Lawrence Berkeley National Laboratory
Recent Work

Title

|. RELAXATIONS IN A MOLECULAR CRYSTAL Il. THE FERMI MOMENTUM OF ALUMINUM FROM
0 TO 100 KILOBARS

Permalink

https://escholarship.org/uc/item/7w05k7sm

Author
Burton, James J.

Publication Date
1967-04-01

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/7w05k7sm
https://escholarship.org
http://www.cdlib.org/

UCRL-~17479

University of California

Lrnest O. Lawrence
Radiation Laboratory

I. RELAXATIONS IN A MOLECULAR CRYSTAL
II. THE FERMI MOMENTUM OF ALUMINUM FROM 0 TO 100 KILOBARS

a - A
TWO-WEEK LOAN COPY
This is a Library Circulating Copy

which may be borrowed for two weeks.
For a personal retention copy, call

| Tech. Info. Division, Ext. 5545
\— _J

Berkeley, California

i



DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.



(W 4
T

UNIVERSITY OF CALIFORNIA

Lawrence Radiation Laboratory
Berkeley, California

AEC Contract No. W-T405-eng-48

T. RELAXATIONS IN A MOLECULAR CRYSTAL

UCRL-1T7479

4-.;,‘4\4“

IT. THE FERMI MOMENTUM OF ALUMINUM FROM O TO 100 KILOEBARS

James J. Burton

(Ph. D. Thesis)

April 1967



-

“iii-

" CONTENTS -

—

T.  RELAXATTONS IN A MOLECULAR CEYSTAT « « o o o o « o o o o o o o o1
A, Introduction e e c a o =« ¢ 2 2 o o 6 o a « 4« ; a s o o o o oL
Be. MOGEL s 4 m e e e e e e e e eaan e ek

C. . Internal Vecancies, Divacancies and .
Substitutional Tmpuritiesl . . w « v 4 a v s v v v o v o o LT

1. InbrodUction o v o o o o o o « s & o« o & « o o o o o « oF
2. Isolated.Defects « o s s e ... « o s e e s e are o o s
3. DI-DEFECLS = v 2 o = o = o o v s o o o o a s e e oo .25
L. CONCIUSIONS o o o s o o o o o « 6 o s s o o o o « o o 32
D. Diffusion in SOLLGST  « s o o s o o o o o o o o s m v o 3k
‘ 1. Introduction « « o o o ¢« o« o o o s o s o o 0 o oa 3k
2e ThEOXY « o o o o o = 6 o « o 2 o + o o o o o« o o o o o 35
3c Calculabions o« o o o « o s ¢ o « 2 & o 2 o « o o o o o 38
he ReSULLS v v ¢ o o a'a o o o o o o o o o o s o oo . k2
5. CONCLUSIONS « = o o = = o ¢ o o « s o o o a o o oo ko

Eo SU.I‘face Dilation3 e & 6 & ® & &4 © & & o & ® & & e a o o o 52

F. Surface Defectsh e o o o o 8 o 6 s o o a e s s s e e e e a59
1. Introduction ¢« ¢ « o a o o o o o o o o o s o o s o o « 59
2. ColeulatlonS e « o o » o o o o o s oo n e e e on. b0
3. Results o = « = o - S 3

,)4‘.. COI’lClU.SiOI’lS..‘..........-.’...o.o‘. 071‘

,1 ~Published in J. Phys. Chem. Solids, 27, 961 (1966) by the author and G. Jura.
2 To be published in J. Phys. Chem. Solids, by the author end G. Jura.
3 7o be published in J. Phys. Chem., by the author and G. Jura.

ok

Presented at the Symposium on Fundamentals of Gas-Surface Interactioﬁs,
December 1k, 1966, San Diego, California, by the author and G. Jura.



- A.
’ B.

;ive. .

CII. EH{ELFERI\/EENOVENTUVIOFALW'IINWFROI’OTO lOO KILOBARS “ e s e 7115

rOd.uCtlon e o o e o . . e & 5 o e o o & & & o e & .0 a @ 7)+

Theory *« o 2 o ... « & ® ‘. . .. - t,..' s o e & ..‘. 3_0 0“7-5-

1. Electrons in Metals e e s aa e e eeeas T5

2. The Fermi Surface of Aluminum « » « s « a'ea'w o o o o 8L
3. Positron Annihilation ¢ « o ¢ o o s o « « @ e e e 88
Experimen‘tal.....r....,............06'
'Results...............,4......'...100

D.LSCU.SSiOIl.............-.Ao._.o..._.. 106

COHClllSiOnS o a e 0 . o .' 3 0. ;" [ 4 o._ .. ¢ & o o o & 2 & o 0..110

 ACKNOWLEDGMENTS & o « « a e o .o a s o o o o s’ n o o oo s aeasa 111

REMNCESOIO-OCC...5_"_.0"00.0"‘.;’:0“."'.0.0]—1.2

@



o

- The frequency factor, Do’ for the divacancy mechanism is much greater

-V

I. FELAXATIONS IN A MOLECULAR CRYSTAL
II. THE FERMI MOMENTUM OF ALUMINUM FROM O TO 100 KILOBARS

James J. Burton
Inorganic Materials Research Division, Lawrence Radiation Laboratory,
and Department of Chemistry, University of California,
Berkeley, California z

ABSTRACT
April 1967

" Properties of imperfect lattices of‘monatomic_facezpehteredgg

cubic crystals are examined theoretically. The atomic interactions are

‘represented by'pair-wise additive potentials. The configuration of the
atoms near each imperfeétion are obtained. The effects of relaxations on

:‘the energies of the defects are examined.

For bulk defects — vacancies, divacancies,'substitutional atoms, and
substitutional atom-vacéncy pairs — the relaxations are small and only
slightly alter the energy of the defect. Vacancies in argon are bound to
other vacancies or to substitutional impurities.

The activation energy, E, in the Arrhenius expression

is calculated for sélf:diffusion_in argon for both monovacancy and di-.

‘vacancy exchange diffusion. The results for monovacancy mechanism

(E = 3812 cal) and the divacancy mechanism (E = 4847 cal) are both in

_reasonable agreement with the experimentalvdiffusion coefficient.

o 15 e _u;go gal/RT

L9
AN

that for monovacancies. This indicates that the self diffusion mechanisn



in‘solid argon at zero:pressure may be via”divacancies. The activation'
_.energles for neon and krypton 1mpur1ty dlffus1on via monovacancy exchange
. are 2187 and 3733 cal, respectlvely. In 211 cases, the relaxatlons of

"vsurroundlng atoms drastlcally lowered the barrier to dlffu51on.

The relaxations and surface energies of (lOO), (111), and (110)
surfaces of aluminum, argon, calcium,.copper,'lead,‘nickel, and silver

are calculated. The relaxations of the surface are less than lS% of the

- bulk planar spacing. The relaxations only slightly alter the surface

energies. N

The energles of adsorption of'argon, krypton, and neon atoms on the

‘(lOO) surface plane of argon are calculated. Relaxation appreciably

affects the adsorptlon energies. The adsorption energies increase in

the order neon, argon, krypton.
The Fermi momentum of aluminnm is studied from O to 100 kilobars
pressure; Bridgman anvils were used to generate the pressure and the

positron annihilation spectrum was studled at five pressures. The

Fermi momenta are obtalned from the positron annihilatlon spectra.

The experlmental values of the Fermi momenta of aluminum are in excellent

agreemenu'wlth the prediction of the free electron model:

- 1/3
~ 3n°7,
CPp < h( v ) o

‘ - vhere Z is the number of conductlon electrons per unit cell of the

"'metal and V is the volume of the unit cell.

«
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I. RELAXATIONS IN A MOLECULAR CRYSTAL

A, Introduction

A perfect single erystal is charécterized by é basiévbuilding block,
the unit cell, which is infinitely duplicatéd S0 aé to fill all of space,
The eqﬁilibrium cohfiguration of a solid is that wﬁich minimizes its
free energy. If the atoms in the solid aie (initially) assumed to be
at rest, the equilibrium configurafion is that of minimum potehtial
energy. When an atom is displaced slightly.from its equilibrium position,
é force acts on the atom to restore it to its equilibrium position. Early
investigators of solids assumed simplified models of infinite solids and
examined theivibrations of theiatoms about their equilibrium positions.

These workers, with their models, obtained heat capacities, entropies,

and other thermodymamic data on simple solids;l-3 their results were

found to compare favorably with experimental data. Recently, with the

- advent of high speed computers, more complicated models of solids have

5,5

been used and better agreement with experiment obtained. ’
Unfortunately, solids in the real world are not infinite perfect
single crystals. They have surfaces, vacant sites, grain boundaries,

and contain impurities. These defects significantly affect the physical

and chemical properties of real solids and must be considered in dis-

cussing the behavior of real solids.
The effects of surfaces, vacancies, and impurities on the lattice
' 7-10

vibrations have been examined. It was found that these defects can

drastically influence the vibrations of the atoms but that the perturba-

tions decrease rapidly with distancs from the defect.



' of 8 defectiye lattice requires & minimization of a complicated function-'-*-

_that energy by allowing the lattice to relex in the region of the defect.,'

" When a defect is introduced into the model of & perfect infinite J

.crystal, the remaining imperfect crystal may not be 8 minimum potential -}l:'

"configuration unless some relaxation of ‘the lattice occurs in the

neighborhood of the defect.. Finding the minimum potential configurationv_ff{-ﬁ

it

I

in many variables. Early workers were forced to,find closed‘mathematical

expressions for the results and then to evaluate the expressions by -

hend; their work was of neCessity, restricted to simple problems.ll

o Recently high speed computers have mede it possible to deal with more ;,[

complex problems as the computers can be. programmed to search directly |

for the minimuin potentisl configuration.v Distortions ‘of perfect lattices

'in the neighborhood'of surfacesle and. vacanciles 13 have been exsmined in 7

this way. 1In subsequent sections we shall examine the distortion of the

‘perfect orystal around Internal vacancies, divacancies, and impurity

atoms (See. I=C), diffusion via single and divacanciesj(Sec. I-D),

dilation of perfect surfaces (Sec. I-E) and of distortion near surface .

 impurities and vacancies (Sec. I-F). We will find that though distortions

of a face-centered'cubic crystal in the neighborhood of a’defect are

usually numerically very small, the distortions can appreciably alter

| the energy of the defect. and 8o must be considered in any attempt to o

understand the defect. .In each problem treated we will develop an

2

expressions for the energy of the defective lattice and then minimize

A1l computations were carried out with the aid of IEM 709k end CDC 6600

computers.
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o We will use argon‘as our prototype sblidvexcept in Secs. I-E and

I-F where certain métals will also be examined. Thebretical calculations
on.argon afford many adféntages over other solids. Argon is a ménatomic
molecular solid crystaliizing in 8 face Centé}ed cublc lattice and has

a shoxt range potentigi; Toniec solids present many theoretical diffi-

. N

culties as it is not yet,knéQn how best to represent the polarization{
‘effect's.llL " In métais one encounters the perturbation of the conduction
electrons, a difficulty which has not yet been overcome. Solld argon
presents nelther of ﬁhesé obstacles, It is well.known that the‘propei-
ties of argon may be reasonably represented by'a two body potential |

: function.l5 It 1is hoped ‘that calculations based on a simplified model
of argon will yiéld results of at least qﬁalitétive validity for argon
aﬁd‘will glve some insight into other simp;e solids, particularly other

| molecular erystals and face centered cubic'metals.
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‘B, “Model
We adopt the following model of argont '(l) all quantum effects
are neglected; (2) only the potential energy need be considered; (5) the
~total potential energy.is pairwise additive; and (h)athe atoms?interactf'

. with a Lennard—Jones potentiel of the form
: . . ’

r

Wr) = Ao 2
) .

" where rvis the distance between the atoms. For most of our calculations
“we will use the parameters given by Kanzaki 5 with m = 12, which give‘ ‘1/
the binding energy of‘solid argon to be 2035 cal/mole andithe'Oéh inter-
._atomic distance to be 3;79 Z‘ In Sec. I-C we nill also cerry out'calcu— :
- lations with m="7T as recent work by Alder and Van Thiel indicates that
‘argon can best be represented by a 6-T potential at very high pressures.
These assumptions are open to question. (1) neglects Zero point )
kmotion and (2) restrictsvthe validity of the results to 0°K. Thevassump-n
tioh of pairwise additivity of the potential (3) is most dubious. This
model indicates that the hexagonal close packed form should be the stable
phase of argon but_argon ekperimentally iS'face,centered'cubic. Jansean
has shown that three body forces can explain the observed stebility of,r.
face centered.cubic argon and Sparnaey18 has estimated that neglect of |
“three body forces cannintroduce errors into energy computations of as mueh .
" as 30%. Rossi and Danon 19 nave found that inclusion of three body forces
introduces a large error into predlcted.energies of vaporlzatlonz they
attribute this error to_either four bodyiforces or a poor potential -

funetion. Bullough et al.eo have concluded from a study of stacking faults

~in argon that many body forces contribute less thanv;h% of the total
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binding energy. ‘Alder L has shown that slight modifications of the
" Lennard-Jones 6-12 potential can lead to body centered cuble as the
theoretically stable form of argon and has pointed,out22 that the

Lennard-Jones potentlal may now show the correct shape of the true argon

two body'potential. A g
On the basis of the above assumptions the binding energy of the

lattice may be written for m = 12 as

=
n
PO+

. N .Z V(ri))
i—_}-J

_1 [ Phe %%
T3 276

(o] o]

r xX.

where
A = s 1

n 2)1/2

© lattice points '(xe + y'2 + z

and & and P are parameters in the pailr potentilal function,‘rd, is the

" solid interatomic,diétance, N is the number of atoms in the crystal, and

‘thé binding energy of the lattice EB is the negative of the heat of

sublimation ES.

EB = -ES

The factor 1/2 occuré‘in the above expression so that each pair inter-

" action is countedfénlyvance. |
Following the work of Alder et ai.,lg the edgé of the unlt cell is

made equal to 2, which plaéeé the restriction on the lattice points that

the sum of the coordinates of a point must be even. With this restriction

23

we have used the method of Lennard-Jones and Ingham -~ to calculate A6
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énd A12 ‘and have obtained =~

1445592103

I

A

12,13188018

1t

which are in agreement with their earlier calcﬁla‘bic}ns.—

A

o
an

S
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C. Internal thandieqilDivacanciesﬂand Substltutional Tmpurities

1y Introduetion

Although soﬁe measurements have been made from which the energy of
the formation of a vacancy can be deducéd,zu'it has hot been possible to
deduce the distortlons that oceur in the immediate nelghborhood of the
vacancy. To date, the bnly internal defects which have been consldered
are the formation of vacancies in argon25-29 ahd certain metals.la' In
this section, a more refined calculation is made for argon. In addition
calculations are made for the substitution of an impurity atom in the..
lattice, for the formation of a vacanéy next to the impurity atom, for
the formation of two adjacent vacancies, and also for the effect of a
change of interatomic distance on thé energy of formatlon 'of the vacancy,
and for the effect of é change &n the potential funetion. Thils section
wlll examine two of the more elementary lattice defect problems, namely
perturbation of an Infinite face centered cuble molecular crystal in the
neighborhood of a vacancy of an impurity atom and the stability of di-
defects in fee molecuiar crystals. Presumably the results obtained here
would epply qualitatively to other molecular crystals. |

Several calculations of the energy of formation of a vacancy have
been carried out in which the authors neglected kinétic effects. Giri-
falco and Streetman5o carried out calculations on a bee lattic;, gonsidering
all points in a large box around the defect but neglecting distant |
neighbors. They found ﬁhe‘ﬁearest and next-nearest neighbors relaxing
inwards and a large (20%) enefgy correction due to relaxation, Kanzaki=”
calculated relaxations around a vacancy in Ar (fcc) using a Lennard-Jones

6-10 potential. However, he assumed the effect of relaxation on the

energy was second order in the relaxation and consldered only nearest
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I‘and next-nearest-neighhor interactions;'fHe foundvthat the_nearesth.
v'neighbors.relaxed towards the vacancy andbthe next4nearest away;ithe
relaxation of the next-nearest neighbors being greater than that of the
jnearest.» Ha1126 also calculated the effect of a vacancy on a fcc lattice_
and assuned a second order relation between relaxation and energy. He
found the nearest and next-next—nearest neighbors relax inwards towards
the vacancy and the next-nearest relax outwards._‘His findings showed
that the relaxations fall off rapidly with distance from the defect.-.
'-Girifalco and Weizerl: have calculated the distortion around a vacancy
- of a number of face centered cubic and body center eubic metals. They‘
assumed that the'distortions'are.radial and that the'metals may be repreé
sented by a Mbrse pairwise additive potential. Girifalco and Welzer
found that the nearest neighbors to the ‘vecancy move inwards towards the |
| vacant site, the next nearest outwards, and the third nearest inwards, )
“Jtheir relaxations decreased rapidly with distence from the defect.

