
UCLA
UCLA Electronic Theses and Dissertations

Title
Part I: The geometry and manipulation of natural data for optimizing neural networks Part II:
A theory for undercompressive shocks in tears of wine

Permalink
https://escholarship.org/uc/item/7w0278f5

Author
Dukler, Yonatan

Publication Date
2021

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7w0278f5
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

Part I: The geometry and manipulation of natural data

for optimizing neural networks

Part II: A theory for undercompressive shocks in tears of wine

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Mathematics

by

Yonatan Dukler

2021

© Copyright by

Yonatan Dukler

2021

ABSTRACT OF THE DISSERTATION

Part I: The geometry and manipulation of natural data

for optimizing neural networks

Part II: A theory for undercompressive shocks in tears of wine

by

Yonatan Dukler

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2021

Professor Andrea Bertozzi, Co-Chair

Professor Guido Francisco Montúfar Cuartas, Co-Chair

Abstract: In Part I of the thesis, we present a body of work analyzing and deriving

data-centric regularization methods for the effective training of machine learning models.

Machine learning and deep learning in particular have been highly successful in computer

vision and generative modelling in recent years. Nonetheless, the progress of such approaches

crucially relies on effective regularization, architectural, and algorithmic choices that are

often abstracted away during a first consideration. In this part we present the reader with

effective regularization approaches focused on the geometry and biases of natural data and

parameterization of deep neural networks. We start by deriving a regularization to accurately

capture geometric robustness and natural variances of images in Chapter 1. This approach

enables significant improvement in model robustness and relies on the theory of optimal

transport which we introduce alongside with our method in the chapter. Dataset regularization

is extended to active manipulation of the sampling distribution as opposed to each datum

in Chapter 2. In the chapter, we present a general and differentiable technique for dataset

ii

optimization enabling debiasing of noisy and imbalanced datasets. In our final contribution

for Part I, In Chapter 3, we study the interplay between data and model parameterization.

This concerns with the widely-spread architectural approach of neural network normalization.

We analyze the convergence dynamics of Weight Normalization and present the first proof of

global convergence for dynamically normalized ReLU networks when trained with gradient

descent.

In Part II, we study the fluid dynamics phenomena known as the tears of wine problem

for thin films in water-ethanol mixtures and present a model for the climbing dynamics. The

new formulation includes a Marangoni stress balanced by both the normal and tangential

components of gravity as well as surface tension which lead to distinctly different behavior.

The prior literature did not address the wine tears but rather the behavior of the film at earlier

stages and the behavior of the meniscus. In the lubrication limit we obtain an equation that

is already well-known for rising films in the presence of thermal gradients. Such models can

exhibit nonclassical shocks that are undercompressive. We present basic theory that allows

one to identify the signature of an undercompressive wave. We observe both compressive and

undercompressive waves in new experiments and we argue that, in the case of a preswirled

glass, the famous “wine tears” emerge from a reverse undercompressive shock originating at

the meniscus.

iii

The dissertation of Yonatan Dukler is approved.

Stanley J. Osher

Quanquan Gu

Guido Francisco Montúfar Cuartas, Committee Co-Chair

Andrea Bertozzi, Committee Co-Chair

University of California, Los Angeles

2021

iv

TABLE OF CONTENTS

I The geometry and manipulation of natural data

for optimizing neural networks 1

Overview for Part I . 2

1 Natural image prior and regularization of vision tasks via the Wasserstein

metric . 5

1.1 Introduction . 5

1.2 Mathematics of optimal transport and the Wasserstein Ground Metric 8

1.2.1 Wasserstein-1 metric . 9

1.2.2 Wasserstein-2 metric . 10

1.2.3 Wasserstein metric on graphs . 11

1.2.4 Riemannian calculus of W2 . 11

1.2.5 Wasserstein-2 gradient on discrete sample space 13

1.2.6 Efficient implementation of the Wasserstein gradient norm 16

1.3 Related works . 17

1.4 Wasserstein of Wasserstein loss for learning generative models 19

1.4.1 Wasserstein of Wasserstein loss . 21

1.4.2 Relevant literature for the Wasserstein of Wasserstein loss 27

1.4.3 Wasserstein of Wasserstein GANs . 27

1.4.4 Experiments . 31

1.4.5 Discussion . 37

1.5 Wasserstein Tikhonov regularization in image classification 37

v

1.5.1 Introduction . 37

1.5.2 Relevant literature to Wasserstein adversarial robustness 40

1.5.3 Adversarial training and ground truth geometry 41

1.5.4 Perturbed loss and Wasserstein diffusion Tikhonov regularizer 43

1.5.5 Experiments . 46

1.5.6 Discussion . 48

1.A Appendix . 50

1.A.1 Proof of equivalence of noise training with Wasserstein Thikonov Regu-

larization . 50

1.A.2 Wasserstein metric in un-normalized distributions 51

1.A.3 Detailed description of the experiments 52

1.A.4 WWGAN generated images . 54

2 Differentiable dataset optimization . 57

2.1 Introduction . 57

2.2 Related work . 59

2.3 Proposed method . 62

2.3.1 Linearization . 64

2.3.2 Computation of the dataset derivative . 65

2.3.3 Leave-one-out optimization . 67

2.3.4 Dataset optimization with DIVA . 68

2.4 Experimental results . 69

2.5 Discussion . 74

2.A Appendix . 75

vi

2.A.1 Additional experiments . 75

2.A.2 Experimental details . 77

2.A.3 Proofs of propositions . 79

3 On the dynamics and convergence of Weight Normalization for training

neural networks . 86

3.1 Introduction . 86

3.2 Related work . 89

3.3 Weight Normalization . 91

3.4 Evolution dynamics . 94

3.5 Main convergence theory . 96

3.6 Discussion . 103

3.A Appendix . 105

3.A.1 Weight Normalization dynamics proofs 106

3.A.2 Convergence proof for gradient flow . 107

3.A.3 Convergence proof for finite step-size training 129

Final remarks for Part I . 146

II A theory for undercompressive shocks in tears of wine 149

4 Modelling the tears of wine phenomena . 151

4.1 Introduction . 151

4.2 Hydrodynamic model . 153

4.3 Meniscus-driven film climbing and nonclassical shocks 158

vii

4.4 Experimental survey and simulations . 163

4.5 Conical shaped substrate . 167

4.6 Reverse undercompressive shocks on a preswirled substrate 169

4.7 Conclusion . 176

4.A Appendix: Extended survey of prior experimental works 178

References . 182

viii

LIST OF FIGURES

1.1 Fixed distance Wasserstein and Euclidean interpolates 7

1.2 CIFAR-10 nearest neighbors L2, Wasserstein metrics 21

1.3 Illustration of Wasserstein-p loss function with Wasserstein-q ground metric. . . . 23

1.4 Wasserstein of Wasserstein loss visualization . 25

1.5 Discriminator robustness to image translation . 34

1.6 Robustness to Salt and pepper perturbations . 36

1.7 FID curves for WGAN-GP, WWGAN . 36

1.8 Translation augmentation illustration . 48

1.9 CelebA cropped 64 × 64 WWGAN generated images. 55

1.10 CIFAR-10 WWGAN generated images. 56

2.1 Diagram of differentiable bi-level optimization . 64

2.2 Examples of the reweighting done by DIVA. 67

2.3 Outlier detection using DIVA . 72

2.4 DIVA Extend incremental sample addition . 72

2.5 Augmentation testing using DIVA . 74

2.6 Test and validation error as a function of dataset-reweighting step-size 76

2.7 DIVA Extend incremental sample addition plot (all datasets) 76

3.1 Schematic of (continuous and discrete) weight updates of weight-normalized

network parameters . 93

4.1 Schematic illustration of tears of wine climbing . 154

4.2 Visualizing shock characteristics . 156

ix

4.3 Numerical simulation of PDE (4.7) . 159

4.4 Shock bifrucation diagram . 162

4.5 Numerical simulations of Vuiellemuier et al. experiments (BI), (BII) for long times.164

4.6 A comparison of shock types affected by the precursor thickness b 165

4.7 The evolution of film height of [VS15] (wine setting) with b = 0.028 165

4.8 Spontaneous climb images of ethanol-water mixture with ethanol concentration

C = 0.7 . 166

4.9 Long-time shock profiles of (4.22) for varying A . 168

4.10 Top view images of tears of wine experiment at different times 169

4.11 Tears of wine experiment in conical wine glass. 170

4.12 The formation of a reverse–undercompressive (RUC) shock with initial condition

(4.23) and boundary conditions (4.24) . 172

4.13 Critical thickness (h∞) for RUC shocks . 174

4.14 Curvature effects in the meniscus boundary condition setting of advancing waves 174

x

LIST OF TABLES

1.1 Discriminator robustness to vertical translations on CIFAR-10 35

1.2 Robust test error for models trained with Wasserstein Diffusion 47

1.3 Average number of prediction flips on sequences of translated test images from

CIFAR-10. 48

2.1 Test error of DIVA Reweigh on fine-grained classification 70

2.2 Test error of DIVA Extend on fine-grained classification 71

4.1 Relevant dimensional groups used in Table 4.2 . 179

4.2 Experimental results from literature and corresponding theory 180

4.3 Additional experimental results from literature and corresponding theory 181

xi

ACKNOWLEDGMENTS

I would like to take this opportunity to express my gratitude to the people that made the

completion of this dissertation possible and the journey of my PhD especially meaningful. I

apologize in advance that this will constitute an incomplete attempt.

First, I would like to thank my advisors Andrea and Guido for their devoted and steady

support. They have both taken me under their wing and guided me throughout this journey,

always putting my interests first as they mentored me throughout the years of my PhD.

I encountered Andrea as an undergraduate in her ML course in 2016. At the time, I was

studying analysis as a pure math student. I would like to thank Andrea for bringing me to

the “dark side” , of applied math from pure math. Throughout my PhD, Andrea has been

there, ready to meet, share advice, and do all in her ability to support me and my research.

I met Guido, during my first year of PhD as he introduced me to my passion of deep

learning and the mathematics of artificial intelligence. I could not have asked for a more

knowledgeable, patient, and kind advisor than Guido. Guido has showed me the ropes of

deep learning, experimentation and writing. I am indebted to Guido for his open mindedness,

and generosity as my advisor.

I would like to also thank my other members of my thesis committee, Quanquan Gu and

Stanley Osher for their suggestions, time, and helpful feedback. Your mentorship has greatly

improved my research.

Further, I would like to also thank mentors that completely transformed my PhD experience

through widening my perspectives and working on exciting projects. I would like to express

my gratitude to the Custom Labels team of AWS research: Alessandro Achille, Giovanni

Paolini, Avinash Ravichandran and Stefano Soatto, for their commitment to research and

teaching me so much in a short amount of time. More recently I would like to thank Sergey

Tulyakov for his determination and generosity as a research mentor and teaching me the

importance of persistence in research. I would like to thank Quanquan Gu for sharing with me

xii

some of his expertise in deep learning theory and would also like to thank Mihai Cucuringu

and the team at the Alan Turing Institute for a great research opportunity and stay at ATI.

I would like to acknowledge the support of the NSF Graduate Research Fellowship, grant

DGE-1650604 that has been an important steppingstone in my research career.

I would like to also extend big thanks to my teachers, collaborators, and fellow researchers

that made my PhD more enjoyable: Professor Chris Anderson, Professor Tao Gao, Professor

Johnathan Kao, Professor Deanna Needell, Professor Marc Potters; Claudia Falcon, Hangjie

Ji, Wuchen Li, Alex Lin; Ben Bowman, Spencer Frei, Robert Hannah, Howard Heaton, Hui

Jin, Elan Markowitz, Michael Murray, Kevin Miller, Aliaksandr Siarohin, Chris Strohmeier,

Thomas Tu, and Baichuan Yuan.

Finally I will never be able to fully express my gratitude to my parents Michal and

Avinoam who have never stopped encouraging me and helping me, and made the person I

am today.

FUNDING ACKNOWLEDGMENTS

Below I detail the funding sources used for the research presented in this thesis.

● I was supported by the NSF GRFP grant DGE-1650604 – at least in part – in the

research that is the basis for all of the chapters presented in this thesis.

● The works in Chapters 1, 3 also received support from the European Research Council

(ERC) under the European Union’s Horizon 2020 research and innovation programme

(grant agreement no 757983).

● For the work in Chapter 1 co-author Alex Tong Lin was supported by AFOSR MURI

FA9550-18-1-050.

● Part of the research in Chapter 1 was performed at the Institute for Pure and Applied

Mathematics (IPAM), which is supported by the National Science Foundation (Grant

No. DMS-1440415).

xiii

● The work in Chapter 2 was conducted during a paid internship at Amazon Web Services,

and was supported by Amazon Inc.

● For the work in Chapter 3 co-author Quanquan Gu was supported in part by NSF

CAREER Award IIS-1906169, BIGDATA IIS-1855099, and Salesforce Deep Learning

Research Award.

● The research presented in Chapter 4 was partly supported by Simons Foundation

Math+X investigator award number 510776.

xiv

VITA

2014 – 2017 B.S. (Mathematics), UCLA

2014 – 2017 M.A. (Mathematics), Departmental Scholar, UCLA

06/16 – 08/16 Undergraduate Researcher, UCLA Applied Math REU

2017 – Present Graduate Researcher, Mathematics Department, UCLA

2018 – 2021 NSF Graduate Research Fellowship

06/18 – 08/18 Visiting Researcher, Alan Turing Institute; Host: Mihai Cucuringu

01/20 – 04/20 Computer Vision Intern, Samsung SSIC, Advanced Technology Group

01/21 – 04/21 Research Intern, AWS Computer Vision, Amazon Inc.

06/21 – 10/21 Research Intern, Snap Research (Creative Vision), Snap Inc.

PUBLICATIONS

Y. Dukler, W. Li, A. Lin, G. Montufar, “Wasserstein of Wasserstein Loss for Learning

Generative Models.” Proceedings of the 36th International Conference on Machine Learning

PMLR 97:1716-1725, 2019.

A. Lin, Y. Dukler, W. Li, G. Montufar, “Wasserstein Diffusion Tikhonov Regularization.”

arXiv preprint arXiv:1909.06860 (2019). Presented in NeurIPS 2019, OTML workshop.

xv

Y. Dukler, H. Ji, C. Falcon, and A. L. Bertozzi “Theory for undercompressive shocks in tears

of wine” Phys. Rev. Fluids vol. 5, 034002 – Published 17 March 2020.

Y. Dukler, Q. Gu, G. Montufar, “Optimization Theory for ReLU Neural Networks Trained

with Normalization Layers.” Proceedings of the 37th International Conference on Machine

Learning PMLR 119:2751-2760, 2020.

xvi

Part I

The geometry and manipulation of

natural data

for optimizing neural networks

1

Overview for Part I

A summary of the chapters and contributions of Part I of the thesis, are given below.

● In Chapter 1 we utilize the theory of optimal transport to derive a tractable algorithm

of regularizing image data using exact notions of the Wasserstein metric. Our new

view on image-centric problems maps high-dimensional image data to a discrete dis-

tribution over the pixel space and it’s underlying geometry. This distribution based

representation for each image datum enables defining an optimal transport metric

distance between a pair of images, which we name the Wasserstein Ground Metric

(WGM). The distribution representation of images draws a stark comparison from

traditional image data representations as the WGM is shown to align with the natural

variances of data in the visual modality. In particular, with the WGM local geometric

perturbations, including translations and rotations are proportional to their magnitude.

The framework is applied to both generative and discriminate computer vision tasks

and significantly improves robustness to natural variations (e.g. translations). The new

formulation utilizes the Riemannian structure of the Wasserstein-2 metric for deriving

a gradient penalty on the WGM metric for discrete spaces. This computation is made

highly efficient using clever use of convolution operators which are highly optimized.

The presented work in Chapter 1 is derived from the research works:

– “Wasserstein of Wasserstein Loss for Learning Generative Models”. which was

presented at ICML 2019. This work is a collaborative project with Alex Tong-Lin,

Wuchen Li, and Guido Montúfar.

– “Wasserstein diffusion Tikhonov regularization”. which was presented at NeurIPS

2019 OTML workshop. This work continued the collaboration with Alex Tong-Lin,

Wuchen Li, and Guido Montúfar.

● In Chapter 2 we present dataset manipulation as a differentiable procedure by deriving

2

the first differentiable dataset optimization approach based on the Leave One Out Error,

optimized based on the final model loss. This new method extends the optimization

of models to also include the importance and selection of each data sample. If done

carelessly, dataset optimization leads to trivial solutions to the learning problem —

thereby bypassing learning meaningful representations. For this reason, we follow the

AutoML approach and present dataset optimization as a bi-level optimization procedure.

Unlike other approaches for dataset optimization, we are capable of optimizing the

dataset end-to-end as we derive a closed-form derivative for the the final validation loss

with respect to the weight of each sample. Our method enables better dataset auto-

curation tasks such as outlier rejection, dataset extension, and automatic aggregation of

multi-modal data leading to consistent and significant improved model accuracy. This

is all while using the same model classes that yet are trained under modified datasets.

Chapter 2 corresponds to research I conducted while interning at Amazon Web Services

(AWS) in 2021.

– This research project is a collaboration with Alessandro Achille, Giovanni Paolini,

Avinash Ravichandran, Marzia Polito, and Stefano Soatto from the AWS research

team.

● In Chapter 3 we analyze mathematically the widely-spread architectural approach of

neural network normalization. This includes the normalization techniques of Batch Nor-

malization, Weight Normalization, and Layer Normalization which apply normalization

to the intermediate representations or parameters of the network during training. In the

case of Weight Normalization, we prove for the first time that dynamically normalized

ReLU neural networks, one of the most common deep learning architectural choices,

converge to global minima when trained with gradient descent. Our analysis showcases

the interaction between two parameter classes and their effects on the convergence

speed. The derivation follows a contemporary body of works studying non-convex

optimization of neural networks using the notion of the Neural Tangent Kernel. Overall

3

the discovered dynamics highlight the differences in the geometry of the optimization

landscape as compared with traditional un-normalized networks. In particular we derive

a modified NTK in the case of Weight Normalization that is composed of 2 kernel

pieces. The 2 pieces of the NTK then describe modified dynamics under different initial

conditions.

The theory work presented in Chapter 3 corresponds to the research

– “Optimization Theory for ReLU Neural Networks Trained with Normalization

Layers”. Presented at ICML 2020. This work has been a collaborative project

with Quanquan Gu and Guido Montúfar.

4

CHAPTER 1

Natural image prior and regularization of vision tasks

via the Wasserstein Ground Metric∗

1.1 Introduction

Current machine learning methods including deep learning are highly sensitive to the geometry

of the data, and are often trained with massive datasets that are further extended using data

augmentations to impose such geometry. In many tasks, for the model to generalize, it is of

eminent importance that the model behaves well with respect to the natural variances of

the samples. For example, for image based data, affine transformations such as translations,

rotations, and other local stretches of the image, should not alter the perceptual content

of the image. Despite the largely hand-off approach of learning from data, priors on the

task are crucial. In deep learning the type of priors vary and cater to the data modality,

presenting themselves in the form of architectural choices, augmentations, labelling types, and

loss functions. In this chapter we present a general and lightweight regularization framework

that naturally guides deep learning models based on a strong prior of the data distribution

in image space. The core of the method is in representing each image datum as a mass

distribution over it’s discrete pixel space, this allows us to endow the input space of the

model with an optimal transport distance that naturally aligns with human perception and

geometrical manipulation of the data. The method we present bypasses the computationally

intractable cost of computing the Wasserstein metric in high dimensions (e.g. the pixel space)

∗This chapter is adapted from [DLL19b, LDL19]

5

and results in an efficient regularization term.

Motivation for a Wasserstein image metric In modern machine learning, it is common

to regularize models capacity and “smoothness” by penalizing the gradient of the model with

respect to the data input. Indeed for a parameterized model f we have the linearization,

f(z) = f(x) +∇xf(x) ⋅ (z − x) + o((z − x)2).

Re-arranging and applying Cauchy-Schwarz, implies that

∥f(z) − f(x)∥ ≤ ∥z − x∥2 ⋅ ∥∇xf∥2.

Therefore ∥∇xf∥2 may serve as an estimate of the Lipschitz constant of f , quantitatively

describing the “smoothness” of f . For this reason this gradient penalty is crucially used in

many deep learning frameworks for regularization [Bis95, FOA19] and enforcing continuity

requirements [GAA17, ACB17, PFL17]. In fact, for linear models adding a gradient penalty

term amounts to the common weight-decay regularization. Nonetheless, in the above lin-

earization the distance between two sample images is taken to be the mean square difference

over the input features, i.e., the L2 (Euclidean) norm. This, however, does not incorporate

additional knowledge that we have about the space of natural images, leading to “isotropic

smoothness” along arbitrary directions of the image equally. For example, the distance of

translating the image 1 pixel step to the left is akin to the distance of moving each pixel in

the image to any arbitrary chosen locations in the image.

Instead we suggest the Wasserstein distance over the space of images defined as histograms

over pixels, having a ground metric over pixel locations. With the Wasserstein Ground Metric,

repeating the same motivating example illustrates that the distance of the single pixel step is

proportional to the distance on the pixel grid that the pixels are being moved. With this a

Wasserstein metric on the space of images is continuous and roughly linear with respect to

the magnitude of natural variances such as translations, rotations, and other local stretches.

In Figure 1.1 we present the Wasserstein Ground Metric level-sets and illustrate its strength

6

in aligning with human perception as opposed to the L2 distance. Therefore one would like

to replace the Euclidean distance dL2(x,z) = ∥x − z∥2 with the Wasserstein Ground Metric

dW2(x,z) and compute the corresponding linearization and gradient penalty ∥∇W
2

x f∥2. In

this chapter we show that this is possible to compute exactly and illustrate the benefits of

this framework.

Euclidean Wasserstein

Ground

truth

boundary

x

π(x)

Euclidean ball

Wasserstein ball

Figure 1.1: Shown are fixed-distance interpolates, measured by L2 and Wasserstein metrics,

between a source image and some other images in the MNIST dataset. On the right, we

illustrate how perturbations in the isotropic neighborhood of x can lead to different prediction,

whereas the Wasserstein metric has the flexibility to avoid such overly general smoothness,

while maintaining a semantically large neighborhood of the data.

Before presenting the details of the method, we provide a summary of the necessary

background on optimal transport and the relevant notions of the Wasserstein metric below.

The rest of the chapter is organized as follows, in Section 1.2 we derive the Wasserstein Ground

Metric in detail and present necessary mathematical background, followed by reviewing the

relevant literature of the Wasserstein metric and it’s uses in machine learning in Section 1.3.

In Section 1.4 we present the application of the Wasserstein Ground Metric to generative

modelling, and in Section 1.5 we review using the Wasserstein Ground Metric in improving

deep learning models’ adversarial robustness. Lastly, proofs, experimental details and

additional results are relegated to Appendix 1.A.

7

1.2 Mathematics of optimal transport and the Wasserstein Ground

Metric

In this section we review relevant mathematical properties in optimal transport theory for

our framework. These properties will be used intensively throughout the chapter enabling

novel application of data-driven regularization in deep learning.

Optimal transport is the mathematical field studying the minimal path, and distance

of transporting an initial probability distribution ρ0 to a final probability distribution ρ1

with ρ0, ρ1 ∈ Pp(X). Today this is a rich field in mathematics spanning the areas of PDEs,

probability theory, and analysis with applications in economics, biology and more recently

machine learning [FZM15]. In the above, Pp(X) is the family of probability distribution on

X with bounded pth moment and the distance and path are defined according to a ground

measure of distance referred to as the ground metric, dX (⋅, ⋅).

Mathematically, we define the optimal transport plan, Π and minimal distanceWp,dX (ρ0, ρ1)

between probability distributions ρ0, ρ1 as

Wp,dX (ρ0, ρ1) = inf
Π

{(E(X,Y)∼ΠdX (X,Y)p)

1
p

}. (1.1)

Here the infimum is taken over all joint measures Π ≥ 0 with marginals

∫
Ω

Π(x, y)dx = ρ0(y), ∫
Ω

Π(x, y)dy = ρ1(x).

The definition above is due to Kantorovich and describes the Wp distance where p is the

exponent in the integral. We note that Wp defines a proper metric named the Wasserstein

metric between ρ0, ρ1 ∈ Pp(X).

Below we briefly review the duality structures of the Wasserstein-p metric in continuous

sample space. More details are provided in [Vil09]. When p = 1, a particular duality structure

is shown. Later we discuss that for p = 2, the W2 metric has a metric tensor property.

In integral form in continuous space, we have that given a sample space Ω ⊂ Rd, the

Wasserstein-p metric introduces a distance between probability density functions ρ0, ρ1 ∈ Pp(Ω)

8

by

Wp(ρ0, ρ1)
p = inf

Π
∫

Ω×Ω
dX (x,y)Π(x,y)dxdy,

where again the infimum is taken over all joint measures Π ≥ 0 with marginals

∫
Ω
π(x,y)dx = ρ0(y), ∫

Ω
π(x,y)dy = ρ1(x).

The dual problem of the Kantorovich formulation has the form

Wp(ρ0, ρ1)
p

= sup
Φ0,Φ1∈C(Ω)

{∫
Ω

Φ1(x)ρ1(x) −Φ0(x)ρ0(x)dx∶

Φ1(y) −Φ0(x) ≤ dX (x,y)},

where Φ0, Φ1∶Ω → R are the Lagrangian multiplier variables for the constraint of linear

programming involving ρ0, ρ1. Here Φ0, Φ1 are the so-called Kantorovich dual variables and

the dual formulation is called the Kantorovich-Rubinstein duality.

1.2.1 Wasserstein-1 metric

If p = 1, one can show that Φ1(x) = Φ0(x). If we denote f(x) = Φ1(x), then the constraint

condition for the duality problem has the form

f(x) − f(y) ≤ dX (x,y), for any x, y ∈ Ω.

This gives a 1-Lipschitz condition with respect to the norm of the metric dX (x,y), i.e.

∥∇dX
x f(x)∥ ≤ 1. (1.2)

The condition 1.2 is key for defining the WGAN framework for generative modelling (cf.

[ACB17]). We explain this in depth in Section 1.4.

Yet another formulation of the Wasserstein metric via optimal control is as follows,

inf
m

{∫
Ω
∥m(x)∥dx∶div(m) + ρ1 − ρ0 = 0}

9

where m is the flux function, and div is the divergence operator depending on the ground

metric dX , then the minimizer of the Wasserstein function satisfies

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

div(m(x)) = ρ0(x) − ρ1(x)

m(x)

∥m(x)∥dX
= ∇xf(x), when ∥m(x)∥dX > 0.

As we can see, the second formula in the above system satisfies the Lipschitz-1 condition, i.e.

the Eikonal equation

∥∇xf(x)∥ = ∥
m(x)

∥m(x)∥dX
∥ = 1.

Following the direction of the flux function m(x) by the direction of ∇xf(x), one transports

ρ0 to ρ1. The transport direction follows the characteristic of Eikonal equation, i.e. the

geodesic curve in (Ω, d).

Next we explain the properties of the Wasserstein metric for p = 2 in continuous space.

1.2.2 Wasserstein-2 metric

If p = 2, one can relate the duality formula of Φ1, Φ0 with the solution of Hamilton-Jacobi

equation by the Hopf-Lax formula [Vil09]. In other words, Φ0(x), Φ1(x) are the solution of

Hamilton-Jacobi equation at times t = 0, t = 1:

∂tΦ(t,x) +
1

2
∥∇

dX
x Φ(t,x)∥2 = 0.

The minimizer of optimal transport equation follows the form

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

∂tρ(t,x) + div(ρ(t,x)∇Φ(t,x)) = 0

∂tΦ(t,x) +
1

2
∥∇dX

x Φ(t,x)∥2 = 0
(1.3)

with the time zero and one density solution ρ(0,x) = ρ0(x), ρ(1,x) = ρ1(x). We notice the

fact that the characteristic of continuity equation and Hamilton-Jacobi equation is again the

geodesics in the space Ω.

10

1.2.3 Wasserstein metric on graphs

We note that for the input space of raster images, the probability distribution describing

each datum is defined over the finite-dimensional space of the pixel grid. We now define

the Wasserstein metric over a graph: Consider the discrete pixel space I = {1, . . . , n}. The

probability simplex on I is the set

P(I) = {(p1,⋯, pn) ∈ Rn∶
n

∑
i=i

pi = 1, pi ≥ 0}.

Here p = (p1, . . . , pn) is a probability vector with coordinates pi corresponding to the probabil-

ities assigned to each node i ∈ I. The probability simplex P(I) is a manifold with boundary.

We denote the interior by P+(I). This consists of the strictly positive probability distributions,

with pi > 0 for all i ∈ I. To simplify the discussion, we will focus on the interior P+(I).

We next define the Wasserstein-2 metric on P+(I), We need to give the ground metric a

notion on the discrete space. We do this in terms of a undirected graph with weighted edges,

G = (I,E,ω), where I is the vertex set, E ⊆ (
I
2
) is the edge set, and ω = (ωij)i,j∈I ∈ Rn×n is a

matrix of edge weights satisfying

ωij =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

ωji > 0, if (i, j) ∈ E

0, otherwise

.

The set of neighbors (adjacent vertices) of i is denoted by N(i) = {j ∈ I ∶ (i, j) ∈ E}. Then the

cost or distance between a node i and neighbor j ∈ N(j) is 1/ωij. In the next subsection we

will define the graph Wasserstein-2 metric more formally using the the Wasserstein-2 metric

structure.

1.2.4 Riemannian calculus of W2

With this, we are ready to discuss the regularization term. For all of the applications of

the Wasserstein regularisation we consider, we are interested in using a gradient penalty of

the form ∥∇W
p

x f∥ where the ground metric Wp is defined over discrete space. To compute

11

such gradient form, we consider the case where p = 2 in which the Wasserstein metric admits

a Riemannian structure. This enables computing ∥∇W
p

x f∥ from the usual Euclidean L2

gradient. We first describe the Riemannian calculus of the Wasserstein metric generally in

the continuous space and then dive into the deriving the Riemannian structure on graphs

(discrete space).

W2 metric tensor for continuous space Consider again Ω ⊂ Rd to be a compact region

with the set of smooth and strictly positive densities:

P+(Ω) = {ρ ∈ C∞(Ω)∶ρ(x) > 0, ∫
Ω
ρ(x)dx = 1}.

Denote by F(Ω) ∶= C∞(Ω) the set of smooth real-valued functions on Ω. The tangent space

of P+(Ω) is given by

TρP+(Ω) = {σ ∈ F(Ω)∶∫
Ω
σ(x)dx = 0},

of feasible directions in the space P+(Ω). Given Φ ∈ F(Ω) and ρ ∈ P+(Ω), define

VΦ(x) ∶= −∇ ⋅ (ρ(x)∇Φ(x)) ∈ TρP+(Ω). (1.4)

Here the elliptic operator (1.2.4) identifies the function Φ on Ω modulo additive constants

with the tangent vector VΦ in P+(Ω):

F(Ω)/R→ TρP+(Ω), Φ↦ VΦ.

This can be seen as a proper mapping to TρP+(Ω) via the the Hamilton-Jacobi formulation

(1.2.2). Denote T ∗
ρ P+(Ω) = F(Ω)/R as the smooth cotangent space of P+(Ω). Then the

L2-Wasserstein metric tensor on density space is defined as follows:

Definition 1.2.1 (Wasserstein-2 metric tensor). Define the inner product on the tangent

space of positive densities gρ∶TρP+(Ω) × TρP+(Ω)→ R by

gWρ (σ1, σ2) = ∫
Ω
∇Φ1(x) ⋅ ∇Φ2(x)ρ(x)dx,

where σ1 = VΦ1, σ2 = VΦ2 with Φ1(x), Φ2(x) ∈ F(Ω)/R.

12

In [Laf88], (P+(Ω), gρ) defined in Definition 1.2.1 is named the density manifold. Following

the Riemannian calculus, the gradient operator with respect to the Wasserstein-2 metric

[Ott01] has the following form.

Proposition 1 (Wasserstein-2 gradient).

∇F(ρ)(x) = −∇ ⋅ (ρ∇
δ

δρ(x)
F(ρ)),

and

∥∇W
2

F(ρ)∥2 = ∫ ∥∇
δ

δρ(x)
F(ρ)∥

2

ρ(x)dx.

We note that the W2 metric can be defined using the metric tensor as,

W2(ρ0, ρ1) ∶= inf
v

{∫

1

0
gp(v,v)dt ∶

∂ρ

∂t
+∇ ⋅ (ρv) = 0, ρ(0) = ρ0, ρ(1) = ρ1} . (1.5)

where v can be seen as ∇u for a potential u. We next present the Wasserstein-2 gradient

operator defined in a discrete sample space.

1.2.5 Wasserstein-2 gradient on discrete sample space

We recall the definition of discrete probability simplex with Wasserstein-2 Riemannian metric.

The normalized volume form on node i ∈ I is given by di =
∑j∈N(i) ωij

∑
n
i=1∑i′∈N(i) ωii′

.

The graph structure G = (I,E,ω) induces a graph Laplacian matrix function.

Definition 1.2.2 (Weighted Laplacian matrix). Given an undirected weighted graph G =

(I,E,ω), with I = {1, . . . , n}, the matrix function L(⋅) ∶ Rn → Rn×n is defined by

L(p) =D⊺Λ(p)D, p = (pi)
n
i=1 ∈ Rn,

where

● D ∈ R∣E∣×n is the discrete gradient operator defined by

D(i,j)∈E,k∈V =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
ωij, if i = k, i > j

−
√
ωij, if j = k, i > j

0, otherwise

,

13

● −D⊺ ∈ Rn×∣E∣ is the oriented incidence matrix, and

● Λ(p) ∈ R∣E∣×∣E∣ is a weight matrix depending on p,

Λ(p)(i,j)∈E,(k,l)∈E

=

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

1
2(

1
di
pi +

1
dj
pj), if (i, j) = (k, l) ∈ E

0, otherwise

.

The Laplacian matrix function L(p) is the discrete analog of the elliptic weighted Laplacian

operator −∇ ⋅ (ρ∇) from Definition 1.2.4.

With the definition of the Laplacian we are now ready to present the discrete Wasserstein-2

metric tensor. Analogously to the continuous case, consider the tangent space of P+(I) at p,

TpP+(I) = {(σi)
n
i=1 ∈ Rn∶

n

∑
i=1

σi = 0}.

Denote the space of potential functions on I by F(I) = Rn, and consider the quotient space

F(I)/R = {[Φ] ∣ (Φi)
n
i=1 ∈ Rn},

where [Φ] = {(Φ1 + c,⋯,Φn + c)∶ c ∈ R} are functions defined up to addition of constants.

We introduce an identification map via the weighted Laplacian matrix L(p) by

V∶F(I)/R→ TpP+(I), VΦ = L(p)Φ.

We know that L(p) has only one simple zero eigenvalue with eigenvector c(1, 1,⋯, 1), for any

c ∈ R. This is true since for (Φi)
n
i=1 ∈ Rn,

Φ⊺L(p)Φ = (DΦ)⊺Λ(p)(DΦ)

= ∑
(i,j)∈E

ωij(Φi −Φj)
2(

1

2
(

1

di
pi +

1

dj
pj)) = 0

implies Φi = Φj , (i, j) ∈ E. If the graph is connected, as we assume, then (Φi)
n
i=1 is a constant

vector. Thus VΦ∶F(I)/R→ TpP+(I) is a well defined map, linear, and one to one. By that

we mean that F(I)/R ≅ T ∗
p P+(I), where T ∗

p P+(I) is the cotangent space of P+(I). This

identification induces the following inner product on TpP+(I).

14

Definition 1.2.3 (Wasserstein-2 metric tensor). The inner product gp ∶ TpP+(I)×TpP+(I)→

R takes any two tangent vectors σ1 =VΦ1 and σ2 =VΦ2 ∈ TpP+(I) to

gp(σ1, σ2) = σ
⊺
1Φ2 = σ

⊺
2Φ1 = Φ⊺

1L(p)Φ2. (1.6)

In other words,

gp(σ1, σ2) ∶= σ1
⊺L(p)†σ2, for any σ1, σ2 ∈ TpP+(I),

where L(p)† is the pseudo inverse of L(p).

Following the inner product (1.6), the Wasserstein-2 metric on images W ∶P+(I)×P+(I)→

R is defined using the Laplacian L(ρ) by

W2(ρ0, ρ1) ∶= inf
v(t),ρ(t)

{∫

1

0
v(t)⊺L(ρ(t))v(t)dt ∶

∂ρ

∂t
+L(ρ(t))v(t) = 0, ρ(0) = ρ0, ρ(1) = ρ1} .

(1.7)

The Wasserstein-2 metric on the graph introduces the following gradient operator.

Theorem 1.2.1 (Wasserstein gradient on graphs). Given F ∈ C1(P+(I)), the gradient

operator in Riemannian manifold (P+(I), g) satisfies

gradF(p) = L(p)dρF(p),

where d is the Euclidean gradient operator.

The Laplacian matrix associated with the weighted graph G is defined, depending on the

input x, as

L(x)ij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2 ∑k∈N(i) ωik(

xi
di
+

xk
dk

), if i = j

−1
2ωij(

xi
di
+

xj
dj
), if j ∈ N(i)

0, otherwise.

The Wasserstein metric tensor is the matrix function given by the (pseudo) inverse of the

weighted Laplacian operator,

GW(x) = L(x)−1 ∈ Rn×n.

15

Written explicitly, the Wasserstein gradient norm squared is

∥∇W
2

x f(x)∥2 = ∇xf(x)
⊺GW(x)−1∇xf(x)

= ∇xf(x)
⊺L(x)∇xf(x)

= ∑
(i,j)∈E

ωij (
∂

∂xi
f(x) −

∂

∂xj
f(x))

2
xi/di + xj/dj

2
. (1.8)

We now describe the efficient computation of the gradient penalty term (1.8) using convolu-

tions.

1.2.6 Efficient implementation of the Wasserstein gradient norm

To compute (1.8) in practice, we define a suitable similarity graph G = (V,E,ω) for the space

of images, displaying translation invariance and symmetries. First, there is the invariance with

respect to pixel translations. Symmetries arise since the distance from a pixel to two spatially

opposite pixels is equal. In addition, each term in the sum in (1.8) can be decomposed into

the entrywise product of linear relations between values in nodes i and j. Each linear relation

(e.g ∇xif −∇xjf) is computed via a convolution to define each term over all spatial locations

(pixels). Due to the symmetries of the graph a fixed kernel convolution may replace a linear

product owing it to the described symmetries and invariances. For each relative neighbor

direction we define a convolutional filter with the number of filters equal to the number of

possible neighbor types. For the truncated similarity graph for the Wasserstein distance, the

edge set E is sparse and the number of convolutional filters is reduced considerably from n2.

We therefore can calculate all pairs ∇xif −∇xjf with a given relative neighbor relation by

passing x and ∇xf through of kernels KO1 . . .KOd . In this case a neighbor relation, is defined

as the geometrical pattern between two pixels. A pixel located in position (10, 10) satisfies a

neighbor relation (1,2) with a pixel in location (11,12) and the same neighbor relation is

satisfied between pixels (16, 18) and (17, 20). The neighbor relation is indeed invariant to the

global position of the pixel which allows for the use of convolutions. Given a ground metric,

we enumerate all non-zero neighbor relations as O1, . . .Od, for truncated distances the number

16

of relations d is much smaller than the complete edge graph. For each neighbor relation

Ok we associate a zero-valued kernel that equals 1 and −1 in the corresponding Ok pixels,

we denote the gradient kernels as KOk . Likewise, we apply the same Ok pattern, now with

values 1
2 , 1

2 in the corresponding neighbor pattern locations to obtain the terms
xi/di+xj/dj

2 .

For each i, j we denote the input kernels as MOk . Applying entry-wise multiplication (⊙) and

a summation collapsing all pixel locations and channels then yields an efficient and general

method of calculating the Wasserstein gradient ∥∇W
2

x f∥ for general local topology ground

metrics using convolutions, which are highly optimized in modern deep learning frameworks.

Algorithm 1 Wasserstein gradient norm ∥∇W
2

x f∥.

Require: The pixel graph G = (V,E,ω), local weights (wij); neighbor relation tuples arranged

symmetrically O1 . . .Od

Require: Euclidean gradient ∇xf

1: Wasserstein-grad← 0

2: for neighbor relations k = 1, . . . , d do

3: Build kernel KOk to compute ∇xif −∇xOk(i)
f

4: Build corresponding kernel MOk to compute xi
2di

+
xOk
2dOk

5: H ←KOk(∇Xf)

6: V ←MOk(X)

7: H ←H ⊙H (entry-wise multiplication)

8: W ←H ⊙ V

9: Wasserstein-grad←Wasserstein-grad + sum(W)

10: end for

11: Return ∥∇W
2

x f∥2 = Wasserstein-grad

1.3 Related works

In this section we review related works to the Wasserstein Ground Metric.

17

Wasserstein metric and gradient flows To derive the Wasserstein Ground Metric,

we utilize the Riemannian structure of the metric that gives the flow formulation of the

Wasserstein distance. The Wasserstein gradient flow is the result of line of works including

[Ott01] that illustrates the gradient flow mathematically and physically, [Mie11] generalizes

the Wasserstein gradient flow to reaction-diffusion systems and the work of [AGS05] which

gives a comprehensive discussion on flows in probability spaces.

Learning and gradient flows on graphs In the discrete settings of graphs, the works of

[CHL12, Maa11, SLF16, CLZ18, Li18] derive and analyze gradient flows on graphs and the

corresponding metric tensors. The work of [CHL12] derives a discrete Wasserstein flow on

graphs which is the base of Wasserstein Ground Metric on images. We follow the exposition of

[CHL12, Li18] in Section 1.2. More generally, defining distances between graph distributions,

the work of [GHL15] defines a distance on the graph based on the L1 distance of the spectral

signature. The work of [ZBC11] aligns with our work and extends sparse coding to image

representation using a graph prior on the images. In the discrete settings, the weighted

Laplacian term in (1.2.2) can be compared with the Laplacian term in [BF12] that applies

diffusion on graphs for pixel-level segmentation. In geometric deep learning one considers

mappings where the input space has a rich geometric structure [BBL17]. An example is the

case where the input space consists of functions defined on a graph (e.g., raster images, where

the graphs are grids). One can then define convolutions based on the group structures of

these graphs.

Optimal transport in machine learning Optimal transport methods including the

Wasserstein metric are highly beneficial for many applications in machine learning. In the

work of [SHD18] the authors provide a representation learning framework for entity relation

based on the Wasserstein metric. Similar to our application, [RTG00] utilizes the Wasserstein

metric as a perceptual metric for images. The Wasserstein metric is used for ensemble learning

in the method of [DMM19]. In the field of inverse problems, the work of [EY18] uses optimal

18

transport for the seismic sensing, and [PHO18] considers the optimal transport metric for

de-noising. In generative models, the influential work of [ACB17] uses the Wasserstein metric

as a loss function objective, we elaborate on this in Section 1.4, on the same note, the works of

[BJG17, DZS18, FZM15] apply the Wasserstein metric as a learning objective and minimize

the discrepancy between distributions. Used differently, the Wasserstein metric has also been

used to modify the optimization algorithm of parameterized statistical models as done in

[LM18b, LLO18, MMC16, GPC18, LM18a].

1.4 Wasserstein of Wasserstein loss for learning generative models

In addition to using tools from optimal transport for regularization of machine learning,

in recent years optimal transport has become increasingly important in the formulation of

training objectives for deep learning applications [FZM15, MMC16, ACB17]. Especially when

the model output can be viewed as a probability distribution. In contrast to traditional

information divergences (arising in maximum likelihood estimation), the Wasserstein distance

between probability distributions incorporates the distance between samples via the ground

metric of choice. In this way, it provides a continuous loss function for learning probability

models supported on possibly disjoint, lower dimensional subsets of the sample space. These

properties are especially useful for training implicit generative models, with a prominent

example being Generative Adversarial Networks (GANs). The application of the Wasserstein

metric to define the objective function of GANs is known as Wasserstein GANs (WGANs)

[FZM15, ACB17, DZS18].

When training WGANs, one problem that remains is that of choosing a suitable ground

metric for the sample space. The choice of the ground metric plays a crucial role in the

training quality of WGANs. Usually the distance between two sample images is taken to be

the mean square difference over the features, i.e., the L2 (Euclidean) norm. This, however,

does not incorporate additional knowledge that we have about the space of natural images.

In order to improve training and direct focus to selected features, other Sobolev norms

19

in image space have been studied [AL18]. Recent works are also investigating distances

based on higher level representations of the samples, which can be obtained by means of

techniques such as vector embeddings [MSG17], auto-encoders, or other unsupervised and

semi-supervised feature learning techniques [NJT06]. Meanwhile, as described in Section 1.1,

another distance that has been very successful in comparing images, has remained unnoticed

in the context of WGANs, namely the Wasserstein distance on images. In particular, the

Wasserstein distance has been successful in image retrieval problems [RTG00, ZML07] and it

is known to correlate well with human perception for natural images, e.g., being robust to

translations and rotations [EY18, PHO18] as discussed in the introduction. See Figure 1.2

for an illustration of the Wasserstein metric. Another benefit of the Wasserstein metric on

images is that it is very natural and does not require computing higher level representations

of the images or any feature selection.

