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Abstract

The transformation of a nonlinear dynamical system into a standard form by using one of its 

variables and its successive derivatives can be used to identify the relationships that may exist 

between the parameters of the original system such as the subset of the parameter space over 

which the dynamics is left invariant. We show how the size of the attractor or the time scale (the 

pseudo-period) can be varied without affecting the underlying dynamics. This is demonstrated for 

the Rössler and the Lorenz systems. We also consider the case when two Rössler systems are 

unidirectionally coupled and when a Lorenz system is driven by a Rössler system. In both cases, 

the dynamics of the coupled system is affected.

I. INTRODUCTION

Coupling dynamical systems is a very popular approach for understanding how 

synchronization and control can occur in the natural world. Network of coupled dynamical 

systems are ubiquitous throughout nature including biological systems (see [1–4] and 

references therein). It is therefore essential to better understand how coupled non-linear 

systems interact, that is, drive each other, and how such interactions affect the collective 

dynamics. This is particularly relevant for complex networks when selecting for the terms of 

greatest influence on the collective dynamics and, consequently, which parameters most 

efficiently affect the network dynamics. This is dual to the observability problem of 

complex networks [5, 6].
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In the context of global modeling dynamical systems can be rewritten in a “standard form” 

[7] (now also called a jerk form [8–12]), that is, by using one of the variables of the original 

system and its Lie derivatives. When the Ansatz library is used for rewriting a dynamical 

system in a standard form [13, 14], it is possible to identify sets of parameter values or, 

equivalently, domains in the parameter space, for which the dynamics is invariant; the 

dynamics is thus left unchanged under a variation of well chosen parameter values as shown 

for the Rössler system when variable y and its successive Lie derivatives are used [15] or for 

the Lorenz-like systems when variable x is used [16].

In the present paper, our aim is to determine how many independent parameters can be 

identified in the Rössler and the Lorenz systems and how they can be affected by the 

variable retained for the analysis. Moreover, in both cases, we determine how it is possible 

to vary the pseudo-period of the system by modifying a subset of the system parameters, a 

consequence previously not considered [13].

We will then consider the case where two Rössler systems are coupled and the case where a 

Rössler system is used for driving a Lorenz system without affecting the standard function 

when the driven system is still considered in a three-dimensional space. The number of 

independent parameters of the resulting six-dimensional system is investigated and it is 

shown how the algebraic structure of the two systems can no longer be considered as 

independent.

We show here the sets of connected parameters in the Lorenz and the Rössler systems, 

respectively. We also investigate how connections are modified in the case of two systems 

unidirectionally coupled. Only parameters that are connected in the individual uncoupled 

systems can be further connected in the coupled system. Furthermore, parameters that are 

not connected within the individual systems remain independent in the coupled system.

The paper is organized as follows. Section II starts with some background on the interplay 

between the original system and its standard form. The numbers of independent parameters 

in the Rössler and in the Lorenz systems are then extensively investigated. Section III is 

devoted to the determination of the parameter to adjust for varying the pseudo-period of 

these two systems. The case of two coupled Rössler systems is discussed in Section IV and 

the case of a Lorenz system driven by a Rössler system is discussed in Section V. Section VI 

gives some conclusions.

II. LORENZ AND RÖSSLER SYSTEMS

A. General background

Consider a three-dimensional dynamical system of ordinary differential equations (ODEs) in 

the form

(1)
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with

where i ∈ {x, y, z} and monomials are of a polynomial form up to the second-order. It was 

shown in [7, 13, 14] that when a small subset of coefficients ai,j is nonzero, system (1) can 

be transformed into a standard form whose structure is

(2)

where the first variable X1 = h(x, y, z) = s is some function of the state variables, h being the 

so-called measurement function. The standard function Fs has a multivariate polynomial 

form depending on some parameters αk. Map Φ : ℝ3(x, y, z) → ℝ3(X1, X2, X3) between the 

original state space and the differential embedding allows one to obtain the standard form 

(2) from the original system (1). There is an associated map ϕ : ℝp(ai,j) → ℝq(αk) that 

expresses parameters αk’s of the standard function Fs in terms of parameters ai,j from the 

original system.

Lainscsek [15, 16] showed that there are algebraically in-equivalent dynamical systems in 

the form (1) which can be transformed to the same standard form (2): it is therefore possible 

to define a class of equivalent dynamical systems in the sense that from the time series point 

of view they have an identical variable. Moreover, there is a subspace of the parameter space 

in which the dynamics is unchanged: therefore, there exists an infinite number of global 

models corresponding to a single time series.

