
Lawrence Berkeley National Laboratory
LBL Publications

Title
Construction of Mathematical Software Part II Some Examples of Mathematical Software

Permalink
https://escholarship.org/uc/item/7w12m1d4

Authors
von Holdt, R E
Dickinson, R P
Pexton, R L

Publication Date
1972-12-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7w12m1d4
https://escholarship.org
http://www.cdlib.org/

. '

UCID- 30050, Part 2
COMPUTER ~~
DOCUMENTATION •

m=
I.AWRENCE LIVERMORE. LABORATORY

University of California/Livermore, California

CONSTRUCTION OF MATHEMATICAL SOFTWARE
PART II

SOME EXAMPLES OF MATHEMATICAL SOFTWARE

. .
\'

R.E. von Holdt
R.P. Dickinson, Jr.

R.L. Pexton

December 5, 1972

, ... ,·

,,
. {. ·.

RECEIVED
LAWRENCE

RADIATION lABORATORY

FEB 2 8 i973

LIBRARY ANO
DOCUMENTS SECTION

Prepared for U. S. Atomic Energy Commission under contract no. W· 7405-Eng-48

c
D -'d
~
0
0
Vl
Cj -

·"' ;!f ...,.;

~

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain conect information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any wananty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

..

f/

\

Foreword

This is Part II of the five-part Feport Construction of Mathematical Soft-ware.

Parts I, III, and V were issued pr~viously; Part IV will appear later.

The outline for the complete report is given below; see the following page for

a more detailed description of the contents of Part II.

Part I. General Discussion {F.N. Fritsch)

1. Background Material

2. Design Criteria and Tradeoffs

3. Problems of Mathematical Software Distribution at LLL

4. Evaluation of Mathematical Software

5. Summary and Conclusions

Part II. Some Examples of Mathematical Software

1. Software for the Elementary Functions (R.E. von Holdt)

2. Software for Input/Output Conversion (R.E. von Holdt)

3. EISPACK: Software for the Algebraic Eigenvalue Problem

(R.P. Dickinson, Jr.)

4. Calculating Pade Approximants (R.L. Pexton)

Part III. The Control of Error in the Gear Package for Ordinary

Differential Equations (A.C. Hindmarsh)

Part IV. Nonlinear Least Squares Codes (Brad Johnston)

Part V. Some Application Codes

1. Organization of the HEMP Code (Tokihiko Suyehiro)

2. A Simplistic View of Light Diffusion and the MORSE Code (Nan Davies)

3. An Examination of Some Table Searching Methods Found in Texts and

in the Field (Glenn L. Hage)

-iii-

...

,,
"

Contents of Part II

Foreword

Chapter 1. Software for the Elementary Functions

1. Introduction

2.

Basic Functions

Machine Dependence

Computer Complexity •
Algorithms

Argument Reduction

Approximations

3. Errors

Chapter 2. Software for Input/Output Conversion

1. Introduction
2. Input •

3. Output

Floating Point Numbers

Integers • . • •
4. Vector Output on STAR

Chapter 3. EISPACK: Software for the Algebraic Eigenvalue Problem

Chapter 4. Calculating Pade Approximants

1. Introduction

2. Theory •..

3. Subroutine Considerations •

References

-v-

.. -iii-

1

1

1

2

2

2

3

5

7

7

7

7

9

9

12

12

13

15

15

15

20

24

..

'i

CONSTRUCTION OF MATHEMATICAL SOFTWARE

PART II

SOME EXAMPLES OF MATHEMATICAL SOFTWARE

Abstract

This is P~rt II of a five-part report on the construction of mathematical software.

Chapter 1 discusses software for the elementary functions, while Chapter 2 is concerned

with input/output number conversion. Chapter 3 is a brief description of EISPACK, a

package of subroutines to solve the algebraic eigenvalue problem. Software for calculat­

ing Pade approximants, based on the work of I.M. Longman, is described in Chapter 4.

Chapter 1. Software for the Elementary Functions

R.E. von Holdt

1. Introduction

This chapter is concerned primarily with the ele1r.entary function routines that are

being constructed for the CDC STAR-100 library. The basic techniques are the same as

those used in the corresponding routines in the CDC 6600 and 7600 libraries.

1.1. Basi~ Functions. The basic functions of the calculus can be described as

either primitive or elementary, according to the way in which they are implemented by

hardware or software. Thus, the square root function is elementary on the 7600, but

primitive on STAR. For example, eleven familiar functions can be placed on a scale of

complexity as follows:

PRIMITIVE ELEMENTARY

+, -, *, /, £nx, ex, cos x, sin x, Arctan x, R2Pt

** We should also be able to include number base conversion in the primitive category,

since this operation should be done by the hardware. However, while there are register­

mode conversion instructions on STAR, there are no stream mode equivalents. We shall

consider only the last six (elementary) functions in this chapter.

tRectangular to polar coordinate transformation. (Replaces standard FORTRAN function
ATAN2.)

