 1) Assumption
4 is necessary for solving the output regulation problem [4]; and 2) it
is independent of the controller design procedure.

Now, we are ready to design the internal model and to transform
the output regulation problem to a stabilization problem via a global
change of coordinates. For simplicity, we give only a sketch of the pro-
cedure here. The reader is referred to [10], [11], or [3] for details.

First Step: Picking any controllable pair(M; N) with M 2 IRv�v

a Hurwitz matrix andN 2 IRv�1, one can solve the Sylvester equation

T��MT = N	

to get a unique nonsingular matrixT [12], [10]. By Assumption 5,
�i(�(t); �), i = 1; . . . ; �, are all trigonometric polynomials. Com-
bining this fact with (2.1), we have

�
(�)
1 (�(t); �) = a1 � �1(�(t); �) + a2 � _�1(�(t); �)

+ � � �+ a� � �
(��1)
1 (�(t); �):

Let �̂ = T �[�1(� (t); �); _�1(�(t); �); . . . ; �
(��1)
1 (�(t); �)]T . Then

_̂� =T�T�1 � �̂

�1(�(t); �) =	1 � �̂

�i(�(t); �) =	i � �̂

where	1 = 	T�1, 	i = 	i�1(�i�1I + T�T�1), i = 2; . . . ; r
and�r(�(t); �) = c(!(t); �). Furthermore, it is shown in [3] that

_� = M� +N�1

is an internal model for (1.6).
Second Step:Use the following change of coordinates:

�̂ = � � �̂(!; �)�Nb
�1(�)e

ẑ = z � &(!; �)

e = y � q(!; �)

�̂i = �i �	i�; 1 � i � r � 1

û =u�	r�

and denote

Z =[�̂; ẑ]T

C1 =[Iv�v; 0]

C2 =[0; . . . ; 0; 1]

Ĝ(e; !; �) � e =G(e+ q(!; �); !; �)�G(q(!; �); !; �)

K̂(e; !; �) � e =K(e+ q(!; �); !; �)�K(q(!; �); !; �)

R(�) =
M �b�1(�)NH(�)

0 F (�)

L(e; !; �) =
b�1(�)(MN �NK̂(e; !; �))

Ĝ(e; !; �)
:

It is easy to check that (1.6) in the new coordinates has the following
triangular form:

_Z =R(�)Z + L(e; !; �)e

_e =H(�)C2Z + b(�)	1C1Z

+ K̂(e; !; �) + 	1N � e+ b(�)�̂1

_̂
�1 =��1�̂1 �	1N�̂1 + �̂2

...
_̂
�r�1 =��r�1�̂r�1 �	r�1N�̂1 + û: (2.4)
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Clearly, if system (2.4) is globally asymptotically stabilized by mea-
surement feedback(e; �̂1; . . . ; �̂r�1), the same controller also solves
the global output regulation problem for the original system (1.1).

III. M AIN RESULT

A main difficulty in stabilizing system (2.4) is due to the unmea-
surable exogenous signals and the unknown parameters that enter the
system nonlinearly. In this section, we will demonstrate how to uti-
lize thevariable separation technique[7], combined with thefeedback
domination designmethod [6], to globally stabilize system (2.4). Note
that the result below does not require bounds of the exogenous signals
and the unknown parameters to be known, which has been a common
condition in the literature such as [11], [3]. The following lemma is
useful when dealing with a nonlinear parameterization problem.

Lemma 2 [7], [8]: For any real-valued continuous function
f(x; y), wherex 2 IRm, y 2 IRn, there are smooth scalar functions
a(x) � 0, b(y) � 0, c(x) � 1 andd(y) � 1, such that

jf(x; y)j � a(x) + b(y)

jf(x; y)j � c(x)d(y):

Using this lemma and the feedback domination design method [8],
we can prove the following result.

Theorem 1: Under Assumptions 1–5, global output regulation of the
uncertain system (1.1) is achievable by an error feedback of the form
(1.2).