In this section, we propose to apply the Wasserstein metric as as the objective for

generative modelling with the Wasserstein Ground Metric presented in Section 1.1 as the

ground metric. The Wasserstein objective defines a distance over the sample space of images

and the Wasserstein Ground Metric defines a distance over the discrete space of pixels.

Using the Wasserstein metric as the objective with the Wasserstein Ground Metric as the

ground metric, we call our framework the Wasserstein of Wasserstein loss. At first sight,

it may appear overly complicated to define a loss function of this form since computing

the Wasserstein distance is already quite involved, a Wasserstein loss based on another

Wasserstein Ground Metric may seem infeasible. Nonetheless, we will show that it is possible

to derive an equivalent expression in the settings of gradient penalty of WGANs [PFL17].

Recall from Subsection 1.2.4, the Wasserstein-2 ground metric exhibits a metric tensor

structure [Ott01, Vil09]. This enables us to introduce a Lipschitz condition based on the

Wasserstein norm, rather than the L2 norm in the gradient-penalty WGAN setting.

In this section we focus on generative models for images and specifically the WGAN

formulation, but the proposed Wasserstein of Wasserstein loss function can be applied to

20

(a) L2 (Euclidean) ground metric (b) Wasserstein-2 ground metric

Figure 1.2: Source image and 9 nearest neighbors from the CIFAR-10 dataset, with respect

to the L2 (left) and Wasserstein-2 (right) ground metrics. We note that the Wasserstein-2

distance is robust to translations and rotations, and gives neighbors that are perceptually

similar. In contrast, the Euclidean distance is highly sensitive and oftentimes the nearest

neighbors are predominantly white images.

learning with other types of models or other types of data for which a natural distance

between features can be introduced.

The rest of the section is organized as follows. In Subsection 1.4.1, we introduce the

Wasserstein loss function equipped with the Wasserstein Ground Metric. Based on duality

and the metric tensor of the proposed problem, we derive an equivalent practical formulation.

Related works are reviewed in Subsection 1.4.2. In Subsection 1.4.3 we discuss our application

to Wasserstein of Wasserstein GANs (WWGANs). Numerical experiments illustrating the

benefits of the new gradient norm penalty are provided in Subsection 1.4.4. Lastly, we provide

a discussion of the Wasserstein of Wasserstein loss in Subsection 1.4.5.

1.4.1 Wasserstein of Wasserstein loss

In this section, we introduce the Wasserstein Ground Metric for the Wasserstein loss function.

A motivating example is presented to demonstrate the utility of the proposed model.

21

1.4.1.1 Wasserstein loss

Consider a metric sample space (X , dX). Recall from Section 1.2 that the Wasserstein-p

distance can be defined as follows. Given a pair ρ0, ρ1 ∈ Pp(X) of probability densities with

finite p-th moment, let

Wp,dX (ρ0, ρ1) = inf
Π

{(E(X,Y)∼ΠdX (X,Y)p)

1
p

}, (1.9)

where Π is a joint distribution of (X,Y) with marginals X ∼ ρ0, Y ∼ ρ1. We note that Wp

crucially depends on the choice of a distance function dX ∶X × X → R (ground metric) on

sample space.

In practice, the sample space X is typically very high dimensional, sometimes even being

an (infinite dimensional) Banach space. We focus on the case where X is the space of images,

which can be regarded as a density space over pixels, i.e., X = P(Ω), where Ω = [0,M]×[0,M]

is a discrete grid of pixels. With this in mind, we will define the distance function between

pixels dΩ∶Ω ×Ω→ R+ according to Subsection 1.2.5.

1.4.1.2 Wasserstein loss function with Wasserstein Ground Metric

We now introduce the Wasserstein of Wasserstein loss. Here, the first ‘Wasserstein’ refers

to the Wasserstein loss function over probability distributions on the space of images. The

second ‘Wasserstein’ refers to the ground metric of this loss function. It is chosen as the

Wasserstein distance over the space of images defined as histograms over pixels, having a

ground metric over pixel locations.

That is, a raster image can be viewed as a 2D histogram with each pixel representing a

bin for each channel. By defining a ground metric between pixels (e.g., the physical distance

between pixels), we introduce the Wasserstein distance between images. This serves as the

new ground metric for defining a Wasserstein distance between probability distributions over

images. See Figure 1.3.

As mentioned in the introduction, the Wasserstein distance is also known as the Earth

22

Pixel

Image

Distribution

of images

Pixel ground metric

Image ground metric

(Ω, dΩ)

(X ,Wq,dΩ
)

(P(X),Wp,Wq,dΩ
)

Induced differential structure

Induced differential structure

Figure 1.3: Illustration of Wasserstein-p loss function with Wasserstein-q ground metric.

Mover’s distance and is known as an effective metric in distinguishing images [RTG00].

Motivated by this fact, we use the Earth Mover’s distance (of images) as the ground metric,

dX (X,Y) ∶=Wq,dΩ
(X,Y)

= inf
π

{(E(x,y)∼πdΩ(x, y)
q)

1
q

},

(1.10)

where π is a joint distribution of (x, y) with marginals x ∼X, y ∼ Y both being images viewed

as histograms over pixels. Here dX =Wq,dΩ
(x, y) is named Wasserstein-q ground metric. It is

defined with the pixel ground metric dΩ∶Ω ×Ω→ R+ assigning distances to pairs of pixels.

In this section, combining the above approaches, we obtain a Wasserstein-p distance with

Wasserstein-q ground metric as the loss function for training.

Definition 1.4.1. Given a probability model {PG∶G ∈ Θ} ⊆ Pp(X) and a data distribution

Pr ∈ Pp(X), we propose the minimization problem

inf
G
Wp,Wq,dΩ

(PG,Pr), (1.11)

where Pp(X) is the set of densities with finite p-th moment, Wp,dX is defined by (1.1) and

Wq,dΩ
is given by (1.10).

The next example illustrates the difference between the proposed Wasserstein of Wasser-

stein loss and the Wasserstein loss with L2 ground metric.

Motivating example. Consider the distribution Pr = δX which assigns probability one

to a single image X. Suppose the generative model attempts to estimate this via a distribution

23

of the form PG = δY which assigns probability one to a fake image Y . Now suppose that

X = δx, Y = δy are images with intensity 1 on pixel locations x, y, respectively, and intensity

zero elsewhere. See Figure 1.4. In this case we have

Wp,dX (Pr,PG) = dX (X,Y).

We check the following choices of the ground metric dX between images X and Y .

1. Wasserstein-2 ground metric:

dX (X,Y) =W2,dΩ
(X,Y) = dΩ(x, y);

2. L2 (Euclidean) ground metric:

dX (X,Y) = dL2(X,Y) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

0 if x = y

constant if x ≠ y

.

We see that the Wasserstein distance with L2 ground metric will assign two distant pixels

the same cost as two adjacent pixels. This results in a highly discontinuous distance that

is sensitive to single pixel translations! To make matters worse, in the case of continuous

domain images, the L2 distance will be infinite for all non-overlapping pixels. On the other

hand, the Wasserstein of Wasserstein loss function is continuous with respect to continuous

change of pixels in images. For learning image models with low dimensional support, the

Wasserstein of Wasserstein loss function is still well defined, while the Wasserstein loss with

the L2 ground metric function is ill-posed.

1.4.1.3 Duality formulation and properties

The computation required for the Wasserstein of Wasserstein loss function as stated in the

previous section is unfeasible. To compute (1.11) one needs to handle a linear programming

computation at both the level of probability distributions over images and individual images

over pixels.

24

Pixel Space

y

x

Image Space

X

Y

Space of Distributions on Image Space

P0

P1

Figure 1.4: Depending on how we measure distances between pixel locations, the distance

between images will be determined, and this in turn will determine how distances are measured

between probability distributions.

In this section, we present the Kantorovich duality formulation of Wasserstein of Wasser-

stein loss function with p = 1 and q = 2. As is done for Wasserstein GANs [ACB17], we consider

an equivalent Lipschitz-1 condition, which can be practically applied in the framework of

GANs.

Theorem 1.4.1 (Duality of Wasserstein of Wasserstein loss function). The Wasserstein-1

loss function over Wasserstein-2 ground metric has the following equivalent formulation:

W1,W2,dΩ
(PG,Pr)

= sup
f∈C(X)

{EX∼PGf(X) −Ex∼Prf(x)∶

∫
Ω
∥∇zδxf(x(z))∥

2
dΩ

x(z)dz ≤ 1},

(1.12)

where ∇z is the gradient operator in pixel space Ω and δx is the L2 gradient in image space X .

Proof of Theorem 1.4.1:

The result is from the duality of Wasserstein-1 metric, together with the Wasserstein-2 metric

induced gradient operator. Using the Wasserstein-1 metric we can apply the Kantorovich

duality reviewed in Section 1.2:

W1,dX (P0,P1) = sup
f

Ex∼P0f(x) −Ex∼P1f(x),

25

where the supremum is taken among all f ∶X → R satisfying a 1-Lipschitz condition with

respect to the ground metric dX , i.e.,

∥∇dX
x f∥ ≤ 1. (1.13)

Second, consider the ground metric given by the Wasserstein-2 metric dX =W2,dΩ
with ground

metric dΩ of pixel space. Then the gradient operator in (X , dX) is the Wasserstein-2 gradient,

i.e.,

∇W
2

f(x) = −∇z ⋅ (x(z)∇zδxf(x)(z)).

The 1-Lipschitz condition for (X , dX) in (1.13) gives ∥∇
W2,dΩ
x f∥ ≤ 1, i.e.,

(∇f(x),∇f(x))W2,dΩ
≤ 1.

It is rewritten as the following integral of the Lipschitz-1 condition w.r.t. the Wasserstein

Ground Metric:

∫
Ω
∥∇zδXf(x)(z)∥

2
dΩ

x(z)dz ≤ 1.

Combining the above facts, we derive the formula for Wasserstein of Wasserstein loss function.

The maximizer f in (1.12) corresponds to an Eikonal equation in image space (X ,W2,dΩ
).

In other words, the Lipschitz-1 condition in Wasserstein norm has the form

∫
Ω
∥∇zδxf(x)(z)∥

2
dΩ

x(z)dx = 1.

We call this equation the Wasserstein Eikonal equation.

Here the characteristic curve of our Eikonal equation is the geodesic curve in Wasserstein

space (X ,W2,dΩ
). The characteristic curve of geodesics in Wasserstein space is again a geodesic

in pixel space (Ω, dΩ). We call this fact the double characteristic property. This is illustrated

in Figure 1.4. In contrast, the characteristic of geodesics in L2 space does not depend on

pixel space. In the experiments section, we show that with the double characteristic property,

the discriminator is more continuous with respect to translations in pixel space, and is robust

with respect to spatially independent noise added to the samples.

26

1.4.2 Relevant literature for the Wasserstein of Wasserstein loss

In this subsection, we review additional literature related to the Wasserstein of Wasserstein

objective formulation.

Ground metric for function space. Banach GAN [AL18] pointed out the importance

of the ground metric in training with the Wasserstein loss. They apply Sobolev norms

and their induced gradient operator. In contrast, we apply the optimal transport induced

operator [Ott01, Vil09]. The gradient operator depends on the new ground metric structure

on sample space. We demonstrate that the optimal transport gradient provides for a practical

1-Lipschitz condition for training Wasserstein GANs.

Wasserstein natural gradients. Recent work also investigates natural gradients based

on the Riemannian structures derived from optimal transport [LM18a]. In this case, optimal

transport serves to define an optimization method, rather than a loss function. This approach

has also been applied to the training of GANs, where it leads to an iterative regularizer for

the generator [LLO18].

1.4.3 Wasserstein of Wasserstein GANs

In this subsection we apply the Wasserstein of Wasserstein loss function to implicit generative

models.

1.4.3.1 Background

We start by reviewing generative adversarial networks (GAN). GANs are a deep learning

approach to generative modelling that has demonstrated significant potential in the realm of

image and text synthesis [YZW17, MCY18]. The GAN model is composed of two competing

agents: A discriminator and a generator. At each training step the generator produces

synthesized images and the discriminator is given a batch of real and synthesized images

27

to be classified as real or fake. The generator is trained to maximize the predictions of the

discriminator while the discriminator is trained to classify generated images aside from real

images. At the end of training the generator has learned how to trick the discriminator and

ideally also estimate the underlying data distribution.

Mathematically if we define a trainable generative model PG and discriminator D, the

GAN objective formulation is as follows:

min
PG

max
D

{Ex∼Pr log(D(x)) +Ex∼PG log(1 −D(x))}. (1.14)

Here Pr is the true, or real, data distribution. The distribution PG is defined in terms of a

generator parameterized by θ ∈ Rd. Let the generator be given by Gθ∶Rm ↦ X ; ξ ↦ x = G(θ, ξ).

This takes a noise sample ξ ∼ p(z) ∈ P2(Rm) to an output sample with density given by

x = G(θ, ξ) ∼ ρ(θ,x) = PG. Here Rd is the parameter space, Rm is the latent space, and X is

the sample space.

The approach described above was found to suffer from difficulties at training, including

lack of convergence and mode collapse, a phenomenon where the distribution PG restricts to

estimate a proper subset of Pr. The above-mentioned challenges are often the result of the

discontinuous nature of the loss in (1.14), and were also considered by [BJG17]. To resolve

such problems, [ACB17] proposed to use the Wasserstein metric with Euclidean ground

metric as the objective, formulated as

min
PG

W1,L2(PG,Pr)

=min
PG

sup
f∈C(X)

{Ex∼PGf(X) −Ex∼Prf(x)∶

∥∇xf∥2 ≤ 1}.

(1.15)

The Lipschitz condition in (1.15) was enforced via weight-clipping, ensuring ∥∇xf∥2 < C0,

where C0 is a constant. While now providing GAN with a continuous loss, WGAN with

weight-clipping was noted to suffer from cyclic behavior and instability which was improved

by [GAA17] by changing the Lipschitz enforcing condition from hard weight-clipping to a

28

soft gradient penalty term,

min
PG

sup
f∈C(X)

{Ex∼PGf(x) −Ex∼Prf(x)

+ λEx∼Pinterp
(∇xf(x) − 1)2}.

(1.16)

Here Pinterp is a linear interpolation between Pr and PG, and λ is fixed. The gradient penalty

term in (1.16) is not in full compliance with the Kantorovich duality of the problem as it

also penalizes a discriminator of Lipschitz constants smaller than 1. To remedy this issue,

[PFL17] replace the gradient penalty term by

λEx∼Pinterp
(max(∇xf(x) − 1,0))2.

We now derive our formulation that improves current methods which are based on the L2

ground metric. Following Theorem 1.4.1, the Wasserstein of Wasserstein loss function can be

rewritten to give the optimization problem

min
PG
W1,W2,dΩ

(PG,Pr)

=min
PG

sup
f∈C(X)

{Ex∼PGf(x) −Ex∼Prf(x)∶

∥∇
W2,dΩ
x f(x)∥ ≤ 1}.

The above formulation is suitable for training GANs. Here we call the dual variable, f , the

discriminator, while G is the generator. In the setting of GANs, neural networks are used to

approximate the discriminator and generator, giving

min
θ

sup
φ

{Eξ∼p(z)fφ(g(θ, ξ)) −Ex∼Prfφ(x)∶

∫
Ω
∥∇zδxfφ(x)(z)∥

2
dΩ

x(z)dz ≤ 1}.

Here the generator G is expressed as a neural network with parameters θ ∈ Θ, and the

discriminator is approximated by a neural network with parameters φ ∈ Φ. Our approach

implements the 1-Lipschitz condition in terms of the Wasserstein gradient operator.

29

1.4.3.2 Discretization

We follow the formulas presented in Subsection 1.2.5 that enables computing the discrete

version of the Wasserstein-2 gradient. In practice, the image space X is not infinite dimensional,

although in vision problems the dimension may be vast (X = R28×28 or R32×32×3 for MNIST

or CIFAR-10). We point to the derivation to Subsection 1.2.5 and present the Riemannian

structure of the discrete W2 again here for convenience:

Proposition 2 (Wasserstein gradient on pixel space graph). Given a pixel space graph G,

the gradient of f ∈ C1(X) w.r.t. (X ,W) satisfies

∇xf(x) = L(x)∇xf(x),

where ∇x is the Euclidean gradient operator, and L(x) ∈ Rn×n is the weighted Laplacian

matrix defined as

L(x)ij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2 ∑k∈N(i) ωik(

xi
di
+

xk
dk

) if i = j;

−1
2ωij(

xi
di
+

xj
dj
) if j ∈ N(i);

0 otherwise.

Moreover, the 1-Lipschitz condition w.r.t. (X ,W), ∥∇W
2

x f(x)∥ ≤ 1, is equivalent to

∇xf(x)
⊺L(x)∇xf(x) ≤ 1.

Remark 1. We observe that the 1-Lipschitz condition is exactly the discrete analog of the

one in equation (1.12),

∥∇W
2

x f(x)∥ = ∇xf(x)
⊺L(x)∇xf(x) = ∑

(i,j)∈E

ωij(∇xjf(x) − ∇xif(x))
2 xi/di + xj/dj

2
≤ 1.

Note that the Wasserstein gradient written in this form can be compared with the graph

Laplacian on images [BF12, ZBC11].

30

1.4.3.3 Wasserstein gradient regularization in GANs

We next adopt the gradient penalty into the loss function (cf. [PFL17, GAA17]) as

min
θ

sup
φ

{Eξ∼p(z)fφ(g(θ, ξ)) −Ex∼Prfφ(x)

+ λEx̂∼P̂(
√
∇xfφ(x̂)⊺L(x̂)∇xfφ(x̂) − 1)

2

},

where λ is chosen as a large constant and P̂ is the distribution of x̂ taken to be the uniform on

“Euclidean” lines connecting points drawn from PG and Pr. Our WWGAN training method is

summarized in Algorithm 2.

Remark 2. In practice, we may want to use images of un-normalized intensity, therefore

the gradient penalty needs to account for change of total intensity. As proposed by [Li18], we

consider

L̃(x) = α11T +L(x). (1.17)

Here 1 = (1, . . . , 1)T ∈ Rn is a constant vector. In Appendix 1.A.3, we show how this adds one

direction to the original tensor. Compared to L(x) defined in the probability simplex, L̃(x) is

defined in the positive orthant. In the algorithm, we simply replace L by L̃ for un-normalized

intensity.

1.4.4 Experiments

In this subsection, we present experiments demonstrating the effects and utility of WWGAN.

We use the CIFAR-10 and 64 × 64 cropped-CelebA image datasets. In both experiments

the discriminator is a convolutional neural network with 3 hidden layers and leaky ReLU

activations. For the generator we utilize a network with 3 hidden de-convolution layers

and batch normalization [IS15]. The dimensionality of the latent variable of the generator

is set at 128. Batch normalization is not applied to the discriminator, in order to avoid

dependencies when computing the gradient penalties. The model is then trained with the

ADAM optimizer with fixed parameters (β1, β2) = (0.9,0). More implementation details are

provided in Appendix 1.A.3.

31

Algorithm 2 WWGAN Gradient Penalty.

Require: Gradient penalty coefficient λ, discriminator iterations per generator iteration

ndisc., batch size m, ADAM hyperparameters α, β1, β2, initial discriminator and generator

parameters φ0 and θ0, L matrix-function from graph structure for image space G =

(V,E,ω).

1: while θ has not converged do

2: for t = 1, . . . , ndisc. do

3: for i = 1, . . . ,m do

4: Sample real data x ∼ Pr, latent variable ξ ∼ p(z), a random number ε ∼ U[0,1].

5: x̃ ← Gθ(ξ)

6: x̂ ← εx + (1 − ε)x̃

7: M (i) ←Dφ(x̃) −Dφ(x) + λ(
√
∇x̂Dφ(x̂)TL(x̃)∇x̂Dφ(x̂) − 1)2

8: end for

9: φ← Adam(∇φ
1
m ∑

m
i=1M

(i), φ,α, β1, β2)

10: end for

11: Sample a batch of latent variables {ξi}mi=1 ∼ p(z)

12: θ ← Adam(∇θ
1
m ∑

m
i=1 −Dφ(Gθ(ξ), θ, α, β1, β2))

13: end while

32

Figure 1.7 shows that in terms of computation time and quality of the generated images

as measured by the Frechét Inception Distance (FID), WWGAN is comparable to state of the

art WGAN-GP. Next, we take a look at the properties of the trained discriminators, which

also serves to probe the shape of the probability densities over images defined by generators.

1.4.4.1 Perturbation stability

In this experiment we investigate how the discriminator trained with WWGAN on images

benefits from the properties of the Wasserstein Ground Metric. Specifically, we test whether

the discriminator trained with the new gradient penalty is more continuous with respect

to natural variations of the images. Natural variabilities are continuous transformations

of natural images that result in natural looking images, such as translations and rotations.

If the transformations are applied gradually, one should expect to observe only gradual

changes in the discriminator. The experiment is illustrated in Figure 1.5, where a randomly

selected image from the CIFAR-10 dataset is gradually shifted vertically, shifting all pixels a

single pixel downward at each step. In the figure, the sequence of shifted images is passed

through the WWGAN and the WGAN-GP discriminators, which had been trained with

their respective loss to reach an FID value of 40 for the generator. We observe with our

WWGAN model, the discriminator values change continuously with the translation of the

input image. In contrast, this type of continuity is not observed in models that are trained

with the Euclidean Lipschitz condition. We note that WWGAN assigns a positive value to the

image and gradually decreases to the end limit when the entire image is shifted away. Unlike

WWGAN, WGAN-GP is highly sensitive to perturbations in image space and oscillates wildly,

assigning highly positive (real label) and negative (fake labels) to images shifted less than 2

pixels away. We observed the same type of behavior across all images tested, as reported in

Table 1.1.

33

0 5 10 15 20 25 30
pixels translated

−200

−100

0

100

200

300

400

500

D
(X

tr
an

sl
at
e)
 d
is
cr
im
na

to
r
va
lu
e

WGANGP

L2 (Euclidean) ground metric

0 5 10 15 20 25 30
pixels translated

0

50

100

150

200

250

D
(X

tr
an

sl
at
e)
 d
is
cr
im
na

to
r
va
lu
e

WWGAN

W2 (Wasserstein) ground metric

Figure 1.5: Discriminator for CIFAR-10 images translated by a vertical shift from 0 (no

shift) to 32 pixels (complete image). The WWGAN discriminator is continuous to natural

perturbations, e.g., vertical translation. WGAN-GP discriminator exhibits unpredictable

behavior for small vertical perturbations, oscillating between real (positive values) and fake

(negative values) labels. Both WWGAN, WGAN-GP discriminators tested were trained

identically to reach an FID value of 40.

34

Method Total variation (normalized) zero-crossings

WGAN-GP 5.36 7.07

WWGAN 4.02 0.65

Table 1.1: For each image of the CIFAR-10 testing set we construct a vertical translation

sequence and evaluate it on the discriminator of WWGAN and WGAN-GP. Normalized total

variation and zero-crossing are computed for each curve and the average is reported. It is

observed that WGAN-GP is more oscillatory than WWGAN.

1.4.4.2 Discriminator robustness to noise

In this experiment, we test the robustness of the discriminator to RGB salt and pepper noise,

i.e., every pixel has a probability to be changed to either 0 or 1. In the plot 15% of the pixels

are modified. We trained GANs with WGAN-GP and WWGAN until reaching an FID score

of 40. We then measure the values of the trained discriminators on real images with RGB

salt and pepper noise. In Figure 1.6, we see that WGAN-GP has separate clusters for noisy

and clean images, while WWGAN is more robust to the noise and assigns more consistent

values to all images.

35

0 10 20 30 40 50 60

image index

−2

0

2

4

6

D
is
cr
im
na
to
r
va
lu
es

WGANGP

clean images
noisy images

0 10 20 30 40 50 60

image index

−6.5

−6.0

−5.5

−5.0

−4.5

−4.0

D
is
cr
im
na

to
r
va
lu
es

WWGAN

clean images
noisy images

Figure 1.6: Robustness of the discriminator to noise on real CIFAR-10 images. The noise is

RGB salt and pepper, where 15% of the pixels are modified. The WGAN-GP discriminator

values cluster according to noise, giving different values to clean and noisy real images. The

WWGAN discriminator is more robust to noise, and changes relatively little.

0 10 20 30 40 50
Epochs

100

150

200

250

300

fre
ch

et
 in

ce
pt

io
n

di
st

an
ce

 (F
ID

)

CelebA

WWGAN
WGAN GP

Figure 1.7: WWGAN gives comparable results with state of the art WGAN-GP training

in terms of the FID of generated images. In terms of computation time, the overhead of

WWGAN is negligible, with average epoch wall-clock times of 218.1 s and 236.9 s, respectively,

in our experiments.

36

1.4.5 Discussion

In Section 1.4 we proposed a Wasserstein loss function with Wasserstein Ground Metric for

learning generative models. The Wasserstein Ground Metric introduces a manifold structure

into the sample space of the model and allows us to introduce meaningful priors to the

learning model. Experiments demonstrate that this approach can contribute to making the

generator and discriminator in GANs more stable with respect to noise and the natural

variability of image data.

We consider the Wasserstein of Wasserstein loss an important advance at a conceptual

level. With a clear physical intuition. Namely, it corresponds to physical displacement or

translation in pixel space. This translates to continuity in image space, and changes the

distribution over images accordingly. The double characteristic property of the Wasserstein

Eikonal equation reflects this intuition analytically. We regard it as surprising that this

high level approach can be translated to practical computational methods. Remarkably, our

approach has a very small additional computational cost over the standard Wasserstein loss

function with L2 (Euclidean) ground metric.

1.5 Wasserstein Tikhonov regularization in image classification

In this section we apply the Wasserstein Ground Metric to improve discriminative models

via a more natural notion of distance between samples.

1.5.1 Introduction

The sensitivity of trained discriminative models to small perturbations of the input data has

become a reason of concern and an important topic of research in recent years [SZS14, NYC15].

In particular, it has been observed that neural networks which have been trained to have

good test performance can be fooled when the inputs are slightly perturbed in a way that

is imperceptible to humans. This indicates a poor generalization ability, and specifically,

37

that the solutions found with naive training and validation techniques are not capturing

appropriate smoothness priors over the input space. A number of recent works have proposed

approaches to improve robustness to perturbations [CBG17, LLD18, SKC18, WLS18, FOA19],

while a complementary line of work probes the limitations of trained networks [SYZ19] and

develops strategies to generate adversarial attacks [CKB17, MFF16, MFF17, SHS19].

Intuitively, a smoother function at fixed training accuracy should be more robust to

perturbations of the input, including adversarial attacks. Therefore, one strategy is to train

the discriminative function with smoothness regularizers, such as noise added to the training

examples (adversarial or random) or penalizing the norm of the gradient with respect to the

inputs. We note, however, that the notion of a “small” perturbation will strongly depend

on how we decide to measure distances in the space of inputs. The gradient and its norm

depend on the geometric structure that endows the input space.

While it is convenient to use the L2 metric (Euclidean), it is well understood that many

data types of interest are not Euclidean. In particular, the L2 metric does not measure

distances between images in the way that we perceive them. Changes that humans consider

small, might correspond to changes that the classifier considers to be large in this metric.

Moreover, it is clear that a discriminative function on image data should be more stable in

certain directions and more variable in other directions. This distinction is not well captured

by isotropic smoothness regularizers.

To construct more effective smoothness regularizers, two general approaches come to

mind: 1) Measure distances in a metric representation of the raw inputs, dφ(x, y)2 =

∑j ∣φ(x)j − φ(y)j ∣
2, where φ is some feature representation function that might be trained

separately from or together with the discriminative task. Examples in this direction include

preprocessing of the inputs by downsampling [GRC18], autoencoders, and approaches that

regularize intermediate representations within the neural network that is being trained for the

discriminative task, such as injecting noise in the layers of a ResNet [WYS18]. 2) Measure

distances directly on the inputs (or following light preprocessing), but use a metric that is

38

reflective of our perception of the data. Both approaches allow for data driven specifications

and also direct incorporation of prior knowledge about the domain. We focus on the input

space approach with the Wasserstein Ground Metric.

As presented in Sections 1.1,1.2 the Wasserstein distance is known to be an effective metric

in the space of images, as demonstrated in image retrieval problems [RTG00, SDP15, SRG14]

and related applications [PC19]. In particular, the Wassersetin distance is robust to natural

variations such as translations and independent noise added to the pixel values. As observed

with the Wasserstein Ground Metric, the Wasserstein-2 distance exhibits a Riemannian

metric structure. In this section the Riemannian structure allows us to define an effective

Wasserstein Gaussian noise† in the space of images which in expectation leads to a similar

penalty term as in Section 1.4. The Wasserstein metric depends on the specific location

at which it is being evaluated, and can define neighborhoods with a reasonable degree of

semantic meaning. See, for example, the Wasserstein geodesics balls illustrated in Figure 1.1.

We suggest that regularization based on Wasserstein geometry can make a discriminative

function noticeably smoother along the directions of natural variations of images, but without

making it constant along the directions of semantic variation. Moreover, a generative

perturbation model can be folded into the training objective (by computing the expectation

value over perturbations of the Taylor expanded loss around each training example). This

yields an effective penalty term that integrates (up to a given order in the expansion) a

continuum of perturbations at once.

The rest of the section on Wasserstein adversarial robustness is organized as follows. In

Subsection 1.5.2 we discuss relations of the proposed method to some of the existing literature.

In Subsection 1.5.3 we review adversarial attacks in deep learning. In Subsection 1.5.4 we

consider training with input noise and propose a Wasserstein Gaussian distribution in image

space, which reflects the natural local variability of images. Then we compute the expectation

†Wasserstein Gaussians appear in the small time behavior of a process called Wasserstein diffusion,

investigated in continuous [RS09] and discrete [Li18] states.

39

of the perturbed objective by Taylor expansions in the Wasserstein space. This leads to a

Tikhonov-type Wasserstein diffusion smoothness regularizer. In Subsection 1.5.5 we present

preliminary experimental results and in Subsection 1.5.6 we offer final remarks on adversarial

regularization with the WGM.

1.5.2 Relevant literature to Wasserstein adversarial robustness

There are many works related to Wasserstein geometry, robustness, regularization. In this

subsection we briefly mention some of the literature in relation to the focus of Section 1.5 on

model robustness.

Adversarial robustness. Adversarial attacks are small-scale non-noticeable perturba-

tions to the data inputs of neural networks that lead to large changes to the output and

classification of discriminative models. Since adversarial attacks are problematic in many

critical applications of deep learning, there has been a lot of work aiming to circumvent their

effects in existing models. Previous works have investigated post-processing with Jacobian

regularization [JG18] and cross Lipschitz regularization [HA17], whereby the input space was

modeled with a Euclidean geometry space. The duality of attack norms and Lipschitz norms

has been discussed as well in [FOA19]. Perturbation based regularization has been proposed

in [YGZ18], which penalizes the negative effect of the adversarial attack in proportion to the

size of the input. Gaussian data augmentation was proposed in [ZNR17] as well, but was

instead evaluated by Monte Carlo samples and using Euclidean space. Recently, the trade-off

between natural and robust classification errors was studied, leading to a training objective

with an added term of the form Ex[maxx′∈B(x,ε) φ(f(x)f(x′)/λ)] [ZYJ19]. Similar to our

method, this approach penalizes the variability of the classifier, but it does not incorporate

priors about the geometry of the input data. Using the Wasserstein metric, [WSK19] uses

modified Sinkhorn iterations to approximate projections of adversarial examples onto a

Wasserstein ball. This is similar to the adversarial norm constraint that we present below.

40

However, our approach is based on a Riemannian metric formulation, which allows us to

obtain a very simple quadratic form approximation of the norm and also enables us to

integrate a generative noise model (Wasserstein diffusion) into an effective regularizer term

added to the loss.

Robustness and regularization. Wasserstein balls have appeared in the context of

robust density estimation [SKE17], where they are also related to a form of Tikhonov

regularization in the case of logistic regression. Wasserstein distributionally robust stochastic

optimization has been related to regularization by certain empirical gradient norms [GCK17].

The inspiration for this work, albeit not involving Wasserstein geometry, is the work by

[Bis95], which shows that training with noise is equivalent to Tikhonov regularization.

1.5.3 Adversarial training and ground truth geometry

An adversarial attack is a perturbed version π(x) of an input example x, which alters the

prediction of the classifier such that f(π(x)) ≠ f(x). According to this simplistic definition,

every classifier can be successfully attacked, provided it has at least two possible output

values. Taking a more refined perspective, consider g(x) as the best possible classification,

i.e., ground truth / Bayes classifier. Then a successful adversarial attack can be defined

as a perturbation π(x) of an input x such that f(x) = g(x) but f(π(x)) ≠ g(π(x)). This

highlights that what we care about is not whether a classifier changes its prediction when

the input is perturbed, but rather in what scenarios does it change its prediction wrongfully,

especially if it is a drastic change due to non-noticeable perturbation which will not be

reflected by the ground truth g.

In order to quantify the sensitivity to attacks, we need a measure of the size of the

perturbation model and the effect that it has on the classifier. Consider a loss function of the

form

E(f) = Ep(y∣x)p(x) [l(f(x), y)] . (1.18)

41

We can measure the detriment of the loss when the data is perturbed in comparison with the

unperturbed loss. For generality, we define a perturbation π at x as a random variable. For

example π can take the form of additive perturbations like π(x) = x + ξ, where ξ can be, e.g.,

a zero mean multivariate normal random variable, or a deterministic value obtained via an

attack strategy on the input x. The loss under perturbations is then

Ep(π∣x)p(y∣π(x))p(x) [l(f(π(x)), y)] . (1.19)

As we noted earlier this will depend on the nature of the perturbations π. Adversarial

examples are often constructed by minimizing the confidence of the discriminative function

or increasing the training loss with respect to the input. Since this does not incorporate prior

knowledge about the shape of the ground truth, usually the perturbations are restricted to lie

within a very small Lp ball around the input example to ensure adversariality. When random

input noise regularization and gradient penalties are applied using the same Lp losses, they

suffer from generally regularizing in all directions, leading to a significant detriment in test

accuracy. The situation is illustrated in the right part of Figure 1.1. Instead of restricting

the perturbations to be small in an Lp norm sense, we suggest to refine the metric on input

space and the perturbation model. For this we propose to measure distances on input space

using the Wasserstein Ground Metric and train with a corresponding Wasserstein Gaussian

input noise. The Wasserstein metric assigns a small distance to natural local variations of

an input image. This means that larger perturbations are more likely to remain within the

class of the input example that is being perturbed. In turn, we can apply higher levels of

noise, allow for larger size perturbations in adversarial training, or apply stronger gradient

penalties during training. In the next section we derive an effective regularizer for training

with the Wasserstein metric on input space and which integrates the entire set of Wasserstein

Gaussian noise perturbations (in a second order expansion) for each input example at once.

42

1.5.4 Perturbed loss and Wasserstein diffusion Tikhonov regularizer

It is well known that training with input noise can be related to training the original objective

with an added penalty [Bis95]. These derivations usually are based on Taylor expansion of

the perturbed loss around a given example. By default, the inputs are considered to live in

Euclidean space, with loss functions such as the mean square error or the cross-entropy loss.

Following the arguments from the previous sections, we model the input space of images

as a Wasserstein space. We then derive the Wasserstein Taylor expansion of the perturbed

loss and the corresponding regularization penalties. Once the input space is regarded as a

Wasserstein metric space, our derivations follow Riemannian calculus reviewed in Section 1.2.

We consider a perturbation model defined in terms of a “Wasserstein Gaussian”, which at

a given input image x ∈ X = P(Ω) has a density function of the form

p(ξ∣x) = exp(−d2
W(x,x + ξ)2/η2)d(ξ),

with a scale parameter η > 0 and a given reference measure d(ξ). Locally, the Wasserstein-2

distance can be expressed as

dW(x,x + ξ)2 = (ξ,GW(x)ξ)L2 + o(∥ξ∥2), (1.20)

where ξ ∼ N(0, η2I) and GW(x) is the Wasserstein Riemannian metric tensor at x, see (1.2.4).

Note that unlike traditional Guassian noise, ξ is dependent on the input image data x, even

with the linearization, as the covariance matrix η2G−1
W
(x) depends on the input x. In addition,

we note that GW will depend on the choice of a ground metric dΩ over pixels.

We are now ready to present our theorem that relates training with Wasserstein diffusion

to training with an added penalty term.

Theorem 1.5.1 (Perturbed loss regularization). Consider an input space (X , g) with the

Riemannian metric g represented by a matrix GW(x) depending on x ∈ X , and consider the

loss E(f) = E[l(f(x), y)] from (1.18) with some error function l that is twice differentiable

in the first argument. Let ξ be a Gaussian noise variable with zero mean and covariance

43

matrix η2G−1(x) depending on x. Then the perturbed loss from (1.19) takes the form

Eξ(f) = E(f) +
1

2
η2ER(f) + o(η2),

where

ER(f) = Ep(y∣x)p(x)[l′′(f(x), y)∥∇W
2

x f(x)∥2 + l′(f(x), y)∆W2f(x)].

Here l′ and l′′ denote the first and second order ordinary partial derivatives of l with respect to

the first argument, and ∇g, ∥ ⋅ ∥g, ∆g are the gradient, norm, and Laplace-Beltrami operators

on (X , g).

the intuition is that with the Wasserstein Ground Metric, the perturbation is proportional

to the Riemannian steepest descent direction, ξ ∝ ∇W
2

x f(x) = G−1(x)∇f(x), then the penalty

is proportional to the Riemannian gradient norm squared, ∥∇W
2

x f(x)∥2. This in contrast with

the traditional isotropic Gaussian noise, where the Euclidean steepest descent is ∇xf(x).

Example 1 (Square error). For the square error l(f(x), y) = (f(x) − y)2 and a perturbation

model as in Theorem 1.5.1, we obtain the regularizer

ER(f) = Ep(y∣x)p(x)[∥∇W
2

x f(x)∥2 + (f(x) − y)∆gf(x)].

For non-zero mean perturbations, we can consider an expansion to first order which gives

ER(f) = Ep(y∣x)p(x) [2(f(x) − y) ⋅Ep(ξ∣x)[ξ]⊺∇f(x)] .

Example 2 (Cross entropy error). For the cross entropy l(f(x), y) = −y ln(f(x)) − (1 −

y) ln(1 − f(x)) and a perturbation model as in Theorem 1.5.1, we obtain the regularizer

ER(f) = Ep(y∣x)p(x)[(
y

f 2(x)
+

1 − y

(1 − f(x))2
)∥∇W

2

x f(x)∥2 + (−
y

f(x)
+

(1 − y)

(1 − f(x))
)∆gf(x)].

In the case of k outputs (e.g., k-class classification), the loss function is summed for each

output.

44

Example 3 (Euclidean inputs). In the case of Euclidean inputs and uncorrelated zero mean

isotropic Gaussian noise of variance η2, we recover some of the classic calculations by [Bis95].

Consider as an example the square error function, for which the regularizer becomes

ER(f) = Ep(y∣x)p(x) [∑
i

{(
∂f

∂xi
)

2

+ (f(x) − y)
∂2f

∂x2
i

}] .

As pointed out by [Bis95], this is the Tikhonov regularizer that is usually added to the sum of

squares error.

Theorem 1.5.1 shows that all noise perturbed versions of a given input example can

be integrated (in a second order sense) into a single term. Formally, equivalence of the

regularizer to training with noise is only valid for small values of η, since it is based on a

second order Taylor expansion. The Wasserstein diffusion smoothness regularizer ER also

has the natural interpretation as decreasing the variability of the classifier in an anisotropic

and input dependent way that is captured by the Wasserstein gradient norm and the Laplace-

Beltrami operator. This interpretation remains valid for arbitrarily large values of η, even if

in this case the regularized objective might no longer correspond to the integrated perturbed

objective.

We note that the term involving the Laplace-Beltrami operator is premultiplied with the

derivative of the error. For regular choices of l, if the classifier makes correct predictions on

the training inputs x (which is often the case), the derivative l′(f(x), y) will vanish. This

suggests that for the purpose of regularization in settings where the training error vanishes,

in practice we can omit the Laplace-Beltrami term and consider only the gradient penalty

term.

Taking the perspective of smoothness suggests that we may also regularize by penalizing

the gradient of the discriminator, instead of the gradient of the loss function. Finally, we

point out that the Wasserstein metric can also be used to define the size constraints for

adversarial training. Usually adversarial perturbations are constrained to have L∞ norm (or

some Lp norm) bounded by a small ε. Instead of using ∥ξ∥Lp ≤ ε, we can use ∥ξ∥W2 ≤ ε, or

simply ξ⊺GW2(x)ξ ≤ ε.

45

1.5.5 Experiments

Below we present experimental results to evaluate the utility of Wassserstein smoothness

regularization in terms of the robustness of the trained classifiers to small and large per-

turbations. We focus on regularization by the Wasserstein gradient norm penalty. For the

Wasserstein Ground Metric regularization, for each training example x we add

l′′(f(x), y) ⋅ ∥∇W
2

x f(x)∥2. (1.21)

1.5.5.1 Stability to adversarial perturbations of the input data

In this experiment we test the effectiveness of the gradient penalty regularizer in terms of

the test accuracy of the trained classifiers. We train a ResNet-20 on clean images from

CIFAR-10 with gradient norm penalty computed under Euclidean and Wasserstein metrics.

We run grid search for the regularization strength and the radius defining the ground metric

on pixel space. The training error converges to zero in all cases. We consider two types

of test data: the clean test dataset (natural generalization) and the test dataset with each

test example perturbed by an adversarial attack (robust generalization). Following current

literature, adversarial perturbations are computed by FGSM and I-FGSM [GSS15, KGB17].

More details on the implementation and hyperparameters are provided in Appendix 1.A.3.

Our results, reported in Table 1.2, compare with the Fast Gradient Sign Method (FGSM)

[GSS15] and the iterative counterpart, I-FGSM [KGB17].

46

Test data / Regularizer None Euclidean grad. Wassserstein grad.

Natural 16.29 15.61 15.35

FGSM ε = 8/255 82.22 31.10 30.20

FGSM ε = 25/255 89.72 66.83 44.32

I-FGSM-20 α = 2/255, ε = 8/255 90.15 40.06 32.12

Table 1.2: Robust test error percentage (lower is better) for a ResNet-20 network with softplus

activation trained for 200 epochs on clean CIFAR-10 training images using gradient norm

regularization with Euclidean and Wasserstein metric on image space. We run grid search

over the regularization strength and the ground metric radius on pixel space.

1.5.5.2 Stability to large in-class variations of the input data

Most work on adversarial robustness focuses on small perturbations, with adversarial attacks

restricted to have a small norm so that they remain imperceptible to humans. We are

interested in generalization for all kinds of in-class variations of the data, including large

perturbations that should not change the predicted class. In this experiment we train on the

clean CIFAR-10 training set (no data augmentation), and compare between no regularization,

Euclidean, and Wasserstein smoothness regularization. For testing, we randomly draw 1000

images from the test set and construct for each of them a sequence of translated versions

with padding, as depicted in Figure 1.8. The semantic meaning of images should remain

relatively constant under incremental translations, and therefore we expect a robust classifier

to label all images in the sequence similarly. Quantitatively, this is measured by the number

of label flips that occur in the sequence. We report the average number of label flips over all

sequences of test images in Table 1.3. As the table shows, Wasserstein gradient regularization

improves the robustness of the classifier to translations.

47

Figure 1.8: Robust classifiers should be invariant to natural variations of the data. Shown

are horizontal translations of an image from CIFAR-10.

Perturbation \ Regularizer None Euclidean grad. Wasserstein grad.

Horizontal translation 10.009 7.898 6.488

Vertical translation 9.920 9.437 7.956

Table 1.3: Average number of prediction flips on sequences of translated test images from

CIFAR-10. The classifiers were trained on the clean CIFAR-10 training set with no data aug-

mentation, with either no regularization, Euclidean Tikhonov regularization, or Wasserstein

Tikhonov regularization.

1.5.6 Discussion

Training with input noise or data augmentation in general is known as an effective form of

regularization to obtain classifiers that are more robust to natural variations of the data, or

to reduce the sensitivity to perturbations. These methods usually have a high cost in terms of

the number of examples needed and the cost of computing each of them (especially in the case

of adversarial data augmentation obtained by iterated gradient methods). Another problem

is that usually noise models and adversarial examples need to be restricted to tiny norm

values to ensure that they remain within the class of the perturbed example. Smoothness

regularizers based on Lp metrics are usually limited in the same way. This section follows

the idea that the space of inputs is not Euclidean and that smoothness priors should be

implemented with respect to an appropriate metric, which in turn would allow us to apply

higher levels of regularization without hurting test performance. We propose to use the

Wasserstein-2 metric to capture semantically meaningful neighborhoods of images. As we

48

show, the Wasserstein diffusion smoothness regularizer arises naturally by expanding and

integrating the loss with respect to Wasserstein Gaussian noise on the inputs. We obtain an

effective penalty that can be computed very efficiently, saving computation compared with

adversarial data augmentation, and has a negligible overhead over L2 gradient penalties. The

experimental results indicate that our methods can improve robust generalization performance

on CIFAR-10 for both adversarial robustness and natural variations.