** See Chapter 2.

-1-

1.2. Machine Dependence. The trends in the use of machine-dependent vs machine­

independent programming can be represented as a swinging pendulum. The first computers

required machine-~ependent coding. As higher level languages (FORTRAN, Algol) became

popular, the swing was to all machine-independent programs.

With the advent of more complicated computer architecture (Illiac-IV, STAR), the

pendulum has started to swing back the other way. It is fairly clear that one cannot

have machine-independent software that covers the entire spectrum without seriously

degrading the performance of the more advanced machines.

1.3. Computer Complexity. Computers can be classified by degree of complexity

(Table 1.1). To illustrate one of the differences between the 7600 and the 6600, con­

sider the addition of two floating point numbers. The addition process can be broken

down into four stages:

1. Compute the exponent difference and determine its sign.

2. Align the smaller operand.

3. Perform the fixed point addition of the fractional parts.

4. Correct for overflow if the number of digits has increased.

On the 6600 the complete process is done by a single add unit and requires four

cycles. On the 7600 there are four chained units, one for each stage of the operation.

Each unit requires one cycle. Thus, one can start additions on successive cycles, instead

of having each addition wait until the preceding addition has completed its four stages.

Table 1.1. Computer complexity.

Degree of
complexity Type of hardware Example Status

-2 Serial pre-6600 Gone

-1 Overlapped CDC 6600 Dying

0 Overlapped + pipeline CDC 7600 Living
It String + pipeline CDC STAR-100 Hoped for
It Parallel llliac-IV ?

tThese are both given degree 1 because it is not yet clear which is the more advanced
concept.

2. Algorithms

The overall structure of our elementary function software is basically machine

independent. However, we become machine dependent when implementing efficiently in

machine language. Our aims are:

1. maximum accuracy,

2. minimum computing time, and

-2-

•

•

••

3. reasonable space requirements.

Given an infinite amount of memory, we can achieve goals 1 and 2 precis~ly by

having a table containing the exact values of the function for all possible arguments.

The third aim requires a trade-off. We have chosen 128 words as being a reasonable

table size.

All of the algorithms described here have three basic components:

1. Argument reduction. The arguments are reduced to some standard range in order

to both limit the number of calculations and to avoid troublesome regions in the function.

Machine dependent parts are the word size and the number base.

2. Approximation of the reduced argument.

3. Function expansion. This is the inverse of the argument reduction. we·can no

longer guarantee the last bit here.

2.1. Argument Reduction. Iff is the reduced argument, we shall frequently use the

notation

f = H + L,

where H is the high-order part (usually, the first seven bits) and L is the' low-order

part. Argument reduction for typical functions is described below.

2.1.1. in x, x > 0. e 1 in x = in (2 • f) = e • in 2 + in f, 2 ~ f < I. This

is the "natural" reduction assuming normalized input. Further reduction is needed,

because,the series doesn't converge fast enough.

f =II+ L = H(l + z), where z = L(ft).

in f = in H + in (1 + z).

Tables needed:

1 128 words for H (to avoid division)

128 words for in H

Appr9ximation needed: in(l + z)

Expansion formula: in x = e • in 2 + in H + in(l + z)

X X 2.1.2. e, e <oo (largest number in the machine)

ex = 2x (~.n 12) = I-f
2 • o.s ~ f < 1.

Note that I gives the exponent of the result immediately.

-3-

(1.1)

-f -f R.n2 II+L H L
2 = e = e e e

Table needed:

128 words for H e

Approximation needed: L e

Expansion formula: 21 H L e e (1. 2)

2.1.3. Sine .. and cosine (both in one routine). The argument xis given in

radians. We change to revolutions:

y = x(;i) = I + f.

If I is so large that f has 4 or fewer good bits (~6 revolution), the routine tilts;

i.e., an indefinite is generated.

To compute sin f and cos f, where f = H + L, use the identities

sin f = sin H cos L + cos H sin L

cos f = cos H cos L - sin H sin L

Tables needed:

160 words of overlapped sin H, cos H.

cos H
(128 values)

0

'If

2

3'Tr
2

2'Tr

Sn
2

sin H (128 values)

32 extra values
(to fill out cosine table)

Approximations needed: sin L, cos L (for Lin revolutions).

Expansion formulas:

sin x = sin :} using Eqs. (1.3 and 1.4).
COS X = COS

2.1.4. Arctan x.

Arctan x = SIGNF (Arctan lxl,

For lxl > 1, Arctan lxl = ~-

-4-

x)

Arctan (fxr).

(1. 3)

(1.4)

•

While a test is inevitable, the routine actually forms both lxl and lxll+ € ~ a very

small number, to prevent division by zero) and generates a control vector that tells which

is smaller.

For lxl < l,

lxl = H + L

Arctan lxl = Arctan H + z.

Using the trigonometric identity

t b tan a - tan b
an (a -) = 1 + tan a tan b '

we see that

tan z = lxj - H
1 +xl • H ~ 1 + lxl

L
• H

so that

z = Arctan (1 + lx I • H) •

Table needed:

128 words for Arctan H.

