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I. RELAXATIONS IN A MOLECULAR CRYSTAL 

II. THE FERMI MO:MENTUM OF ALUMINUM FROM 0 TO 100 KllOBARS 

James Jo Burton 

Inorganic Materials Research Division,Lawrence Radiation Laboratory, 
and Department of Chemistry, University of California, 

Berkeley, California 

ABSTRACT 

April 1967 

Properties of imperfect -lattices of monatomic _ face- centered: 

cubic crystals are examined theoretically. - The atomic interactions are 

represented by pair-wise additive potentials. The con~iguration of the 

atoms near each imperfection are obtained. The effects of relaxations on 

the energies of the defects are examined. 

For bulk defects - vacancies, divacancies, substitutional atoms, and 
) 

sUbstitutional atom-vacancy pairs - the relaxations are small and only 

slightly alter the energy of the defect. Vacancies in argon are bound to 

other vacancies or to substitutional impurities. 

The activation energy, E, in the Arrhenius expression 

D=D o e 
-E/RT 

is calculated for self diffusion in argon for both monovacancy and di- -

-vacancy exchange diffusion. The results for monovacancy mechanism 

(E = 3812 cal) and the divacancy mechanism (E = 4847 cal) are both in 

reasonable agreement with the experimental diffusion coefficient. 

-4120 cal/RT 
D = 15 e 

The frequency factor, D , for the divacancy mechanism is much greater tha~ 
- - 0 

that for monovacancies. This indicates that the self diffusion mechanisr.l 
. I: .... 
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in solid argon at zero pressure may be viadivacancies. The activation 

, energies for neon and krypton impurity diffusion via monovacancy exchange 

are 2187 and 3733 cal, respectively. In all cases, the relaxations of 

surrounding atoms drastically lowered the barrier to diffusion. 

The relaxations and surface energies of (100), (111), and (110) 

surfaces of aluminum, argon, calcium, copper, lead, nickel, and silver 

are calculated. The relaxations of the surface are less than 15% of the 

bulk planar spacing. The relaxations only slightly alter the surface 

energies. \ 

The energies of adsorption of argon, krypton, and neon atoms on the 

'(100) surface plane of argon are calculated. Relaxation appreciably 

affects the adsorption energies. The adsorption energies increase in 

tne order neon, argon, krypton. 

The Fermi momentum of aluminum is studied from 0 to 100 kilobars 

pressure. ' Bridgman anvils were used to generate the pressure and the 

positron annihilation spectrum was studied at five pressures. The 

Fermi momenta are obtained from the positron annihilation spectra. 

The experimental values of the Fermi momenta of aluminum are in excellent 

agreement :with the prediction of the free electron model: 

, where Z is the number of conduction electrons per unit cell of the 

,metal and V is the volume of the unit cell. 

" .. 

"W" 
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I. RELAXATIONS .. IN . A . MOLECULAR CRYSTAL. 

Ae Introduction 

A perfect single crystal is characterized by a basic building block} 

the unit cell} which is infinitely duplicated so as to fill all of space • 

The e~uilibrium configuration of a solid is that which minimizes its 

free energy. If the atoms in the solid are (initially) assumed to be 

at rest} the e~uilibrium configuration is that of minimum potential 

energy. When an atom is displaced slightly from its e~uilibrium position} 

a force acts on the atom to restore it to its e~uilibrium position. Early 

investigators of solids assumed simplified models of infinite solids and 

examined the vibrations of the atoms about their e~uilibrium positions. 

These workers} with their models} obtained heat capacities} entropies, 

and other thermodynamic data on simple sOlids;1-3 their results were 

found to compare favorably with experimental data. Recently, with the 

advent of high speed computers, more complicated models of solids have 

been used and better agreement with experiment obtained.
4,5 

Unfortunately, solids in the real world are not infinite perfect 

single crystals. They have surfaces} vacant sites, grain boundari,es, 

and contain impurities. These defects significantly affect the physical 

and chemical properties of real solids and must be considered in dis­

cussing the behavior of real SOlids. 6 

The effects of surfaces, vacancies, and impurities on the lattice 

vibrations have been examined. 7-10 It was found that these defects can 

drastically influence the vibyaticns of the atoms but that the perturba-

tions decrease rapidly "lith distance [yom the defect. 
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'. When 'a defect is introduced into' the model of 8. perfect infinite 

crystal, the remaining imperfect crystal may not be a minimum potential, 

. configuration unless s.ome relaxation of the lattice occurs in' the 

neighborhood: of the de.fect. Finding the minimum potential configuration 

of a defective lattice requires a minimization of a complicated function 
v 

r 

in many variables. Early workers were forced to find closed mathematical 

expressions for the results and then to eva.luate the expressions by 

hand; their work was) of nece-ssity, restricted to simple problems. ll 

Recently high speed computers have made it possible to deal with more 

complex problems as. the computers can be. programmed to search directly 

for the minimum potential configuration. Distortions of perfect lattices 

. 12 13 
in the neighborhood of surfaces .and vacancies have been examined in 

this way. In subsequent sections we shall examine the distortion of the 

perfect orystal around internal vacancies, divacancies, and impurity 

atoms (Sec. Io,:C), diffusion via single and divacancies (Sec •. I-D), . 
dilation of perfect surfaces (Se'c. I-E) and of distortion near surface 

impurities and vacanci~s (Sec. I-F) • We will find . that though distortions 

of a face-centered cubiccrys.tal in the neighborhood of a defect are 

usually numerically verysmaJ..l; the distortions can appreciably alter 

the energy of the defect and so must be considered in any attempt to 

understand the defect~ . In each problem treated we. will develop an 

expressions for the energy of the defective lattice and then minimize 

. that energy by allowing the lattice t.o relax in the re~ion of the def'ect • 

. All computations. were carried out with the aid of IBM 7094 and CDC 6600 

computers. 
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We will use argon as our prototype solid except in Sees. I-E and 

I-F where certain metals will also be examined. Theoretical calculations 

on argon afford many advantages over .other solids. Argon is a monatomic 
. 

molecular solid crystallizing in a face centered cubic lattice and has 

a sho~t range potential~ Ionic solids present many theoretical diffi-
/' 

culties as it is not yet .known how best to repl'esent the polarization. 

. 14 
effects. In metals one encounters the perturbation of th~ conduction 

electrons, a difficulty which has not yet been overcome. Solid argon 

presents neither of these obstacles. It is 'Well known that the proper-

ties of argon may be reasonably represented by a two body potential 

function. 15 It is hoped that calculations based on a simplified model 

of argon will yield results of at least qualitative validity for argon 

and w'ill give some insight into other simple solids, particularly other 

molecular crystals and face centered cubic metals. 
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B. 'Model 

We adopt the follow'ing model of argon t (1) all quantum effects' 

are ,neglected; (2) only the potential energy need be,considered; (3) the 

, total potential energy is pairwise additive; and (4) the atoms interact, 

wi th a Lennard-Jone s poteIl,:tial of the form 
r 

V(r) f3 
:::~- -

m 
r 

0: 
b 
r 

, where r is the distance between the atoms. For most of OUr calculations 

we will use the par~meters given by Kanzaki15 with m = 12, which give 

the binding energy of ,solid argon to be 2035 cal/mole and theOOK inter-

° atomic distance to be 3.79 A. In Sec. I-C we will also carry out calcu-

lations with m::: 7 as recent work by Alder and Van Thiel indicates that 

'argon can best be represented by a 6-7 pot~ntial at very high pressures. 16 

These assumptions are open to question. (1) neglects zero point 

motion and (2) restricts the validity of the results to OaK. The assump-

tion of pairwise addi"tivity of the potential (3) is most dubious. This 

model indicates that the hexagonal close packed form should be the stable 

phase of argon but argon experimentally is face centered cubic. Jansen17 

hRs .show'n that three body forces can explain the observed stability of 

face centered cubic argon and Sparnaay18 has estimated that neglect of 

three body forces can introduce errors into energy computations of as much 

, ' 19 
Rossi and Danon ,have found that inclusion of three body forces 

introduces a large errox into predicted energies of vaporization! they 

attribute this error to either four body forces or a poor potential 

20 ' 
function. Bullough et al. have concluded from a study of stacking faults 

in argon that many body forces contribute less than .4% of the total 
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binding energy. Alder
21 

has shown that slight modifications of the 

Lennard-Jones 6-12 potential can lead to body centered cubic as the 

theoretically stable form of argon and has pointed ,out22 that the 

Lennard-Jones potential may now' show the correct shape of the true argon 

two body'potential. 
\~ 

\ 

On the basis of the above assumptions the binding energy of the 

lattice may be written for m = 12 as 

1 
EB = [N.~ V(rij) 

, i±j 

where 

A ::: 
n 

2: 
lattice points 

and a and,' (3 are parameters in the pair potential function, r~, is the 

solid interatomic distance, N is the number of atoms in the crystal, and 

the binding energy of the lattice EB is the negative of the heat of 

sublimation ES. 

The factor 1/2 occurs in the above expression so that each pair inter-

action is counted'onlyonce. 

12 Follow'ing the work of Alder et a1. 1 the edge of the 1.lllit cell is 

made equal to 2, which places the restriction on the lattice points that 

the sum of the coordinates of a point must be even. With this restriction 

w'e have used the method of. Lennard-Jones and Ingham23 to calculate A6 
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and A
12

and have obtained 

" A6 ,= 14.45392103 

A12 = 12.13188018 

which are in agreement with their earlier calculations •. ' 

.. 
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c. Internal Vacancies, Divacancies .. and Substitutional Impurities 

1. Introduction 

I:' Although some measurements have been made from w'hich the energy of 
• 

the formation of a vacancy can be deduced,24 it has hot been possible to 

deduce the distortions that occur in the immediate neighborhood of the 

vacancy. To date, the only internal defects which have been considered 

are the formation of vacancies in argon25-29 and certain metals. 13 · In 

this section} a more refined calculation is made for argon. In addition 

calculations are made for the substitution of an impurity atom in the 

lattice, for the formation of a vacancy next to the impurity atom, for 

the formation of two adjacent vacancies, and also for the effect of a 

change of interatomic distance on the energy of formation 'of the vacancy, 

and for the effect of a change [n the potential function. This section 

will examine two of the more elementary lattice defect problems, namely 

perturbation of an infinite face centered cubic molecular crystal in the 

neighborhood of a vacancy of an impurity atom and the stability of di-

defects in fcc molecular crystals. Presumably the results obtained here 

would apply <lualitatively to other molecular crystals~. 

Several calculations of the energy of formation of a vacancy have 

been carried out in which the authors neglected kinetic effects. Giri­

falco and Streetman30 carried out calculations on a bcc lattice, considering 

all points in a large box around the defect but neglecting distant 

neighbors. They found the nearest and next-nearest neighbors relaxing 

inwards and a large (20%) e!lergy correction due to relaxation. Kanzaki25 

calculated relaxations around a vacancy in Ar (fcc) using a Lennard-Jones 

6-10 potential.. However, he assumed the effect of relaxation on the 

energy was second order in the relaxation and considered only nearest 
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and next-nearest neighbor interactions. He found that the nearest 

neighbors relaxed tow'~rds the vacancy and the next":nearest away, the 

relaxation of the next-nearest neighbors being greater than that of the 

. 26 
nearest. Hall' also calculated the effect of a vacancy on a fcc lattice 

and assumed, a second order relation betw'een relaxation' and energy. He 

found the nearest and next-next ... nearest neighbors relax inwards tow'ards 

the vacancy and the next-nearest relax outwards. ,His findings showed 

that the relaxations falloff rapidly w'ith distance from the defect., 

Girifalco and Weizer13 have calculated the distortion around a vacancy 

of a number of face centered cubic and body center cubic metals. They 

assumed that the distortions are radial and that the metals may be repre-

sented by a Morse pairw'ise additive potential. Girifalco and Weizer 

found that the nearest neighbors to the vacancy move inwards tow'ards the 

vacant site, the next nearest outwards, and the third nearest inwards; 

their relaxations decreased rapidly with distance from the defect. 

Glyde27 has calculated the energy of formation of a vacancy in 

argon and has taken into account the temperature expansion of the 

lattice. He found that the energy of formation of a vacancy decreases 

with increasing temperature. 

Nardelli and Repanai-Chiarotti28 and Foreman and Lidiari9 have 

carried out dynamical calculations based on the Einstein model. Nardelli f s 

relaxations agree with those found here and his relaxation energy is much 

larger than that found considering only potential effects. Foreman also 

determined the energy of formation of a vacancy from heat capacity data 

for solid argon and found that the predicted relaxation energy was not 

large enough to account for the smallness of the energy of formation of 

a vacancy, which w'as 25% lower than expected. 

:-.' 
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strip and Kirkwood3l have calculated the interaction of separated 

vacancies and have found that they attract with a force whose potential 

varies as 1/r
6 

where r is the . separation of the defects. 

. 32 
Johnson has carried out static calculations on the stability of 

di-vacancies in metals and have found them to be stable in certain 

. configurations. 

Our calculations of the relaxations around a vacancy in a fcc 

lattice show· that the nearest and next-next~nearest neighbors move 

towards the defect, and that the next-nearest move away. This is in 
. . 26 

accord with the latest calculations. The correction in the energy 

of formation of the defect due to relaxation is small at zero pressure. 

In the present calculatiollB the treatment is more general than in the 

earlier static results in that the calculations are not restricted by 

the assumption that only second order terms in the relaxation are signi-

ficant and that distant neighbors may be neglected. Since the same, or 

essentially the same, treatment can be used when foreign atoms are present 

or for a compressed lattice, results are also presented for these calcu-

lations. We have also calculated the energy of formation of a vacancy 

next to another vacancy and next to a .neon or krypton impurity. In all 

cases the energy required to produce the second vacancy is lower than 

that in the perfect lattice. Relaxations around the di-defects and 

energy corrections were small as in the case isolated defects. 

2. Isolated Defects 

a. Calculations. A vacancy is created in a solid by removing a single 

atom from the interior of the crystal to the surface. For such a process 

the energy of formation of vacancy, E~, if no rel~xations occur, and 

EO = E 
V S 
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where ES is the average ~nergy of, sublimation of the solid. With the" 

model of argon adopted in Sec. I and a Lennard-Jones 6-12 potential' 

~= 2035 cal/moie of vacancies 

If the lattice is ,allowed to relax around 'the defect, the true 

e,nergy of forma~ion of ,the vacancy, E
V

' is obtained by considering all ," 

" potential pairs involving .relaxing' atoms 

where 6E is the change in the 'potential from the unrela;x:ed to the relaxed 

state .. 

