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[125I]ISAS in Post-Mortem Human Alzheimer’s Disease Brain
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Abstract: Using a molecular modeling approach for Tau-binding sites, we modified our previously
reported imaging agent, [125I]INFT, for the potential improvement of binding properties to Tau
in an Alzheimer’s disease (AD) brain. Two new derivatives, namely [125I]ISAS and [125I]NIPZ,
were designed, where binding energies at site 1 of Tau were −7.4 and −6.0 kcal/mole, respectively,
compared to [125I]INFT (−7.6 kcal/mole). The radiosynthesis of [125I]ISAS and [125I]NIPZ was carried
out by using iodine-125 and purified chromatographically to achieve >90% purity. In vitro binding
affinities (IC50) for Tau were as follows: INFT = 7.3 × 10−8 M; ISAS = 4.7 × 10−8 M; NIPZ > 10−6 M.
The binding of [125I]ISAS to gray matter (GM) correlated with the presence of Tau in the AD brain,
confirmed by anti-Tau immunohistochemistry. [125I]NIPZ did not bind to Tau, with similar levels of
binding observed in GM and white matter (WM). Four radiotracers were compared and the rank
order of binding to Tau was found to be [125I]IPPI > [125I]INFT > [125I]ISAS >>> [125I]NIPZ with
GM/WM ratios of [125I]IPPI = 7.74 > [125I]INFT = 4.86 > [125I]ISAS = 3.62 >> [125I]NIPZ = 1.24.
The predictive value of Chimera–AutoDock for structurally related compounds binding to the Tau
binding sites (measured as binding energy) was good. A binding energy of less than −7 kcal/mole is
necessary and less than −8 kcal/mole will be more suitable for developing imaging agents.

Keywords: [125I]ISAS; [125I]INFT; [125I]IPPI; post-mortem human Tau; Alzheimer’s disease;
neurofibrillary tangles; autoradiography

1. Introduction

Alzheimer’s disease (AD) is the most common type of dementia, accounting for 50 to
80 percent of dementia cases characterized by the accumulation of amyloid β (Aβ) plaques
and neurofibrillary tangles (NFT) in the brain (and resulting in a huge cost to society) [1,2].
Molecular biomarkers for AD are now indispensable for the clinical definition of the process
and stage of the disease [3]. There is now increased focus on Tau, as a more accurate, early
predictive marker for AD diagnosis. Phosphorylated p-tau immunoassays, p-tau181 [4,5],
and p-tau217 [6] confirmed that plasma p-tau has high sensitivity and specificity to detect
AD neuropathology [7,8]. Studies suggest that p-tau can quantify longitudinal changes
in tau pathology, identify neurodegeneration, and predict AD progression [9]. By using
the antibodies AT100 and pS396, phospho-tau immunostaining in neurons from the hip-
pocampal CA1 region with tau pathology indicates that the AT100/pS396 ratio decreases in
CA1 in accordance with the severity of the disease and has been suggested as a measure of
disease progression [10]. Higher correlations between p-tau217 and [18F]flortaucipir were
corroborated [7].

Alongside progress in Aβ imaging, efforts are underway on the development and
use of NFT PET imaging agents [11]. Consistent with CSF measures of p-tau, current data
suggest that in addition to Aβ imaging, NFT imaging can play an essential role in clinical
studies for the evaluation of disease progression [12]. Direct measures of brain biomarkers
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for earlier diagnosis need to be pursued in order to understand the stage of the disease.
One of the earliest PET radiotracers was [18F]FDDNP, which was less selective for NFT
with higher levels of nonspecific binding [13]. More selective PET radiotracers, such as
[18F]THK5351, provide useful information on AD patients but have recently been reported
to have significant off-target binding to monoamine oxidase (MAO B), reducing their
potential use in AD diagnosis [14]. Pyrrole derivatives such as [18F]flortaucipir also appear
to show some off-target MAO binding [15]. Nevertheless, studies using [18F]flortaucipir
and the related [18F]RO6958948 continue for NFT imaging in AD [16]. Second-generation
NFT PET radiotracers based on the azaindole structure, such as [18F]MK-6240, have been
developed; they bind more selectively to the Tau protein. Off-target binding to MAO using
in vivo may not be a concern [17]. They have high affinity and are capable of crossing
the blood–brain barrier to be valuable for the application of in vivo NFT imaging in PET
studies. As an NFT radiotracer, [18F]MK-6240 shows characteristic changes in the brains of
patients with AD [18].