Glyde 27 has calculated the energy of formation of a vacancy in
~argon and has takenvinto account the tempersture expansion of the -
lattice. He foundythatvthe energy'of iormation.of a vacancy decreases
with inereasing temperature.f |

29

Nardelli and Repanai Chiarott128 and Foreman and Lidiard have

V'fcarried out dynamical calculations based on the Einstein model.\ Nardelli's

relaxations agree wlth those found here and his relaxation energy is much
larger than that found'considering only potential-effects. Foreman also
determined the energy of formation of a vacancy from heat capacity data
'for solid argon and fbund‘that the predicted relaxation energy was not
large ‘enough to account for +the smallness of the energy of formation‘of.d

a vacancy, which was 25% lower than expected.

3
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51

Strip and Kirkwood”  heve calculated the'interacﬁioh of sepafated

vacancies and have found that they attract with a force whose potential

varies as l/r6 where r is the separation of the defects.

'Johnsonée has carfied out static calculatilons bn'the stability of

di~vacancies in metals and have found them to be stable in certain

 configurations.

.

Our caleculations of the relaxations around a vacancy ln a fee
lattice show that ﬁhevneafest end next-next-nearest neighbors move
towardé the defeet, and that the next-nearest mové away. This isvin
gecord wlth the latést calculations.26 The correction in the energy
of formation of the defeect due to relaxation is small at zero pressure.-

In the present calculatlons the treatment is more general than in the

earllier static results in that the calcuiations are not restricted by

the éssumption that only second brder terms in the relaxation are signi-
ficant and that distant neighbors may be neglected. Since the same, or

essentially the same, treatment can be used when foreign atoms ére present

or for a compressed lattice, results are also presented for these calcu-

lations, We have also calculated the energy of formation of a vacancy
next to another vacancy énd next to a neon or krypton impurity. In.all
cases tﬂe energy.required to produce the second vacancy ls lower than
that in the perfect lattice., Relaxations around the di-defects and

energy correctlons were small as in the case lsolated defects.

2, Isolated Defects

‘a, Calculations. A vacancy is created in a solid by-removiﬁg a single

atom from the interior of the crystal to the surface. For such a process
the energy of formation of vacaﬁcy, E;, if no relaxations occur, and

6
EV = ES
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B where E' is tﬂé”QQéiééé'énéfgy oftsublimetion'ofﬂnneusolid. Wlth’the ;7
model of argon adopted in Sec. I and 8 Lennard Jones. 6- 12 potentlal
| i:E§=F;2035_cel/mole‘of yacancies | |
F_If the iﬁttieeiisraliowed’tofrelex'eronndxfne'defeen tne.frue.
v;energy of formatlon of the vacancy, EV’ is obtained by con31der1ng all.

::potentlal pairs 1nvolving relax1ng atoms

EV, % Ev + AE

-where AE 1s the ohange in the potential from'thevnnrelgxed o the relaxed“_‘

‘state.

The vacancy is aesnmed to.be at (0, O ,0). Assumlng that only the _'

nearest nelghbors to the defect relax and that they relax radially and
7symmetrically, (1,1, O) (l -5 51- 61,0), the energy of a single nearest

neighbor, with relaxatlon 8, is

BTSN "'.\‘

é‘(o) 2 Vw18, 2)
- x + ¥y + 2 =2n ' ' _

n>1

+ v(z-eal, -25 ,0) + 2v(2 251,

1)

+ hv(2-26

- To simplify_the calculations, the infinite sum is expanded as follows:

&® = = V(1-8y5%, 1-8) -y, ) 1

0,0) + hv(1- 6 '-sl‘,vo)._.i.-'

(=
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= .3  V(1-8,-x, 1-8.-y,z)
2, 2 2 | L 1
R +y +z =2n '
2Xn <16
+ -3 - V(1-8,-x, 1-3,-y,z)
2 p 2 ot 1
X +y +2z =2n

n>16

= E(e) + €8

é;.J.(Sl) 1g evaluated by direct sunmation while 612(81) 1s obtained

from a power serles.

€,(8,) = -46.36 |
| -17.90((8x)% & (8y)? %_(62)2} o
-15.20[(6x)h'+ (Sy)u + (52)h3
s e (50 (%)
o ok(a0® (808 (82 |
- ho1((ex)B(ey)® + (8)7(52) + (oy)%(e2)®)
- 8.84((5x) (5r) + (o) *(e2)? |
(0 (e)® + (82) (302
+ (o) " (o2)2 + (52) (o))
+ 1.52{(5x)4(5y)lL - (5x)u(6z)_h
e () (e
k(0 8(e)? + (8)°(ax)?
v (508682)2 + (2)8(80)2
b (5)5(82) + (82)5(e0)°

e L.62((8x) % (8y) % (82)%)



a2l

'._ - l.h7{(8x) (.y)e(oz)éz
R (&%) (Sy)h(ﬁz)z
+ (o) (ay>?<az>“3~_

The power series expension is usged rather than an integral as integra-- .
tion will not yield a8 accurate an answer when the lower limit of in-.'
tegration is this small‘r The power series expansion given 1s for a pointr

at (O 0,0) going to (Sx,oy,oz). Tt is not practical to.expand

;in'a powef series over all points because of the slowness with which
such & serles converges,-
Summing over the twelve nearest neighbors,:the expression for the

' :energy is

e?(s) = "6{v(2_é51, 2-25, 0) + 2v( 2-28, o,o),‘

l)

8, 0) + hv(z;esl; L-ol,’;_al)}

**; l?—.éll * l?é‘lg<§>--

Note that to obtain the total energy contribution of the twelvevnearest
neighbors, ‘the. interactions of the nearest neighbors with each other
'vmust be multiplied by six, not twelve, so_that each pair is counted
only once. |

With this we may write

x-%se‘ AE(Q).= E(3) - E(O)

where E ls expanded apg above.

@
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If the nearest neighbors relex (1,1,0).- (1-8, 1461,0), the
next-nearest (2,0,0) ~ (2—52, 0,0) and the next-next-nearest (1,1,2)

2-8

- (l—ﬁ 50

written as

) then the energy of the relaxed lattice may be

E(3) = , 123 V(1-80,-x,1-8,-y,2)
- x2+y2+zg=2n 1 L

+ 63 V(2-62—x,y,z) :
2,2, 2 .
b'd +y +z =2n
n>5

+ 2.22 22‘,;"V(;—6§l—x,l-85l-y,2—832-z)
x+y+z=2n', ‘ :

>

+ euv(1-52+5l, 1-51,0) + ehv(B—-sl-ag, 1‘-51,0)

+ 2hv(1-5,,1-5,,2-5,) + 48V(1-5, +5., 5, -

172 557077 8y =859, 1-85 )

+ h8v(54515552,51-851,1-531) + h8v(1-552+51,2-51-531,1_531)

_ +_hgv(5‘51‘5§2’2‘5x’631’1’551) + euv(al-55l,5l-551,2-652)

+ 48v(2- '552) + 2U(2-8,, <8,,2-6,, -5, 2-5, )

3]__—51,.81—83’2- | 51 l)
+ ehv(52-852,1-531,1-55l) + 24V(h-52—632{1—631,1-651,1—651)

3

+ 12v(h.25§2?

+ h8v(2-8'2,1482+65l,) + u8v(2-532,5-52-551,1-551)

0,0). + zhv(h-2532,2-2551,o)

52,2—2651,2—2851) + 2kv(0,2-28,,,0)

51,2;2551) + 2uv(1-552+551,1-552+531,o)

+ 2¢V<1_552+531,1_5 +5 2-2551) + A8v(3s852-551,1-852+63130)

+ 12v(k-25

+ 12v(0,2-28

32 “31°

+ u8v(3-652-551,1-552+55l,2-2531) + ehv(5-a52- 31,3-552-551,2-2531)

+ 2kv (3-8

52-551,5-532-531,0) + 6v(2-251,2-251,o)

"+ 12v(2-251,o,o) +'24V(l-81,l;81,0) _
+ 2hV(2-28,,7-8y,1-87) + 5V(k-282,0,0)

+ 12v(2-8,2-8,,0)
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Similar and obviously more complex expressions are written if more '

|atoms are permitted to relax.l'
To minimize the energy, only AE need be considered since this is o

_the only term in which the relaxations appear.”

Minimization of AE was performed in a step wise menner., : Flrst the';l’

solution for the relaxation of the nearest neighbors wa.s obtained. This -

was then the basis for,the first approximation When the nearest and next-

" nearest neighbors were'considered . The solution of this:was then_used.as

a starting point for the most complete calculations performed The mini— )

mum for AR for each degree of relaxation examined was found by 8 half
 interval technique.v Because of the machine timevand labor reguired to
’bcarry,the calculationsvto.neighbors more distant_from the defect and
.'the qualitative.significance of  the results, computations were made

if{only for the first threellayerslaround the vacancy.. |

Celculations for an impurity atom are essentially the same as for a

'vacancyj this was done for & large and a small Impurity atom. For these .

the constants used fdr,argon_

r = ;.79A

. "o _ :
CE. = 2035 Cal/mole

-8

_.were modified. -Ar-Kr and Ar-Ne palr potentials were related to the
6-12 potentials of A:c',.l5 Ne,15 and Kr55 in the following way. If rA A
vrepresents the gas equilibrium distance and U the depth of the well

in the gas

. ‘4‘._
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and r and U _p Were used as parameters in the Lennard-Jones 6-12

A-B A-B
potential.
b. Results. Calculation;: for the relaxatlon of thevnearesf heighbors

‘was initially carrled out assuming that therrelaxation would preserﬁe'the.
'Alxy, xz, and yz planes as planes of Cuv.symmetry;f‘ThiSﬂinvolvés $1x.inde~
pendent varlables and 1t was found, Witﬁ thié condltion, that EV
1s minimized by a relaxation which preserves the cetahédral 'r «7)
symmetry about the defect. Célculations for completely indépendent
relaxatlion of the twelve nearest neighbors, a thifty-six veriable pro-

_ blem, were not performeds. .
For the next- and next-next-nearest heighbors 1% ﬁas'assumed_that
- the reléxétiqns would also have the high symmetry established for the

i nearest neilghbors. o |

Those relaxations minimizing AE, and AE are glven In Tables I-VIII.

Relaxatlons are expressed In terms of the coordinates. The latticé
point with coordindtés (x,¥,2) relative to tﬁe defect at 0,0,0) was
relexed to the new position (x-dy, y-dy, z-éz).and Bx, xy, and %z are -
tabulated beneath x, y,‘and Z. . OE is.given for eachirelaxation.

| In each case the energy of formation of the defect in the unrelaxed
lattice, Eoﬁ is glven. - EOD 1s the difference in énergy between the
_perfect argon lattice and the defecfive (unrelaxed) lattice. For a Kr
impurity energy is released on substiltutlion of the Impurity atom for the
AR atom, and the effect of the felaxation is fo increase the amount of
venergy released.  Creatlon of a vacancy or sdbstitutipn of a Ne for an

AR atom requires energy and the relaxation decreases the amount re-

quired.



Table I* Configuration and energy of an isolated vacancy with r/r =1, using a 6 12 potential

The vacancy is Iocated at (0,0,0) and the relaxations of the neighbors are tabulated

E ° .

D 2035 cal/mole

o

| 6.05'5><10“3
_3

-5

_6.955x10‘_5

6.05%107  6.05510

6.420x107 6.4204107

0.

‘5.3hO   

0

"-3V.h12xio"3., oo e
B0

-~ . - - D - - . - . -

.f—25,5 :an

> 0.0 880007 539a0™ sugac™ - ze

Table IT.

Configuration and energy of anuisolatéd vacancy with r/r = L usiné 6 7'potential."Théf

~vacenecy is located at (0,0,0) and the relaxations of the nelghbors are tabulated.

EQ =

D 2035 cal/mole SECICE O

(., . 1,

- 0)

1I3751x1070 .1.375&10_‘2

-

1.3770x10 1.3770x10

LUT66x102 14766107

o o-

O

~5.579x107

| -80.7 cal/mole

=~ | A _H2..28’_7><2.L.O-_'.3 1,&_10><10’? l l.hloxlb_-; E

7 ‘-25.5'cal/mole

—87‘é:w5,_,f:]'
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Table IIT.

Eﬁergy of substitution and configuration around a krypton impurity in an argon lattice
assuming a 6-12 potential. The kyrpton is located at (0,0,0). The relaxations of the
neighbors are tabulated

EDO, = -806 cal/mole
(l) 1, -O) ' (2, 0, 0) ’ (21‘ . 1, l) AR
S7.985¢10  ~T.985¢107 0 - .- - - : - -57.8 cal/mole
S7.985¢107  ~7.985%107 0 ;,hl&xlo‘B o o - - - -58.2
-8.555x10'3_ _8,555><10'3 o | 141410 0 0 -1.826x10™ -L.1IM10™ -1.11hx107 -6I.7
Table TV. Energy of substitution and configuration around a neon impurity in an érgon lattice assuming
a 6-12 potential. The neon is located at (0,0,0). The relaxitions of the neighbors are
tabulated. - : ‘ ‘ -
' EDO = 2221 cal/mole
(1, 1,  0) : (2, 0, 0) (2, L, 1) N
9.o5hxlo‘3 9.051><10‘3 0 R R ' - - -54.5 cal/mole
9.05Ix10™ . 9.051x107 0  -2.312x10° 0 . 0 - 8, - -55.3
9.781><io‘5 _9.78:t><1o”3 0 -2.575x10“3 0 0 1.899x10'3 1.180x10™  1.180x10™ -59.0




Table V.

" The energy and conflguration of a vacancy as a function of r/r using a 6- 12

potential. The vacancy is located at (0,0,0). The relaxations of the neighbors
are tabulated.