49

1.A Appendix

1.A.1 Proof of equivalence of noise training with Wasserstein Thikonov Regu-

larization

A Riemannian metric g defines an inner product between tangent vectors of the input space

at each possible location. We choose standard coordinates for the input space X = Rn and

write g(ξ, ζ) = (ξ, ζ)g = ξ⊺G(x)ζ for any pair ξ, ζ ∈ TxX . We implicitly identify TxX and

X so that adding a tangent vector ξ ∈ TxX to an input vector x ∈ X makes sense. The

Riemannian gradient with the metric g is given by ∇gf(x) = G−1(x)∇f(x), where ∇ is the

ordinary gradient. This is also known as the natural gradient.

Proof of Theorem 1.5.1:

We expand the error function l around a data point x with added noise ξ in the Riemannian

space (X , g). We obtain

l(f(x + ξ), y) = l(f(x), y) + l′(f(x), y)(∇gf(x), ξ)g

+
1

2
l′′(f(x), y)(∇gf(x), ξ)

2
g +

1

2
l′(f(x), y)∑

i,j

ξiξj(∇
2
gf(x))ij + o(∥ξ∥

2
g).

We discuss the individual terms in turn. The zero order term is just the unperturbed loss.

On taking the expectation value with respect to ξ given x, the linear term vanishes when we

assume that the perturbations have zero mean, Ep(ξ∣x)[ξ] = 0. If the perturbation does not

have zero mean, we obtain

Ep(ξ∣x)[(∇gf(x), ξ)g] = Ep(ξ∣x)[(G−1(x)∇f(x))⊺G(x)ξ] = ∇f(x)⊺Ep(ξ∣x)[ξ].

For the first quadratic term, when Ep(ξ∣x)[ξξ⊺] = η2G−1(x), we obtain

Ep(ξ∣x)[(∇gf(x)
⊺G(x)ξ)2] = η2∇gf(x)

⊺G(x)∇gf(x) = η
2∥∇gf∥

2
g.

For the second quadratic term, again when Ep(ξ∣x)[ξξ⊺] = η2G−1(x), we obtain

Ep(ξ∣x)[ξ⊺ Hess f(x)ξ] = η2∆gf(x).

50

Here the Laplace-Beltrami operator is

∆gf =∑
j,k

gjk
∂2f

∂xj∂xk
− gjkΓljk

∂f

∂xl
,

where Γljk is the Christoffel symbol.

1.A.2 Wasserstein metric in un-normalized distributions

We illustrate the Wasserstein metric tensor in un-normalized density space. The new metric

tensor induces the gradient operator in un-normalized density space. This follows the recent

work on the topic including [GLO19].

In other words, consider

M+(I) = {µ = (µ1,⋯, µn) ∈ Rn∶µi ≥ 0}.

The tangent space of M+(I) at µ forms

TµM+(I) = Rn.

Definition 1.A.1 (Unnormalized Wasserstein-2 metric tensor). The inner product g̃µ ∶

TµM+(I) × TµM+(I)→ R forms

g̃µ(σ1, σ2) ∶= σ1
⊺(L(p)† +

1

α
11T)σ2,

for any σ1, σ2 ∈ TpP+(I).

It is clear that (M+(I), g̃) is a well defined metric in positive octant. In this case, the

un-normalized Wasserstein-2 gradient is given by the following theorem.

Theorem 1.A.1 (Unnormalized Wasserstein-2 gradient on graphs). Given F ∈ C1(M+(I)),

the gradient operator in Riemannian manifold (M+(I), g̃) satisfies

gradF(µ) = (L(µ) + α11T)dµF(µ).

51

In other words,

gradF(µ)i =
1

2
∑

j∈N(i)

ωij(
∂

∂µi
F −

∂

∂µj
F)(

µi
di
+
µj
dj

)

+ α
n

∑
i=1

∂

∂µi
F(µ).

Proof: Notice that

L(µ) = T

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0

λsec(L(µ))

⋱

λmax(L(µ))

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

T −1 ,

where 0 < λsec(L(µ)) ≤ ⋯ ≤ λmax(L(µ)) are eigenvalues of L(ρ) arranged in ascending order,

and T is its corresponding eigenvector matrix. Here the zero eigenvalue correspond to the

eigenvector 1. Thus

(L(µ)−1 +
1

α
11T)

−1

= L(µ) + α11T .

Then

gradF(µ) = (L(µ)−1 +
1

α
11†)

−1

dµF(µ)

= L(µ)dµF(µ) + α11TdµF(µ),

which finishes the proof.

1.A.3 Detailed description of the experiments

Image generation experiments We run experiments on the CIFAR-10 and CelebA

(aligned, cropped, 64 × 64) datasets.

For the experiment measuring discriminator robustness to noise, or hyperparameters for

WGAN-GP is,

● DCGAN Architecture, with 3 convolutional layers, and no batch-normalization in the

discriminator.

52

● Adam optimizer, with learning rate 0.0003, and β1 = 0.5, and β2 = 0.9

● Batch size of 64, and noise vector of dimension 128.

For the WWGAN loss, we use the same hyperparameters as WGAN-GP, and for the WWGAN,

we set α = 1.0 and β = 50.

For the noise model, we used RGB salt and pepper noise, which first transforms the

3 ×N ×N image to a 3N2 vector, and provides a probability of changing any coordinate.

Once a change is decided, the coordinate value is set to 0.0 or 1.0 (the max pixel value) with

equal probability.

Then the discriminator is evaluated on 64 noisy and clean images. And we see that the

discriminator trained with WWGAN is more robust to noise.

We compare the WWGAN loss function with the WGAN-GP loss For both losses, we use

a DCGAN architecture, removing the batch-normalization layer in the discriminator. We

also train with the Adam optimizer with learning rate 1e − 4 and β1 = 0.9, β2 = 0.

Codebase for WWGAN The WWGAN algorithm is available in Github at this link

https://github.com/dukleryoni/WWGAN

Wasserstein diffusion for adversarial robustness For our experiments, we use the

CIFAR-10 dataset, and use white-box attacks on the ResNet-20 network. For training, we

fixed the batch size of 128, and used SGD with momentum and weight decay, where the

momentum value is 0.9 and the weight-decay value is 10−4. We start with a learning rate of

0.1, and at epoch 100 and 150 we divide the learning rate by 10 each time. Our activations

were softplus with a β = 1 and a threshold of 20, where the softplus activation is

Softplus(x) =
1

β
log(1 + exp(βx)),

and the threshold value is the value of x beyond which we assume that the softplus equals a

linear function, for numerical stability.

53

We examine the case of training the ResNet-20 network on the CIFAR-10 dataset, with

standard normalization of the pixel values. This achieves a test accuracy of 83.71%. We then

examine the effect of modifying the loss objective with either the Euclidean or Wasserstein

gradient penalties of the original loss, namely we use the loss

`(f(x), y) + η2(∇x`(f(x), y),G(x)−1∇x`(f(x), y)),

where ∇x is the Euclidean gradient and G(x) ∈ Rd×d represents the metric used in sample

space. For the Wasserstein gradient norm, G(x)−1 = L(x). For the Euclidean gradient norm,

G(x) = I.

The values of the regularization strength η2 we tested were

10−3,10−2,0.1,1,10,100,103,104,105. (1.22)

And for the ground metric on pixel space we considered neighbors in a square shape, where

the size of the square had half the side-length be 2,4,6,8.

1.A.4 WWGAN generated images

Figures 1.9 and 1.10 below show sample images generated from the WWGAN model trained

with the settings described in Appendix 1.A.3.

54

Fake Images

Figure 1.9: CelebA cropped 64 × 64 WWGAN generated images.

55

0 50 100 150 200 250

0

50

100

150

200

250

Figure 1.10: CIFAR-10 WWGAN generated images.

56

CHAPTER 2

Differentiable dataset optimization∗†

2.1 Introduction

Consider the following seemingly disparate questions. (i) Dataset Extension: Given a

relatively small training set, but access to a large pool of additional data, how to select from

the latter samples to augment the former? (ii) Dataset Curation: Given a potentially large

dataset riddled with annotation errors, how to automatically reject such outlier samples?

(iii) Dataset Reweighting: Given a finite training set, how to reweight the training samples to

yield better generalization performance?

These three are examples of Dataset Optimization. In order to solve this problem with

differentiable programming, one can optimize a loss of the model end-to-end, which requires

differentiating the model’s loss with respect to the dataset. Our main contribution is an

efficient method to compute such a dataset derivative. This allows learning an importance

weight αi for each datum in a training dataset D, extending the optimization from the weights

w of a parametric model such as a deep neural network (DNN), to also include the weights

of the dataset.

As illustrated in the following diagram, standard optimization in machine learning works

∗This Chapter is adapted from [Ano22] and is the result of work done during an internship at Amazon

Research.

Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved for work in this chapter.

†This chapter reproduces material from [Ano22], with the permission from coauthors

57

by finding the weights wα that minimize the training loss Ltrain(w,Dα) = ∑iαi`(fw(xi), yi)

on a given (weighted) dataset Dα (dark box). We solve a more general learning problem (light

box) by jointly optimizing the dataset Dα in addition to w. To avoid the trivial solution α = 0,

it is customary in AutoML to optimize Dα by minimizing the validation error computed on a

disjoint dataset. This makes for inefficient use of the data, which has to be split between

training and validation sets. Instead, we leverage a closed-form expression of the leave-one-out

cross-validation error to jointly optimize the model and data weights during training, without

the need to create a separate validation set.

Ltrain(w, Dα) wα Lval(wα)

Standard optimization finds the best weights to
minimize the training loss

Dα

DIVA finds the best dataset to train on in order so
that the weights minimize a validation loss

Dα

Ltrain(w, Dα) wα Lval(wα)Dα

Ltrain(w, Dα) wα Lval(wα)Dα

The intermediate block in the diagram (which finds the optimal weights wα for the the

training loss on Dα) is usually non-differentiable with respect to the dataset, or the derivative

is prohibitively expensive to compute. DIVA leverages recent progress in deep learning

linearization [AGR20], to derive a closed-form expression for the derivative of the final loss

(validation error) with respect to the dataset weights. In particular, [AGR20] have shown

that, by replacing cross-entropy with least-squares, replacing ReLu with leaky-ReLu, and

performing suitable pre-conditioning, the linearized model performs on par with full non-

linear fine-tuning. We also leverage a classical result to compute the leave-one-out loss of a

linear model in closed-form [RL07, GS93]. This allows us to optimize the LOO loss without

requiring a separate validation set, setting DIVA apart from bi-level optimization customary

in AutoML.

To illustrate the many possible uses of the dataset derivative, we run experiments with a

simplified version of DIVA to cleanup a dataset of noisy annotations, to extend a training set

with additional data from an external pool, identify meaningful data augmentation, and to

perform multi-modal expansion using a CLIP model [RKH21].

Rather than using the full linearization of the model derived by [AGR20], we restrict the

58

gradient to its last layer, cognizant that we are not exploiting the full power of LQF and thereby

obtaining only a lower-bound of performance improvement. Despite that restriction, our

results show consistent improvements from dataset optimization, at the modest computational

cost of a forward pass over the dataset to optimize the importance weights.

To summarize, our main contributions are:
1. We introduce a method to compute the dataset derivative in closed form, DIVA.

2. We illustrate the use of DIVA to perform dataset optimization by minimizing directly

the leave-one-out error without the need for an explicit validation dataset.

3. We perform experiments with a simplified model that, despite not using the full power

of the linearization, show consistent improvements in dataset extension, re-weighting,

outlier rejection and automatic aggregation of multi-modal data.

Our method presents several limitations. The dataset derivative of a learning task is

computed around a point represented by a pre-trained model. It only allows local optimization

around this point. Moreover, we only compute a restriction of the linearization to the

dimensions spanned by the last few layers. In general, this yields suboptimal results compared

to full global optimization from scratch, if one could compute that at scale. Nonetheless, the

linearized setting is consistent with the practice of fine-tuning pre-trained models in light of

the results of [AGR20], see also [RKH21, RRC17, MGM18, HKF18].

2.2 Related work

AutoML. State of the art performance in image classification tasks often relies on large

amount of human expertise in selecting models and adjusting the training settings for the task

at hand [LCY20]. Automatic machine learning (AutoML) [FKE19, HZC21] aims to automate

model selection [CT10] and the training settings by instead using meta-algorithms for the dif-

ferent aspects of the learning settings. Such methods follow a bi-level optimization framework,

optimizing the training settings in the outer level, and traditional model optimization in the

59

inner level [JF18]. AutoML has focused on achieving better results via automatic model

selection [DAR21, FKE19] including neural architecture search (NAS) [ZL16, EMH19, LCS19].

Other important AutoML topics include hyper-parameter selection [LJD17, ASY19] and

data augmentation [CZM18, LKK19, CCC20, BBG20], which are closer to our settings of

optimizing the dataset weights. Since the main signal for a model’s performance is the final

validation loss, which requires full optimization of the model for each evaluation, AutoML

approaches often incur a steep computational costs. Alternatively, other methods follow

alternating optimization of the criteria, such as the work of [RZY18] that approximates full

network optimization with a single SGD step to learn to reweight the training set dynamically.

Differentiable AutoML alleviates outer-optimization costs while optimizing the final validation

error via differentiable programming, by utilizing proxy losses and continuous relaxation that

enable differentiation. Different approaches to differentiable AutoML include differentiable

NAS [LSY18, WDZ19], data augmentation [LHH21, LHW20], and hyper-parameter optimiza-

tion [ADG16]. The DIVA dataset derivative follows the differentiable AutoML framework by

enabling direct optimization of the dataset with respect to the final validation error of the

model.

Importance sampling. While our dataset optimization problem may seem superficially

similar to importance sampling, the optimization objective is different. Importance sampling

aims to reweight the training set to make it more similar to the test distribution or to speed

up convergence. On the other hand, DIVA’s objective is to optimize a validation loss of

the model, even if this requires making the training distribution significantly different from

the testing distribution. Importance sampling methods have a long history in the MCMC

machine learning literature where the sampling is conditioned on the predicted importance of

samples [MU49, Liu08]. In deep learning, importance sampling methods have been studied

theoretically for linearly-separable data [BL19] and recently in more generality [XYR21].

Furthermore, there exist many importance sampling heuristics in deep learning training

including different forms of hard sample mining [SGG16, XHZ19, CLM17], weighting based

60

on a focal loss [LGG17], re-weighting for imbalance, [CJL19, HLL19, DGZ17] and gradient

based scoring [LLW19]. We emphasize that DIVA’s optimization of the sample weights is not

based on a heuristic but is rather a differentiable AutoML method driven by optimization

of a proxy of the test error. Further, DIVA allows optimization of the dataset weights with

respect to an arbitrary loss and also allows for dataset extension computation.

LOO based optimization. Leave-one-out cross validation is well established in statistical

learning [Sto77]. In ridge regression, the LOO model predictions for the validation samples

have a closed-form expression that avoids explicit cross validation computation [GS93, RL07]

enabling efficient and scalable unbiased estimate of the test error. Efficient LOO has been

widely used as a criterion for regularization [PVG11, QLL10, BBB99, TMW20], hyper-

parameter selection [HS17] and optimization [WHY08]. Most similar to our dataset derivative

are methods that: (1) optimize a restricted set of parameters, such as kernel bandwidth, in

weighted least squares [Caw06, HCH07] (2) locally weighted regression methods (memorizing

regression) [AMS97, MHJ92], or (3) methods that measure the impact of samples based on

LOO predictions [BF99, NRS21].

Dataset selection & sample impact measures. [KL17] measure the effect of changes

of a training sample weight on a final validation loss through per-sample weight gradients,

albeit without optimizing the dataset and requiring a separate validation set. Their proposed

expression for the per-sample gradient, however, does not scale easily to our problem of

dataset optimization. In contrast, in proposition 5 we introduce an efficient closed-form

expression for the derivative of the whole datasets. Moreover, in proposition 5, we show

how to optimize the weights with respect to a cross-validation loss which does not require a

separate set.

In [PLS20], the authors present a sample-impact measure for interpretability based on a

validation set; for dataset extension, [YAF20] presents a coarse dataset extension method

based on self-supervised learning. Dataset distillation and core set selection methods aim

61

to decrease the size of the dataset [WZT18] by selecting a representative dataset subset

[HJS20, JHS20, CYM19, JVE20, TB18, KSM21]. While DIVA is capable of removing outliers,

in this work we do not approach dataset selection from the perspective of making the dataset

more computationally tractable by reducing the number of samples.

2.3 Proposed method

In supervised learning, we use a parametrized model fw(x) to predict a target output y given

an input x coming from a joint distribution (x, y) ∼ T . Usually, we are given a training set

D = {(xi, yi)}Ni=1 with samples (x, y) assumed to be independent and identically distributed

(i.i.d.) according to T . The training set D is then used to assemble the empirical risk for

some per-sample loss `,

Ltrain(w;D) =
N

∑
i=1

`(fw(xi), yi),

which is minimized to find the optimal model parameters wD:

wD = argmin
w

Ltrain(w;D).

The end goal of empirical risk minimization is that the weights will also minimize the test

loss, computed using a separate test set. Nonetheless D is often biased and differs from the

distribution T . In addition, from the perspective of optimization, different weighting of the

training loss samples can enable or inhibit good learning outcomes of the task T [LGG17].

Dataset Optimization. In particular, it may not be the case that sampling the training

set D i.i.d. from T is the best option to guarantee generalization, nor it is realistic to assume

that D is a fair sample. Including in-distribution samples that are too difficult may negatively

impact the optimization, while including certain out-of-distribution examples may aid the

generalization on T . It is not uncommon, for example, to improve generalization by training

on a larger dataset containing out-of-distribution samples coming from other sources, or

generating out-of-distribution samples with data augmentation. We call Dataset Optimization

62

the problem of finding the optimal subset of samples, real or synthetic, to include or exclude

from a training set D in order to guarantee that the weights wD trained on D will generalize

as much as possible.

Differentiable Dataset Optimization. Unfortunately, a näıve brute-force search over

the 2N possible subsets of D is unfeasible. The starting idea of DIVA is to instead solve a

more general continuous optimization problem that can be optimized end-to-end. Specifically,

we parameterize the choice of samples in the augmented dataset through a set of non-negative

continuous sample weights αi which can be optimized by gradient descent along with the

weights of the model. Let α = (α1, . . . , αN) be the vector of the sample weights and denote

the corresponding weighted dataset by Dα. The training loss on Dα is then defined as:

Ltrain(w;Dα) =
N

∑
i=1

αi `(fw(xi), yi). (2.1)

Note that if all αi’s are either 0 or 1, we are effectively selecting only a subset of D for

training. As we will show, this continuous generalization allows us to optimize the sample

selection in a differentiable way. In principle, we would like to find the sample weights

α∗ = argminαLtest(wα) that lead to the best generalization. Since we do not have access to

the test data, in practice this translates to optimizing α with respect to an (unweighted)

validation loss Lval:

α∗ = argminαLval(wα).

We can, of course, compute a validation loss using a separate validation set. However, as we

will see in Section 2.3.3, we can also use a leave-one-out cross-validation loss directly on the

training set, without any requirement of a separate validation set.

In order to efficiently optimize α by gradient-descent, we need to compute the dataset

derivative ∇αLval(wα). By the chain rule, this can be done by computing ∇αwα. However,

the training function α →wα that finds the optimal weights wα of the model given the sample

weights α may be non-trivial to differentiate or may not be differentiable at all (for example,

63

it may consist of thousands of steps of SGD). This would prevent us from minimizing α

end-to-end.

In the next section, we show that if, instead of linearizing the wα end-to-end in order to

compute the derivative, we linearize the model before the optimization step, the derivative

can both be written in closed-form and computed efficiently, thus giving us a tractable way

to optimize α.

Figure 2.1: The DIVA dataset derivative is computed end-to-end from the final validation

loss

2.3.1 Linearization

In real-world applications, the parametric model fw(x) is usually a deep neural network.

Recent work [AGR20, MLL20] have shown that in many cases, a deep neural network can be

transformed to an equivalent linear model that can be trained on a simple quadratic loss and

still reach a performance similar to the original model. Given a model fw(x), let w0 denote

an initial set of weights, For example, w0 could be obtained by pre-training on a large dataset

such as ImageNet (if the task is image classification). Following [AGR20, MLL20], we consider

a linearization f lin.
w (x) of the network fw(x) given by the first-order Taylor expansion of

fw(x) around w0:

f lin.
w (x) = fw0(x) +∇wfw0(x) ⋅ (w −w0). (2.2)

Intuitively, if fine-tuning does not move the weights much from the initial pre-trained weights

w0, then f lin.
w (x) will remain a good approximation of the network while becoming linear

in w (but still remaining highly non-linear with respect to the input x). Effectively, this

64

is equivalent to training a linear classifier using the gradients zi ∶= ∇wfw0(xi) as features

[MLL20].

Although f lin.
w (x) is a linear model, the optimal weights wα may still be a complex function

of the training data, depending on the loss function used. [AGR20] showed that equivalent

performance can be obtained by replacing the empirical cross-entropy with the regularized

least-squares loss:

Ltrain(w) =
N

∑
i=1

∥f lin.
w (x) − yi∥

2 + λ∥w∥2 (2.3)

where y denotes the one-hot encoding vector of the label yi. In [AGR20], it is shown that

linearized models are equivalent from the standpoint of performance on most standard tasks

and classification benchmarks, and better in the low-data regime, which is where the problem

of “dataset augmentation” is most relevant. The advantage of using this loss is that the

optimal weights w∗ can now be written in closed-form as

w∗ = (Z⊺Z + λI)−1Z⊺(Y − fw0(X)), (2.4)

where Z = [z1, . . . ,zN] is the matrix of the Jacobians zi = ∇wfw0(xi). While our method

can be applied with no changes to linearization of the full network, for simplicity in our

experiments we restrict to linearizing only the last layer of the network. This is equivalent

to using the network as a fixed feature extractor and training a linear classifier on top the

last-layer features, that is, zi = fL−1
w0

(xi) are the features at the penultimate layer.

2.3.2 Computation of the dataset derivative

We now show that for linearized models we can compute the derivative ∇αwα in closed-form.

For the α-weighted dataset, the objective in (2.3) with L2 loss for the linearized model is

written as,

wα = argmin
w

Ltrain(w;Dα) = argmin
w

N

∑
i=1

αi∥w
⊺zi − yi∥

2 + λ∥w∥2. (2.5)

where zi = ∇wfw0(xi) as in the previous section. Note that αi∥w⊺zi − yi∥2 = ∥w⊺zαi − yαi ∥,

where zαi ∶=
√
αizi and yαi ∶=

√
αiyi. Using this, we can reuse (2.4) to obtain the following

65

closed-form solution for wα:

wα = (Z⊺DαZ + λI)−1Z⊺DαY, (2.6)

where we have taken Dα = diag(α). In particular, note that wα is now a differentiable

function of α. The following proposition gives a closed-form expression for the derivative.

Proposition 3 (Model-Dataset Derivative ∇αwα). For the ridge regression problem (2.5)

and wα defined as in (2.6), define

Cα = (Z⊺DαZ + λI)−1. (2.7)

Then the Jacobian of wα with respect to α is given by

∇αwα = ZCα ○ ((I −ZCαZ
⊺Dα)Y), (2.8)

Where we write A○B ∈ Rn×m×k for the batch-wise outer product of A ∈ Rn×m and B ∈ Rn×k

along the common dimension k, i.e., (A ○B)ijk = aijbik.

The Jacobian ∇αwα would be rather large to compute explicitly. Fortunately, the end-to-

end gradient of the final validation loss, Lval(wα), can still be computed efficiently, as we

now show. Given a validation dataset Dval, the validation loss is:

Lval(wα) = ∑(xi,yi)∈Dval
`(fwα(xi), yi). (2.9)

The following gives the expression from which we optimize α end-to-end with respect to the

validation loss.

Proposition 4 (Validation Loss Dataset Derivative). Define L as the loss function derivative

with respect to the network outputs as,

L = [
∂`

∂f
(f(x1), y1),⋯

∂`

∂f
(f(xN), yN)]

Then the dataset derivative importance weights with respect to final validation is given by

∇αLval(wα) = ZCαZ
⊺ × (L⊺Y⊺(I −DαZCαZ

⊺)). (2.10)

66

Figure 2.2: Examples of the reweighting done by DIVA. (Left) Samples from the

FGVC Aircraft classification dataset that are up-weighted by DIVA and (Right) samples

that are down-weighted because they increase the test error. Down-weighted samples tend to

have planes in non-canonical poses, multiple planes, or not enough information to classify

the plane correctly.

2.3.3 Leave-one-out optimization

It is common in AutoML to optimize the hyper-parameters with respect to a separate

validation set. However, using a separate validation may not be practical in limited data

settings, which are a main focus of dataset optimization. To remedy this, we now show that we

can instead optimize α by minimizing a leave-one-out cross-validation loss that only requires

a training set: where w−i
α are the optimal weights obtained by training with the loss (2.5)

on the entire dataset D except for the i-th sample (xi, yi). This may seem counter-intuitive,

since we are optimizing the weights of the training samples using a validation loss defined on

the training set itself. It is useful to recall that w−i
α minimizes the α-weighted L2 loss on the

training set (minus the i-th example):

w−i
α = arg min

w
L−itrain(w,Dα) = arg min

w
∑
j≠i

αj∥fw(xj) − yj∥
2 + λ∥w∥2. (2.11)

Meanwhile, α minimizes the unweighted validation loss (un-weighted version of (2.12). This

prevents the existence of degenerate solutions for α.

Computing LLOO naively would require training n classifiers, but fortunately, in the case

of a linear classifier with the L2 loss, a more efficient closed-form solution exists [GS93, RL07].

67

Generalizing those results to the case of a weighted loss, we are able to derive the following

expression.

Proposition 5. Define

Rα = Z⊺
√

Dα(Z
⊺DαZ + λI)−1

√
DαZ

Then α-weighted LOOV predictions defined in (2.11) admit a closed-form solution:

fw−i
α
(zi) =

⎡
⎢
⎢
⎢
⎢
⎣

Rα

√
DαY − diag(Rα)

√
DαY

diag(
√

Dα −
√

DαRα)
]
i

, (2.12)

where diag(A) = [a11, . . . , ann] denotes the vector containing the diagonal of A, and the

division between vectors is element-wise.

Note that the prediction fw−i
α
(zi) on the i-th sample when training on all the other samples

is a differentiable function of α. Composing (2.12) into the un-weighted version of the loss

on the training set, we compute the derivative ∇αLLOO(α), which allows us to optimize

the cross-validation loss with respect to the sample weights, without the need of a separate

validation set. We give the closed-form expression for ∇αLLOO(α) in Appendix 2.A.

2.3.4 Dataset optimization with DIVA

We can now apply the closed-form expressions for ∇αLval(α) and ∇αLLOO(α) for differentiable

dataset optimization. We describe the optimization using Lval, but the same applies to LLOO.

DIVA Reweight. The basic task consists in reweighting the samples of an existing dataset

in order to improve generalization. This can curate a dataset by reducing the influence of

outliers or wrong labels, or by reducing possible imbalances. To optimize the dataset weights,

we use gradient descent in the form:

α ← α − η∇αLval. (2.13)

It is important to notice that Lval is an unbiased estimator of the test loss only at the first

step, hence optimizing using (2.13) for multiple steps can lead to over-fitting (see Appendix

68

2.A). Therefore, we apply only 1-3 gradient optimization steps with a relatively large learning

rate η ≃ 0.1. This early stopping both regularizes the solution and decreases the wall-clock

time required by the method. We initialize α so that αi = 1 for all samples.

DIVA Extend. The dataset gradient also allows us to extend an existing dataset. Given a

core dataset D = {(xi, yi)}Ni=1 and an external (potentially noisy) data pool E = {(x̂i, ŷi)}N+Mi=N+1,

we want to find the best samples from E to add to D. For this we merge D and E in a single

dataset and initialize α such that αi = 1 for samples of D and αi = 0 for samples of E (so that

initially the weighted dataset matches D). We then compute ∇αLval(α) to find the top k

samples of E that have the largest negative value of ∇αLval(α)i, i.e., the samples that would

give the largest reduction in validation error if added to the training set and add them to D.

This is repeated until the remaining samples in E all have positive value for the derivative

(adding them would not further improve the performance).

Detrimental sample detection. The i-th component of ∇αLval specifies the influence of

the i-th sample on the validation loss. In particular, (∇αLval)i > 0 implies that the sample

increases the validation loss, hence it is detrimental (e.g., it is mislabeled or overly represented

in the dataset). We can select the set of detrimental examples by thresholding ∇αLval:

Detrimental(ε) = {i ∶ (∇αLval)i ≥ ε}. (2.14)

2.4 Experimental results

For our models we use standard residual architectures (ResNet) models pre-trained on

ImageNet [DDS09] and Places365 [ZLK17]. For our experiments on dataset optimization we

consider datasets that are smaller than the large-scale datasets used for pre-training as we

believe they reflect more realistic conditions for dataset optimization. For our experiments we

use the CUB-200 [WBM10], FGVC-Aircraft, [MKR13], Stanford Cars [KSD13], Caltech-256

[GHP07], Oxford Flowers 102 [NZ08], MIT-67 Indoor [QT09], Street View House Number

69

Dataset Original DIVA Reweight [CLM17] [RZY18] Gain

Aircrafts 57.58 54.64 70.48 81.82 (80.62) +2.94

Cub-200 39.30 36.93 57.85 72.55 (75.35) +2.36

MIT Indoor-67 32.54 31.27 37.84 64.48 (58.06) +1.27

Oxford Flowers 20.23 19.16 22.82 48.80 (55.46) +1.07

Stanford Cars 58.91 56.31 75.87 83.09 (84.50) +2.56

Caltech-256 23.98 21.29 37.52 58.44 (52.77) +2.69

Table 2.1: Test error of DIVA Reweight to curate several fine-grain classification datasets.

We use a ResNet-34 pretrained on ImageNet as feature extractor and train a linear classifier

on top of the last layer. Note that DIVA Reweight can improve performance even on curated

and noiseless datasets whereas other reweighting methods based on hard-coded rules may be

detrimental in this case.

[NWC11], and the Oxford Pets [PVZ12] visual recognition and classification datasets. In all

experiments, we use the network as a fixed feature extractor, and train a linear classifier on

top of the network features using the weighted L2 loss (2.5) and optimize the α weights using

DIVA.

Dataset AutoCuration. We use DIVA Reweight to optimize the importance weights of

samples from several fine-grain classification datasets. While the datasets have already been

manually curated by experts to generally exclude out-of-distribution or mislabeled examples,

we still observe that in all cases DIVA can further improve the test error of the model (Table

2.1). To understand how DIVA achieves this, in Figure 2.2 we show the most up-weighted

(left) and down-weighted (right) examples on the FGVC Aircraft classification task [MKR13].

We observe that DIVA tends to give more weight to clear, canonical examples, while it

detects as detrimental (and hence down-weights) examples that contain multiple planes

(making the label uncertain), or that do not clearly show the plane, or show non-canonical

70

poses. We compare DIVA Reweight with two other re-weighting approaches: [RZY18], that

applies re-weighting using information extracted from a separate validation gradient step, and

[CLM17], which reweights based on the uncertainty of each prediction (threshold-closeness

weighting scheme). For [RZY18], we set aside 20% of the training samples as validation for

the reweight step, but use all samples for the final training (in parentheses). We notice that

both baselines, which are designed to reweight noisy datasets, underperform with respect to

DIVA on datasets without artificial noise.

Dataset extension. We test the capabilities of DIVA Extend to extend a dataset with

additional samples of the distribution. In Figure 2.4 and Table 2.2, we observe that DIVA is

able to select the most useful examples and reaches an optimal performance generalization

error using significantly less samples than the baseline uniform selection. Moreover, we notice

that DIVA identifies a smaller subset of samples that provides better test accuracy than

adding all the pool samples to the training set.

Dataset DIVA Extend Uniform Improvement

Aircrafts 58.00 60.01 +2.01

Cub-200 39.42 42.29 +2.87

MIT Indoor-67 32.54 33.73 +1.19

Oxford Flowers 20.56 23.29 +2.73

Stanford Cars 60.37 62.45 +2.09

Caltech-256 21.97 24.55 +2.59

Table 2.2: Results of using DIVA Extend to select the best samples to extend several fine-

grain classification datasets. We train a linear classifier on top of a ResNet-34 pretrained on

ImageNet, and compare the test performance when extending the target training dataset

with 50% of the pool samples selected either uniformly at random or via DIVA Extend.

71

Dataset DIVA Extend Rand. Extend Improvement

Aircrafts 58.00 60.01 +2.01
Cub-200 39.42 42.29 +2.87

MIT Indoor-67 32.54 33.73 +1.19
Oxford Flowers 20.56 23.29 +2.73

Stanford Cars 60.37 62.45 +2.09
Caltech-256 21.97 24.55 +2.59

Table 3: Results of using DIVA Extend to select relevant dataset to extend several fine-grain classification
datasets. We use a ResNet-34 pretrained on ImageNet as feature extractor and train a linear classifier on top of
the last layer and measure extending the dataset with 50% of the pool samples uniformly or via DIVA Extend.

examples, while it detects as harmful (and hence down-weights) examples that contain multiple268

planes (making the label uncertain), or that do not clearly show the plane, or show non-canonical269

poses.270

Harmful sample detection. To test the ability of DIVA to detect training samples that are harmful271

for generalization, we artificially introduce wrong labels in the dataset. In Section 3.4 claimed that272

harmful examples can be detected by looking at the samples for which the derivative r↵LLOO(↵)i is273

positive. To verify this, in Figure 3 we plot the histogram of the derivatives for correct and mislabeled274

examples. We observe that indeed most mislabeled examples have positive derivative. In particular,275

we can classify an example as mislabeled if the derivative is positive. In Section 4 we report the F1276

score and AUC obtained in a mislabeled sample detection task using the DIVA gradients.277

Dataset extension. We test the capabilities of DIVA Extend to extend a dataset by adding samples278

from an external source. We consider two settings: one in which the external source is noiseless279

and one in which artificial label noise is introduced, so that randomly adding the external samples280

may be harmful. In the first case, while selecting random examples to add is a viable strategy to281

improve generalization, we observe that DIVA is able to select the most useful example and reaches282

an optimal performance generalization error using significantly less samples than random selection.283

In the second case, DIVA is able to avoid noisy samples, and significantly outperforms random284

selection, which may in fact decrease the accuracy of the model.285

Figure 3: Distribution of LOO DIVA gradients for
correctly labelled and mislabelled samples in Cub-200
dataset (20% mislabelled).

Dataset F1-score (✏ = 0) AUC

Cub200 0.87 0.98
Aircrafts 0.68 0.90
MIT Indoor-67 0.86 0.98
Stanford Cars 0.75 0.93
Caltech-256 0.92 0.99
Oxford Flowers 0.83 0.97

Table 2: DIVA for outlier rejection. We use DIVA
on a ResNet-34 network linearization and detect mis-
labelled samples (outliers) in a dataset present with 20%
label noise. Selection is based on r↵(Lval(w↵))i > ✏.

286

Data augmentation. In Section 3.4 we suggested DIVA can be used to find the best probability with287

which to apply a data augmentation procedure in order to improve the generalization performance.288

To test this, we select common data augmentation procedures, horizontal flip and vertical flip, and289

we tune their probability on the Street View House Number [46], Oxford Flowers [48] and the290

Oxford Pets [49] classification tasks. We observe that DIVA assigns different probabilities to each291

transformation depending on the task (Figure 5): on the number classification task DIVA penalizes292

both vertical and horizontal flips, which may confuse different classes (such 2 and 5, 6 and 9). On293

an animal classification task (Oxford Pets) DIVA does not penalize horizontal flips, but penalizes294

vertical flips since they are out of distributions. Finally, on Flowers classification DIVA gives equal295

probability to all transformations (most flower pictures are frontal so all rotations and flips are valid).296

8

Figure 2.3: (Left) Distribution of LOO DIVA gradients for correctly labelled and mislabelled

samples in CUB-200 dataset (20% of the samples are mislabeled by replacing their label

uniformly at random). (Right) DIVA for outlier rejection. We use DIVA on a ResNet-34

network linearization and detect mislabelled samples (outliers) in a dataset present with 20%

label noise. Selection is based on ∇α(Lval(wα))i > ε.

0 20 40 60 80 100
% of pool added

56

57

58

59

60

61

62

63

64

Te
st

 e
rro

r

aircrafts
uniform
diva

0 20 40 60 80 100
% of pool added

22.0

22.5

23.0

23.5

24.0

24.5

25.0

25.5

Te
st

 e
rro

r

caltech256
uniform
diva

0 20 40 60 80 100
% of pool added

38

40

42

44

46

48

Te
st

 e
rro

r

cub200
uniform
diva

Figure 2.4: DIVA Extend. We show the test error achieved by the model as we extend a

dataset with samples selected from a dataset pool using either DIVA Extend (red line) or

uniform sampling (blue line). The pool set matches the same distribution as the training set.

In all cases DIVA Extend outperforms uniform sampling and identifies subsets of the pool set

with better performance than the whole pool. We also note that using only a subset selected

by DIVA as opposed to using the whole pool, actually improves the test accuracy.

Detrimental sample detection. To test the ability of DIVA to detect training samples

that are detrimental for generalization, we add a proportion of random labels in the dataset.

Following the procedure outlined in Subsection 2.3.4 we detect outliers by thresholding where

the derivative ∇αLLOO(α)i is positive. In Figure 2.3 we plot the histogram of the derivatives

for correct and mislabeled examples. We observe that majority of mislabeled examples have

72

a positive derivative while the vast majority of the correctly labelled samples have a negative

derivative. In particular, we can directly classify an example as mislabeled if the derivative is

positive. In Figure 2.3 we report the F1 score and AUC obtained in a mislabeled sample

detection task using the DIVA gradients.

Multi-modal learning. Recent multi-modal models such as CLIP [RKH21] can embed

both text and images in the same vector spaces. This allows to boost the performance on

few-shot image classification tasks by also adding to the training set textual descriptions

of the classes, such as the label name. However, training on label names may also hurt the

performance, for example if the label name is not known by the CLIP model. To test this,

we create a few-shot task by selecting 20 images per class from the Caltech-256. We then use

DIVA Extend to select an increasing number of labels to add to the training set. In Figure

2.5 (right), we show that DIVA can select the beneficial label embeddings to add in order to

improve the few-shot test performance. However, when forced to add all labels, including

detrimental ones, the test error starts to increase again.

Data augmentation. To further test the versatility of DIVA, we qualitatively evaluate

DIVA Reweight on the task of tuning the weights with which we apply a given data aug-

mentation procedure. Let t1, . . . , tK be a set of data augmentation transformations. Let

Dtk be the result of applying the data augmentation tk to D. We can create an augmented

dataset Daug = D ∪Dt0 ∪ . . .∪DtK , by merging all transformed datasets. We then apply DIVA

Reweight on Daug to optimize the weight α of the samples. Based on the updated importance

weights we estimate the optimal probability with which to apply the transformation tk as

pk = (∑i∈Dtk αi)/(∑iαi). In particular we select common data augmentation procedures,

horizontal flip and vertical flip, and we tune their weights on the Street View House Number,

Oxford Flowers and the Oxford Pets classification tasks. We observe that DIVA assigns

different weights to each transformation aligning with the task (Figure 2.5): on the number

classification task DIVA penalizes both vertical and horizontal flips, which may confuse

73

different classes (such 2 and 5, 6 and 9). On an animal classification task (Oxford Pets) DIVA

does not penalize horizontal flips, but penalizes vertical flips since they are out of distributions.

Finally, on Flowers classification DIVA gives equal weights to all transformations (most flower

pictures are frontal so all rotations and flips are valid).

0% 20% 40%

Normal

H-Flip

V-Flip

SVHN

0% 20% 40%

Flowers

0% 20% 40%

Pets

0 50 100 150 200 250
Number of text labels added

13.5

13.6

13.7

13.8

Te
st

 E
rro

r (
\%

)

Figure 2.5: (Left) DIVA can select the best data augmentation for each task. We

optimize the weight with which each data augment transformation is applied. DIVA optimizes

the transformation to apply for the particular task. (Right) Use of DIVA extend on a

multi-modal task. Selecting only the most beneficial text embeddings to use in a multi-

modal classification task (as scored by DIVA) outperforms blindly using all available text

embeddings.

2.5 Discussion

In this chapter we present a gradient-based method to optimize a dataset. In particular we

focus on sample reweighting, extending datasets, and removing outliers from noisy datasets.

We note that by developing the notion of a dataset derivative we are capable of improving

dataset quality in multiple disparate problems in machine learning. The dataset derivative we

present is given in closed-form and enables general reweighting operations on datasets based

on desired differentiable validation losses. In cases where a set-aside validation loss is not

available we show the use of the leave-one-out framework enables computing and optimizing

a dataset “for free” and derive the first closed-form dataset derivative based on the LOO

framework.

74

2.A Appendix

We structure the appendix as follows: We present additional experiments in Subsection

2.A.1 and we describe the details of the experiments from Section 2.4 in Subsection 2.A.2.

In Subsection 2.A.3 we provide proofs for the propositions of the chapter and additional

discussion on the methods.

2.A.1 Additional experiments

Validation overfitting. When updating the dataset using the dataset derivative there is

a risk of overfitting to the validation set after repeated applications of the derivative. Namely

the validation loss is initially an unbiased estimate of the test loss yet after using it to update

the dataset repeatedly it eventually will start overfitting. In our settings, we notice that when

using a small number of gradient updates (< 5) and with step sizes η ∼ 0.1 we are able to

avoid overfitting and improve the test error when optimizing the dataset derivative based on

the validation loss. In this experiment we present the final test and validation classification

errors of optimized datasets. As we optimize with respect to the validation loss, it is indeed

clear that the validation loss decreases dramatically yet more importantly are the effect of

the test accuracy.

75

Figure 2.6: The test error decreases as the dataset is optimized with respect to the validation

set until eventually overfitting commences. The validation set error decreases more significantly

as the dataset is optimized directly on the validation set, yet for very large step-sizes the first

order optimization becomes inaccurate. The plot uses the Caltech-256 dataset to illustrate

the overfitting

DIVA Extend plots. In Figure 2.4 we report the results on all the remaining datasets

following the set-up of Figure 2.4. In Table 2.2 we report the accuracy of DIVA Extend and

uniform sampling on the various datasets when adding 50% of samples from the pool.

0 20 40 60 80 100
% of pool added

20

22

24

26

28

30

32

34

Te
st

 e
rro

r

oxfordflowers
uniform
diva

0 20 40 60 80 100
% of pool added

22.0

22.5

23.0

23.5

24.0

24.5

25.0

25.5

Te
st

 e
rro

r

caltech256
uniform
diva

0 20 40 60 80 100
% of pool added

58

60

62

64

66

Te
st

 e
rro

r

cars
uniform
diva

0 20 40 60 80 100
% of pool added

56

57

58

59

60

61

62

63

64

Te
st

 e
rro

r

aircrafts
uniform
diva

0 20 40 60 80 100
% of pool added

32

33

34

35

36

Te
st

 e
rro

r

indoor
uniform
diva

0 20 40 60 80 100
% of pool added

38

40

42

44

46

48

Te
st

 e
rro

r

cub200
uniform
diva

Figure 2.7: Same plots as Figure 2.4 on the other fine-grained datasets.

76

2.A.2 Experimental details

Dataset details For our experiments we utilize several fine-grain classification datasets

from the computer vision community that are standard for fine-tuning image classification

tasks (CUB-200 [WBM10], FGVC-Aircraft, [MKR13], Stanford Cars [KSD13], Caltech-256

[GHP07], Oxford Flowers 102 [NZ08], MIT-67 Indoor [QT09], Street View House Number

[NWC11], and the Oxford Pets [PVZ12]). Some of the datasets do not follow a default

train-test split and we use the following splits commonly used in the literature for the

datasets,

● Oxford Flowers 102: We use the original 1020 images in the training split without

incorporating the default validation set.

● Caltech-256: We split the dataset into a training set with 60 images from each class for

training, and use remaining data for testing.

Pre-training setup For the pre-trained networks we use for fine-tuning, we use the pre-

trained configurations available on PyTorch’s torchvision package. In particular the reference

networks are pre-trained using the ImageNet [DDS09] dataset. The images embedded by the

network are pre-processed via standard resizing and center cropping (256 resize, followed by

a 224 cropping).

Regularization parameter λ : To get the best unweighted dataset baseline to compare

with the optimized dataset, for each of the un-optimized original datasets, we first search for

optimal λ values in λ ∈ {2n for n ∈ {−20,−19, . . .4}} to measure the classifier’s performance.

After selecting optimal λ we proceed with dataset optimization with the optimal λ values.

Note that DIVA does not require λ to be optimal and improvements are even more significant

for un-optimized λ.

77

Dataset Derivative Computation In Section 2.A.3 we derive the closed-form dataset

derivatives used for DIVA. We computed the closed-form solution analytically and we verified

our results using automatic differentiation tools on large number of conditions including

synthetic and real data, as an additional method to verify the correctness of the derivative

formulas.

DIVA method details

DIVA Extend For Table 2.2 and Figure 2.4 we first split the original training set into

50% training subset and 50% pool subset that will be used to selectively extend the training

subset with DIVA or other extension approaches. We run DIVA Extend LOO and uniform

sampling to add pool samples to the training set. In both settings we incrementally extend

the training subset from the pool (For DIVA, by selecting samples with top DIVA score) in

each step we extend an equal number of samples ((# pool samples) // (# number of steps)).

In the figure we present the test error as a function of training set size and compare

DIVA sample selection with selecting the same number of samples at uniform from the pool

set. In Table 2.2, we present the improvement in test accuracy at the 50% extend mark of

the pool set (e.g. extending 25% of the original training set) between DIVA and uniform

sample selection of the same number of samples. For both experiments we use the ResNet-34

architecture.