The vs:cancy is assumed to be at (0,6,0)~ Assuming that only the 

nearest neighbors to the defect relax ,and that they relax radially and 

symmetrically, (111,0) ~ (l-E\:,.l-Ol'O), the. energy of a single neare'st 

neighbor, with relaxation 0, is 

'L; 
222 

x- + y + Z = 2n 
n>l 

To simplify the calculations, the infinite 'sum is expanded as follows: 

e
l 
(~) := L: V(l-ol,i-x, l-ol-XY' z) 

x2 + y2 +' z2 = 2n 
"n>l / 

. ~ . 

," 
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:: . 2: V( 1-61 -x, 1~61-Y' z) 
222 

x + Y + z c: 2n 

2 < n < 16 

+ 2: V(l-~l-X, 1-61-Y,z) 
222 

x + y + Z = 2n 

n > .16 

from a power series .. 

8'12(£1) c: ... 46.36 

..;17.; 90 { ( 6x) 
2 + (6Y) 

2 + (6z ) 
2 

} 

4 4' 4 
-13 .20 ( ( ox) + (6y ) + (6Z) } 

.32 ( ( BX) 
6 + (6y) 

6 + (6z) 
6 J 

-8 8 8 
- .04 ( ( BX) + (By) + (6z) } 

_ 4.01 { ( ox) 2 ( By) 2 + (Bx) 2 ( Bz ) 2 + (By) 
2 

( Bz ) 
2 

} 

_ 8.84{(6x)4CBy)2 + CBy)4CBZ)2 

+ (Bx)4(6Z)2 + (6z)4(6X)2 

+ (oy) 
4 

( 6z ) 
2 + (6z) 

4 
( By) 

2 
} 

+ 1. 52 [ ( ox) 4c oy) 
4 + (Bx) 4c OZ ) 

4 

. _;.+ (By) 4 (Bz ) 4 } 

_'.14((Bx)6(By)2 + (By)6(Bx)2 

.6262 
+ (Bx) ~ Bz ) + (Bz) (ox) 

6 2 . 6 2 
+ ( oy) (oz ) + (oz) ( oy) 

. + 1 .. 62 ( ( ox) 2 ( oy) 2 ( OZ ) 
2 

} 
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,1.47 {(,5x) 4 (5y)2( 5z)2 

2 4 2 
oj. . ( 5x) ( 5y) (5Z) 

.' 2 2 4 
oj. (5x ) ( 5y) ( 5z ) } 

.a. \. 

The power series expe,nsion' is used rather than an integral as integra-. 

tionwill not yield as a.ccurate an answer when the lower limit of in-

tegration is this small .. ' The pOW'er series expansion given is for a point' 

at (0,0, 0) going to (5x, By, 5z). It is not practical to expand 

in a power series overall points because of the slowness with' which 

such a series converges. 

Summing over the twelve nearest neighbors,- the expression for the 

energy is 

e(§) .c 6{V(2-25
1

, 2-25, 0) + 2V(2-251, 0,0) 

oj. 4v (1-5
1

, 1-51 , 0) + 4V(2";'251~ 1-51' 1-51)} . 
+ 12~1 oj. 12e12(~)· 

Note that to obtain the total energy contribution of the twelve nearest 

neighbors, the. interactions o~ the nearest neighbors with each. other 

must be multiplied by six, not twelVe, so that each pair is counted 

only once. 

With this we may write 

where E is expanded a.s abov.e. 
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If the nearest neighbors relax (l,l,O)H (1-5
1

, 1-5
1
,0), the 

next-nearest (2,0, 0) ~ (2-52, 0,0) and the next-next-nearest (1,1,2) . 

~ (1-5
31

, 1::"5
31

, 2-(
32

) then the energy of the relaxed lattice may be 

written as 

+ 6~ V(2-52-x,y,z) 

x2+y2+z2c:2n 

n>3 

+24 ~ V(1-531-x,1-531-y,2~532-z) 
222 

x +y +z =2n ' 

n>3 

+ 24V(1-82+51,1-51~0) + 24V(3-51-52, 1-51, 0) 

+ 24V(1-81,1-51,2-82) + 48V(1-532+51,51-531,1-531) 

+ 48V(3-51-o32,51-531,1-531) ~ 48V(1-o,2+51,2-51-531,1-531) 

+ 48V(3-51-532, 2-51'-531,1-(31) + 24v( 51-531,51-531,2-(32) 

+ 48V(2-531-51,51-53,2~532) + 24V(2-531-51,2-531-51,2-532) 

+ 24V(52-532, 1-8
31

, 1-(
31

) + 24V(4-62-532, 1-5
31

, 1-5
31

, 1-(
31

) 

+ 48V(2-532,1-52+531') + 48V(2-O,2,3-52-531,1-531) 

+ 12V(4-2532,0,6) + 24v(4-2532,2-2531,0) 

+ 12V(4-2032,2-2831,2-2031) + 24V(O,2-2531,O) 

+ 12V(O,2-2531,2~2531) + 24V(1-532+531,1-532+O,l'0) 

+ 24V(1-532 +531' 1-532+531,2-2(31) + 48V(3-532-531' 1-532+531: 0) 

+ 48V(3-o32-031' 1-°32 +531,2-2°31) + 24V(3-532':'531,3-532-531,2-2531) 

+ 24v(3 -532-531, 3-532-531' 0) + 6V(2-251, 2-251, 0) 

+ 12V(2-251,0,0) +24v(1-51,1~51'0) 

+ 24V(2-251,7-51,1-51) + 3V(4-252,0,0) 

+ 12V(2-522-52,O) . 
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Similar and obviously more cOrripl~x expressions are written if more 

.atoms are permitted to relaX •. 

To minimi'ze the energy, only.6.E need be considered since this is 

the oniy term in which the relaxations appear. 

Minimization of .0.'Ewas performed in a step wise manner •... First the· .. 

solution for the relaxation of the nearest neighbors was obtained. This 

was then the basis for the first approximation when the nearest and next-

nearest neighbors were considered •. The solution of this· was then used as 

a starting point for the most complete calculations performed~ The mini-

mum for .6.E for each degree of relaxation examined was found by a half 

interval technique. Because of the machine time and labor required to 

carry the calculations to neighbors more distant from the defect and 

the qualitative significance of the results, computations were made 

··only for the first three layers around the vacancy. 

Calculations for an impurity atom are essentially the same as for a 

vacancy; this was done for a large and a small impurity atom. Forthese 

the constants used for argon 

r . -3.79 A o 
, 

:E~ .=- 2035 cal/mole 
.. 0 

were modified •. Ar-Kr and Ar-Ne pair potentials were related to the 

6-12 potentials of Ar,15 Ne,15 and Kr33 in the following way. If rA_A 

represents the gas equilibrium distance'and UA_A the 1epth of the well 

in the gas .. 
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and rA_B and U A-B were used as parameters in the tennard-Jones 6-12 

potential. 

b.. Results. Calculation;: for the relaxation of the nearest neighbors 

was initially carried out assuming that the relaxation would preserve the. 

xy, xz, and yz planes as planes of' Clj.:,;s;Ymmetry.·Thisinvolves six.inde­

pendent variables and it was found, with this condition, that Ev 
is minimized by a relaxati.on which preserves the dctahedr8..1.! :'. ::;: 

symmetry about the defect. Calculations for completely independent 

relaxation of the twelve nearest neighbors, a thirty-six variable pro-

blem, were not performed.. , 

For the next-and next-next-nearest neighbors it was assumed that 

the relaxations would also have the high symmetry established for the 

j nearest neighbors. 

Those relaxations minimizing bE, and M are given in Tables I-VIII. 

Relaxations are expressed in terms of the coordinates. The lattice 

point with coordii:lat~s (x,y,z) relative to the defect at 0,0,0) was 

relaxed to the new position (x-8y, y-8y, z-8z) and 8x, xy, and 8z are 

tabulated beneath x, y,' and z •. ~ is given for each relaxation. 

In each case the energy of formation of the defect iri the unrelaxed 

o EO lattice, E D is given.· D is the difference in energy between the 

. perfect argon lattice and the defective (unrelaxed) lattice. For a Kr 

impurity energy is released on SUbstitution of the i.'llpurity atom for the 

AR atom, and the effect of the relaxation is to increase the amount of 

energy released.. Creation of a vacancy or SUbstitution of a Ne for an 

AR atom requires energy and the relaxation decreases the amount re-

quired. 



Table I. Configuration and energy of an isolated vacancy withr/r := 1, using a 6-12 potential. 
, ' ' 0 ' 

The vacancy is located at (0,0,0) and the relaxations of the neighbors are tabulated. 

Eno := 2035 cal/mole, 

(1, 1, 0) (2,1' ° '" -0) (2, 1 -, l}' " 6E 

6 -3 .055xlO ' 6 -3 , .055xlO ° ,- -23 .5cal/mole . 
6.055XIO-3 6.055><10-3 '0 

' 3 \ 

-3 ~4l2xlO- , ,"0, 0 -25.5 

6.42OxlO-3 ' 6.42OxlO-3 

° -3.433xlO -3 ° 0, ',' S.8OXIO-4 5.39~0-4 ' , -4 
5.39xlO ,~26.2 

Table II. Configuration and energy of an isolated vacancy with r/ro :=: 1 using 6-7 potential. ' The 

vacancy is located at (0,0,0) and the relaxations of the neighbors are tabulated. 

En ° := 2035 cal/mole 

(1, 1, 0) (2; ° J 0) '(2; "'1;' , " 1) ,-' "-. "'M' ", 

,,', -2 -2 
. -80.7 cal/mole 1.3751-'<10 1.3751><10 ° - .... 

1.377OXIO -2 ' 1.377OxlO ~2 ° 
-3' -5. 484xlO ° ' 0 -83.8 

1.4766xlO-
2 

" 1.4766xIO-2 

° 
' -3 
-5. 579xlO ,0 ,0 2.287xIO-3 l.410XIO-3 4 -3 1. 10xlO ' -87.2, 

~j 

{: .. 

I 
I-'-
'0'\ 
I 
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Table III. Energy of sUbstitution and configuration around a krypton impurity in an argon lattice 
assuming a 6-12 potential. The kyrpton is located at (0,0,0). The relaxations of the 
neighbors are tabulated 

E 0 = D . -806 ca1/mole 

(1, 1, 0) (2, 0, 0) (2, 1, 1) 6E 

. -3 3 -57.8 ca1/mole -7.985xlO ·-7 .985xlO ':" 0 -

-7. 985xlO-3 . 8 . -3 -7.9 5x,10 0 1.414xlO-3 0 0 -58.2 
.. ' .. ~ .. 

8 -3 - .. 555><10 8 -3 - ·555><10 0 1.414xlO-3 0 0 . 8 6 -3 4 -3 4 -3 6 -1. 2 xlO -10<11 xlO-l.ll xlO - 1.7 

Table IT. Energy of SUbstitution and configuration around a neon impurity in an argon lattice assuming 
a 6-12 potential .. The neon is located at (O,OJO). The relaxations of the neighbors are 
tabulated. 

E 0 = 2221 cal/~ole 
D 

(1, 1, 0) (2.1 0, 0) (2, 1, 1) 6E 

9.051><10-3 9 .. 051><10-3 0 - -54.5 cal/mole 

9 .051:xlO-3 9.051..,<10 -3 0 
. -3 

-2.312xlO 0 0 -55·3 

9.781><10-3 9.781:x10-3 0 -2.375xI0 -3 0 0 8 -3 1..99xlO 1.18oxI0-3 1.180xlO-3 -59·0 

f 
J-' 
-..J 
I 



r/ro 

-1.05 

Table V. The energy and configuration of a vacancy as a function of r/ro using a 6-12 
potential. The vacancy is located at (OJ OJ 0). The relaxations of the neighbors 
are tabulated. 

( IJ ; IJ 0) 
0 

E 
,- -- - D 

tili-

-6.603xl0 -3 -6 .603Xl0-3 0 1903- cal/mole --. -11.1 cal/mole-

1.03 _ 
. ·-4 

-1.02 ·xlO . 
,-. - --4 

-1.02 xl0 - 0 i980 -·-0 

1.02 2.328xl0-3 . -3 
0 2009 -2.4 .--. 2~328xl0 . . , .... 

-
1.01 . 4~33OXIO-3 4.330Xl0-3 0 2028 - ":10.1 

..... 
1.00 6.055XIO-3 - 6.055><10-3 - 0 2035 -23·5 - -

.99 7.514xIO-3 4 -3 7.51 xl0 0 2027 -43.2 

.96 1. 0841~x10 -2 
. 2 

- 1. 0844xlO - 0 1878 -148 

.94 1 -2 1.2 ~70XIO L247OXIO-2 
0 1623 -269 

.92 1.3773xl0 
-2 

1.3773x10 
-2 

0 1177 -450 

.90 1. 4836xIO-2 1.4836X10~2 0 453 -711 

.88 1. 5732x10-2 -2 .. -
1.5733xlO - 0 -672 -1086 

l'. -. . J! 

: I 
J:-a co 

. I. 
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Table VI. The energy and configuration of a vacancy as a function of r/ro using a 6-7 potentiai. 
The vacancy ls located at (0,0.,0). The relaxations of the neighbors are tabula ted.' 

rlr (1, 1, 0) EO .6E 
<;) D 

1.06 -3 
5.059 XIO '\ 5.059 xlO-3 0 1921 cal/m61e -5.2 cal/mole 

1.04 6 . -3 8.5 2 xlO . 8.562 xlO-3 0 1979 -19.5 

1.02 , 1.1416xlO-2 .' 2 
1.1416xlo.- 0 2019 -44.1 

1.00 1. 375lxlO -2 L375lxlO-
2 

0 2035 -80.7 

.98 1. 572OxlO-
2 1:572Oxlo.-2 0 2015 -132 

I 

1. 73 44x 10 -2 1. 7344xlO-
2 

l--' 

.96 0 1949 -202 
\0 

I 

.94 1. 8719xlO-
2 

L8719xlO 
-2 

0 1820 -295 

.92 2.000Ox10-
2 ' -2 

2.000Ox1Q 0. 1605 -417 

·90 2 .1032x10-
2 2 .1032xlO-

2 0 1276 -576 

.88 2 .1989xlO -2 ' 2 .1989x10 ':'2 0 796 -782 

.86 2.2821)( 10 -2 2. 282lxlO-2 
0. 117 -1048 

.84 4 -2 2.35 7x10 4 -2 2.35 7xlO 0 -827 -1393, 

" 



Table VII. 

( IJ' 

1. 4836x10-
2 

1. 4853xlO ~2 

1.614OXIO -2 

Table VIII. 

(I ,. 

2.l032xlO-2 

2.l07OX10 
-2 

8 -2 2.2 75xlO 

Configuration and energy of 
is located at (0,0,0). The 

a vacancy Ivith r/r =; .9 and a 6-12 potentiaL 
o The vacancy 

relaxations of the neighbors a~e tabulated. 