S -1.05

1.03

1.02

101

1.00

92

.90

88 -

"_-1 02 x10”

2 528x10

;L6 605x10'5.' - _-6 60§x10 5, L _.of '-  -'_11903 cal/mole | '_‘:_;11.1 qal/moie«i;_pa ‘

--1 (02 X10 o . 1980'7';:;*5" ko

‘.528x10 | "i;ﬂo '7--‘[ 900911-4’. ’ ’i‘}f-ifﬁé.hlg§f5]'”"

6. 055XlO

e

6. 055%10"

-h B
5 -3
:h.530x10 5 Tk 530x10 3‘_7,-‘~ o - _2028'.71'_- . 1%
3 3 | | .

7.51kx10" 7.514x10” o eo2r U e

©1.08hlx107% R f 1,08hhx10 ' }"5f'_ol'j‘f  N 1878' o ‘: -  ]$ -1§8.'

1.2470x10 ™ o l.2h70x10;2 o 0 iv‘j  ;'1625 I o : =269 -
L3307 L. 5773><10_2 oo om0 ko
1.1856x107 L u836x10 o w0 m

1.5732x10‘? _‘E L. 5735x10

o

b2 S 1086




Table VI. The energy and configuration of a vacancy as a function of r/rO using a- 6-7 potentiz;l.
The vacancy is located at (0,0,0). The relaxations of the neighbors are tabulated.
?/ro (1, 1, 0) E; : AR
1.06 5.059 x1o‘5ﬂ\ 5.059 ><10‘3 0 1921 cal/mole -5.2 cal/mole
1.04 8.562 x107 8.562 %10~ 0 1979 19.5
1.02 .1.ih16X1of2 1.1416x107° 0 2019 1
1.00 1.3751x10™2 1.3751x10™2 0 2035 -80.7
.98 1.5720¢102 1.5720x10™2 o 2015 -132
.96 1. 734107 ‘1,75hhx10*2 0 19k9 -202
.9k 1.8719x10”2 1.8719x102 0 1820 -295
.92 2.0000x10 ™" 2;0000x10'2 0 1605 ~h17
.% £.1032107° amyﬂfg_ 0 1276 | -576
.88 2.1989x10™% 2.1980x10™2 0 96 782
.86 2‘2821><1.o;2 2.2821x107° 0 117 .' -1048
8h 2.55h7x10“? 2.3547%10 2 0 -827 - -1393 .

-61-



Table VII. Configuration and énergy of a Vaéancy with r/r'

.9 and a 6-12 ?oﬁentiél;
are tabulated.

The vacancy

is located at (0,0,0). The relaxations of theoneighbors
' EDO' = 53 cal/mole e
(1, 1, :0) (2, 0, 0) (2, 1, 1) AR
2 2 | . = -
1.4836x107° . 1.4836x10° 0 - - - - - - -T11 cal/mole
D LA8BXI0T T 185Bx107 0 0 -1.919xI07 0 o - . - ik
1.6140x10™°  1.6140x10™° . 0 -2.129x10™ 0 0 3.582x1070 2.157x10™0 2.157x107° - 775 -

B

N
. O ‘

.9 and a 6-7 potential. The vacancy s

energy of a Vacancy with r/rO
The relaxations of the_neighbors are tabulated.

' Table VIII. Configuration and
B is located at (0,0,1).
e B0 = 1276 cal/mole .
(1, 1, . 0) (2, = o, 0) (2, 1, 1) AR
5.1032x1072  2.1032x10° 0 - - - - I - . 576 cal/mole.
210701077 2.1070x1072 0 -3.504x10™ 0 o e - S 580 h
2,2875%107%  2.2875x107% 0 -h.008x107 0 0 1k.899x107 2.953x107 2.955*10’5 613 )




-21-

At first, the relaxations appear to be intuitively incorrect.
However, an examination of the geometry of the lattice shows that‘for
each.relaxation, the motion of the atoms always increases the overlap
with some atoms and decreases the overlap wlth others. The inward re-
laxation of the nearest neighbors is obvious, and the small magnitude
of the relaxation can be accounted for on the basls of the fact that
some of the nearest neighbors of the vacancy are also nearest neighbors
of the relaxing atom. TFor example, the atom at (1,1,0) has as its
nearest neighbors atoms at (1,0,1), (1,0,-1), (O;l,l), and (d,l,—l).

The inward motion=of‘these atoms increases the overlap between the

' éfom (1,1,0) and the four mentioned atoms”relaxing inwards that are its
nearestvneighbors as well as the nearest neighbors of.the vacancy. At
the same time the ovérlap ﬁith the vacancy disappears, and the overlap
with the remaiﬁing seven nearest neighbors ils decreased. Thus the
total relaxatién and its‘direction are the‘result of both increasing
-and decreasing oveflaps.

Again for.seéond nearest nelghbors any movement in the lattice
increases oveflap, serving to kéep the relaxation small. However,
here the interaction befween two of the relaxing (next-nearest neighbor)
atoms is small and the most important term is the absence of the attrac-
tion of the center atom, thus leading to a relaxatlon outward. The
'behavior of th; third nearest neighbors cannot be accounted for in
thls way. The largest term seen by a thira nearest neighbor is not the
absence of‘the attraction of the central atom, -which is already a very
small term. Rather the important terms are due to the motlon of its own
nearest neighbors (two of which are nearest neiéhbors to the defect and

one a next-nearest neighbor). It is into the potential hole created by



22~

‘ the movement of thesé'ﬁearest ﬁeigﬁbofsithét the thiﬁd néafest:atom H
‘moves. As pressure oﬁvthé lattice is increased (inter@tomicvdistance
i:is:décreased), nearesf neighbors of the &acancy are farfﬁer ﬁp on thew
. repuisivé side of the central étom‘and so can relax further into the
" hole. Next.ﬁearest neighﬁérs afe less strongly'atﬁracted to the ¢en-A.-

tral atom and so move less away from the central atom. At Suffidientlyv_

high pressure they would actually move toward the def@ct. The increased =

‘movement of the flrst two layers toward the vacancy *eaves the third

nearest nelghbors 8 larger hole in which to relax, and so their motion

toward the center increases with pressure.» Thatlthe relaxation of the

third nearest neighbors contributes more to AE than the second nearest'.'

'neighbor is understandable as there arevtwenty-fOur next -next-nearest

neighbors and onLy 51x next—nearest neighbors._ ’
Expectedly, the . relaxations of the atoms around a krypton (large)'

impurlty.(Table III), are of the opposite sign from those,around.a‘;

vacancy, and a neon'(éﬁall) impurity (Table IV) affects the lattice |

qualitatively like a'vacancy,'except that the attraction of the neon

increases the relaxations.

For relaxations around an internal defect AE is found to converge

less rapidly than for surfacerélaxations.12 Also the numerical values

of the relaxetions for imternal effects are of less gignificance than

fhose for surfaées, as these calculations are highly dependent on the

repulsive potential, which is not accurate, while the latter depend

mostly on the l/r6 attractive pofential, vhose form i1s weli established. .
Correcting_the energy Qf formation of a vacancy at zéro ﬁressure

determined for three layers of relaxatlon, we find the following:
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- 6-12 Potential

2035 cal/mole

g

2014 cal/mole

-1.3 % 10“2

i

s

6-7 Potential .

n

2035 cal/mole

1948 cal/mole

= by 1070

BRI

By vérying the interatomic distance used in the calculations it
‘is possible to cpnsider formgtion of vacancies under hlgh pressure or
2t a hypothetical distended or compressed lattice. This was done for
interatomic distances ranging from 1.06 to .84 times the normal dis-
tance; thevresults of these calcuiations are shoWn in Tables V-VIII.

- As gxpected the~felaXations inward increased with decreasing
separation. For a 6-12 potential the sign of the first relaxation
changes at about 1.03 the normal distance so that nearest neighbors
relax away from the vacancy. The vélﬁme at fhis dilstance corresponds
roughly to the vélume in liquid argon. Whether this correspondence
1s coincldental or of some signiflcance has not been studled as the
behavior of the lattlce under high pressure was of greater interest
to us.

At sufficlently small separations, even before the energy of

&

vaporization becomes positive, the potential energy of formatlon of

a vacancy becomes negetive. There are two proéesses which may be ex-
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..gmined in the forméﬁiénbéfra vacahéyf_ a constant volume process;uin
v_{whiéh case AA is thé imﬁofﬁanf thermddynamic functioh,’and a:constant_
"fpfessuré procelss for which AF.isjbf intereét. -

For consﬁant‘pressure'creaﬁion_of a vacancy we conéider an in;

_: terior atomiremovedvté‘the.sgrface of the crystal. ..
&F = AE + PAV - TAS

where AE now refersvto the energy of formetion of a vacancy.with‘re—:
 laxations, T = 0, and P is obtained from the potential from

,f...,} : .l‘aEsl n .v,v_" BES- - ';1 N
) () )
N T

s is thevaverage'energy of suplimation. For r = .9 <we~'

" noting that E
obtained
- 6-12 Potenﬁial

AF = 13181 cal/mole

6-7 Potential

AP = 6605 cal/mole

The constant vbiﬁme pfocess,:for the formation of one véééncy per |
n atoms, may'be regarded in thelfollowing wayt Starting with n atoms |
. with separation r, we éd to'n atoms énd a vacancy in a léttice with
. interatomic distance_?f‘g;= <E§I);/5r' For th;s procéss we may readlily

- compute AA and obtain thelfollowing values for the formation of one

‘vacancy per n atoms, with r = .9:
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6-12 Potential

A nl-_ DA (cai/mole)
| 100 | | 13k00
| f’1,obo ' 13219
10, 000 o 13185.

6-7 Potential

'ﬁ, - A (cal/mole)
100 6676

1,ood - 6615

10,000 : 6612

Comparing the computed vélues of AF and AA with the‘avefage energy of

sublimétion as zZero preséure'(2055,cal/molé), we would expect that at

- some not too high températuré the léttipe would disorder, whatever the
actual form of the’potential is. This 1s in agreement with the shock

work of Alder ef al.l6 who foundva first order transitlon in solid

argon lying on the extension of the normal melting curve.
3. ‘ Di-Defects -

‘a. Method. In this section we assume (1) that there are two neigh—b
boring vacancies loéated at (0,0,0) and (1,1,0), (2) that only nearest
neighbors to the di-defeqt-felax, and (3) that the relaxations retain
the symmetry of thé lattice. On this basls it becomes possible to
wrilte an expressioh‘for the relaxation energy similarvto that of an
isolated vacancy. This expression can be readily modified to calcu-
late relaxation energies for a vacancy next to an impurity atom or,

as with the lsolated vacancy, for divacancy formation in a compressed

lattice.
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Next»to'suchvawai-défect_%here‘are eighteen nearest neighboré _

| pius thé impufity atom in that case. Coﬂsidering the symmétfy bf the’
iattice the problem beéomeslone of minimizing an energy function iﬁ f: 
 sixteen variables. ”This was done on an TRM TO9k uéing thé same tech- B
nique emplbyed with the isolated defect; Fortunately; 1t was found
“that the modified hélf inter&al technique used did lead to a gdnvergentv
éoluﬁionf -

b. Results. _ihé>di-defeét fésults are given in Tables IX and X.

' The energy required to produce é given defect in a pérfect léttice;

D

without relaxation is E, the relexation enéréy is AE, and the energy
' requlred to’prdduce the-deféct is ED‘ Obviously

: The energy required té.introduce:a vacanecy next to the other ;art of
the defect (vacanc&iof‘impurity).in a relaxed lattice, EV’ isthe
quantity of real ihterest in these calculations. This valﬁe is'also,
~glven in Tabl¢ IX.“ .

The relaxations théﬁselﬁes are presented in Table X. In all.
éases the relaxatiéns themselves are small, being of the same order"
of magnitude as for isolated defects. It was found that a krypton
atom relaxés 1.5 into the vacancy and a neon atom rélaxes'5.6%.

 These relaxations are small as for the pure material; the impurity
atomVrapidly ihcfeases its oveflép with its other nearést neighbors.
Relaxations into the di-vacancy behaved like those into the isolated
vacancy. Ail nearest nelghbors relaxed inwards towards the vacancy-
‘.vacancy and the neon-vacanéy defects."In tﬁe case of a krypton-vacancy o

defect, the neighboring atoms moved towards the vacancy and away from

the krypton impurity as expected from the isolated defect calculationse.
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Table IX, The energy of formation of a di-defect. E}) is the energy with relaxation. AE the

relaxation energy, E

adjacent to. the other part of the defect.

D is E; + AR, and EV 1s the energy required to form a vacancy

Defect : . E; AR

Vac-Vac
Cr/fr, = 1 3955 cal/mole

6-12 Potential

Vac-Vac

r/ro = ,90

6-12 Potential 970 ~1913
Vac-Kr . >989 -78.8

Vac-Ne Laby ’ -102.2

.‘—57.5 cél/mole/

3987 cal/mole

-9k
910

40.39

1888 cal/mole

-621
1778

1877

..La..
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B : . meble X.
_ The vacancy is. at'(éro'o) and the second defect at (1,1, O)
'point (x,v,2) (glven as (g) in the Table) goes to (x-6x, y-8y, z+ 62)
(§¥> is given for each second. defect and p01nt 1nvest1gated For com-

parison, relaxatlons around a 51ngle vacancy in a perfect lattlce are

given under Arvfor those p01nts considered in di-defect studies;

6.240x10

lDiedefecﬁ Relaxations
'(§ Vac. - :ﬂ “vv_'Ner Ar ' ke
O B3T0T0 6lhoox10™  1.7026%107
,,,[—5.5957xlo‘2 6.Aeox10'5 - 1i7026x10f2
o0 0 | 0

7.880x07 | cgiglexio?  6deoxio”  h.lghxao”
-7;85lx10f5]“=;w[-1.1821x10f2 .0 | n'1;025ux10'2

2.115xlofgh,-[ - 2.6455%107 T6.120x1070  -7.685x10™7

7.880x107  8.2k2x10™ 61205107 }.19kx10™
L7.851%1070 ¢ -1.1821x1072 , o l.0254x10f2
_2,1113x10‘2; H'--2,6h55xld;2 . 6.h20x107 7.685x10™

-7.85leo-5'.ii‘ —l.l82lxlO'2a o _ © 1.023kx10”

7.880><10’5 *‘"fv 8.2L2x10™ 6.420x10™° h.19Axlo;5

2.1115xlo‘2;;-~' 2.6455x10™ 6f1+20><10‘5 1 7.685%107

-7.851x1045_" 1.1821x1072 0 . 1.023kx10"
7.880x107 8.242x10™ 6.420x10™ | b.10kx10™0

2.1113x10™ 26135107 -6.420x107 V7.685x10‘?
.6.553x10,"5 _;,7 ~7.216x1077 -6.420x107 '-h.980x10'5_
-8.00x10" - -1.552x10™7 o  1.230x107

5.92210™ & 6.420x10™ 6.240%10™
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Teble X. (Continued)