L
Approximation needed: Arctan 1 + 1 x 1 • H

2.2. Approximations. Having reduced the argument to appropriate ranges, we

need some economized Maclaurin series approximations for the reduced argume~ts L, where

ILl < 1/128. The error curve for the ordinary truncated series is shown in Fig. l.la.

One can adjust the curve downward by appropriate modification of the linear

coefficient, giving a smaller maximum error (Fig. l.lb).

Further improvements in the approximation can be made by adjusting other

coefficients. The general procedure is as follows:

1. Truncate Maclaurin's series at some point beyond the number of terms you

want to use. Carry 2 or 3 extra terms, depending on your estimate for the

error in the tail.
I

2. Expand the resulting polynomial in Chebyshev polynomials.

3. Truncate to the desired degree. The truncation error is bounded by the sum

of the absolute values of the coefficients of the omitted terms.

4. Convert back to powers of x.

-5-

L
0 l/128

(a)

ll

/
0 l/128

(b)

Fig. 1.1. Error curves for the ordinary truncated series (a) and the same series after
modification of the linear coefficient (b).

-6-

•

•

J

3. Errors

There are two ways in which user errors can be handled .

Garbage in ------Garbage out (gigo)

vs

Baby-sitting the user (bstu)

The STAR elementary function routines will use a modified gigo approach; invalid argu­

ments will produce indefinite results. Regarding bstu, the STAR library will allow an

optional cut-in. That is, it will be possible to run in "debug mode." In this case all

errors will be trapped and many diagnostics provided. For example, the result vector

from the logarithm function will be checked for indefinites when the program is in the

"debug mode."

Chapter 2. Software for Input/Output Conversion

R. E. von Holdt

1. Introduction

The original FORTRAN I/0 routines used at LLL on the CDC 6600 and 7600 were

written in LRLTRAN by John Ranelletti. These notes describe the input/output algorithms

as modified by the author.

2. Input

We shall first describe how to handle the conversion of a fixed point (F-type)

number from ASCII (decimal) to floating point (binary). It will then be obvious how

to handle integer and E-type input. The algorithm has four basic steps:

1. Skip over leading zeros to find first nonzero character.

2. Locate the decimal point, converting the integer part in the process.

3 C the f . I • onvert ract1on.

4. Convert the exponent.

~d-

w --------------~-

-7-

The first step is self-explanatory. In step 2, the accumulated integer I is

computed by a so-called "shifty add." The shifty add makes use of the fact that when

I*lO is represented as I*8 + 1*2 the two multiplications are done by shifts. This pro­

ess is extremely fast. This operation is also overlapped with a look-ahead to see

if the next character is a decimal point (or other field terminator). If so, we end

stage 2 with I as the completely converted integer part. If the next character is a

digit ik, we compute I = I*lO + ik by a simple add and repeat the process.

We summarize the above process in the example given above, where I has three

digits:

I +- i
3

Compute I*lO = i
3

*10 (shifty add)

I +- 1*10 + i 2 = i
3

*10 + i 2
Compute 1*10 = i

3
*100 + i

2
+10 (shifty add)

I +- I*lO + i
1

= i
3

*100 + i 2*10 + i 1
Compute I*lO (shifty add)

Terminate with current I

Is i 2 a decimal point? No

Is i
1

a decimal point? No

Is • a decimal point? Yes

Note that we have unnecessarily computed 1*10 at the last step, but this calculation is

overlapped with the look-ahead and costs nothing.

The correct way to perform stage 3 of the conversion is to continue converting

i 3 i 2 i 1 d1 d2 d3 to binary, as an integer, keeping track of the number of digits (d)
-d to the rizht of the decimal point. Multiply by 10 at the end. This uses a table look

up and "multiply round" instruction.

split

store

The exponent (e
1
e 2e

3
) of a floating point number is a binary integer that can be

into two 5-bit parts (convert to base 32). Tables of 32 words each are used to
. . ia 32ib · the mult1pl1ers 10 , 10 (where e1e 2e3 = 32ia + ib). These are exact for positive

exponents, but we can expect some slight inaccuracy for negative exponents. Two tables

each for positive and negative exponents are used, for a total of 128 words of table.

The conversion is completed when the exponent is added to d and the final "look-up" and
e1e2e3-d

multiplication performed. The inaccuracy in the representation of 10 and

the resulting multiplication are the only sources of error in this computation. In our

example, the final result is

5 4) ele2e3-3
~3 *10 + i2*10 + il*l0

3
+ dl*l0

2
+ d2*10 + d3 *10 •

An alternative way to do stage 3, and the method that was used in the original

routine, is to compute the decimal part as

The disadvantages of this procedure are several.

1. The multipliers .1, .01, .001, ... cannot be exactly represented in a binary

machine.

2. The multiplication dk*lO-k is much slower than a shifty add.

-8-

•

•

3. Because the operations are done sequentially, from left to right, much

inaccuracy is introduced into the sum by effective truncation of the smaller
-k -1 terms dk*lO (k > 1) to the noise level of d1*10 . (This is the most

serious defect~)

3. Output

3.1. Floating Point Numbers. The algorithm for converting from floating point
. ..

(Binary) to ASCII (dec1mal) is based on the assumption that most floating point numbers

lie in the range

It proceeds in three steps:

1. Reduce number to range

l0-15 - B < lxl < 1.