ED
O. = 453 cal/mole 

0 

1, 0) (2, 0, 0) (2, 1, 1) 6E 

1.4836xIO-2· 0 -711 cal/mole 

4 '-2 
1. 853xlO 0 -1.919xl0..;3 . 0 0 -714 

L614OXIO-2 
0 

.. -3 
-2.129><10 0 0 3.582XIO-3 2~157xIO-3 2.157xIO-3 

-775 

'. . . 

Configuration and energy of a vacancy with r/r = .9 and a 6-7·potential. The vacancy 
is l.ocated at (0,0,1). The relaxat.ions of the °neighbors are tabulated. 

'0 / ED = l2J6 cal mole 

1, 0) (2, 0, 0) (2, . 1, 1) . 6E 

2.1032><10 
-2 

0 -576 cal/mole. 

2 .107OXIO -2 0 4 -3 -3.59xlO 0 0 -580 
. 2 

2.2875xlO- o -4. 008X10-3 0 0 4.899xIO-3 2.953xlO-3 2.953xIO-3 -613 

(1 
,. 

" 

I 
C\) 
0 
I 
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At first, the relaxations appear to be intuitively incorrect. 

However, an examination of the geometry of the lattice shows that for 

each relaxation, the motion of the atoms always increases the overlap 

with some atoms and decreases the overlap with others. The inward re~ 

laxation of the nearest neighbors is obvious, and the small magnitude 

of the relaxation can be accounted for on the basis of the fact that 

some of the nearest neighbors of the vacancy are also nearest neighbors 

of the relaxing atom. For example, the atom at (1,1,0) has as its 

nearest neighbors atoms at (1,0,1), (1,0,-1), (0;1,1), and (0,1,-1). 

The inward motion, of these atoms incre,ases the overlap between the 

atom (1,1,0) and the four mentioned atoms relaxing inwards that are its 

nearest neighbors as well as the nearest neighbors of the vacancy. At 

the same time the overla,p with the vacancy disappears, and the overlap 

with the remaining seven nearest neighbors is decreased. Thus the 

total relaxation and its direction are the result of both increasing 

and decreasing overlaps. 

Again for second nearest neighbors any movement in the lattice 

increases overlap, serving to keep the relaxation small. However, 

here the interaction between two of the relaxing (next-nearest neighbor) 

atoms is small and the most important term is the absence of the attrac-

tion of the center atom, thus leading to a relaxation outward. The 
\, 

behavior of the third nearest neighbors cannot be accounted for in 

this way. The largest term seen by a third nearest neighbor is not the 

absence of the attraction of the central atom,which is already a very 

small term. Rather the important terms are due to the motion of its own 

nearest neighbors (two of which are nearest neighbors to the defect and 

one a next-nearest neighbor). It is into the potential hole created by 
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the movement of these nearest neighbors that the third nearest atom 

moves., As pressure on the lattice is increased (interatomic distance 

is decreased), nearest neighbors of the vacancy are farther up on the 

repulsive side of the central atom and so can relax further into the 

hole. Next nearest neighbors are less strongly attracted to the cen-

tral atom and so' move less away from the central atom. At sufficiently 

high pressure they "lOuld actually move toward the defect. The increased 

movement of the first two layers toward the vacancy leaves the third 

nearest neighbors a larger hole in which to relax, and so their motion 

toward the center increases with pressure., That ,the relaxation of the 

third nearest neighbors contributes more to 6E than the second nearest' 

neighbor is understandable as there are twenty-four next-next-nearest 

neighbors and only six next-nearest neighbors. 

Expectedly, the relaxations of the atoms around Ii krypton (large) 

impurity (Table III), are of the opposite sign from those around a 

vacancy, and a neon (small) impurity (Table IV) affects the lattice 

qualitatively like a 'vacancy, except that the attraction of the neon 

increases the relaxations. 

For relaxations around an internal defect 6E is found to converge 

, 12 
less rapidly than for surface relaxations. Also the numerical values 

of the relaxations for internal effects are of less significance than 

those for surfaces, as these calculations are highly dependent on the 

repulsive potential, which is not accurate, while the latter depen~ 

mostly on the 1/r6 attractive potential, whose form is ;vell establishe'd. 

Correcting the energy of formation of a vacancy at zero pressure 

determined for three layers of relaxation, we find the following: 
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6-12 Potential 

F\r. = 2035 cal/mole 

2014 cal/mole 
~ 

~ == 
~ 

.6E 
-1.3 X 10-2 

:;::0- , = 
EV 

6-7 Potential 

ry = 2035 cal/mole 

~ = 1948 cal/mole 

6E -4.4 X 10-2 
EO = 

V 

By varying the interatomic distance used in the calcUlations it 

is possible to consider formation of vacancies under high pressure or 

at a hypothetical distended or compressed lattice. This was done for 

interatomic distances ranging from 1.06 to .84 times the normal dis-

tance; the results of these calculations are shown in Tables V-VIII. 

As expected the relaxations inward increased with decreasing 

separation. For a 6-12 potential the sign of the first relaxation 

changes at about l:.03,the normal'distance so that nearest neighbors 

relax away from the vacancy_ The volume at this distance corresponds 

roughly to the volume in liquid argon.. Whether this correspondence 

'is coincidental or of some significance has not been studied as the 

behavior of the lattice under high pressure was of greater interest 

to us. 

At sufficiently small separations, even before the energy of 

vaporization becomes positive, the potential energy of formation of 

a vacancy becomes negative. There are two processes which may be ex-
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amined in the formation of a vacancy: a constant volume process" ,in 

• which case 6A is the important thermodynamic function,and a constant 

'pressure proce~s for which ~ is,of interest. 

For constant pressure creation of a vacancy we consider an in-

terior atom"removed to the, surface of the crystal. 

~ DE + P6V - T6S 

where DE now refers to the energy of formation of a vacancy ,with re-' 

,laxations, T = 0, and P is obtained from the potential from 

( 
OES ) '( '11 ) 

- "Tr oV/dr 
T T 

noting that ES is the average energy of sublimation. For r= .9 we" 

obtained 

6-12 Potential 

~ = 13181 cal/mole 

6-7 Potential 

!iF c 6605 cal/mole 

The constant volume process, for the formation of one vacancy per 

n atoms, may be regarded in the following way: Starting vlith n atoms 

with separation r, we go to n atoms and a vacancy in a lattice with 
, 1/3 
(n~l) r. For this process we may readily interatomic distance ' r' 

compute 6A and obtain the following values for the formation of one 

vacancy per n atoms, withr = .9: 
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6-12 Potential 

n 6A (cal/mole) 

100 13400 

1,000 13219 

10,000 13185 

.6-7 Potential 

n 6A (ca1/mo1e) 

100 6676 

1,000 6615 

10,000 6612 

Comparing the computed values of 6F. and 6A with the average energy of 

sUblimation at zero pressure (2035 cal/mole), we would expect that at 

some not too high temperature the lattice would disorder, whatever the 

actual form of the potential is. This is in agreement with the shock 

16 work of Alder et al. who found a first order transition in solid 

argon lying on the extension of the normal melting curve. 

3. Di-Defects 

a. Method. 'In this section we assume (1) that there are two neigh-

boring vacancies located at (0,0,,0) and (1"1,0),, (2) that only nearest 

neighbors to the di-defect relax, and (3) that the relaxations retain 

the symmetry of the lattice.. On this basis it becomes possible to 

write an expression for the relaxation energy similar to that of an 

isolated vacancy. This expression can be readily modified to calcu-

late relaxation energies for a vacancy next to an impurity atom or, 

as with the isolated vacancy, for divacancy formation in a compressed 

lattice. 
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Next"to such a,di-defect there are eighteen nearest neighbors 

plus the impurity atom in that case. Considering the symmetry of the 

lattice the problem becomes one of minimizing an energy function in 

sixteen variables. This was done on an IBM 7094 using the same tech-

nique employed with the isolated defect. Fortunately, it was found 

that the modified half interval technique used did lead toa convergent 

solution. 

b., Results. The di~defect results are given in Tables IX and X. 

The energy required to produce a given defect ina perfect lattice 

without relaxation is E~, the relaxation energy is i:.E, and the energy 

required to produce the· defect is ED. Obviously 

= EO- + .6E 
D 

The energy required to introduce a vacancy next to the other p3. rt of 

the defect (vacancy or impurity) -in a relaxed lattice, EV' is-the 

quantity of real interest in these calculations. This value is also 

given in Table IX. 

The relaxations themselves are presented in Table X. In all 

cases the relaxations themselves are small, being of the same order-

of magnitude as for isolated defects. It was found that a.krypton 

atom relaxes 1.'Y/o into the vacancy and a neon ~tom relaxes 3.6%. 

These relaxations are small as 'for the pure material; the impurity 

atom rapidly increases its overlap with its other nearest neighbors. 

Relaxations into the di-vacancy behaved like those into the isolated 

vacancy. All nearest neighbors relaxed inwards towards the vacancy-

vacancy and the neon-vacancy defects •. In the case of a krypton-vacancy 

defect, the neighboring atoms moved towards the vacancy and away from 

the krypton impurity as expected from the isolated defect calculations., 
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Table DC. The energy of formation of a di-defect. ED is the energy with relaxation. 6E the 

relaxation energy, ED is E; + 6E, and EV Is the energy required to form a vacancy 

adjacent to,the other part of the defect. 

Defect 
o 

E.!D .6E ED 

Vac-Vac 

EV 

r/r , == 1 ' 
° 

3955 cal/mole -57.5 cal/mole 3987 cal/mole 1888 cal/mole 

6-12 Potential 

Vac-Vac 

r/r = .90 o 

6-12 Potential 

Vac-Kr 

Vac-Ne 

970 

989 

4141 

-1913 -943 -621 

-78.8 910 1778 

-102.2 40.39 1877 

I 
I\) 

-.:] 
I 
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Table X. 

The vacancy is at (b~o,o) and the second defect at (1,1,0). The 

point (x,y,z) (gii/"en as (¥) in the Table) goes to (x-ox; y-oy, z.'-oz). 

(~~) is given for each second defect and point investigated. For com-

parison, relaxations around a single vacancy in a perfect lattice are 

given under Ar for those points considered in di-defect studies. 

Di .... defect Relaxations 

IX) ,[ Vac. Ne AI Kr 

G) 
0 

-2 6~42OXIO-3 1.7026><10-2 
-3.5937xlO 

0 -2 6. 420xl0-3 . 6 -2 
. -3. 5937x10 1.702 xlO 

0 0 0 0 

G) 
7 .88OX1~-3· .' 8'~242XlO:'·-3 6. 420xl0-3 4. 194xl0-3 

-7.85lx10~3, . 8 -2 4 -2 .... 1.1 21x10 . 0 1 •. 023 xlO 
. -2 2.643 5xlO -2 '"6.420xl0-3 -7. 685xlO-~ 2.113xl0 

G) 
7. 88OXI0 -3. 8.'242x10-3 6~420Xl0-3 4.194><10-3 

-7.851><10-3 8 -2 0 1.0234xlO-2 
'. -1.1 2lxl0 

-2 '2 -6. 420xl0-3 7. 685xlO-3 -2 .• 1ll3xl0 . -2 . 6435x10 -

G) 
8 -3 8 -2 4 -2 -7. 5lxlO -1.1 2lxl0 '. 0 1.023 xlO 

7. 88OX10-3 •. 1 8.242xlO-3 6.420xl0-3 4.194xlO-3 

-2 . 2 
6.420XlO-3 -7.685><10-3 2.1113xl0 . ,- 2 . 6435xl0 -

(D 
-3 . -2 

1.0234xio-2 
-7.85lx10 . -1.182lxlO 0 

7.880><10 -3 8.242x10-3 6. 420xlO-3 4. 194xl0-3 

-3 -2.643 5xl0 -2 -6.420xl0-3 7. 685xlO-3 -2·1l13x10 

G) 
6 -3 6 -3 -6. 420Xl0-3 -4. 980X10-3 

- .333xlO -7.21 xlO 
-4 -3 f.230xlO-3 -8.0OX10 -1. 552xlO 0 

5.922xl0-3 6. 240xl0 -3 6. 420Xl0-3 6. 240xl0 -3 . 

.. 
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Table X. (Continued) 

Di-Defect Relaxations 

'(~) Vac. Ne Ar Kr 

CD 
6' -3 6· -3 . -3 -4. 980XIO-3 - .333xlO -7.21 xlO -6. 420x10 .. 
8 ,-4 . -1-. 552xlO-3 1.230xlO-3-- .0OxlO 0 

-3 -6.240X10-3 -6. 420xlO-3 -6.240x10-3 -5.922xlO 

(D 
8 -4 . -3 

1. 230X10-3 - .00xlO -1. 552X10 0 

-6.333xlO -3 6 -3 ·3 -4. 980xlO-3 -7.21 x10 -6. 420x10-
-3 6.24QxlO -3 6.420xlO-3 6. 240x10 -3 5·922x10 

·G) 
8 -4 . -3 1. 230X10-3 - .OOXIO -1. 552xlO 0 
6 -3 6 -3 -6 • 420x10 -3 . 3 

- ·333x10 -7.21 xlO -4.980x10-
-3 -6 .240xlO-3 -6.420x10-3 -6 • 240x10 -3 -5·922x10 

(D 4.12lx10-3 3.603X10-3 6. 420X10-3 6.513X10-3 

1.3lx10-4 -4 -6. 420x10 -3 -3 
-5·95x10 -9. 750x~0 

·0 0 0 0 

c:) 
1.·3lx10-4 -4 -6. 420x10 -3 ' -3 

-5·95x10 -9. 750x10 
4.12}X10 -3 . 3.603X10-3 6.420X10-3 6.513x10-3 

o· 0 0 0 

G) 6 -3 -6.328x10-3 -6. 420X10-3 -5. 566x10-3 - .079x10 
. 3 

-6.328xIO -3 
. 3 . 66 -3 -6. 079xlO - . -6. 420x10- -5.5 x10 

0 0 0 0 

G) 6.079x10-3 7.343X10-3 * 
-3 -2·900x10 

.; 

6.079x10-3 7.343X10-3 -3 
* -2.900x10 

0 0 * 0 
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Comparison of EV in Table IX ,,11th the energy re,!uired to produce .an 

isolated vacancy indicates that the energy of foTrnation ... of a' vacancy next 

to· another defect is lower than that for an isolated vacancy. Free ener-

gies for formation of vacancies are correspondingly low'er. This is in 

agreement with the attraction of vacancies predicted by Stripp et al.31 

It is possible from these results to estimate the relative concentra­

tions of various defects. Following Kroger and Vink,33 we wTite the con­

centration of a given defect [D] as 

[D] = 

where SD is the 'entropy of formation of the. defect and ED is the total 

energy re,!uired to produce the d·efect__ SD may be calculated from 

elementaTY statistics. ED maybe separated into a kinetic energy term, 

~, and a potential ene.rgy term,ED" This latter term has been obtained 

in this paper for various modes of vacancy formation. If we assume that, 

in the formation of a :vacancy, I\r is independent of the location of the 

vacancy, ,·re obtain 

[v] 
Sv/k -EV/kT 

e e 
In = 

Sv /k . :-EV /kT . 0 . 
0 0 e e 

:for the relative concentrations of two types of (vacancy) defects. 
,tV] 

fVJ o 
is plotted in Figs. 1 and 2 for various types of vacancies, where [Vo]. is 

always the concentration of isolated vacancies in a pure argon lattice. 
\ 

[V ] has been estimated by Foreman and Lidiard to be .1% near the melting o 

point of ar-gon. From a knowledge of the concentration of isolated vacancies 

in pure argon, we can obtain the concentration of various types of di-defects. 
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. Fig. 1 ln [v] where [V J is concentration of isolated 
[VoJ 0 

vacancies in pure Ar and [V] is the concentration 

of vacancies adjacent toRr atoms in argon with 
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[v] 
ln [V] where [Vo] is concentration 

o -
of isolated vacancies in pure Ar and [V] of 

di vacancies in pure Ar. 