Parameters involved in relationships defining parameter subspaces in which dynamics 

remains unchanged are said to be connected. This property is important for global modeling 

techniques [17] since there is an infinite number of dynamical systems of the form (1) that 

share the same time series; the global model which can be obtained from a given time series 

is thus not unique. Map ϕ further reveals the connections between parameters from the 

original form (1) and those from the standard form (2), and the number of non-connected 

and independent parameters in the original system. Since not all parameters of the original 

system (1) are independent, it was shown [15] that its pseudo-period can be varied by using 

specific relationships between some of these parameters.
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B. Lorenz equations

The Lorenz equations [18]

(3)

can be transformed into a standard form (2) whose function Fs is more or less complicated 

depending on the “measured” variable [7]. With the choice X1 = h(x, y, z) = xL the standard 

function

(4)

is made of Nd = 7 terms of which two are rational. The standard function FxL has therefore 

two singular terms (corresponding to parameters α5 and α7) in X1 = 0. Parameters αk of this 

standard function are related to parameters ai,j of the Lorenz system (3) as follows

(5)

By introducing the scaling transformation [16]

(6)

and leaving the values of coefficients αk unchanged, it was shown that there is a class of 

Lorenz-like systems sharing the same xL-time series which can be defined.

The simplest way to determine these scaling relations, in particular, the set of exponents p(i, 

j), is to note that each coefficient αk is a sum of products of powers of parameters ai,j. 

Taking the logarithms of these nonlinear product functions, we can construct the appropriate 

coefficient matrix and determine the null space.

The scaled version of the inverse transformation (5) with ai,j → λi,jai,j is
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(7)

To leave αi unchanged in (5), the scale factors have to be one (e.g. for α1: λ1,1λ2,2λ3,3 = 1 

and λ1,2λ2,1λ3,3 = 1). Taking the logarithm leads to linear relations as, for instance,

(8)

and

(9)

The set of linear relations derived from the 12 terms of Eq. (7) is summarized in the matrix 

formulation

(10)

This 12 × 7 matrix has a two-dimensional null space spanned by the null vectors (0, 0, 0, 0, 

−1, 0, 1) and (0, −1, 1, 0, 0, 0, 0). This means that, among the seven parameter ai,j of the 

Lorenz system (3), there are two sets of connected parameters made of i) a1,2 and a2,1, and 
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ii) a2,6 and a3,5. Consequently, until the products a1,2 · a2,1 and a2,6 · a3,5 are constant while 

varying appropriately the corresponding parameters, the standard function FxL is left 

unchanged, resulting in an unchanged dynamics. In each pair, one of these parameters can 

be set to 1, the others being set to the value of their product. Consequently, each set of 

connected parameters represents a single independent parameter. Obviously, non-connected 

parameters are independent parameters. In the case of the Lorenz system (3), there are only 

five independent parameters, the three non-connected ones plus one for each of the two non-

overlapping sets of connected parameters. In fact, keeping constant the product a1,2 · a2,1 or 

a2,6 · a3,5 does not change the dynamics, that is, for instance, the population of periodic 

orbits embedded within the attractor remain the same; nevertheless, the amplitude of 

variable oscillations or, equivalently, the size of the attractor, can be changed. It is thus 

possible to rescale the size of the attractor by varying these two products. This can be 

expressed explicitly by rewriting the system (3) as

(11)

where μ and ν are the so-called scaling parameters. We did not investigate the standard 

function induced by variable yL or zL due to their complexity. Thus it is possible that other 

connected parameters may exist in the Lorenz system.

C. Rössler equations

Starting from variable yR1 as the measured variable, the Rössler system [19]

(12)

can be rewritten into the standard form in the differential embedding ℝ3(X1 = yR, X2, X3). 

The corresponding standard function FyR(X1, X2, X3) is explicitly

(13)

whose parameters αk are related to parameters bi,j of the Rössler system (12) by
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(14)

Thus, the standard function has Nd = 9 nonzero parameters αk. By using the scaling relations 

(6), the set of linear relations after removing repeated entries is

(15)

with the null vectors (−1, −1, 1, 0, 0, 0, 1) and (0, −1, 0, 0, 1, 0, 0). This means, that there 

are two sets of connected parameters: since parameter b1,3 belongs to the two sets, the five 

connected parameters can be reduced to a single independent parameter. Let b3,0 = b. The 

two remaining parameters that are non-connected, are b2,2 and b3,3. Setting b2,2 = a, and b3,3 

= −c recovers the Rössler system as originally proposed [19]. In fact, Rössler only retained 

these three parameters because they affected the dynamics most [20].