DIVA Reweigh In Table 2.1 we use DIVA Reweight LOO with the same parameters for

all of the datasets we consider. The DIVA parameters we use are K = 4 for the number

of steps and η = 0.15 for the step-size. As with DIVA Extend, we use ResNet 34 for the

architecture for the representation.

DIVA validation loss We find the cross entropy loss to work better as the loss function

applied to the validation predictions (both in LOO and regular validation). Further for

78

LOO we find it crucial to apply the validation loss only on mis-classified LOO predictions to

improve the test accuracy of the model, this can be interpreted as the cross entropy loss with

a “hard margin hinge” loss.

Outlier rejection For the results presented in the side-by-side Table and Figure 2.3 we

apply 20% random label noise to each class in the dataset and use DIVA LOO to compute the

normalized DIVA gradient (DIVA score) of each sample. The F1 score reports classification

by thresholding with ε = 0 and the AUC is computing by thresholds spanning detection of no

samples, to detection of all samples.

2.A.3 Proofs of propositions

We write the proposition statements for convenience.

Proposition (Model-Dataset Derivative ∇αwα). For the ridge regression problem Equa-

tion (2.5) and wα defined as in Equation (2.6), define

Cα = (Z⊺DαZ + λI)−1. (2.15)

Then the Jacobian of wα with respect to α is given by

∇αwα = ZCα ○ ((I −ZCαZ
⊺Dα)Y). (2.16)

Proof of Proposition 3:

We recall the settings of the problem are Z ∈ Rn×m, Y ∈ Rn×k, wα ∈ Rm×k and the importance

weights α ∈ Rn. Here n is the number of samples, m is the number of parameters for each

output of the model, and k is the number of classes (represented via the one-hot convention).

The derivation of ∇αwα we present is computational in nature and without the loss of

generality we consider the derivative for a single output class k = 1 (one-vs-all classification

naturally extends). For the single class settings, the relevant dimensions are wα ∈ Rm and

∇αwα ∈ Rm×n (for numerator layout convention of the derivative). To further simplify we

79

consider the derivative entrywise for single index αr,

∂wα

∂αr
∈ Rm×1.

The closed-form solution is,

wα = CαZ
⊺DαY.

using chain rule,
∂wα

∂αr
=
∂Cα

∂αr
×Z⊺DαY +Cα ×

∂Z⊺DαY

∂αr
.

We compute the two parts of the derivative in turn:

Let Kα = (Z⊺DαZ + λI) so that Kα = C−1
α . Then

∂Kα

∂αr
=

∂

∂αr
(Z⊺DαZ + λI) = Z⊺

r,∶Zr,∶

where Zr,∶ ∈ R1×m is the rth row of Z. Next note,

CαKα = I

differentiating both sides,
∂CαKα

∂αr
= 0.

Applying chain rule we get,

∂CαKα

∂αr
=
∂Cα

∂αr
Kα +Cα

∂Kα

∂αr
,

rearranging, substituting ∂Kα

∂αr
, and multiplying to the right by Cα

∂Cα

∂αr
= −CαZ

⊺
r,∶Zr,∶Cα.

Next, by direct computation ∂Z⊺DαY
∂αr

satisfies

∂Z⊺DαY

∂αr
= yr ⋅Z

⊺
r,∶.

Combining the original terms we have

∂wα

∂αr
= −(CαZ

⊺
r,∶Zr,∶Cα) ×Z⊺DαY + yr ⋅Cα ×Z⊺

r,∶

= CαZ
⊺
r,∶(yr −Zr,∶CαZ

⊺DαY).

80

Now the full derivative is written as

∇αwα = ZCα ○ ((I −ZCαZ
⊺Dα)Y)

Proposition (Validation Loss Dataset Derivative). Define L as the matrix of the loss function

derivative with respect to network training outputs as,

L = [
∂`

∂f
(fwα(x1), y1),⋯

∂`

∂f
(f(xN), yN)].

Then the dataset derivative of the importance weights with respect to final validation loss is

given by

∇αLval(wα) = ZCαZ
⊺ × (L⊺Y⊺(I −DαZCαZ

⊺)). (2.17)

Proof of Proposition 4:

This follows from the chain rule combined with simplification of broadcasting terms. We

again consider the single output settings with the single coordinate derivative ∂Lval

∂αr
which is

given as,
∂Lval

∂αr
= ∇wLval

∂wα

∂αr
.

With

=
n

∑
i=1

L∶,i × z⊺i

= L⊺Z.

Therefore

(∇αLval(wα))i =∑
j,k

(∇αwα)i,j,k(L
⊺Z)j,k.

Now L,Z can be separated into the two terms of ∇αwα,

∇αLval(wα) = ZCαZ
⊺ × (L⊺Y⊺(I −DαZCαZ

⊺)) (2.18)

81

Next we consider the derivations for the Leave One Out (LOO) framework. In the LOO

framework one applies cross-validation to a training set {(z1, y1), . . . (zn, yn)} by running

n-fold cross validation, where in each fold, the ith sample (zi, yi) is taken out and is used for

validation while the optimal classifier is solved for the remaining of the training task,

w−i,= arg min
w
∑
j≠i

`(f(zj), yj). (2.19)

Then the LOO prediction at the ith index is defined as (fLOO)i = fw−i
(zi). Below we prove the

LOO predictions can be written in closed-form without explicit cross validation calculations.

Proposition 6 (Closed-form LOO prediction vector). Define the LOO vector predictions as,

fLOO = [fw−1(z1), . . . , fw−n(zn)]
⊺

and define

R = Z⊺(Z⊺Z + λI)−1Z

then for the learning task Equation (2.19) LOO predictions are given as

fLOO =
Ry − diag(R)y

I − diag(R)
. (2.20)

Proof of Proposition 6:

The proof is reproduced from [RL07] for completeness.

Without the loss of generality we derive the LOO prediction of zn. Namely given, {(z1, y1), . . . (zn, yn)}

we use {(z1, y1), . . . (zn1 , yn−1)} for training and validate using {(zn, yn}. Denote w−n as be

the optimal solution to this training task with regularization parameter λ and define the

(currently unknown) LOO prediction as

q = fw−n(zn).

We define the modified learning task consisting of {(z1, y1), . . . (zn−1, yn−1), (zn, q)} where we

added the data point (zn, q). Note that the optimal solution with λ regularization to the

82

modified learning task is again w−n since q is taken to have a zero residual. therefore the

solution to the modified learning problem can be written in closed-form as,

w−n = (Z⊺Z + λI)−1Z⊺[y1∶n−1, q]
⊺.

Using w−n we write the equation for the LOOV prediction q,

q = ⟨zn,w
−i⟩ = z⊺n(Z

⊺Z + λI)−1Z⊺[y1∶n−1, q]
⊺.

Let R = Z(Z⊺Z + λI)−1Z⊺ then we have

q = z⊺nw−i = Rn,∶[Y1∶n−1, q]
⊺

and by adding and subtracting R∶,n multiplied by [0, yn]⊺ we get,

q = z⊺nw−i = R∶n−1,n[Y1∶n−1]
⊺ +R∶,n[0, q] +R∶,n[0, yn]

⊺ −R∶,n[0, yn]
⊺.

Re-arranging we have

q −Rnnq = R∶,ny − ynRn,n

Solving for q we get,

q =
R∶,ny − ynRn,n

1 −Rn,n

And without the loss of generality the full prediction vector is given as,

fLOO =
Ry − diag(R)y

diag(I −R)
(2.21)

Given the closed-form LOOV expression we may use fLOO for the validation loss to

compute the dataset derivative on Lval without any additional validation data. While this

may seem contradictory as we are optimizing the dataset validated via the weighting duality

between sample loss weighting and data scaling, we define the leave one out value predictions

in the weighted dataset settings and evaluate on the original (unweighted) data points as,

fw−i
α
(zi) (2.22)

83

with,

w−i
α = arg min

w
∑
j≠i

αj`(f(zj), yj). (2.23)

Therefore the α-weighted LOO term is fw−i
α
(zi) is faithful to the original distribution despite

being trained with the weighted loss Equation (2.23). We in fact are able to show that

α-weighted LOO formulation also admits a closed-form solution that satisfies our definition

and for DIVA LOO we utilize the derivative of the closed-form to optimize the dataset.

Proposition. Define

Rα = Z⊺
√

Dα(Z
⊺DαZ + λI)−1

√
DαZ

Then the α-weighted LOOV predictions defined in Equation (2.11) admit a closed-form

solution:

fw−i
α
(zi) =

⎡
⎢
⎢
⎢
⎢
⎣

Rα

√
DαY − diag(Rα)

√
DαY

diag(
√

Dα −
√

DαRα)
]
i

, (2.24)

Further the LOO dataset derivative is well-defined and satisfies the following gradient condition,

diag(∇αfLOO) = 0. (2.25)

The gradient condition diag(∇αfLOO) = 0 implies that the LOO prediction at zi does not

depend on αi and ensures that the closed-form solution is well defined in the α-weighted

settings and is differentiable.

Proof of Proposition 5:

The proof builds on Proposition 6 for the weighted settings.

In general since LOO expression describes the weighting problem, it must be shown that

the introduction of the weights do not break the argument of Proposition 6. Considering

the optimization problem in Equation (2.11). We also use the duality between the loss

weights and data scaling to note that w−
αi can be derived by considering the unweighted LOO

Equation (2.19) with the modified dataset,

{(
√
α1z1,

√
α1y1), . . . (

√
αnzn,

√
αnyn)}. (2.26)

84

Indeed in this settings with the newly defined data the derivation in Proposition 6 of the final

prediction vector of the LOO entries holds with the same optimal solution wα due to the

duality between data scaling and loss weights. Nonetheless the closed-form LOO predictions

fLOO are evaluated at the data-points
√
αizi. Since the model is linear the final predictions

at the original data-points of the weighted training settings are written as fLOO/
√
α.

Noting the weighted training problem can be expressed as Ỹ =
√

DαY, Z̃ =
√

DαZ we

use Proposition 6 to write analogously

Rα = Z⊺
√

Dα(Z
⊺DαZ + λI)−1

√
DαZ (2.27)

and divide by
√
α by multiplying the denominator by

√
Dα,

fw−i
α
(zi) =

⎡
⎢
⎢
⎢
⎢
⎣

Rα

√
DαY − diag(Rα)

√
DαY

diag(
√

Dα −
√

DαRα)
]
i

, (2.28)

Since the derivation at the ith index of the weighted LOO prediction, (fLOO)i = (w−i
α)⊺zi is

entirely independent of αi, we have

∂(fw−i
α
(zi))i

∂αi
= 0.

85

CHAPTER 3

On the dynamics and convergence of Weight

Normalization for training neural networks∗

3.1 Introduction

In this chapter we prove the first result showing that the non-convex problem of optimizing

a ReLU neural network that is trained with normalization layers converges to a global

minima. The guarantee for the convergence of a global minima is counter-intuitive given the

non-convexity of the problem that is exacerbated by applying normalization layers. However,

using careful concentration of measure it is possible to illustrate descent of the objective

in a linear rate. Dynamic normalization in the training of neural networks amounts to

the application of an intermediate normalization procedure between layers of the network.

Such methods have become ubiquitous in the training of neural nets since in practice

they significantly improve the convergence speed and stability. This type of approach was

popularized with the introduction of Batch Normalization (BN) [IS15] which implements a

dynamic re-parametrization, normalizing the first two moments of the outputs at each layer

over mini-batches. A plethora of additional normalization methods followed BN, notably

including Layer Normalization (LN) [BKH16] and Weight Normalization (WN) [SK16].

Despite the impressive empirical results and massive popularity of dynamic normalization

methods, explaining their utility and proving that they converge when training with non-

smooth, non-convex loss functions has remained an unsolved problem. In this chapter

∗This chapter is adapted from [DGM20]

86

we provide sufficient conditions on the data, initialization, and over-parametrization for

dynamically normalized ReLU networks to converge to a global minimum of the loss function.

For the theory we present we focus on WN, which is a widely used normalization layer in

training of neural networks. WN was proposed as a method that emulates BN. It normalizes

the input weight vector of each unit and separates the scale into an independent parameter.

The WN re-parametrization is very similar to BN (see Section 3.3) and benefits from similar

stability and convergence properties. Moreover, WN has the advantage of not requiring a

batch setting, therefore considerably reducing the computational overhead that is imposed

by BN [GG17].

When introducing normalization methods, the function parametrization defined by the

network becomes scale invariant in the sense that re-scaling of the weights does not change

the represented function. This re-scaling invariance changes the geometry of the optimization

landscape drastically. To better understand this we analyze weight normalization in a given

layer.

We consider the class of 2-layer ReLU neural networks which represent functions f ∶Rd → R

parameterized by (W,c) ∈ Rm×d ×Rm as

f(x;W,c) =
1

√
m

m

∑
k=1

ckσ(w
⊺
kx). (3.1)

Here we use the ReLU activation function σ(s) = max{s,0} [NH10], m denotes the width of

the hidden layer, and the output is normalized accordingly by a factor
√
m. We investigate

gradient descent training with WN for (3.1), which re-parametrizes the functions in terms of

(V,g,c) ∈ Rm×d ×Rm ×Rm as

f(x;V,g,c) =
1

√
m

m

∑
k=1

ckσ(gk ⋅
v⊺
kx

∥vk∥2

). (3.2)

This gives a similar parametrization to [DLT18] that study convergence of gradient optimiza-

tion of convolutional filters on Gaussian data. We consider a regression task, the L2 loss, a

random parameter initialization, and focus on the over-parametrized regime, meaning that

m > n, where n is the number of training samples. Further, we make little to no assumptions

about the data.

87

The focus this chapter is in analyzing neural network optimization with weight normal-

ization layers. We rigorously derive the dynamics of weight normalization training and its

convergence from the perspective of the Neural Tangent Kernel (NTK). Compared with

un-normalized training, we prove that normalized networks follow a modified kernel evolution

that features a “length-direction” decomposition of the NTK. This leads to two convergence

regimes in WN training and explains the utility of WN from the perspective of the NTK. In

the settings considered, WN significantly reduces the amount of over-parametrization needed

for provable convergence, as compared with un-normalized settings. Further, we present a

more careful analysis that leads to improved over-parametrization bounds as compared with

[DZP19].

The main contributions of the work in this chapter are:

● We prove the first general convergence result for 2-layer ReLU networks trained with

a normalization layer and gradient descent. Our formulation does not assume the

existence of a teacher network and has only very mild assumptions on the training data.

● We hypothesize the utility of normalization methods via a decomposition of the neural

tangent kernel. In the analysis we highlight two distinct convergence regimes and

show how Weight Normalization can be related to natural gradients and enable faster

convergence.

● We show that finite-step gradient descent converges for all weight magnitudes at

initialization. Further, we significantly reduce the amount of over-parametrization

required for provable convergence as compared with un-normalized training.

The rest of the chapter is organized as follows. We discuss related work in Section 3.2. In

Section 3.3 we provide background on WN and derive key evolution dynamics of training in

Section 3.4. We present and discuss our main results, alongside with the idea of the proof, in

Section 3.5. Lastly we offer a discussion of our results and analysis in Section 3.6. Proofs are

presented in the chapter appendices.

88

3.2 Related work

The neural network function class (3.1) has been studied in many papers including [ADH19,

DZP19, ZMG19, WDW19] along with other similar over-parameterized architectures [ALL19a,

LL18, DLT18]. An exuberant series of recent works prove that feed-forward ReLU networks

converge to zero training error when trained with gradient descent from random initialization.

Nonetheless, to the best of our knowledge, there are no proofs that ReLU networks trained

with normalization on general data converge to a global minimum. This is in part because

normalization methods completely change the optimization landscape during training. Here

we show that neural networks of the form given above (3.2) converge at a linear rate when

trained with gradient descent and WN. The analysis is based on the over-parametrization of

the networks, which allows for guaranteed descent while the gradient is non-zero.

For regression training, a group of papers studied the trajectory of the networks’ predictions

and showed that they evolve via a “neural tangent kernel” (NTK) as introduced by [JGH18].

The latter paper studies neural network convergence in the continuous limit of infinite width

over-parametrization, while the works of [DZP19, ADH19, WDW19, ZMG19, OS19] analyze

the finite width setting. For finite-width over-parameterized networks, the training evolution

also exhibits a kernel that takes the form of a Gram matrix. In these works, the convergence

rate is dictated by the least eigenvalue of the kernel. We build on this fact, and also on the

general ideas of the proof of [DZP19] and the refined work of [ADH19].

Normalization methods theory A number of recent works attempt to explain the

dynamics and utility of various normalization methods in deep learning. The original works

on BN [IS15] and WN [SK16] suggest that normalization procedures improve training by

fixing the intermediate layers’ output distributions. The works of [BGS18] and [STI18]

argue that BN may improve optimization by improving smoothness of the Hessian of the

loss, therefore allowing for larger step-sizes with reduced instability. [HHS17] showed that

the effective step-size in BN is divided by the magnitude of the weights. This followed

89

the work on WNgrad [WWB18] that introduces an adaptive step-size algorithm based on

this fact. Following the intuition of WNGrad, [ALL19b] proved that for smooth loss and

network functions, the diminishing “effective step-size” of normalization methods leads to

convergence with optimal convergence rate for properly initialized step-sizes. The work of

[KDL19] explains the accelerated convergence of BN from a “length-direction decoupling”

perspective. The authors along with [CLS19] analyze the linear least squares regime, with

[KDL19] presenting a bisection method for finding the optimal weights. Robustness and

regularization of Batch Normalization is investigated by [LWS18] and improved generalization

is analyzed empirically. Shortly after the original work of WN, [YKO17] showed that for a

single precptron WN may speed-up training and emphasized the importance of the norm of

the initial weights. Additional stability properties were studied by [YPR19] via mean-field

analysis. The authors show that gradient instability is inevitable even with BN as the number

of layers increases; this is in agreement with [BFL17] for networks with residual connections.

The work of [ACB19] suggests initialization strategies for WN and derives lower bounds on

the width to guarantee same order gradients across the layers.

Over-parametrized neural networks There has been a significant amount of recent

literature studying the convergence of un-normalized over-parametrized neural networks. In

the majority of these works the analysis relies on the width of the layers. These include 2-layer

networks trained with Gaussian inputs and outputs from a teacher network [Tia17, LY17] and

[DLT18] (with WN). Assumptions on the data distribution are relaxed in [DZP19] and the

works that followed [ZMG19, ADH19, WDW19]. Our proof technique follows the mechanism

presented in this chain of works. [WDW19] extend convergence results to adaptive step-size

methods and propose AdaLoss. Recently, the global convergence of over-parameterized neural

networks was also extended to deep architectures [DLL19a, ALS19, ZCZ20, ZG19]. In the

context of the NTK, [ZMG19] have proved fast convergence of neural networks trained with

natural gradient methods and the K-FAC approximation [MG15]. In the over-parameterized

regimes, [ADH19] develop generalization properties for the networks of the form (3.1). In

90

addition, in the context of generalization, [ALL19a] illustrates good generalization for deep

neural networks trained with gradient descent. [CG20] and [CG19] derive generalization error

bounds of gradient descent and stochastic gradient descent for learning over-parametrization

deep ReLU neural networks.

3.3 Weight Normalization

Here we give an overview of the WN procedure and review some known properties of

normalization methods.

Notation We follow the general convention of the thesis: lowercase, lowercase boldface,

and uppercase boldface letters denote scalars, vectors and matrices respectively. We denote

the Rademacher distribution as U{1,−1} and write N(µ,Σ) for a Gaussian with mean µ and

covariance Σ. Training points are denoted by x1, . . . ,xn ∈ Rd and parameters of the first layer

by vk ∈ Rd, k = 1, . . . ,m. We use σ(x) ∶= max{x, 0}, and write ∥ ⋅ ∥2, ∥ ⋅ ∥F for the spectral and

Frobenius norms for matrices. λmin(A) is used to denote the minimum eigenvalue of a matrix

A and ⟨⋅, ⋅⟩ denotes the Euclidean inner product. For a vector v denote the `2 vector norm

as ∥v∥2 and for a positive definite matrix S define the induced vector norm ∥v∥S ∶=
√

v⊺Sv.

The projections of x onto u and u⊥ are defined as xu ∶= uu⊺x
∥u∥2

2
, xu⊥ ∶= (I − uu⊺

∥u∥2
2
)x. Denote the

indicator function of event A as 1A and for a weight vector at time t, vk(t), and data point

xi we denote 1ik(t) ∶= 1{vk(t)⊺xi≥ 0}.

WN procedure For a single neuron σ(w⊺x), WN re-parametrizes the weight w ∈ Rd in

terms of v ∈ Rd, g ∈ R as

w(v, g) = g ⋅
v

∥v∥2

, σ(g ⋅
v⊺x

∥v∥2

). (3.3)

This decouples the magnitude and direction of each weight vector (referred as the “length-

direction” decomposition). In comparison, for BN each output w⊺x is normalized according

91

to the average statistics in a batch. We can draw the following analogy between WN and BN

if the inputs xi are centered (Ex = 0) and the covariance matrix is known (Exx⊺ = S). In

this case, batch training with BN amounts to

σ
⎛

⎝
γ ⋅

w⊺x
√

Ex(w⊺xx⊺w)

⎞

⎠
= σ(γ ⋅

w⊺x
√

w⊺Sw
) (3.4)

= σ(γ ⋅
w⊺x

∥w∥S

).

From this prospective, WN is a special case of (3.4) with S = I [SK16, KDL19].

Properties of WN We start by giving an overview of known properties of WN that will

be used to derive the gradient flow dynamics of WN training.

For re-parametrization (3.3) of a network function f that is initially parameterized with

a weight w, the gradient ∇wf relates to the gradients ∇vf,
∂f
∂g by the identities

∇vf =
g

∥v∥2

(∇wf)
v⊥ ,

∂f

∂g
= (∇wf)

v.

This implies that ∇vf ⋅ v = 0 for each input x and parameter v. For gradient flow, this

orthogonality results in ∥v(0)∥2 = ∥v(t)∥2 for all t. For gradient descent (with step size η) the

discretization in conjunction with orthogonality leads to increasing parameter magnitudes

during training [ALL19b, HBG18, SK16], as illustrated in Figure 3.1,

∥v(s + 1)∥2
2 = ∥v(s)∥2

2 + η
2∥∇vf∥

2
2 ≥ ∥v(s)∥2

2. (3.5)

92

vk(0)

dvk
dt (0)

vk(t)

ββ

vk(0)

−∇vkL

vk(s)

Figure 3.1: WN updates for gradient flow and gradient descent. For gradient flow, the norm

of the weights are preserved, i.e., ∥vk(0)∥2 = ∥vk(t)∥2 for all t > 0. For gradient descent, the

norm of the weights ∥vk(s)∥2 is increasing with s.

Problem setup We analyze (3.1) with WN training (3.2), so that

f(x;V,c,g) =
1

√
m

m

∑
k=1

ckσ(gk ⋅
v⊺
kx

∥vk∥2

).

We take an initialization in the spirit of [SK16]:

vk(0) ∼ N(0, β2I), ck ∼ U{−1,1},

and gk(0) = ∥vk(0)∥2/β.
(3.6)

Where β2 is the variance of vk at initialization. The initialization of gk(0) is therefore taken

to be independent of β. We remark that the initialization (3.6) gives the same initial output

distribution as in methods that study the un-normalized network class (3.1). The parameters

of the network are optimized using the training data {(x1, y1), . . . , (xn, yn)} with respect to

the square loss

L(f) =
1

2

n

∑
i=1

(f(xi) − yi)
2 =

1

2
∥f − y∥2

2, (3.7)

where f = (f1, . . . , fn)⊺ = (f(x1), . . . , f(xn))⊺ and y = (y1, . . . , yn)⊺.

93

3.4 Evolution dynamics

We present the gradient flow dynamics of training (3.7) to illuminate the modified dynamics

of WN as compared with vanilla gradient descent. In Appendix 3.A.3 we tackle gradient

descent training with WN where the predictions’ evolution vector df
dt is replaced by the

finite difference f(s + 1) − f(s). For gradient flow, each parameter is updated in the negative

direction of the partial derivative of the loss with respect to that parameter. The optimization

dynamics give
dvk
dt

= −
∂L

∂vk
,

dgk
dt

= −
∂L

∂gk
. (3.8)

We consider the case where we fix the top layer parameters ck during training. In the

over-parameterized settings we consider, the dynamics of ck and gk turn out to be equivalent.

To quantify convergence, we monitor the time derivative of the i-th prediction, which is

computed via the chain rule as

∂fi
∂t

=
m

∑
k=1

∂fi
∂vk

dvk
dt

+
∂fi
∂gk

dgk
dt
.

Substituting (3.8) into the i-th prediction evolution and grouping terms yields

∂fi
∂t

= −
m

∑
k=1

∂fi
∂vk

∂L

∂vk
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

T iv

−
m

∑
k=1

∂fi
∂gk

∂L

∂gk
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

T ig

. (3.9)

The gradients of fi and L with respect to vk are written explicitly as

∂fi
∂vk

(t) =
1

√
m

ck ⋅ gk(t)

∥vk(t)∥2

⋅ x
vk(t)

⊥

i 1ik(t),

∂L

∂vk
(t) =

1
√
m

n

∑
i=1

(fi(t) − yi)
ck ⋅ gk(t)

∥vk(t)∥2

x
vk(t)

⊥

i 1ik(t).

Defining the v-orthogonal Gram matrix V(t) as

Vij(t) =

1

m

m

∑
k=1

(
βck ⋅ gk(t)

∥vk(t)∥2

)

2

⟨x
vk(t)

⊥

i , x
vk(t)

⊥

j ⟩1ik(t)1jk(t),
(3.10)

94

we can compute T iv as

T iv(t) =
n

∑
j=1

Vij(t)

β2
(fj(t) − yj).

Note that V(t) is the induced neural tangent kernel [JGH18] for the parameters v of WN

training. While it resembles the Gram matrix H(t) studied in [ADH19], here we obtain

a matrix that is not piece-wise constant in v since the data-points are projected onto the

orthogonal component of v. We compute T ig in (3.9) analogously. The associated derivatives

with respect to gk are

∂fi
∂gk

(t) =
1

√
m

ck
∥vk(t)∥2

σ(vk(t)
⊺xi),

∂L

∂gk
(t) =

1
√
m

n

∑
j=1

(fj(t) − yj)
ck

∥vk(t)∥2

σ(vk(t)
⊺xj),

and we obtain

T ig(t) =

m

∑
k=1

1

m

n

∑
j=1

c2
k(fj(t) − yj)

∥vk(t)∥2
2

σ(vk(t)
⊺xj)σ(vk(t)

⊺xi).

Given that c2
k = 1, define G(t) as

Gij(t) =
1

m

m

∑
k=1

σ(vk(t)⊺xi)σ(vk(t)⊺xj)

∥vk(t)∥2
2

(3.11)

hence we can write

T ig(t) =
n

∑
j=1

Gij(t)(fj(t) − yj).

Combining Tv and Tg, the full evolution dynamics are given by

df

dt
= −(

V(t)

β2
+G(t))(f(t) − y). (3.12)

Denote Λ(t) ∶= V(t)
β2 +G(t) and write df

dt = −Λ(t)(f(t)−y). We note that V(0),G(0), defined

in (3.10), (3.11), are independent of β:

Observation 1 (β independence). For initialization (3.6) and β > 0 the Gram matrices

V(0),G(0) are independent of β.

95

This fact is proved in Appendix 3.A.1. When training the neural network in (3.1) without

WN (see [DZP19, ADH19, ZMG19]), the corresponding neural tangent kernel H(t) is defined

by ∂fi
∂t = ∑

m
k=1

∂fi
∂wk

dwk

dt = −∑
m
k=1

∂fi
∂wk

∂L
∂wk

= −∑
n
j=1 Hij(t)(fj − yj) and takes the form

Hij(t) =
1

m

m

∑
k=1

x⊺i xj1ik(t)1jk(t). (3.13)

The analysis presented above shows that vanilla and WN gradient descent are related as

follows.

Proposition 7. Define V(0), G(0), and H(0) as in (3.10), (3.11), and (3.13) respectively.

then for all β > 0,

V(0) +G(0) = H(0).

Thus, for β = 1,

∂f

∂t
= −Λ(0)(f(0) − y) = −H(0)(f(0) − y).

That is, WN decomposes the NTK in each layer into a length and a direction component.

We refer to this as the “length-direction decoupling” of the NTK, in analogy to (3.3). From

the proposition, normalized and un-normalized training kernels initially coincide if β = 1. We

hypothesize that the utility of normalization methods can be attributed to the modified NTK

Λ(t) that occurs when the WN coefficient, β, deviates from 1. For β ≫ 1 the kernel Λ(t) is

dominated by G(t), and for β ≪ 1 the kernel Λ(t) is dominated by V(t). We elaborate on

the details of this in the next section. In our analysis we will study the two regimes β > 1

and β < 1 in turn.

3.5 Main convergence theory

In this section we discuss our convergence theory and main results. From the continuous

flow (3.12), we observe that the convergence behavior is described by V(t) and G(t). The

matrices V(t) and G(t) are positive semi-definite since they can be shown to be covariance

96

matrices. This implies that the least eigenvalue of the evolution matrix Λ(t) = 1
β2 V(t)+G(t)

is bounded below by the least eigenvalue of each kernel matrix,

λmin(Λ(t)) ≥ max{λmin(V(t))/β2, λmin(G(t))}.

For finite-step gradient descent, a discrete analog of evolution (3.12) holds. However, the

discrete case requires additional care in ensuring dominance of the driving gradient terms.

For gradient flow, it is relatively easy to see linear convergence is attained by relating the

rate of change of the loss to the magnitude of the loss. Suppose that for all t ≥ 0,

λmin(Λ(t)) ≥ ω/2, with ω > 0. (3.14)

Then the change in the regression loss is written as

d

dt
∥f(t) − y∥2

2 = 2(f(t) − y)⊺
df(t)

dt

= −2(f(t) − y)⊺Λ(t)(f(t) − y)

(3.14)
≤ −ω∥f(t) − y∥2

2.

Integrating this time derivative and using the initial conditions yields

∥f(t) − y∥2
2 ≤ exp(−ωt)∥f(0) − y∥2

2,

which gives linear convergence. The focus of our proof is therefore showing that (3.14) holds

throughout training.

By Observation 1 we have that V and G are independent of the WN coefficient β (β only

appears in the 1/β2 scaling of Λ). This suggests that the kernel Λ(t) = 1
β2 V(t) +G(t) can

be split into two regimes: When β < 1 the kernel is dominated by the first term 1
β2 V, and

when β > 1 the kernel is dominated by the second term G. We divide our convergence result

based on these two regimes.

In each regime, (3.14) holds if the corresponding dominant kernel, V(t) or G(t), maintains

a positive least eigenvalue. Having a least eigenvalue that is bounded from 0 gives a convex-

like property that allows us to prove convergence. To ensure that condition (3.14) is satisfied,

97

for each regime we show that the corresponding dominant kernel is “anchored” (remains

close) to an auxiliary Gram matrix which we define in the following for V and G.

Define the auxiliary v-orthogonal and v-aligned Gram matrices V∞,G∞ as

V∞
ij ∶= Ev∼N(0,β2I) ⟨xv⊥

i ,x
v⊥

j ⟩1ik(0)1jk(0), (3.15)

G∞
ij ∶= Ev∼N(0,β2I) ⟨xv

i ,x
v
j ⟩1ik(0)1jk(0). (3.16)

For now, assume that V∞ and G∞ are positive definite with a least eigenvalue bounded

below by ω (we give a proof sketch below). In the convergence proof we will utilize over-

parametrization to ensure that V(t),G(t) concentrate to their auxiliary versions so that

they are also positive definite with a least eigenvalue that is greater than ω/2. The precise

formulations are presented in Lemmas 3.A.6 and 3.A.7 that are relegated to Appendix 3.A.2.

To prove our convergence results we make the assumption that the xis have bounded

norm and are not parallel.

Assumption 1 (Normalized non-parallel data). The data points (x1, y1), . . . , (xn, yn) satisfy

∥xi∥2 ≤ 1 and for each index pair i ≠ j, xi ≠ κ ⋅ xj for all κ ∈ R ∖ {0}.

In order to simplify the presentation of our results, we assume that the input dimension d

is not too small, whereby d ≥ 50 suffices. This is not essential for the proof. Specific details

are provided in Appendix 3.A.1.

Assumption 2. For data xi ∈ Rd assume that d ≥ 50.

Both assumptions can be easily satisfied by pre-processing, e.g., normalizing and shifting

the data, and adding zero coordinates if needed.

Given Assumption 1, V∞,G∞ are shown to be positive definite.

Lemma 3.5.1. Fix training data {(x1, y1), . . . , (xn, yn)} satisfying Assumption 1. Then the

v-orthogonal and v-aligned Gram matrices V∞ and G∞, defined as in (3.15) and (3.16), are

strictly positive definite. We denote the least eigenvalues λmin(V∞) =∶ λ0, λmin(G∞) =∶ µ0.

98

Proof sketch Here we sketch the proof of Lemma 3.5.1. The main idea, is the same as

[DZP19], is to regard the auxiliary matrices V∞,G∞ as the covariance matrices of linearly

independent operators. For each data point xi, define φi(v) ∶= xv⊥

i 1{x⊺i v≥0}. The Gram matrix

V∞ is the covariance matrix of {φi}i=1∶n taken over Rd with the measure N(0, β2I). Hence

showing that V∞ is strictly positive definite is equivalent to showing that {φi}i=1,...n are

linearly independent. Unlike [DZP19], the functionals under consideration are not piecewise

constant so a different construction is used to prove independence. Analogously, a new set of

operators, θi(v) ∶= σ(xv
i), is constructed for G∞. Interestingly, each φi corresponds to dθi

dv .

The full proof is presented in Appendix 3.A.2.2. As already observed from evolution (3.12),

different magnitudes of β can lead to two distinct regimes that are discussed below. We

present the main results for each regime.

V-dominated convergence

For β < 1 convergence is dominated by V(t) and λmin(Λ(t)) ≥ 1
β2λmin(V(t)). We present the

convergence theorem for the V-dominated regime here.

Theorem 3.5.2 (V-dominated convergence). Suppose a neural network of the form (3.2)

is initialized as in (3.6) with β ≤ 1 and that Assumptions 1,2 hold. In addition, suppose the

neural network is trained via the regression loss (3.7) with targets y satisfying ∥y∥∞ = O(1).

If m = Ω(n4 log(n/δ)/λ4
0), then with probability 1 − δ,

1. For iterations s = 0,1, . . ., the evolution matrix Λ(s) satisfies λmin(Λ(s)) ≥ λ0

2β2 .

2. WN training with gradient descent of step-size η = O(
β2

∥V∞∥2
) converges linearly as

∥f(s) − y∥2
2 ≤ (1 −

ηλ0

2β2
)
s

∥f(0) − y∥2
2.

The proof of Theorem 3.5.2 is presented in Appendix 3.A.3. We will provide a sketch

below. We make the following observations about our V-dominated convergence result.

The required over-parametrization m is independent of β. Further, the dependence of m

99

on the failure probability is log(1/δ). This improves previous results that require polynomial

dependence of order δ3. Additionally, we reduce the dependence on the sample size from n6

(as appears in [ADH19]) to n4 log(n).

In Theorem 3.5.2, smaller β leads to faster convergence, since the convergence is dictated

by λ0/β2. Nonetheless, smaller β is also at the cost of smaller allowed step-sizes, since

η = O(β2/∥V∞∥2). The trade-off between step-size and convergence speed is typical. For

example, this is implied in Chizat et al. [COB19], where nonetheless the authors point out

that for gradient flow training, the increased convergence rate is not balanced by a limitation

on the step-size. The works [HBG18, WWB18, ALL19b] define an effective step-size (adaptive

step-size) η′ = η/β2 to avoid the dependence of η on β.

G-dominated convergence

For β > 1 our convergence result for the class (3.2) is based on monitoring the least eigenvalue

of G(t). Unlike V-dominated convergence, β does not affect the convergence speed in this

regime.

Theorem 3.5.3 (G-dominated convergence). Suppose a network of the form (3.2) is initial-

ized as in (3.6) with β ≥ 1 and that Assumptions 1, 2 hold. In addition, suppose the neural

network is trained via the regression loss (3.7) with targets y satisfying ∥y∥∞ = O(1). If

m = Ω(max{n4 log(n/δ)/β4µ4
0, n

2 log(n/δ)/µ2
0}), then with probability 1 − δ,

1. For iterations s = 0,1, . . ., the evolution matrix Λ(s) satisfies λmin(Λ(s)) ≥ µ0

2 .

2. WN training with gradient descent of step-size η = O(1
∥Λ(t)∥) converges linearly as

∥f(s) − y∥2
2 ≤ (1 −

ηµ0

2
)
s

∥f(0) − y∥2
2.

We make the following observations about our G-dominated convergence result, and

provide a proof sketch further below.

100

Theorem 3.5.3 holds for β ≥ 1 so long as m = Ω(max{n4 log(n/δ)/µ4
0β

4, n2 log(n/δ)/µ2
0}).

Taking β =
√
n/µ0 gives an optimal required over-parametrization of orderm = Ω(n2 log(n/δ)/µ2

0).

This significantly improves on previous results [DZP19] for un-normalized training that have

dependencies of order 4 in the least eigenvalue, cubic dependence in 1/δ, and n6 dependence

in the number of samples n. In contrast to V-dominated convergence, here the rate of

convergence µ0 is independent of β but the over-parametrization m is β-dependent. We

elaborate on this curious behavior in the next sections.

Proof sketch of main results The proof of Theorems 3.5.2 and 3.5.3 is inspired by a

series of works including [DZP19, ADH19, ZMG19, WDW19, DLL19a]. The proof has the

following steps: (I) We show that at initialization V(0),G(0) can be viewed as empirical

estimates of averaged data-dependent kernels V∞,G∞ that are strictly positive definite under

Assumption 1. (II) For each regime, we prove that the corresponding kernel remains positive

definite if vk(t) and gk(t) remain near initialization for each 1 ≤ k ≤ m. (III) Given a

uniformly positive definite evolution matrix Λ(t) and sufficient over-parametrization we show

that each neuron, vk(t), gk(t) remains close to its initialization. The full proof is presented in

Appendix 3.A.2 for gradient flow and Appendix 3.A.3 for finite-step gradient descent. Next

we interpret the main results and discuss how the modified NTK in WN can be viewed as a

form of natural gradient.

Connection with natural gradient Natural gradient methods define the steepest descent

direction in the parameter space of a model from the perspective of function space. This

amounts to introducing a particular geometry into the parameter space which is reflective

of the geometry of the corresponding functions. A re-parametrization of a model, and WN

in particular, can also be interpreted as choosing a particular geometry for the parameter

space. This gives us a perspective from which to study the effects of WN. The recent work of

[ZMG19] studies the effects of natural gradient methods from the lens of the NTK and shows

that when optimizing with the natural gradient, one is able to get significantly improved

101

training speed. In particular, using the popular natural gradient method K-FAC improves

the convergence speed considerably.

Natural gradients transform the NTK from JJ⊺ to JG†J⊺, where J is the Jacobian with

respect to the parameters and G is the metric. The WN re-parametrization transforms the

NTK from JJ⊺ to JS⊺SJ⊺. To be more precise, denote the un-normalized NTK as H = JJ⊺,

where J is the Jacobian matrix for x1, . . .xn written in a compact tensor as J = [J1, . . .Jn]
⊺

with Ji = [
∂f(xi)
∂w1

. . . ∂f(xi)∂wm
], where matrix multiplication is a slight abuse of notation. Namely

J ∈ Rn×m×d and we define multiplication of A ∈ Rn×m×d ×B ∈ Rd×m×p →AB ∈ Rn×p as

(AB)ij =
m

∑
k=1

⟨Aik∶,B∶kj⟩.

For any re-parametrization w(r), we have that

Λ = KK⊺,

where K = JS⊺ and S corresponds to the Jacobian of the re-parametrization w(r). By

introducing WN layers the reparameterized NTK is compactly written as

Λ = JS⊺SJ⊺.

Here S = [S1, . . . , tSm] with

Sk = [
gk

∥vk∥2

(I −
vkv

⊺
k

∥vk∥2

),
vk

∥vk∥2

].

The term N(β) ∶= SS⊺ leads to a family of different gradient re-parametrizations depending on

β. The above representation of the WN NTK is equivalent to Λ(β) = 1
β2 V+G = JN(β)J⊺. For

different initialization magnitudes β, N(β) leads to different NTKs with modified properties.

For β = 1 the term corresponds to training without normalization, yet over β ∈ (0,∞), N(β)

leads to a family NTKs with different properties. In addition there exists an β∗ that maximizes

the convergence rate. Such β∗ is either a proper global maximum or is attained at one of

β → 0, β → ∞. For the latter, one may fix β∗ with β∗ ≪ 1 or β∗ ≫ 1 respectively so that

there exists β∗ that outpaces un-normalized convergence (β = 1). This leads to equal or faster

convergence of WN as compared with un-normalized training:

102

Proposition 8 (Fast Convergence of WN). Suppose a neural network of the form (3.2)

is initialized as in (3.6) and that Assumptions 1,2 hold. In addition, suppose the network

is trained via the regression loss (3.7) with targets y satisfying ∥y∥∞ = O(1). Then, with

probability 1 − δ over the initialization, there exists β∗ such that WN training with β∗

initialization leads to faster convergence: If m = Ω(n4 log(n/δ)/min{λ4
0, µ

4
0}),

1. WN training with gradient descent of step-size ηβ∗ = O(1
∥V∞/(β∗)2+G∞∥2

) converges

linearly as

∥f(s) − y∥2
2 ≤

(1 − ηβ∗(λ0/2(β
∗)2 + µ0/2))

s

∥f(0) − y∥2
2.

2. The convergence rate of WN is faster than un-normalized convergence,

(1 − ηβ∗λmin(Λ(s))) ≤ (1 − ηλmin(H(s))).

This illustrates the utility of WN from the perspective of the NTK, guaranteeing that

there exists an β∗ that leads to faster convergence in finite-step gradient descent as compared

with un-normalized training.

3.6 Discussion

Dynamic normalization is the most common optimization set-up of current deep learning

models, yet understanding the convergence of such optimization methods is still an open

problem. This chapter presents a proof giving sufficient conditions for convergence of

dynamically normalized 2-layer ReLU networks trained with gradient descent. To the best of

our knowledge this is the first proof showcasing convergence of gradient descent training of

neural networks with dynamic normalization and general data, where the objective function

is non-smooth and non-convex. To understand the canonical behavior of each normalization

layer, we study the shallow neural network case, that enables us to focus on a single layer

103

and illustrate the dynamics of weight normalization. Nonetheless, using the techniques

presented in [ALS19, DLL19a] we believe that the proofs can be extended to deep networks

as a future direction. Through our analysis notion of “length-direction decoupling” is clarified

by the neural tangent kernel Λ(t) that naturally separates in our analysis into “length”,

G(t), and “direction”, V(t)/β2, components. For β = 1 the decomposition initially matches

un-normalized training. Yet it is shown that in general, normalized training with gradient

descent leads to 2 regimes dominated by different pieces of the neural tangent kernel. The

improved analysis reduces the amount of over-parametrization that was needed in previous

convergence works in the un-normalized setting and in the G-dominated regime, we prove

convergence with a significantly lower amount of over-parametrization as compared with

un-normalized training.

104

3.A Appendix

We present the detailed proofs of the main results of the chapter below. The appendix

is organized as follows. We provide proofs to the simple propositions regarding the NTK

presented in the chapter in Sub-appendix 3.A.1, and prove the main results for V-dominated

and G-dominated convergence in the settings of gradient flow and gradient descent in the

beginning of Sub-appendices 3.A.2 and 3.A.3. The proofs for gradient flow and gradient

descent share the same main idea, yet the proof for gradient descent has a considerate number

of additional technicalities. In the rest of Sub-appendices 3.A.2, 3.A.3 (3.A.2.2 and (3.A.3.1))

we prove the lemmas used in the analysis of flow and finite-step proofs respectively. Before

we move forward we highlight some of the challenges of the WN proof.

Distinctive aspects of the WN convergence analysis The main idea of our proof

are familiar and structured similarly to the work by [DZP19] on the un-normalized setting.

However, the majority of the proofs are modified significantly to account for WN. To the best

of our knowledge, the finite-step analysis that we present in Appendix 3.A.3 is entirely new,

incorporating updates of both v and g. The proof of Theorem 3.A.17 is crucially dependent

on the geometry of WN gradient descent and the orthogonality property, in particular (3.5).

Updates of the weights in both the numerator and denominator require additional analysis

that is presented in Lemma 3.A.12. In Appendix 3.A.3.1 we prove Theorems 3.5.2, 3.5.3 based

on the general Theorem 3.A.17 and Property 1 which is based on new detailed decomposition

of the finite-step difference between iterations. In contrast to the un-normalized setting, the

auxiliary matrices V∞,G∞ that we have in the WN analysis are not piece-wise constant in v.

To prove they are positive definite, we prove Lemma 3.5.1 based on two new constructive

arguments. We develop the technical Lemma 3.A.13 and utilize Bernstein’s inequality to

reduce the amount of required over-parametrization in our final bounds on the width m.