" .. 
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From Fig. 1 w'e see that the formation ofa vacancy next to a krypton 

atom is strongly preferred at low' temperatures, and less so at, higher 

temperatures. Concentration of vacancies next to neon impurities behaves 

similarly. Concentration of di-vacancies is insignificant in comparison 

with the concentration of vacancies except at high temperatures (> 800K) 

where we approach the melting point of argon; this is shown in Fig. 2. 

The preference for formation of a vacancy next to an impurity causes 

a decrease in the average energy of formation of a vacancy in impure 

argon, particularly at low temperatures; average energy of vacancy forma-

tion is plotted in Fig. 3 as a function ,of krypton concentration at various 

'temperatures. The values shown here for high impurity concentration are 

almost certainly rot valid since the impurities will interact, and this 

interaction has not been included in the calculations. Similar'curves are' 
f 

obtained for neon. 

The energy average re~uired to produce a vac,ancy in an impure lattice 

may be obtained from Fig. 3,. This we have used to estimate the concentra-

tion of vacancies in an impure argon lattice at 80 o
K, which is shown in 

Fig. 4. Impuri ties are seen to increase the concentration of vacancies. 

AgaL~ values for'large impurity concentrations are not significant. Even 

in iJ1'1.pure samples the concentration of vacancies predicted by ~his model 

is much smaller than that determined experimentally. 

4. Conclusions 

:::::'1e qualitative behavior of the relaxations around ,a vacancy are 

fairly independent of the exact form of the repulsive potential. As one 

would intuitively expect, the effect of high pressure is to drive sur-

rounding atoms further into the hole left by a vacancy. For atoms more 

distant from a defect than second nearest neighbors} the most i.rnportant 
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contribution to their motion is the behavior of their own nearest' neigh-

bors. 

'" Relaxations around small atoms are qualitatively like thosearo:und 

vacancies, while relaxati~ns around large atoms are 'opposite in sigh to 

those around vacancies .. 

At high pressure it was,found'that an order-disorde:r traris it ion could 

occur at not too high temperature. . 

It was found that forma.tion of a vacancy next to another defect is 

'energetically preferred to formation of,an isolated. vacancy, We have 

shown that the concentration of 'vacancies next to impurity atoms is higher 
, , 

,than that which would be expected from a random distribution of vacancies, 
, . 

particularly at low: temperatures. ' From this we conclude that the concentra­

tion of vacancies" at a given temperature increases with impurity conCentra-' 

tion. 

We have also shown that the concentration of di-vacancies is insig­

niflcant in pure argon' except at high temperatures (> SOOK) 'where we ap-, 

proach the melting point of pure argon. 

, ' 
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D. Diffusion in Solids 

1. Introduction 

Theoretical calculations of self-diffusion coefficient have been 

. made for copper34-36 and argo~ 37 Even though the calculations for 

copper present a number of serious problems, .rough agreement with 

experiment has been obtained. It would appe.ar that more precise ealcula-

tions could be made fox: argon than for copper since,'argon, for computa-

tional purposes, is reasonably well represented by a two-body potential 
\ 

and does not have the complications of free electrons or core polariza-

tion. Fieschi et al. 37 have done extensive calculations on the self-

diffusion coefficient in solid aTgon and have obtained results that are 

partially in agreement wtth experiments. 38 Their exponential term is 

roughly 25% low'er and the pre-exponential term differs by 10
4 

from :the 

experimental values. 

Fieschi and coworkers estimated the barrieT to diffusion by allow'ing 

the 'four nearest neighbors of the diffusing atoms to relax while the 

atom and vacancy interchanged. In Sec. I-C, a program was developed which 

permits the calculation of the energy when all of the nearest neighbors 

. of an adjacent pair of lattice sites are perturbed either by the sub-

stitution of an impurity or a vacancy, or by a combination of the two. 

The expanded treatment of self-diffusion in this section gives a 

closer agreement w'ith the observed activation energy than that of the 

earlier computation. Furthermore, the work done suggests that diffusion 

may occur equally well by the exchange of an atom with a divacancy rather 

than a monovacancy. . It is true that the number of divacancies is low' 

compared to the number of monovacancies, but the barrier is approximately 

the same, and this mechanism leads to a higher pre-exponential term when 
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the Arrhenium equation- is used ,to describe the diffusion process. 

It is evident .that these and similar computations are really o~iy 

approximations, and the nUme.rical values obtained are highly limited by . 

,the assumptions that are necessary at the present time. However, it is 

felt that sufficient 'insight into the physical process. can be obtained 

to w:arrant the effort. that is expended. 

2. Theory 

It is known that most experimental diffusion coefficients39 can be 

fit by the Arrhenius equation 

D=D o 
e -E/RT 

where Do' the ";frequency factor" and E, the "activation energy" are 

constants. In sorne cases Do and E have been found to be temperature 

40 41 
,dependent. ' 

For diffusion via some lattice defect the Arrhenius equation (Eq. 

39"42 1) may be expressed as ' 

t 
-E~RT 

e . (2 ) 

'Y is a numerical 'factor roughly equal to unity,' a is' the length of one' 

diffusion jump (a is equal to the solid interatomic distance for most 

vacancy diffusion mechanisms), 'V is the vibrational frequency of the 

diffusing atom, SD ,and ED are the entropy and energy of forrr..ation of the 

. t t 
lattice defects, and SD and ED are theactiyation entropy and energy of 

the motion. 
t . 

ED is the difference in energy between states 1 and 2 in 

Fig .. 5, the usual reaction coordinate diagram .. 

Diffusion is assumed, to occur by interchange of an atom with a 

vacancy at a nearest neighbor site (Fig. 6).. We assume that as the 
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Fig. 5 The reaction coordinate diagram ~or diffUsion. 
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Fig. 6 Exchange with a monovacancyj diffusing atom is 

cross hatched~ 
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diffusing atom moves, the lattice continuously relaxes to a minimum 
.., 

potential configuration. In this way, we consider correlation of the 

a'iffusing atom with its neighbors to obtain a potential energy diagram 

for use in an equilibrium calculation. t We also,assume that ED in 

Eq. (2) is the, difference in the potential energies of states I and 2 

in Fig" 5, where state 1 represents now the minimum potential configuration 

of the lattice with a vacancy and state 2 the minimum potential configura-

tion of the lattice with the diffusing atom displaced half the distance 

between its lattice site and that of the vacancy. 

3. Calculations 

Using techniquE!s developed in Sec. I-C) it is possible to compute 

the potential energy, Eo(x), required to move the diffusing atom from 

its normal lattice site to a distance x along the "reaction coordinate", 

Fig. 7, in an undeformed lattice. 

The eighteen nearest neighbors to the di-defect (diffusing atom 

plus vacancy) w'ere a Uow'ed' to relax to the configuration of minimum 

potential energy; the difference in potential energy betw'een the unrelaxed 

lattice and the minimum potential configuration with the diffusing atom 

at x is designated, b.E(x). Allow'ing only nearest neighbors to relax and 

considering the symmetry of the lattice, determination of b.E(x) is 

reduced to simultaneously minimizing an expression in sixteen independent 

variables. This minimization was carried out by an iterative half 

interval technique which fortunately converged. The relaxations of the 

nearest neighboTs were found to be small throughout the diffusion process 

and are presented in Table XI for states 1 and 2 for ,self-diffuSion. 

Because of the great amount of machine time required to extend consideration 

to relaxations of more distant neighbors and the only qualitative 
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Table XI 
1 

Relaxations of the nearest neighbors for mono-vacancy self diffusion. ' 

The moving atom is initia11YT,a};::.(lj:):.,0) and the vacancy at (0,0,0). 

,_';rhe relaxing·: ... at'Olll6 s.r,e gr;.;Duped int.o set.8of p.ointse.qui·valent 'by 

(1,1,0) 

(1,0,1) 5 (1~OJ-1) 5 (0,1,1) 5 (0,1,-1) 

(-1,0,1) 5 (-ljO'~~) 5 (0,-1,1) 5 (0,-1,-1) 

(i,-l,O) 5 (-1,1,0) 

(-1,-1,0) 

(2,2,0) . 

(1,2,1) 5 (1,2,-1) == (2,1,1) ==. (2,li~1) 

(2,0,0) 5 (0,2,0) , 

(~dX;) u is given for states 1 and 2, :<F.1g~n'5);,'f,or orie~·atom;of each set 

x 
y State 1 State 2 
z 

m 6.42x10-~ .5 
6.42x10- .5 

0 0 

G) . 6.42X10 .. 3 8 -2 -2.5 X10_2 
0 2452x10 2 

6. 42X10 .. 3 -6. 88x10-

t~) 
. 6.42X10-3 -2 

-1.17x10 3 
0 -1. 88x10-

3 6. 42X10-3 9.06X10-

tD 6.42X10-S 
-2 

1.37><10 2 
-6. 42X10- -2. 63X10-

0 0 

(=D 
-6. 42X10-S 6 -3 - .25X10 3 
-6. 42X10- -6. 25x10-

0 0 
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Table XI (Continti.~d) . : ': . 

x 
y 
z 

m 
G) 

.• (g) 

, . 
, .'. ; .. ,. 

.', 

. ' 

. ,', 

state 1 

, .4 
...2.27><10 .. 4 ;..2.27><10 

' . 

o 
.' -4 
5·:39XlO 4 
8.80XlO:4 ' 
5. 39XlO . 

-3 .. 3.43><10 
o 
o 

, " 

<, 

State 2 

6 -3 .25xlO 3 
6.25x10- . 

o 
.4 2.50XlO_2 

1.12XlO 3 
9. 69XlO· 

. '::'2 
2.69X10 2 

. -:J-.46XlO· 
o 
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significance of the results, no attempt w'as made to relax the more 

distant neighbors.. Thus 

E(x) = E (x) - .6.E(x) o 

is the potential energy required to move the diffusing atom from its 

relaxed lattice site to the position (x) in the relaxed lattice. E(x) 

and E (x) are shown in Fig. 7. In Fig. 7 the distance betw'een the initial o 

and final lattice po.sitionsis one unit.. In accordance with our 

assumptions, we take 

t 
where EV is the energy at the saddlepoint. 

Calculations for impurity diffusion are essentially the same as 

for argon self-diffusion ,.and were made for ,neon and krypton impurities .. 

The potential of argon was modified as in Sec. I-C .. 

4. Results 

We have develope~ a method for calculating the potential energy 

change of the system in going from initial state 1 to intermediate 

state 2 (Fig~ 5); this is E(.5) and is equal to E~ in Eq. (2).' For 

self diffusion in argon 

whe!"e the units are cal/mole of diffusing atoms. We have obtained in 

Sec. I-C the energy required to remove an atom f;rom the bulk of argon, 

leaving an isolated vacancy; the process of phy.sical importance involves 

the removal of a bulk atom to the surface of the crystal. Assuming that 

the average binding energy to the surface is half the binding energy 

to the bulk, w'e obtained 



, " 

. ,... . , t " 
E =E

V 
+EV = 3812 cal 

which is in surprisingly good agreement with the experimental results 

of Boat038 

D
'.. l5x -4120cal/RT 2/', • , ',= ecm sec 

It is intere sting to note that ~ is only slightly less than one half 
" 42' , 

of E for argon. 'Comparisons ,of Mukherjee's tables ~f EV for a number 

of metals w'ith the "activation energies"for diffusion tabulated by 

Lazarus39 indicates t~t thiJ3' is generally true,. assuming the diffusion 

mechanism is monovacancy exchange. 

:,'We have observed above that E; and Eyare roughly eClual for meno­

vacancy exchange. We have shown in Sec. I-C that the energy of formation' 

of a diva<!ancy,Ev: ; .is less than twice the energy of formation of a 
, , 2 

monovacancy, E
V

' 

Ev: = 3897 cal 
, 2 

, < 2E = 4028 cal. 
, V 

An atom which is a nearest neighbor to both sites of the diyacancy may 

move by exchanging position with one of the vacancies. This mechanism 

may be represented in a (111) plane (Fig. 8) and results in a rotation 

of the divac·ancy.For thi's mechanism 

without relaxation; allowing the four atoms nearest to the saadle point 

to relax reduces ~ ,~~ 
2 I,"',,; 

, • r 

'10 
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Fig. 8 Rotation of a. di vacancy J diffus ing atom 

is 'cross hatched. 
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; ~". 

.. :E; = 950· cal 
2 

, ~', 

No attempt was made to consider additional re laxa.t ions. This· value of . 

f . . EV: is an upper limit. and would presumably be reduced by consideration· 
2 . .. 

of more relaxations ... For. divacancy diffusion,the "activation energy" 

in the Arrhenius exp.::~ssion (Eq~ 1) is 

. .. t 
.E= Ey + Ev: = .4847 cal , .. 
. . 2 2.. '. 

. 38 
which is also in 'reasonable agreement w'i th Boato's. experimental resuit .. 

Diffusion may occur with a divacancy via two other mechanisms. In ·these 

. the diffusing atom is a nearest neigbbor with only one of the sites of 

the divacancyand exchanges with this· site. This results in a splitting 

of the divacancy leav'ing two vacancies which are either second or thir.d 

nearest neigbbors depending on which neigbbor of the vacancy moves. Both 

splitting processes have higher barriers than the rotation of the 

divacancy. 

No calculations of Sf or S have been made to the author's 
V2 V2 

u lrnowledge.. How'ever.; Sv: must be larger than Sv and S t is certainly 
2 

greater for divacancy exchange than for monovacancy .. 

It would thus appear that, in argon, the "frequency factor" for 

diffusion via divacancy exchange is greater than that for monovacancy 

exchange and the "activation energies" for both processes are essentially 

. 38 
the same and in reasonable agreement with experiment. This would 

imply that, in fact, the prefer~ed self-diffusion mechanism in solid 

.argon, and perhaps in other close packed solids, is not monovacancy 

exchange as has been previously assumed, but rather is divacancy exchange. 