Di-Defect Relaxations
‘(§ > Vac. . Nev Ar .Kr
Z .
/-1 -6. 555xlo > ~7.216x107 6520107 . -h.980x16‘3,
0 28.00¢10™F  -Ll.5Eex10” 0 - 1.230x1070
-1 -5.922x10 > -6.240x10™ _6.420x10™ -6.240x10™
0 8. 00x10 e - -L.55E%107™ 0 1.250x10™
-1 -6.535x10™ ~7.216x107 6.420x107 -u.980x10'5
1 5.922x107 6.2uox10’5 , 6.520x107  6.240x10™
-8.00x10 o 1.552%107 0 . 1.230x107
-6.333x10 2 -7.216><10’5 . -6.420x107 -h.980xlo'5
5.922x1070 - -6.240x10™ -6.h20x10-5" | -6.240x10™
1 4121107 _5.605x10‘5 | 6.120%10™ 6.513%10™
1 1. 51xlo - -5.95x10™ -6.120x007  -9.750x10™
0 | 0 0 0
b -k 3 -3
1. 3lxlo S =5.95x10 -6.420x10 -9 T50X10
> k.121%10™ 3.603x10™ 6.420x107 6.513%10™
o 0 0 0
-6.079%x10 > | f6.528x10'5 -6.420x107° -5.56_6><10'5
-6 O79xlO > -6.328x10™ -6.420%10™ -'-5.566><10‘5
0 0 0
6.079%x10 > 743h3xlo-5 .2.9oo><10"3
6. O79xlo & 7.343x107° -2.900x1o‘3
0 0
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-_COmpariéon‘of Ev_in Tablé iX wifh fhé enefgy ré@uirea'£0'pr0dgce:an
1iéélated Vacéncy indicates that fhe energy of formationwofta-vacan¢y next '
‘to'anothér defect is lower“fhan that for an lsolated vdcancy? _Free»eher-_ 
gies for‘formation of facéncies are corréspondingly lower. This,is'in :
agreement‘with the attractidn'bf vacancies prédicted ﬁy;Stripp et al{;l

It isvpossiblé from these results to estimateitﬁe relétive concentra;
33 '

tions of various defects, . Following KrSger and Vink} we write the con-

centration of a given defect [D] as

- 8./k -E kT‘ f"f';
B

- [D]

-where SD is the'ehtropy Qf>fqrmation.bf the defectfénd'ED is the total

energy required to produce the defect. SD mayvbe'calculated from .

elementary statistics. ,ED may be separated into a kinetic energy term,

KD, and a potential energy‘term,'EDi This latter term has been obtainéd

in this paper for vafious'modes of vacancy formation. If we assume that;
‘in the formation of a yacahcy, Kv 1s Independent of the location of the

vacancy, we obtain

| S/ ~Ey/kT
V] _ e e
v, T | Svo/k. TEv;7kT

e e

~

for the relative concentrations of two:types of (vacancy) defects. fgc%_

is plotted in Figs. 1 and 2 for vérious types of Qacancies, where [Vb]éis
| always the concentratioﬁ éf isolated vacancies in a pure'argon latticef

[Qo] has been egtimated by Féreman and Lidiard to be .1% near the melting

oint of argon. TFrom a knowledge of the concentration of isolated vacancies
P g , g

in pure argon, we can obtain the concentration of various types of di-defects.
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MUB-8155

[v]

_ln.—TvrT— where [Vo] 1s concentration of isolated

o) .
vacancies 1n pure Ar and [v] is the concentration

of vacancies adjacent to Kr atoms in argon with

.1% Kr.
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~1n T where [V6] 1s concentration

O . - .
of -isolated vacencies in pure Ar end {v] of
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From Fig. 1 we see that the formation of a vacancy next to a krypton
_atom ls strongly preferred at low temperatures, and less so at hlgher‘
temperatures. Concentration of vacancies next to neon Impurities behaves
_eimilarly. Concentration of di-vacancles is 1ns1gn1f1cant in comparison |
with the concentratlon of vacancies except at high temperatures (> 80° K)
where we approach the melting polint of argon; this is shown in Fig. 2.

- The preference for formation of_a vacency next to an impurity causes
.a decrease in the average energy of formatlon of a vacancy in impure |
argon, particulariy at IQW‘temperapures; average energy of vacancy forma-
tion 1s plotted in Fig. 3 as a function of krypfon concentration at various
temperatures. The values shown here for high impurity concentration are

almost certainly mt valld since the impurities will interact, and this
Interaction has nop been inclnded in the calculations. Similaerurres.are
obtained for neon.

The energy averagelrequired to produce a vacancy in an impure‘iattice
may be obtalned from Fig. 3+ Thls we have used to estimate the concentra-
tion of vacancies in an impure argon lattice at 80°K, which is shown in
Fig. 4. TImpurities are seen to increase the concentration of vacancies.
Again values for~1arge impuriﬁy concentrations ere not significant. Even
rin impure samples the concentration of vacancies predicted by this model -

1s much smaller than that determined experimentally.
4,  Conclusions

The qualitative behavior of.phe relaxatlons around a vacancy are
fairly independent of the exact form of the repulsiye potential. AsAone
would intuitlvely expect, fhe effect of high pressure.ie toidrive sur-
rounding atoms further into the hole left by a vacancy. For atoms more

distant from & defect than second nearest neighbors, the most important
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. :con’cribu'bion o '_‘th.e_ir z‘ribti'oﬁ_'isi the béhé&i’oic”_off ther own nearest“”neigh-:_
| | Relaxations around.small.atoms are qualitapively like those around
Vacancies, whlle relaxations around large atoms are oppOSite in sign to .3?”
those around vacancies,‘riiv.' | . Co |
At high pressure itvwas'fbundifhat anforder-disorder transition'could"f;
occur at not too high temperature;_:’ J . |
N It was fbund that formation of & vacancy next to another defect is. if:
'energetically preferred to formation of an isolated vacancy, We have |
“shown that the concentration of vacancies next to’ impurity atoms is higher f
,than +that which would be expected from a random distribution of vacancies,
:particularly at‘lOthemperatures. From thls we conclude that the concentra-
tion of vacanciesrat a'giwen'temperature increases with impurity concentra;;'
tion. | | | » o - o
We have also shown that the concentration of di-vacancies is insig-
nificant in pure argon except at high temperatures (> 80 K) where we ap-,ﬁi

proach the- melting point of pure argon.
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;5__D.‘ Diffusion in Solids

1._ Introduection

Theoretical.calcniatiens of self-diffusion coefficient heve been
~ made for copperBLL 56_an& argon,37 Even though‘the calcnlatiens for
copper present a number of serious problems, rough agreement with
experiment has been obtained. It would appear that more precise ealcula- N
.tions could be made for argon than for copper sincesargon, forvcomputa— E
__tional purposes, is‘reasonabiy well represented.by a two-body potential

and does not have the complicatlons of free electrons or core polariza-

37

tion. Fileschi et al, have done extensive calculations on the self-
‘.diffusion coefficient in solid argon and have obtained results that are
partially 1nvagreement with experiments.58 Their exponential term 1s
roughly 25% lower and the pre exponential term differs by lOLlL from the
experimental values,
Fieschi and coworkers estimated the barriei to diffusion by allowing
the four nearest neighbors of the diffusing atoms to relax while the
atom and Qacanc& inferchenged. In Seec. I-C, a program was developed.nhicn
- permits the caleculation of the energy when all of the nearest neighbors
,:of an adjacent palr of lattice slites are perturbed elther by the sub-
_stitutlon of an impurity oi a vacancy, dr by a combinatlon of the two.
The expanded treatment of self-diffusion in this section glves a
closer agreement with ﬁhe obseryed activation‘energy than that of tne
earlier‘computation. Furthermore, the work done suggeste that diffusion
may occur equally well By the exchange of an atom with a divacancy rathexr
than a monovacancy. It is true that the number of divacancies ie low
. compered to tne number of monovacancies;_nut the barrier is approximateiy

the same, and thils mechanism leads to a higher pre-exponentilal term when



‘_the Arrhenium equation is used to describe the difoSion process.; o

o T is evident that these and similar computations are really only

- apprOXimations, and the numerical values obtained are highly limited by1 ,

':the assumptions that are necessary at the present time. waever, it is
felt that sufficient insight into the physlcal process can be obtained

: to warrant the effort that is expended.

2. Theory

It 1s known that most experimental difquion coefficients59 can be :

| fit by the Arrhenius equation :

where Do’ the "frequency factor" and E, the "activationlenergy"‘ere

'hconstants; In some Cases Do‘end E have been found to be temperaturev” h'

_dependent;ho’ul

For diffusionvviaAsomeﬁlattice defect the Arrhenius equation (Eq. .

1) may be expressed as39’

e S-’];/R vs]')/R' -E’];/R:ﬂ -E /RT

D =7ya Ve e e e T (2)_

T

3
|

Y 1s a numerical factor roughly equal to unity, a is the length of one
diffusion Jjump (a is equal to:the solid interatomic distance for most
’ vacancy diffusion mechanisms), ¥ is the vibrational frequency of the

;diffusing atom? SD i D

lattice defects, and S; andvEg are the activatlion entropy and energy of

. the motion. }3‘4r 1s the difference in energy between states 1'and-2 In

D
Fig« 5, the usual reaction coordinate diagram,
Diffusion 1s assumed to occur by interchange of an atom with a

vacancy at a nearest neighbor site (Fig; 6)e ‘We assume that as the

and E. are the entropy and energy of formation of the
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Fig. 5 The reaction coordinate dlagram for diffusion.
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Fig. _6 Exchange with a monovacancy; diffusing atom is

* eross hatéhed.
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diffusihé atoﬁ_moveéirthévlattiée'continuoﬁsly relaxes fo a miniﬁﬁm
4potential cénfiguration.'yln thisbway, we congider correiatibn of the‘
diffusing.atom”with i£S~neighbors to obtain a potential energy‘diagram

- for use in an equiiibfium calculation. We also assume that E£ in

Eq. (2) is the}differencé:in the potential energies of states 1 and 2

in Fig, 5, where étate 1 repfesents now the minimum potential configuration
of the lattice with a vacaney and state 2 the minimum potential configura-
:tion of the lattice wifh the diffusing atoﬁ displaced half the distance |

between 1ts lattice slte and that of the vacancye.

3. Caleulations

‘Using techniques developed in Sec, I-C, 1t 1s possible to compute
the potential energy, Eo(x),breéuired to move the diffusing atom from
its normal lattlce site to a.distahce>x along the "féaction coordinate”,
Fige T, in an unde formed latticé.i ‘

The elghteen nearést neighbors to the di-dgfect (diffusihg atom
plus vacancy) were allpwed'to relax to the\configuration of minimum
potential energy; the difference_in potential energy between the unrelaxed
lattice and»the minimum potential configuration with the dlffusing atém
at x 1s designated.AE(x)‘: Allowing only nearest neighbors to relax and
vconsidering the.symmetry of the lattice, determination of AE(x) is |
reduéed to simultahéously»minimizing en expression in sixteen independent
veriables., This minimization was'carried out by an lterative half
-intervel technique which forfunatel& converged. The relaxations of tﬁe
riearest neighbors were found to be small throughout the diffusion process
and are presented in Table XI forvstates 1 and 2 fbr.self-diffﬁsion.
Because of the great amount of machine time required to extend consideration

to relaxations of more distant neighbors and the only quelitative
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Table XI

Relaxations of the nearest neighbors fo::j mbn’o-vacancy self .diffusion.
The moving stom is initiallyrat: (1;1,0) and the vacancy at (0,0,0).
The relaxing‘-;.afbbm.s a:fe grouped . into sets :.q:f pointse .e:qni'vailent by
symmetry | | | |

(1,1,0) o
1 (1,0,1) = (150,-1) = (0,1,1) = (0,1,-1)

("1;0:;) = (-l,O,~é1) = (O’_"l;l) E'(o:"l:"l) '

(1,-1,0) = (-1,1,0) _ L

(-1,-1,0)

(2:210)' , . . ,

(1,2,1) Ev(l,E,-;) = (2,1,1) = (2,1,-1)

(2:0:0) = (012}0)'

ox : 3 : :
<6y> 1s glven for States 1 and 2 (Fig:n5)-for one:atomof each set

X : . ,
y , State 1 o State 2
zZ ' ..

6.h2x1o"§ .5
6. Lox10" o5
0 0

6. Lhox10™ . -2.58x10'§'
2,52x10"

0
 6.k2x10™ , -6.88x107

-1 o 6. hox10™ 1 =1,17x10 ?
0 L 0 -1.88x10"
b . =  6.lex10™ : 9.06x10"

> :rf' . 6.kex10™2 © 1.37X10

~6.b42%x10" -5 ' -2,63%x10"
0 _ 0

=5
-2
-2

-6, 42x107 -5 | -6.25x10'§

~6,42x10™7 -6.25x10"
0 _ r , 0
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significance Qf'the results;.no‘éttempt was made to relax the mpre -

- distant neighbors. Thus
CE(x) = E_(x) - AB(x)

1is the pqtential energy required to move the diffﬁsihg atom from ifs
relaxed lattice site to the position (x) in the relaxed lattice. E(x> o

and Eo(x) are shown in Figs 7. In Flg., 7 the distance between the initial

and final lattlce positions is one unit, In accordance with bur |
assumptions, we take

By = E(.5)

+
v

is thé ehergy at the saddlepoint,
_ Calculations -for 1mpurity diffusion are essentlally the same as

where E
for argon self-diffusion and were made for neon and krypton impurilties.

The potential of argon was modified as in Sec. I-C.

L, Results |
We have developed a method for calculating the potential'énergy
vchange of the sjstem in going from initial state 1 to intermediate
state 2 (Fig. 5); this 1s E(.5) and is equal to E; in Eq. (2). For
gelf diffusion in argon ; ‘

E; = E(.5) = 1798 cal

where the units ére cal/mole of diffusing gfoms. We have obtained inv
Sec. I-C the energy requlred to remove an atom from the bulk of argon,
leaving an isolated vacancy; the process of physical importance involves
the removal of a bulk atom to the surface of the crystal. Assuming that
the average binding energy to the surface 1s half the binding energy

to the bulk, we obtained



f;_ﬁjf‘v'“

H'fTJEV é_QOlkical

T een e

I the»A:fhenips“Eq;H(i)’ O T P
\" Y . 1_ : ’ ’
- E = EV + E = 3812 cal

WhiCh,iS'in:surpriéingly'good agreement ‘with the'experimentaivresnlts SRR
" of Boat038x‘ . o : '

g 15Xe-u120vcal/RT.cmg/sec~i; - 4;*:;”

It is interesting to note that EV 1s only slightly less than ‘one half
of E for argon¢ Comparisons of Mukherjee sue tables of EV for a number
 of metals with the activation energies" for dlffusion tabulated by
'; Lazarus39 indicates that this is generally true, assumlng the diffusion 1-

mechanism is monovacancy ‘exchange, .

+
v

vacancy exchange. We have shown in See. I-C that the energy of formation

T We have observed above that E., and Evlare roughly equal for mong- . -

cof a divacancy,'A

V s is less than twice the energy of formation of a
2 : _ §

monovacancy, EV, ‘

EVé = 3897 cal

. <2E, = 4028 eal.
An atom which is a nearest neighbor to:both sites of the divacancy may
move by exchanginglposition witn one of the vacancles, This mechanism —
may beerepresentedvin 8 (lil) plane (Fig. 8) and results in a rotetion
of the divacanecy, = For this mechenism
4 ,

E = 1280 cal

v,
2 . .
_withoat relaxationy allowinggthe four atoms nearest to the saddle point

to relax reduces E;I_to v
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Fig. 8 Rotation of a divacancy; diffusing atom

© 4g cross hatched.
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No attempt was madelfd eonsidef.additionel'relaxatione.. This value of
EV ls an upper limit and would presumably be. reduced by consideration -I.

of more relaxations4 For divacancy diffusion, the activation energy

in the Arrhenius expre351on-(qu 1) is

E=Ev +1~:T 481#( cal‘\

" which is also in reasonable agreement with Boato 8 experimental resul‘t..?8

'. Diffusion-may occur W1th a divacancy via two other mechanisms.' In'these :
the dlffusing atom is a nearest neighbor with only one of the sites of

the divacancy ‘and exchanges with this site. Thils results in a splittlng

L of the divacancy 1eaving two vacancies whlch are either second or thlrd .,

‘nearest neighbors depending on which neighbor of the vacancy moves, Both . -

- splitting processes have higher_barriers than the rotation of the

o divaeancy«

No calculations of S; or SV have been made to the author's
‘ 2 2 : '
Vé must he larger than SV

greater for divacancy exchange than for monovacancy.