-16 Here B is a "fuzzy" bound which is strictly greater than 10 •

2. Further reduce
1

to range

Thus lxl is now a pure fraction with nonzero leading decimal digit.

3. Convert fraction.

From this point on we shall use x to denote lxl.

The first range reduction (step 1) is shown schematically in Fig. 2.1. Note

that little or no calculation is done in this step if the number is in the range indicated

by the inequality (lo-15 - B < lxl < 1). E is used to accumulate the (decimal) exponent.

Figure 2.2 shows the original version of step 3.
E -1 We now have x • 10 , where 10 < x < 1. This reduction suffers from the fact

that one can go through the loop from 0 to 15 times. This puts average computer time

(assuming prefetching and an average of 6 iterations) at about 60 cycles, with a range

of 10 to more than 150 cycles.

Step 2 can be improved by using a loop, where the loop control is the modifier of

E, initialized to 8 (Fig. 2.3). It is down-shifted at each step, with termination on zero.
-2k 2k The comparands 10 and the multipliers 10 are prefeteched from tables according to

the following algorithm:

a. Right after each multiply, fetch next multiplier.

b. Right after each subtract (x- 10-2k), and before the test, fetch the next

comparand.

-9-

<

-30
T~x-2·10

. 15
X~ X *1 0

E = E - 15

<

E~O

<

15
T~x-10

-15 x ~ x*10
E = E + 15

Fig. 2.1. Flow chart showing first range reduction.

-10-

•

•

<

Fig. 2.2. Second range reduction -original version .

•

-11-

<

<

<

<

x ..._ x*lO 8

E-E-8

x-+-x*lO

E-E-1

Fig. 2.3. Second range reduction -improved version.

-12-

•"

,,

•

In this way, drop-through costs 10 cycles, while the other branch takes 11 cycles. Thus,

the timing is nearly constant, varying between 40 and 44 cycles.

We now have a pure fraction to convert (step 3) .

We crank out the f. a digit at a time until the field is filled. We multiply by 10. The
1

integer part of lOf is the first digit, f 1, which is converted to ASCII and added to the

number being accumulated. We replace f with .f2f 3 ... and repeat the process.

3.2. Integers. Because the remainder of a division on the 6600 or 7600 is

obtainable only by multiplying the quotient by the divisor and subtracting the result

from the dividend, the normal digit-at-a-time conversion process for integers is very

costly. The solution; convert to a fraction and use the process described above.

Because one can have integers with up to 59 bits, whereas a floating point frac­

tion has 48 bits, it is necessary to do some preprocessing for large integers. If

1014 < I < 1018 (has more than 14 digits) we have:

We divide by 1018 , getting the quotient 118 a bit at a time and the exact remainder by

repeated subtractions. Similarly for I 17 , I16 , I 15 .

We now assume 0 < I < 1014 In ord~r to guard against possible bit losses in

the conversion process, a fractional part of 1/2 is added before the integer is floated.

We now do the reverse of the second reduction process above. (Comparands 108 , 1014 ,

102; multipliers 10-8, 10-4 , 10-2 .)

Stopping after the third iteration, we get a number between 1 and 10, as well as

a digit count:

1\'e convert this as in step 3, above. Note that by prefetching, the innermost loops go

seven times as fast as the FORTRAN version.

4. Vector Output on STAR

We conclude with a proposal for a way to make vector output "sing" on the STAR.

The output will be in fixed format, eight vectors across the page, 16 characters per

field. For each vector, a scan will determine the maximum (in absolute value) element.

If lOk <max lxl < 10k+1, the exponent k + 1 will be printed at the top of the column.

The elements (adjusted by lOk+l) then follow in Fl6.0 format, but without the decimal

point. (For half words, we will get 16 across the page, with fields 8 characters long.)

The choice of fieldwidth limitation is based on the fact that the character vectors will

-13-

have to be transposed to convert to the necessary line-formatted page for output. The

'STAR has a hardware instruction for an 8 X 8 matrix transpose.

vl v2 v3 VB

(kl + 1) tk2 + 1) lk3 + 1) (kg + 1)

v 1 (1) v 2 (1) v3 (1) v 8 (1)

v1 (2) v 2(2) v3 (2) v8 (2)

If the full width is used (14 digits), there will be a sign and a single space separating

columns in the full word case. An option to specify the maximum number of significant

digits desired could be provided.

Chapter 3. EISPACK: Software for the

Algebraic Eigenvalue Problem

R.P. Dickinson, Jr.