The Rössler system (12) can thus be rewritten as follows

(16)

where ρ and κ are the so-called scaling factors since they may only affect the amplitude of 

the oscillations while leaving the population of unstable periodic orbits embedded within the 

attractor unchanged. They explain two important features frequently observed in global 
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modeling [21]: i) global models are not unique and ii) a successful global model can produce 

an attractor that is topologically equivalent to the attractor underlying measured data but of a 

different size, e.g. smaller or larger in size than the original attractor.

In the case of the Rössler system, the standard function Fi can be easily computed when 

variable xR or zR is “measured” [7]: it has some monomials  whose exponents l, 

m and n may also be negative yielding rational terms [7, 14]. Note that, as pointed out in 

[14], the standard function FxR induced by variable xR of the Rössler system is not in a 

polynomial form involving terms  but can be brought into such a form by shifting 

variable xR according to

(17)

Such a shift induces a rigid displacement of the attractor in the state space ℝ3(xR, yR, zR) but 

leaves it unchanged, that is, the population of unstable periodic orbits embedded within 

remains the same.

Applying the same procedure as used for determining the null vectors among parameters, we 

obtain two such vectors for each of these variables as reported in Tab. I. These two null 

vectors are associated with the two subsets of the relationships between parameters bi,j 

already identified from those obtained using yR as the “measured” variable. This means that 

all existing relationships between parameters bi,j of the Rössler system can be determined 

from the sole yR-variable; in contrast only a subset of the systems interconnections are 

obtained from the two other variables.

We conjecture that there is a strong connection between these features and the observability 

provided by each of the variables of the Rössler system. Observability is related to the 

ability provided by some measurements to distinguish the different states of the system [22]. 

There is a full observability of the Rössler system when it is investigated by measuring 

variable yR, meaning that any state of the system can be distinguished from the sole 

measurements of this variable. In other words, all the information related to the dynamics of 

the Rössler system is contained in variable yR. This is not the case for the two other 

variables for which there is a singular observability manifold; that is, a domain of the 

original state space ℝ3(xR, yR, zR) which cannot be oberved by only measuring xR or zR [23, 

24]. The lack of information contained in these two variables also prevents us from 

identifying all possible relationships between coefficients bi,j solely from variables xR or zR. 

Consequently, since there is not a full observability from variable xL of the Lorenz system 

[25], we cannot be ensured to have determined all possible relationships between parameters 

ai,j.

From the null vectors listed in Tab. I, it is possible to extract the four different null vectors 

by introducing the four scaling factors κ, ν, φ and ρ in system (12) as
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(18)

Varying these factors does not affect the dynamics from the unstable periodic orbits point of 

view: only the scale of the attractor is affected.

III. TIME SCALING

As introduced in [15], it is possible to extend the list of connections between parameters bi,j 

by introducing the time scaling transformation

(19)

which affects the inverse transformation (14) as

(20)

Using scaling relations (6) with an additional scaling factor D → δD, the set of linear 

relations after removing repeated entries is

(21)

Lainscsek et al. Page 9

Chaos Solitons Fractals. Author manuscript; available in PMC 2016 July 01.

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript



with the null vectors N1 = (2, 3, 0, 1, 0, 1, 0, −1), N2 = (−1, −1, 1, 0, 0, 0, 1, 0), and N3 = (0, 

−1, 0, 0, 1, 0, 0, 0). Therefore Eq. (16) extends to

(22)

where the additional parameter δ is a time scaling factor of the dynamics: this means that the 

pseudo-period of oscillations (revolutions in the attractor) is varied without any change in 

the population of unstable periodic orbits embedded within the attractor.

Eq. (22) can be rewritten in a different form by changing the null vector N1 ↦ N1 + 2N2 + 

N3 = (0, 0, 2, 1, 1, 1, 2, −1):

(23)

To be more explicit, Eq. (22) can be rewritten in the form (23) as follows: parameters b1,2, 

b1,3, b2,1, and b3,6 are connected by the scaling factor ρ. Therefore, we can apply the 

transformation ρ ↦ ρ δ2 (N1 + 2N2)

(24)

and leaving the dynamics unchanged. In a similar way, parameters b1,3 and b3,0 being 

connected, the transformation κ ↦ κ δ (N1 + N3)

(25)

also leaves the dynamics unchanged. The Rössler system can thus be rewritten as Eq. (23). 