Currently, there are no radioiodine-based SPECT imaging agents in human studies
for Tau and NFT. Recently, the radioiodinated derivative [125I]pyridoimidazopyridine has
been developed for in vitro studies on NFT by one research group [19]. There are no further
reports on its selectivity for Tau versus MAO off-target binding. The availability of SPECT
imaging agents will allow nuclear medicine clinics, which may not have PET capability,
to purchase the iodine-123-labeled radiopharmaceuticals for imaging studies. Also, the
availability of iodine-124-labeled radiopharmaceuticals will allow flexible transportation
to remote PET sites. Iodine-124—because of its longer half-life—will allow for extended
imaging times, enable greater clearance of nonspecific binding and, thus, provide poten-
tially better image contrast, which may be useful when small levels of NFT are present.
Substituents at the 6-position of the isoquinoline ring seem to have only a small effect on the
binding affinity to Tau. The availability of an iodine-125 azaindole derivative for in vitro
studies of NFT will be valuable to complement studies with [18F]MK-6240. Therefore, we
developed the [125I]IPPI derivative for Tau imaging, which is selective and lacks off-target
binding in vitro [20]. There is a need for Tau imaging agents that can more reliably be
useful below Braak IV stages of AD [21], discriminate between 3R and 4R Tau isoforms,
have reduced off-target binding (such as binding to meninges [22]), and be useful for
imaging other tauopathies [23]. Therefore, new derivatives, with lower lipophilicity and
high binding to Tau, capable of differentiating between 3R and 4R, are needed.

Tau isoforms 3R and 4R are present in Alzheimer’s disease (AD, 3/4R), Pick’s disease
(PiD, 3R), corticobasal degeneration (CBD, 4R), and progressive supranuclear palsy (PSP,
4R). Selective imaging agents for 3R and 4R will help the development of differential
diagnostic methods for various tauopathies. Recent preliminary reports have suggested
some Tau PET radiotracers bind to other tauopathies with varying degrees [23]. There
is much discussion on the time course of the prevalence of 3R and 4R in AD and the
differences in their relative toxicities in human AD [24].

Results with [125I]IPPI (Figure 1 (1)) demonstrated the presence of Tau in the human
AD postmortem brain selectively [20]. An iodine-124 analog, [124I]IPPI, was developed for
in vivo PET imaging and [125I]IPPI was sensitive to different levels of Tau in postmortem
human AD brain slices [25]. The lipophilicity (logP) of IPPI was found to be 4.34. For
optimal in vivo imaging, a logP of approximately 2–2.5 is preferred to ensure optimal brain
uptake across the blood–brain barrier and minimize nonspecific binding. In order to reduce
the lipophilicity (logP) of [125I]IPPI, the quinoline ring was replaced with a pyridine ring
to provide [125I]INFT (Figure 1 (2)) [26]. The logP of INFT was 2.96, significantly lower
compared to IPPI. The binding of [125I]INFT to postmortem human AD brain slices was
significant, but specific binding ratios of [125I]INFT were weaker compared to [125I]IPPI [26].
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Figure 1. Radioiodinated tau binding radioligands under development: [125I]IPPI 1 [20]; [125I]INFT
2 [26]; [125I]ISAS 3 (reported here); [125I]NIPZ 4 (reported here).

As previously discussed, the azaindole class of compounds has shown tolerance to a
variety of substitutions in the isoquinoline ring [20]. Our goal was to assess if the pyridine
ring would also be amenable to such substitutions. Thus, we investigated moving the
position of the iodine atom in INFT as well as the addition of additional nitrogen in the ring
(converting the pyridine ring to a pyrazine ring). These attributes can potentially provide
improved binding affinities and lower lipophilicity, thus improving the properties of the
imaging agent. Therefore, we prepared 5-iodo-2-(1H-pyrrolo[2,3-c]pyridine-1-yl)pyridine
([125I]ISAS; Figure 1, 3) and 5-iodo-2-(1H-pyrrolo[2,3-c]pyridine-1-yl)pyrazine ([125I]NIPZ;
Figure 1, 4). Here, we report: (1) molecular docking studies of ISAS and NIPZ to human
Tau; (2) assessment of logP; (3) synthesis of ISAS, NIPZ, and analogs; (4) measurement of
binding affinity of the analogs for Tau using the postmortem AD brain; (5) radiosynthesis
of [125I]ISAS and [125I]NIPZ; (6) autoradiographic studies of [125I]ISAS and [125I]NIPZ in
postmortem AD brain slices.