Let A be a matrix. Then a vector v is called an eigenvector of A if v ~ 0 and

if Av = Av, where A is a scalar. The value A associated with v is called an eigenvalue

of A. An important problem of numerical analysis is to find all or some eigenvectors

and eigenvalues of a given matrix A (the eigen-system of A). Because of the many

different types of matrices, no single algorithm exists to solve this problem. EISPACK

is a collection of algorithms designed to solve the algebraic eigenvalue-eigenvector

problem.,

EISPACK consists of some thirty FORTRAN subroutines or algorithms. A particular

matrix problem only demands a few of these routines. Part of the EISPACK procedure is

the selection of the correct set of routines needed by the user. This is done at LLL

by a question and answer document which leads the user to the correct .set. t EISPACK

was written at Argonne National Laboratory, under the direction of W. Cowell and

C. Moler. The system was designed with the help of J. Wilkinson, 1 a world authority on

these problems. Examination of the EISPACK system, including the Argonne backing, will

give a good understanding of what good software should be.
(

tThis document will appear separately.

-14-

t:>

'"'

~I

The following material attempts to summarize some of the points which Argonne has

made concerning the EISPACK project. Argonne is exploring how scientific computer users

can collaboratively test and certify mathematical software. To this end it has chosen

two sets of mathematical routines to work on: EISPACK and a special functions package

(see Ref. 2).

Argonne also wishes to establish itself as a distribution center for these systems,

thus gaining experience in the distribution aspects of mathematical software. The

responsibility of such a center would be to guarantee the user of carefully tested work.

The user is guaranteed a reliable party to stand behind the package. 3 Hopefully, prob­

lems encountered by isolated users will be reported to the central distributor so the

experience can be shared. A central distributor has many advantages. It becomes their

responsibility to keep abreast of the software state-of-the-art.

With this last thought in mind, Argonne has attempted to write a modular package

(thirty subroutines). Any given algorithm might be improved without destroying the flow

of the total system. The modularity of EISPACK also gives the user more than one way of

solving his problems, depending on his needs. For example, storage might be at a premium.

In this case a slower path with less storage might be taken. Also as a distributor,

Argonne has written in ANSI standard FORTRAN, a language compatible with most installations.

Thus portability also has been incorporated.

Another problem of the distributor is test certification. In this case, Wilkinson

has supplied many stringent tests. However, further testing has been made by drawing

field test centers into the project. NATS (~SF funded, tests at ~gonne, !exas, and

~tanford) is part of this effort. The installation at the University of Texas, with

investigator Ikebe, is based on CDC 6600. The other installations (Cowell at Argonne

and Moler at Stanford) use the IBM 360. Argonne has expanded its field centers to

include LLL. Argonne has held workshops in which the field centers have shared their

experiences. By observing the Argonne effort many valuable pointers have been gained in

the dissemination and creation of good software.

In addition to the basic system EISPACK, a further code, an EISPACK controller,

has been written by J. Boyle at Argonne. This system eliminates most of the questions a

user must answer before using EISPACK. It automatically chases the routines necessary.

In this system the user may treat EISPACK more as a black box. Boyle's system is based

on IBM 360. Implementation of Boyle's system is not believed feasible at LLL at this time.

Our plans are to automate the question and answer procedure through teletype

control, although documents will be available also. The routines themselves, with

drivers or stand-alone, will be stored on Photostore, with backup tape and cards. After

preliminary questions by the user on the teletype, the appropriate routines will be

loaded from Photostore to the user's disk files. At this point the user might execute

the deck or have it punched for later use. We also hope to share the LLL experiences

with EISPACK as NATS representatives.

In conclusion, EISPACK is a quality-designed piece of software. It has

been designed by experts. It is backed by a prestigious organization. It has

-15-

been exhaustively field tested. It is highly modular and flexible. It is portable. It

is expandable. It is well documented. I appreciate Argonne's model of quality software

and its model as a distributor.

Chapter 4. Calculating Pade Approximants

R. L . Pe-xton

1. Introduction

~

Power series, continued fractions, or rational fractions are often utilized in

the numerical and analytical development of problems in the physical sciences. The

ability to accurately and rapidly generate rational fractions from given power series, as

claimed by Longman,4 is therefore, a most welcome addition to our know-how. Our analytic

development closely resembles that of Longman, but we believe our subroutine to be

superior to his.

2. Theory
00

Given a power series, f(x) =~ we desire t0 calculate coefficients for

rational approximants to f(x).
\)

u ~
i

= Cl.X
~\) 1

i=O

~

~
j=O

·U
E

lJ\1
= lJ\1 v

~\)

n=O
Let

The elements E can be displayed in a Pade table:
ll\1

-16-

E nn

,

\..1

()

I)

For our rational
CXI

i.e.,

approximants we require that
u

lJ\1 = O(xlJ+\I+l)
- vll"

+ ••• +
\1

a x \1,
(4.1)

Note that the C. are given and that some powers of x may be multiplied by zero-valued
1

coefficients.

Equating like powers of x produces ll + \1 + 1 equations in lJ + \1 + 2 unknowns.

This one degree of freedom permits us to assign e0 _ 1. Classically the remaining a's

and S's have been evaluated by means of determinants. One could also use matrix

inversion techniques.

Example: For ll = \1 = 2

coal + al + = -Cl

clel + coaz - a2 = -C2

c2el + cle2 + = -C3

c3el + czez + = -C4

In matrix notation

co 0 -1 0

cl co 0 -1 ez -C2
::

c2 cl 0 0 al -C3

c3 c2 0 0 -C4

Symbolically, Ax = y and x =
-1 A y.