This conclusion is contrary to intuition, which would indioate that the 

. ' 
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concentration of divacancies is 'too low to be significant, HO''i'l'ever, 

though the concentration of divacancies is very low', the barrier for 

motion is much 10"l'er for divacancy exchange than for monovacancy exchange 

and the "frequency factor" is higher, which may lead, surprisingly, to e, ::;. 

higher self-diffusion rate for divacancy exchange •. 

In order to account for Boato ' s38 experimental results, the entropy 

term for divacancy diffusion must be larger than that calculated by 

Fieschi37 for monovacancy diffusion by roughly 10 entropy units. It 

would be desirable to do extensive calculations on the divacancy exchange 

mechanism to find whethe,r this very large entropy term is in fact found. 

Without difficulty it w'as possible to compute the "activation energy" 

in the Arrhenius expression for both examined mechanisms in a compressed 

argon lattice. Under compression, a mv term must be included in the 

"activation energy". We have assumed in Sec. I-C that the formati'On of a 

vacancy involves the removal 'Of an atom from the bulk to the surface, 

that the "VOlume" of an atom on the perfect surface is equal to the 

average bulk "volume It,' and that the surface binding energy is half the 

~ulk binding energY4 With these assumptions we obtained the "activation 

energies" for both processes in the compressed solid; these are shown 

in Fig .. 9 as a function of pre.ssure. Though the "activation" energy for 

divacancy diffusion at low' pressure is comparable to that of monovacancy 

exchange, at high pressures the divacancy mechanism appears to have a 

higher "activation energy" .. 

In diffusion work one often stUdies the so-called "activation 

VOlume". Writing 

6F .,. 6E + P6 V - 'IDS 

(06F) = 6V 
\ oP T 
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The energy term used in these calculations is not a true thermodynamic 

state function and so we calculate the "activation volume" as 

!::::"v* :: 

b.E(Pl ) - b.E(P2 ) + Pl!::::,.V(Pl ) + P~V(P2) 

Pl - P2 

Using our data for "activation energy" (Fig. 9) w'e have determined!::::"y* 

for both mono- and divacancy self-diffusion 

!::::"V; = 1.2 atomic volumes . 

!::::"v* = 1.8 atomic volumes 
V2 

No other vacancy type process can have a sufficiently low "activation 

energy" to agree w'ith the experimental results. However, it would be 

desirable to calculate the activation energies for exchange, ring, and 

interstitial mechanisms in solid argon to assure that these do not give 

suitable "activation energies". 

In Section Ie we :found that the energy required to produce a vacancy . 

. adjacent to an impurity atom is dependent on the nature of the impurity 

atom. The energy required to form a vacancy adjacent to a neon iropuri ty is 

EV = 1877 cal 

Using the programs developed for self diffusion we find, for monovacancy 

diffusion of neon through argon, 

E~ = 305 cal 

The "activation energy"· in the Arrhenius expression is then 



',' 

, ','" 

Simiiarly for krypton diffusion through argon 

EV =1778 cal 

t, , 
EV = 2075 cal 

.... ; ." ',:.' ,,' E 
"':.'" " 

'= 3873 ,cal 
",< •• 

Conclusions 

" , , 

In this Section we 'have calculated the Itactivation,energy" of self .. , 

diffusion in solid argOn based on a monovacancy exchange mechanism using 

an equilibrium approach to the diffusional jump frequency. We have shown 

" \. : 

" 38 
that monovacanoy exohange gives a value in agreement with experiment for 

the "activation energy", E? in the Arrhenius expression 

D = D o 
e-EjRT 

We have also show,nthata divacancy exchange mechanism for self-diffusion 

in solid argon leads to a "frequency factor" greater than that for mono-

vacancy exchange and to a satisfactory value of the "activation energy", 

and that at high pressure the "activation energy" for divacancy diffusion 

"is much greater than" that of monovacancy diffusion .. 

FinallY' w'e have found tha~ for impurity diffusion through argon via 

a monovacancy mechanism the "activation energy" varies greatly with the 

nature of the impurity" For divacancy diffusion, the energy of formation 

of the divacancy is the main term in the "activation energy" and thus the 

,"activation energy" does not vary strongly with the ,nature of the impurity. 

" 

", 
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Assuming that the "frequency factor" for .a given diffusion mechanism 

does not vary greatly from self to impurity diffusion, our calculations 

fo~ argon, krypton and neon indicate that large impurities (e.g., krypton 

in argon) should diffuse by divacancy mechanism and small impurities by a 

monovacancy mechanism. 

Some experimental data for diffusion in metals are tabulated in Table 

XII. The self diffusion coefficients are all characterized by large pre­

exponentials •.. For relatively large impurities,the diffusion coefficient 

"frequency factorsll and "activation energies" are roughly equal to the 

values for self diffusion •. However, for relatively small impurities, the 

"frequency factorslt and "activation energies" are drastically reduced from 

the self diffusion parameters. These experimental results are in agree­

ment with our theoretical prediction that large impurities and bulk atoms 

diffuse by a divacancy mechanism while small impurities diffuse via mono­

vacancies. 



.' . 

Table XII •. DiffuBio~ Coefficients, D, for Face-Centered-CubicSolids 
" ('" 

Ris the ratio o~, the' "diameter,~':;Ofthe diffusing atom:to thatcf 

the atoms in the: host lattice where the "diameters" are taken as 

the nearest neighbor distance in the pure solid. Energies are 

in ca1/mo1e. 

Solid Diffusing ::R D Reference 
Atom 

Ar Ar ',1 .. 0, 15 
-4120/RT ,2/ e, cm sec 38 

Pb Pb 1.0 .28 e -24,200/RT 44 

Pb Cu .73 7_9x10-3e-8020/RT 45 

'Pb Ag .82 4.6xIO·2 -14, 440/RT 
.,' 

45 e 

. , .. 
,2~5X10-3 e-8700jRT " 

Pb Au 
~ .. " ;, .82 . , 46 

" 
' ' 

Cu Cu ' 1.0 . .47 e-4T;100jRT ,47 

CU Ag 1.]2 .63 e-46,500/ RT 48 . 
, , 

-49,700/ RT 
Cu , Au 1.)2 .69 e ' 48 

Cu Pd 1.08 1.7 e -54 ,400/RT 49 
',. 

.' Ag Ag· ~ :; 1.0 .40 e -44,100/RT 50 
..... 

( 
, ' 

-45,500/ RT 
Ag Au 1.0 .. 26 e 51 

':. " 

. I· ... 

,,? -46,100 
Ag CU .89 :,,1.2 e 51, 

.~' : .-

" .... 
-56J 700/RT Ag Pd .95 9. 6 e 49 

" . 

,', 

. 
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E. Surface Dilation 

Until now', experimental values have not been obtained for the dis-

placement of the surface layers from the bulk of semi-infinite crystals ; 

such information w'ill probably soon be available from Low'Energy Electron 

Diffraction (LEED) studies. It is desirable to have some theoretical 

estimation of the order of magnitude of the displacements. 
~' , 

Gazis and Wallis have :shown that a' one dimensional la tt'icew'i th 

nearest and next-nearest neighbor interactions may exhibit a distortion 

of the lattice spacing at a free surfacer the predicted distortion 

decreases exponentially with distance from the surface. 

Shuttleworthll has calculated the displacement of the first layer of 

the (100) surface of argon. Alder et al. 12 have calculated the displacements. 

of the first five layers of the (100) surface of argon; they found that 

the distortion decreased proportionally to the inverse cube of the 

distance from the surface. 

The values of the coefficients in the Morse potential 

{ 
-20: ( r-r ) -0:( r-r ) '} 

¢( r) = De' 0 _ 2e 0 . 
, , 

have been tabulated by Girifa.lco and Weizer53 for six fcc metals; Ca, Ag, 

Al, P, Cu, and Ni (Table XIII). Girifalco 1s evaluation of the Morse' 

potential parameters was based on experimental values of the solid inter-

atomic distance, the heat of sublimation, and the solid compressibility. 

The Morse potentials obtained give good equations of state but poor 

elastic constants. We have calculated the displacements, 0i (Fig. 10) 

of the first two surface la.yers of these metals for the (100), (110) 1 and 

(111) surfaces. For comparison purposes we have also calculated the same 

displacements for argon using a Lennard-Jones 6-12 potential. 15 
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Fig. lOSchema.tic diagram of a semi-infinite crystal 

, with displacements indicated. 
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,Tab le XIII. Paxameters of Morse potential 

-2cx(r-r ) -ex(r-r ) 
¢(~) = D[e 0 

0 
-2e ] 

CX(A-l ) 
0 

Metal ro(A) D(ev) 

Pb 1.1836 3.733 .2348 

Ag 1.3690 3.115 .3323 

Ni 1,4199 2.780 .4205 

Cu Id588 2.866 .3429 

Al 1.1646 3.253 ,,2703 

Ca .80535 4.569 ,,1623 

The expression for the surface energy of the (100) surface with the 

,spacing of the first two planes perpendicular to the surface (z direction) 

allowed to change by °1 and °2 and the other pl~nes fixed illustrates 

the method employed in these calculations, which is that employed by 
12 ' 

Alder et al. We define e(z + °1 ) by 

00 

e(z + °
1

) = Z ," ,,' "V(x,y,z + 0i) 
x,y = _ 00 . 

x + y+ z'=even 

where V(x,y,z) is the potential between an atom at (0,0,0) and an atom 

at (x,y,z). Then the potential energy o~ atom in the surface layer is 

given by 

E(l) = e(o)+" eel + ~o'i):+ '~ ':e(z + °1 + °2) 
z=e 
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wi th only the ,first and ,second layers relaxed. For an atom in the second 

, layer the total energy is 

00 

~(2) ::. 8(0)+ 8(1 + °1 ) + L:8(z + °2 ) 
z=l 

For an atom in the Nth (N :> 2) layer the total energy is 

, 00 

E(N):~:::i 8(0) + 8 (N-l +°1 + °2 ) + 8(N-2 + °2 ) + 8(N-2) +.L: 8(z) 
t=l 

'Adding the energies of aU of the atoms 'in all of the layers gives twice 

the total binding energy of the' system 

'00 

-2ET= . L: E(N),:_ 
.' N=l. . 

.r, .; 

,For a perfect infinite crystal the total binding energy, EB is given by 

:.2E = 
. B 

00 

lim 2N[ 8 (0) +. 2 L: 8 ( z) ] . 
N~oo z=l 

The surface energy ofacrystal is defined as one half the energy ~equired 

to split an infinite cry~tal into two semi-infinite crystals 

\ . 
1 

:: -·2 

00 

L: z8(z) + 
z=l 

00 

00 

z=l 
[8(z) - 8(z + °2 ) + 8(1) .'8(1 + o~)J 

.' 

'Similar expressions may be developed for more relaxations and other crystal 

faces .. 

The surface energy, without allowing for distortion,Eo ' was calculated 

for each case considered by direct summation over a lattice of 2000 atoms. 

The surface energy was then minimized with respect to the displacements,' 01' 

by direct summation of the energy over a lattice of 360 atoms on a CDC 6600 

computer .. 

.' ". 

...:.. 
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The surface energies w'ithout relaxation, E , the displacements. 0., o ,~ ~ 

and the changes in surface energy due to relaxation, .6E, are tabulated 

in Tables Xrl, XV, and XVI for the (100), (llO), and (111) surfaces 

respectively. The displacements, 0i' are given in units of percentage 

12 of the normal bulk planar spacing. The values of Alder et a1. are 

included in Table XIV •. 

The results of Alder et al. are based on direct summation of the 

energy over a lattice of roughly forty thousand atoms and integration 

over the remainder of the lattice; our results are based on only 360 

atoms. Comparison of Alder t s resul ts with ours showS that this small 

lattice yields good values of 01'02' and .6E.. Alder's work show'S that 

consideration of the relaxation of only two surface layers gives good 

values of the surface energy_ It is not necessary to do calculations on 

large crystals to get reasonable values of the surface energy and surface 

distortion for solids w'i th short range potentials. Relaxations w'ere found 

to alter the surface energy by at most &/0. However, consideration of 

relaxation affects the relative orders of the surface energies per unit 

area in some cases. 
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Table XIV ':, 

The (100) Surface: Rel~xations, ai' are given as a percentage of the 

bulk (100) planar spacin~;E is the unrelaxed (100) surface energYJ 

l:IEis the change in surface energy due to relaxation. 

Solid. °1 (%) °2 (%) 
Eo ~o 

(ergs/cm2 ) (ergs/cm2) 

Ca 12.504 3 .. 587 1034 -68 
Ag 6.456 1.259 2508 .. -72 

Al .:". '.10.972 .~ 2.963 2962 -167 
". 

\ . . Pb .... 5.542 .978 1024 . -26 
Cu .. .9 .. 669' '2.433 '4236. ,-204 

Ni .' 9.121' 2.232 , ' . 5246 -236 
Ar 2.604. .623 42.33 -~38 ., .,c ," 

Ar*.·· 2 .. 577 ' " .589 . 42.86 -.38 

*Obtained by Alder et al. 12 . , 

Table x:r 
The (110) Surface: Relaxations, 0Vare given as a percentage of the 

bulk (110) pl~narspacing; " E is the unrelaxed (110) surface energy; 

.6.E is the change. in surface energy due to relaxation. ' 

(% ) 2 (10) 
Eo .6.Eo 

Solid 1 (ergs/cm2 ) (ergs/cm2 ) 

Ca 9.621 2.628 1065 -63 
. Ag ,4.783 .768 2635 -61 

Al 8.362 '2.099 3063 -153 
Pb '4.075 . .559 1177 ..,22 

eu 7.314 . '.1.671 . 4400 .. 184 
Ni . 6.872 1.507 5460 -211 

Ar 1.809 .366 44.32 -.30 

" 
."; .. ' 

I 
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Table XVI 

The (111) Surface J Relaxations, °1, are given as a percentage of the 

bulk (Ill) planar spacing; E is the unrelaxed (Ill) surface energy; 

~ is the change in surface energy due to relaxation. 
'" 

Solid °1 (%) °2 (%) 
Eo ~o 

(ergs/crrF-) (ergs/cm2 ) 

Ca 4.297 .899 1046 -31 
Ag 1.910 .225 2484 -24 
Al 3.667 .709 2985 -71 
Pb 1.580 .159 1099 -8 
Cu }.142 .544 . ·4375 -85 
Ni . 2.927 ' , .490 5258 ":93 
Ar .820 ' .190 40.74 -.14 

.. 
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,':,F. Surface Defects 

1. ,Introduc tion 

, . 
A number of investigators have calculated the energy of formation of., 

surface vacancies and the binding energies of excess atoms above the sur-

4 
face for ionic c.rystals .. 5 ,55 The ca'lculation of the surface energie's for 

14 ionic crystals is a very difficult problem, thus one cannot expect much 

exact information from surface defect calculations on ionic crystals. 