Proof: As discussed in the previous section, one needs only to
design an adaptive controller for system (2.4) making the closed-loop
system globally asymptotically stable. By construction,R(�) is a Hur-
witz matrix. Thus, there is a matrixP (�) = P T (�) > 0 satisfying

RT (�)P (�) + P (�)R(�) � �2I:

Recall that both!(t) and� are in compact sets whose bounds are un-
known. By Lemma 2

kP (�)L(e; !; �)k2 � �1(!; �)�1(e) � �1�1(e)

kK̂(e; !; �) + 	1Nk2 � �2(!; �)�2(e) � �2�2(e)

kH(�)k2 � �3

jb(�)j2 � �4

where�1(e) � 1,�2(e) � 1 are smooth known functions and�i � 1,
i = 1; . . . ; 4, are unknown constants. Denote� = maxf�i; i =
1; . . . ; 4g as a new unknown parameter. Without lose of generality,
one can assumeb(�) > 0. Now, consider the Lyapunov function

V0(Z; e; �̂) =
r + 1

2
ZTP (�)Z +

1

2b(�)
e2 +

1

2
~�2

where~� := �� �̂ and�̂ is the estimation of�. A direct calculation
gives

_V0 ��(r + 1)ZTZ + (r + 1)ZTP (�)L(e; !; �)e+
e

b(�)

� [H(�)C2Z+b(�)	1C1Z+(K̂(e; !; �)+	1N)e+b(�)�̂1]

� (�� �̂)
_̂
�: (3.1)

By the completion of squares, one has

(r + 1)ZTP (�)L(e; !; �)e �
1

3
ZTZ +

3(r+ 1)2

4
��1(e)e

2

e

b(�)
H(�)C2Z �

1

3
ZTZ +

3

4b2
0

�e2

e	1C1Z �
1

3
ZTZ +

3

4
k	1C1k

2e2

e

b(�)
(K̂(e; !; �) + 	1N)e �

�

b0
�2(e)e

2:

From the aforementioned inequalities, it follows that

_V0 � �rZTZ+e�̂1+e
2 �1(e)�̂ +

3

4
k�1C1k

2 +~� �1(e)e
2 �

_̂
�

where

�1(e) =
3(r+ 1)2

4
�1(e) +

1

b0
�2(e) +

3

4b2
0

:

Clearly, the virtual controller

�̂�1 = ��̂1(e; �̂)e := � r +
3

4
k�1C1k

2 + �̂�1(e) e

is such that

_V0 � �rZTZ � re2 + e~�1 + ~� �1(e)e
2 �

_̂
� ; ~�1 = �̂1 � �̂�1 :

Step 1: Construct the Lyapunov functionV1(Z; e; �̂1; �̂) =
V0(Z; e; �̂) + (1=2)~�21 . Then

_V1 ��rZTZ � re2 + e~�1 + ~� �1(e)e
2 �

_̂
�

+ ~�1(�	1N�̂1 � �1�̂1 + �̂2)� ~�1
@�̂�1
@e

[H(�)C2Z

+ b(�)	1C1Z + (K̂ +	1N)e+ b(�)�̂1]� ~�1
@�̂�1

@�̂

_̂
�: (3.2)

By Lemma 2 and the completion of squares, it is easy to show that

�~�1
@�̂�1
@e

H(�)C2Z �
1

2
ZTZ +

1

2

@�̂�1
@e

2

�~�21 (3.3)

�~�1
@�̂�1
@e

b(�)	1C1Z �
1

2
ZTZ +

1

2

@�̂�1
@e

2

�k	1C1k
2~�21 (3.4)

�~�1
@�̂�1
@e

(K̂+	1N)e �
1

2
e2 +

1

2

@�̂�1
@e

2

�2(e)~�
2

1� (3.5)

�~�1
@�̂�1
@e

b(�)�̂1 �
1

2
e2 +

1

2
~�21

@�̂�1
@e

2

+
1

2
~�21�

+
1

2
~�21

@�̂�1
@e

2

�̂21(e; �̂)�: (3.6)

Substituting (3.3)–(3.6) into (3.2) yields

_V1 ��(r � 1)ZTZ � (r � 1)e2 + ~�1�̂2

+ ~�1 ~�1�2�̂ + e�	1N�̂1 � �1�̂1 +
1

2
~�1

@�̂�1
@e

2

�
@�̂�1

@�̂
(�2~�

2

1 + �1e
2)