;knowledge. However, S and Sf is»certeinlj
Tt would thus appear that, in argon, ‘the "frequency factor" for d
diffusion via divacancy_exchange 1s greater than that for monovacancy
exchange and the "activation energies" for both processes are essentiallj '
" the same and in reesonable agreement with experiment.58 This would
| »imply thah, in fact, the pieferred self-diffusion mechanism in solid
1}argon, and perhaps in ofher close packed solids, is not monovacancy
exchange'as'has.been preniousl& assumed, but rather 1s divacency exchange.

"This conclusion 1s confrary to intuition, which would indicete that the
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concentratidn_ofvdivééanciés 1s too low to be signifiéant.‘iﬂbﬁever,

- though thé concéntration of divacancies 1s very low, the-barriér for
motion is much lower for'divacancy exchange than for monovacancy exchange

- and the "frequency factor" is higher, which mayvlead, surprisingly, toia hL
higher self-diffusion rate for divacanecy exchange.

38

In order to account for Boato's experimental results, the entropy

term for divacancy dlffusion mﬁst be larger than that calculated'by

Fieschi37

for monovacancy diffusion by roughly 10_entropy'units.. It
would be desirable to do extensive calculations oh the divacancy exchange
| mechanism to findehether thls very large entropy term is in faet found, -
Without difficulty it was possible to compute fhe "ectivation energy"
“in the Arrhenius.éxpression for both examined mechanisms In a compreSsed
| argon lattlce, Under cbmpreséion, a PAV term must be 1ncluded in the
' “activation energy". We have assumed in Sec, I:é that the formétibn of a
‘vacaney involves the removal of an atom from the bulk to the surface,
- that the "volume" of en atom on the perfect surface is eqﬁal to the
- average'bulk "volume",‘and that the surface binding energy is half thé
bulk binding energys With these assumptions we obtailned the "activation
energies' for both processesvin the compressed solilds thése a;e‘shown‘
in Fig. 9 as a functibn of pressure. Though the "activation" energy for
~ divacancy diffusion at low pressure is comparable to that of monovacancy
' exchange, at high ﬁressures the divacancy mechanism appears to have a
higher "activation energy". |
In diffusion work one often studies the so-called "activation
volume", Writing o |

OF = AE + PAV - TAS

far) -y
I
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The energy term used in these calculations is not a true thermodyngmic
state function'aﬁd_so we ealculate the "activation volume" as

N

AE(P) ) ;A;E:(pe> + PLAV(R)) + P AV(R,) ',

Pl - Eé

Using our data for "activation energy" (Fig. 9) we have determined AV¥ -

for both mono- and divacancy self-diffusion

AV$ = 142 atomie volumes -

RN
V5

= 1.8 atomic volumes

No other vac;ncyltype'process can have a sufficiently low’“é¢tiva£ion1
energy" to agree with the ekperimental results, However, it ﬁould bel B
desirabie‘to caleculate the activation energ{es-fbr exchange, fing, and o
interstitial mechanisms.in solid_argon to assure that these do not give‘
vsﬁitable "activation energies'.

In Section IC we found that the energy requiied.to produce a vacancy:'
- adjacent to an impurity Atam is dependent on thé nature of the‘impurity
atom, The energy required to:form a vecancy adjacent to a neon impuriﬁy is

EV = 1877 cal

Using the programs developed for self diffusion we find, for monovacancy

dlffusion of neon thfough argon,

T . ;
EV = 305 cal

The "activation energy" in the Arrhenius expression 1s then



. i -

-

Simiiarly for k;ry’p’oon di_ffuéion through argon

B, = 1778 cavul: |

By = 2075 cal

E = 3875 cal

5, ConclnSions
| difi‘usion in solid argon ba.sed on a monovacancy exchange meche.nism usingf_-
an eq_uilibrium approa.ch to the difi\isiona,l Jump frequency. Ve ha.ve shown
- _that monovaeaney excha.nge gives a value in agreement with experimen‘c5 :f'or kN

the ' activation energy E, in the Arrhenius expression

D =" DO e-E/RT

e . ) P Ve

<We. have also shown 'tha.t A divacancy excha.nge mecha.nism for sel:f‘-diffusion -
in solid argon leads to e "frequency factor" ‘grea.ter than tha:t for mono =
‘vacancy exchange a.nd 'l:o B satisfactory value of the aci_:ivation energy",
and that at high pressure the "activation energy" for divacancy diffusion
.1s much greater than’ thafc of monovacancy diffusion. : - _ .
Finally we have found that for Impurity diffusion through argon via ‘
8 ‘monovacancy mecha.nism the "sotivation energy" varies gree.’cly wlth the
nature of the impurity._, For diva.cancy diffusion, the energy of forma‘cion
of the divacancy isv the mein 'l;errn in the "activation energy" and thus the

Mactivation energy" does not vary strongly with the nature of the im_purity'.v'

In this Section we have calcula.ted the e.ctiva:bion energy of_ self-.‘ -
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Assuming that fhe'"frequency factor" for a given diffusion méchanism
does not vary greatly from self to impuriﬁy diffusion, our calculations
for argon, krypton and hébn indicate tha£ large impurities (e.g., krypton
in argon) should diffuse by divacancy mechanism‘and small impurities by a
monovacancy mechanism, '

~ Some experimental data for diffusion in metals are tabulated in Table
XII, The self diffusion'coefficients are 8ll characterized by large pre=
exponentiéls." For reiatively‘large impurities, the diffusion eocefficlent
"frequeney factors" and "activation energies” are roughiy equal to the
values for self diffusion. waevér, for relatively small impurities, the
"frequeney factors' and "activation energiles" are drastically reduced from
fhe self diffusion parameters. These experimental results are in agree~
ment with our theoretical pfediction that large impurities énd bulk atoms
diffuse by a divacancy mechanism while small impurities diffuse wvia mono-

vacancies,
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| Teble XII. " Diffusion Coefficients, D, for Face-Cemtered-Cubic Solids

' R is the ratio of the "diameter'‘of the diffusing atom to that of =

the atoms "_in‘fthe:'--hovst lattice where the "diemeters" are taken as
the riea.rest néig'hbor distance in the pure solid. Energles are =
. in cal/mole, - ' ' ' o

. Solid Diffusing .- CURD D : Reference .~
o 3 - - Atom : . L R

e | 1.0 s o-120/RT ex2/sec "  . 38'.
.._le - Cu | ."?31 f'. ‘f;i.7‘;~.'9.><lo'5' o-8020/ RT s
Ag ‘82 L, 6><3_o~2e~11+,h1+0/RT)+5
S . .,“ Au i‘f».:;8'2‘v"-'”?":_ ?2._-.__9‘<10'_3 éﬁ87oO_/RT}A.;v;.'__'; -* 16
Cw E Aéf'vA};i?__i.IQvf.f L5 SMEs00/mm ”- f.lh8

v;a; cu f - ;Au' ,;f;f::;l,l2 " f‘;.69 o~49,T00/RT - é‘f“f48' iff
Ciem ;d rjd;;M{‘ 1.08 j5;:_Z1,7'e‘5”'”°°/RT L w
Ag Au L0 .’ée o~15,500/RT N | 51

 hg : _. Cu .89 o r.',;L_._e o~16,100 _ "51'.   |
he om e e etSTOMT Ly
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v.i o Sﬁrface Dilation

~ Until now, experimental values have not been obtained for the dis-‘
'placement of the surface layers from the bulk of semi-infinite crystals;
~ such information will probably soon be available from Low Energy Electron
Diffraction (IEED) studiess It is desirable to have some theoretical
| egtimation of the order of magnitude of the displacements. 4'

Gazis and Wallis5 have shown that a-one dimensional lattice with
nearest and nextanearest neighbor interactions may. exhibit a distortion
.of the lattice spacing at a free surface: the predicted distortion
vdecreases exponentially with distance from the surface.
, Shuttleworth has calculated the displacement of the filrst layer of o
' thel(lOO) surface of argon. Alder et al.l have calculated the displacements.,
of the first five layers of the.(lOO).surface of argon; they found that |
the distortion decreased proportionally'to the ihverse cube of the
distance from the surface,

The values of the coefficients in the Morse potential

-20(r-r ) r=r_ )]
¢(r)=D_<e ; o' 5e -o_}

have been tabulated by Girifalco and Welzer?” for six fee metals; Ca, Ag,

. A1, P, Cu, and Ni (Table XIII). Girifalco's evaluation of the Morse

potentlal parameters was based on experimental values of the solid inter-

atomle distahce, the heat of sublimation, and the solid compressibility.

The Morse potentials obtained glve good equations of state but poor

elastlc constants. We have calculated the displacements, &y (Fig, 10)

of the first two sutfacevlayers of these metals for the (160), (110), and

(111) surfaces. For comparison purposes wedhave also caleulated the same

15

displacements for argonvusing a Lennard-Jones 6-12 potential,
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Fig. 10 ‘Schematic diagram of a semi-infinite érysta.l
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Table XITI. Patameters of Morse potential
4&x(r—ro) ~0(r-r )

¢(r) = Dle ~2e
Metal - = - a(ﬁ';) ro<2) "D(ev)
P - 1.18%6 3733 ,2348
Ag _' | 1.3690 3.115 . 43323
Ni | 1,h199 2,780 4205
cu. - 1.3%88 0 2.866 - .3heg
A 1,646 T 3253 ,- L2703

e .Bows sk a6

| The expression for.the surface energy of the (100) surface with the
.épacing of the first two planes pefpendiéular to the surface (z difeqtion)
allowed to changevby' 61 anﬁ 52 and the other plgnes fixed 1llustrates |
the method employed In these caleulations, which ig that employed by

Alder et al.12 ‘We,define 6(z + 51) by

: 00
L XyY = e @ :

X + y + Z = even

where V(x,y,z) 1s the potential between an atom at (0,0,0) and an atom
at (x,y,z)s Then the potential energy of atom in the surface layer is
glven by ' '

B(1) = 6(0) + 6(1 +8;)'+ X 8(z + 8, +85)
+ z=2 . 2



"with only the‘firstwandhsecond'iayers4reiaxed, For an’ atom in the'second'.”
layer the total energy is

E(2) =9(o) +6(1+6 )+ > 6(z+ 52)
z=l : ,

‘For an aton in’the'Nthj(N 5;2)'layer the total energy ishi' Z.,"
E(N)?;.—s e(o) +.'9(N—-l +8. +8,) +0(N-2 +5,) + e(N-e) + 3 6(z) -
« 172/ " T P2 'Itl' 2l
Adding the energies of all of the atoms in all of the layers gives twice

the total binding energy of the system

‘5..-2ET - z E(N)
L ] O N=l

 Tor a perfect infinite-crystal'the total Binding energy, Eﬁ'is:given by
E. = iim eN[e(o) re 3 e(z)]
B T ;
: N——>co . z=1
The surface energy of k! crystal is defined as one half the energy required

to split an infinite crystal into two seml-infinite crystals

By =5 (B ~2ET)
k =% I (z) + - [6(z) -6(2 +el+e )]
. z=] z=2

S [6(2) - 6(a + 5,) + 6(1) "--'é(i +5.)]
S =l o T

rSimilar expressions.nayjte‘deyeloped for more relaiations'and otner erystal
faces. o " |
The surface eneréy, without allowing for distortion, E o? was calculated
for each case considered by direct summation over a lattice of 2000 atoms.
The surface energy was then minimized with respect to the displacements, l,':

by direct swmsation of the energy over a lattice of 360 atoms on a CDC 6600

5

computers
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| The surface eneréies without reléaxation, Eo’ the displacements, 51,
éndfthe changes in surface energy due to relaxation, AE, are-tabulated
in Tables XIV, XV, and XVI for the (100), (110), and (111) surfaces
respectivelys The diéplacements, Bi’ are glven iﬁ units of percentage
of fhe normal bulk planar Spacing. The values of Alder etval.-'l2 are -
included in Table XIV. |

The results of Alder et al; are based on direct sgmmationbof the
energy over a lattice of roughiy forty thousand atoms and integration
over the remainder of the lattice; our results arejbased on only 560_ 
atoms, Comparison of Alder's results with ours éhqwsthat this small
'latﬁiﬁe yieids good values of 61,»52, and AE, Aldéi's work shéws that
conslderation of.the relaxation of only two surfacé layers glves good

values of the surface energy, It is not neceséarylfo do calculstions on f
large crystals to get reasbnable values of the surface energy and surfacef.:
distortion for solids with short réﬁgeipotentials. Relexations were found
fo élter thé surface energy by at most 6%. However, consideration of
relaxafion affects the relative orders of the surface energles per unit

area in some cases.



The (100) Surfac
_ ‘bulk (100) plana
o ;AE 1s the change

S Table XIV _ o

ex Relaxations, 81, ere given as a percentage of the .
r spacing; E is the u.nrelaxed (lOO){ surface energy, :

in surface energy due to relaxation. - '

Solid p ai_(%).fp; 8, (%)

By AEq
(ergs/em?) (ergs/em?)

. Ca

.
3 -Al.i-7
"Pb”'
Cu

IR AR

o Ar oo ) B
2,577 .589 T k2,86 -u38

Ar¥oo

12,50k 3,587 105k -68
6,456 - 1.259 2508 .72

10,972 . 2,965 . 2062 167
sk’ 978 1ok 26

©9.669° 2.k l@s6. | g0k
C9.121 2,232 . 526 Vgﬁ}‘}236_1“'>

2460k L u623 0 k233 i’ff 38

*Obtained

by Alder et al. 12 -

~ The (110) Surfac

 bulk (110) plana

~ AE 1s the . change

- Table XV . -
e: 'Relaxatlons, 61, are given as a percentage of the

r spacing, E is the unrelaxed (110) surface energy, ‘ o

in surface energy due to relaxation, .

‘Solid

By AFq

l<%) A" 2(%) (ergs/cme) ' (ergs/cme)

Ca

3B

Cu
N
Ar

9.621 2,628 - 1065 63

4,783 . 768 : 2635 - 61 -

o 8.6 | 2,09 3065 153
CUokoTs s T 22
o .31k 1,671 T hkoo 0 18k
,p"6.872'. . 1,507 - 5&60 R -211

' 1.809 a S W366 uu 52 :n .30
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_ _ Table XVI _ ,
The (111) Surfaces Relaxations, 12 are given as a percentage of the
bulk (111) planar spacing; E is the unrelaxed (lll) surface energy;
: AE '1s the change 1n surface energy due to relaxation. -

Sd 5 (B % () (egule)  (ergeferd)
ca koo .89 1046 31

| Ag S 1,910 .225 2L8Y BV
Al S 3667 - TO9 2985 -T1

P 1,580 . .159 1099 -8
cu 31k .54 - l3T5 85
N1 2,927 ’»i‘ Jdoo 5258 293

Ar © .80 . .90 4o Th - o1k




s

jr o “‘3 ~ +{F. Surface Defects

fla_.v"':‘vIntroduction -

A number of" investigators have calculated the energy.of formation of

R surface vacanciesvand the binding energies of excess atoms above the sur-

. face for ionic c:r'ystals.5_LL"55 'The calculation of the surface energies for
v ionic crystals is a very difficult problem,lu thus one cannot expect much

exact information from surface defect calculations on 1onic crystals.'