The amount of over-parameterization in relation to the sample size n is reduced (from n6

to n4) through more careful arguments in Lemmas 3.A.5 and 3.A.6, which introduce an

105

intermediate matrix V̂(t) and follow additional geometrical identities. Lemma 3.A.11 reduces

the polynomial dependence on the failure probability δ to logarithmic dependence based

on sub-Gaussian concentration. The denominator in the WN architecture necessities worst

bound analysis which we handle in Lemma 3.A.12 that is used throughout the proofs.

3.A.1 Weight Normalization dynamics proofs

In this section we provide proofs for Proposition 7, which describes the relation between

vanilla and WeightNorm NTKs and Observation 1.

Proof of Proposition 7:

We would like to show that V(0) +G(0) = H(0). For each entry, consider

(V(0) +G(0))ij =
1

m

m

∑
k=1

⟨x
vk(0)

⊥

i , xj
vk(0)

⊥

⟩1ik(0)1jk(0) +
1

m

m

∑
k=1

⟨x
vk(0)
i , xj

vk(0)⟩1ik(0)1jk(0).

Note that

⟨xi, xj⟩ = ⟨x
vk(0)
i + x

vk(0)
⊥

i , x
vk(0)
j + x

vk(0)
⊥

j ⟩ = ⟨x
vk(0)

⊥

i , xj
vk(0)

⊥

⟩ + ⟨x
vk(0)
i , xj

vk(0)⟩.

This gives

(V(0) +G(0))ij =
1

m

m

∑
k=1

⟨xi, xj⟩1ik(0)1jk(0) = Hij(0)

which proves the claim.

Proof of Observation 1:

We show that the initialization of the network is independent of β. Take β,κ > 0, and for

each k, initialize vβk ,v
κ
k as

vβk(0) ∼ N(0, β2I), vκk(0) ∼ N(0, κ2I).

Then

vβk(0)

∥vβk(0)∥2

∼
vκk(0)

∥vκk(0)∥2

∼ Unif(Sd−1) (in distribution).

106

Hence the distribution of each neuron σ(vk(0)
∥vk(0)∥2

) at initialization is independent of β. Next

for gk(0), we note that

∥vβk(0)∥2 ∼
β

κ
∥vκk(0)∥2.

Initializing gβk (0), g
κ
k(0) as in (3.6),

gβk (0) =
∥vk(0)∥2

β
, gκk(0) =

∥vk(0)∥2

κ
,

gives

gβk (0), gκk(0) ∼ χd, and
gβk (0)v

β
k(0)

∥vβk(0)∥2

∼
gκk(0)v

κ
k(0)

∥vκk(0)∥2

∼ N(0, I),

for all β,κ. This shows that the network initialization is independent of β and is equivalent

to the initialization of the un-normalized setting. Similarly, inspecting the terms in the

summands of V(0),G(0) shows that they are also independent of β. For

Vij(0) =
1

m

m

∑
k=1

1ik(0)1jk(0)(
βck ⋅ gk(0)

∥vk(0)∥2

)

2

⟨x
vk(0)

⊥

i , x
vk(0)

⊥

j ⟩

the terms 1ik(0), x
vk(0)

⊥

i are independent of scale, and the fraction in the summand is

identically 1. G(0) defined as

Gij(0) =
1

m

m

∑
k=1

1ik(0)1jk(0)⟨x
vk(0)
i , x

vk(0)
j ⟩

is also invariant of scale since the projection onto a vector direction vk(0) is independent of

scale.

3.A.2 Convergence proof for gradient flow

In this section we derive the convergence results for gradient flow.

The main results are analogous to Theorems 3.5.2, 3.5.3 but by considering gradient flow

instead of gradient descent the proofs are simplified. In Appendix 3.A.3 we prove the main

results from Section 3.5 (Theorem 3.5.2, 3.5.3) for finite step gradient descent.

We state our convergence results for gradient flow.

107

Theorem 3.A.1 (V-dominated convergence). Suppose a network from the class (3.2) is

initialized as in (3.6) with β < 1 and that assumptions 1,2 hold. In addition, suppose the

neural network is trained via the regression loss (3.7) with target y satisfying ∥y∥∞ = O(1).

Then if m = Ω(n4 log(n/δ)/λ4
0), WeightNorm training with gradient flow converges at a linear

rate, with probability 1 − δ, as

∥f(t) − y∥2
2 ≤ exp(−λ0t/β

2)∥f(0) − y∥2
2.

This theorem is analogous to Theorem 3.5.2 but since here, the settings are of gradient

flow there is no mention of the step-size. It is worth noting that smaller β leads to faster

convergence and appears to not affect the other hypotheses of the flow theorem. This “un-

interuptted” fast convergence behavior does not extend to finite-step gradient descent where

the increased convergence rate is balanced by decreasing the allowed step-size.

The second main result for gradient flow is for G-dominated convergence.

Theorem 3.A.2 (G-dominated convergence). Suppose a network from the class (3.2) is

initialized as in (3.6) with β > 1 and that assumptions 1, 2 hold. In addition, suppose the

neural network is trained on the regression loss (3.7) with target y satisfying ∥y∥∞ = O(1).

Then if m = Ω(max{n4 log(n/δ)/β4µ4
0, n

2 log(n/δ)/µ2
0}), WeightNorm training with gradient

flow converges at a linear rate, with probability 1 − δ, as

∥f(t) − y∥2
2 ≤ exp(−µ0t)∥f(0) − y∥2

2.

3.A.2.1 Proof sketch

To prove the results above we follow the steps introduced in the proof sketch of Section

3.5. The main idea of the proofs for V and G dominated convergence are analogous and

a lot of the proofs are based of [DZP19]. We show that in each regime, we attain linear

convergence by proving that the least eigenvalue of the evolution matrix Λ(t) is strictly

positive. For the V-dominated regime we lower bound the least eigenvalue of Λ(t) as

108

λmin(Λ(t)) ≥ λmin(V(t))/β2 and in the G-dominated regime we lower bound the least

eigenvalue as λmin(Λ(t)) ≥ λmin(G(t)).

The main part of the proof is showing that λmin(V(t)), λmin(G(t)) stay uniformly positive.

We use several lemmas to show this claim.

In each regime, we first show that at initialization the kernel under consideration, V(0)

or G(0), has a positive least eigenvalue. This is shown via concentration to an an auxiliary

kernel (Lemmas 3.A.3, 3.A.4), and showing that the auxiliary kernel is also strictly positive

definite (Lemma 3.5.1).

Lemma 3.A.3. Let V(0) and V∞ be defined as in (3.10) and (3.15), assume the network

width m satisfies m = Ω(
n2 log(n/δ)

λ2
0

). Then with probability 1 − δ,

∥V(0) −V∞∥2 ≤
λ0

4
.

Lemma 3.A.4. Let G(0) and G∞ be defined as in (3.11) and (3.16), assume m satisfies

m = Ω(
n2 log(n/δ)

µ2
0

). Then with probability 1 − δ,

∥G(0) −G∞∥2 ≤
µ0

4
.

After showing that V(0),G(0) have a positive least-eigenvalue we show that V(t),G(t)

maintain this positive least eigenvalue during training. This part of the proof depends on

the over-parametrization of the networks. The main idea is showing that if the individual

parameters vk(t), gk(t) do not change too much during training, then V(t),G(t) remain

close enough to V(0),G(0) so that they are still uniformly strictly positive definite. We

prove the results for V(t) and G(t) separately since each regime imposes different restrictions

on the trajectory of the parameters.

For now, in Lemmas 3.A.5, 3.A.6, 3.A.7, we make assumptions on the parameters of

the network not changing “too much”; later we show that this holds and is the result of

over-parametrization. Specifically, over-parametrization ensures that the parameters stay at

a small maximum distance from their initialization.

109

V-dominated convergence To prove the least eigenvalue condition on V(t), we introduce

the surrogate Gram matrix V̂(t) defined entry-wise as

V̂ij(t) =
1

m

m

∑
k=1

⟨x
vk(t)

⊥

i , x
vk(t)

⊥

j ⟩1ik(t)1jk(t). (3.17)

This definition aligns with V(t) if we replace the scaling term (
βckgk(t)
∥vk(t)∥2

)
2

in each term in

the sum Vij(t) by 1.

To monitor V(t) −V(0) we consider V̂(t) −V(0) and V(t) − V̂(t) in Lemmas 3.A.5 and

3.A.6 respectively:

Lemma 3.A.5 (Rectifier sign-changes). Suppose v1(0), . . . ,vk(0) are sampled i.i.d. as (3.6).

In addition assume we have m = Ω(
(m/δ)1/dn log(n/δ)

λ0
) and ∥vk(t) − vk(0)∥2 ≤

βλ0

96n(m/δ)1/d =∶ Rv.

Then with probability 1 − δ,

∥V̂(t) −V(0)∥2 ≤
λ0

8
.

Lemma 3.A.6. Define

Rg =
λ0

48n(m/δ)1/d
, Rv =

βλ0

96n(m/δ)1/d
. (3.18)

Suppose the conditions of Lemma 3.A.5 hold, and that ∥vk(t) − vk(0)∥2 ≤ Rv, ∥gk(t) −

gk(0)∥2 ≤ Rg for all 1 ≤ k ≤m. Then with probability 1 − δ,

∥V(t) −V(0)∥2 ≤
λ0

4
.

G-dominated convergence We ensure that G(t) stays uniformly positive definite if the

following hold.

Lemma 3.A.7. Given v1(0), . . . ,vk(0) generated i.i.d. as in (3.6), suppose that for each k,

∥vk(t) − vk(0)∥2 ≤
√

2πβµ0

8n(m/δ)1/d =∶ R̃v, then with probability 1 − δ,

∥G(t) −G(0)∥2 ≤
µ0

4
.

110

After deriving sufficient conditions to maintain a positive least eigenvalue at training, we

restate the discussion of linear convergence from Section 3.5 formally.

Lemma 3.A.8. Consider the linear evolution df
dt = −(G(t) + V(t)

β2)(f(t) − y) from (3.12).

Suppose that λmin(G(t) + V(t)
β2) ≥ ω

2 for all times 0 ≤ t ≤ T . Then

∥f(t) − y∥2
2 ≤ exp(−ωt)∥f(0) − y∥2

2

for all times 0 ≤ t ≤ T .

Using the linear convergence result of Lemma 3.A.8, we can now bound the trajectory of

the parameters from their initialization.

Lemma 3.A.9. Suppose that for all 0 ≤ t ≤ T , λmin(G(t)+ 1
β2 V(t)) ≥ ω

2 and ∣gk(t)− gk(0)∣ ≤

Rg ≤ 1/(m/δ)1/d. Then with probability 1 − δ over the initialization

∥vk(t) − vk(0)∥2 ≤
4
√
n∥f(0) − y∥2

βω
√
m

=∶ R′
v (3.19)

for each k and all times 0 ≤ t ≤ T .

Lemma 3.A.10. Suppose that for all 0 ≤ t ≤ T , λmin(G(t) + 1
β2 V(t)) ≥ ω

2 . Then with

probability 1 − δ over the initialization

∣gk(t) − gk(0)∣ ≤
4
√
n∥f(0) − y∥2
√
mω

=∶ R′
g

for each k and all times 0 ≤ t ≤ T.

The distance of the parameters from initialization depends on the convergence rate (which

depends on λmin(Λ(t))) and the width of the network m. We therefore are able to find

sufficiently large m for which the maximum parameter trajectories are not too large so that

we have that the least eigenvalue of Λ(t) is bounded from 0; this proves the main claim.

Before proving the main results in the case of gradient flow, we use two more technical

lemmas.

111

Lemma 3.A.11. Suppose that the network is initialized as (3.6) and that y ∈ Rn has bounded

entries ∣yi∣ ≤M . Then ∥f(0) − y∥2 ≤ C
√
n log(n/δ) for some absolute constant C > 0.

Lemma 3.A.12 (Failure over initialization). Suppose v1(0), . . . ,vk(0) are initialized i.i.d.

as in (3.6) with input dimension d. Then with probability 1 − δ,

max
k∈[m]

1

∥vk(0)∥2

≤
(m/δ)

β

1/d

.

In addition by (3.5), for all t ≥ 0, with probability 1 − δ,

max
k∈[m]

1

∥vk(t)∥2

≤
(m/δ)

β

1/d

.

Remark (Assumption 2). Predominately, machine learning applications reside in the high

dimensional regime with d ≥ 50. Typically d ≫ 50. This therefore leads to an expression

(m/δ)1/d that is essentially constant. For example, if d = 50, for maxk∈[m]
1

∥vk(0)∥2
≥ 10,

one would need m/δ ≥ 1080 (the tail of χ2
d also has a factor of (d/2)! ⋅ 2d/2 which makes

the assumption even milder). The term (m/δ)1/d therefore may be taken as a constant for

practicality,

max
k∈[m]

1

∥vk(0)∥2

≤
C

β
.

While we make Assumption 2 when presenting our final bounds, for transparency we

do not use Assumption 2 during our analysis and apply it only when we present the final

over-parametrization results to avoid the overly messy bound. Without the assumption the

theory still holds yet the over-parametrization bound worsens by a power 1 + 1/(d − 1). This

is since the existing bounds can be modified, replacing m with m1− 1
d .

Proof of Theorem 3.A.1:

By substituting m = Ω(n4 log(n/δ)/λ4
0) and using the bound on ∥f(0)−y∥2 of Lemma 3.A.11,

a direct calculation shows that

∥vk(t) − vk(0)∥2

3.A.9
≤

β
√
n∥f(0) − y∥2
√
mλ0

≤ Rv.

112

Similarly m ensures that

∣gk(t) − gk(0)∣
3.A.10
≤

β2
√
n∥f(0) − y∥2
√
mλ0

≤ Rg.

The over-parametrization of m implies that the parameter trajectories stay close enough

to initialization to satisfy the hypotheses of Lemmas 3.A.5, 3.A.6 and that λmin(Λ(t)) ≥

λmin(V(t))/β2 ≥ λ0

2β2 . To prove that λmin(Λ(t)) ≥ λ0

2β2 holds for all 0 ≤ t ≤ T , we proceed by

contradiction and suppose that one of Lemmas 3.A.9, 3.A.10 does not hold. Take T0 to be the

first failure time. Clearly T0 > 0 and for 0 < t < T0 the above conditions hold, which implies

that λmin(V(t)) ≥ λ0

2 for 0 ≤ t ≤ T0; this contradicts one of Lemmas 3.A.9, 3.A.10 at time T0.

Therefore we conclude that Lemmas 3.A.9, 3.A.10 hold for t > 0 and we can apply 3.A.8 to

guarantee linear convergence.

Here we consider the case where the convergence is dominated by G. This occurs when

β > 1.

Proof of Theorem 3.A.2:

By substituting m = Ω(n4 log(n/δ)/β4µ4
0) and using the bound on ∥f(0) − y∥2 of Lemma

3.A.11 we have that

∥vk(t) − vk(0)∥2

3.A.9
≤

4
√
n∥f(0) − y∥2

βµ0

√
m

3.A.11
≤

Cn
√

log(n/δ)

βµ0

√
m

≤ R̃v.

Where the inequality is shown by a direct calculation substituting m.

This means that the parameter trajectories stay close enough to satisfy the hypotheses

of Lemma 3.A.7 if m = Ω(n4 log(n/δ)/β4µ4
0). Using the same argument as Theorem 3.A.1,

we show that this holds for all t > 0. We proceed by contradiction, supposing that one of

Lemmas 3.A.9, 3.A.10 do not hold. Take T0 to be the first time one of the conditions of

Lemmas 3.A.9, 3.A.10 fail. Clearly T0 > 0 and for 0 < t < T0 the above derivation holds, which

implies that λmin(G(t)) ≥ µ0

2 . This contradicts Lemmas 3.A.9 3.A.10 at time T0, therefore

we conclude that Lemma 3.A.8 holds for all t > 0 and guarantees linear convergence.

Note that if β is large, the required complexity on m is reduced. Taking β = Ω(
√
n/µ0)

gives the improved bound

113

m = Ω(
n2 log (n/δ)

µ2
0

).

3.A.2.2 Supporting lemmas and proofs of the lemmas used for gradient flow

convergence

Proof of Lemma 3.5.1:

We prove Lemma 3.5.1 for V∞, G∞ separately. V∞ can be viewed as the covariance matrix

of the functionals φi defined as

φi(v) = xi(I −
vv⊺

∥v∥2
2

)1{v⊺xi ≥ 0} (3.20)

over the Hilbert space V of L2(N(0, β2I)) of functionals. Under this formulation, if φ1, φ2, . . . , φn

are linearly independent, then V∞ is strictly positive definite. Thus, to show that V∞ is

strictly positive definite is equivalent to showing that

c1φ1 + c2φ2 +⋯ + cnφn = 0 in V (3.21)

implies ci = 0 for each i. The φis are piece-wise continuous functionals, and equality in V is

equivalent to

c1φ1 + c2φ2 +⋯ + cnφn = 0 almost everywhere.

For the sake of contradiction, assume that there exist c1, . . . , cn that are not identically 0,

satisfying (3.21). As ci are not identically 0, there exists an i such that ci ≠ 0. We show

this leads to a contradiction by constructing a non-zero measure region such that the linear

combination ∑i ciφi is non-zero.

Denote the orthogonal subspace to xi as Di ∶= {v ∈ Rd ∶ v⊺xi = 0}. By Assumption 1,

Di /⊆⋃
j≠i

Dj

114

This holds since Di is a (d − 1)-dimensional space which may not be written as the finite

union of sub-spaces Di ∩Dj of dimension d − 2 (since xi and xj are not parallel). Thus, take

z ∈Di/⋃j≠iDj. Since ⋃j≠iDj is closed in Rd, there exists an R > 0 such that

B(z,4R) ∩⋃
j≠i

Dj = ∅.

Next take y ∈ ∂B(z,3R) ∩Di (where ∂ denotes the boundary) on the smaller disk of radius

3R so that it satisfies ∥y∥2 = maxy′∈∂B(z,3R)∩Di ∥y
′∥2. Now for any r ≤ R, the ball B(y, r) is

such that for all points v ∈ B(y, r) we have ∥vx⊥i ∥2 ≥ 2R and ∥vxi∥2 ≤ R. Then for any r ≤ R,

the points v ∈ B(y, r) ⊂ B(z,4R) satisfy that

∥xv⊥

i ∥2 ≥ ∥xi∥2 −
xi ⋅ v

∥v∥2

≥ ∥xi∥2(1 −
R

2R
) ≥

∥xi∥2

2
.

Next we decompose the chosen ball B(y, r) = B+(r)∨B−(r) to the areas where the ReLU

function at the point xi is active and inactive

B+(r) = B(y, r) ∩ {x⊺i v ≥ 0}, B−(r) = B(y, r) ∩ {x⊺i v < 0}.

Note that φi has a discontinuity on Di and is continuous within each region B+(r) and B−(r).

Moreover, for j ≠ i, φj is continuous on the entire region of B(y, r) since B(y, r) ⊂ B(z, 4R) ⊂

Dc
j . Since we have that φj is continuous in the region, the Lebesgue differentiation theorem

implies that for r → 0, φi satisfies on B+(r),B−(r):

lim
r→0

1

µ(B+(r)) ∫B+(r)
φi = xy⊥

i ≠ 0, lim
r→0

1

µ(B−(r)) ∫B−(r)
φi = 0.

For j ≠ i φj is continuous on the entire ball B(y, r) hence the Lebesgue differentiation

theorem also gives

lim
r→0

1

µ(B+(r)) ∫B+(r)
φi = φj(y), lim

r→0

1

µ(B−(r)) ∫B−(r)
φi = φj(y).

We integrate c1φ1 + . . . cnφn over B−(r) and B+(r) separately and subtract the integrals.

By the assumption, c1φ1 +⋯+ cnφn = 0 almost everywhere so each integral evaluates to 0 and

the difference is also 0,

0 =
1

µ(B+(r)) ∫B+(r)
c1φ1 +⋯ + cnφn −

1

µ(B−(r)) ∫B−(r)
c1φ1 +⋯ + cnφn. (3.22)

115

By the continuity of φj for j ≠ i taking r → 0 we have that

1

µ(B+(r))
lim
r→0
∫
B+(r)

φj −
1

µ(B−(r)) ∫B−(r)
φj = φj(y) − φj(y) = 0.

For φi the functionals evaluate differently. For B−(r) we have that

1

µ(B−(r))
lim
r→0
∫
B−(r)

φi =
1

µ(B−(r))
lim
r→0
∫
B−(r)

0 = 0,

while the integral over the positive side, B+(r) is equal to

1

µ(B+(r)) ∫B+(r)
φi(z)dz =

1

µ(B+(r)) ∫B+(r)
xz⊥

i dz = xy⊥

i .

By construction, ∥xy⊥

i ∥2 > R and is non-zero so we conclude that for (3.22) to hold we must

have ci = 0. This gives the desired contradiction and implies that φ1, . . . φn are independent

and V∞ is positive definite with λmin(V∞) = λ0.

Next we consider G∞ and again frame the problem in the context of the covariance matrix

of functionals. Define

θi(v) ∶= σ(
v⊺xi
∥v∥2

)

for v ≠ 0.

Now the statement of the theorem is equivalent to showing that the covariance matrix of

{θi} does not have zero-eigenvalues, that is, the functionals θis are linearly independent. For

the sake of contradiction assume ∃ c1, . . . , cn such that

c1θ1 + c2θ2 +⋯ + cnθn = 0 in V (equivalent to a.e).

Via the same contradiction argument we show that ci = 0 for all i. Unlike φi defined in (3.20),

each θi is continuous and non-negative so equality “a.e” is strengthened to “for all v”,

c1θ1 + c2θ2 +⋯ + cnθn = 0.

116

Equality everywhere requires that the derivatives of the function are equal to 0 almost

everywhere. Computing derivatives with respect to v yields

c1x
v⊥

1 1{v⊺x1 ≥ 0} + c2x
v⊥

2 1{v⊺x2 ≥ 0} +⋯ + cnx
v⊥

n 1{v
⊺xn ≥ 0} = 0.

Which coincide with

c1φ1 +⋯ + cnφn

By the first part of the proof, the linear combination c1φ1 +⋯+ cnφn is non-zero around a ball

of positive measure unless ci = 0 for all i. This contradicts the assumption that the derivative

is 0 almost everywhere; therefore G∞ is strictly positive definite with λmin(G∞) =∶ µ0 > 0.

We briefly derive an inequality for the sum of indicator functions for events that are

bounded by the sum of indicator functions of independent events. This enables us to develop

more refined concentration than in [DZP19] for monitoring the orthogonal and aligned Gram

matrices during training.

Lemma 3.A.13. Let A1, . . . ,Am be a sequence of events and suppose that Ak ⊆ Bk with

B1, . . . ,Bm mutually independent. Further assume that for each k, P(Bk) ≤ p, and define

S = 1
m ∑

m
k=1 1Ak . Then with probability 1 − δ, S satisfies

S ≤ p(2 +
8 log(1/δ)

3mp
).

Proof of Lemma 3.A.13:

Bound S as

S =
1

m

m

∑
k=1

1Ak ≤
1

m

m

∑
k=1

1Bk .

We apply Bernstein’s concentration inequality to reach the bound. Denote Xk =
1Bk
m and

S̃ = ∑
m
k=1Xk. Then

Var(Xk) ≤ EX2
k = (1/m)2P(Xk) + 0 ≤

p

m2
, ES̃ = E

m

∑
k=1

Xk ≤ p.

117

Applying Bernstein’s inequality yields

P(S̃ −ES̃ ≥ t) ≤ exp(
−t2/2

∑
m
k=1 EX2

k +
t

3m

).

Fix δ and take the smallest t such that P(S̃ − ES̃ ≥ t) ≤ δ. Denote t = r ⋅ ES̃, either

P(S̃ − ES̃ ≥ ES̃) ≤ δ, or t = rES̃ corresponds to r ≥ 1. Note that t = rES̃ ≤ rp. In the latter

case, the bound is written as

P(S̃ −ES̃ ≥ rp) ≤ exp(
−(pr)2/2

p/m +
pr
3m

) ≤ exp(
−(pr)2/2
p
m(1 + r

3)
) ≤ exp(

−(pr)2/2
p
m(4r

3)
) = exp(

−3prm

8
).

Solving for δ gives

rp ≤
8 log(1/δ)

3m
.

Hence with probability 1 − δ,

S ≤ S̃ ≤ max

⎧⎪⎪
⎨
⎪⎪⎩

p(1 +
8 log(1/δ)

3mp
),2p

⎫⎪⎪
⎬
⎪⎪⎭

≤ p(2 +
8 log(1/δ)

3mp
).

Proof of Lemma 3.A.3:

We prove the claim by applying concentration on each entry of the difference matrix. Each

entry Vij(0) is written as

Vij(0) =
1

m

m

∑
k=1

⟨x
vk(0)

⊥

i , x
vk(0)

⊥

j ⟩(
βck ⋅ gk
∥vk∥2

)

2

1ik(0)1jk(0).

At initialization gk(0) = ∥vk(0)∥2/β, c2
k = 1 so Vij(0) simplifies to

Vij(0) =
1

m

m

∑
k=1

⟨x
vk(0)

⊥

i , x
vk(0)

⊥

j ⟩1ik(0)1jk(0).

Since the weights vk(0) are initialized independently for each entry we have EvVij(0) =

V∞
ij . We measure the deviation V(0) − V∞ via concentration. Each term in the sum

1
m ∑

m
j=1 ⟨x

vk(0)
⊥

i , x
vk(0)

⊥

j ⟩1ik(0)1jk(0) is independent and bounded,

−1 ≤ ⟨x
vk(0)

⊥

i , x
vk(0)

⊥

j ⟩1ik(0)1jk(0) ≤ 1.

118

Applying Hoeffding’s inequality to each entry yields that with probability 1− δ/n2, for all i, j,

∣Vij(0) −V∞
ij ∣ ≤

2
√

log(n2/δ)
√
m

.

Taking a union bound over all entries, with probability 1 − δ,

∣Vij(0) −V∞
ij ∣ ≤

4
√

log(n/δ)
√
m

.

Bounding the spectral norm, with probability 1 − δ,

∥V(0) −V∞∥2
2 ≤ ∥V(0) −V∞∥2

F ≤∑
i,j

∣Vij(0) −V∞
ij ∣

2

≤
16n2 log(n/δ)

m
.

Taking m = Ω(
n2 log(n/δ)

λ2
0

) therefore guarantees

∥V(0) −V∞∥2 ≤
λ0

4
.

Proof of Lemma 3.A.4:

This is completely analogous to 3.A.3. Recall G(0) is defined as,

Gij(0) =
1

m

m

∑
k=1

⟨x
vk(0)
i , x

vk(0)
j ⟩c2

k1ik(0)1jk(0)

with c2
k = 1 and vk(0) ∼ N(0, β2I) are initialized i.i.d. Since each term is bounded like 3.A.3.

The same analysis gives

∥Gij(0) −G∞
ij ∥

2
2 ≤

16n2 log(n/δ)

m
.

Taking m = Ω(
n2 log(n/δ)

µ2
0

) therefore guarantees,

∥G(0) −G∞∥2 ≤
µ0

4
.

119

Proof of Lemma 3.A.5:

For a given R, define the event of a possible sign change of neuron k at point xi as

Ai,k(R) = {∃v ∶ ∥v − vk(0)∥2 ≤ R, and 1{vk(0)
⊺xi ≥ 0} ≠ 1{v⊺xi ≥ 0}}

Ai,k(R) occurs exactly when ∣vk(0)⊺xi∣ ≤ R, since ∥xi∥2 = 1 and the perturbation may be

taken in the direction of −xi. To bound the probability Ai,k(R) we consider the probability

of the event

P(Ai,k(R)) = P(∣vk(0)⊺xi∣ < R) = P(∣z∣ < R).

Here, z ∼ N(0, β2) since the product vk(0)⊺xi follows a centered normal distribution. The

norm of ∥xi∥2 = 1 which implies that z computes to a standard deviation β. Via estimates on

the normal distribution, the probability on the event is bounded like

P(Ai,k(R)) ≤
2R

β
√

2π
.

We use the estimate for P(Ai,k(R)) to bound the difference between the surrogate Gram

matrix and the Gram matrix at initialization V(0).

Recall the surrogate V̂(t) is defined as

V̂ij(t) =
1

m

m

∑
k=1

⟨x
vk(t)

⊥

i , x
vk(t)

⊥

k ⟩1ik(t)1jk(t).

Thus for entry i, j we have

∣V̂ij(t) −Vij(0)∣ = ∣
1

m

m

∑
k=1

⟨x
vk(t)

⊥

i , x
vk(t)

⊥

j ⟩1ik(t)1jk(t) − ⟨x
vk(0)

⊥

i , x
vk(0)

⊥

j ⟩1ik(0)1jk(0)∣

This sum is decomposed into the difference between the inner product and the difference

in the rectifier patterns terms respectively:

(⟨x
vk(t)

⊥

i ,x
vk(t)

⊥

j ⟩ − ⟨x
vk(0)

⊥

i ,x
vk(0)

⊥

j ⟩), (1ik(t)1jk(t) − 1ik(0)1jk(0)).

Define

Y k
ij = (⟨x

vk(t)
⊥

i , x
vk(t)

⊥

j ⟩ − ⟨x
vk(0)

⊥

i , x
vk(0)

⊥

j ⟩)(1ik(t)1jk(t)),

Zk
ij = (⟨x

vk(0)
⊥

i , x
vk(0)

⊥

j ⟩)(1ik(t)1jk(t) − 1ik(0)1jk(0)).

120

Then

∣V̂ij(t) −Vij(0)∣ = ∣
1

m

m

∑
k=1

Y k
ij +Z

k
ij∣ ≤ ∣

1

m

m

∑
k=1

Y k
ij ∣ + ∣

1

m

m

∑
k=1

Zk
ij∣.

To bound ∣ 1
m ∑

m
k=1 Y

k
ij ∣ we bound each ∣Y k

ij ∣ as follows.

∣Y k
ij ∣ =

RRRRRRRRRRR

(⟨x
vk(t)

⊥

i , x
vk(t)

⊥

j ⟩ − ⟨x
vk(0)

⊥

i , x
vk(0)

⊥

j ⟩)(1ik(t)1jk(t))
RRRRRRRRRRR

≤ ∣⟨x
vk(t)

⊥

i , x
vk(t)

⊥

j ⟩ − ⟨x
vk(0)

⊥

i , x
vk(0)

⊥

j ⟩∣

= ∣⟨xi,xj⟩ − ⟨x
vk(t)
i , x

vk(t)
j ⟩ + ⟨x

vk(0)
i , x

vk(0)
j ⟩ − ⟨xi,xj⟩∣

=

RRRRRRRRRRR

⟨
x⊺i vk(t)

∥vk(t)∥2

⋅
vk(t)

∥vk(t)∥2

,
x⊺jvk(t)

∥vk(t)∥2

⋅
vk(t)

∥vk(t)∥2

⟩ − ⟨x
vk(0)
i , x

vk(0)
j ⟩

RRRRRRRRRRR

=

RRRRRRRRRRR

x⊺i vk(t)

∥vk(t)∥2

⋅
x⊺jvk(t)

∥vk(t)∥2

− ⟨x
vk(0)
i , x

vk(0)
j ⟩

RRRRRRRRRRR

=

RRRRRRRRRRR

x⊺i vk(0)

∥vk(0)∥2

⋅
x⊺jvk(0)

∥vk(0)∥2

+ x⊺i (
vk(t)

∥vk(t)∥2

−
vk(0)

∥vk(0)∥2

) ⋅
x⊺jvk(t)

∥vk(t)∥2

+ x⊺j(
vk(t)

∥vk(t)∥2

−
vk(0)

∥vk(0)∥2

) ⋅
x⊺i vk(0)

∥vk(0)∥2

− ⟨x
vk(0)
i , x

vk(0)
j ⟩

RRRRRRRRRRR

≤

RRRRRRRRRRR

x⊺i (
vk(t)

∥vk(t)∥2

−
vk(0)

∥vk(0)∥2

) ⋅
x⊺jvk(t)

∥vk(t)∥2

RRRRRRRRRRR

+

RRRRRRRRRRR

x⊺i (
vk(t)

∥vk(t)∥2

−
vk(0)

∥vk(0)∥2

) ⋅
x⊺jvk(t)

∥vk(t)∥2

RRRRRRRRRRR

≤ 2∥
vk(t)

∥vk(t)∥2

−
vk(0)

∥vk(0)∥2

∥
2

.

Therefore, we have

∣
1

m

m

∑
k=1

Y k
ij ∣ ≤

2

m

m

∑
k=1

∥
vk(t)

∥vk(t)∥2

−
vk(0)

∥vk(0)∥2

∥
2

≤
4Rv(2m/δ)1/d

β

≤
8Rv(m/δ)1/d

β
,

where the first inequality follows from Lemma 3.A.12. Note that the inequality holds with

high probability 1 − δ/2 for all i, j.

121

For the second sum, ∣ 1
m ∑

m
k=1Z

k
ij ∣ ≤

1
m ∑

m
k=1 1Aik(R) +

1
m ∑

m
k=1 1Ajk(R) so we apply Lemma

3.A.13 to get, with probability 1 − δ/2n2

∣
1

m

m

∑
k=1

Zk
ij∣ ≤

2Rv

β
√

2π
(2 +

2
√

2πβ log (2n2/δ)

3mRv

)

≤
8Rv

β
√

2π
,

since m satisfies m = Ω(
(m/δ)1/dn2 log(n/δ)

λ0
). Combining the two sums for Y k

ij and Zk
ij, with

probability 1 − δ
2n2 ,

∣V̂ij(t) −Vij(0)∣ ≤
8Rv

β
√

2π
+

8Rv(m/δ)1/d

β
≤

12Rv(m/δ)1/d

β
.

Taking a union bound, with probability 1 − δ/2,

∥V̂(t) −V(0)∥F =

√

∑
i,j

∣V̂ij(t) −Vij(0)∣2 ≤
12nRv(m/δ)1/d

β
.

Bounding the spectral norm by the Frobenous norm,

∥V̂(t) −V(0)∥2 ≤
12nRv(m/δ)1/d

β
.

Taking Rv =
βλ0

96n(m/δ)1/d gives the desired bound.

∥V̂(t) −V(0)∥2 ≤
λ0

8
.

Proof of Lemma 3.A.6:

To bound ∥V(t)−V(0)∥2 we now consider ∥V(t)− V̂(t)∥2. The entries of Vij(t) are given as

Vij(t) =
1

m

m

∑
k=1

⟨x
vk(t)

⊥

i , x
vk(t)

⊥

j ⟩1ik(t)1jk(t)(
βck ⋅ gk
∥vk(0)∥2

)

2

.

The surrogate V̂(t) is defined as

V̂ij(t) =
1

m

m

∑
k=1

⟨x
vk(t)

⊥

i , x
vk(t)

⊥

j ⟩1ik(t)1jk(t).

122

The only difference is in the second layer terms. The difference between each entry is

written as

∣Vij(t) − V̂ij(t)∣ = ∣
1

m

m

∑
k=1

⟨x
vk(t)

⊥

i , x
vk(t)

⊥

j ⟩1ik(t)1jk(t)
⎛

⎝
(
βck ⋅ gk
∥vk(t)∥2

)

2

− 1
⎞

⎠

RRRRRRRRRRR

≤ max
1≤k≤m

(
β2gk(t)2

∥vk(t)∥2
2

− 1).

Write 1 =
β2g2

k(0)

∥vk(0)∥
2
2
, since ∥vk(t)∥2 is increasing in t according to (3.5)

β2gk(t)2

∥vk(t)∥2
2

− 1 =
β2gk(t)2

∥vk(t)∥2
2

−
β2gk(0)2

∥vk(0)∥2
2

≤ 3Rg(m/δ)1/d + 3Rv(m/δ)1/d/β.

The above inequality is shown by considering different cases for the sign of the difference

gk(t) − gk(0). Now

RRRRRRRRRRR

β2gk(t)2

∥vk(t)∥2
2

−
β2gk(0)2

∥vk(0)∥2
2

RRRRRRRRRRR

=

RRRRRRRRRRR

(
βgk(t)

∥vk(t)∥2

+
βgk(0)

∥vk(0)∥2

)(
βgk(t)

∥vk(t)∥2

−
βgk(0)

∥vk(0)∥2

)

RRRRRRRRRRR

≤

RRRRRRRRRRR

(
βgk(0) + βRg

∥vk(0)∥2

+
βgk(0)

∥vk(0)∥2

)(
βgk(t)

∥vk(t)∥2

−
βgk(0)

∥vk(0)∥2

)

RRRRRRRRRRR

≤ (2 +Rg(m/δ)1/d)

RRRRRRRRRRR

(
βgk(t)

∥vk(t)∥2

−
βgk(0)

∥vk(0)∥2

)

RRRRRRRRRRR

≤ (2 +Rg(m/δ)1/d)max
⎛

⎝
∣
β(gk(0) +Rg)

∥vk(0)∥2

−
βgk(0)

∥vk(0)∥2

∣, ∣
β(gk(0) −Rg)

∥vk(0)∥2 +Rv

−
βgk(0)

∥vk(0)∥2

∣
⎞

⎠

≤ (2 +Rg(m/δ)1/d)max (Rg(m/δ)1/d,Rg(m/δ)1/d +Rv(m/δ)1/d/β)

≤ 3Rg(m/δ)1/d + 3Rv(m/δ)1/d/β,

where the second inequality holds due to Lemma 3.A.12 with probability 1 − δ over the

initialization.

Hence:

∥V̂(t) −V(t)∥2 ≤ ∥V̂(t) −V(t)∥F =

√

∑
i,j

∣V̂ij(t) −Vij(t)∣2

≤ 3nRg(m/δ)1/d + 3nRv(m/δ)1/d/β.

123

Substituting Rv,Rg gives

∥V̂(t) −V(t)∥2 ≤
λ0

8
.

Now we use Lemma 3.A.5 to get that with probability 1 − δ

∥V̂(t) −V(0)∥2 ≤
λ0

8
.

Combining, we get with probability 1 − δ

∥V(t) −V(0)∥2 ≤
λ0

4
.

We note that the source for all the high probability uncertainty 1−δ all arise from initialization

and the application of Lemma 3.A.12.

Proof of Lemma 3.A.7:

To prove the claim we consider each entry i, j of G(t) −G(0). We have,

∣Gij(t) −Gij(0)∣ =
RRRRRRRRRRR

1

m

m

∑
k=1

σ(
vk(t)⊺xi
∥vk(t)∥2

)σ(
vk(t)⊺xj
∥vk(t)∥2

) − σ(
vk(0)⊺xi
∥vk(0)∥2

)σ(
vk(0)⊺xj
∥vk(0)∥2

)

RRRRRRRRRRR

≤
1

m

RRRRRRRRRRR

m

∑
k=1

σ(
vk(t)⊺xi
∥vk(t)∥2

)σ(
vk(t)⊺xj
∥vk(t)∥2

) − σ(
vk(t)⊺xi
∥vk(t)∥2

)σ(
vk(0)⊺xj
∥vk(0)∥2

)

RRRRRRRRRRR

+
1

m

RRRRRRRRRRR

m

∑
k=1

σ(
vk(t)⊺xi
∥vk(t)∥2

)σ(
vk(0)⊺xj
∥vk(0)∥2

) − σ(
vk(0)⊺xi
∥vk(0)∥2

)σ(
vk(0)⊺xj
∥vk(0)∥2

)

RRRRRRRRRRR

≤ 2∥
vk(t)

∥vk(t)∥2

−
vk(0)

∥vk(0)∥2

∥
2

≤
2R̃v(m/δ)1/d

β
.

In the last inequality we used the fact that

∥
vk(0)

∥vk(0)∥2

−
vk(t)

∥vk(t)∥2

∥
2

≤
∥vk(t) − vk(0)∥2

∥vk(0)∥2

≤
(m/δ)1/d

β
∥vk(t) − vk(0)∥2,

where the first inequality uses that ∥vk(0)∥2 ≤ ∥vk(t)∥2 and is intuitive from a geometrical

124

standpoint. Algebraically given vectors a,b, then for any c ≥ 1

∥
ac

∥a∥2

−
b

∥b∥2

∥

2

2

= ∥
a

∥a∥2

−
b

∥b∥2

+ (c − 1)
a

∥a∥2

∥

2

2

= ∥
a

∥a∥2

−
b

∥b∥2

∥

2

2

+ (c − 1)2 + 2(c − 1)⟨
a

∥a∥2

−
b

∥b∥2

,
a

∥a∥2

⟩

≥ ∥
a

∥a∥2

−
b

∥b∥2

∥

2

2

+ (c − 1)2 ≥ ∥
a

∥a∥2

−
b

∥b∥2

∥

2

2

.

The first inequality in the line above is since ⟨a,b⟩

∥a∥2,∥b∥2
≤ 1.

Hence,

∥G(t) −G(0)∥2 ≤ ∥G(t) −G(0)∥F =

√

∑
i,j

∣Gij(t) −Gij(0)∣2 ≤
2nR̃v(m/δ)1/d

β
√

2π
.

Taking R̃v =
√

2πβµ0

8n(m/δ)1/d gives the desired bound. Therefore, with probability 1 − δ,

∥G(t) −G(0)∥2 ≤
µ0

4
.

Now that we have established bounds on V(t),G(t) given that the parameters stay near

initialization, we show that the evolution converges in that case:

Proof of Lemma 3.A.8:

Consider the squared norm of the predictions ∥f(t) − y∥2
2. Taking the derivative of the loss

with respect to time,

d

dt
∥f(t) − y∥2

2 = −2(f(t) − y)⊺(G(t) +
V(t)

β2
)(f(t) − y).

Since we assume that λmin(G(t) + V(t)
β2) ≥ ω

2 , the derivative of the squared norm is bounded

as

d

dt
∥f(t) − y∥2

2 ≤ −ω∥f(t) − y∥2
2.

125

Applying an integrating factor yields

∥f(t) − y∥2
2 exp(ωt) ≤ C.

Substituting the initial conditions, we get

∥f(t) − y∥2
2 ≤ exp(−ωt)∥f(0) − y∥2

2.

For now, assuming the linear convergence derived in Lemma 3.A.8, we bound the distance

of the parameters from initialization. Later we combine the bound on the parameters and

Lemmas 3.A.6, 3.A.7 bounding the least eigenvalue of Λ(t), to derive a condition on the

over-parametrization m and ensure convergence from random initialization.

Proof of Lemma 3.A.9:

Denote f(xi) at time t as fi(t). Since ∥x
vk(t)

⊥

i ∥2 ≤ ∥xi∥2 = 1, we have that

∥
dvk(t)

dt
∥

2

= ∥
n

∑
i=1

(yi − fi(t))
1

√
m
ckgk(t)

1

∥vk(t)∥2

xv⊥

i 1ik(t)∥
2

≤
1

√
m

n

∑
i=1

∣yi − fi(t)∣
ckgk(t)

∥vk(t)∥2

.

Now using (3.5) and the initialization ∥vk(0)∥ = βgk(0), we bound ∣
ckgk(t)
∥vk(t)∥2

∣,

∣
ckgk(t)

∥vk(t)∥2

∣ ≤ ∣ck(
gk(0) +Rg

∥vk(0)∥2

)∣ ≤
1

β
(1 + βRg/∥vk(0)∥2).

By Lemma 3.A.12, we have that with probability 1 − δ over the initialization,

β/∥vk(0)∥2 ≤ C(m/δ)1/d.

Hence βRg/∥vk(0)∥2 ≤ 1. This fact bounds ∣
ckgk(t)
∥vk(t)∥2

∣ with probability 1 − δ for each k,

∣
ckgk(t)

∥vk(t)∥2

∣ ≤ 2/β.

126

Substituting the bound,

∥
d

dt
vk(t)∥

2

≤
2

β
√
m

n

∑
i=1

∣fi(t) − yi∣

≤
2
√
n

β
√
m

∥f(t) − y∥2

≤
2
√
n

β
√
m

exp(−ωt/2)∥f(0) − y∥2.

Thus, integrating and applying Jensen’s inequality,

∥vk(t) − vk(0)∥2 ≤ ∫

s

0
∥
dvk(s)

dt
∥

2

ds ≤
4
√
n∥f(0) − y∥2

βω
√
m

.

Note that the condition ∣gk(t) − gk(0)∣ ≤ Rg is stronger than needed and merely assuring that

∣gk(t) − gk(0)∣ ≤ 1/(m/δ)1/d suffices.

Analogously we derive bounds for the distance of gk from initialization.

Proof of Lemma 3.A.10:

Consider the magnitude of the derivative dgk
dt ,

∣
dgk
dt

∣ = ∣
1

√
m

n

∑
j=1

(fj − yj)
ck

∥vk∥2

σ(v⊺
kxj)∣.

Note

∣
ck

∥vk∥2

σ(v⊺
kxj)∣ = ∣σ(

v⊺
kxj

∥vk∥2

)∣ ≤ 1

Thus applying Cauchy Schwartz

∣
dgk(t)

dt
∣ ≤

2
√
n

√
m

∥f(t) − y∥2 ≤
2
√
n

√
m

exp(−ωt/2)∥f(0) − y∥2,

and integrating from 0 to t yields

∣gk(t) − gk(0)∣ ≤ ∫
t

0
∣
dgk
dt

(s)∣ds ≤ ∫
t

0

2
√
n

√
m

exp(−ωs/2)∥f(0) − y∥2ds ≤
4
√
n∥y − f(0)∥2
√
mω

.