+ ~�1
@�̂�1

@�̂
+ ~� �2 ~�

2

1 + �1e
2 �

_̂
� (3.7)
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where

�2(e; �̂) =
1

2

@�̂�1
@e

2

+
1

2

@�̂�1
@e

2

k	1C1k
2

+
1

2

@�̂�1
@e

2

�2(e) +
1

2

@�̂�1
@e

2

�̂21(e; �̂) +
1

2
:

Observe that the smooth virtual controller

�̂�2(e; �̂1; �̂) = �(r � 1)~�1 � e+	1N�̂1 + �1�̂1

�
1

2

@�̂�1
@e

2

~�1 � �2�̂~�1 +
@�̂�1

@�̂
(�2 ~�

2

1 + �1e
2)

renders

_V1 � �(r�1)ZTZ�(r�1)e2�(r�1)~�21+~�1 ~�2+( 1+~�) �1 �
_̂
�

where 1(e; �̂1; �̂) = ~�1 (@�̂
�

1=@�̂); �1(e; �̂1; �̂) = �2 ~�
2
1 + �1e

2,
~�2 = �̂2 � �̂�2 . By construction,̂��2(0; 0; �̂) = 0,  1(0; 0; �̂) = 0
and�1(0; 0; �̂) = 0.

Inductive Step:Suppose at theith step that there is a set of smooth
virtual controllers

�̂�j = �j(e; �̂1; . . . ; �̂j�1; �̂)

with �j(0; . . . ; 0; �̂) = 0, j = 1; 2; . . . ; i, and a smooth Lyapunov
functionVi�1(Z; e; �̂1; . . . ; �̂i�1; �̂), which is positive definite and
proper, such that

_Vi�1 � �(r � i+ 1)ZTZ � (r � i+ 1)e2 � (r � i+ 1)~�21 � ~�22

� � � � � ~�2i�1 + ~�i�1~�i + ( i�1 + ~�) �i�1 �
_̂
� (3.8)

where ~�j = �̂j � �̂�j , j = 1; 2; . . . ; i, and i�1(0; . . . ; 0; �̂) =

�i�1(0; . . . ; 0; �̂) = 0, 8 �̂ 2 IR.
At stepi + 1, we prove that (3.8) holds as well. For, consider the

Lyapunov function

Vi(Z; e; �̂1; . . . ; �̂i; �̂) = Vi�1(Z; e; �̂1; . . . ; �̂i�1; �̂) +
1

2
~�2i :

Then

_Vi ��(r � i+ 1)ZTZ � (r � i+ 1)e2 � (r � i+ 1)~�21 � ~�22

� � � � � ~�2i�1 + ~�i�1~�i + ( i�1 + ~�) �i�1 �
_̂
�

+ ~�i�̂i+1 � ~�i�i�̂i � ~�i	iN�̂1

� ~�i
@�i
@e

_e+
@�i

@�̂1

_̂
�1 + � � �+

@�i

@�̂i�1

_̂
�i�1 +

@�i

@�̂

_̂
� :

Using an argument similar to the ones in the previous step, we have

_Vi ��(r � i)ZTZ � (r � i)e2 � (r � i)~�21

� ~�22 � � � � � ~�2i�1 + ~�i�̂i+1

+ ~�i ~�i�1 �	1N�̂1 � �i�̂i �

i�1

j=1

@�i

@�̂j

_̂
�j + �i+1 ~�i�̂

�
@�i

@�̂
�i+1 ~�

2

i �
@�i

@�̂
�i�1 � �i+1 ~�i i�1

+ ~�i
@�i

@�̂
+  i�1 + ~� �i+1 ~�

2

i + �i�1 �
_̂
�

where

�i+1 =
@�i
@e

2
3

4
+

1

2
k	1C1k

2 +
1

2
�2(e) +

1

2
�̂21(e; �̂) :

Therefore, the smooth virtual controller

�̂�i+1 = �~�i � ~�i�1 +	1N�̂1 + �i�̂i +

i�1

j=1

@�i

@�̂j

_̂
�j � �i+1 ~�i�̂

+
@�i

@�̂
�i+1 ~�

2

i +
@�i

@�̂
�i�1 + �i+1 ~�i i�1

renders

_Vi � �(r � i)ZTZ � (r � i)e2 � (r � i)~�21 � ~�22

� � � � � ~�2i + ~�i ~�i+1 + ( i + ~�) �i �
_̂
�

where  i(e; �̂1; . . . ; �̂i; �̂) =  i�1 + ~�i(@�i=@�̂) and
�i(e; �̂1; . . . ; �̂i; �̂) = �i�1 + �i+1 ~�

2
i .