2. Results

Chimera–AutoDock was used to compare the binding of INFT, ISAS, and NIPZ
(Figure 2) to the cryo-EM three-dimensional structure of Tau fibril [20,26,27]. For purposes
of docking studies of INFT, ISAS, and NIPZ with the Tau model, energy-minimized molecu-
lar models were made using Chem Draw 3D (Figure 2A–C). Four sites in the Tau fibril were
identified for IPPI binding [20]. Table 1 compares the binding energy values (Kcal/mol) at
the four sites for IPPI, with the various pyridine derivatives reported here. Substitution of
the isoquinoline ring of IPPI with a pyridine ring in INFT adversely affects binding energies
in sites 2, 3, and 4. This was found to be the case for ISAS and NIPZ as well. Docking
studies with INFT revealed that preferential binding at Site 1 (Figure 2D) was similar to
the binding of IPPI at Site 1. The lack of the second phenyl ring in INFT (compared to
isoquinoline in IPPI) potentially reduces the hydrophobic interactions, thus weakening the
binding energies of sites 2–4. Compared to INFT, the binding energies of ISAS also bound
similarly at Site 1 (Figure 2D,E) and were, thus, able to retain the low binding energy. This
was not the case with NIPZ (Figure 2F). In the cases of INFT and ISAS (Figure 2D,E), the
three nitrogen atoms (blue) are in the same plane, while in NIPZ, the two nitrogen atoms of
the pyrazine ring are non-coplanar due to the rotation (~90◦) of the pyrazine ring (arrow in
Figure 2F). This non-coplanarity of NIPZ and its bromo analog, NBrPZ, seem to adversely
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affect the binding energies in all four sites, potentially weakening their binding affinity to
Tau in all four sites.

Figure 2. Tau filament (PDB 503L) molecular models: energy-minimized chemical structures of
azaindole derivatives, INFT (A), ISAS (B), and NIPZ (C) used in auto-docking studies. (D–F) Chimera
AD Tau model at site 1 showing binding of INFT (D; in green), ISAS (E; in green), and NIPZ (F; in
green). In the cases of INFT and ISAS, the three nitrogen atoms (blue) are in the same plane, while
in NIPZ, the two nitrogen atoms of the pyrazine ring are non-coplanar due to rotation (~90◦) of the
pyrazine ring (arrow in F). The iodine atom is seen in purple in all the panels.

Table 1. Binding affinity, lipophilicity, and binding energies of Tau agents.

Compound # Name
a Tau Affinity,

IC50
b cLogP

c Molecular Modeling
Site 1, 2, 3, 4 (Kcal/mol) Reference

1 IPPI 2.14 × 10−8 4.34 −7.8, −8.1, −8.2, −7.5 [20]

2 INFT 7.32 × 10−8 2.96 −7.6, −6.6, −6.6, −6.2 [26]

3 ISAS 4.69 × 10−8 3.18 −7.4, −6.7, −6.9, −6.4 This work

4 NIPZ >10−6 2.45 −6.0, −6.3, −6.4, −5.9 This work

10 NBrPZ >10−6 2.18 −6.8, −6.2, −6.5, −6.1 This work
a Binding affinities were measured using [125I]IPPI in postmortem AD brain slices, autoradiographically; b logP
was calculated using methodology developed by Molinspiration; c Binding energies were calculated using
Chimera–AutoDock procedures described in [20].

Altering the position of the iodine atom in INFT (Figure 1 (2)) to ISAS (Figure 1 (3))
increased the lipophilicity from 2.96 to 3.18. As expected, the inclusion of the pyrazine ring
in NIPZ (Figure 1 (4)) decreased the cLogP to 2.45. Replacing the iodine atom in NIPZ with
bromine in NBrPZ further reduced the cLogP to 2.18. The lipophilicity of IPPI remained
the highest at 4.34.

The binding affinity of the unlabeled compounds was evaluated autoradiographically
in AD brain slices labeled with [125I]IPPI. The anterior cingulate of the subjects was first
evaluated for the presence of Tau using [125I]IPPI; as expected, all AD subjects showed the
presence of Tau, as reported previously [14]. Different compounds (Table 1) at concentra-
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tions of 10−9 M to 10−5 M were used for the competition assay with [125I]IPPI. Incubation
of the brain slices with the respective compounds and [125I]IPPI was conducted in 30%
alcohol in a PBS buffer using the reported procedures [14]. The binding of [125I]IPPI to Tau
in brain slices was quantified in Digital Light Units (DLUs)/mm2 using the OptiQuant
image analysis program. Data were analyzed using GraphPad Prism 9 software. Pyrazine
derivatives, NIPZ and NBrPZ, did not exhibit significant binding to Tau. Binding affinities
of ISAS and INFT were comparable, while IPPI had a marginally higher affinity.

The synthesis of unlabeled ISAS 7 was carried out in a single step by reacting azaindole
5 with 2,4-diiodopyidine 6 (Figure 3). The nucleophilic displacement reaction resulted in
displacing the iodine at the 2-position, resulting in ISAS, 7. In order to prepare tributyltin
derivative 8, either ISAS or its bromo analog was used. Both precursors enabled an efficient
exchange of the tributyl tin, which was purified and used for radiosynthesis.
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Figure 3. Synthesis of ISAS and [125I]ISAS: Azaindole 5 reacted with 2,4-diiodopyridine 6 in dimethyl-
formamide (DMF) and potassium tert-butoxide (K+(CH3)3CO− to provide ISAS 7. INFT, 7 refluxed
with bis(tributyltin) in the presence of tetrakis(triphenylphosphine)palladium(0) for 24 h to provide
tributyltin precursor, 8. Tributyl tin precursor 8 reacted with sodium [125I]iodide using hydrogen
peroxide to provide [125I]ISAS, 3. The radioactive thin layer chromatogram (RadioTLC) of [125I]ISAS
shows a predominant peak (red) with a purity of >90%.