It is desirable to do extensive calculations on the surface proper-

ties of argon in the hope that the results obtained would give some insight 

into the surface properties of other materials. Potential functions for 

adsorption of excess atoms onto the surface and for the rem:>val of atoms 

(both host and impurity) from the perfect sur.face and information on the 

configuration of the surface, both perfect and defective, would be useful. 

The distortion of the perfect (100) surface of argon has been calculated 

12 previously. 

We have calculated the bind:1ng energies of argon and impurity atoms 

,(neon and kryptop) above. and in the (100) surface plane of argon. Using 

the high temperature Einstein approximation to calculate the entropy, we 

estimate the concentration of vacancies in the equilibrium (100) surface 
. . 

of argon at its melting point assuming that the vacancies obey Boltzmann 

statistics. Though use of our data at the melting point is not justified 

·by. our assumptions, it is felt that the results obtained in this way give 

at least a rough estimate 'of the surface vacancy concentration at· the 

. melting point. 

We find, as expected; that 'the binding energy to the argon surface 

decreases in the series krypton, argon and neon. We al~o find, in accord 

with expectations, that the binding energies of neon and krypton above the 
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perfect surface are less than in the surfa~e plane. We find that though 

the relaxations are usually numerically small, they appreciably affect 

the' energy. ' 

2. Calculations 

The energy of forimtion of a vacancy at (.0,0,0) in a (100) surface 

plane without allowing for relaxation is ' 

:= ' L;' V(i,j,k) 
, i+j+k=even 

~O 

where the prime ( ,I) indicates that the point (0,0,0) is not included in 
, 

the summation and V(1,j ,k) is the potential energy betw'een an atom at 

(i,j,k) and an atom at (0,0,0)." The summation over only lattice points 

with (i+j+k) ::z even is the convention adopted by Alder et al. 12 and make s 

the edge of th~ unit equal to 2. Allow'ing the lattice to assume the dis­

, tortions, Ok (Table XVII), determined by Alder et al.. and allowing the 

atoms at (11'1,0) and e.quivalent atoms C (-1,1,0), (1, -1,0) and (-l,.-l,O)} 

to relax to (l-D, l ... D, 0),; etc.; the energy of formation of the defect 

may be w:ri tten as 

E =' ',L:' V(k,j'k + L; 01) 
i+j+k=even 1=0 

k~O 

+ 4L;I' V (i+D 
i+j+k=even ' 
~O 

, k) 
j+DT k + Z 01 

1=0 

" 

" 
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, ' 
\.' 

'" ..•. '. + 4V(2,O,O) -8V(Dl' 2-D, 0)' 
. ~. . \," 

" " 

',+ ~2V(2,2,0) V(2-D, 2-D, 0) 

.,.-." 

This expression f~r E 'Was miri.imized with respect to 'the relaxat ion D of 

atom (1,1,0) by a half interval techni~ue on a CDC 6600 computer. MOre . ::", . 

complicated expressions must be minimized when more relaxations are allowed. 

Similar expressions may be developed for other types of defects. 

.' "'. " Table XVII " .",' ,,', '; 6 
Relaxations, 0i,of the (100) surface of solid argon from Alder et al. 

.. 001981 .000849 

3. Results 

o " 
5 

.000420 

The binding energy, E, and relaxations for argon, neon and krypton 
I 

atoms above the argon surface are given in Table XVIII, as are the binding 

energies wtthout consideration of relaxation, E. The defect is located o 

initially at the point (0,0,0) above a semi-infinite argon crystal with 

lattice points (i,j,k) subject'to k ~ 1 and (i + j + k) an even nu:inber. 

An atom at the lattice point, (i,j,k) relaxes to the new' position, 

(i - oi, j - OJ, k ... ok). oi, oj, ok are tabulated. 

" 

Configuration and energy of surface vacancies and surface substitution 
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Table XVIII 

The relaxations of the (100) surface of argon with an 'extra ~tom 
" 

above the surface at (0,0,0). The lattice points have coordinates (i,j,k), 

k ~ 1, and are grouped into sets ofe~uivalent points 

(0,0,0)' 

(1,0,1) == (-1,0,1) == (0,1,1) == (0,-1,1) 

(0,0,2) 

(2,1,1) == (2,-1,1) == (-2,1,1) == (-2,-1,1) 

(1,2,1) E (-1,2,1) == (1,-2,1) E (-1,...2,1) 

. The point (i,j,k) relaxes to (i-5i,j-5j,k-5k) and .:(.~~) is tabulated for 
, ok 

one point of each set of e~uivalent points. 

The binding energy of the extra atom is tabulated without and with 

relaxation, >E6'"and',E',respectively.:. 

Extra Atom 

Ar Ne Kr 

Eo 1355 eal/mole 592 cal/mole 1578 eel/mole 

E 1367 ~al/mole 687 ca1/mole 1682 eal/mole 

Points 

(g) ° ° ° ° ° ° .01831 -,,16982 .06647 

G) -.00319 -.00196 -.00378 
0 0 ° -.00558 -.00167 -.00752 

G) 0 0 0 
0 0 0 

... 00255 .00249 .00252 

(D ., 00035 ..... 00001 .00054 
... OOOJ. 7 -.00028 -.00010 

.00188 .00ll7 .00226 
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:impuri ties are tabulated in Table ~, Here again the defect' is located 
. , " .: . . 

in~tiaD:y at ,(0:'0,0); the bulk atoms novJ' a're at points (i,j,k) subject to 

'k ~'O;. (1 + j + k) even~' "The atom at (i,j,k) relaxes to (i - oi, j - oj, 

, k-' Ok) and (oi f ojjOk) ;l.s tabulated. ' The binding energyoi' substitu-

'tional impurities is relative to the impurity atom infinitely removed from 

a surface w";!. th a vacancy_ 

Inall case.s suffici~nt:LY many relaxations were calculated to assure, 

convergence of the energy of the defect to .0510. 

The relaxations of the lattice around an extra argon atom above the 

su;rface are illustrated in Fig. 11 (top view) and Fig. 12 (side view"). 

The nearest neighbors to the extra atom relax tow'ards the bulk .610 from 

their normal surface positIons and outwards tangentially to the 'surface 

.310.. The distance betw'een,the extra surface atom and ,its nearest neighbors 

was found to be roughl:y equaJ. to the distancebetw'ee'n first and .second 

layer atoms in the perfect relaxed surface. The second nearest atoms to 

,the extra atom (in the second layer. of the, lattice) relax upwards. The 

second nearest neighbO'rs (in the surface layer) to the extra atom relax 

in SUch a way as to decrease their distance to the defective site but 

increase their separation from the rel,axed nearest neighbors. This be­

'havior is .similar to that noted previously for the relaxation of the atoms 

around an internaldefe,ct (Section I-C) .. 

With a neon atom above the surface the relaxations of the nearest 

;, neighbors are smal;ter( .. 210 downw'ards and .210 outwards ) while for krypton 

they are larger C.81o downw'ards and .410 outw'ards). 

It is interesting to note ~hat in the fully relaxed .situation, an 

extra neon atom lies 'closer to the bulk than an extra argon which, in 

turn, lies closer than an extra krypton atom. 
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Table XIX 

The relaxations of the (100). surface of argon with a defect (vacancy 

of substituent) in the surface at (0,0,;0). The lattice points have coor­

dinate (i,j,k), k ?i OJ and are grouped into set.s of ecauivalent points 

(0,0,0) 

(1,1,0) = (1,-1,0) = ( .. 1,1,0) = ( .. 1,-1,0) 
(0,1,1) = (0,-1,1) = (1,0,1) = (-1,0,1) 
(2,0,0) = (-2,0,0)= (0,2,0) = (0,-2,0) 
(0,0,2) 

. (0f) The point (i,j,k) relaxes to (i-oi,j-oj,k-Ok) and oj' 
. . ok . 

i13 tabulated for 

one point of each set of ecauivalent point13. 

The binding energy of the substituent; atom (or surface binding energy 

of argon in the case of the vacancy) is tabulated without and with relaxa-

tion, Eo' and E respectively. 

Defect 

Vacancy Ne Kr 

Eo 2627 cal/mole 1134 cal/mole 3081 cal/mole 

E 2603 cal/mole 1290 cal/mole 3160 cal/mole 

Points 

(g) * 0 0 
* 0 0 
* -.18131 .06060 

G) .01589 .02682 -.013061 
.01589 .02682 -.013061 
.00299 -.00009 .00218 

G) 0 0 . 0 
.00265 .. 00181 -.00004 
.00110 -.00453 .00479 
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2627 cal/mole 

2603 cal/mole 

.":~00468, 
o 

,.000625 

o 

Defect 

Ne Kr .... 

1134cal/mole '3081 cal/mole 

1290cal/mole 3160 cal/mole 

";'.00249 
o 

-.00103 

o 
o 

.00131 
'0 

.00250 

o 
o 

-.00317 ',; ' .. , '. ·· ..... 00411 
o 

.00317 
,.' .. 
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.... 
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.. t r'. . .~~ , 
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0 0 0 0 0 0 

0 0 Q-c> ~ 0 0 

" 0,11 0 '? 0 'f 0 
0 

0 6 eP ~ 6 0 

0 0 O<>~ 0 0 

o o o o o o 
. MU B ·13063 

Fig. 11 Top view of the rel.axations of the surface 
I 

l.ayer with an excess. argon atom above i t'~ 

Arrows indicate the directions of the dis­

placements from the normal positions. The 

excess atom is represented by a square (o). 
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0 0 ,p ~ 'b 0 

0 0 6 0 0 

0 0 0 0 0 0 

MU B ·13064 

, Fig. 12 Side view of the relaxations of the surface layer .' 

'with an excess argon atom above it. Arrows indi­

cate the directions of the displacements from. the 

normal positions. The excess atom. is represented 

by a square (0). 
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With a vaca.ncy in the surface, the nearest neighbors to the defect ' 
. . 

are displaced towards the center of the vacancy (Fig. l3)~ Krypton sub-

stituted in the surface plane (Fig. 14) displaces its nearest neighbors 

away from the defect.; the krypton atom is displaced 6% up' from the normal 
f' 

argon location in the' crystal surface." A neon sub sti tuent in the pla.ne 

affects its nearest neighbors like the vacancy but the neon atom is dis-

placed 18% towards the bulk.ofthe crystal from the normal argon site. 

The direction a.nd magnitude of the displacementsa.reattributable to 

'the sizes of th~ impurity atoms; argon is larger thari neon and smaller 

tha.n krypton. 

With the computed binding energies it is possible to calculate the 

energy of formation of_a. ya.~ancy in an argon surface. Thi s was done by-­

assuming that the relevant process involves the removal .of asurfa.ce atom 

to a position above the $urface a.nd isolated from any other defects. Us-

ing the high temperature Einste1n approximation to compute the entropy, we 

have calculated the freefimergy of formation .of a mole of vaca.ncies to be 

b.F ;:: 1236 - 3.58 T cal 

when relaxations are considered and 

,without relaxation. This implies that at the melting point of a.rgon there 

is one vacancy for each three hundred sites on the ideal flat (100) sur-

J2 . 2 
face or 2XIO percm of surface. 

With slight modification of the programs developed for calculation 

of the energy of surface defects, w'e were able to calculate the potential 
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0 
... ~ ... cf ~ cI' 0 

0 0 .~ 6 0 0 

0 .0 0 .~ .. 0 0 o. 

0 0 0 0 0 0 

PotU 8 "130S5 

Fig. 13 Side view of'the relaxations of' the surf'ace 

layer with a vacancy in the surf'ace." Arrows 

indicate the directions of' the displacements. 
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MU B ·13066 

Fig. 14 Side view of the relaxations of the surface layer 

with a krypton atom substituted in the surface 

plane. .Axrows indicate the directions of the dis­

placements from the normal positions. The krypton 

atom is represented by a square (0). 
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curves for binding of an atom to the lattice, both at a point above the 

sUrface and at a normal'surface position. 

, Figures 15 and 16 show' the potential'curves for binding of neon), ' 

argon,andkrypton atoms in the surface plane and above it. As expected, 

the krypton potential curves have the deepest w'ells and are the widest. 

, 4. Conclusions 

The distortion of the crystal 'surface around a defect is small in 

most cases butappreciahly alters the energy of the defect and is not 

neglectable in the calc1,l.lat'ion of surface :properties~ 

Distance of excess, atoms above the surface,s increases in the series' 

neon, argon, and krypton. ' A neon atom substituted. in the argon surface 

,is displaced towards the bulk from the normal position while a krypton 

atom is displaced away from the bulk. 

The binding energies of atoms in the surface plane, are greater than 

those of atoms in normal ,lattice sites above the surface plane. 

, .. :,. 

It w'as found that the free energy of formation of a mole of vacancies _ 

in an argOn surface is , 

&= 1236 - 3.58 T cal 

which implies that at the melting point of argon there is one vacancy for 

"- 12 
'each three hundred sites on the ideal (100) crystal surface or 2XlO 

2 . 
vacancies per em of surface. 

. 
., 

j 

I 

1 
j , 
! 

~ 
-< 

" ;! 
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-1.0 o 1.0 2.0 3.0 4.0 ,5.0 6.0 7.0 8.0 
o 

Oi stance from surface ( A) 

/AU B -13070 

Fig. 15 The potential curves £or binding of neon, 

argon, and krypton atoms in the (100) surface 

of argon with relaxation allowed. 
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.0 2.0- A.O 6.0 8.0 

o 
. . Distance from surface (A) 

M U 8_·13067 

Fig.16 The potential. curves for binding ,of 

neon, argon, and krypton atoms above 

~he (100) surface of argon with 

relaxation allowed. 
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II. THE FERMI MOMEN'TUM OF ALUMINUM FROM 0 TO 100 KILOBARS 

A. Introduction' 

In order to understand solids information is.required about their 

electronic states. A number of experimental techniques have been de-

veloped for the study of the details of the electronic structure of 

solids. 56 Most of these techniques require very low temperatures. 

Information about the properties of solids at very high pressures 

is essential for testing theories of solids since this is the only 

manner in which the inter-atomic distance can be varied. Unfortunately 

low temperatures, ...4°K, are required for most studies of the electronic 

structure of metals. This requirement has restricted the investigations 

to relatively low pressures.57 PositrQn annihilation is a tool that has 

been used for the study of the distribution of the momentum of the con-

S duction electrons.' Positron annihilation can be employed at room tem-

perature, which is low compared to the characteristic Fermi temperature 

of the conduction el~ctrons (10,000 - 50,OOOOK). Positron annihilation 

is not as precise or as well understood as those techniques available 

at very low temperatures; however, it is useful for obtaining some in-

formation about the electronic structure of metals and can be used at 

room temperature where very high pressures are attainable. 

We have studied positron annihilation in aluminum in the range of 

o to 100 kbars at room temperature. Aluminum was chosen for this study 

since it is known not to exhibit any phase transition in the region of 

interest, and the results are simply interpretable. 