These results can more ·readily be evaluated by Longman's elegant recursive process.

-17-

In detail, equating similar powers of x in Eq. { 4 .1) produces

coso = a.o

clso + COSl a.l

C2SO + clsl + COB2 = 0.2

C"SO + C 1S1 + C 2s2 + ••• + C S =a.
v v- v- v-~ ~ v

Note that for negative subscripts C = 0. p

v + 1 equations

~ equations.

The first row of the Pade table, EOv' can be written down at once.

Eoo = co

EOl = co + c1x

E02 co + c1x + c
2
x 2 =

Now examine the elements, EvO' of the first column of the Pade table. From

coso = a.o

C0S1 + c1s0 = 0

c0s2 + c1s1 + c2e0 = o

-18-

\~

••

_,

we may readily solve for .the S's, since 80 - 1, e.g.,

81 = -C/Co

e2 = -ce1c1 • c2)!c0

etc.

The elements of the first column will be

=

etc.

Longman's recursion formulae interrelate the following elements of the Pade table:

E lJ-l,\1-l

E lJ,\1-l

E lJ-1,\1

Knowing E 1 1 and E 1 allows Longman to obtain the a's for E,,v-l' and knowing
ll- ,v- ll- ,v ,.

E 1 1 and E 1 allows him to obtain the 8's for
ll- ,v- lJ,\1- E 1 . ll- ,v

The first row and first column

uemonstration:

For E we have lJ\1

For E lJ,\1-l

provide the necessary starting conditions.

v-l) 0 (xlJ+\1) • + .•. + a\1_ 1x +

-19-

(4 .2)

For E 1 ll- , v

..•) (Bo + + ••• + B 1x
ll-

ll-1)

Subtracting Eq. (4.2) from Eq. (4.3) gives

(c0 + c1x + c2x
2

+ ···) [ch0 - B0) + (b1 - s1)x + (b2 - B2)x2

+ ••• + (b
1

- B)xll-l + hllxu]
ll-)J-1

Since b0 = s0 = 1 and a0 = A0 = c0, we may divide by x to obtain

(c0 + c1x + c2x
2

+ ···) [cb1 - B1) + (b 2 - B2)x

+ ••• + (b 1 - B l)xll-2 + b xll-1]
ll- ll- ll

= (A) (A) (- A)xV-2
al- 1 + a2- 2 x + ••• + av-1 v-1

(4. 3)

For a normal Pade table5 each element is irreducible.t

divide by (b1 - B1) to obtain

I
Therefore, b 1 ~ B1 and we may

which, of course, is E ll-l,v-1"

Ro = 1

b2 - B2
rl =

bl Bl -

+ ••• +

al - Al
co so =

bl Bl
= -

a2 - A2
sl =

bl - B2

tTheorem. In a normal Pade table, the approximant occupying the square [p,q] has, in
its simplest terms, numerator and denominator whose degrees are exactly q and p,
respectively.6

-20-

b
ll-1 - B

ll-1 r = s
ll-2 bl - Bl

b

rll-1 = ll
bl - Bl

rll-1 1
Using the last results, e.g., -b--- = b _ B

ll 1 1 and a's.

Bl

B2

B
ll-1

=
b

bl - _ll_
r
ll-1

b2
rlbll

- r
ll-1

= blJ-1 -

3. Subroutine Considerations

= \)-1

and

al =

a2 =

-A
\)

bl - Bl

-s \)-1 1
-A-=

\)

::------=-- , we solve for B' s
bl - Bl

s0A\)
Al -

s\)-1

s 1A\)
A2 - ----.

s\)-1

A -\)-1

s A \)-2 \)

s\)-1

Longman's published subroutine, PADE, closely follows his analytic development.

lfuile this approach provides near crystal clarity, it unfortunately results in a code

that is inefficient with respect to execution time and storage requirements. Remarkable

improvement in both categories is easily achieved. The improved subroutine is as

displayed in Table 4.1. Ultimate efficiency is not claimed. Trivial savings result

from a rearrangement of DO loop 7. Note, however, that permuting subscripts I and J

permits us to delete loops 11 and 17.

Visualize the AL array as a 3-dimensional parallelepiped (Fig. 4.1).

Let a plane pass through A C D E. The elements of AL will all be stored in

the sector A B C D E F. A similar argument holds with respect to the BE array. Hence

if we rotate the BE array we may store the nonzero elements in the zero segment of

the AL array (slightly modified). One should note that NPl = N + 1. The other

modifications are self explanatory.