It is desirable to:do extensive calculations on the'surface proper-
ties of argon in the'hope'that the results obtained would give sone.insight_
Into the surface properties of other.materials. Potential functions for
adsorption of excess atoms onto the surface andlfor the removal of atoms _
(both host and impurity) from the perfect surface end information on the
. configuration of the surface, both perfect and defective, would be useful.
._The distortion of the perfect (lOO) surface of argon has been calculated “
previously; B

We have calculated the binding energies of argon and impurity atoms ;
(neon and krypton) above and in the (100) surface plane of argon. Using
the high temperature Einstein_approximation to calculate the entropy, we: Vg:
estimate the concentration of vacancies in the equilibrium (100) surface
‘of argon at itsvmelting point assuming that the wvacancles obey Boltzmann
statistices. Thouéh usevof_our data at the melting point is not justified
by our assumptions,iit'is felt that the results obtained 1n thils wav'givei

at least a rough estimate of the surface vacancy concentration at the

- -melting point.

We find, as expected, that ‘the binding energy to the argon surface
" decresses 1n the series krypton, argon and neons We also find, 1n accord

wilth ekpectations, that the binding energies of neon and krypton above the
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perfect surface are lve"ss than in the surface plane, We find thét ‘t‘hough
the relaxations are usually numerically small, they appreciably affect

the ‘energy. .

2. Caleulstions

The epergy of formation of a vacancy at (0,0,0) in a (100) surface

plane without ailowing for relaxation is -

CE, = BN V(L,0,k) -
T itjt+k=even o
k=0

_ where the prime (') indicates that the point (O,_0,0') 1s not included in
the summation and V(1,J,k) is the potential 'energy'betweeh an atom at
(1,3,k) and an atom at (0,0,0)s. The summation over only lattice points

© with (i+j+k) = even ls the conventilon ad'opted by Alder et aLl.lQ and mekes

the edge of the unit equal to 2. Allowing the lattlee to assume the dis-

tortions, Sk_..(Table XVII), determined by Alder et al., and allowing the

atoms at (1,1,0) and equivalent atoms {(-1,1,0), (1,-1,0) and (51,-1,0)}‘ e

to relax to (1-D, 1-D, O), etc., the energy of formation of the defect

may be written as

E = .3 V<k,d,k + = 61)
1+J+k=even 1=0
. k=0 .
o+ b= V<%+D, J4¥D, k + X 8;> '
i+j+k=even 1=0
K20 |
) - . k
SRR V<i,d,k + 2 61)
. 3+Jtk=even 1=0

- k20

A e e, T B N 11 ey AR A 80
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,'{;4”-Av(2;ep,.o,-o>_+ av(a-QD; 22D, o) L
"f"+,14V(2;0;0> QQ8V<D; 2-D, o)f .

7+ 2v(2,2,0) - v(2-p, 2D, o)

This expression for E was minimized with respect to ‘the relaxation D of
‘atom (1,1,0 ) by a half interval technique on a CDC 6600 computer. Mbrevd
.Jcompllcated expressions must be minimized when more relaxations are allowed.

.Similar expressionsnmay'be developed for other types of defeets."'

Tdble XVII

iRelaxations,,ai,-ofvﬁhe (lOO) surface of solid argon from Alder et al.§
51 ,82', 85 6M_ 55
025782 . ,005892 - .001981  ,0008k9- 000420

'3.' Results.

"?he bindlng.eoerg&y ﬁ; ahd relaxations for'argon, neon and krypton
atoms above the argon surface are given in Table XVIII, as are the binding.e
energles without consideration‘of relaxation, Eo' The defect 1s located
initially at the.@oint (O,Q,O) above & semi-infinite argon crystel with
lattice points (i,j,k)_sﬁbject'to k21 and (L+J+k)an even number.

An atom at the lettioe polnt_(i,j,k) relaxes to the new position.
(4 -84, 5 - 83, k - 8k), 51, 8J, bk are tabulated.

Configuration and energy. of surface vacancies and surface substitution
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Teble XVIII

The relaxations of the (lOO) surface of argon with an extrs, atom

above ‘the surface at (0,0,0)s The lattice points have coordinates (i,3,k),

k2 l, and are grouped into sets of equivalent poiﬁts- -

(0,0,0)
(1,0,1) = ( 1 0 1) = (0, 1,1) = (O,—l 1)
(0,0,2) - :
(2,1,1) = (2,-1,1) = (-2,1,1) = (2,-1,1)
(1,2,1) = (-1,2,1) = (1,-2,1) = (-1, -2 1)

. v ‘ 51 o . :
The point (i,3,k) relaxes to (i-Si,;]-S,j,k--Sk) and < ,j> is tabulated for-
8k/ |
~ one point of each set of equivalerrb points,. '

The binding energy of the ex'tra atom is tabula:bed without and wi‘bh

relexation, E v 5 -end B respectively.
Extra Atom
Ar . ’ Ne Xr
E, 1355 cal/mole 592 cal/mole 1578 cal/mole.
E - 1367 cal/mole 687 cal/mole 1682 cal/mole
Points
0] 0 0 0
o) S0 . S 0 - 0
- 0 _ «01831 C —e16982 . 06647
o 1 -.00319 - -,00196 . ~  -,00378
0 ' o 0 ' 0
- 1 -,00558 - -, 00167 -. 00752
- 0 0 A 0 0
' 0 o ' 0 0
- \2 - 400255 , SO0Rkg 00252
2 | «00035 = 00001 - « 00054
L - 00017 -00028 - -,00010
1 .00188 : .00117 . .00226




-:impurities are tabulated in Table XIX. Here again the defect is located
. initially at (O 0 O), the bulk atoms now are at points (i j,k) subject to
g 2 0y (4 + 3 + k) even. The atom at (1,J,k) relaxes to (i-- 51 ;1 - 83,
' k- Sk) and (91, 83, 5k) 15 tabulated.f The- binding energy - of substitu- g
'tional impurities is relative to the impurity atom infinitely removed from o i
a surface with a vacancy.v_ | ' | | |
In ‘all casges sufficiently many'relaxations were.calculated to assure'
:_convergence of the energy of the defect to .05%. ) | |
- The relaxations of the lattice around an extra argon.atom above the “
Ysurface are illustrated in Flgs 11 (top view) and Fig. 12 (side view).
A.The nearest neighbors to the extra atom relax towards the bulk 6% from
»_their normal surface positions and outwards tangentially to the surface o
«3%s The distance between the extra surface atom and its nearest neighbors,>
-:was found to be roughly-equal to. the distance between first and second
”;layer atoms in the perfect relexed surface. The second nearest atoms to
‘the extra atom (in ‘the second layer of the lattice) relax upwards. The
 second nearest neighbors (in the»surface layer) to the extra atom relax
:in such a way as‘to'decrease their‘distance to the defective site but
| iincrease their separationifron the relaxed nearest-neighbors. This beQ_
;havior is similar to.that noted previously for the relaxatlon of the atoms
around an internal'defect (Section I-C)e | |
| With a neon atom above the surface the relaxations of the nearest -
;neighbors are smaller (a 2% downwards and .2% outwards) while for krypton
they are larger (.8% downwards and h% outwards)
It is interesting to note that in the fully relaxed situation, an
extra neon atom lies eloser togthe bulk than an extra argon which, in

‘turny, lies closer than an extra krypton atom.
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| Table XIX

The relexations of the (100). surface of argon with a defect (vacancy

of.substituent) in the surface aﬁ (0,0,0).

The lattice points have coor-

dlnate (1,3 k), k= O, and are grouped into sets of equivalent polnts

(0,0,0)

(1,1,0) = (li‘i 0) = (;i,i;O) = (-1,-1,0)

.(O,l,l) = (O;‘l:l)
(2,0,0) = (-2,0,0)

(0,0,2)

i

il

(1,0,1) = (-1,0,1)
(Q,Q,O) = (O:“Q;O)

51

" The point (4, j,k') relaxes to (1-61,3-63,k-5k)'and <63> is tabulated for

one point of each set of equivalent points.

Bk

The binding energy of the substituent “atom (of surface Binding ehergy

of argon in the case of the vacancy\ is t&bulated without and with releaxa- -

7tion, E and E respectivelyu

Vacancy

Defect
_Ne )

Xr

2627 cal/mole
2603 cal/mole

1134 cal/mole

'1290 cal/mole

3081 cal/mole
3160 eal/mole

*

+01589
01589
100299

L0065
00110

=e 18131

. 02682
.02682
=,00009

- .00181
~e 00453

O.

0
« 06060
-+ 013061
- 013061
.00218

-0

- =a 0000k -

. 00479




'11.;fTablé;XIX-(COnt{)

TR - Defect '_-: R .
.'Vacéﬁéyﬁ.: '?»  e }; . :"::TKfff —

Ey 2627 cal/mole . 1134 cal/mole 3081 cal/mole - -
"E . 2603 cal/mole 1290 cal/mole 3160 cal/mole

Points R T
L -,00468 . . a002b9 0 L00131

0 E

>ﬁ jt',§OOO625 *;- [_» -4 00103 E ' .00250  E .

o\ . 0 0 o » o L
0 - ""f O-R:vf;., S0 J'”‘ h>f o - ',Li- -
2 .&‘fl—iﬂ'?003l7'{zgjg.f7"5aooull 'f' .. 400317 ‘? ¢_- ‘
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¢

Fig. 11 pr view of fhe relaxations of the surface
' le,ye;' with an excess ai'gon gtom sbove it’%.

Arrows indicate the directions of the dis-

plecements from the normal positions. The

'excess stom 1s represented by a square (0). -
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MU B 13064

. Fig. 12'- Side view_ of the relaxations of the surface layer
" ‘with an excess argon atom ebove it. Arrows indi- -

cate #he directions of the displacements from the

* normel positions. The excess atom i represented

by a square (0).
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| Wifh-a vecehcy iﬁ:the'surfaee, the nearest neighbersnpo the defect.‘
'are displaced towards the center of the vacancy (Fig. 13) .Krypton sube
“stituted in the surface plane (Fig. 1k4) displaces 1ts nearest neighbors
'-daway from the defect; the krypton atom 1s displaced 6% up'fiom the Formal’ )
- argon location.in the crystal surfeces A neon substituent in the plane
affects its.heareSt neighbors like the vacancy but the neop etom 1s dis-
placed 18% towards fhe bﬁlkuqf'the-crystal from the normal argon site.

The direction and’megnitude_of the displecements are aftributable to
dthe gsizes of'the.impuiity apoms; argon ls larger than‘heon and smaller.
than krypton. | - | l | |
With the.demputed bihding.energies 1t is possible to calculate the-
'M energy of formation preﬁvaqang& in an argon surface. . This was done by -
assuming that the relevant procees involves the removal of a surface atom
to a position above pﬁe surface snd isolated from any other defects. Us-
ing the high temperature.EinStein approximation to compute the enﬁropy, we

have calculated the free energy of formation of a mole of vacancies to be

AF = 1236 - 3,58 T cal
ﬁhen relaxations are considered and.
AF = 1272 - 3,58 T cal

 without relaxatlen4' This implies that at the melting polnt of argoh there
.is_one vecancy'fbrﬂeach‘ﬁhree hundred sites on the ideal flat (lOO)'sur—
face or 2><lO12 per cm? of surface. |

With slight modification of the programs developed for calculation

of the energy of surface defects; we were able to calculate the potential'
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MUB-13065 .

Fig. 13 Side view of the relexations of the surface
 layer with a vecancy in the surface. Arrows
indicate the directlons of the displacements.
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MU B-13066

Fig. 14 Side view. of .the relaxations of the surface layer
with ;a‘ h'ypton stom substituted in the surface
plane. Arrows indicate the directions of the dis-
placements from the normel positions. The krypton

atom i_s represented by a square (0).

e v

e ma?
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‘curves for binding of an atom to the lattice, both at a po:Lnt above the o

, surface and at & normal surface position.

' Figures 15 and l6 show the potential curves fbr binding of neon, - B
- argon, and krypton atoms in the surface plane and above it; As,expected,::'

- the krypton potential curves haNe the deepest wells and are the‘Widest. :ﬂt

"L, Conclusions

The distortion of the crystal surface around a defect is small, In :
'most cases but appreciably alters the energy of the defect and is not

_ neglectable in the calculation of surface properties. ','l

Distance of excess atoms above ‘the surfaces increases in the series

‘neon, argon, and krypton, A reon atom substituted in the argon surface
1s displaced towards the bulk from the normal position while a krypton '

atom is displaced away from the bulk,

The binding energies of atoms in the surface plane are greater than ?

those of atoms in normal lattice sites above the surface plane.

It was found that the free energy of formation of a mole of vacanciesp.s

in an argon surface is

AF. = 1236 ~ 3.58 T cal |

which Implles that, at the melting point of argon-there is one vacancy for

',each three hundred sites on the 1deal (lOO) erystal surface or 2><lO12

- 2
'vacancies per e of surface.
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Fig. 15 The potentilal curves for binding of neon,
argon, and krypton atoms in the (100) surface

of argon with relaxation allowed.
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Fig. 16 The potential curves for binding of
neon, argon, and krypton atoms above

“the (100) surface of argon with

’reiaxation allowed.



II. THE FERMI MOMENTUM OF ALUMINUM FROM O TO 100 KILOBARS

A, Introduction

B In order to understand éolids Information is‘feqﬁiréd about their
eiectrénic states.’ A number of experimenfal techniques have been de-
veloped fof the study of ﬁhe_detgils'of the electronilc structure of
solids.56' Most of these teéhniques require very low teﬁperatures.

Inforﬁétion aBouf the propertiles of solids at very high pressures
.is essentlal for testing theories of sollds since this 1s the only
manner in which the intef-atomic distance can be varied. Unfortunately
low temperatures, ~H°K, are requireq for most studles of the electronic
sfructure of metals. This reéuirement'has restricte@rphenin%estigations
to relativél& lo% pfeggures157 Pésitfon annihilation 1s a tool that has
been used for the.study of the distribution of the momentum of the con-
duction electrons.58 Positrbn‘annihilation can be employed at room tem-
pérature, which is.low.compared to the characteristic Fermi temperature
of the conduction elgctrons (10,000 - 50,000°K). Positron annihilation
is not as precise or'aS'well understood as those techniques available
at very. low températureégbhqwevér, it is useful for obtaining some in-.
'formation about the elecﬁronic structure of metals and can be used at
room temperature where very high pressures are‘attainable.

We have studled poéiﬁron annihilation in aluminum_in the range of
0] ﬁo 100 kbars at room tempefature. Aluminum was chosen for thié stﬁdy
since it is knéwn not to exhiblt any phase transition in the reglon 6f _
interest, and the.results ére simply intefpretable.