From the positron annihilation data we have obtained the variation 

of the Fermi momentum with pressure. It was found that the Fermi momentum 

of aluminum increases ~ith pressure in accordance with the prediction of 
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. ',; 
the free electron model~ 

Melz59 has studied. the detailed topology of the Fermi surface of' 

aluminum to 7kbars\.1.sing the de Haas-van Alphen effect. He ,found that 
. , 

the Fermi surface does not expand isotropically with compression and 
! .' .' • 

,attributed this to a change in the band gaps. We will show that Melz's , 

"results are consistent with the present work, as the accuracy of this 

experiment, is notnearly~great, enough to ,_~ee the effect observed by MelZ. : 

, -.• B.Theory 
)' 

1. Electrons in Metals 

.A metal can be regarded as a. sea of conduction electrons moving in 

the periodic field of the ion cores of , the metal~atoms. The electrons 

i~teract with each other and with the, cores andthe' cores interact with 

each other. For such a system a Hamiltonian may be written, 

when 

J:!' = l!"" + J:! ',' + J:! ' " 
. electron-electron 'electron-ion ion-ion 

. ".~ 

2 
J:! ' , :, ' Z Pi 1 2: 
,ele,ctron-electron= •. 2m +-2 

~ i*j 

= 2: vCri - R.) 
i, j J 

2 
Pi 2: + 1 2: ::: 2M ' 2" i i*j 

J:! ' ' , " 
ion-ion 

2 
e 

VeRi - R ) j 

and where the lower' case letters refer to the electrons and capitols to 

the ion cores,' Det/:l.iled examination of this Hamiltonian is given in a 

60 
number of texts, 
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a. F~ee Electron Model. In the free electron approximation all 

terms'in the Hamiltonian are neglected except the kinetic energy of 

the electron so that 

This reduction of the Hamiltonian corresponds to the following physical 

assumptions: 

1. The motions of the ion cores are neglectable. 

2. Interactions of .electrons with the ion cores 

are neglectable. 

3. Electron-:elec_tron interactions" are neglectable~ 

With these assumptions, the metal is represented as a set of non-inter-

acting electrons travelling in.a uniform positive charge. This picture 

of metals is called the free electron modeL An excellent simple des-

cription of this model and of the deviations of real metals from this 

model is available iB Electrons in Metals by Ziman. 6l This reduced 

Hamiltonian is merely that of a free particle and the details of its 

solution with appropriate boundary conditions is available in most 
. 62 

standard texts. 

The solutions for the free particle Hamiltonian are plane waves 

'1fJk = 

and have energy 

. E(k) = 
- -

i k-r 
e 

The surfaces of constant energy are spheres in k space' and the den~~;ty .,,, ,.,.;, 

. of allowed points in ~ space is V/8rr3 where V is the volume of the lattice. 
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Electrons are, Ferinions and' so obey Fermi-Dirac statistics. > The 
') 

average occupation number of an electron state is 

f(E) 
., 1 

= ", (E-EF)/kT 
e ,+~ 1 

( ., 

where ~ is a characteristic energy, the Fermi, ene,rgy. At zero tempera-. 

ture, f(E) is. exactly unity for E < ~ and zero for E > ~.All states 

-. .' - . . ° with energy lower than the Fermi energy are 'occupied at 0 K and all 

I ,states with higher energy are ,empty. At finite temperatures a few 

electrons are excited to just above the Fermi energy.' 

Each electron state. may hold two electrons of opposite spin. If 

there are Z conduction electrons per unit cell and N is the number of 

unit cells per unit volume, then all electron states must be filled at 

OOK.Up to ,the state with wave number ~ given by 

The constant energy spher~in wave nUmber space with radius ~ is called 

the Fermi surface and the Fermi energy is given by 

In momentum space the Fermi momentum is 

" . , 
2 , 1/3 

Pr ,= ~ ( 3rr V Z i ) 

where V is the volume of the unit cell. 
. . 

The free electron model of netals predicts values of the Fermi 

moment1im which are in-reasonable agreement with experimental data (Table 

it also predicts that as a metal is compressed, the Fermi 

I' 



momentum should be linear in V-l / 3• 

Table XX~:::. The Fermi momentum of various metals as predicted 
. .6 

by the free electron model and measured by Lang 3 by positron 

annihilation. m is<;the mass of· an electron and c the velocity 

of light. 

Metal Computed Measured 

Li 

Na 

Be 

Mg 

Al 
Ge 

Sn 

Bi 

.PF (mc X 10-3) 

4.27 
3.50 
7.48 
5.'27 
6.74' 
6.69' 
6.29 
6.21 

PF (mc x 10-3) 

4.3 
3.6 
7.4 

~ 5.3 
-

6.7 
6.8 
6.4 
6.1 

The free electron model neglects electron-electron interactions. 

Luttinger65 has considered the electron interactions in a sea of 

electr.ons.· He found that the Fermi surface is well defined for inter-

acting electrons and is identical to that for free electrons; however 

he also showed for interacting electrons that at OaK there are o~cupied 

electron states with larger momentum than the Fermi momentum. 

. b. Nearly Free Electron Model. The free electron model of a metal 

is not an exact representation. An electron does not see" a constant 

potential; the ion cores of the lattice are seen as a periodic potential 

and we may write the Hamiltonian as 
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" 

, This Hamiltonian neglects 'electron-electron ,interactions and all motion: 

'of the ion cO,res.;. .', As an approximation, we may regard the electron-ion 

interaction as a perturbation.on the free electron,states 

.' ' 

This'perturbation'treatment is known as the nearly ,free electron model' 

,,' 62 
and the details of thisrriodel may be found in standard texts. . We 

give only the results of :the nearly free electron model., 

. In the nearly freeele9tron model, the energy as a function of k is 

discontinuous at the zone boundaries but is close to the free electron' 

values except near the zone boundaries (Fig. i 7). The regions in which 

'E(!) is conti~uous in kare known as electron bands. The Fermi surface 

in the nearly free electron model is still a surface of constant energy 

,in !space. However; as the energy is not as simply related to the wave 

vector k as in the free electron model, the Fermi surface will genera lly 

not be spherical in ! ,space •. For nearly free electrons the Fermi surface 

is nearly spherical and one may define·the Fermi momentum ~ as the aver­

age momentum at the Fermi surface. If the band gaps are small (the' 

. electrons are nearly free) the Fermi momentum defined in, this way is 

very close, to that predicted by the free electron model. 

Though the Fermi momentum is not as simply defined in the nearly ,; 

free electron model as in the free electron model, the effect of iso~ 

tropic compression on the electronic states of a cubic lattice is 

readily understood. Assuming that (1) the compression of thelatttce '" .' 
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Fig. 17 . The electron energy as a :function of 

wave number k. The dashed curve is 

predicted by.the free electron model 

and the solid curve by the nearly free 

electron model. 
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'is isotropic and{2) that the band gaps are pressure independent the ' 

reciprocal lattice :Ln; space is uniformly expanded,. The density of, 

- allowed wave numbers is decreased and the Fermi surface is expanded 

isotropically. The rate of expansion of the Fermi surface is equal to 

that of ~space itself and so the qualitative features of the electron­

states, near the Fermi sUrface are not altered except that their energy 

is increased. The nearly" free electron model predicts that, under .' , 

isotropic compressioI1., the,d~tailed topology of the Fermi surface is 

"not altered and the Fermi surface expands isotropically and proportion­

'" ately to (Vo/V)1/3-, as in the free electron model. The free electron 

and nearly free electron models differ only in that the latter predicts 

allowed energy ba.nets._ 

If the band gaps are pressure dependent the Fermi surface does not 

expand isotropicallY,under isotropic compression. Melz59 used pressure 

dependence of the band gaps to explain the de Haas-van-. Alphen effect 
," 

studies on aluminum to,? kbars.' We will show that our results are not 

inconsistent with the work of Melz. 

2. The Fermi Surface of Aluminum 

Solutions of the ,wave equation in a periodic lattice can be ex-

pressed in the form 

,~ (.r) 

where ~ has the periodicity of the lattice and k is a vector in the 

reciprocal space of the lattice. As 

i ko+ i(k+K) • r 
e = e --

, f 
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where K is a lattice vector in the reciprocal space, it is usually 

most convenient to examine the behavior of the electron energy as a 

function of k in some unit cell of ~ space. The conventional unit 

, cell used in most solid state electron or lattice ~namics work is 

the so-called Wigner-Seitz . unit cell. The Wigner-Seitz cell is the 

smallest cell bounded by the planes which perpendicularly bisect the, 

vectors connecting a lattice point in ~ space with the other lattice 

points. The Wigner-Seitz unit cell of the reciprocal space of aluminum 

(fcc) is shown in Fig. 18. This unit cell is known as the first 

Br.illouin zone and the density of states in k"spaee;:;!:s such that the -, ' 

first zone can contain exactly two electron states per atom in the 

lattice. The second Brillouin zone is the next larger cell bounded 

by the planes constructed as perpendicular bisectors of the'lattice 

vectors and does not include the part of ~ space contained in the 

first zone. The second Brillouin zone of aluminum is shown in Fig. '19. 

Any point, ~ in the second (or higher) zone can be expressed as 

k = k + K 
\. -0'-

where k lies in the first zone and K j,s a lattice vector. As it is 
-0 

often difficult to visualize higher Brillouin zones, it is conventional 

to draw energy surfaces in reduced Brillouin zones by reducing the 

higher zone to the first by the above relation~ We will follow this 

convention and draw reduced zones when speaking of electron states. 

Harrison
66 

has obtained the Fermi surface of aluminum by cdnstruc-

ting an initial trial surface from the free electron model and distort:ing 

this surface to give agreement with the de Haas-van Alphen effect and 
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Fig. 18 The Wigner-Seitz unit cell of the reciprocal 

space of aluminum (the first Brillouin zone). 

Reproduced from Ref. 65 by permission of 

McGraw-Hill Book Company. 
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Fig. 19 The second Brillouin zone of aluminum. 

Reproduced from Ref. 65 by permission 

of McGraw-Hill Book Company. 



. anomalous skin effect data •.. He has found that the ~orr~cted· Fermi· , 

surface is nearly identical to that predicted by the free electron model.: 

In aluminum the first Brillouin zone in !space is completely filled. 

with electrons. The second zone is almost half full and the occup:;ted~ 

states (below the Fermi level) are bounded bya single closed surface; 

the third zone is almost empty and· the occupied states are bounded by 

. a multiply connected surface; . and the fourth zone has small pockets of 

electrons... The four (reduced) zones for aluminum predicted by the free 

electron model are shown in Fig. 20 and the third zone Eermi surface 

obtained by Harrison66 is shown in Fig. 2l. 

Ashcroft67 has used,twoFourie; coefficients, Vlll and V200, of a 

weak pseudo-potential for an orth~ganalized plane wave (OPW) calculation 

of the Fermi surface of aluminum. He adjusted the coefficients to ob-

tain a fit with de Haas-van Alphen effect data at zero pressure. 

Ashcroft's third zone Fermi surface differs from that of Harrison in 

that the internal ring of the Fermi surface, Fig. 21, disappears 

leaving the arms of the monster disconnected. In the second zone 

Ashcroft's surface. is like that for free electrons. , 

As the Fermi surface of aluminum at zero pressure is nearly that 

predicted by the free electron model, we would expect ~hat under press-

ure the Fermi surface of aluminum should expand isotropically and pro­

portionally to (Vo/V) 1/3 ., Melz59 has studied the third zone Fermi sur­

face of aluminum to 7 kbars using the de Haas-van Alphen effect. He 

found that the surface does not, expand isotropically and, in fact, con-

tracts in one part of the third zone. Melz attributed .this to a change 

. in the band gaps,with pressure and was able to fit his data using 

Ashcroft's pseudo-potential coefficients and their pressure derivatives 

, 68 
obtained from Harrison!s' model for the pseudo-potential form factor. 
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Free electron Fermi 6ur·.rti~c uf tiluminum 

rel?roduced from Ref. 6(; w:1 th the permission 

of the author. 
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Fig., 21 The third z.one Fermi surface of aluminum 

. I 

. obtained 'by Harrison and reproduced from 

Ref. 66 with the permission of the author. 
",' . 
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3. Positron Annihilation 

When a positron is introduced into a metal lattice it. annihilates with 

an electron of the lattice.. The annihilation may occur either from a trip­

let state, leading to three 'Y~ s, or from a singlet, giving two 'Y r s. The 

half life of the positron is long compared with the time required for it 

to be thermalized and it is thought that most of the observed annihilation 

is between thermal positrons and conduction electrons. 70 It is the two 

quantum annihilation which is usually studied. 

Two quant1J.!t. positron annihilation is studied by observing the distri­

bution of aIL.'1ihilation radiation as a function of angle betw'een the 'Y's. 

'A schematic representation of the experimental set up is shown in Fig. 22. 

The sample is located petween two detectors and the coincident count rate 

as a function of angle betw'een the detectors is obtained. This does not 

give the true angle between the "I' s but only the projection of this angle 

on the plane of the counters and the source. The count rate as a function 

of this (projected) angle is referred to as the annihilation spectrum. In 

practice the counters are usually distant from the source and have long 

narrow windoyrs in order to give high angular resolution. 

If the positron electron pair is at reEt prior to the annihilation 

the two "l's are released back to back and are observed at 180 0
; they each 

have energy equal to the rest mass of the electron (or positron, .511 

meV) , and have a momentum of me where m is the mass of a free electron 

and c the velocity of light. If the positron electron pair has non-zero 

momentum,; the annihilation 'Y's will generally not be observed back to 

back but at some angle 180 0 
- e and generally will not have energy exactly 

equal to .511 meV. 
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Fig.22 A schematic representation of an apparatus for 

studying positron annihilation., When yl.s are 

registered cOincidentally by the two defectors~ 

a count is registered. 
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The laboratory coordinates are defined by the plane of the detec-
I 

tor slits when the detectors are at '180° to each other; the z direction 

is taken perpendicular to this plane~ Experimentally we observe one 

component of the electron-positron momentum, p. In the moving coord­, z 

inates of the electron positron pair the ~ts are emitted at 180° and have 

momentum mc. The momentum of the electron positron pair in the labora-

tory coordinates, which is .small compared to mc, is added to that of the 

We observe the angle, e, between the ~t s which is related to p , z 

by (Figo 23) 

sin e ::: 

Experimentally we observe one component of the momentum of the 

electron positron pair, p. Assuming that the electron-positron pairs 
z 

have momentum distributionp(p) the distribution of p is z 

where 

, Letting 

¢ 

= J pCp) 2n pdp 

o 

p 

2 ' 2 2 
P + p, = p z 

co 

pep) pdp 

For free electrons at OOK, assuming the positrons have zero momentum 
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. Fig. 23 Two yl.s are released back to back in the 

. moving coordinates of electron-positron 

pair and are observed in the laboratory 

at angle e where 

Pz. 
sin e = -mc 

and Pz. is the z component of the momentum 

of the electron-positron pair. 