-21-

I
N
N
I

Table 4 .1. 1-lodi fication of Longman 1 s Pade algorithm •

Original

SUBROUTINE PADE(C,D,AL,BE,N)

DIMENSION C(N) ,D(N) ,AL(N,N,N) ,BE(N,N,N)

D(l) • 1. $D(2) • -C(2)/C(1) $N1 • N-1

DO 5 I • 3 ,N

S = C(I)

11 • 1-2

D06J•1,11

6 S • S+C(I-J)*D(J+l)

5 D(I) • -S

DO 7 J • 1 ,N

DO 7 K • 1 ,J

AL(1,J,K) •C(K)

BE(J, 1 ,K) • D(K)

DO 10 I • 2,N

J1 • N+1-1

DO 10 J • 1 ,J1

First A 1 terati on

SUBROUTINE PADE(C,D,AL,BE,N)

DIMENSION C(N) ,D(N) ,AL (N ,N ,N) ,BE(N ,N ,N)

D(l) • 1. $0(2) • -C(2)/C(1) $N1 • N-1

DO 5 I • 3 ,N

S • C(l)

11 • l-2

D06J•1,!1

6 S • S+C(I-J)*D(J+l)

D(I) • -s

DO 7 K • 1 ,N

CK = C(K)

DK. • D(K)

DO 7 J • K,N

AL(l,J ,K) • CK

BE(J,1 ,K) • OK

1)0 10 I • 2 ,N

J1 " N+l-1

D010J•1,J1

BE(J,I,l) • 1.

... ··~-····

Second A 1 terati on

SUBRCUTINE PADE(C,D,AL,N,NPl)

DIMENSION C(N) ,D(N) ,AL(NPl,N,N)

D(l) • 1. $0(2) = -C(2)/C(1) $N1 • N-1 $NP3 • N+3 $NP2 = N+2

D05!•3,N

S • C(I)

Il • I-2

- DO 6 J = 1 ,!1

S • S+C(I-J)*D(J+1)

o(I) • -s

DO 7 K = 1 ,N

CK • C(K)

OK • D(K)

D07J=K,N

AL(1,J,K) • CK

AL(NP1 ,J ,NP1-K) = OK

D010I•2,N

J1 = NP1-I

DO 10 J • 1 ,J1

AL(NP2-I,J,N) = 1.

10 AL(I,J,1) • C(1)

DO 11 J • 2 ,N

10 AL(I,J,l) • C(l) 10 AL(I,,J,1) • C(l)

I 1 = N+ 1-J

DO 11 I • 1 ,I1

11 BE(I,J,1) • 1.

DO 16 I • 2,N1

J1 • N+1-l

D016J•2,J1

D016K=2,J

16 AL(l,J,K) • AL(l-1,J+1,K)-AL(l-1,J,K-1)*AL(I-1, 16

DO 17 J • 2,N1

I1 • N+1-J

DO 17 I • 2,tl

D017K=2,I

J+1 ,J+l)/AL(I-1 ,J,J)

17 BE(I,J,K) • BE(I+1,J-1,K)-BE(I,J-1,K-1)*BE(I+1,

RETURN

END

~· ;;

D0161•2,N1

J1 • N+1-l

DO 16 J. • 2,J1

DO 16 I • 2 ,N1

J1 • NP1-I

D016J=2,J1

TEMA 'AL(I-1,J+1,J+1)/AL(I-1,J,J)

TEMB = AL(NP3-I ,J+1 ,N-J)/AL(NP3-I ,J,NP1-J)

DO 16 K • 2 ,J DO 16 K = 2 ,J

BE (J, I, K) • BE (J+ 1 , I -1 ,K) -BE (J, I -1 ,K-l)*BE (J+ 1 , AL (NP~- I ,J, NP1-K) = AL (NP3- I ,J+ 1 ,NP1-K) -AL (NP3- I ,J ,NP2.-K)*TEMB

1-1 ,J+1)/BE(J ,I-1 ,J)

AL(I,J,K) • AL(I-1,J+1,K)-AL(I-1,J,K-l)*AL(I-1, 16 AL(l,J,K) • AL(I-1,J+1,K)-AL(I-1,J,K-1)*TEMA

J+1,J+1)/AL(I-1,J,J)

RETURN

END
RETURN

END

~
...

D

A

Fig. 4.1. Model of the AL array.

-23-

Table 4.2. Modification of Longman's PADVAL algorithm.

Original Altered

SUBROUTINE PADVAL(AL,BE,U,V,W,X,N)

DIMENSION AL(N,N,N),BE(N,N,N),U(N,N),V(N,N),W(N,N)

PRINT 16,X

16 FORMAT (5X,2~X=,E20.8)

PRINT 15

15 FORMAT (5X,30~

DO 8 I = 1 ,N

J1 = tl+l-I

DO 8 J = 1 ,JI

J W(I ,J)

U(I,J) = 0. $ V(I,J) = 0.
DO 5 K = 1 ,J

5 U(I,J) = U(I,J)+AL(I,J,K)*X**(K-1)
D06K=1,I

6 V(I,J) = V(I,J)+BE(I,J,K)*X**(K-1)
IF(V(I,J))7,9,7

7 W(I,J) = U(I,J)/V(I,J)
PRINT 12,I,J,W(I,J)

12 FORMAT (2IlO,E20.8)
GO TO 8

9 PRINT 13,I,J

13 FORMAT (2Il0,9X,2H**)

8 CONTINUE

RETURN

END

SUBROUTINE PADVAL(AL,U,V,W,X,XK,N,NPl)