Consequently, the time can be rescaled in the Rössler system only by varying five 
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parameters (b2,1, b2,2, b3,0, b3,3 and b3,6) in the appropriate way: note that the first equation 

is left unchanged.

Applying such a time scaling to the Lorenz system does not leave any of the three equations 

unchanged. Indeed, the Lorenz system rewritten with the time scaling factor is

(26)

meaning that the time scaling factor δ appears in the three equations and that there is no 

connected parameter which would allow to remove factor δ in one of them.

IV. COUPLED RÖSSLER SYSTEMS

A general original system obtained from the Ansatz Library [13, 14] provides the same three 

standard functions as the Rössler system (12):

(27)

This has five additional terms (in bold) compared to the original Rössler system. Our 

purpose is now to unidirectionally couple two Rössler systems: in order to do this, we 

choose one of the five additional terms (one of those in bold in Eq. (27)). Since the quality 

of the coupling depends on the quality of the information transmitted by the variable used 

for the coupling [26], we choose to use information carried by variable yR which provides a 

full observability of the Rössler dynamics [23, 25]. The single possibility not affecting the 

algebraic structure of the standard function is therefore to use term b3,2 yR in the third 

equation of general system (27); the connection between the parameters in each Rössler 

system are thus as discussed in the previous section.

The two coupled Rössler systems are:
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(28)

Starting from variable X1 = yR, this six-dimensional system can be rewritten in the standard 

form

(29)

where FyR1
 is a polynomial function depending on the six successive Lie derivatives of yR1, 

the first one being the variable xR1 itself. This function has 107 terms 

, where l1+l2+l3+l4+l5+l6 ≤ 4. There is no rational term in this 

standard function.

Applying the scaling transformation (6) to parameters ci,j, we found from the null vectors 

(not reported) that there are four non-connected parameters (c2,2, c3,3, c5,5 and c6,6), all the 
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others being connected: Therefore this six-dimensional system has only five independent 

parameters. The six-dimensional system (29) can be rewritten with scaling factors as

(30)

where boxed terms correspond to non-connected parameters. These four non-connected 

parameters are exactly those that were non-connected in the autonomous Rössler systems 

(12). All the others are connected. We checked that the change of co-ordinates ΦyR1 : 

ℝ6(xR1, yR1, zR1, xR2, yR2, zR2) → (X1, X2, X3, X4, X5, X6) is a global diffeormorphism by 

computing the determinant of its jacobian matrix Φ = −C3 [22] which consequently never 

vanishes. ΦyR1 therefore defines a global diffeormorphism, such that yR1 provides a full 

observability of the six-dimensional system (28). According to our conjecture, all 

relationships between parameters are thus obtained by investigating this single case.

The fact that the five independent parameters are related to the coupling factor C between 

the two Rössler systems clearly shows that the resulting dynamics directly depends on this 

coupling factor. Thus, while investigating this six-dimensional system, the dynamics of each 

of the two Rössler systems is chosen by the pairs (c2,2; c3,3) and (c5,5; c6,6), respectively. 

The dynamics produced by the coupled systems is said to be tuned by parameter C.

The time scaling factors δ1 and δ2 can be used to investigate mismatches between the 

pseudo-periods of these two Rössler systems. Introducing the scaling relations (6) with these 

two additional time scaling factors for the first and the second Rössler systems as in Eq. (32) 

yields
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(31)

These time scaling factors now connect all parameters of the coupled system. There is no 

longer non-connected parameters. The dynamics of the six-dimensional system (28) will be 

left unchanged under a time rescaling until δ1 = δ2. Contrary to this, when δ1 ≠ δ2, the 

resulting dynamics will be changed under time rescaling. Thus, of one of the Rössler 

systems while holding the other system’s pseudo-period constant necessarily affects the 

resulting dynamics by introducing some bifurcations on the population of unstable periodic 

orbits embedded within the attractor produced by the six-dimensional system.

V. COUPLED LORENZ AND RÖSSLER SYSTEM

We now consider the case where a Lorenz system (3) is coupled with a Rössler system (12). 

As shown in [16], an additional constant term in the third equation of the Lorenz system 

does not add any term in the standard function FxL and, consequently, leaves the resulting 

dynamics unchanged. This additional parameter is connected with parameter a2,1 = R. The 

simplest way to unidirectionally couple a Lorenz system with a Rössler system is thus to 

link them with the variable yR — the single variable among the six possible ones providing a 

full observability — injected into the third equation of the Lorenz system which becomes a 

six-dimensional system

(32)
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It is possible to rewrite this in a standard form (29) using X1 = xL. The standard function has 

in this case 131 terms among which some terms are rational, such as .