I ' p(p) >= 
2 

Ap 

"" 0 

.where PF is the Fermi momentum. Substituting this into the above 

2 2 
B(p - P ) F z 

o 

The count rate at angle e , N(e), is proportionai to p' (p ) where 
o z 

sin e '= 

Thus the positron annihilation spectrum for free electrons at OOK has 

the form 

N(e) 

= 0 

where e
F 

is the angle that corresponds to the Fermi momentum 

sin 

This annihilation spectrum is a parabola. 

On the basis of the assumption (1) the electron momentum distri­

bution is that predicted py the free electron model, (2) the electron 

momentum distribution is not perturbed by the positron, (3) the positron 

is thermal, and (4) the probability of annihilation of a positron with 

an electron is independent of the momentum of the electron, then the 

positron annihilation spectrum of a metal would be a central parabola 
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.• which extrapolates to zero' at the Fermi momentum, and would have a· 

small tail at largem:lglescorresponding to the excitation of electrons 

above the Fermi level at ro6mterilperatures. This is observed for a 

. number of metals (Fig~,' 24a); however 'the tails observed are much larger 

-, than those expected for free electrons with the Fermi-Dirac distribution •. 
. ' 6-

It is believed that the positrons are thermalized prior to annihilation; 9 

however it has been suggested' that the positron has a la.rge effective, 

mass or temperature higher than the lattice temperature, and this gives 

rise to ,greater intensity in the tail.70 
~ 

, 64 
Luttinger has shown that 

,'i;;he distribution of interactingelect,rons in momentum space has a larger 

tail than that expected for free electrons.. This larger tail in the 

electron distribution could give a greater intensity in the tail of the 

'positron annihilation spectrum,. 

Positron annihilation has been studied. in a number of metals and 

it is well known that the two quantum annihilation of positrons in the 

alkali metals, alkaline earths, and aluminum is characterized by a 

central parabola witli a tail at large angles63 (Fig.; 24a) • The anni-

hilation spectra of the transition metals have been found to be less 

well characte;ized. (Fig. 24b). 

. " 0 

For free electrons at 0 K the maximum momentum is PF' the Fermi 

momentum. For positrons with zero momentum the maximum momentum of 

'an electron-positr~npail- is also PFo Thus the maximum angle, eF' at 

which coincident ~ts could be observed is given by 

PF 
mc 

'l'hough the tails of the observed annihilation spectra are not fuliy 

,understood, it is well known that .if the central portion of ~he 
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(a) The positron annihilation spectrum of aJ.kaJ.i metaJ.s, 
aJ.kaline earths, and aJ.uminum. The angle at which the 
centraJ. parabola extrapolates to 0, eF, is related to the 
Fermi momentum by 

PF 
sin e . = -

F me 

(b) the positron annihilation spectrum of' positron metaJ.s 
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annihilation spectrum is. fit:with a ·parabola, then'the angle at which 
\ 

the ce~tral parabola extrapolates to zero (Fig., 24a) corresponds to . 
. ~.. . 

elect,rons' ha,ving momentum equal to the Fermi momentum,; determined by' 

6 other techniques. 3 This indicates that experimental values of the 

. Fermi momentum obtained by p6sitron annihilation are meaningful and' 

that a study of the:. change of the positron annihilati~n spectrum with 

pressure should yield the volume dependence of the Fermi momentum. 

. ~. ' 



C. Experimental 

We used 500~c of Na
22 

in the form of NaCl as the source of posi­

trons~The NaCl was placed between two 1/8" diameter discs of ~ mil 

mylar. This source was put between two discs of 99.9999% Al which were 

5/16" in diameter and 7 mils thick to form a sand.wich. The entire 

sandwich was contained. by a 1/2" X 3/32" X 20 mil pyrophollite ring 

and placed between 1/2 ft Bridgman anvi;Ls (Fig. 25). Two inch NaI detec­

tors with lead slits' 1-1/2" high and. 20 mils wide were used; the slits 

were cut in lead blocks 2" thick and sufficient~ large to cover the 

entire face of the detectors. The detectors were located 1 meter from 

the source. The slits were perpendicular to the plane of the sample so 

that the 'apparent size of the sample was independent of the angle be-

tween the detectors. 

The positron source was calibrated initially. It was assumed that 

pressure changes in the annihilation spectrum of the source were small 

in comparison to the total pressure change in the spectrum and possible 

changes in the source spectrum were neglected in analyzing the data. 

The total annihilation spectrum at zero pressure and the calibration 

annihilation spectrum of the source are shown in Fig. 26. The source 

contributes ro~hly one-third of the total spectrum. 

Annihilation spectra were taken at 0, 27, 54, 81) and 108 kbars. 

The pressure calibration Was based on the phase transitions of bismuth 

in the same geometry using silver chloride as the pressure transmitter. 

In going from 0 to 100 kbars, the ~ emission rate of the source was 

found to decrease by 20%; this was not surprising as in ~ossbauer 

studies to 100 kbars the intensities of the Fe57 lines ,have been found 

to decrease as much as 80% because of deformation of-the anvils;72 
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Fig. 25 The sample (a), source, metal, and containing 

ring, is place between Bridgman anvi~s (b). 
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Fig. 26 The total positron spectrum at 0 kb 

and the source calibration spectrum. 
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radiographs of the anv~ls have shown great deformation, at 100 kbars .. , 

The raw data 'at each pressure were corrected for the pr'essure and 

time decrease in count rate.' The aluminum spectrum at each pressure 

was obtained by subtracting the source spectrum from the corrected 

data assuming that the ratio of' total source to total aluminum counts 

was constant over the pressure range of interest and that the shape of 

the source spectrum did not vary with pressure. The results for the 

Fermi momentum at each pressure did not depend greatly on these two 

assumptions. 

• .~'. ' • , I-

.' 

"' .'~ 
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D. Results 

The positron annihilation spectrum of aluminum should be a central 

parabola with a tai 1 at large angles. By fitting a parabola to the data 

at small angles we can obtain the Fermi momentum. If the source of the 

-y' 's is a point source and the resolution of the experimental apparatus is 

a delta function, the parabolic region of the experimental data should be 

fit by the parabola 

N(e) = 

where N(e) is the number of counts per unit time at angle e. Unfortunately 

the resolution of the apparatus is not a delta function and the source of 

-y's is not a point source. 

The resolution for slits such as those used has been determined ex­

perimentally65 and is shown in Fig. 27; 6 is the angular width of the 

-4 lead slit, 5xlO radians. In order to estimate the error introduced by 

ths slit width we have replaced the experimental'resolution by a square 

well (Fig. 27). Assuming a square resolution function, the count at 

angle e is 

N(e) = 

= 

if Ie) is less than e
F

, - 6, where'BFisthe angle at which the parabola 

'extrapolates to zero'. The above expression for N(e) is parabolic in e. 

For perfect, slits of zero width the angle at which the central 

parabola extrapolates to zer~, eF, corresponds to the Fermi momentum 
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Fig. 27 The experimental resolution of the'slits63 

and that assumed for calculating error intro­

duced by finite resolution. b. is the angular 
\ ' 

width of the slits • 

. . 
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The 0 kbar data (Fig. 2S) were fit with a parabola without using experi­

mental points near SF. Assuming delta function slits gives 

= 6.79xlO-3 radians. 

For the assumed square resolution the fitting parabola is the same but 

the true Fermi angle is 

= 
( 

AB** ,)1/2 __ 6.7SxlO-3 radians 

rather than the angle at' which the parabola extrapolates to zero. The 

error (-.2%) introduced by neglecting the corrections for the finite width 

of the lead slits is negligible compared with the statistical error in the 

,experiments, ±l%. As the true resolution function is closer to a delta 

function than that assumed (Fig. 27) we may conclude that any errors due 

to the finite slit resolution are neglectable. 

The true source of the ~ts is not a point but rather a disk of less 

than l/S!! diameter; the source distribution on this disk is approximately 

uniform. Again we need only an estimate of the error due to the finite 

source. If we assume that the source is uniformly distributed on a line 

of length l/S!! (3xlo-3 radians), we greatly overestimate any errors in our 

results. The. difference between the Fermi angle, SF' calculated assuming 

a point source and assuming the above linear source distribution is a great 

overestimate of the true error and is less than .5% as long as no data 

points vdthin3xlO-3 radians SF are used in fitting the parabola. The error 

introduced by· the unknown source distribution is less t~an the statistical 
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, Fig. 28 The 0 kbar positron annihilation spectrum 

of aluminlli~ and the fitting parabola. 
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error in the.experiment (± 1%). No data points within 2xlO-3 radians 

of 8F were used in fitting the parabola (Fig. 28); the source distribu­

tion error is neglected in evaluating the results as the above error 

estimate is a generous over-estimate. 

At each pressure studied, the central prot ion "of the observed anni-

hilation spectrum of aluminum was fit. The data at 0 kbars and the 

fitting parabola are plotted in Fig. 28. The 0 kbar Fermi momentum is 

in excellent agreement with previous experimental work (Table XX). The 

Fermi momen~a at the five pressures examined are plotted in Fig.29 as a 

function of pressure. The line in this figure is the Fermi momentum 

curve predicted by the free electron model 

= ( 
2 )1/3 

1:1 371' Z 
V- . 

assuming three free electrons per atom and using the volume data for 

aluminum of Bridgman72 and Jamieson. 73 The total observed change in the 

Fermi momentum was 3% and the errors on each of the five experimental 

Fermi momenta were ±l%". All of the data points lie within 1% of the 

theoretical curve. Figure 29 shows that the Fermi momentum of aluminum 

is very accurately described by the free electron model within the errors 

of this experiment. 
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Fig. 29 The experimental Fermi momenta of aluminum as 

. a function of pressure. The solid line is 

computed.from the. free electron model. 
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E. Discussion 

We have found that the Fermi momentum of aluminum to 100 kbars is 

very accurately described by the free electron model. This is intui-

tively reasonable as the Fermi surface of aluminum at zero pressure is 

(> 

fairly close to that predicte~ by the free electron model assuming three 

electrons per atom. We would not expect the number of free electrons to 

increase with pressure as this would involve stripping core electrons off 

the aluminum ions which is energetically unfavorable .. 
67 ' 

Ashcroft . has shown that the zero pressure Fermi surface of a1um-

inum can be fitted with two Fourier coefficients of a weak pseudo-poten-

tial in an OPW like calculation. Ashcroft assumed that the energy as a 

function of k was a constant on either side of a zone boundary instead of 

exhibiting the curvature predicted by the nearly free electron model 

(Fig. 30). In expressing the energy as a function of k he took into 

consideration the degeneracy of the energy bands close to more than one 

zone b<;>undary. Ashcroft found that the shape ·of the Fermi surface in 

the third zone was strongly dependent on the values of the pseudo-

potential coefficients and that the best fit to existing experimental 

data was obtained with 

V 111 = .0179 Ry 

(compared with a Fermi energy of .856 By asslli~ing an electron effective 

mass equal to that of a:.:.free electron). The shape of the Fermi surface 

in the second zone is not strongly dependent on the choice of the co-

efficients. 
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Fig. 30 The electron. energy as a function of k. 

The solid line is that assumed by Ashcroft67 

and .the dotted line is the predictions of 

the n,early free electron mode. VG is the 

Fourier coefficient of the weak pseudo­

potential appropriate to the zone boundary. 
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59 . 
Melz' has found in experiments to 7 kbars that the Fermi surface 

of aluminu.rn does not grow isotroplcally as would be expected if the band 

68 
gaps were pressure independent.. Using form factors proposed by Harrison' 

Melz obtained the pressure derivatives of the pseudo-potential coefficients 

dV1ll 1.6xlO-4 Ry/kbar = dP 

dV200 -4 / = 2.lxlO . Ry kbar 
dP 

He found that these pressure derivatives adequately explained his data. 

6<7 We have used the techniques developed by Ashcroft ' to calculate 

the average momentum at the Fermi surface assuming the pressure deriva-

tives of the pseudo-potential coefficients used by Melz to explain his 

results. In this calculation, we examined 1/48th of the unit cell in ~ 

space; the remainder of the unit cell was generated by its symmetry. 

This small portion of the ,cell w~s divided into one thousand prisms. 

For 'given values of the coefficients we assumed a value for the Fermi 

energy and found the volume enclosed by the surface of this energy by 

computing the volume enclosed in each prism. The value of the Fermi 

energy was then adjusted until the volume enclosed by the Fermi surface 

contained exactly three electrons. The Fermi momentum is the average 

momentum at the Fermi surface obtained in thi~ way. The detailed shape 

of the third zone Fermi surface is strongly dependent on the choices of 

the pseudo-potential coefficients; however very little of the Fermi sur-
\ 

face lies in the third zone. Therefore the average momentum at the 

Fermi surface;.: the Fermi momentum; does"'not depend greatly-on the, .•. 

'cho:Lce .of· c6ef'ficients~" ., ,','. 

"./' .: . 
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We have computed tpeFe~mi momentum at a number of pressures from -

o to 100 kbars assuming the ,pressure derivatives used by Melz and as sum":" 

ing that the coefficients are linear in pressure. Over the entire range, 

of pressure the Fermi momenta calculated in this way were in close agree-

ment with the values predicted by the free electron model.. At 100 kbars, '"-; 
( 

where the difference between the ~alculated and free electron values were 

the greatest, the free electron· model predicts a Fermi momentum of 

6.976 X 10-:3 mc and, withthe assumptions ID!3.de for the pseudo-potential 

coefficients, we have obtained a Fermi momentum of 6.9'79 X 10 .. 3 mc; the 

difference in these values is much ,smaller than the accuracy of the ex­

periment, ±l%. 

Within the accuracy of this experiment the Fermi momentum'of aluminum 

to 108 kbars is in excellent agreement wit~ the prediction.s of the free -

electron model. This result is not in disagreement with the work of 

Melz67 to 7 kbars; Melz found that the detailed shape of the third zone 

Fermi surface is not explained by the free electron model and used press-

ure dependent band gaps to explain his results. However the average 

electron momentum at the Fermi surface which is all that can be obtained 

by these techniques does not depend strongly on the band gaps so long as 

they are small. 

': .. " 
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F. Conclusions 

utilizing positron annihilation we have found that the pressure depen­

dence of the Fermi momentum of aluminum is accurately described by the 

freeelectro.n model. This suggests that positron w..nihilation studies of· 

Fermi momenta may be an excellent tool for investigating either the pres­

sure dependence of the volume of free election metals or the high pressure 

electronic properties of metals for which the pressure dependence of the 

volume is well established. Positron annihilation would be most useful 

for studying metals with a large compressibility because of the difficulties 

involved in getting sufficient accuracy in the data and the weak expected 

volume dependence of the results .. 
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