Using this inductive argument, we conclude that at stepr� 1, there
are a smooth controller

û = �r(e; �̂1; . . . ; �̂r�1; �̂) with �r(0; . . . ; 0; �̂) = 0 (3.9)

and a smooth Lyapunov functionVr�1(Z; e; �̂1; . . . ; �̂r�1; �̂),
which is positive definite and proper, such that

_Vr�1 � �ZTZ�e2�~�21�~�22�� � ��~�2r�1+( r�1 + ~�) �r�1 �
_̂
� :

Therefore, the controller (3.9), together with the adaptive law

_̂
� = �r�1(e; �̂1; . . . ; �̂r�1; �̂) (3.10)

is such that

_Vr�1 � �ZTZ � e2 � ~�21 � ~�22 � � � � � ~�2r�1:

In other words, the closed-loop system (2.4)—(3.10) is globally stable.
Furthermore, by LaSalle’s invariance principle and the properties of
the virtual controllerŝ��j , it is easy to see that

lim
t!1

(kZk2 + e2 + �̂21 + � � �+ �̂2r�1) = 0:

This, in turn, implies that in the original coordinates, all the states
x, y, �i, i = 1; . . . ; r � 1, and �̂ are all globally bounded and
limt!1 e(t) = 0, i.e., global output regulation of (1.1) is achieved.

We conclude this section with a simple example that demonstrates
the application of Theorem 1. Consider the planar system with the
three-dimensional exosystem

_x1 = �x1 + (x2 + �1)e
x + u _!1 = 0

_x2 = x1 + �2x2 + !22 with _!2 = !3 (3.11)

e = x2 � !1 _!3 = �!2:

Note that this system is not minimum-phase with respect to the
outputy = x2, and involves a nonpolynomial nonlinearity. It is easy
to check that (3.11) satisfies Assumptions 1–5 with

�(!; �) = [��2!1 � !22 ; !1]
>

c(!; �) =��2!1 � (�1 + !1)e
! � 2!2!3 � !22 :

Following the procedure described in Sections II and III, we can design
the dynamic controller

_� =

0 1 0

0 0 1

�1 �3 �3

� +

0

0

1

�

_� =�� + u

_̂
� = �1y

2 + �2(�̂ � �̂�)2
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Fig. 1. Transiwnt response of the error signal of (3.11).

Fig. 2. Transient response of the states of (3.11).

where

u = �̂
�

� y + 3(� � �1 + �2 � 3�3)

� (12 + �̂)(� � �1 + �2 � 3�3 � �̂
�)�2

+
@�̂�

@y
(� � �1 + �2 � 3�3)� �1y(�1y

2 + �2(�̂ � �̂
�)2)

+ �1 � �2 + 3�3

�1 =1 + 4:5(ey + 1)2 �̂
� = �8y � �1y�̂

@�̂�

@y
=�8� �1�̂� 9y�̂(ey + e

2y) �2 = 0:25
@�̂�

@y

2

:

Figs. 1 and 2 show simulation results when�1 = 0:05, �2 = 0:2,
the disturbance signal!2(t) = 0:5 sin(t) and the reference
signal !1(t) = 1. The initial conditions are(x1(0); x2(0)) =
(1; 0); �(0) = 0; �(0) = 0 and�̂(0) = �1. Fig. 1 is the error signal
which converges to zero and Fig. 2 shows that all the states of the
closed-loop system, i.e.,(x1; x2; �; �; �̂), are bounded.

IV. CONCLUSION

Using the variable separation technique (Lemma 2) and the nonlinear
adaptive control method proposed in [7] and [8], we have presented a
solution to the problem of global robust output regulation for a class
of uncertain nonlinear systems driven by a linear, neutrally stable ex-
osystem. The merit of our method is that it can deal with the case where
the bounds of the exogenous signals and parameters are unknown, and
thus removing the common requirement in the literature, i.e., the un-
known parameters and exogenous signals must be in aknowncompact
set.
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