The radioiodination of tributyltin derivative 8 was carried out using iodine-125 sodium
iodide ([125I]NaI in sodium hydroxide solution; ARC Inc., St. Louis, MO, USA). Elec-
trophilic substitution of the tributyltin derivative using hydrogen peroxide as the oxidant
was carried out using our previously reported methods [16,19]. Tributyltin derivative 8
(0.1 mg in 0.1 mL ethanol) reacted with 3.7 MBq [125I]NaI and was allowed to proceed at
room temperature for 60 min followed by termination using sodium bisulfite.
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The purification and isolation of [125I]ISAS were carried out on preparative TLC. The
product was extracted using dichloromethane and then dried using anhydrous mgSO4. Ra-
dioTLC confirmed a radiochemical purity of >90% [125I]ISAS with some minor impurities at
a higher Rf (Figure 3). Using the molar activity of commercially available no-carrier-added
[125I]sodium iodide, the molar activity of [125I]ISAS was estimated to be approximately
90 TBq/mmol. The radiochemical yield of [125I]ISAS was approximately 50%

The synthesis of unlabeled NBrPZ 10 was carried out in a single step by reacting
azaindole 5 with 2,5-dibrompyrazine 9 (Figure 4). The nucleophilic displacement reaction
resulted in displacing the bromine at the 2-position, resulting in NBrPZ, 10. Tributyltin
derivative 11 was prepared through an efficient exchange of the bromine with tributyltin,
which was then purified and used for radiosynthesis.

Molecules 2024, 29, x FOR PEER REVIEW 7 of 15 
 

 

 

Figure 4. Synthesis of [125I]NIPZ: Azaindole 5 reacted with 2,5-dibromopyrazine 9 in dimethylfor-

mamide (DMF) and potassium tert-butoxide (K+(CH3)3CO− to provide the brominated derivative, 

NBrPZ 10. Refluxing the bromo derivative 10 with bis(tributyltin) in the presence of tetrakis(tri-

phenylphosphine)palladium(0) for 24 h provided the tributyltin precursor, 11. Tributyl tin precur-

sor 11 reacted with sodium [125I]iodide using hydrogen peroxide to provide [125I]NIPZ, 4. The radi-

oactive thin layer chromatogram (RadioTLC) of [125I]NIPZ (red) shows a predominant peak with a 

purity of >90%. 

The anterior cingulate from six AD subjects was used for the evaluation of [125I]ISAS 

binding. Figure 5 shows the binding of [125I]ISAS to one subject (AD 11-107) and a com-

parison with [125I]IPPI binding to the same subject. The brain slice (Figure 5A) consisted of 

the anterior cingulate (gray matter, GM) and corpus callosum (white matter, WM). Figure 

5B shows the binding of [125I]ISAS to the GM regions in AD 11-107 with significantly lower 

binding in WM. A [125I]ISAS GM/WM ratio of 6.14 was measured. Similarly, an adjacent 

brain slice of AD 11-107 exhibited significant amounts of [125I]IPPI binding in the GM. A 

higher [125I]IPPI GM/WM ratio of 7.84 was measured, indicative of the better affinity of 

IPPI for Tau. The adjacent anti-Tau immunostained (IHC) brain section of AD 11-107 in-

dicated the presence of abundant Tau (Figure 5D). Areas of Tau IHC in Figure 5D corre-

sponded to [125I]ISAS and [125I]IPPI binding in Figure 5B,C. Competition of [125I]ISAS in the 

presence of 10 μM IPPI reduced the GM/WM ratio to 1.45, while for [125I]IPPI in the pres-

ence of 10 μM ISAS, the GM/WM ratio was reduced to 0.99. This confirms that [125I]ISAS 

and [125I]IPPI bind to similar Tau sites in the AD brain. 

Figure 4. Synthesis of [125I]NIPZ: Azaindole 5 reacted with 2,5-dibromopyrazine 9 in dimethylfor-
mamide (DMF) and potassium tert-butoxide (K+(CH3)3CO− to provide the brominated deriva-
tive, NBrPZ 10. Refluxing the bromo derivative 10 with bis(tributyltin) in the presence of
tetrakis(triphenylphosphine)palladium(0) for 24 h provided the tributyltin precursor, 11. Tributyl tin
precursor 11 reacted with sodium [125I]iodide using hydrogen peroxide to provide [125I]NIPZ, 4. The
radioactive thin layer chromatogram (RadioTLC) of [125I]NIPZ (red) shows a predominant peak with
a purity of >90%.