From the positroﬁ annihilation data we haye obtained thé variatioh'
of the Fermi momentum With pressure. It was found thgt the Fermi momentum

of alumlnum increases Qith pressure 1n accordance with the prediction of



e

ifithe free electron model.- SR

B Melz59 has studied the detailed topology of the Fermi surface of .

.',aluminum to 7 kbars us1ng the de Haas-van Alphen effect Hevfound that7vfy T

:the Fermi surface does not expand isotropically with compression and
‘._fattributed this to a change in the band gaps. We will show that Melz' si
rtlresults_are consistent with_the present work, as the accuracy of this
l experiment,isvnot'nearlwtéreat,enough to_see the effect_observedlby Meltrf' :

m':ifB. ’Theoryl_vu

71 - Electrons in Metals -
‘A metal can bevregarded'as a sea of conduction electrons'moving'inv»:

~ the periodic field of the Lon cores of the metal-atoms. = The electrons -
‘ interact_with‘eachlother and with the cores and the cores interact with

: each other. .Forvsuoh'a system e Hamiltonlan may be written,"

.33['_=

gelectron—electron f'Melectron-ion_ f ‘Mion;ion:
when
R |
. SN Sor g 2
electron-electron: ? L + Lz - e
o [ i 2m - . ,
' : v 1+] lr _rjl
;Helectron;ion =2 v(ri - Rj)
. 1, .
| 0.2 S o
S s X _ 4L 2 ym o-=RrS
ton-Lon T T B ik V(31 | Ry)

and where the lower case letters refer to the electrons and capitols to

the lon cores;_ Detailed examination of this Hamiltonian is given in a

60:

number of texts.
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a. Free Electron Mbdel;' ' In the free electron approximation all

terms’ in the Hamiltoniah are'neglected except the kinetic energy of
the electron so “that

.2

l#p:

n

m

M = 3
1

This redﬁction of ﬁhe.Hémiltonian cofresponds to the following.physical
aséumptioné: | )

1. The motions of the lon cores are neglectablé.
2. Interactions of,electronsAwith the ion cores

are neglectable.

v_j,' Electron:electron,intéractioné'are,neglectable,v

 _With these assumptions, the metal is represented as a set of non-inter;.
'aéting electrons travelling in a uniform'ﬁositive charge. This picture
éf metals is called the free electron model. An excellent simple.des-
cription of thils model and of‘the deviatiqns of real metals from this

model is avallable 1n Electrons ig Metals by Ziman.6l This reduced

Hamiltonien is merely that of a free particle and the details of 1ts
solution with approprlate boundary conditions is available in most

f_standard texts.

- The solutions for thé freé'particle Hamiltonian are plane waves

; 1 ker
f‘ﬁk = e - -
"and have energy
. ’ | \ .
2 p
o ik k
BB o= ot om

The surfaces of constant energy are spheres in E'space'and the dengity

‘ vof allowed points in k space 1s V/87T5 where V is the volume of the lattice.



: Electrons aré Fermions and s0. obey Fermi-Dirac statistics. The-f".x-

'-_average occupation number of an electron state is

o
“(=) (E-E AT
Do e o : . -F? l—. _

B

| where EF 1s a characteristic energy, the Fermi energy. At zero tempera--

‘_yture, (E) is exactly unity for E < EF and zero for E > EF All states il‘~'

with energy lower than the Fermi energy are- occupied at 0°K and all- '
i}states with higher energy are empty. At finite temperaturesva.few -
‘electrons are excited to Just above the Fermi energy. vv'

Each electron state -may hold two electrons of opposite spin.- lf
v*fythere are Z conduction electrons per unit cell and N 1s the number of
.unit cells per unit volume, then all electron states must be filled at
O_K‘up to,the state with wave'number kF given‘by |

A -ﬁF'3= (5ﬁ2 ZN)1/5
The:constant energylsphergﬂin wave mimber space with radius.hF'is called

the Fermi surface and the Ferml energy is given by

E3 S
2m

ln momentum space the Fermi momentum is

e o 1/3
3 7
CPpo= h( v )
‘where V is the volume of the unit cell.
. The free electron ‘model of netals predicts- values of the Fermi
momentum which are in: reasonable agreement with experimental data (Table

XX 1t also predictsuthat as a metal is compressed, the Fermi
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1/3

‘momentum should be linear in vV ~/~.

Teble XX.:. - The Fermi momentum of various metals as predicted
by the free electron model and measured by Lang65 by positron

annihilatioﬁ. m isithe mass of -an electron and c¢ the velocity

of light.
' Metal . ' ' ) Computed ' Meagsured
Py (me x 107) | py (me x 107)
Li B - L.27 . 4.3
Na ' .' 3.50 5.6
Be A ‘_7.h8 ‘ CTJ b
Mg . ‘ . 5.27 - . 5.3
AL . vv*"f"_6.74’ AT 6T
Ge o 66y 68 -
gn - - 6.29 . B 6.4
Bi ‘ 6.21" 6,1

The free election model'negiects electron-electron interabtions.
Luttinger65 has considerea the electron Interactlons in a sea of
elecfrons.' He found'that the Fermi‘surface 1s well defined for inter-

.acting electrons and 1s identical to that for free elécﬁrons; however
he also showed for‘inferacting electrons that at 0°K there are occupiled

electron states with larger momentum than the Ferml momentum.

T b. Nearly Free Elecﬁron Model. The free electron model of a metal
is not an exact representation. An electron does not see a constant
- potential; the lon cores of the lattice are seen as a periodic potential

and we may write the Hamiltonlan as
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- - This Hamiltonian neglects electron electron interactions and all motion
ifof the ion coreso As an approximation we may regard the electron-ion -

interaction as- a perturbation on the free electron states

o 'SDE = ot KT

_:This perturbation treatment is known as the nearly free electron model

and the details of this model may - be found in standard texts.62" We f,j_ L

. give only the‘results of the nearly free electron model.'

~

" In the nearly free electron model the energy as a function of k 1s

h] discontinuous at the zone boundarles but is close to the free electron

~

hIValues' except near-the zone boundaries (Fig. 17). The regions in which L

:'E(k) is continuous in k are Xnown as electron bands. The Fermi'surface
_t7in the nearly free electron model is gtill a surface of constant energy ;'
1in 5‘space. However, as the;energy is not as simply related to the wave.
’Lvector k as in the'freefelectron model,.the Ferml surface Will‘generally
vnot be spherical in k~space; 'Fortnearly free electrons the Fermi surface
';fis nearly spherical and one may deflne the Fermi momentum kF as the aver-

age momentum at the Fermi surface If the band gaps are small (the

‘: electrons are‘nearly free) the Fermi momentum defined in‘this way 1ls
very cloSe to that‘predicted hy the free electron model.

Though the Fermi momentum is not as simply defined in the nearly

: free electron model as in the free electron model,  the effect of iso-

tropic compreSSionvon the electronic states of a cublc lattice is

" readily understood. Assuming that (1) the compression of the lattdcep;,
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Flg. 17 . The eléctron energy as a functilon of
wave number k. The dashed curve l1s
predicted by the free electron model
and the solid curve by the nearly free

electron model.



:‘j:is isotropic and (2) that the band gaps are pressure independent the fiQ ;fr'-

a ;reciprocal lattice in k space is uniformly expanded. The density of
;;allowed wave numbers is decreased and the Fermi surface is expanded jsh
isotropically. The rate of expansion of 'the Fermi surface is equal tolfid
 that of k space itself and s0 the qualitative features of the electronsji
ii_stateS;near the Fermi surface are not altered except that thelr energy juf
_ is increased The nearly free electron model predicts that under |

isotropic compress1on, the detailed topology of the Fermi surface is»”:

;not altered and “the Fermi surface expands isotropically and proportion— e

‘pately to (V. /V)l/jv .88 in the free electron model._ The free electron
-hand nearly free electron models differ only in that the latter predicts_

“‘allowed energy bands.,V‘.

- If the band gaps are. pressure dependent the Fermi surface does notvi“"

hexpand isotropically under isotropic compreSSion. Melz59 used pressuref
. dependence of the band gaps to explain the de Haas-van Alphen effect
' studies on aluminum to 7 kbars.' We Wlll show that our results are not

;:inconSistent with thé Work of Melz. )

2. The Fermi Surface of Aluminum o

Solutions of the wave equation in a periodic lattlce can be ex- .

pressed in the form
e '<17)':'=‘ W (7)) &7 ==

where uk has the - periodicity of the lattice and k 1s a vector in the

reciprocal space of the lattice. As

i ker
e —— = & ——
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whereng is a lattice vector in the reciprocal spaée, it ié usually
most convenient to examine the behavior of the electron energy as a
funcfion of k in sdme'ﬁnit cell of k space. The conventional unit

" cell used in most solid stafe electron or lattice dynamics work 1s

the so—calied Wigner#Seitz'unit cell. The Wigner-Seitz cell is the
smalleéﬁ cell bounded by the planes which perpéndicularly bisect the -

| vectors éonnecting a iatficé'poinﬁ in k space with the other lattice

. points. The Wigner—Seitz‘unit ceil of the reciprocal space of aluminum
(fce) is shown in Fig. 18. This uﬁit cell is known as the filrst
Brillouin zone and thé denSity of states in gfbpaceuis such that the

‘first.zone can conteln exactly two electron states per atom in the

- lattice. The second Briliouin zoﬁé ls fhe next larger cell bounded

" by the ﬁlanes éonstrﬁcted.as pefpéndicular.bisectors of the lattice

vectors and does not include tﬁé part of k space contalned In the

first zone. The'segond Bfillouin zone of aluminum ls shown in Fig. 19.

Any point, k, in the sécohd (or higher)‘zone can be expressed as

~

k= K *E

Ed
where 50 lies in_the flrst zone and X is a lattice vector. As it i1s
often difficult to visﬁaliié higher Brillouin‘zones, it 1s conventlonal
to draw enérgy surfaces in reduced Brillouln zones by reducling the
"higher zone'to éhe first by the above relation. We will follow this
~convention and draw reduced zones when speaklng of electron states.
Harrison§6 has obtalned the Fermi surface of aluminum by construec-
ting én inttial trial surface from the free electron model and distorting

this surface to give agreement with the de Haas-van Alphen effect and
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Fig. 18 The Wigner-Seitz unit cell of the reciprocal
space of aluminum (the first Brillouin zone)
Reproduced from Ref. 65 by permission of
McGraw-Hill Book Company.
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Fig. 19 The second Brillouin zone of aluminum.
- Reproduced from Ref. 65 by permlssion
of McGrew-Hill Book Company.
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:‘anomalous'skin effect date. - He has found that the corrected ‘Ferml
1surface 1s nearly identical to that predicted by the free electron model.
} In aluminum the first Brillouin zone in k space is completely filled
with electrons. _The‘second zone_is almost half full and the occupied“ |
.netatee (below the Fermi level) are bounded_by,a single closed surface;
vl the third zone is -almost empty:and'the occupied:States are bounded.Byi |
| ia multiply connected surface; and'the fourth zone hae'small pockets of.
= electronsb” The four (reduced) zones for aluminum predicted by the free
electron model are shown in Fig. 20 and the third zone Ferml surface,
‘obtained by Harrison66 is shown in Fig. 21;
| - Asheroft 6T has used two Fourier coefficients, Vlll and V 200 of a
 weak pseudOﬁpotential for an. orthoganalized plane wave (OFW) calculationv
of the Fermi surface of aluminum. He adgusted thevcoefficients‘to ob- .
tain a fit with de Haas-van Alphen effect datavat Zero pressure.
-liAshcroft’s tnird zonevFermi surface differs from that of Harrison in
that the internal ring of the Fermi surface, Fig. 21, dlsappears.
leaving the arms of the monster disconnected. In the second zone
. Ashcroft's surface.is like that for free electrons.

As thevFermi surface of aluminum at zero pressure 1s nearly that -
“predicted by the free electron model, we.would expect that under press;
ure the Fermi surface’of aluminum should expand isotropically and prof
| portionally to (vo'/vv)l/ 5.' Me12% has studied the third zone Ferml sur-
face of aluminum to 7T kbars using the de Haas-van Alpnen effect. He
found that the eurface does not,expand‘isotropically and, in fact, con-
utracts in one part Of,£h¢ third 2one; Melz attributed,this to a change _
tln the band gaps wlth pressure and was able to f£it his data using |
Asheroft's pseudo-potential coefficients and their preesure derivatives

~obtained from HarrisOn‘568 model for the pseudo—potential form factor.
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Fig. 20 Free electron Ferml surface of aluminm .
reproduced from Ref. &6 with the permission
of the author.
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| The third zone Fermi surface of aluminum
- obtained by Harrison and reproduced from

Ref. 66 with the permission of the author.
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3. Positron Annihilation

1 When a positron 1s introduced into a metal lattice it,énnihilates with
an électron of the latticé;. The annihilationbmay oceur either from a *trip-
let state, leading to»threénv‘s,vbr from a singlet, gilving two yfs. The
half life of the positron is long compared with the time requifed for it
lﬁo‘be thefmalized and it 1s thought that most of the observed annihilation

.is betweeﬁ thermal positroné‘énd conduction électrons.?o It is the twb

. quantum éﬁnihilation which is usﬁally studied. | |

Two quantur positron annihiletion is studied fy observing the distri-

bution of annihilation radiation as a function of angle between the y's.

A schematic representation of the experiméhfal set.up is shown in Fig. 22.
. The sample is locatéd between two detectors and the coincident count rate
as a fuﬁction of angle between the detecfors 1s obtained. This does not
give the true angle between the:v’s but oniy the projection of this angle
‘on the plane of the countefs aﬁd the sourée. Thelcount rate as a function
of this (projected) angle is referred to as the annihilation speectrum. In
pracficevthe counters‘ére-uéually distant from the source and héﬁe long
narrow windows in ordér to glve high angular resolution.