127

Proof of Lemma 3.A.11:

Consider the ith entry of the network at initialization,

fi(0) =
1

√
m

m

∑
k=1

ckσ(
gkv

⊺
kxi

∥vk∥2

).

Since the network is initialized randomly and m is taken to be large we apply concentration

to bound fi(0) for each i. Define zk = ckσ(
gk(0)vk(0)

⊺xi
∥vk(0)∥2

). Note that zk are independent

sub-Gaussian random variables with

∥zk∥ψ ≤ ∥N(0,1)∥ψ = C.

Here ∥ ⋅ ∥ψ denotes the 2-sub-Gaussian norm, (see [Ver18] for example). Applying Hoeffding’s

inequality bounds fi(0) as

P(∣
√
mfi(0)∣ > t) ≤ 2 exp(−

t2/2

∑
m
k=1 ∥zk∥ψ2

)

= 2 exp(
−t2

2mC
).

Which gives with probability 1 − δ/n that

∣fi(0)∣ ≤ C̃
√

log (n/δ).

Now with probability 1 − δ we have that, for each i,

∣fi(0) − yi∣ ≤ ∣yi∣ + C̃
√

log(n/δ) ≤ C2

√
log(n/δ).

Since yi = O(1). Hence, with probability 1 − δ,

∥f(0) − y∥2 ≤ C
√
n log(n/δ).

Proof of Lemma 3.A.12:

At initialization vk ∼ N(0, β2I) so the norm behaves like ∥vk(0)∥2
2 ∼ β

2χd. The cumulative

density of a chi-squared distribution with d degrees of freedom behaves like F (x) = Θ(xd/2)

128

for small x so we have that with probability 1 − δ
m , that ∥vk(0)∥2 ≥ β(m/δ)

1
d where d is the

input dimension. Applying a union bound, with probability 1 − δ, for all 1 ≤ k ≤m,

1

∥vk(0)∥2

≤
(m/δ)

β

1/d

.

Now by (3.5) for t ≥ 0, ∥vk(t)∥2 ≥ ∥vk(0)∥2 so

1

∥vk(t)∥2

≤
1

∥vk(0)∥2

≤
(m/δ)

β

1/d

.

3.A.3 Convergence proof for finite step-size training

The general technique of proof for gradient flow extends to finite-step gradient descent.

Nonetheless, proving convergence for WeightNorm gradient descent exhibits additional

complexities arising from the discrete updates and joint training with the new parameterization

(3.2). We first introduce some needed notation.

Define Si(R) as the set of indices k ∈ [m] corresponding to neurons that are close to the

activity boundary of ReLU at initialization for a data point xi,

Si(R) ∶= {k ∈ [m] ∶ ∃ v with ∥v − vk(0)∥2 ≤ R and 1ik(0) ≠ 1{v
⊺xi ≥ 0}}.

We upper bound the cardinality of ∣Si(R)∣ with high probability.

Lemma 3.A.14. With probability 1 − δ, we have that for all i

∣Si(R)∣ ≤

√
2mR
√
πβ

+
16 log(n/δ)

3
.

Next we review some additional lemmas needed for the proof of Theorems 3.5.2, 3.5.3.

Analogous to Lemmas 3.A.9, 3.A.10, we bound the finite-step parameter trajectories in

Lemmas 3.A.15, 3.A.16.

129

Lemma 3.A.15. Suppose the norm of ∥f(s) − y∥2
2 decreases linearly for some convergence

rate ω during gradient descent training for all iteration steps s = 0,1, . . . ,K with step-size η

as ∥f(s) − y∥2
2 ≤ (1 − ηω

2)s∥f(0) − y∥2
2 . Then for each k we have

∣gk(s) − gk(0)∣ ≤
4
√
n∥f(0) − y∥2
√
mω

for iterations s = 0,1, . . . ,K + 1.

Lemma 3.A.16. Under the assumptions of Lemma 3.A.15, suppose in addition that ∣gk(s)−

gk(0)∣ ≤ 1/(m/δ)1/d for all iterations steps s = 0,1, . . .K . Then for each k,

∥vk(s) − vk(0)∥2 ≤
8
√
n∥f(0) − y∥2

β
√
mω

for s = 0,1, . . . ,K + 1.

To prove linear rate of convergence we analyze the s+1 iterate error ∥f(s+1)−y∥2 relative

to that of the s iterate, ∥f(s) − y∥2. Consider the network’s coordinate-wise difference in

output between iterations, fi(s + 1) − fi(s), writing this explicitly based on gradient descent

updates yields

fi(s + 1) − fi(s) =
1

√
m

m

∑
k=1

ckgk(s + 1)

∥vk(s + 1)∥2

σ(vk(s + 1)⊺xi) −
ckgk(s)

∥vk(s)∥2

σ(vk(s)
⊺xi). (3.23)

We now decompose the summand in (3.23) looking at the updates in each layer, fi(s +

1) − fi(s) = ai(s) + bi(s) with

ai(s) =
1

√
m

m

∑
k=1

ckgk(s + 1)

∥vk(s + 1)∥2

σ(vk(s)
⊺xi) −

ckgk(s)

∥vk(s)∥2

σ(vk(s)
⊺xi),

bi(s) =
1

√
m

m

∑
k=1

ckgk(s + 1)

∥vk(s + 1)∥2

(σ(vk(s + 1)⊺xi) − σ(vk(s)
⊺xi)).

Further, each layer summand is then subdivided into a primary term and a residual. ai(s),

corresponding to the difference in the first layer (
ckgk(s+1)
∥vk(s+1)∥2

−
ckgk(s)
∥vk(s)∥2

), is subdivided into aIi (s)

and aIIi (s) as follows:

aIi (s) =
1

√
m

m

∑
k=1

(
ckgk(s + 1)

∥vk(s)∥2

−
ckgk(s)

∥vk(s)∥2

)σ(vk(s)
⊺xi), (3.24)

aIIi (s) =
1

√
m

m

∑
k=1

(
ckgk(s + 1)

∥vk(s + 1)∥2

−
ckgk(s + 1)

∥vk(s)∥2

)σ(vk(s)
⊺xi). (3.25)

130

bi(s) is sub-divided based on the indices in the set Si that monitor the changes of the rectifiers.

For now, Si = Si(R) with R to be set later in the proof. bi(s) is partitioned to summands in

the set Si and the complement set,

bIi (s) =
1

√
m
∑
k/∈Si

ckgk(s + 1)

∥vk(s + 1)∥2

(σ(vk(s + 1)⊺xi) − σ(vk(s)
⊺xi)),

bIIi (s) =
1

√
m
∑
k∈Si

ckgk(s + 1)

∥vk(s + 1)∥2

(σ(vk(s + 1)⊺xi) − σ(vk(s)
⊺xi)).

With this sub-division in mind, the terms corresponding to convergence are aI(s),bI(s)

whereas aII(s),bII(s) are residuals that are the result of discretization. We define the

primary and residual vectors p(s), r(s) as

p(s) =
aI(s) + bI(s)

η
, r(s) =

aII + bII(s)

η
. (3.26)

If the residual r(s) is sufficiently small and p(s) may be written as p(s) = −Λ(s)(f(s) − y)

for some iteration dependent evolution matrix Λ(s) that has

λmin(Λ(s)) = ω/2 (3.27)

for ω > 0 then the neural network (3.2) converges linearly when trained with WeightNorm

gradient descent of step size η. We formalize the condition on r(s) below and later derive

the conditions on the over-parametrization (m) ensuring that r(s) is sufficiently small.

Property 1. Given a network from the class (3.2) initialized as in (3.6) and trained with

gradient descent of step-size η, define the residual r(s) as in (3.26) and take ω as in (3.27).

We specify the “residual condition” at iteration s as

∥r(s)∥2 ≤ cω∥f(s) − y∥2

for a sufficiently small constant c > 0 independent of the data or initialization.

Here we present Theorem 3.A.17 which is the backbone of Theorems 3.5.2 and 3.5.3.

Theorem 3.A.17. Suppose a network from the class (3.2) is trained via WeightNorm

gradient descent with an evolution matrix Λ(s) as in (3.27) satisfying λmin(Λ(s)) ≥ ω/2 for

131

s = 0,1, . . .K. In addition if the data meets assumptions 1, 2, the step-size η of gradient

descent satisfies η ≤ 1
3∥Λ(s)∥2

and that the residual r(s) defined in (3.26) satisfies Property 1

for s = 0,1, . . . ,K then we have that

∥f(s) − y∥2
2 ≤ (1 −

ηω

2
)

s

∥f(0) − y∥2
2

for s = 0,1, . . . ,K.

Proof of Theorem 3.A.17:

This proof provides the foundation for the main theorems. In the proof we also derive key

bounds to be used in Theorems 3.5.2, 3.5.3. We use the decomposition we described above

and consider again the difference between consecutive terms f(s + 1) − f(s),

fi(s + 1) − fi(s) =
1

√
m

m

∑
k=1

ckgk(s + 1)

∥vk(s + 1)∥2

σ(vk(s + 1)⊺xi) −
ckgk(s)

∥vk(s)∥2

σ(vk(s)
⊺xi). (3.28)

Following the decomposition introduced in (3.24), aIi (s) is re-written in terms of G(s),

aIi (s) =
1

√
m

m

∑
k=1

ck
∥vk(s)∥2

(− η
∂L(s)

∂gk
)σ(vk(s)

⊺xi)

= −
η

m

m

∑
k=1

ck
∥vk(s)∥2

n

∑
j=1

(fj(s) − yj)
ck

∥vk(s)∥2

σ(v⊺
k(s)xj)σ(v

⊺
k(s)xi)

= −η
n

∑
j=1

(fj(s) − yj)
1

m

m

∑
k=1

(ck)
2σ(

vk(s)⊺xi
∥vk(s)∥2

)σ(
vk(s)⊺xj
∥vk(s)∥2

)

= −η
n

∑
j=1

(fj(s) − yj)Gij(s),

where the first equality holds by the gradient update rule gk(s + 1) = gk(s) − η∇gkL(s). In

this proof we also derive bounds on the residual terms of the decomposition which we will aid

us in the proofs of Theorems 3.5.2, 3.5.3. aIi (s) is the primary term of ai(s), now we bound

the residual term aIIi (s). Recall aIIi (s) is written as

aIIi (s) =
1

√
m

m

∑
k=1

(
ckgk(s + 1)

∥vk(s + 1)∥2

−
ckgk(s + 1)

∥vk(s)∥2

)σ(vk(s)
⊺xi),

which corresponds to the difference in the normalization in the second layer. Since ∇vkL(s)

132

is orthogonal to vk(s) we have that

ckgk(s + 1)(
1

∥vk(s + 1)∥2

−
1

∥vk(s)∥2

)σ(vk(s)
⊺xi)

= ckgk(s + 1)(
1

√
∥vk(s)∥2

2 + η
2∥∇vkL(s)∥

2
2

−
1

∥vk(s)∥2

)σ(vk(s)
⊺xi)

=
−ckgk(s + 1)η2∥∇vkL(s)∥

2
2

∥vk(s + 1)∥2∥vk(s)∥2(∥vk(s)∥2 + ∥vk(s + 1)∥2)
σ(vk(s)

⊺xi)

≤
−ckgk(s + 1)η2∥∇vkL(s)∥

2
2

2∥vk(s)∥2∥vk(s + 1)∥2

σ(
vk(s)⊺xi
∥vk(s)∥2

),

where the first equality above is by completing the square, and the inequality is due to the

increasing magnitudes of ∥vk(s)∥2.

Since 0 ≤ σ(vk(s)
⊺xi

∥vk(s)∥2
) ≤ 1, the above can be bounded as

∣aIIi (s)∣ ≤
1

√
m

m

∑
k=1

∣
gk(s + 1)η2∥∇vkL(s)∥

2
2

2∥vk(s)∥2∥vk(s + 1)∥2

∣ (3.29)

≤
1

√
m

m

∑
k=1

η2(1 +Rg(m/δ)1/d)
3
n∥f(s) − y∥2

2(m/δ)1/d

β4m
(3.30)

=
η2n(1 +Rg(m/δ)1/d)

3
∥f(s) − y∥2

2(m/δ)1/d

β4
√
m

. (3.31)

The second inequality is the result of applying the bound in equation (3.41) on the gradient

norm ∥∇vkL(s)∥2 and using Lemma 3.A.12.

Next we analyze bi(s) and sub-divide it based on the sign changes of the rectifiers. Define

the set Si ∶= Si(R) as in Lemma 3.A.14 with R taken to be such that ∥vk(s+ 1)−vk(0)∥2 ≤ R

for all k. Take bIIi (s) as the sub-sum of bi(s) with indices k from the set Si.

bIi (s) corresponds to the sub-sum with the remaining indices. By the definition of Si, for

k /∈ Si we have that 1ik(s + 1) = 1ik(s). This enables us to factor 1ik(s) and represent bIi (s)

133

as a Gram matrix similar to V(s) with a correction term from the missing indices in Si.

bIi (s) = −
1

√
m
∑
k/∈Si

(
ckgk(s + 1)

∥vk(s + 1)∥2

)(η⟨∇vkL(s), xi⟩)1ik(s)

= −
η

m
∑
k/∈Si

(
ckgk(s + 1)

∥vk(s + 1)∥2

)(
ckgk(s)

∥vk(s)∥2

)
n

∑
j=1

(fj(s) − yj)1ik(s)1jk(s)⟨x
vk(s)

⊥

j , xi⟩.

Note that ⟨x
vk(s)

⊥

j , xi⟩ = ⟨x
vk(s)

⊥

j , x
vk(s)

⊥

i ⟩ therefore,

bIi (s) = −
η

m
∑
k/∈Si

(
ckgk(s + 1)

∥vk(s + 1)∥2

)(
ckgk(s)

∥vk(s)∥2

)
n

∑
j=1

(fj(s) − yj)1ik(s)1jk(s)⟨x
vk(s)

⊥

j , x
vk(s)

⊥

i ⟩.

Define Ṽ(s) as

Ṽij(s) =
1

m

m

∑
k=1

(
βckgk(s + 1)

∥vk(s + 1)∥2

)(
βckgk(s)

∥vk(s)∥2

)1jk(s)1ik(s)⟨x
vk(s)

⊥

i , x
vk(s)

⊥

j ⟩.

This matrix is identical to V(s) except for a modified scaling term (
c2kgk(s+1)gk(s)

∥vk(s)∥2∥vk(s+1)∥2
). We

note however that

min
⎛

⎝
(
ckgk(s)

∥vk(s)∥2

)

2

,(
ckgk(s + 1)

∥vk(s + 1)∥2

)

2
⎞

⎠
≤ (

ckgk(s)

∥vk(s)∥2

)(
ckgk(s + 1)

∥vk(s + 1)∥2

)

≤ max
⎛

⎝
(
ckgk(s)

∥vk(s)∥2

)

2

,(
ckgk(s + 1)

∥vk(s + 1)∥2

)

2
⎞

⎠

because gk(s), c2
k are positive. Hence the matrix Ṽ(s) satisfies the hypothesis of Lemma

3.A.6 entirely. We write bIi (s) as

bIi (s) = −η/β
2
n

∑
j=1

(fj(s) − yj)(Ṽij(s) − Ṽ⊥
ij(s)),

where we have defined

Ṽ⊥
ij(s) =

1

m
∑
k∈Si

(
βckgk(s)

∥vk(s)∥2

)(
βckgk(s + 1)

∥vk(s + 1)∥2

)1ik(s)1jk(s)⟨x
vk(s)

⊥

i , x
vk(s)

⊥

j ⟩. (3.32)

We then bound the magnitude of each entry Ṽ⊥
ij(s):

Ṽ⊥
ij(s) =

1

m
∑
k∈Si

(
βckgk(s)

∥vk(s)∥2

)(
βckgk(s + 1)

∥vk(s + 1)∥2

)1ik(s)1jk(s)⟨x
vk(s)

⊥

i , x
vk(s)

⊥

j ⟩ (3.33)

≤
(1 +Rg(m/δ)1/d)2∣Si∣

m
. (3.34)

134

Lastly we bound the size of the residual term bIIi (s),

∣bIIi (s)∣ = ∣ −
1

√
m
∑
k∈Si

ckgk(s + 1)

∥vk(s + 1)∥2

(σ(vk(s + 1)⊺xi) − σ(vk(s)
⊺xi))∣

≤
gk(s + 1)η∣Si∣ ⋅ ∥∇vkL(s)∥2

√
m∥vk(s + 1)∥2

≤
η∣Si∣(1 + (m/δ)1/dRg)∥∇vkL(s)∥2

β
√
m

.

Where we used the Lipschitz continuity of σ in the first bound, and took Rg > 0 that satisfies

∣gk(s + 1) − gk(0)∣ ≤ Rg in the second inequality. Applying the bound (3.41),

∣bIIi (s)∣ ≤
η∣Si∣

√
n(1 +Rg(m/δ)1/d)2∥f(s) − y∥2

β2m
. (3.35)

The sum f(s + 1) − f(s) = aI(s) + aII(s) + bI(s) + bII(s) is separated into the primary

term ηp(s) = aI(s) + bI(s) and the residual term ηr(s) = aII(s) + bII(s) which is a result of

the discretization. With this, the evolution matrix Λ(s) in (3.27) is re-defined as

Λ(s) ∶= G(s) +
Ṽ(s) − Ṽ⊥(s)

β2

and

f(s + 1) − f(s) = −ηΛ(s)(f(s) − y) + ηr(s).

Now we compare ∥f(s + 1) − y∥2
2 with ∥f(s) − y∥2

2,

∥f(s + 1) − y∥2
2 =∥f(s + 1) − f(s) + f(s) − y∥2

2

=∥f(s) − y∥2
2 + 2⟨f(s + 1) − f(s), f(s) − y⟩

+ ⟨f(s + 1) − f(s), f(s + 1) − f(s)⟩.

Substituting

f(s + 1) − f(s) = aI(s) + bI(s) + aII(s) + bII(s) = −ηΛ(s)(f(s) − y) + ηr(s)

135

we obtain

∥f(s + 1) − y∥2
2 =∥f(s) − y∥2

2 + 2(−ηΛ(s)(f(s) − y) + ηr(s))⊺(f(s) − y)

+ η2(Λ(s)(f(s) − y) − r(s))⊺(Λ(s)(f(s) − y) − r(s))

≤∥f(s) − y∥2
2 + (f(s) − y)⊺(−ηΛ(s) + η2Λ2

(s))(f(s) − y)

+ ηr(s)⊺(I − ηΛ(s))(f(s) − y) + η2∥r(s)∥2
2.

Now as λmin(Λ(s)) ≥ ω/2 and η = 1
3∥Λ(s)∥2

, we have that

(f(s) − y)⊺(−ηΛ(s) + η2Λ2
(s))(f(s) − y) = −η(f(s) − y)⊺(I − ηΛ(s))Λ(s)(f(s) − y)

≤ −
3ηω

8
∥f(s) − y∥2

2.

Next we analyze the rest of the terms and group them as q(s),

q(s) ∶= ηr(s)⊺(I − ηΛ(s))(f(s) − y) + η2∥r(s)∥2
2

≤ η∥r(s)∥2∥f(s) − y∥2 + η
2∥r(s)∥2

2.

By Property 1 we have

q(s) ≤ ηcω∥f(s) − y∥2
2(1 + ηcω) ≤ 2cηω∥f(s) − y∥2

2,

so that

q(s) ≤ c′ηω∥f(s) − y∥2
2,

for c′ sufficiently small. Substituting, the difference f(s + 1) − y is bounded as

∥f(s + 1) − y∥2
2 ≤ ∥f(s) − y∥2

2 − ηω(1 − η∥Λ(s)∥2)∥f(s) − y∥2
2 + c

′ηω∥f(s) − y∥2
2

≤ (1 − ηω(1 − η∥Λ(s)∥2) + c
′ηω)∥f(s) − y∥2

2

≤ (1 − ηω/2)∥f(s) − y∥2
2,

for well chosen absolute constant c. Hence for each s = 0,1, . . . ,K,

∥f(s + 1) − y∥2
2 ≤ (1 − ηω/2)∥f(s) − y∥2

2,

136

so the prediction error converges linearly.

In what comes next we prove the necessary conditions for Property 1, and define the

appropriate ω for the V and G dominated regimes, in order to show λmin(Λ(s)) ≥ ω/2.

Proof of Theorem 3.5.2:

To prove convergence we would like to apply Theorem 3.A.17 with ω/2 = λ0

2β2 . To do so

we need to show that m = Ω(n4 log(n/δ)/λ4
0) guarantees that Property 1 holds and that

λmin(Λ(s)) ≥ λ0/2β2. For finite-step gradient training, take

Rv =
βλ0

192n(m/δ)1/d
, Rg =

λ0

96n(m/δ)1/d
. (3.36)

Note the residual r(s) and the other terms bI(s),bII(s) depend on the sets Si that we define

here using Rv. We make the assumption that ∥vk(s) − vk(0)∥2 ≤ Rv and ∣gk(s) − gk(0)∣ ≤ Rg

for all k and that s = 0,1, . . .K + 1, this guarantees that bI(s) and Λ(s) are well defined.

Applying Lemmas 3.A.3, 3.A.6 with Rv,Rg defined above, we have that λmin(Ṽ(s)) ≥ 5λ0

8 .

Then the least eigenvalue of the evolution matrix Λ(s) is bounded below

λmin(Λ(s)) = λmin(G(s) +
Ṽ(s) − Ṽ⊥(s)

β2
)

≥ λmin(
Ṽ(s) − Ṽ⊥(s)

β2
)

=
λmin(Ṽ(s) − Ṽ⊥(s))

β2

≥
5λ0

8β2
−

∥Ṽ⊥(s)∥2

β2
.

The first inequality holds since G(s) ≻ 0 and the last inequality is since λmin(Ṽ(s)) ≥ 5λ0

8 .

To show λmin(Λ(s)) ≥ λ0

2β2 we bound ∥Ṽ⊥(s)∥2 ≤
λ0

8 . By (3.33), we have

∣Ṽ⊥
ij(s)∣ ≤

(1 +Rg(m/δ)1/d)∣Si∣

m
≤ (1 +Rg(m/δ)1/d)(

√
2R̃v

√
πβ

+
16 log(n/δ)

3m
).

Substituting Rv,Rg and m, a direct calculation shows that

∣Ṽ⊥
ij(s)∣ ≤

λ0

8n
,

137

which yields

∥Ṽ⊥(s)∥2 ≤ ∥Ṽ⊥(s)∥F ≤
λ0

8
.

Hence λmin(Λ(s)) ≥ λ0

2β2 for iterations s = 0,1, . . .K.

We proceed by showing the residual r(s) satisfies property 1. Recall r(s) is written as

r(s) =
aII(s)

η
+

bII(s)

η
.

and Property 1 states that ∥r(s)∥2 ≤
cηλ0

β2 ∥f(s) − y∥2 for sufficiently small absolute constant

c < 1. This is equivalent to showing that both aII(s), bII(s) satisfy

∥aII(s)∥2 ≤
cηλ0

β2
∥f(s) − y∥2, (3.37)

∥bII(s)∥2 ≤
cηλ0

β2
∥f(s) − y∥2. (3.38)

We consider each term at turn. By (3.35),

∥bII(s)∥2 ≤
√
nmax

i
bIIi (s)

≤ max
i

ηn(1 +Rg(m/δ)1/d)2∣Si∣∥f(s) − y∥2

β2m

≤
CmRvηn∥f(s) − y∥2

β2m

≤
λ0η∥f(s) − y∥2

β2
⋅ nCRv.

In the above we used the values of Rv,Rg defined in (3.36) and applied Lemma 3.A.14 in the

third inequality. Taking m = Ω(n4 log(n/δ)/λ4
0) with large enough constant yields

∥bII(s)∥2 ≤
cλ0η∥f(s) − y∥2

β2
.

138

Next we analogously bound ∥aII(s)∥ via the bound (3.29),

∥aII(s)∥2 ≤
√
nmax

i
aIIi (s)

≤
η2n3/2(1 +Rg(m/δ)1/d)

3
∥f(s) − y∥2

2(m/δ)1/d

β4
√
m

≤
ηλ0∥f(s) − y∥2

β2
⋅
η(1 +Rg(m/δ)1/d)

3
n3/2∥f(s) − y∥2(m/δ)1/d

λ0β2
√
m

≤
ηλ0∥f(s) − y∥2

β2
⋅
η

β2
⋅
Cn2

√
log(n/δ)

λ0

√
m

≤ cηω∥f(s) − y∥2.

In the above we applied Lemma 3.A.11 once again. The last inequality holds since m =

Ω(n4 log(n/δ)/λ4
0) and η = O(

β2

∥V(s)∥2
), hence r(s) satisfies Property 1. Now since Theorem

3.A.17 holds with ω = λ0/β2 we have that the maximum parameter trajectories are bounded as

∥vk(s) −vk(0)∥2 ≤ Rv and ∥gk(s) − gk(0)∥ ≤ Rg for all k and every iteration s = 0, 1, . . . ,K + 1

via Lemmas 3.A.15, 3.A.16.

To finish the proof, we apply the same contradiction argument as in Theorems 3.A.1,

3.A.2, taking the first iteration s =K0 where one of Lemmas 3.A.15, 3.A.16 does not hold.

We note that K0 > 0 and by the definition of K0, for s = 0,1, . . . ,K0 − 1 the Lemmas 3.A.15,

3.A.16 hold which implies that by the argument above we reach linear convergence in iteration

s =K0. This contradicts one of Lemmas 3.A.15, 3.A.16 which gives the desired contradiction,

so we conclude that we have linear convergence with rate λ0/2β2 for all iterations.

Proof of Theorem 3.5.3:

For G-dominated convergence, we follow the same steps as in the proof of Theorem 3.5.2.

We redefine the trajectory constants for the finite step case

R̃v ∶=

√
2πβµ0

64n(m/δ)1/d
, Rg ∶=

µ0

48n(m/δ)1/d
.

To use Theorem 3.A.17 we need to show thatm = Ω(n4 log(n/δ)/β4µ4
0) guarantees Property

1, and that λmin(Λ(s)) ≥ µ0/2. We again note that the residual r(s) and bI(s),bII(s) depend

on the sets Si that we define here using R̃v above as Si ∶= Si(R̃v).

139

We start by showing the property on the least eigenvalue. We make the assumption that

we have linear convergence with ω/2 = µ0/2 and step-size η for iterations s = 0, . . .K so that

Lemmas 3.A.15, 3.A.16 hold. Via an analogous analysis of the continous case we reach that

m = Ω(n4 log(n/δ)/µ4
0β

4) implies

∥vk(s) − vk(0)∥2 ≤
16β

√
n∥f(0) − y∥2

β
√
mµ0

≤ R̃v, ∣gk(s) − gk(0)∣ ≤
8
√
n∥f(0) − y∥2
√
mµ0

≤ Rg.

for s = 0, . . .K +1 by Lemmas 3.A.15, 3.A.16 and that Λ(s),bI(s) are well defined. Using the

bounds on the parameter trajectories, Lemma 3.A.7 and R̃v defined above yield λmin(G(s)) ≥

5µ0

8 . The least eigenvalue of the evolution matrix Λ(s) is bounded below as

λmin(Λ(s)) = λmin(G(s) +
Ṽ(s) − Ṽ⊥(s)

β2
)

≥ λmin(G(s)) − ∥Ṽ⊥(s)∥2

since Ṽ(s) ≻ 0 and β ≥ 1. We bound the spectral norm of ∥Ṽ⊥(s)∥2, for each entry i, j we

have by (3.33) that

∣Ṽ⊥
ij(s)∣ ≤

(1 +Rg(m/δ)1/d)∣Si∣

m

≤ (1 +Rg(m/δ)1/d)(

√
2R̃v

√
πβ

+
16 log(n/δ)

3m
)

≤
8R̃v

√
2πβ

≤
µ0

8n
.

where in the above inequalities we used our bounds on R̃v,Rg and m. Then the spectral

norm is bounded as

∥Ṽ⊥(s)∥2 ≤ ∥Ṽ⊥(s)∥F ≤ µ0/8.

Hence we have that λmin(Λ(s)) ≥ µ0/2 for s = 0,1, . . .K.

Next we show the residual r(s) satisfies Property 1. Recall r(s) is written as

r(s) =
aII(s)

η
+

bII(s)

η
.

140

Property 1 states the condition ∥r(s)∥2 ≤ cωη∥f(s) − y∥2 for sufficiently small c < 1 with

ω = µ0. This is equivalent to showing that both aII(s), bII(s) satisfy that

∥aII(s)∥2 ≤ cηµ0∥f(s) − y∥2, (3.39)

∥bII(s)∥2 ≤ cηµ0∥f(s) − y∥2, (3.40)

for sufficiently small absolute constant c. For bII(s) we have that (3.35) gives

∥bII(s)∥2 ≤
√
nmax

i
bIIi (s)

≤ max
i

η(1 +Rg(m/δ)1/d)2∣Si∣n∥f(s) − y∥2

β2m
.

Next applying Lemmas 3.A.14 and 3.A.11 in turn yields

≤
CmR̃vηn∥f(s) − y∥2

β2m

≤ ηµ0∥f(s) − y∥2
R̃v

nβ2
.

Substituting m = Ω(n4 log(n/δ)/µ4
0β

4) for a large enough constant and Rv we get

∥bII(s)∥2 ≤ cηµ0∥f(s) − y∥2.

Analogously we bound ∥aII(s)∥2 using (3.29),

∥aII(s)∥2 ≤
√
nmax

i
aIIi (s)

≤
η2n3/2(1 +Rg(m/δ)1/d)

3
∥f(s) − y∥2

2(m/δ)1/d

β4
√
m

≤ ηµ0∥f(s) − y∥2 ⋅
η(1 +Rg(m/δ)1/d)

3
n3/2∥f(s) − y∥2(m/δ)1/d

µ0β4
√
m

≤ ηµ0∥f(s) − y∥2 ⋅
η

β2
⋅
Cn2

√
log(n/δ)

β2µ2
0

√
m

≤ cηµ0∥f(s) − y∥2.

Where we have used Lemma 3.A.11 in the third inequality and substituted

m = Ω(n4 log(n/δ)/β4µ4
0) noting that η = O(1

∥Λ(s)∥2
) and that β ≥ 1 in the last inequal-

ity. Therefore we have that r(s) satisfies Property 1 so that Theorem 3.A.17 holds. By the

same contradiction argument as in Theorem 3.5.2 we have that this holds for all iterations.

141

3.A.3.1 Proofs of supporting lemmas for finite step-size convergence

Proof of Proposition 8:

The proof of proposition 2, follows the proofs of Theorems 3.5.2, 3.5.3, and relies on Theorem

3.A.17. In particular for each β > 0 at initialization, take ωβ(s) = λmin(Λ(s)) and define the

auxiliary ωβ,0 = λmin(V∞/β2 +G∞). Then we have that

ωβ,0 ≥ λ0/β
2 + µ0 > 0.

Hence, by the same arguments of Theorem 4.1, 4.2 for ωβ(s) if m = (n4 log(n/δ)/β4ω4
β,0),

then we have that the conditions of Theorem 3.A.17 are satisfied, namely, λ(s) ≥ λ0

2 and

µ(s) ≥ µ0

2 . Taking ηβ = O(1
∥Λ(s)∥2

), then the required step-size for convergence is satisfied.

This follows from the same argument of Theorems 3.5.2, 3.5.3 and depends on the fact that

∥Λ(s) −Λ(0)∥2 ≤
1
β2 ∥V(s) −V∞(0)∥2 + ∥G(s) −G(0)∥2. Now we consider the term, βωβ,0.

For β = 1,

βωβ,0 = λmin(H
∞).

Which matches the results of un-normalized convergence. In general, we have that

βωβ,0 ≥ β(λ0/β
2 + µ0) ≥ min{λ0, µ0}.

Therefore the bound on m is taken to be independent of β as m = Ω(
n4 log(n/δ)

min{µ4
0,λ

4
0}
) which

simplifies the presentation. Now for each β the effective convergence rate is dictated by the

least eigenvalue ωβ and the allowed step-size ηβ as,

(1 − ηβωβ).

Then taking β∗ = argminβ>0(1 − ηβωβ) we have that

(1 − ηβ∗ωβ∗) ≤ (1 − η1ω1).

which corresponds to the un-normalized converegence rate. Therefore as compared with

un-normalized training we have that for β∗, WN enables a faster convergence rate.

142

Proof of Lemma 3.A.14:

Fix R, without the loss of generality we write Si for Si(R). For each k, vk(0) is initialized

independently via ∼ N(0, β2I), and for a given k, the event 1ik(0) ≠ 1{v⊺xi ≥ 0} corresponds

to ∣vk(0)⊺xi∣ ≤ R. Since ∥xi∥2 = 1, vk(0)⊺xi ∼ N(0, β2). Denoting the event that an index

k ∈ Si as Ai,k, we have

P(Ai,k) ≤
2R

β
√

2π
.

Next the cardinality of Si is written as

∣Si∣ =
m

∑
k=1

1Ai,k .

Applying Lemma 3.A.13, with probability 1 − δ/n,

∣Si∣ ≤
2mR

β
√

2π
+

16 log(n/δ)

3
.

Taking a union bound, with probability 1 − δ, for all i we have that

∣Si∣ ≤
2mR

β
√

2π
+

16 log(n/δ)

3
.

Proof of Lemma 3.A.15:

To show this we bound the difference gk(s)− gk(0) as the sum of the iteration updates. Each

update is written as

∣
∂L(s)

∂gk
∣ = ∣

1
√
m

n

∑
i=1

(fi(s) − yi)
ck

∥vk(s)∥2

σ(vk(s)
⊺xi)∣.

As ∣ckσ(
vk(s)

⊺xi
∥vk(s)∥2

)∣ ≤ 1,

∣
∂L(s)

∂gk
∣ ≤

1
√
m

n

∑
i

∣fi(s) − yi∣ ≤

√
n

√
m

∥f(s) − y∥2.

By the assumption in the statement of the lemma,

∣
∂L(s)

∂gk
∣ ≤

√
n(1 − ηω

2)s/2∥f(0) − y∥2
√
m

.

143

Hence bounding the difference by the sum of the gradient updates:

∣gk(K + 1) − gk(0)∣ ≤ η
K

∑
s=0

∣
∂L(s)

∂gk
∣ ≤

4η
√
n∥f(0) − y∥2

√
m

K

∑
s=0

(1 −
ηω

2
)s/2.

The last term yields a geometric series that is bounded as

1

1 −
√

1 − ηω
2

≤
4

ηω
,

Hence

∣gk(K + 1) − gk(0)∣ ≤
4
√
n∥f(0) − y∥2

ω
√
m

.

Proof of Lemma 3.A.16:

To show this we write vk(s) as the sum of gradient updates and the initial weight vk(0).

Consider the norm of the gradient of the loss with respect to vk,

∥∇vkL(s)∥2 = ∥
1

√
m

n

∑
i=1

(fi(s) − yi)
ckgk(s)

∥vk(s)∥2

1ik(s)x
vk(s)

⊥

i ∥
2

.

Since ∥vk(s)∥2 ≥ ∥vk(0)∥2 ≥ β(δ/m)1/d with probability 1 − δ over the initialization, applying

Cauchy Schwartz’s inequality gives

∥∇vkL(s)∥2 ≤
(1 +Rg(m/δ)1/d)

√
n∥f(s) − y∥2

β
√
m

. (3.41)

By the assumption on ∥f(s) − y∥2 this gives

∥∇vkL(s)∥2 ≤
2
√
n(1 − ηω

2)s/2∥f(0) − y∥2

β
√
m

.

Hence bounding the parameter trajectory by the sum of the gradient updates:

∥vk(K + 1) − vk(0)∥2 ≤ η
K

∑
s=0

∥∇vkL(s)∥2 ≤
2
√
n∥f(0) − y∥2

β
√
m

K

∑
s=1

(1 −
ηω

2
)

s/2

144

yields a geometric series. Now the series is bounded as

1

1 −
√

1 − ηω
2

≤
4

ηω
,

which gives

∥vk(K + 1) − vk(0)∥2 ≤
8
√
n∥f(0) − y∥2

β
√
mω

.

145

Final remarks for Part I

As the field of deep learning matures, data, algorithms, and hardware are continually

advancing rapidly. Implementation frameworks such as PyTorch, TensorFlow are highly

efficient and extensible, which allows for fast prototyping and experimentation of new

architectures that are available daily on GitHub. From the perspective of data, datasets

and benchmarks are ever-growing and are becoming more publicly available in a range of

fields [BBN19]. In addition architectural and training discoveries such as the Transformer

architecture [VSP17] and CLIP [RKH21] are redefining archetypal neural network. The

availability and reproducibility of this science is leading to a spring of innovation and enables

large strides on this subject field. Yet despite the incessant activity in the field, some things

(currently) remain, in particular 1. the importance of catering and thoroughly understanding

the data modalities used to learn patterns in modern models and 2. the optimization

procedure used to train such models. Both pieces are currently indispensable in the ongoing

revolution of deep learning.

In this part of the thesis, we focus on methods to improve the use of data in machine

learning. In Chapter 1 we defined a notion of smoothness in models according to an alternative

view of distance between data samples. The distance between data samples is the Wasserstein

or Earth-Movers distance which represent each image datum as a mass distribution. In the

chapter we illustrate the many benefits of using the notion of distance we present, named

the Wassserstein Ground Metric. As we finish this part, we note that there are still a lot of

questions on what are the correct way to represent visual data. Drawing inspiration from

the visual system and the brain, the human visual system captures image representation

using a rather sparse, foveated, and dynamically-stitched input representation, whereas in

Deep Learning pixelated images serve as the common input. Further, deep learning models

exhibit sensitivity to the input resolution and it has been shown that the resolution of images

[TL19] has a large effect on state of the art results. While the input representation is not

clear, we note that in many applications it is assumed implicitly or explicitly that the notion

146

of image similarity follows the distance defined by the Euclidean metric. We illustrate that

this assumption undesirable and illustrate the use of the Wasserstein Ground Metric as a

metric that is 1) anisotropic in pixel space 2) depends on the location of measurement. We

illustrate that the WGM enables semantic smoothness along variations such as translations

and rotations. We note, that in the context of the Wasserstein metric on images, it still

remains to identify how to define the ground topology in pixel space. Since with the WGM,

different ground topologies defining distances between pixels would translate to different

behaviors of the metric. In addition it would be interesting to identify a natural way of

assigning such topologies especially under different image resolutions and modalities.

Our next area of focus was in probing and modifying the i.i.d. assumption imposed in

most deep learning regimes through the foundational empirical risk minimization framework.

In particular it is clear that for many applications the training set was collected with a

certain bias which is not reflected in the test distribution or production settings. Given such

disparity between the training set and desired distribution, we present a framework that

selects optimal subsets of the training set and assigns distribution weights on the training set

to end-to-end optimize a validation set. When a validation set is not available we utilized

tools from cross-validation to derive tractable alternatives and illustrated the results by

improving fine-grained classification tasks and more efficiently selecting samples to add to

the training set. The formulation we present in Chapter 2 relies on model linearization

for end-to-end differentiation, and the linearization that is applied in the experiments has

the potential to be extended to full linearization of the model, this future direction still

needs to be experimented. In general, Chapter 2 marks a transition from the empirical risk

minimization approach of machine learning, to a more flexible framework where models are

given more flexibility and feedback to select the data in their training set and optimize such

training set selection end-to-end to learn more efficiently. The extension of learning from the

empirical risk minimization to more flexible approaches, will enable models to learn more

efficiently and more diverse tasks.

147

The “learning” in deep learning today amounts to parameter optimization, usually in

the over-parameterized regime, and done with a first order algorithms such as SGD. In the

last chapter of Part I, we analyzed such optimization under the different parameterization

provided by normalization layers. Indeed, normalization layers in deep learning, are exactly

parameterization that come to address the optimization problem. By applying a normalization

step during the forward operation graph of the model, such layers enable improved speed of

training and also better generalization. Because normalization layers, such as BatchNorm,

WeightNorm, and LayerNorm facilitate learning via modified parameterization, they are

widely used in practically all modern models. In our theoretical work, we considered the

tractable analysis case of 2-layer ReLU neural networks trained with the WeightNorm

layer, and proved for the first time that dynamically-normalized ReLU neural networks

converge to a global minimum when trained with gradient descent under sufficient over-

parameterization. In our framework we employed the new tool of the Neural Tangent

Kernel and observed that normalization layers result in a decomposition of such kernel,

corresponding to length and direction updates. In our analysis, we derived a proof of

convergence for two layer neural networks, yet it would be interesting to extend this work

to networks with arbitrary number of layers. One such analysis based on the NTK for

un-normalized networks is the work of [DLL19a] which presents a lot of the tools to extend

the dynamically normalized analysis to the deep settings. On a general note, it would be

interesting to see the advancements in practical approaches and theory to finding the fast

and general ways of running differentiable programming to optimize and enabling neural

networks to “learn” in more flexible environments.

148

Part II

A theory for undercompressive shocks

in tears of wine

149

Part II presents research in mathematical modelling of thin films of the common tears of

wine physical settings. The research presented below is joint work with Hangjie Ji, Claudia

Falcon, and Andrea Bertozzi.

150

CHAPTER 4

Modelling the tears of wine phenomena∗

4.1 Introduction

This chapter studies the emergent shock behavior that arises as a result of a solutal Marangoni

effect in alcoholic beverages such as wine and Cognac. This scientific project presents a

different application of applied mathematics and numerical simulation as compared with Part

I of the thesis that fall in the realm of machine learning. Below we give an introduction to

the physical problem.

The tears of wine problem is a curious phenomenon that has been observed in wine glasses

for centuries. In the right setting, one can observe a thin layer of water-ethanol mixture

that travels up inclined surfaces against gravity and proceeds to fall down in the form of

tears. This is a result of a solutal Marangoni stress counterbalanced with the force of gravity.

The Marangoni stress stems from a surface tension gradient caused by alcohol evaporation

and the resulting difference in alcohol concentration. Specifically, when a water-ethanol

mixture is placed in a container with inclined walls, a thin meniscus forms. The alcohol in

the meniscus region becomes more depleted than that of the bulk due to the predominant

role of evaporation in the meniscus. This leads to a solutal surface tension gradient that pulls

liquid out of the meniscus and up the side of the glass.

The phenomenon of wine tears was first analyzed qualitatively by Thomson [Tho55] who

attributed it to the Marangoni stress. In 1992 the first careful experiments were conducted by

∗This chapter is adapted from [DJF20]

151

Fournier and Cazabat to understand the phenomenon [FC92]. Further studies focused on the

various instabilities that form [VEN95, HB01, FC98]. In particular the work of Vuilleumier

et al. [VEN95] focuses on the stationary state when the film reaches its terminal height and

star instabilities form in addition to the tears. In the paper by Fanton and Cazabat [FC98]

studying spreading instabilities, the authors continue describing the star instabilities that form

in two component mixtures. In 2001, Hosoi and Bush [HB01] further investigated two distinct

instabilities in the climbing film using a lubrication model that includes gravity, capillarity

and Marangoni stresses. The work of Venerus and Simavilla [VS15] identifies a previously

overlooked temperature gradient due to evaporation, that also contributes to the Marangoni

stress. More recently, Nikolov et al.[NWL18] also applied the Plateau-Rayleigh-Taylor theory

to study the ridge instability that triggers the formation of wine tears. However the dynamic

formation of the ridge is still not well-understood.

All of the prior works on tears of wine neglected to consider the tangential component of

gravity along with the other physics. The tangential Marangoni stress, tangential component

of gravity, and the bulk surface tension lead to a dynamic model that is known to produce

unusual behavior sometimes characterized by nonclassical shocks. This has been well-studied

in thermally driven films [ME06, MB99, Mun03, BMS99, BMF98] but never in tears of wine.

In models studied in the literature [HB01, VEN95, VS15], one expects a moving front with

advancing fingers, which is inconsistent with the draining tears observed in experiments. This

suggests that a more intricate mechanism is taking place, motivating further studies.

Via an enhanced model, we illustrate the existence of nonclassical undercompressive shocks

for the first time in the context of tears of wine. This model better characterizes the dynamics

of climbing films which sheds light on the experimental work in the literature. Relevant to our

analysis are the works studying the structure and shock formation in thermally-driven thin

films where nonclassical shocks have been observed [ME06, MB99, BMS99, BMF98]. In this

part of the thesis, we investigate different shock morphologies that can spontaneously occur

in climbing films of wine, depending on the experimental settings and alcohol concentration.

152

For instance, we expect undercompressive shocks in the experiments of [VEN95].

More importantly, we take a closer look at the common wine glass setting, something

not well-studied in prior works. This corresponds to using a radially symmetric glass, and

incorporating swirling as done in common handling of wine. We find that the geometry and

swirling of the glass affect the formation of tears, which differs from the better-studied studied

spontaneous climb. Mathematically, the new setting translates to extending the model to

incorporate additional geometries, and adding a pre-swirling draining fluid layer. Specifically,

our analysis shows that the draining fluid can give rise to reverse undercompressive shocks

[Mun03] that help explain the formation of tears from a climbing reverse front, which we find

to be quite reproducible, experimentally, with steeper beverage glasses and higher alcohol

concentrations.