The radioiodination of tributyltin derivative 11 was carried out using iodine-125
sodium iodide, similar to the previously described procedure. Tributyltin derivative 11
(0.1 mg in 0.1 mL ethanol) reacted with 3.7 MBq [125I]NaI and was allowed to proceed
at room temperature for 60 min followed by termination using sodium bisulfite. The
purification and isolation of [125I]NIPZ were carried out on preparative TLC as described
previously for [125I]ISAS. RadioTLC confirmed a radiochemical purity of >90% [125I]NIPZ
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(Figure 4). Using the molar activity of the commercial no-carrier-added [125I]sodium iodide,
the molar activity of [125I]NIPZ was estimated to be approximately 90 TBq/mmol. The
radiochemical yield of [125I]NIPZ was approximately 30%.

The anterior cingulate from six AD subjects was used for the evaluation of [125I]ISAS
binding. Figure 5 shows the binding of [125I]ISAS to one subject (AD 11-107) and a compar-
ison with [125I]IPPI binding to the same subject. The brain slice (Figure 5A) consisted of the
anterior cingulate (gray matter, GM) and corpus callosum (white matter, WM). Figure 5B
shows the binding of [125I]ISAS to the GM regions in AD 11-107 with significantly lower
binding in WM. A [125I]ISAS GM/WM ratio of 6.14 was measured. Similarly, an adjacent
brain slice of AD 11-107 exhibited significant amounts of [125I]IPPI binding in the GM.
A higher [125I]IPPI GM/WM ratio of 7.84 was measured, indicative of the better affinity
of IPPI for Tau. The adjacent anti-Tau immunostained (IHC) brain section of AD 11-107
indicated the presence of abundant Tau (Figure 5D). Areas of Tau IHC in Figure 5D cor-
responded to [125I]ISAS and [125I]IPPI binding in Figure 5B,C. Competition of [125I]ISAS
in the presence of 10 µM IPPI reduced the GM/WM ratio to 1.45, while for [125I]IPPI in
the presence of 10 µM ISAS, the GM/WM ratio was reduced to 0.99. This confirms that
[125I]ISAS and [125I]IPPI bind to similar Tau sites in the AD brain.

Figure 5. Postmortem human brain autoradiography [125I]ISAS: (A) human postmortem AD 11-107
brain anterior cingulate (10 µM thick sections) showing gray matter (GM) and white matter (WM).
(B) Binding of [125I]ISAS to Tau (shown by arrows) in the gray matter regions of the anterior cingulate
of AD 11-107 brain slice. (C) Binding of [125I]IPPI to Tau (shown by arrows) in the gray matter regions
of the anterior cingulate of AD 11-107 brain slice. (D) Anti-Tau staining of AD 11-107 showing the
presence of Tau in GM regions. Inset shows magnification (20 µM) of GM region shows Tau (arrow).
(E) Displacement of [125I]ISAS from Tau binding sites by 10 µM IPPI (inset shows displacement of
[125I]IPPI by 10 µM ISAS. (F) The plot of [125I]IPPI and [125I]ISAS binding to Tau in GM and reference
region WM. The binding of [125I]IPPI in the GM was reduced in the presence of 10 µM ISAS and
[125I]ISAS binding was reduced by 10 µM IPPI to levels of nonspecific binding in the WM. Ratios of
GM/WM were: [125I]IPPI = 7.84; [125I]ISAS = 6.14; [125I]IPPI + 10 µM ISAS = 0.99; [125I]ISAS + 10 µM
IPPI = 1.45.
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In vitro binding of four radiotracers (Figure 1), [125I]INFT, [125I]ISAS, [125I]IPPI, and
[125I]NIPZ were evaluated in AD 11-78 brain slices. The brain slice (Figure 6A, inset)
consisted of the anterior cingulate (GM) and corpus callosum (WM). Significant [125I]INFT
binding was observed in the GM, including the anterior cingulate (arrows in Figure 6A),
while the WM consisting of corpus callosum had lower binding. A similar binding profile
was observed with [125I]ISAS in the GM and WM (arrows in Figure 6B). The binding of
[125I]INFT and [125I]ISAS correlated very well with the IHC findings of total Tau, as seen
in Figure 6C (arrows and inset), confirming the binding of [125I]INFT and [125I]ISAS to
regions with Tau in the brain slice. The highest levels of binding to the GM of AD 11-78
were observed with [125I]IPPI, as seen in Figure 6E, while little or no specific binding
in the GM was seen with [125I]NIPZ (Figure 6G). The corresponding brain slice of the
[125I]NIPZ experiment is seen in Figure 6H, confirming the presence of GM regions. In
order to further ascertain the inability of [125I]NIPZ to bind to Tau sites, a competition
experiment involving BrNIPZ (10 µM 10) with [125I]IPPI confirmed the lack of displacement
from Tau sites (Figure 6F). Thus, the rank order of binding of the four radiotracers to Tau
was found to be [125I]IPPI> [125I]INFT> [125I]ISAS >>> [125I]NIPZ. A plot of GM/WM
ratios of the four radiotracers is shown in Figure 7. Ratios of GM/WM were as follows:
[125I]IPPI = 7.74 > [125I]INFT = 4.86 > [125I]ISAS = 3.62 >> [125I]NIPZ = 1.24. While IPPI
was able to significantly reduce the binding of [125I]ISAS ([125I]ISAS + 10 µM IPPI = 1.70)
suggesting similar binding sites, the pyrazine derivative NBrPZ only had a marginal effect
on [125I]IPPI binding ([125I]IPPI + 10 µM NBrPZ = 5.26), suggesting a lack of binding to Tau
of the pyrazine derivative.