If the positron electrqn palr is at rest prlor to the annihilation
the two ¥Y's are released back to back end are observed at 180°; they each
hayé energy equal to the rest masé of tﬁe electron (or positron, .511
meV), and have é momentum'of me where m 1s the mass of a free electron
and ¢ the velocity of light. If the positron electron pair has non-zero

- momentum, the annihilation Y’S will generally not be observed back to

back but at some angle 180° - 0 and generally will not have energy exactly

equal to .511 meV.
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Flg. 22 A sc;hemé.tic representation of an spperatus for
_studying positron annihilation. When y's are
~'registei‘ed coinéidenta.lly by the two defectors,
& count 1s registered. ' '
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The laborato;y'coordinatesﬁare definéd by the plane of the detec-
tor slits when the detectors are at 180° to each other; the z direction
ié tgken perpendicular to this planew Experimenfally we observe one
compoﬁent_of the electron—positron momentum,_pz.. In the moviné coord-
inat;é of the electron'positron ﬁair the <y's are emitted at 180° and have
momentum me. The momeﬁtumvof the electron positron pair in the labéra—
tory coordihates,‘wﬁich is'smail compared to me, is added to that of’the
Y's. We obsérve the.angle, o, between the Yyts Wﬁich is related to p_
by (Fig. 25) | |

Py

.sih g = —
4 me

Experimentally we observe one\cdmponent of the momentum of the
electron positron pair, 0 Assuming that the electron-positron pairs

have momentum distribution 'p<p) the distribution of p  1s

'p;(pz) :="f o(p) dp, dpy

e
= [ o(p) 2r pdp
.
where
5 2
P = Py + Py
. Letﬁing
‘2. 2 2
P +'P,z" =P
o, (p,) =2m [ o(p) pdp .
D, '

For free electrons at Q°K, agsuming the positrons have zero momentum
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Two s are released back to back in the
moving coordinates of electron-positron

- pair and are observed in the laboratory

. at angle 8 where
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and p, 1svthe z component of the momentum

“of the electron-positron pair.
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oplp) = A ‘ (p < pp)
| = 0 (p < pp)

.Where pF 1s the Fermi momentum‘>vSubstituting this into the above

p.(p,) = Blpy -1,

* v . ) ,
om0 - (p, > )

The count rate at angle 6 , N(8), is proportional to pé(pz) where

P
sin 6 = Z
A © me

Thus the poéitron annihilation spectrum for free électrons at 0°K has

~ the form

w(o)

[
Q
P S
D
1
D

= 0 _ (6 > GF)
. Where GF 1s the angle that corresponds to the Fermi momentum

sin. 9? = .;%
This annihilation spectrum 1s a parabola,

On the basis of the'assuﬁption (1) the electron moﬁentum distri-
‘bution is that ?rediétéd»by the free electron model, (2) the electron
momentum distribution is not'ferturbed by the poéitfpn, (3) the positron
1s thermal, and.(h) the probability of annihilation of e posltron with

an electron is independent of the momentum of the electron, then the

positrbn annihilation sPectrum‘of a metal would be a central parabola



.iwhich extrapolates to zero at the Fermi momentum, and would have a-

" small tail at large angles corresponding to the excitation of electrons o

Jfabove the'Fermi level at-room temperauures. This is observed for 2

1

“number of metals (Fig. 2ha), however the talls observed are much larger
Tthan those expected for free electrons with the Fermi-Dirac distribution.. _
"fIt is believed that the positrons are thermalized prior to annihilation,69 -

g however 1t has been suggested that the pos1tron has a large’ effective.

. mass or temperature higher than the lattice temperature, and this gives

~ ‘rise to greater intens1ty in the tail.7 Luttinger&L has shown that
' ,the distribution of interacting electrons in momentum Space has a larger :
- tail than that expected for free electrons‘ ~This larger tall in the‘H

electron distribution could glve a greater 1ntensity in the tall of the

- 1pos1tron annihilation spectrum."

" Positron annihilation has been studied in a number of metals and
_iit is well known that the two quantum annihilation of positrons in the .
: alkali metals, alkaline earths, and aluminum is characterized by a
" central parabola with a tail at large anglesé5 (Fig;"zha). The anni-
. hilation spectra of‘theitransition metals have been found to be less
‘{, well characterized (Fig. 2Eb)
/ For free electrons at 0°K the maximum momentum is PF’ the Fermi
.momentum. For positrons With Zero momentum the maximum momentum of
‘an electron-positron pair is also pFQ Thus the maximum angle,‘GF, at
_which coincident ‘s could be:observed.is given by | |

Pp

sinOp = o

Though the talls of‘the_observed annihilation spectra are not fully

_ understood, it is well known that If the central portion of the
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Fig. 24 (a) The positron annihilation spectrum of alkall metals,
alkaline earths, and aluminum. The angle at which the
central parabole extrepolates to O, GF’ is related to the

Fermi momentum by . P
F

(b) the positron annihilation spectrum of positron metals



annihllatlon spectrum is fit w1th a parabola, then “the angle at whlch

the central parabola extrapolates to zZero (Fig. Qha) corresponds tov

' electrons having momentum equal to the Fermi momentum, determlned by

_other techn1ques.63 This 1nd1cates that experlmental values of the
Fermi momentum obtained by posltron annlhilation are meaningful and
‘ that a study ‘of the: change of the positron annlnilatlon spectrum w1th-‘

_ pressure should yieid the‘volume’dependence of the Ferml momentum, -
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C. Experimental |

1

We used 500gc'of Négz in the form of ﬁac1 as the source of posi-
tfohs, ‘The NaCl was placed betwéen two 1/8" diameter discs of % mil
mylar; This source was put between two discs of 99.9999% Al which were
5/16" in diameter and 7 mils thick to form a. sandwich. The entire
sandwich'was coﬁtained by a.l/E" % 3/32" x 20 ﬁil pyrophollite ring
and placed between 1/2"_Bridgman anvils (Fig. 25). Two inch NaT detéc-

tors with lead slits 1-1/2" high and 20 mils wide were used; the slits

“were cut in lead blocks 2" thick and sufficlently large to cover the

entire face of the detectors. The detectors were located 1 meter from

© the source.  The slits were perpendicular to the‘plane of the sample =0

that the apparent size of the sample was independent of the angle be-

tween the detectors,’
The positron source was calibrated initially. It was assumed that

pressure changes in the annihilation spectrum of the source were small

 1n comparison to the tofal pressure change in the spectrum and possible
changes in the solrce sﬁectrum were neglected in analyzing the data.

- The total annihilation spectrum at zero pressure and the calibration A

annihiletion spectrum of the source are shown in Fig. 26. The source
contributes roughly one-third of the total spectrum.

Annihilation spectra were taken at 0, 27, 54, 81, and 108 kbars.

‘The pressure callbratlon was based on the phase transitions of bismuth

in the same geometry using silver chloride as the pressure transmitter.
In going from O to 100 kbars, the <y emission rate of the source was

found to decrease by 20%; thls was not surprising as in Missbauer

studies to 100 kbars the intensities of the Fe57 lines have been found

T2

to decrease as much as 80% because of deformation of the anvils;'
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Fig. 25 The sample (a), source, metal, and conteining
ring is place between Bridgmen anvils (b).
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Fig. 26 The total positron spectrum at O kb

and the source calibration spectrum.



"radidgraphs 6f the anvils héVe-shown great‘defprmation~at lOO_kbdfét';f
‘The raw data at eaéhlpréSsﬁre were corrected for the pfessure-and;_,g;
time‘decrease in counﬁxtatef“ The aluminum spectrum-af each'pfessure o

' . was obtained by subﬁ?actihg thé source spectrum from the corrected _, 

T‘déta assuming that the ratio of total source to totél,aluminum équnts

~ was constantvoyer'the_pfessgre»range of iﬂterest‘and that the'éhépe of
the source spectruﬁ_didvnotVVéry'with pressure. The results for the
'”JEermi momentum at ‘each pressure dld not depend greatly on these two . .

assumptions. e
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_ D.‘ Results

The positron annihilation spectrum of éluminum shoﬁld be a centrél
parébola with a tail at large angies.' By fitting a parabola to the data
at smali angles we céﬂ obtain the Fermi momentum. If the éource of the.
7’; is a point source and fhe resolution of the experimental apparatus is
a delta function, the parabolic region of thé experimental data should be
fit by the paraboia |

N(6) = A - Beg<
wﬁere N(8) is the nﬁmber of counts per unit time at angle 8. Unfortunately
the resolution of the apparatus is not a délta function and the source of
v's is not a pbint source.

The resolution for slits such as those used has been determined ex-
perimentally65 and 1s shown in Fig. 27; A is the angular width of the
- lead slit, 5><lO'LL radians. In order to estimate the error introduced‘by
ths slit width we:haVe repléced the experimental'resolution by a square

well (Fig.'Q?). Assuming a square resolution function, the count at

angle 6 is

2

N(g) = AAZ - pAPe + % Bah
' *
= A .8+ EEA°

if |8] is less than ef'-‘ab whereueFuisathe angle at which the parabola
extrapolates to zeré. The above expression for N(8) is parabolic in 6.
For perfect,slits of zero width the angle at which the central

parabols extrapolates to zero, GF; corresponds to the Fermi momentum
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Fig. 27 The experimen‘ba.l resolution of the’ slits6_3 :
-and that assumed for ca.lculating error intro-
duced by finite resolution. A 1s the angular’
width of the slits. |
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The O kbar date (Fig. 28) were fit with a parabola without usihg experi-

mental points nearf@F. Assuming delta function slits gives

3

radians.

op = 6.79x;o'

For the assumed square resolution the fitting parabola is the same but

- the true Ferml angle is.
' 1/2

: K
6. = o
" <B*,>

rather than the angle at which the parabola extrapolates to zero. The

= 6.78x10™° radians

error (~.2%) introduéed by neglecting the corrections for the finite widfh
of the lead slits is negligible com%ared with the statistical err;r in fhe ‘
. experiments, *1%. As the true fesolution function is closer to a delta
function than that assumed (Fig. 27) we may conclude that any errors due

to the finite slit resolﬁtion are neglectable.

The true source éf the y's is not a point but rather a disk of less
than 1/8" diameter; ﬁhe source distribution on this disk is approximately
unifﬁrm. Again we need only an eétimate of the error due to the finite |
source. If we assume that the source is uniformly distributed on a line
of length l/é" (5><lO-5 radians), we greatly overestimate any errors in our
results. The difference between the Fermi angle, GF, calculated assuming
a point source and éssuming thé above linear source distribution is a greag
overestimate of the true error and is less than .5% as long as no data
points wﬁi&njxlo_5 radians GF are used in fltting the parabola. The error

introduced by- the unknown source distribution is less than the statistical
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" Fig. 28  The O kbar positron snnihilation spectrum

. of aluminun and the fitting parsbola.
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error in the,experimenf (¢ 1%). No data points within 2x10™> radians
of O were used in fitting the parabola (Fig. 28); the source distribu-
tion error is neglected in evaluating the results as the above error
estimate ié a generous over-estimate.

t each pressure studied, the central protion'of the observed anni-
hilation spectrum of alﬁminum was fit. .The data at O kbars and the
fittiﬁg parabola are plotted in.Fig. 28. The O kbar Fermi momentum is
in excellent agreement witﬁ previous experimental work (Table XX). The
: Fermi‘momenﬁa at the five pressures examined are piotted in Fig.29 as a
function of pressure. - The line"in this figure 1s the Fermi momentum

curve predicted by the free electron model
- %
s (32)
 Pr v

assuming three free electrons per atom and'ﬁsing the volume data for
aluminum of Bridgman72 and Jamiesénj3 Thé total observed change in thé
Fermi momentum was 3% and the errors on each of the flve experimental
Fermi momenta were #1%. All of the data points iie within 1% of the
theoretical curve. Figure 29 shows that the Fermi momentum of aluminum

is very accurately described by the free electron model within the errors

of this experiment.
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Fié.‘29 The experimental'FErmi‘mbménta of aluminum as _
g functlon of pressure. The solid line is

B computed from the free electron model.
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E. Discussion

We have found that the Fermi momentum of aluminum to 100 kbars is

very accurately described by the free electron model. This is intui-

tively reasonable as the Ferml surface of aluminum at zero pressure is

falrly close to that predicted by the free electron model assuming three

‘electrons per atom. We would not expect the number of free electrons to

increase with pressure as this would involve stripping core electrons off
the aluminum lons which is energetically unfavorable.
Ashcroft67-has shown that the zero pressure Fermi surface of alum-

inum can be filtted with two Fourier coefficients of a wezk pseudo-poten-

- tial in an OPW like calculation. Ashcroft assumed that the energy as a

function of k was a constant on either side of a zone boundary instead of
exhibiting the curvature predicted by the nearly free electron model
(Fig. 30). 1In expressing the energy as a function of k he took intp
consideration the degeneracy of the energy bands close to more than one
zone boundary. Ashcroft found that the shape of the Fermi surface in
the third zone Wés s%réngly dependent on the values of the pseudo-
potential coefficientsjand that the best 1t to existing experimental

data was obtained with

Vyyq = -0179 Ry
Vooo = .0562 Ry

(compared with a Fermi energy of .856 Ry assuming an electron effective
mass equal to that of a:free electron). The shape of the Fermi surface

in the second zone 1s not strongly dependent on the choice of the co-

efficients.
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Fig. 30 The electron energy as a function of k.
The golid line is that ‘assumed by Asherort6T
and. the dot‘ted line is the predictions of
. 'thebn,early free electron mode. VG 1s the
Fourier coefficient of the weak pseudo-
‘potential aﬁpropriate fto the zone boundary._
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Melz”” has found in experiments to 7 kbars that the Fermi surface

of aluminum does not grow isotropically as would be expected if the band
4 ; S 68

gaps were pressure indeperident. Using form factors proposed by Harrison’

Melz obtained the pressure dériﬁatives of the pseudo-potentialvdoefficients

av |
LLL _ 1 6,107 Ry/xbar
P | |
AV,
200 b
i 2.1x10" " Ry/kbar

He found that these pressuré derivatives adequately explained his data.
We have used the_techniqueé'developed by Ashcrof‘c@'7 to calculate
the average momentum af the fbfmi surface assuming the pressure deriva-
tives of the pseudo—pbtentiélvcoefficients‘used by Melz to explain his
reSulﬁs. In thisvcélcﬁlation,'we examined 1/L8th of the unit cell in k
space; the remainder of the.unit cell was generated by its symmetry.
This small portion of the cell was divided into one thousand prisms.
 For“giveh vélues of the coefficients we assumed a value for the Fermi
energy and found the volume enclosed by the surface‘of this energy by'
computing the volume énclosed in each prism. The value of the Fermi
energy was theﬁ adjusted until the volume enclosed bylthe Ferml surface
contained exactly three electrons. The'Fermi”momentum is the average
momentum at the Fermi surface obtalned in thils way. The dstailed shape
of the third zone Fermi surface is strongly dependent on the choices of
the pseudo-potential coefficlents; however very little of the Fermi sur-
‘face lles in fhe third zone. Therefore the average momentum at the
Fermi surfacej;.the Fermi;momentumj:doeswnot‘depend-greatlyuon the, -

choice of coefficients.™



We have computed the Fermi momentum at a number of . pressures from

‘O to 100 kbars assuming - the pressure derivatives used by Melz and assum-” .

1ng that the coeff1c1ents are linear in pressure Over the entlre range

~of pressure the Fermi momenta calculated 1n this way were in close agree- '

ment with the values predlcted by the free electron model At 100 kbars,

~ where the difference between the calculated and free electron values were
'the greatest, the free electron~model predicts a Ferm1 momentum of .

| 6.976 x 107 me and, w1th the assumptlons mede for the pseudo—potential

: coefflcients, we have obtained a Fermi momentum of 6 979 x lO 5_mc; the
‘difference in these values»is.much‘smaller than the accuracy of.thevex-nf
uperiment, +1%. S |

| Within'the accuracy”of this experiment the Fermi momentum'of'aluminum

vvto 108 kbars is in excellent agreement w1th the predlctions of the free

| electron model. This result 1s not in disagreement with the work of

Melz67 to T kbars; Melz found that the detailed shape of the third zone .

Fermi surface is not - explained by the free electron model and used press-

ure dependent‘band gaps'to explain his results. However the average
electron momentum at the Fermi surface which is all that can be obtained
' by these techniques does not depend strongly on the band gaps so long as

they are small.
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F.  Conclusions

Utilizing positron ammihilation we have found that the pressuré depen-
denée of the: Fermi momentum of aluminum ig accurately’deséribed Ey the
free ‘electron model. This suggests that pésitrén énnihilation stﬁdies'of
Fermi momenta may be an excellent tool for investigating either the pres-
sure'dependenge of the volume of'free electron metals or the high pressure
electronie propertiés of metals for which the'pfessure dependence of the
volume is well established. Positron anhihilation would be most'useful
for studying metals with a large compressibility‘bécadse of.the difficulties
ihvolved in getting sufficient accuracy in the data and the weak expected

volume dependence of the results.
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