DIMENSION AL(NPl,N,N),U(N,N),V(N,N),W(N,N),XK(N)

PRINT 16,X

16 FORMAT (5X,2~X=,E20.8)

PRINT 15

15 FORMAT (5X,30H
DO 1 K = 1 ,N

XK(K) = X**(K-1)
NP2 = N+2
DO 8 I= 1,N
Jl = NP,1-I

DO 8 J = 1 ,Jl

J W(I ,J)

U(I,J) = 0. $ V(I,J) = 0.
DO 5 K = 1 ,J

5 U(I,J) = U(I,J)+AL(I,J,K)*XK(K)
DO 6 K = 1,I

6 V(I,J) = V(I,J)+AL(NP2-J,I,NP1-K)*XK(K)
IF(V(I,J))7,9,7

7 W(I,J) = U(I,J)/V(I,J)
PRINT 12,I,J,W(I,J)

12 FORMAT (2I10,E20.8)
GO TO 8

9 PRINT 13, I,J

13 FORMAT (2I10,9X,2H**)

8 CONTINUE

RETURN

END

The listing of the original and final versions of PADVAL are displayed in

Table 4.2. The changes are straightforward.

Some recent publications concerned with Pade approximants are listed in the

references 7, 8, and 9.

-24-

'\)

,.

References

Chapter 3

1.

z.

.J.H. Wilkinson and C. Reinsch, Linear Algebra {vol. II of the Handbook for Automatic

Computation), Springer-Verlag {New York, 1971).

J .M. Boyle, et al., "NATS: A Collaborative Effort to Certify and Disseminate

Mathematical Software," to be presented at the 1972 National ACM Conference.

"'· "The Certified Eigensystem Package, EISPACK," SIGNUM Newsletter z_, 2 (July 1972),

4-5.

Chapter 4

4. I.M. Longman, "Computation of the Pade Table," Intern. J. Compt. Math. ~. 53 {1971).

5. O. Perron, Die Lehre von dem Kettenbruchen, (Chelsea, 1950), Chap. 10.

6. H.S. Wall, Analytic Theory of Continued Fractions, (Van ~Ostrand, 1948), p. 388.

7. W.B. Gragg, "The Pade Table and Its Relation to Certain Algorithms of Numerical

Analysis," SIAM Review .!_!, (1972).

8. G.A. Baker, Jr. and J.L. Gammel, The Pade Approximant in Theoretical Physics

(Academic Press, 1970).

9. P. Wynn, "The Rational Approximation of Functions which are Formally Defined by a

- Power Series Expansion," Math. of Computation (1960).

-25-

LLL Internal Distribution

Roger E. Batzel

R.P. Abbott

J.l-1. Bolstad

J. L. Brady

N.W. Davies

R.P. Dickinson

S. Fernbach

F.N. Fritsch

C.D. Gardner

P.l-1. Gray

G.L. Hage

M.A. Harrison

R.F. Hausman

N.W. Hetherington

A.C. Hindmarsh

B.M. Johnston

J.I. Karush

T. Kishi

V.J. Kransky

R.M. Lee

N.K. Madsen

J.R. Matthews

S.F. Mendicino

H.L. Nelson

R.L. Pexton

M.E. Rundquist

J.E. Schoonover

R.E. Shafer

N.G. Smiriga

T. Suyehiro

R.E. von Holdt

R.M. Wright

LBL Library

TID File

1-ILL:edas

Distribution

30

10

2

10

30

-26-

External Distribution

R.F. Sincovec
Kansas State University
Manhattan, Kansas

W.R. Cowell
W.J. Cody
Argonne National Laboratory
Argonne, Illinois

J.F. Traub
Carnegie-Mellon University
Pittsburgh, Pennsylvania

L.P. Meissner
University of California
Berkeley, California

B.K. Swartz
Los Alamos Scientific Laboratory
Los Alamos, New Mexico

J.N. Rogers
Sandia Laboratories
Livermore, California

c.w. Gear
University of Illinois
Urbana, Illinois

H.C. Thacher, Jr.
Department of Computer Science
University of Kentucky
Lexington, Kentucky

R.J. Thompson
D.A. Young
Sandia Laboratories
Albuquerque, New Mexico

Technical Information Center,
Oak Ridge, Tennessee

NOTICL

"Thb report wa~ prcpan:d a'\ ;m account of work sponsored by
the Unllcd State c;ovcrnmcnl. !\either the United St<.~tc~ nor
thl' United St:1tc\ Atomic •·.nl!rgy Commission, nor any of their
employe\."'· nnr :111y of their contr;n:tor~. sub~ontr_actors, or their
cmployct.:'>. m:1 kL·~ any warranty. exprc-.'i or unpiled, or aso,utnc!'l
any legal lh1hility or n:-;ponsihility for the accuracy, complctl'ncss
or u<>dulm·\<.. of any mformation. app;Hatus, product or process
disdo~l·d. 01 n:pn:\cnl" that ''" ll~L· would not infringe privaH:Iy­
owncd ri)!h\'.

f \

2

)

~
r