Figure 6. Comparison of [125I]Tau radiotracers: (A) [125I]INFT binding (arrows) in Tau-rich regions
of human postmortem AD 11-78 brain anterior cingulate (10 µM thick sections; shown in inset).
(B) Binding of [125I]ISAS to Tau (shown by arrows) in the gray matter regions of the anterior cingulate
of AD 11-78 brain slice. (C) Anti-Tau staining of AD 11-78 showing the presence of Tau in GM regions.
Inset shows magnification (20 µM) of GM region shows Tau (arrow). (D) Competition of [125I]ISAS
to Tau (shown by arrows) by 10 µM IPPI in the gray matter regions of the anterior cingulate of AD
11-78 brain slice. (E) Binding of [125I]IPPI to Tau (shown by arrows) in the gray matter regions of the
anterior cingulate of AD 11-78 brain slice. (F) No displacement of [125I]IPPI from Tau binding sites by
10 µM NBrPZ. (G) No specific binding (marked by X) of [125I]NIPZ to Tau regions of AD 11-78 in the
gray matter regions (H) occurred.
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Figure 7. Plot showing gray matter (GM) and white matter (WM) binding of four Tau radiotracers to
postmortem human AD brain slice (AD subject 11-78; Figure 6). Ratios of GM/WM were as follows:
[125I]INFT = 4.86; [125I]ISAS = 3.62; [125I]ISAS + 10 µM IPPI = 1.70; [125I]IPPI = 7.74; [125I]IPPI + 10 µM
NBrPZ = 5.26; [125I]NIPZ = 1.24.

3. Discussion

There is continued interest in the development of optimal Tau imaging agents to address
potential shortcomings of existing ones and develop new agents for other Tauopathies [27–29].
The availability of such unique imaging agents will enable studies related to neurotransmit-
ter anomalies in the AD brain [30,31]. Advancements in the antibody treatment approach
to AD are also likely to gain from small molecule imaging of AD neuropathologies [32].
To further optimize the binding properties (affinity and lipophilicity) of our previously
reported radioiodinated Tau imaging agents, [125I]IPPI and [125I]INFT, we investigated
modifications to the pyridine ring. Two modifications were carried out. First, the iodine
atom was moved from the 4-position to the 5-position in the pyridine ring. Since the Tau
binding sites can accommodate the large isoquinoline ring, this change was considered not
to be harmful for binding to Tau sites [20,33]. The binding of the new ISAS was comparable
to INFT as shown in the Chimera–AutoDock models in Figure 2, with the only difference
being in the directionality of the iodine atom. Table 1 shows the binding energies of INFT
and ISAS to be very similar for the four Tau binding sites. The binding energies for IPPI
were, however, lower than both INFT and ISAS. Based on this evaluation, we anticipated
similar binding properties of INFT and ISAS with approximately similar lipophilicities
(ISAS had a ~7% higher clogP compared to INFT, Table 1). In our previous study, compared
to INFT, two other derivatives, FNFT (fluorine instead of iodine) and ClNFT (chlorine
instead of iodine) were found to have reduced clogP values of 2.05 and 2.56, respectively.
However, the binding affinity of these two derivatives for the Tau sites was significantly
weaker by an order of magnitude compared to INFT [26]. Thus, our second alternative
approach reported here was to reduce the lipophilicity of ISAS by replacing the pyridine
ring with a pyrazine ring to provide NIPZ (Figure 1, 4). Chimera–AutoDock studies with
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NIPZ suggested that binding to Tau would be weaker at the four sites. Molecular models
suggest that the iodopyrazine ring is non-coplanar with the azaindole ring (rotation of the
iodopyrazine by ~90◦, Figure 2F) unlike INFT and ISAS where the iodopyridine ring is
co-planar with the azaindole ring (Figure 2D,E).

Based on the structural features of the limited series of compounds, it may be sur-
mised that the iodopyridine ring in INFT and ISAS binds in a hydrophobic pocket. The
larger iodine atom enhances hydrophobic interactions and replacing the iodine with more
“electronegative” substituents (such as fluorine, chlorine, or the additional ring nitrogen at
the 4-position) becomes detrimental to Tau binding.