Applying the scaling relations (6), we found that the three non-connected parameters of the 

Lorenz system (a1,1, a2,2 and a3,3) and the two non-connected parameters of the Rössler 

system (b2,2 and b3,3) remain non-connected in the six-dimensional system (32). Using 

scaling factors, system (32) can be rewritten as

(33)

where non-connected parameters are boxed. All the other parameters are connected within 

each of the two sub-systems or with parameters of the other sub-system: consequently, some 

parameters of the Lorenz system are connected to some parameters of the Rössler system, 

and vice versa. There are only two scaling factors (ρ and μ) connecting both systems. It is 

possible to relate any connected parameters to all the other connected ones using these two 

scaling factors. There is therefore a single independent parameter for the whole set of 

connected parameters. Parameter C naturally serves as the sixth independent parameter, the 

five other being the non-connected parameters. As in the preceding case where two Rössler 

systems were coupled, the dynamics of each subsystem can be chosen using the 

corresponding non-connected parameters and the effect of the coupling then investigated 

using parameter C.
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Note that we cannot guarantee that all relationships between parameters of system (32) have 

been identified since variable xL does not provide full observability since the determinant of 

the jacobian matrix of the change of coordinates ΦxL : ℝ6(xL, yL, zL, xR, yR, zR) → ℝ6(X1, 

X2, X3, X4, X5, X6) has an order-7 singular observability manifold. Nonetheless, driving the 

Lorenz system by the Rössler system induces a reduction of the number of independent 

parameters, since five were found in the autonomous Lorenz system (see Eq. (3) and the 

corresponding main text) but only three independent parameters were found in the Lorenz 

sub-system of the six-dimensional system (33): the two non-overlapping sets of connected 

parameters found in the Lorenz system (3), thus leading to two independent parameters, are 

now related to the whole set of connected parameters. Parameters of the two sub-systems are 

now interrelated through the coupling parameter C: the two systems are no longer 

independent.

Introducing the scaling relation (6) with two time scaling factors δL and δR for the Lorenz 

and the Rössler sub-systems of Eq. (32), the coupled system is:

(34)

The time scaling factor δR of the Rössler system is coupled with the common bifurcation 

parameter a2,1 = R of the Lorenz sub-system and can therefore affect the dynamics. Again, 

varying the pseudo-period of the driving system (here the Rössler system) affects the 

resulting dynamics.

VI. CONCLUSION

We have determined independent parameters of a dynamical system by investigating the 

relationships between the parameters of a given system and its corresponding standard forms 
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expressed in terms of one “measured” state variable and its successive Lie derivatives. Some 

of them correspond to non-connected parameters — individually affecting the dynamics — 

and some others to the sets of connected parameters, each non overlapping set associated 

with one independent parameter which can be chosen in various ways.

There is a limited number of parameters to vary to modify the dynamics of a given system 

(five for the Lorenz system and three for the Rössler system). It is also possible to change 

the time scale — or the pseudo-period of the system — by modifying a limited set of 

parameters without acting directly on the time. The map between parameters of the original 

system and those of its standard form allows us to determine those parameters.

The relationships between the original system and its various standard forms — depending 

on the “measured” state variable — can be exploited to design networks in which systems 

are coupled in a way such that the coupled system is characterized by a standard function 

with the same algebraic structure as the autonomous system; consequently, the resulting 

dynamics necessarily corresponds to the dynamics observed in the original autonomous 

system, but with a displacement in the parameter space. By using the time scaling factor, we 

also showed that varying the pseudo-period of the driving system is similar to varying a 

bifurcation parameter.

We were surprised to discover that in driving a Lorenz system with a Rössler system, 

modifying one parameter of the driving system — and therefore its dynamics — can be 

counter-balanced by modifying one of the parameters related to the modified one. Knowing 

the connection between parameters of the two sub-system could be quite useful for 

designing a control technique for a driven system to react to some fluctuations observed in 

the driving system.

Such a coupling is important when considering the interactions between real-world non-

linear systems. For example, in systems biology and neuroscience coupled non-linear 

dynamical systems are omnipresent and are thus important at all levels of interaction. In 

these systems, any sort of temporal variance or change in interstimulus interval could 

dramatically change the dynamics of the coupled systems. Thus, this finding has profound 

implications for controlling abnormal neurological oscillations in pathological states.
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