The rest of Chapter 4 is structured as follows: In section 4.2 we lay out the theory,

deriving the non-dimensional PDE model for the climbing thin film. The shape of the

meniscus and front dynamics, in addition to the relevant works on the mathematical theory

of undercompressive shocks in thin films are introduced in Section 4.3. In Section 4.4 we

review the experimental work in the literature, and present numerical simulations of our

new model using corresponding experimental parameters. The effects of glass geometries

on the film dynamics are investigated in Section 4.5. The appearance of an unusual reverse

undercompressive shock wave triggered by a draining film is discussed in Section 4.6. Lastly

we discuss our findings on different shocks and hypothesize their relation to the formation of

tears in Section 4.7.

4.2 Hydrodynamic model

We derive our model building on the foundational model presented in the work of Fournier

and Cazabat [FC92]. Based on conservation of mass of the liquid the authors derive the

153

x⇤
0 ↵

z⇤ x⇤

g
↵

z⇤ x⇤

meniscus

pr
ec

ur
so

r

la
ye

r

g
↵

z⇤ x⇤ h
⇤

sh
oc

k

time

Figure 4.1: (left) Schematic illustration of a conical-shaped cocktail glass of inclination angle

α, and (right) the corresponding one-dimensional thin wine film travelling up inclined flat

glass surface. The film height h∗ is exaggerated for clarity of the illustration.

following equation for the thin film flux

∂h∗

∂t∗
+
∂Q∗

∂x∗
= 0, Q∗ = h∗v∗, (4.1)

where h∗(x∗, t∗) is the dimensional film thickness, v∗ is the average velocity across the film,

and Q∗ is the flux. Then the velocity is written in terms of the surface tension γ and the

dynamic viscosity µ, representing convection of the film due to the surface tension gradient

v∗ =
h∗

2µ

∂γ

∂x∗
, (4.2)

We incorporate the tangential and normal components of gravity and the surface tension to

the model in equation (4.2) and obtain

v∗ =
h∗

2µ

∂γ

∂x∗
−
h∗2

3
(
ρg0 sinα

µ
+
ρg0 cosα

µ

∂h∗

∂x∗
−
γ

µ

∂3h∗

∂x∗3
), (4.3)

where g0 is gravity, ρ is density, α is the inclination angle of the surface and γ is the

surface tension of the film. The formula (4.3) for v∗ comes from the lubrication theory

[ODB97, FCQ96, CC93, BMS99], which is a long wavelength approximation of the classic

Navier-Stokes equations in the low Reynolds number limit. In addition to the first term with

surface tension gradient ∂γ/∂x∗ from the formula (4.2), the second term in (4.3) represents

154

the convection of the film due to the component of gravity tangential to the surface, the

∂h∗/∂x∗ term represents the diffusion of the film caused by the normal component of gravity,

and the last term with ∂3h∗/∂x∗3 comes from the surface tension. Using the enhanced model

the flux is then reformulated as

Q∗ =
h∗2

2µ

∂γ

∂x∗
−
h∗3

3
(
ρg0 sinα

µ
+
ρg0 cosα

µ

∂h∗

∂x∗
−
γ

µ

∂3h∗

∂x∗3
). (4.4)

For simplicity we assume a constant surface tension gradient τ following prior works

[FC92, VEN95, HB01]. Our model then reduces to

∂h∗

∂t∗
+
τ

2µ

∂

∂x∗
(h∗2) −

∂

∂x∗
(
h∗3

3

g0ρ sinα

µ
) =

∂

∂x∗
[
h∗3

3
(
g0ρ cosα

µ

∂h∗

∂x∗
−
γ

µ

∂3h∗

∂x∗3
)]. (4.5)

By balancing the Marangoni stress term and the tangential component of the gravity, we

then non-dimensionalize the PDE as in the work of Münch and Evans [ME06] using

h∗ =Hh, x∗ =Xx, t∗ = Tt,

where

H =
3τ

2g0ρ sinα
, X = 3

√
3γτ

2(ρg0 sinα)2
, T = 2µ

3

√
4γρg0 sinα

9τ 5
, (4.6)

which gives the non-dimensional equation

ht + [f(h)]x = −(h
3hxxx)x +D(h3hx)x. (4.7)

Here we denote h,x for the dimensionless film height and length. The constant D is defined

as

D =
3

√
9τ 2 cos3α

4γρg0 sin4α
, (4.8)

and the non-convex flux function f(h) takes the form

f(h) = h2 − h3, (4.9)

where the quadratic and cubic terms come from the Marangoni stress and the tangential

component of the gravity, respectively. This equation has been studied in thermally driven

155

C

x

t

UC

x

t

0

0.05

0.1

0.15

0.2

0 b h∞,C h∞,UC 1

fl
ux

f
(
h
)
=

h
2
−

h
3

h

f(h) = h2 − h3

C
UC

Figure 4.2: Schematics for the characteristics of (left) a compressive shock that satisfies (4.13)

and (middle) an undercompressive shock that satisfies (4.14) shown in a moving reference

frame in which the shock is stationary. (right) Flux function f(h) in (4.9) with a compressive

connection from h∞,C = 0.4 to b = 0.1 and an undercompressive connection from h∞,UC = 0.6

to b = 0.1 where h∞ and b are the left and right boundary conditions of equation (4.7).

films and can exhibit nonclassical shocks in some regimes [ME06]. It is worth mentioning

that our formulation allows for a general surface tension gradient which may be the result

of solutal and thermal surface tension gradients as pointed out by Venerus and Simavilla

[VS15]. Using experimental data provided in the literature, we note that the non-dimensional

constant D = O(1), which indicates that the added term that corresponds to the gravity in

the normal direction is necessary to capture the full dynamics.

Extensive studies have shown that the interaction between the non-convex flux function

and the higher-order smoothing term in (4.7) can lead to interesting shock wave structures

[BMS99]. In this chapter, we focus on the analysis of different shock formation mechanisms in

two separate cases: the spontaneous climbing of wine films in a static glass, and the climbing

film with the presence of a draining film after a glass swirling.

We briefly review the nonlinear dynamics of classical compressive and nonclassical under-

compressive shocks. For simplicity, we focus on a single shock that arises from equation (4.7)

coupled to the far-field boundary conditions

h→ h∞ as x→ −∞, h→ b as x→ +∞, (4.10)

156

h∞ and b are the left and right boundary conditions of the solution. When analyzing equation

(4.7) we consider the travelling wave solutions of the form h(x, t) = ĥ(x − st), where s is the

speed of the wave. Adjusting to the reference frame of the shock, the flux can be written as

f̂(ĥ) = ĥ2 − ĥ3 − sĥ, which controls ĥ via the ODE

[f̂(ĥ)]
x
− (ĥ3ĥxxx)x +D(ĥ3ĥx)x = 0.

Integrating this equation using the left and right boundary conditions (4.10) gives the standard

Rankine-Hugoniot jump condition for the speed of the shock s = (f(h∞) − f(b)) / (h∞ − b) .

On the other hand, for large time and space scales one may drop the higher order diffusive

terms in equation (4.7) which leads to the quasi-linear hyperbolic equation

ht + [f(h)]x = 0. (4.11)

This reduced equation yields the speed of the characteristics f ′(h) = 2h − 3h2. With δ = x/t,

PDE (4.11) also admits solutions that consists of an expanding rarefaction wave,

h(x, t) =H(δ), where H(δ) = (f ′)−1(δ) = 1
3 −

1
3

√
1 − 3δ. (4.12)

The Lax entropy condition for compressive shocks is given as

f ′(b) < s < f ′(h∞), (4.13)

or in the moving reference of speed s, f̂ ′(b) < 0 < f̂ ′(h∞). A characteristic diagram for a

compressive shock in the moving reference is illustrated in Figure 4.2 (left) with characteristics

entering from both sides of the shock. This type of shock can also be identified as a chord

connecting the left and right states of the shock in a flux diagram. One such example is

shown in Figure 4.2 (right) where a chord connects the left state h∞,C = 0.4 and the right

state b = 0.1 of a compressive shock.

Interestingly, for undercompressive shocks the Lax condition (4.13) is violated with

f ′(b) < f ′(h∞) < s, (4.14)

157

or in the moving reference of speed s, f̂ ′(b) < f̂ ′(h∞) < 0. This is visualized in Figure 4.2

(middle) where the characteristics travel through the shock, with the undercompressive

connection from h∞,UC = 0.6 to b = 0.1 plotted in Figure 4.2 (right).

Information propagating through the undercompressive shocks correspond to stability to

traverse perturbations [BSB05]. This stability is a mark of undercompressive shocks that

does not occur in classical compressive shocks and will be used in distinguishing compressive

and undercompressive shocks in the fluid experiments.

Stability of the shock may be analyzed by considering the properties of the perturbed

solution, h(x, t) = h̃0(x, t) + εh̃1(x, t) +O(ε2). Here h̃0 is a dynamically evolving solution for

(4.7) and εh̃1 is a small perturbation of magnitude ε≪ 1. Substituting this ansatz into (4.7)

omitting terms of higher order in ε, evaluating when the solution is locally constant, and

omitting the diffusive terms gives

∂h̃1

∂t
+ f ′(h̃0)

∂h̃1

∂x
= 0. (4.15)

From (4.15) we may deduce the direction that the perturbations travel on either side of the

shock. In the frame of the shock we note that the compressive and undercompressive shocks

behave differently. For the compressive case (4.13) implies that perturbations will travel

into the shock. In contrast, in the undercompressive case (4.14) shows that perturbations

travel through the shock. This distinction in perturbation behavior is again illustrated in the

characteristic plots in Figure 4.2. As in the undercompressive regime, perturbations travel

down and away from the shock, the shock is stable to perturbations unlike the compressive

case. We use this criteria as a signature to identify undercompressive shocks emerging from

the meniscus.

4.3 Meniscus-driven film climbing and nonclassical shocks

In this section we review prior published experimental results for this problem in which the

film climbs onto a dry surface. In this case, the meniscus controls the initial thickness of

158

0

0.2

0.4

0.6

0.8

0 20 40 60 80 100

b

h∞h

x

0

2

4

6

−4 −2 0 2 4

h

x

Figure 4.3: (left) Numerical simulation of (4.7) with parameters extracted from experiment

(A) [FC92]. The simulation illustrates a compressive-undercompressive shock pair in the long

time with b = 0.0317 and h∞ = 0.43. (right) Consecutive time steps ∼ 0.1(s) starting from the

meniscus initial condition.

the film as it climbs, and we can solve equation (4.7) with the meniscus boundary condition,

depending on the inclination angle. This same model and boundary condition were already

studied in [ME06], however the authors did not consider it in the context of the tears of wine

problem.

To model the dynamics of a spontaneous wine film climbing in a static glass, we approxi-

mate the boundary condition of equation (4.7) using a meniscus of fixed angle for the left

boundary and a precursor pre-wetted layer for the right boundary following [ME06]. The

surface of wine in the bulk of the glass is horizontal and meets the thin film at a meniscus

angle α. This is expressed as a boundary condition describing the slope of the thin film

with the glass, ∂h/∂x = tanα. In the non-dimensional settings, this gives ∂h/∂x = −D−1, and

yields the far-field boundary condition

h→ −x/D for x→ −∞. (4.16a)

For the thin precursor layer on the side of the glass we apply the boundary condition,

h→ b for x→∞, (4.16b)

159

where b > 0 is the precursor thickness. The precursor layer on the right boundary is commonly

used as a replacement for more complicated contact line models [BB97], and captures the

relevant length scale at the contact line. This model alleviates complications that arise with

a moving contact line in numerical simulations.

Typical solutions of the PDE (4.7) subject to boundary conditions (4.16) consist of two

parts, the meniscus profile and the advancing front (see Figure 4.3 (left)). The meniscus

structure is a stationary solution of (4.7) satisfying the far–field boundary condition (4.16a)

as x → −∞, and selects a flat state of thickness h∞ > b as the solution advances (see e.g.

Figure 4.3). Figure 4.3 (right) shows that a stable meniscus solution is achieved in the

numerical simulation of (4.7) starting from the initial data (4.17),

h0(x) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

D−3/2(exp(D1/2x) −D1/2x − 1) + b for x ≤ 0,

b for x > 0.

(4.17)

This initial condition is a smoothed version of the piecewise linear function that captures

the meniscus angle [ME06]. Starting from h(x, t =0) = h0(x), the simulation uses a standard

finite-difference spatial discretization and a backward implicit time-stepping scheme. The

spatial derivatives are discretized using upwind scheme with respect to the flux f(h), and

central finite-differences for the second and fourth derivative terms.

Away from the meniscus near the apparent moving contact line, the advancing front

is given by a traveling wave that connects the left constant state h∞ and the right thin

precursor layer b. Substituting the traveling wave ansatz h(x, t) = h(ξ), ξ = x − st into (4.7),

and using the far field boundary condition (4.16b), we get a third-order ODE that determines

the advancing front profile

−s(h − b) + (f(h) − f(b)) + h3h′′′ −Dh3h′ = 0, (4.18a)

subject to the far-field boundary conditions

h→ h∞ for ξ → −∞, h→ b for ξ →∞, (4.18b)

160

where ′ ≡ d/dξ. One can have zero, one, or multiple traveling waves depending on the values

of the left and right states. This is quite different from the case where the shock is smoothed

by ordinary diffusion. Surface tension results in a higher order equation with a complicated

solution space [BMS99, ME06].

To match front dynamics with different experiments, one can perform direct PDE sim-

ulations of model (4.7) using the meniscus boundary conditions (4.16). For instance, in

Figure 4.3 (left), corresponding to the experiment in [FC92], the meniscus dynamics with given

(D, b) = (0.353, 0.0317) selects a flat state thickness h∞ > b, and the advancing front consists

of two different types of shocks: a compressive shock in the rear and an undercompressive

shock at the front of the film. More generally, distinct solution behaviors involving various

types of meniscus profiles and advancing fronts can emerge with (D, b) in different parameter

regions; this have been extensively studied in [ME06].

Alternatively, for given values of (D, b, h∞), one may also use traveling wave solutions

satisfying the ODE (4.18) to identify the features of the advancing front [MB99, ME06].

Here the thickness of the left state h∞ can either be measured experimentally or calculated

numerically based on the meniscus dynamics. Instead of revisiting the full dynamics of the

meniscus-driven film climbing problem, we briefly review possible shock scenarios characterized

by the traveling wave solutions in the context of tears of wine. For a fixed dimensionless

b = 0.0353, corresponding to the precursor thickness in an experiment from [VEN95], Figure 4.4

(right) summarizes four possible shock scenarios parametrized by h∞ and D. This bifurcation

diagram is numerically obtained by solving the ODE (4.18a) using the asymptotic boundary

condition method [GRP01], and is similar to the one studied in [Mun00] for shock transitions

in Marangoni gravity-driven thin films.

Four plausible shock structures for (h∞,D) in different parameter regions are depicted in

Figure 4.4 (right): (1) a single compressive shock, (2) a separating double shock pair involving

a leading undercompressive wave and a trailing compressive wave (see Figure 4.3 (left)),

(3) a rarefaction-undercompressive shock structure, and (4) a generalized Lax shock. The

161

Shock types Stability Figures

Compressive shock unstable Figure 4.3 (right)

Compressive-

undercompressive

double shock

unstable

stable

Figure 4.3 (left),

Figure 4.5 (left)

Rarefaction-

undercomperssive shock
stable Figure 4.5 (right)

Rarefaction-

Reverse–undercompressive

shock

unstable Section 4.6

Figure 4.4: (left) Shock types of the hydro-dynamic model (4.7) discussed in the present study;

(right) A shock bifurcation diagram parametrized by (h∞,D) pairs obtained by numerically

solving the ODE (4.18a) subject to the boundary condition (4.18b) for b = 0.0353.

bifurcation diagram shows that for small values of D, as in most tears of wine experiments

from the literature, only shock wave structures of type (1), (2), and (3) can exist. We

will discuss these cases using experimental data in the next section. We also present the

stability properties of these shocks with respect to transverse perturbations, and point to

their corresponding figures in Figure 4.4 (left). In particular, the compressive shock is linearly

unstable to transverse perturbations which play an important role in developing later-stage

fingering patterns. In contrast, in both the compressive–undercompressive shock pair and

the rarefaction–undercompressive shock, the leading undercompressive front is stable and

prevents fingering from happening in the contact line [BMS99, BMF98, BSB05].

Another type of shock, reverse–undercompressive shock, is also observed in the study of

tears of wine dynamics after a glass swirling. Modified initial and boundary conditions will

be used to characterize this scenario. This is documented in Figure 4.4 (left), and we will

discuss this case in detail in section 4.6.

162

4.4 Experimental survey and simulations

Now that we have a nonlinear model for the wetting behavior of the climbing film, we

can compare it with experimental data in the prior literature. However, the behavior of

undercompressive shocks depends very sensitively on the dimensionless parameter b. Very

few experiments study this in detail - one example being [SC00] for thermally driven films

which are easier to control. Likewise τ can sometimes be hard to measure and it appears in

the calculation of both b and D, which are the dimensionless parameters needed to model

the experimental data. We analyze the effect of the uncertainty of these parameters here.

We consider the prior works: (A) the seminal “Tears of Wine” [FC92] paper and (B)

“Tears of wine: the stationary state” [VEN95]. (A) presents several experiments from which

we use the parameters corresponding to alcohol concentration C = 70%. This experiment has

the most detailed measurements and also shares some measurements with Vuiellemuier et

al.[VEN95]. For (B) we analyze two physical experiments: Experiment I, that follows the

experimental settings of Figure 5b of their paper with a curvature-driven film and C = 70%,

and experiment II that refers to Figure 5b of (B) and follows a gravity-driven regime with

C = 70%. We label the experiments as (BI) and (BII) and note that they correspond to the

same physical setting with different assumptions when deriving the surface tension gradient

τ .

In Appendix 4.A we provide a complete set of measurements for each experiment, as

well as the dimensionless values (D, b) needed for analysis. Using different (D, b) values

corresponding to each experiment we conduct a sequence of numerical simulations for equation

(4.7). The initial and boundary conditions are specified as in (4.16 – 4.17). In Figure 4.5 we

present numerical simulations for (BI) and (BII) and observe that despite identical physical

settings the different values of τ lead to different shocks. In particular (BI) exhibits a

compressive-undercompressive shock while (BII) has a single undercompressive shock front.

In addition to τ , the precursor thickness b is also of key importance to the dynamics of

the advancing front [BMF98]. For example for the setting of (A) that leads to an advancing

163

0

0.4

0.8

0 20 40

b

h∞h

x

0

0.4

0.8

0 20 40

b

h∞

h

x

Figure 4.5: Numerical simulations of Vuiellemuier et al. experiments (BI), (BII) for long

times. (left) experiment (BI) exhibiting a less distinct compressive-undercompressive double

shock cf. Figure 4.3. (right) experiment (BII) exhibiting undercompressive shock.

front with a compressive–undercompressive double shock, when the precursor thickness is

increased from b = 0.0353 to b = 0.1585 the front transitions into a single compressive wave.

We observe this change in behavior while the rest of the settings are fixed (see Figure 4.6).

For other experiments in the literature [HB01, VS15] (see Appendix 4.A for complete

listing) the authors did not report their data for the climb of the film. Therefore we cannot

fully compare our theory against their experimental observations. In our experiments that

match the high inclination angle and ethanol-water fraction of [HB01, VS15], we do not

observe easily reproducible film climbing.

With a hypothetical thin precursor thickness, our simulations of [HB01, VS15] based on

the meniscus-driven film dynamics predict a thin compressive advancing front. In Figure 4.7

we present the evolution of a thin film climbing out of the meniscus using the dimensionless

parameter D = 0.0338 that corresponds to Table 3, Figure 10 of [HB01]. A small precursor

thickness b = 0.028 (corresponding to a dimensional thickness of b∗ = 0.5µm) is used to

approximate the dry substrate. For our experiment, in Figure 4.8, we show a spontaneous

climb that is similar to experiment (A). The settings of our experiments are of a watch glass

of diameter 75 mm and angle 9○ < α < 20○ (due to curvature of the watch glass). For this high

164

0

0.2

0.4

0.6

0.8

0 20 40 60 80 100

b

h∞h

x

0

0.2

0.4

0.6

0.8

0 20 40 60 80

b

h∞h

x

Figure 4.6: A comparison of shock types affected by the precursor thickness b, showing that

(left) b = 0.0353 results in a compressive-undercompressive shock, and (right) b = 0.1585

(corresponding to a hypothetical dimensional thickness b∗ = 10µm) leads to the formation of

a compressive wave. The other parameters in the two simulations are identical to those in

Figure 4.3 and correspond to measurements from experiment (A).

0.02

0.04

0.06

0 10 20 30

b

h∞

h

x

Figure 4.7: The evolution of film height of [VS15] (wine setting) with b = 0.028 (corresponding

to a hypothetical dimensional thickness b∗ = 0.5µm) showing the formation of a compressive

wave. The meniscus dynamics with D = 0.0338 yields a left state thickness h∞ = 0.036.

165

t = 20 s t = 40 s t = 60 s

Figure 4.8: Spontaneous climb images of ethanol-water mixture with ethanol concentration

C = 0.7 on a dry watch glass (no pre-swirl) of diameter 75 mm and angle ranging between

9○ < α < 20○.

alcohol concentration and inclination, the climbing film on the dry substrate does exhibit a

spontaneous climb.

In our model, different settings lead to different shock structures. This is in contrast

with the previous literature, where a model with a surface tension gradient and tangential

gravity is used and only a single type of shock emerges. Without the competition between

the surface tension gradient τ and the tangential component of gravity, we only observe

classical compressive shocks. When incorporating both gravity and surface tension as in

(4.7), different physical parameters (in particular the substrate wetting thickness b) lead to

qualitatively different shocks. In Appendix 4.A we present tables of the prior works with some

photographs from the experiments. More work is needed to better understand quantitatively

how shocks behave in tears of wine on a dry surface. Going forward here, we show that in the

case of a surface coated by swirling, one can obtain very reproducible shock profiles, which

our theory suggests are reverse undercompressive shocks.We distinguish pre-swirling from

the precursor discussed in Sections 4.2 – 4.5, noting that in the preswirled regime, the right

boundary condition maintains a thicker fluid film. This is further discussed in section 4.6. In

the next section we present a model for a conical shaped substrate (as in our experiments)

166

rather than a flat substrate. We show that it results in minor modifications to the behavior.

The flat surface case is important because the model reduces to a regular scalar conservation

law for which there is a well-developed shock theory.

4.5 Conical shaped substrate

So far we have assumed negligible curvature effects of the substrate. In this section we

investigate the substrate curvature effects on shock formation. For simplicity, we consider

an axisymmetric thin fluid film climbing up the surface of a conical-shaped cocktail glass

of inclination angle α (see Figure 4.1 (left)). In the long-wave limit the balance of normal

stresses at the free surface z = h(x, t) yields the leading-order equation

p =
A

x + x0

−
∂2h

∂x2
, (4.19)

where p is the dynamic pressure, the term A/(x + x0) represents the azimuthal curvature of the

conical substrate, x0 > 0 measures the distance between the surface of the wine reservoir/bulk

and the vertex of the cone, and the non-dimensional parameter A is given by A =X/(H cotα)

for the length-scales X and H defined in (4.6). Using a PDE derived in [RRS02] and studied

in [GBS06] for the dynamics of thin films driven by gravity and surface tension on a curved

substrate, we write the non-dimensional governing equation for the film thickness h(x, t) as

∂ζ

∂t
+
∂

∂x
(h2 − h2ζ) =

∂

∂x
(h2ζ

∂p

∂x
) +D

∂

∂x
(h3∂h

∂x
) , x ≥ 0, (4.20)

where ζ represents the amount of fluid above a surface patch and is approximated by

ζ = h −
κh2

x + x0

, (4.21)

where the non-dimensional quantity κ = H/(2X cotα) arises from the principle curvature

of the substrate. This model characterizes the joint effects of substrate curvature, constant

surface tension gradient, and both normal and tangential components of the gravity. For

typical tears of wine experiments we have H/X ≪ 1 and κ≪ 1, therefore we approximate ζ

167

0

0.2

0.4

0.6

0.8

120 140 160 180 200

b

h∞h

x

A = 0
A = 2.83

Figure 4.9: Long-time shock profiles of (4.22) for A = 0 (no curvature effects) and A = 2.83,

x0 = 5 (with curvature effects) at t = 700. Other system parameters are b = 0.0317, D = 0.353

corresponding to experiment (A).

by h, and rewrite equation (4.20) using (4.19) by

ht + (h2 − h3)x = − [h3 (−
A

(x + x0)
2
+ hxxx)]

x

+D (h3hx)x . (4.22)

Here it is important to have x0 > 0 to avoid the shape singularity at the vertex. In the limit

x→∞, the azimuthal curvature term is dropped and the model (4.22) reduces to (4.7).

Using experimental parameters in experiment (A) with a small inclination angle α = 9○,

we plot in Figure 4.9 the comparison of long-time shock profiles without curvature effects

(A = 0) and with finite curvature effects (A = 2.83, x0 = 5). It shows that incorporating the

substrate curvature effects lowers the thickness of the left constant state h∞, and makes the

separation of the leading undercompressive wave and the trailing compressive wave in the

double shock pair less pronounced. Based on the theory for shock transitions in model (4.7)

(or equivalently (4.22) with A = 0) developed in [BMS99, Mun00], for fixed D and b values,

decreasing the value of h∞ can push the solution out of the double shock regime and into

the compressive regime (see Figure 4.4 (right)). This is consistent with our observation in

Figure 4.9 with finite curvature effects (A > 0), where the less pronounced separation of fronts

caused by the decreased h∞ suggests a transition to compressive waves.

While the model (4.22) is limited to the dynamics on a conical shaped substrate, a

168

Figure 4.10: Top view images of tears of wine experiment at t = 0,5,10,20 s in a stemless

Martini glass (conical substrate) using 18% alcohol by volume Port wine. Swirling the wine

around the glass creates a reverse front that forms out of the meniscus, advances up the glass

and destabilizes into wine tears.

generalized nonlinear model incorporating the substrate geometry of wine glasses can be

obtained by using a different functional term for the azimuthal curvature term. More

complicated curvature-induced shock transitions are expected to occur, and we refer the

readers to the work of Roys et al.[RRS02] and Greer et al.[GBS06] for a detailed discussion

of the modeling and numerical methods of lubrication models on a curved substrate.

4.6 Reverse undercompressive shocks on a preswirled substrate

It is difficult to reproduce many of the experiments performed with an initially dry surface

discussed in the prior literature, because of the need to control the wetting properties of

the contact line. Ordinary glassware will be affected by the way it is cleaned (e.g. see

[App15] in which the author claims that glasses cleaned in a dishwasher with an additive to

avoid spotting makes it more difficult to see wine tears). However, one can quickly observe

wine tears by actively pre-wetting (pre-swirling) the glass as one would do when drinking a

beverage or swirling the wine in the glass before drinking it. A preswirled glass can produce

dramatic wine tears (see [Dan15] for an illustration). For the first time in the context of

tears of wine, we identify the existence of another fundamental type of shock, the reverse

undercompressive (RUC) shock, that involves a thicker film receding from a thinning region.

169

ridge

tears

meniscus

rarefaction

Figure 4.11: Tears of wine experiment. (left) top view and (right) side view and projection

of a stemless martini glass with inclination angle α = 65○, using 18% Port wine. Swirling

the wine around the glass creates a front that forms out of the meniscus. The draining film

advances up the glass and destabilizes into wine tears.

Thin film structures involving an undercompressive leading shock and a trailing RUC shock

were first identified in [Mun03, SBB03] for dip-coating experiments with a thermal gradient

that drives the film against gravity. The model used in [Mun03, SBB03] is the same one we

consider here.

Our experiments are performed using port wine of alcohol concentration C = 18% and a

stemless martini glass of inclination angle α = 65○ in a room with controlled temperature at

75 ○ F. One can cover the glass immediately after pouring the wine, to temporarily suppress

the evaporation of alcohol. A few seconds after pouring and covering, we give the covered

glass a brief slow swirl for about 3 seconds and coat the substrate. We observe that the initial

swirl provides a surface with a thin draining film. We leave the cover on for ∼ 10 seconds

until the swirl is no longer visible and the draining has settled down. After removing the

cover, evaporation quickly increases, inciting a “reverse” front to climb out of the meniscus,

followed by the formation of wine tears falling back into the bulk. The experiments are highly

reproducible and the times indicated here, as long as they are in the order of seconds, for

swirling, covering, and uncovering, do not affect the outcome observed. This is supported

170

by the theory for a range of preswirled thickness. The forming front is characterized by a

depression, i.e. the film ahead of the front is thicker than the film behind it. It is in a sense,

a “dewetting” front that leaves a thinner layer behind it. The formation of the moving front

is initiated by a pinch-off that occurs in the meniscus, as predicted in [Mun03]. Snapshots

of this experiment displayed in Figure 4.10 show a front that appears out of the meniscus

and destabilizes into wine tears after ∼ 10 seconds. The left half of each image is a reflection,

that is enhanced to visualize and capture the moving front. Around the center we observe

a circular wave forming and travelling outward from the meniscus up the glass. The tears

originate from the instability of that wave and drain back into the bulk fluid. Such waves

appear to be the dominant behavior in the formation of the actual “tears of wine”. We note

that the “swirling” initial condition may lead to different film thicknesses depending on the

force of the swirl, i.e. the coating thickness is not quantitatively reproducible by manual

swirling. We now present a theory that shows that such film thicknesses, within a fairly broad

range, all produce the same general pattern of a reverse undercompressive wave emerging

from the meniscus, as in Figure 4.11. The predicted front behavior is universal within a

range of coating thicknesses, to the point where one can do reproducible demonstrations at

the dinner table. Another signature that this is an RUC shock is that the tears emanate

from the wave and travel downward, away from the shock, and towards the meniscus. This

is indicative of characteristics going through the wave, away from its direction of travel,

because perturbations, to leading order, travel along characteristics. A diagram for this type

of behavior is shown in Figure 4.2 in the middle panel. This is in contrast to a compressive

wave in which disturbances, traveling along characteristics, enter the shock from both sides.

One would expect instabilities of a compressive wave to travel with the wave, like in the case

of the fingering instabilities seen in Figure 4.8.

We now match the observed experimental behavior in Figure 4.11 to solutions of the one

dimensional model. To approximate the initial profile of the draining film, after swirling, and

immediately after the evaporation starts, we assume a pinch-off of the meniscus, as discussed

in [Mun03]. For simplicity we start with an initial condition that has steep constant slope

171

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200

hl

h∞

RUC

h

x

t = 0
t = 200
t = 500
t = 800

0.05

0.1

0.15

90 110 130 150

hl

H(η)

RUC

RW

h

x

Figure 4.12: (left) The formation of a reverse–undercompressive (RUC) shock with initial

condition (4.23) and boundary conditions (4.24). (right) A closeup view of the boxed region

on the left, at dimensionless time t = 800, showing a good agreement with the rarefaction

wave (dot-dashed line) H(δ) in (4.12) for δ = x/t. The rarefaction separating from the RUC

shock is a signature of a nonclassical shock, it is shown by the flat state hl in between the

rarefaction and the RUC shock.

jump connecting the meniscus to the coating layer,

h0(x) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

h∞ for x > xL,

heq +
h∞−heq
xL

x for 0 < x ≤ xL,

(4.23)

where the film thickness heq approximates the near-rupture film profile near the edge of the

meniscus (as in Figure 6 from [VEN95]), and h∞ sets the thickness of the draining film due

to the swirling of the glass. We take h∞ to be independent of time however a more complete

model could include a weak time dependence due to the dynamics further up the glass. For

the lower boundary conditions we apply

h(0) = heq, hxxx(0) = 0, (4.24a)

which assumes a fixed near-rupture film thickness and a zero curvature gradient at x = 0.

The upper boundary condition is

h→ h∞ for x→∞. (4.24b)

172

Our numerical simulations of equation (4.7) have D = 0.0146, xL = 5, and heq = 0.001. These

dimensionless parameters correspond to the dimensional values taken from [VS15] (See in

Appendix 4.A experiment (DI) of Table 4.2) with a modified inclination angle α = 65○. Unlike

the cases discussed in Section 4.4 where the film thickness h∞ is determined by the parameters

D and b based on the meniscus dynamics, here we specify the value of h∞ to approximate

the thickness of the initial draining film formed by the glass swirling in the experiment. We

will pick typical values for h∞ that correspond to a balance between the draining effect and

the Marangoni stress. We find that a wide range of such h∞ produce the same qualitative

behavior.

Figure 4.12 (left) shows a typical numerical simulation of the model (4.7) for the evolution

of the film height starting from the initial condition (4.23) with h∞ = 0.8. The left-hand

boundary models the pinchoff at the meniscus, a phenomenon that has been widely studied

in coating films [Mun03, CC93], and is driven by the dynamics of the meniscus as it forms the

equilibrium height heq. This pinchoff leads to a pronounced complex wave form emanating

from the meniscus. In the early stage of the dynamics, we see a double wave structure

emerging. There is a rarefaction fan near the meniscus and a shock wave connecting to the

larger height h∞. Note that the two waves separate from each other as time passes. A flat

film of thickness h = hl (see the tick labels on the right vertical axes in Figure 4.12) connects

the right edge of the rarefaction wave and the left edge of the leading wave. This is typical for

such double wave structures involving undercompressive waves — a new equilibrium height

emerges that is driven by the solution on each side [Mun03, BMS99]. Figure 4.12 (right)

shows a close-up of the solution profile at t = 800 delimited by a box in Figure 4.12 (left),

indicating that the rarefaction wave (RW) portion of the solution is given by h(x, t) =H(x/t)

in (4.12). To further verify the UC structure, we plot the connection between hl and h∞ on

the flux function diagram (see Figure 4.13, right panel). The chord crosses the graph of the

flux function, illustrating that the shock violates the entropy condition.

Figure 4.13 shows film heights with h∞ = 0.4,0.6,0.8. For h∞ = 0.8, we have hl ≈ 0.076;

173

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200

hl

h∞

H(η)

h

x

h∞ = 0.4
h∞ = 0.6
h∞ = 0.8

0

0.05

0.1

0.15

0.2

0 hl 0.4 h∞ 1

flu
x
f
(h

)
=

h
2
−

h
3

h

f(h)
h∞ = 0.8
h∞ = 0.6

Figure 4.13: (left) A comparison of shock solutions at t = 450 for initial data (4.23) with

varying h∞ showing reverse–undercompressive (RUC) shocks for h∞ = 0.6,0.8, and a single

rarefaction wave for h∞ = 0.4. The critical thicknesses h∞ and hl are marked for the h∞ = 0.8

profile. Note that the rarefaction part of the solution is independent of h∞. (right) The flux

diagram with two undercompressive connections for the RUC shocks with h∞ = 0.6,0.8.

0

0.5

1

0 20 40 60

hl

h∞

h

x

A = 0
A = 68.9

0.06

0.08

0.1

35 40 45 50 55

hl

h

x

A = 0
A = 68.9

Figure 4.14: (left) Advancing waves starting from initial condition (4.17) at times t =

0,100,200,300 governed by (4.22) with meniscus boundary conditions (4.16), showing a

comparison of fronts influenced by curvature effects (A = 68.9, x0 = 25) and without curvature

effects (A = 0). (right) A closeup view of the boxed region on the left at time time t = 300

with the curve for A = 68.9 shifted by ∆x = 5.3. The other settings are identical to those in

Figure 4.12.

174

for h∞ = 0.6, hl ≈ 0.17. In both cases the shock violates the entropy condition. For h∞ = 0.4

the dynamics is dominated by the rarefaction fan which terminates abruptly in the flat film

on the right hand side without the pronounced capillary ridge seen in the other two cases. In

this case, the dynamics are dominated by the Marangoni stress. For really thick draining

films (e.g. with h∞ > 1), the dynamics is dominated by gravity so we expect a range of h∞ for

which this phenomenon occurs. Incorporating the conical-shaped substrate curvature effects

and the meniscus dynamics also influences the profile of the RUC shock. Here we combine

these effects by using model (4.22) with the meniscus boundary conditions (4.16). Starting

from the initial condition (4.17) that emulates the meniscus profile, in Figure 4.14 (left) we

plot the simulation results with A = 68.9, x0 = 25 against the profiles without curvature

effects (A = 0). Other system parameters are set to be (D,h∞) = (0.0146,0.8) which match

the simulation shown in Figure 4.12. This comparison shows that the early stage pinch-off

near the meniscus is sensitive to the substrate curvature effects, which leads to a different

stable meniscus profile and location where the near-rupture film thickness heq is attained.

This difference leads to a spatial shift in the later stage dynamics, whereas the rarefaction

wave and the speed of the moving front do not change significantly. A closeup view of the

wave fronts at t = 300 is also shown in Figure 4.14 (right), where the curve for A = 68.9 is

horizontally shifted to align with the A = 0 curve. It indicates that the RUC shock obtained

for A = 0 is less pronounced with the presence of weak substrate curvature effects.

Previously, it has been shown that the RUC wave is unstable with respect to transverse

perturbations [Mun03]. As the wave destabilizes, the transverse perturbations enter the space

between the RUC wave and the rarefaction fan, which agrees with the wine tears being shed

downward from the rising circular wave in our experiment (see Figure 4.11). As time goes on,

the tears travel into the rarefaction fan and get elongated as the rarefaction wave expands.

The theory here suggests a mechanism for the onset of the wine tears. A fully nonlinear 2D

simulation of the model could be done in future work to understand the longer time dynamics

of the wine tears.

175

4.7 Conclusion

In Part II of the thesis, we introduce a model for the tears of wine phenomena that describes

the balance between gravity and a Marangoni stress induced from alcohol evaporation. The

dynamic model is the same equation that has been used to describe thermally driven films

balanced by gravity. This work is the first to connect that literature to the tears of wine

problem. We argue that the actual wine tears, which drain down the glass, in contrast to

the well-known fingering instability of driven fronts, which travel in the same direction of

the front, arise from an instability of a reverse undercompressive shock. They can be easily

observed by prewetting the glass as one would do in the context of drinking a beverage or

swirling the wine around the glass. We are able to create fairly reproducible experiments of

this phenomenon by pre-swirling the glass, while covered, to suppress evaporation. Removing

the cover, after the initial pre-swirl, leads to a circular wave emanating from the meniscus

that quickly destabilizes into downward draining wine tears.

Our main model is for a flat substrate. This model allows for easy identification of different

wave forms because they have an exact self-similar structure. We also show that incorporating

the substrate curvature effects into the governing equation can lead to dynamic behaviors that

are qualitatively similar, and the difference can be quantified through numerical simulations.

It has been shown in the literature [BMS99, BMF98] that while the undercompressive

shocks are stable, the compressive shocks and reverse undercompressive shocks are unstable

to fingering [Mun03]. More work could be done to quantitatively predict the spacing of the

wine tears observed in these experiments. This would involve analyzing the linear stability of

the RUC ridge along with fully nonlinear 2D numerical simulations.

Prior experimental results presented in Section 4.4 illustrate the formation of different

shock structures under different experimental conditions. For example we observe that

the surface tension gradient τ and the precursor height b are pivotal to the formations

of different shocks. While a conical-shaped martini glass is easy to model because of its

constant inclination angle, one could also incorporate three-dimensional complex surface

176

geometry to the model such as that observed in common wine glasses. We believe a more

accurate description of the phenomenon may be obtained via a careful consideration of the

three-dimensional geometry and the surface tension gradient. Finally, we note that our model

(4.7) assumes a constant surface tension gradient. As the film climbs up, this assumption

eventually fails, requiring a modification of the model to describe the full dynamics. Along

these lines, downward draining wine tears can also be observed from fluid that accumulates

at the top of the glass, forming a stationary capillary ridge [COM15, NWL18, VS15]. As a

future work, it would be insightful to investigate a model for the tear formation structure.

177

4.A Appendix: Extended survey of prior experimental works

Here we review the existing experimental literature summarized in Table 4.2 and 4.3. The

works discussed are: (A) “Tears of Wine” [FC92], with alcohol concentration C = 70%, (B)

“Tears of wine: the stationary state”[VEN95] with experiments (BI) of data taken from Figure

5b of their paper with a curvature-driven film and C = 70%. and (BII) of data taken from

Figure 5b, now with a gravity-driven regime and C = 70%. As mentioned in section 4.4, (BI)

and (BII) refer to the same physical setting with different assumptions when calculating the

surface tension gradient τ . (C) “Evaporative Instabilities in Thin Films” [HB01] experiment

(CI) refers to the settings described in Table 3 and Figure 10 of [HB01]. Experiment (CII)

refers to Table 3 in [HB01] but in addition uses the experimental settings given in Figure 11

of the same paper. (D) “Tears of wine: new theory on an old phenomena” [VS15] presents

two experiments, for wine and cognac. We denote the experiments as (DI) and (DII). In the

tables, b∗ refers to the precursor thin film height measured in µm, h∗∞ (µm) refers to the

height of the film at the bulk (of the thin film), γ refers to the surface tension (N/m), τ (Pa)

refers to the surface tension gradient, α is the inclination angle measured in degrees, µ is the

dynamic viscosity of the film (mili- Pa s), and C is the volumetric water-ethanol fraction.

The collection of symbols and typical dimensional values are also presented in Table 4.1 for

convenience.

In the third column of the tables of the experiments we present dimensionless values for

(D, b) that appear in the PDE model in equation (4.7). We remark that some of the values we

present are interpolated from other experiments. For example, in Table 4.2, the dimensional

precursor value b∗ is only provided in the literature for experiment (A). For simplicity, we

use the dimensional precursor thickness b∗ = 2µm of (A) for the other experiments with high

alcohol concentrations and low inclination angles (experiments, (BI), (BII), and (CI)). For

experiments with higher inclination angles and lower alcohol concentrations (experiments

(CII), (DI), and (DII)), the authors did not report the precursor height and we may not

interpolate it since we do not have b∗ measurements for such settings.

178

Table 4.1: Relevant dimensional groups used in Table 4.2

Physical Quantity Symbol Typical dim. value Dimensionless range

Upstream thickness h∗∞, h∞ 30µm–98µm 0–2.1

Precursor thickness b∗, b 2µm 10−2–10−1

Surface tension γ 22.39mN/m – 72.86mN/m

Surface tension gradient τ

Inclination angle α 7○–45○

Fluid dynamic viscosity µ 1.1mPa s§

Alcohol concentration C 0.15–0.7

Density ρ 784kg/m3 − 973kg/m3

179

Table 4.2: Experimental results from literature and corresponding theory

Experiment Dimensional constants Dimensionless constants Images of experimental results

(A) Tears of Wine

(Fournier and Cazabat) [FC92]

h∗∞ = 55µm

b∗ = 2µm

γ = 0.0298N/m∗∗

τ = 0.055Pa

α = 9○

µ = 2.1mPa s§

C = 0.7

ρ = 852 kg/m3

b = 0.0317

D = 0.353

Experiment (A) settings at different times

(CI) Evaporative

instabilities

in climbing films

experiment I

(Hosoi and Bush) [HB01]

h∗∞ = 30µm

b∗ = 2µm†

γ = 0.027N/m

τ = 0.025Pa

α = 4○

µ = 1mPa s§

C = 0.65 − 0.7

ρ = 852 kg/m3

b = 0.031

D = 0.639

α = 4
○

Concentration as in (CI) Reprinted with permission from [HB01]

and the Cambridge University Press.

(DI) Tears of wine:

new insights on an

old phenomenon

(wine)

(Venerus and Simavilla) [VS15]

γ = 0.054N/m∗∗

τ = 0.08Pa

α = 45○

µ = 1.1mPa s§

C = 0.13

ρ = 973 kg/m3

D = 0.0338

Image of experiment (DI) ¶

Our experiment

shown in Figure 4.8

b∗ = 2µm†

γ = 0.0298N/m∗∗

τ = 0.055Pa

α = 9○

µ = 2.1mPa s§

C = 0.7

ρ = 852 kg/m3

Set-up matches (A)

b = 0.0317

D = 0.353

∗∗ refers to surface tension interpolated from [VAN95] § refers to viscosity interpolated from [Vis]

† refers to precursor thickness taken from [FC92] ¶ Reproduced from “Tears of wine: new insights on an old phenomenon”

[VS15] under compliance with the creative commons 4.0 licence.

180

Table 4.3: Additional experimental results from literature and corresponding theory

Experiment Dimensional constants Dimensionless constants

(CII) Evaporative instabilities in

climbing films experiment II

(Hosoi and Bush) [HB01]

γ = 0.027N/m

τ = 0.025Pa, α = 20.05○

µ = 1mPa s§ , C = 0.65 − 0.7

ρ = 852 kg/m3

D = 0.072

(BI) Tear of wine:

The stationary state

experiment I

(Vuilleumier et al.) [VEN95]

h∗∞ = 98µm, b∗ = 2µm†

γ = 0.0298N/m∗∗ , τ = 0.033Pa

α = 6○ , µ = 2.1mPa s§

C = 0.7 , ρ = 852 kg/m3

b = 0.0353

D = 0.43

(BII) Tear of wine:

The stationary state

experiment II

(Vuilleumier et al.) [VEN95]

b∗ = 2µm†, γ = 0.0298N/m∗∗

τ = 0.10Pa, α = 6○

µ = 2.1mPa s§, C = 0.7

ρ = 852 kg/m3

b = 0.0106

D = 0.966

(DII) Tears of wine: new insights

on an old phenomenon

(cognac)

(Venerus and Simavilla) [VS15]

γ = 0.032N/m∗∗

τ = 0.06Pa, α = 45○

µ = 2.35mPa s§, C = 0.35

ρ = 926 kg/m3

D = 0.0346

∗∗ refers to surface tension interpolated from [VAN95] § refers to viscosity interpolated from [Vis]

† refers to precursor height taken from [FC92]

181

REFERENCES

[ACB17] M. Arjovsky, S. Chintala, and L. Bottou. “Wasserstein GAN.” arXiv:1701.07875
[cs, stat], 2017.