Both [125I]ISAS and [125I]NIPZ were efficiently prepared using our previously reported
methods and used for the in vitro studies [20,26]. Similar to our previous work with
[125I]IPPI using postmortem anterior cingulate [20,25], [125I]ISAS exhibited selective binding
of Tau-rich brain regions. Although [125I]ISAS has lower lipophilicity compared to [125I]IPPI,
the higher [125I]IPPI GM/WM ratio compared to [125I]ISAS was likely related to the higher
affinity of IPPI for the Tau binding sites. Mutual competition of IPPI and ISAS supported
binding to similar Tau sites in the postmortem AD brain. The binding of [125I]INFT and
[125I]ISAS correlated very well with IHC findings of total Tau, confirming the binding of
[125I]INFT and [125I]ISAS to regions with Tau in the brain slice. Little or no specific binding in
the GM was seen with [125I]NIPZ. This finding appeared to be consistent with our molecular
modeling findings of NIPZ. Thus, the rank order of binding of the four radiotracers to Tau
based on ratios of GM/WM as well as binding energies measured by Chimera–AutoDock
were from high to low, [125I]IPPI > [125I]INFT > [125I]ISAS >> [125I]NIPZ (Figure 8).
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Figure 8. Plot of TAU binding site 1 energies measured using Chimera–AutoDock versus gray matter
(GM) and white matter (WM) binding ratio of four Tau radiotracers ([125I]IPPI, [125I]INFT, [125I]ISAS,
[125I]NIPZ) to postmortem human AD brain slice (AD subject 11-78).

In summary, less lipophilic Tau imaging agents were designed using molecular
modeling using Chimera–AutoDock and subsequently radiolabeled and evaluated us-
ing in vitro postmortem AD brain slices. This resulted in a new promising Tau imaging
agent, [125I]ISAS, which is a close analog of our previously reported [125I]INFT. The pre-
dictive value of Chimera–AutoDock for structurally related compounds (the same class of
compounds) in terms of binding to the Tau binding sites (measured as binding energy) was
good. This was ascertained for four Tau radioiodinated imaging agents. Such approaches
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may be useful in the development and optimization of radioiodinated imaging agents for
in vivo use in AD transgenic mice models [34].

4. Materials and Methods
4.1. General Methods

General methods were similar to those described previously [26].

4.2. Synthesis

5-Iodo-2-(1H-pyrrolo[2,3-c]pyridine-1-yl)pyridine (ISAS), 7: 6-Azaindole, Figure 3, 5
(102 mg, 0.86 mmol) was treated with sodium tert-butoxide (99 mg, 1.03 mmol) in dimethyl-
formamide (DMF, 1 mL) for 15 min at 100 ◦C. Subsequently, 2-chloro-4-iodopyridine,
Figure 3, 6 (331 mg, 1 mmol) was added to the reaction mixture and this mixture was then
heated at 100 ◦C for 24 h. The mixture was then cooled, 10 mL water was added, and
organics were extracted using dichloromethane (CH2Cl2). The CH2Cl2 layer was dried with
anhydrous magnesium sulfate and purified using preparative TLC (hexane:ethyl acetate
1:1) to provide ISAS, as an off-white solid 7 (60 mg, 0.2 mmol) in 20% yield. ISAS: mass
spectra (ESI): 322 [M + H]+ 100%; NMR (500 MHz, CDCl3): δ 9.63 (s, 1H), 8.79 (d, J = 5.3 Hz,
1H), 8.38 (d, J = 5.3 Hz, 1H), 8.22 (d, J = 5.3 Hz, 1H), 7.83 (s, 1H), 7.59 (d, J = 3.45 Hz, 1H),
7.33 (d, J = 4.5 Hz, 1H), 6.75 (d, J = 3.4 Hz, 1H).

5-Bromo-2-(1H-pyrrolo[2,3-c]pyridine-1-yl)pyrazine (NBrPZ), 10: 6-Azaindole, Figure 3,
5 (102 mg, 0.86 mmol) was treated with sodium tert-butoxide (99 mg, 1.03 mmol) in
dimethylformamide (DMF, 1 mL) for 15 min at 100 ◦C. Subsequently, 2,5-dibromopyrazine,
Figure 4, 9 (237 mg, 1 mmol) was added to the reaction mixture and then heated at 100 ◦C
for 24 h. The mixture was processed as described above. The CH2Cl2 layer was dried with
anhydrous magnesium sulfate and purified using preparative TLC (hexane:ethyl acetate
1:1) to provide ISAS, as an off-white solid 10 (70 mg, 0.25 mmol) in 30% yield. ISAS: mass
spectra (ESI): 275, 277 [M + H]+ 100%; NMR (500 MHz, CDCl3): δ 9.62 (s, 1H), 8.65 (d,
J = 5.3 Hz, 1H), 8.38 (d, J = 5.3 Hz, 1H), 7.83 (s, 1H), 7.58 (d, J = 3.45 Hz, 1H), 7.42 (d,
J = 4.5 Hz, 1H), 6.75 (d, J = 3.4 Hz, 1H).

4.3. Molecular Modeling

Using cryo-EM structures of tau filaments from AD (PDB 503L [33]), molecular model-
ing methods for ISAS and NIPZ were similar to those described previously for IPPI and
INFT [20,26].

4.4. Radiosynthesis

5-[125I]Iodo-2-(1H-pyrrolo[2,3-c]pyridine-1-yl)pyridine, 3 [125I]ISAS and 5-[125I]Iodo-
2-(1H-pyrrolo[2,3-c]pyridine-1-yl)pyridine, 3 [125I]NIPZ: To a solution of ISAS, 7 (10 mg;
31 µMol) or NBrPZ, 10 (10 mg; 36 µMol) in anhydrous triethylamine (1 mL) under nitrogen,
bis(tributyltin) (60 mg; 103 µMol) and Tetrakis(triphenylphosphine)palladium(0) (5 mg;
4.3 µMol) were added. This reaction mixture was refluxed overnight at 90 ◦C. The dark yel-
low crude reaction mixture was purified over a prep silica gel TLC plate using hexane:ethyl
acetate 1:1 as a solvent. The product was isolated as an oil (Figure 3, 8 and Figure 4, 11)
in 40% yield. Mass spectra (ESI) for 8: 482 (55%), 484 (100%), 486 (87%); [M + H]+; NMR
(500 MHz, CDCl3): δ 9.63 (s, 1H), 8.87 (d, J = 5.3 Hz, 1H), 8.38 (d, J = 5.3 Hz, 1H), 8.22
(d, J = 5.3 Hz, 1H), 7.79 (s, 1H), 7.59 (d, J = 3.45 Hz, 1H), 7.33 (d, J = 4.5 Hz, 1H), 6.75 (d,
J = 3.4 Hz, 1H), 1.61 (m, 6H), 1.38 (m, 6H), 1.19 (m, 6H), 0.91 (t, 9H).

For 9: 483 (43%), 485 (100%), 487 (77%). NMR (500 MHz, CDCl3): δ 9.62 (s, 1H), 8.63
(d, J = 5.3 Hz, 1H), 8.34 (d, J = 5.3 Hz, 1H), 7.80 (s, 1H), 7.58 (d, J = 3.45 Hz, 1H), 7.42 (d,
J = 4.5 Hz, 1H), 6.75 (d, J = 3.4 Hz, 1H), 1.63 (m, 6H), 1.38 (m, 6H), 1.19 (m, 6H), 0.92 (t, 9H).

Iodine-125 sodium iodide was purchased from American Radiolabeled Chemicals, Inc.,
St. Louis, MO, USA (iodine-125 sodium iodide, carrier-free (specific activity = 643 MBq/µg)
in 0.01 N NaOH). A radioiodination hood (CBS Scientific, Inc., San Diego, USA) placed
inside a fume hood designated to handle radioactive materials was used to carry out iodine-
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125 radiolabeling of 8 and 11 using our previously reported methods [20,26]. Purified
ethanolic solutions of [125I]ISAS, 3 and [125I]NIPZ, 4 at concentrations of approximately
1 MBq/mL were used for in vitro experiments. Both [125I]ISAS, 3 and [125I]NIPZ, 4 were
monitored by RadioTLC and found to be stable over several months when stored at −20 ◦C.

4.5. Human Tissue

All postmortem human brain studies were approved by the Institutional Biosafety
Committee of the University of California, Irvine. Human postmortem brain tissue samples
were obtained from Banner Sun Health Research Institute, Sun City, AZ, USA, a brain tissue
repository.

4.6. In Vitro Postmortem Human Brain Autoradiography

Human anterior cingulate sections containing corpus callosum were sectioned from the
AD subjects. Our previously reported procedures for [125I]INFT and [125I]IPPI were used
for the binding studies [20,26]. Brain sections were air dried, exposed overnight on a phos-
phor film, and then placed on the Phosphor Autoradiographic Imaging System/Cyclone
Storage Phosphor System (Packard Instruments Co., Booton, NJ, USA). Regions of interest
(ROIs) were drawn on the slices and the extent of binding of [125I]IPPI was measured in
DLU/mm2 using the OptiQuant acquisition and analysis program (Packard Instruments
Co.). Statistical differences between groups were determined using Microsoft Excel 16.
Statistical power was determined using the Student’s t test and p < 0.05 was considered to
be significant.

4.7. Immunohistochemistry

University of California–Irvine, Pathology Services, used Ventana BenchMark Ultra
protocols for immunostaining of brain sections using procedures described previously [20,26].
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