[ACB19] D. Arpit, V. Campos, and Y. Bengio. “How to initialize your network? robust
initialization for weightnorm & resnets.” In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d Alché-Buc, E. Fox, and R. Garnett, editors, Advances in
Neural Information Processing Systems 32, pp. 10902–10911. Curran Associates,
Inc., 2019.

[ADG16] M. Andrychowicz, M. Denil, S. Gomez, M. W. Hoffman, D. Pfau, T. Schaul,
B. Shillingford, and N. De Freitas. “Learning to learn by gradient descent by
gradient descent.” arXiv preprint arXiv:1606.04474, 2016.

[ADH19] S. Arora, S. Du, W. Hu, Z. Li, and R. Wang. “Fine-grained analysis of opti-
mization and generalization for overparameterized two-layer neural networks.” In
Proceedings of the 36th International Conference on Machine Learning, volume 97
of Proceedings of Machine Learning Research, pp. 322–332. PMLR, 2019.

[AGR20] A. Achille, A. Golatkar, A. Ravichandran, M. Polito, and S. Soatto. “Lqf: Linear
quadratic fine-tuning.” arXiv preprint arXiv:2012.11140, 2020.

[AGS05] L. Ambrosio, N. Gigli, and Savaré Giuseppe. Gradient Flows: In Metric Spaces
and in the Space of Probability Measures. Birkhäuser Basel, Basel, 2005.

[AL18] J. Adler and S. Lunz. “Banach Wasserstein GAN.” arXiv:1806.06621 [cs, math],
2018.

[ALL19a] Z. Allen-Zhu, Y. Li, and Y. Liang. “Learning and generalization in overparameter-
ized neural networks, going beyond two layers.” In Advances in Neural Information
Processing Systems 32, pp. 6158–6169. 2019a.

[ALL19b] S. Arora, Z. Li, and K. Lyu. “Theoretical analysis of auto rate-tuning by batch
normalization.” In International Conference on Learning Representations, 2019b.

[ALS19] Z. Allen-Zhu, Y. Li, and Z. Song. “A convergence theory for deep learning via
over-parameterization.” In Proceedings of the 36th International Conference on
Machine Learning, volume 97 of Proceedings of Machine Learning Research, pp.
242–252. PMLR, 2019.

[AMS97] C. G. Atkeson, A. W. Moore, and S. Schaal. “Locally weighted learning.” Lazy
learning, pp. 11–73, 1997.

[Ano22] Anonymous. “DIVA: Dataset derivative of a learning task.” In Submitted to The
Tenth International Conference on Learning Representations, 2022. under review.

182

[App15] Applied Science. “The science of wineglass tears (or wine legs).”, 2015. You Tube
Video https://www.youtube.com/watch?v=s6w0tSg-msk.

[ASY19] T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama. “Optuna: A next-
generation hyperparameter optimization framework.” In Proceedings of the 25th
ACM SIGKDD international conference on knowledge discovery & data
mining, pp. 2623–2631, 2019.

[BB97] A. L. Bertozzi and M. P. Brenner. “Linear stability and transient growth in driven
contact lines.” Physics of Fluids, 9(3):530–539, 1997.

[BBB99] M. Birattari, G. Bontempi, and H. Bersini. “Lazy learning meets the recursive
least squares algorithm.” Advances in neural information processing systems, pp.
375–381, 1999.

[BBG20] H. S. Behl, A. G. Baydin, R. Gal, P. H. Torr, and V. Vineet. “Autosimu-
late:(quickly) learning synthetic data generation.” In European Conference on
Computer Vision, pp. 255–271. Springer, 2020.

[BBL17] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst. “Ge-
ometric deep learning: Going beyond euclidean data.” IEEE Signal Processing
Magazine, 34(4):18–42, 2017.

[BBN19] D. Brickley, M. Burgess, and N. Noy. “Google dataset search: Building a search en-
gine for datasets in an open web ecosystem.” In The World Wide Web Conference,
pp. 1365–1375, 2019.

[BF99] C. E. Brodley and M. A. Friedl. “Identifying mislabeled training data.” Journal
of artificial intelligence research, 11:131–167, 1999.

[BF12] A. L. Bertozzi and A. Flenner. “Diffuse interface models on graphs for classification
of high dimensional data.” Multiscale Modeling & Simulation, 10(3):1090–1118,
2012.

[BFL17] D. Balduzzi, M. Frean, L. Leary, J. Lewis, K. W.-D. Ma, and B. McWilliams.
“The shattered gradients problem: If resnets are the answer, then what is the
question?” In Proceedings of the 34th International Conference on Machine
Learning, volume 70 of Proceedings of Machine Learning Research, pp. 342–350.
JMLR. org, 2017.

[BGS18] N. Bjorck, C. P. Gomes, B. Selman, and K. Q. Weinberger. “Understanding batch
normalization.” In Advances in Neural Information Processing Systems 31, pp.
7694–7705. 2018.

[Bis95] C. M. Bishop. “Training with noise is equivalent to Tikhonov regularization.”
Neural Computation, 7(1):108–116, 1995.

183

[BJG17] E. Bernton, P. E. Jacob, M. Gerber, and C. P. Robert. “Inference in generative
models using the wasserstein distance.” arXiv preprint arXiv:1701.05146, 2017.

[BKH16] J. L. Ba, J. R. Kiros, and G. E. Hinton. “Layer normalization.” Deep Learning
Symposium, NIPS-2016, 2016.

[BL19] J. Byrd and Z. Lipton. “What is the effect of importance weighting in deep
learning?” In International Conference on Machine Learning, pp. 872–881.
PMLR, 2019.

[BMF98] A. L. Bertozzi, A. Münch, X. Fanton, and A. M. Cazabat. “Contact line stability
and “undercompressive shocks” in driven thin film flow.” Physical Review Letters,
81(23):5169, 1998.

[BMS99] A. L. Bertozzi, A. Münch, and M. Shearer. “Undercompressive shocks in thin film
flows.” Physica D: Nonlinear Phenomena, 134(4):431–464, 1999.

[BSB05] M. Bowen, J. Sur, A. L. Bertozzi, and R. P. Behringer. “Nonlinear dynamics of
two-dimensional undercompressive shocks.” Physica D: Nonlinear Phenomena,
209(1-4):36–48, 2005.

[Caw06] G. C. Cawley. “Leave-one-out cross-validation based model selection criteria for
weighted ls-svms.” In The 2006 IEEE international joint conference on neural
network proceedings, pp. 1661–1668. IEEE, 2006.

[CBG17] M. Cissé, P. Bojanowski, E. Grave, Y. Dauphin, and N. Usunier. “Parseval
networks: Improving robustness to adversarial examples.” In ICML 34, pp.
854–863, 2017.

[CC93] P. Carles and A.-M. Cazabat. “The thickness of surface-tension-gradient-driven
spreading films.” Journal of colloid and interface science, 157(1):196–201, 1993.

[CCC20] C.-Y. Chen, C.-H. Chang, and E. Y. Chang. “Hypernetwork-based augmentation.”
arXiv preprint arXiv:2006.06320, 2020.

[CG19] Y. Cao and Q. Gu. “Generalization bounds of stochastic gradient descent for
wide and deep neural networks.” In Advances in Neural Information Processing
Systems 32, pp. 10836–10846. 2019.

[CG20] Y. Cao and Q. Gu. “Generalization error bounds of gradient descent for learning
over-parameterized deep ReLU networks.” In AAAI, 2020.

[CHL12] S.-N. Chow, W. Huang, Y. Li, and H. Zhou. “Fokker–Planck Equations for a
Free Energy Functional or Markov Process on a Graph.” Archive for Rational
Mechanics and Analysis, 203(3):969–1008, 2012.

184

[CJL19] Y. Cui, M. Jia, T.-Y. Lin, Y. Song, and S. Belongie. “Class-balanced loss based
on effective number of samples.” In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 9268–9277, 2019.

[CKB17] N. Carlini, G. Katz, C. Barrett, and D. L. Dill. “Provably minimally-distorted
adversarial examples.” CoRR, abs/1709.10207, 2017.

[CLM17] H.-S. Chang, E. Learned-Miller, and A. McCallum. “Active bias: Training more
accurate neural networks by emphasizing high variance samples.” Advances in
Neural Information Processing Systems, 30:1002–1012, 2017.

[CLS19] Y. Cai, Q. Li, and Z. Shen. “A quantitative analysis of the effect of batch
normalization on gradient descent.” In International Conference on Machine
Learning, pp. 882–890, 2019.

[CLZ18] S.-N. Chow, W. Li, and H. Zhou. “Entropy dissipation of Fokker-Planck equations
on graphs.” Discrete & Continuous Dynamical Systems, series A, 2018.

[COB19] L. Chizat, E. Oyallon, and F. Bach. “On lazy training in differentiable program-
ming.” In Advances in Neural Information Processing Systems 32, pp. 2937–2947.
2019.

[COM15] COMSOL. “Marangoni effect: Tears of wine (and rum).”, 2015. You Tube Video
https://www.youtube.com/watch?v=i2rqCRMN4LQ.

[CT10] G. C. Cawley and N. L. Talbot. “On over-fitting in model selection and subsequent
selection bias in performance evaluation.” The Journal of Machine Learning
Research, 11:2079–2107, 2010.

[CYM19] C. Coleman, C. Yeh, S. Mussmann, B. Mirzasoleiman, P. Bailis, P. Liang,
J. Leskovec, and M. Zaharia. “Selection via proxy: Efficient data selection
for deep learning.” In International Conference on Learning Representations,
2019.

[CZM18] E. D. Cubuk, B. Zoph, D. Mane, V. Vasudevan, and Q. V. Le. “Autoaugment:
Learning augmentation policies from data.” arXiv preprint arXiv:1805.09501,
2018.

[Dan15] Dan Quinn. “Why does wine cry?”, 2015. You Tube Video
https://www.youtube.com/watch?v=tgrTbvSnE50.

[DAR21] A. Deshpande, A. Achille, A. Ravichandran, H. Li, L. Zancato, C. Fowlkes,
R. Bhotika, S. Soatto, and P. Perona. “A linearized framework and a new
benchmark for model selection for fine-tuning.” arXiv preprint arXiv:2102.00084,
2021.

185

[DDS09] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. “Imagenet: A
large-scale hierarchical image database.” In 2009 IEEE conference on computer
vision and pattern recognition, pp. 248–255. Ieee, 2009.

[DGM20] Y. Dukler, Q. Gu, and G. Montufar. “Optimization theory for ReLU neural
networks trained with normalization layers.” In H. D. III and A. Singh, editors,
Proceedings of the 37th International Conference on Machine Learning, volume
119 of Proceedings of Machine Learning Research, pp. 2751–2760. PMLR, 2020.

[DGZ17] Q. Dong, S. Gong, and X. Zhu. “Class rectification hard mining for imbalanced
deep learning.” In Proceedings of the IEEE International Conference on Computer
Vision, pp. 1851–1860, 2017.

[DJF20] Y. Dukler, H. Ji, C. Falcon, and A. L. Bertozzi. “Theory for undercompressive
shocks in tears of wine.” Physical Review Fluids, 5(3):034002, 2020.

[DLL19a] S. Du, J. Lee, H. Li, L. Wang, and X. Zhai. “Gradient descent finds global minima
of deep neural networks.” In Proceedings of the 36th International Conference on
Machine Learning, volume 97 of Proceedings of Machine Learning Research, pp.
1675–1685, Long Beach, California, USA, 2019a. PMLR.

[DLL19b] Y. Dukler, W. Li, A. Lin, and G. Montufar. “Wasserstein of Wasserstein loss for
learning generative models.” In K. Chaudhuri and R. Salakhutdinov, editors, Pro-
ceedings of the 36th International Conference on Machine Learning, volume 97 of
Proceedings of Machine Learning Research, pp. 1716–1725, Long Beach, California,
USA, 2019b. PMLR.

[DLT18] S. S. Du, J. D. Lee, and Y. Tian. “When is a convolutional filter easy to learn?”
In International Conference on Learning Representations, 2018.

[DMM19] P. Dognin, I. Melnyk, Y. Mroueh, J. Ross, C. D. Santos, and T. Sercu. “Wasserstein
barycenter model ensembling.” arXiv preprint arXiv:1902.04999, 2019.

[DZP19] S. S. Du, X. Zhai, B. Poczos, and A. Singh. “Gradient descent provably optimizes
over-parameterized neural networks.” In International Conference on Learning
Representations, 2019.

[DZS18] I. Deshpande, Z. Zhang, and A. G. Schwing. “Generative modeling using the
sliced wasserstein distance.” In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 3483–3491, 2018.

[EMH19] T. Elsken, J. H. Metzen, F. Hutter, et al. “Neural architecture search: A survey.”
J. Mach. Learn. Res., 20(55):1–21, 2019.

[EY18] B. Engquist and Y. Yang. “Seismic imaging and optimal transport.”
arXiv:1808.04801, 2018.

186

[FC92] J. Fournier and A. Cazabat. “Tears of wine.” EPL (Europhysics Letters),
20(6):517, 1992.

[FC98] X. Fanton and A. Cazabat. “Spreading and instabilities induced by a solutal
marangoni effect.” Langmuir, 14(9):2554–2561, 1998.

[FCQ96] X. Fanton, A. Cazabat, and D. Quéré. “Thickness and shape of films driven by a
marangoni flow.” Langmuir, 12(24):5875–5880, 1996.

[FKE19] M. Feurer, A. Klein, K. Eggensperger, J. T. Springenberg, M. Blum, and F. Hutter.
“Auto-sklearn: efficient and robust automated machine learning.” In Automated
Machine Learning, pp. 113–134. Springer, Cham, 2019.

[FOA19] C. Finlay, A. M. Oberman, and B. Abbasi. “Improved robustness to adversarial
examples using lipschitz regularization of the loss.”, 2019.

[FZM15] C. Frogner, C. Zhang, H. Mobahi, M. Araya-Polo, and T. Poggio. “Learning with
a Wasserstein Loss.” arXiv:1506.05439 [cs, stat], 2015.

[GAA17] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville. “Im-
proved training of wasserstein GANs.” In Advances in Neural Information Pro-
cessing Systems 30, pp. 5767–5777. Curran Associates, Inc., 2017.

[GBS06] J. B. Greer, A. L. Bertozzi, and G. Sapiro. “Fourth order partial differential
equations on general geometries.” Journal of Computational Physics, 216(1):216–
246, 2006.

[GCK17] R. Gao, X. Chen, and A. J. Kleywegt. “Wasserstein distributional robustness and
regularization in statistical learning.” arXiv preprint arXiv:1712.06050, 2017.

[GG17] I. Gitman and B. Ginsburg. “Comparison of batch normalization and weight
normalization algorithms for the large-scale image classification.” arXiv preprint
arXiv:1709.08145, 2017.

[GHL15] J. Gu, B. Hua, and S. Liu. “Spectral distances on graphs.” Discrete Applied
Mathematics, 190:56–74, 2015.

[GHP07] G. Griffin, A. Holub, and P. Perona. “Caltech-256 object category dataset.” 2007.

[GLO19] W. Gangbo, W. Li, S. Osher, and M. Puthawala. “Unnormalized optimal trans-
port.” Journal of Computational Physics, 399:108940, 2019.

[GPC18] A. Genevay, G. Peyre, and M. Cuturi. “Learning generative models with sinkhorn
divergences.” In International Conference on Artificial Intelligence and Statistics,
pp. 1608–1617, 2018.

187

[GRC18] C. Guo, M. Rana, M. Cisse, and L. van der Maaten. “Countering adversarial
images using input transformations.” In International Conference on Learning
Representations, 2018.

[GRP01] A. Golovin, B. Rubinstein, and L. Pismen. “Effect of van der waals interactions
on the fingering instability of thermally driven thin wetting films.” Langmuir,
17(13):3930–3936, 2001.

[GS93] P. J. Green and B. W. Silverman. Nonparametric regression and generalized linear
models: a roughness penalty approach. Crc Press, 1993.

[GSS15] I. J. Goodfellow, J. Shlens, and C. Szegedy. “Explaining and harnessing adversarial
examples.” In ICLR, 2015.

[HA17] M. Hein and M. Andriushchenko. “Formal guarantees on the robustness of a
classifier against adversarial manipulation.” In Advances in Neural Information
Processing Systems 30, pp. 2266–2276. Curran Associates, Inc., 2017.

[HB01] A. Hosoi and J. W. Bush. “Evaporative instabilities in climbing films.” Journal
of Fluid Mechanics, 442:217–239, 2001.

[HBG18] E. Hoffer, R. Banner, I. Golan, and D. Soudry. “Norm matters: efficient and accu-
rate normalization schemes in deep networks.” In Advances in Neural Information
Processing Systems 31, pp. 2160–2170. 2018.

[HCH07] X. Hong, S. Chen, and C. J. Harris. “A kernel-based two-class classifier for
imbalanced data sets.” IEEE Transactions on neural networks, 18(1):28–41, 2007.

[HHS17] E. Hoffer, I. Hubara, and D. Soudry. “Train longer, generalize better: closing the
generalization gap in large batch training of neural networks.” In Advances in
Neural Information Processing Systems 30, pp. 1731–1741. 2017.

[HJS20] M. Hwang, Y. Jeong, and W. Sung. “Data distribution search to select core-set for
machine learning.” In Proceedings of the 9th International Conference on Smart
Media & Applications (SMA 2020), Jeju, Korea, pp. 17–19, 2020.

[HKF18] K. M. Hosny, M. A. Kassem, and M. M. Foaud. “Skin cancer classification using
deep learning and transfer learning.” In 2018 9th Cairo International Biomedical
Engineering Conference (CIBEC), pp. 90–93. IEEE, 2018.

[HLL19] C. Huang, Y. Li, C. C. Loy, and X. Tang. “Deep imbalanced learning for face
recognition and attribute prediction.” IEEE transactions on pattern analysis and
machine intelligence, 42(11):2781–2794, 2019.

[HS17] C. Hwang and J. Shim. “Geographically weighted least squares-support vector
machine.” Journal of the Korean Data and Information Science Society, 28(1):227–
235, 2017.

188

[HZC21] X. He, K. Zhao, and X. Chu. “Automl: A survey of the state-of-the-art.”
Knowledge-Based Systems, 212:106622, 2021.

[IS15] S. Ioffe and C. Szegedy. “Batch normalization: Accelerating deep network training
by reducing internal covariate shift.” In Proceedings of the 32nd International
Conference on Machine Learning, volume 37 of Proceedings of Machine Learning
Research, pp. 448–456. PMLR, 2015.

[JF18] S. Jenni and P. Favaro. “Deep bilevel learning.” In Proceedings of the European
conference on computer vision (ECCV), pp. 618–633, 2018.

[JG18] D. Jakubovitz and R. Giryes. “Improving DNN robustness to adversarial attacks
using jacobian regularization.” CoRR, abs/1803.08680, 2018.

[JGH18] A. Jacot, F. Gabriel, and C. Hongler. “Neural tangent kernel: Convergence and
generalization in neural networks.” In Advances in Neural Information Processing
Systems 31, pp. 8571–8580. 2018.

[JHS20] Y. Jeong, M. Hwang, and W. Sung. “Dataset distillation for core training set
construction.” 2020.

[JVE20] M. Joneidi, S. Vahidian, A. Esmaeili, W. Wang, N. Rahnavard, B. Lin, and
M. Shah. “Select to better learn: Fast and accurate deep learning using data
selection from nonlinear manifolds.” In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 7819–7829, 2020.

[KDL19] J. Kohler, H. Daneshmand, A. Lucchi, T. Hofmann, M. Zhou, and K. Neymeyr.
“Exponential convergence rates for batch normalization: The power of length-
direction decoupling in non-convex optimization.” In Proceedings of Machine
Learning Research, volume 89 of Proceedings of Machine Learning Research, pp.
806–815. PMLR, 2019.

[KGB17] A. Kurakin, I. J. Goodfellow, and S. Bengio. “Adversarial machine learning at
scale.” In ICLR. OpenReview.net, 2017.

[KL17] P. W. Koh and P. Liang. “Understanding black-box predictions via influence
functions.” In International Conference on Machine Learning, pp. 1885–1894.
PMLR, 2017.

[KSD13] J. Krause, M. Stark, J. Deng, and L. Fei-Fei. “3d object representations for
fine-grained categorization.” In 4th International IEEE Workshop on 3D Repre-
sentation and Recognition (3dRR-13), Sydney, Australia, 2013.

[KSM21] K. Killamsetty, D. Sivasubramanian, B. Mirzasoleiman, G. Ramakrishnan, A. De,
and R. K. Iyer. “GRAD-MATCH: A gradient matching based data subset selection
for efficient learning.” CoRR, abs/2103.00123, 2021.

189

[Laf88] J. D. Lafferty. “The Density Manifold and Configuration Space Quantization.”
Transactions of the American Mathematical Society, 305(2):699–741, 1988.

[LCS19] C. Liu, L.-C. Chen, F. Schroff, H. Adam, W. Hua, A. L. Yuille, and L. Fei-
Fei. “Auto-deeplab: Hierarchical neural architecture search for semantic image
segmentation.” In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 82–92, 2019.

[LCY20] H. Li, P. Chaudhari, H. Yang, M. Lam, A. Ravichandran, R. Bhotika, and
S. Soatto. “Rethinking the hyperparameters for fine-tuning.” arXiv preprint
arXiv:2002.11770, 2020.

[LDL19] A. T. Lin, Y. Dukler, W. Li, and G. Montúfar. “Wasserstein diffusion tikhonov
regularization.” arXiv preprint arXiv:1909.06860, 2019.

[LGG17] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár. “Focal loss for dense object
detection.” In Proceedings of the IEEE international conference on computer
vision, pp. 2980–2988, 2017.

[LHH21] A. Liu, Z. Huang, Z. Huang, and N. Wang. “Direct differentiable augmentation
search.” arXiv preprint arXiv:2104.04282, 2021.

[LHW20] Y. Li, G. Hu, Y. Wang, T. M. Hospedales, N. M. Robertson, and Y. Yang. “DADA:
differentiable automatic data augmentation.” 2020.

[Li18] W. Li. “Geometry of probability simplex via optimal transport.” arXiv:1803.06360
[math], 2018.

[Liu08] J. S. Liu. Monte Carlo strategies in scientific computing. Springer Science &
Business Media, 2008.

[LJD17] L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar. “Hyperband:
A novel bandit-based approach to hyperparameter optimization.” The Journal of
Machine Learning Research, 18(1):6765–6816, 2017.

[LKK19] S. Lim, I. Kim, T. Kim, C. Kim, and S. Kim. “Fast autoaugment.” arXiv preprint
arXiv:1905.00397, 2019.

[LL18] Y. Li and Y. Liang. “Learning overparameterized neural networks via stochas-
tic gradient descent on structured data.” In Advances in Neural Information
Processing Systems 31, pp. 8157–8166. 2018.

[LLD18] F. Liao, M. Liang, Y. Dong, T. Pang, X. Hu, and J. Zhu. “Defense against
adversarial attacks using high-level representation guided denoiser.” In CVPR,
pp. 1778–1787, 2018.

[LLO18] A. Lin, W. Li, S. Osher, and G. Montúfar. “Wasserstein proximal of GANs.”
CAM report 18-53, 2018.

190

[LLW19] B. Li, Y. Liu, and X. Wang. “Gradient harmonized single-stage detector.” In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pp.
8577–8584, 2019.

[LM18a] W. Li and G. Montúfar. “Natural gradient via optimal transport.” Information
Geometry, 1(2):181–214, 2018a.

[LM18b] W. Li and G. Montúfar. “Ricci curvature for parametric statistics via optimal
transport.” arXiv:1807.07095, 2018b.

[LSY18] H. Liu, K. Simonyan, and Y. Yang. “Darts: Differentiable architecture search.”
arXiv preprint arXiv:1806.09055, 2018.

[LWS18] P. Luo, X. Wang, W. Shao, and Z. Peng. “Understanding regularization in batch
normalization.” arXiv preprint arXiv:1809.00846, 2018.

[LY17] Y. Li and Y. Yuan. “Convergence analysis of two-layer neural networks with
ReLU activation.” In Advances in Neural Information Processing Systems 30, pp.
597–607. 2017.

[Maa11] J. Maas. “Gradient flows of the entropy for finite Markov chains.” Journal of
Functional Analysis, 261(8):2250–2292, 2011.

[MB99] A. Münch and A. Bertozzi. “Rarefaction–undercompressive fronts in driven films.”
Physics of Fluids, 11(10):2812–2814, 1999.

[MCY18] R. Meng, Q. Cui, and C. Yuan. “A survey of image information hiding algorithms
based on deep learning.” Computer Modeling in Engineering & Sciences, 117:425–
454, 2018.

[ME06] A. Münch and P. Evans. “Interaction of advancing fronts and meniscus profiles
formed by surface-tension-gradient-driven liquid films.” SIAM Journal on Applied
Mathematics, 66(5):1610–1631, 2006.

[MFF16] S. Moosavi-Dezfooli, A. Fawzi, and P. Frossard. “Deepfool: A simple and accurate
method to fool deep neural networks.” In CVPR, pp. 2574–2582. IEEE Computer
Society, 2016.

[MFF17] S. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, and P. Frossard. “Universal adversarial
perturbations.” In CVPR, pp. 86–94. IEEE Computer Society, 2017.

[MG15] J. Martens and R. Grosse. “Optimizing neural networks with Kronecker-factored
approximate curvature.” In Proceedings of the 32nd International Conference on
Machine Learning, volume 37 of Proceedings of Machine Learning Research, pp.
2408–2417. PMLR, 2015.

191

[MGM18] R. Mormont, P. Geurts, and R. Marée. “Comparison of deep transfer learning
strategies for digital pathology.” In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition Workshops, pp. 2262–2271, 2018.

[MHJ92] A. W. Moore, D. J. Hill, and M. P. Johnson. “An empirical investigation of brute
force to choose features, smoothers and function approximators.” In Computational
Learning Theory and Natural Learning Systems. MIT Press, 1992.

[Mie11] A. Mielke. “A Gradient Structure for Reaction–diffusion Systems and for Energy-
Drift-Diffusion Systems.” Nonlinearity, 24(4):1329, 2011.

[MKR13] S. Maji, J. Kannala, E. Rahtu, M. Blaschko, and A. Vedaldi. “Fine-grained visual
classification of aircraft.” Technical report, 2013.

[MLL20] F. Mu, Y. Liang, and Y. Li. “Gradients as features for deep representation
learning.” arXiv preprint arXiv:2004.05529, 2020.

[MMC16] G. Montavon, K.-R. Müller, and M. Cuturi. “Wasserstein Training of Restricted
Boltzmann Machines.” In Advances in Neural Information Processing Systems 29,
pp. 3718–3726. Curran Associates, Inc., 2016.

[MSG17] Y. Mroueh, T. Sercu, and V. Goel. “McGan: Mean and covariance feature
matching GAN.” In Proceedings of the 34th International Conference on Machine
Learning, volume 70 of Proceedings of Machine Learning Research, pp. 2527–2535.
PMLR, 2017.

[MU49] N. Metropolis and S. Ulam. “The monte carlo method.” Journal of the American
statistical association, 44(247):335–341, 1949.

[Mun00] A. Münch. “Shock transitions in marangoni gravity-driven thin-film flow.” Non-
linearity, 13(3):731, 2000.

[Mun03] A. Münch. “Pinch-off transition in marangoni-driven thin films.” Physical Review
Letters, 91(1):016105, 2003.

[NH10] V. Nair and G. E. Hinton. “Rectified linear units improve restricted Boltzmann
machines.” In Proceedings of the 27th international conference on machine learning
(ICML-10), pp. 807–814, 2010.

[NJT06] E. Nowak, F. Jurie, and B. Triggs. “Sampling strategies for bag-of-features
image classification.” In European Conference on Computer Vision, pp. 490–503.
Springer, 2006.

[NRS21] N. Nikolova, R. M. Rodŕıguez, M. Symes, D. Toneva, K. Kolev, and K. Teneked-
jiev. “Outlier detection algorithms over fuzzy data with weighted least squares.”
International Journal of Fuzzy Systems, pp. 1–23, 2021.

192

[NWC11] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng. “Reading
digits in natural images with unsupervised feature learning.” 2011.

[NWL18] A. Nikolov, D. Wasan, and J. Lee. “Tears of wine: The dance of the droplets.”
Advances in Colloid and Interface Science, 2018.

[NYC15] A. M. Nguyen, J. Yosinski, and J. Clune. “Deep neural networks are easily fooled:
High confidence predictions for unrecognizable images.” In CVPR, pp. 427–436,
2015.

[NZ08] M.-E. Nilsback and A. Zisserman. “Automated flower classification over a large
number of classes.” In 2008 Sixth Indian Conference on Computer Vision, Graphics
& Image Processing, pp. 722–729. IEEE, 2008.

[ODB97] A. Oron, S. H. Davis, and S. G. Bankoff. “Long-scale evolution of thin liquid
films.” Reviews of modern physics, 69(3):931, 1997.

[OS19] S. Oymak and M. Soltanolkotabi. “Towards moderate overparameterization: global
convergence guarantees for training shallow neural networks.” arXiv preprint
arXiv:1902.04674, 2019.

[Ott01] F. Otto. “The Geometry of Dissipative Evolution Equations: The Porous Medium
Equation.” Communications in Partial Differential Equations, 26(1-2):101–174,
2001.

[PC19] G. Peyré, M. Cuturi, et al. “Computational optimal transport.” Foundations and
Trends® in Machine Learning, 11(5-6):355–607, 2019.

[PFL17] H. Petzka, A. Fischer, and D. Lukovnicov. “On the regularization of Wasserstein
GANs.” arXiv:1709.08894 [cs, stat], 2017.

[PHO18] M. A. Puthawala, C. D. Hauck, and S. J. Osher. “Diagnosing forward operator
error using optimal transport.” arXiv:1810.12993, 2018.

[PLS20] G. Pruthi, F. Liu, M. Sundararajan, and S. Kale. “Estimating training data
influence by tracking gradient descent.” arXiv preprint arXiv:2002.08484, 2020.

[PVG11] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, et al. “Scikit-learn: Machine
learning in python.” the Journal of machine Learning research, 12:2825–2830,
2011.

[PVZ12] O. M. Parkhi, A. Vedaldi, A. Zisserman, and C. Jawahar. “Cats and dogs.” In
2012 IEEE conference on computer vision and pattern recognition, pp. 3498–3505.
IEEE, 2012.

193

[QLL10] T. Quan, X. Liu, and Q. Liu. “Weighted least squares support vector machine
local region method for nonlinear time series prediction.” Appl. Soft Comput.,
10(2):562–566, 2010.

[QT09] A. Quattoni and A. Torralba. “Recognizing indoor scenes.” In 2009 IEEE
Conference on Computer Vision and Pattern Recognition, pp. 413–420. IEEE,
2009.

[RKH21] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry,
A. Askell, P. Mishkin, J. Clark, et al. “Learning transferable visual models from
natural language supervision.” arXiv preprint arXiv:2103.00020, 2021.

[RL07] R. M. Rifkin and R. A. Lippert. “Notes on regularized least squares.” 2007.

[RRC17] E. Rezende, G. Ruppert, T. Carvalho, F. Ramos, and P. De Geus. “Malicious
software classification using transfer learning of resnet-50 deep neural network.” In
2017 16th IEEE International Conference on Machine Learning and Applications
(ICMLA), pp. 1011–1014. IEEE, 2017.

[RRS02] R. V. Roy, A. J. Roberts, and M. E. Simpson. “A lubrication model of coating
flows over a curved substrate in space.” Journal of Fluid Mechanics, 454:235–261,
2002.

[RS09] M.-K. von Renesse and K.-T. Sturm. “Entropic measure and Wasserstein diffusion.”
Ann. Probab., 37(3):1114–1191, 2009.

[RTG00] Y. Rubner, C. Tomasi, and L. J. Guibas. “The Earth Mover’s Distance as a Metric
for Image Retrieval.” International Journal of Computer Vision, 40(2):99–121,
2000.

[RZY18] M. Ren, W. Zeng, B. Yang, and R. Urtasun. “Learning to reweight examples
for robust deep learning.” In International Conference on Machine Learning, pp.
4334–4343. PMLR, 2018.

[SBB03] J. Sur, A. L. Bertozzi, and R. P. Behringer. “Reverse undercompressive shock
structures in driven thin film flow.” Physical Review Letters, 90(12):126105, 2003.

[SC00] M. Schneemilch and A. Cazabat. “Shock separation in wetting films driven by
thermal gradients.” Langmuir, 16(25):9850–9856, 2000.

[SDP15] J. Solomon, F. De Goes, G. Peyré, M. Cuturi, A. Butscher, A. Nguyen, T. Du, and
L. Guibas. “Convolutional Wasserstein distances: Efficient optimal transportation
on geometric domains.” ACM Transactions on Graphics (TOG), 34(4):66, 2015.

[SGG16] A. Shrivastava, A. Gupta, and R. Girshick. “Training region-based object detectors
with online hard example mining.” In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 761–769, 2016.

194

[SHD18] S. P. Singh, A. Hug, A. Dieuleveut, and M. Jaggi. “Wasserstein is all you need.”
arXiv preprint arXiv:1808.09663, 2018.

[SHS19] A. Shafahi, W. R. Huang, C. Studer, S. Feizi, and T. Goldstein. “Are adversarial
examples inevitable?” In ICLR, 2019.

[SK16] T. Salimans and D. P. Kingma. “Weight normalization: A simple reparameter-
ization to accelerate training of deep neural networks.” In Advances in Neural
Information Processing Systems 29, pp. 901–909. 2016.

[SKC18] P. Samangouei, M. Kabkab, and R. Chellappa. “Defense-GAN: Protecting classi-
fiers against adversarial attacks using generative models.” In ICLR, 2018.

[SKE17] S. Shafieezadeh-Abadeh, D. Kuhn, and P. M. Esfahani. “Regularization via mass
transportation.” arXiv preprint arXiv:1710.10016, 2017.

[SLF16] A. Schlichting, V. Laschos, M. Fathi, and M. Erbar. “Gradient flow structure
for McKean-Vlasov equations on discrete spaces.” Discrete and Continuous
Dynamical Systems, 36(12):6799–6833, 2016.

[SRG14] J. Solomon, R. Rustamov, L. Guibas, and A. Butscher. “Earth mover’s distances
on discrete surfaces.” ACM Transactions on Graphics (TOG), 33(4):67, 2014.

[STI18] S. Santurkar, D. Tsipras, A. Ilyas, and A. Madry. “How does batch normalization
help optimization?” In Advances in Neural Information Processing Systems 31,
pp. 2483–2493. 2018.

[Sto77] M. Stone. “Asymptotics for and against cross-validation.” Biometrika, pp. 29–35,
1977.

[SYZ19] H. Salman, G. Yang, H. Zhang, C.-J. Hsieh, and P. Zhang. “A convex re-
laxation barrier to tight robustness verification of neural networks.” ArXiv,
abs/1902.08722, 2019.

[SZS14] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and
R. Fergus. “Intriguing properties of neural networks.” In ICLR, 2014.

[TB18] R. Trichet and F. Bremond. “Dataset optimization for real-time pedestrian
detection.” IEEE access, 6:7719–7727, 2018.

[Tho55] J. Thomson. “Xlii. on certain curious motions observable at the surfaces of wine
and other alcoholic liquors.” Philosophical Magazine Series 4, 10(67):330–333,
1855.

[Tia17] Y. Tian. “An analytical formula of population gradient for two-layered ReLU
network and its applications in convergence and critical point analysis.” In
Proceedings of the 34th International Conference on Machine Learning-Volume
70, pp. 3404–3413. JMLR. org, 2017.

195

[TL19] M. Tan and Q. Le. “Efficientnet: Rethinking model scaling for convolutional neural
networks.” In International Conference on Machine Learning, pp. 6105–6114.
PMLR, 2019.

[TMW20] M. Thapa, S. B. Mulani, and R. W. Walters. “Adaptive weighted least-squares
polynomial chaos expansion with basis adaptivity and sequential adaptive sam-
pling.” Computer Methods in Applied Mechanics and Engineering, 360:112759,
2020.

[VAN95] G. Vazquez, E. Alvarez, and J. M. Navaza. “Surface tension of alcohol water+
water from 20 to 50. degree. c.” Journal of Chemical and Engineering Data,
40(3):611–614, 1995.

[VEN95] R. Vuilleumier, V. Ego, L. Neltner, and A. Cazabat. “Tears of wine: the stationary
state.” Langmuir, 11(10):4117–4121, 1995.

[Ver18] R. Vershynin. High-dimensional probability: An introduction with applications in
data science, volume 47. Cambridge University Press, 2018.

[Vil09] C. Villani. Optimal Transport: Old and New. Number 338 in Grundlehren der
mathematischen Wissenschaften. Springer, Berlin, 2009.

[Vis] “Viscosity of two component mixtures.” http://www.rheosense.com/

applications/viscosity/two-component-mixtures. Accessed: 2018-03-10.

[VS15] D. C. Venerus and D. N. Simavilla. “Tears of wine: New insights on an old
phenomenon.” Scientific Reports, 5:16162, 2015.

[VSP17] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser,
and I. Polosukhin. “Attention is all you need.” In Advances in neural information
processing systems, pp. 5998–6008, 2017.

[WBM10] P. Welinder, S. Branson, T. Mita, C. Wah, F. Schroff, S. Belongie, and P. Per-
ona. “Caltech-UCSD Birds 200.” Technical Report CNS-TR-2010-001, California
Institute of Technology, 2010.

[WDW19] X. Wu, S. S. Du, and R. Ward. “Global convergence of adaptive gradient methods
for an over-parameterized neural network.” arXiv preprint arXiv:1902.07111,
2019.

[WDZ19] B. Wu, X. Dai, P. Zhang, Y. Wang, F. Sun, Y. Wu, Y. Tian, P. Vajda, Y. Jia, and
K. Keutzer. “Fbnet: Hardware-aware efficient convnet design via differentiable
neural architecture search.” In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 10734–10742, 2019.

[WHY08] W. Wen, Z. Hao, and X. Yang. “A heuristic weight-setting strategy and itera-
tively updating algorithm for weighted least-squares support vector regression.”
Neurocomputing, 71(16-18):3096–3103, 2008.

196

http://www.rheosense.com/applications/viscosity/two-component-mixtures
http://www.rheosense.com/applications/viscosity/two-component-mixtures

[WLS18] B. Wang, A. Lin, Z. Shi, W. Zhu, P. Yin, A. L. Bertozzi, and S. J. Osher.
“Adversarial defense via data dependent activation function and total variation
minimization.” CoRR, abs/1809.08516, 2018.

[WSK19] E. Wong, F. Schmidt, and Z. Kolter. “Wasserstein adversarial examples via
projected Sinkhorn iterations.” In Proceedings of the 36th International Conference
on Machine Learning, volume 97 of Proceedings of Machine Learning Research,
pp. 6808–6817, Long Beach, California, USA, 2019. PMLR.

[WWB18] X. Wu, R. Ward, and L. Bottou. “WNGrad: Learn the learning rate in gradient
descent.” arXiv preprint arXiv:1803.02865, 2018.

[WYS18] B. Wang, B. Yuan, Z. Shi, and S. J. Osher. “EnResNet: ResNet ensemble via the
Feynman-Kac formalism.” CoRR, abs/1811.10745, 2018.

[WZT18] T. Wang, J.-Y. Zhu, A. Torralba, and A. A. Efros. “Dataset distillation.” arXiv
preprint arXiv:1811.10959, 2018.

[XHZ19] J. Xue, J. Han, T. Zheng, J. Guo, and B. Wu. “Hard sample mining for
the improved retraining of automatic speech recognition.” arXiv preprint
arXiv:1904.08031, 2019.

[XYR21] D. Xu, Y. Ye, and C. Ruan. “Understanding the role of importance weighting for
deep learning.” In International Conference on Learning Representations, 2021.

[YAF20] X. Yan, D. Acuna, and S. Fidler. “Neural data server: A large-scale search engine
for transfer learning data.” In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 3893–3902, 2020.

[YGZ18] Z. Yan, Y. Guo, and C. Zhang. “Deep defense: Training dnns with improved
adversarial robustness.” In Advances in Neural Information Processing Systems
31, pp. 419–428. Curran Associates, Inc., 2018.

[YKO17] Y. Yoshida, R. Karakida, M. Okada, and S.-i. Amari. “Statistical mechanical
analysis of online learning with weight normalization in single layer perceptron.”
Journal of the Physical Society of Japan, 86(4):044002, 2017.

[YPR19] G. Yang, J. Pennington, V. Rao, J. Sohl-Dickstein, and S. S. Schoenholz. “A mean
field theory of batch normalization.” In International Conference on Learning
Representations, 2019.

[YZW17] L. Yu, W. Zhang, J. Wang, and Y. Yu. “Seqgan: Sequence generative adversarial
nets with policy gradient.” In AAAI, pp. 2852–2858, 2017.

[ZBC11] M. Zheng, J. Bu, C. Chen, C. Wang, L. Zhang, G. Qiu, and D. Cai. “Graph
regularized sparse coding for image representation.” IEEE Transactions on Image
Processing, 20(5):1327–1336, 2011.

197

[ZCZ20] D. Zou, Y. Cao, D. Zhou, and Q. Gu. “Gradient descent optimizes over-
parameterized deep ReLU networks.” Machine Learning, 109(3):467–492, 2020.

[ZG19] D. Zou and Q. Gu. “An improved analysis of training over-parameterized deep
neural networks.” In Advances in Neural Information Processing Systems 32, pp.
2055–2064. 2019.

[ZL16] B. Zoph and Q. V. Le. “Neural architecture search with reinforcement learning.”
arXiv preprint arXiv:1611.01578, 2016.

[ZLK17] B. Zhou, A. Lapedriza, A. Khosla, A. Oliva, and A. Torralba. “Places: A 10
million image database for scene recognition.” IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2017.

[ZMG19] G. Zhang, J. Martens, and R. B. Grosse. “Fast convergence of natural gradient de-
scent for over-parameterized neural networks.” In Advances in Neural Information
Processing Systems 32, pp. 8082–8093. 2019.

[ZML07] J. Zhang, M. Marsza lek, S. Lazebnik, and C. Schmid. “Local features and
kernels for classification of texture and object categories: A comprehensive study.”
International Journal of Computer Vision, 73(2):213–238, 2007.

[ZNR17] V. Zantedeschi, M.-I. Nicolae, and A. Rawat. “Efficient defenses against adversarial
attacks.” In Proceedings of the 10th ACM Workshop on Artificial Intelligence and
Security, AISec ’17, pp. 39–49, New York, NY, USA, 2017. ACM.

[ZYJ19] H. Zhang, Y. Yu, J. Jiao, E. P. Xing, L. E. Ghaoui, and M. I. Jordan. “Theoretically
principled trade-off between robustness and accuracy.” CoRR, abs/1901.08573,
2019.

198

	I The geometry and manipulation of natural data for optimizing neural networks
	Overview for Part I
	Natural image prior and regularization of vision tasks via the Wasserstein metric
	Introduction
	Mathematics of optimal transport and the Wasserstein Ground Metric
	Wasserstein-1 metric
	Wasserstein-2 metric
	Wasserstein metric on graphs
	Riemannian calculus of W2
	Wasserstein-2 gradient on discrete sample space
	Efficient implementation of the Wasserstein gradient norm

	Related works
	Wasserstein of Wasserstein loss for learning generative models
	Wasserstein of Wasserstein loss
	Relevant literature for the Wasserstein of Wasserstein loss
	Wasserstein of Wasserstein GANs
	Experiments
	Discussion

	Wasserstein Tikhonov regularization in image classification
	Introduction
	Relevant literature to Wasserstein adversarial robustness
	Adversarial training and ground truth geometry
	Perturbed loss and Wasserstein diffusion Tikhonov regularizer
	Experiments
	Discussion

	Appendix
	Proof of equivalence of noise training with Wasserstein Thikonov Regularization
	Wasserstein metric in un-normalized distributions
	Detailed description of the experiments
	WWGAN generated images

	Differentiable dataset optimization
	Introduction
	Related work
	Proposed method
	Linearization
	Computation of the dataset derivative
	Leave-one-out optimization
	Dataset optimization with DIVA

	Experimental results
	Discussion
	Appendix
	Additional experiments
	Experimental details
	Proofs of propositions

	On the dynamics and convergence of Weight Normalization for training neural networks
	Introduction
	Related work
	Weight Normalization
	Evolution dynamics
	Main convergence theory
	Discussion
	Appendix
	Weight Normalization dynamics proofs
	Convergence proof for gradient flow
	Convergence proof for finite step-size training

	Final remarks for Part I

	II A theory for undercompressive shocks in tears of wine
	Modelling the tears of wine phenomena
	Introduction
	Hydrodynamic model
	Meniscus-driven film climbing and nonclassical shocks
	Experimental survey and simulations
	Conical shaped substrate
	Reverse undercompressive shocks on a preswirled substrate
	Conclusion
	Appendix: Extended survey of prior experimental works

	References

